3 Experimental Part #### 3.1 Materials and Methods #### 3.1.1 General Unless otherwise specified, materials were purchased from commercial suppliers and used without further purification. All solvents were distilled prior to use. All reactions involving organometallic reagents were carried out under argon or nitrogen. Tetrahydrofuran and diethyl ether were distilled from sodium and benzophenone. Toluene and dichloromethane were distilled from calcium hydride. Methanol was distilled from magnesium under argon. #### 3.1.2 NMR-Spectroscopy 1 H-NMR spectra were recorded on a Bruker AM 270 MHz or a Bruker AMX 500 MHz spectrometer and are reported in δ from Me₄Si (δ = 0.00 ppm) and from CDCl₃ (δ = 7.26 ppm). The 1 H-NMR chemical shifts and coupling constants were determined assuming first-order behaviour. Multiplicities are reported using the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad) or a suitable combination. The list of coupling constants (J; reported to the nearest 0.5 Hz) corresponds to the order of the multiplicity assignment. The assignments of proton resonances were based on 1 H, 1 H-COSY and 1D Nuclear Overhauser Enhancement (NOE) spectroscopy. ¹³C-NMR spectra were recorded at 68 MHz or at 125 MHz in CDCl₃ (unless otherwise stated) with the chemical shift relative to CHCl₃ (77 ppm). #### 3.1.3 IR-Spectroscopy IR spectra were recorded as pellets (KBr) or in solution (solvent as given) using a Perking Elmer FT-IR or a Nicolet A 320 FT-IR spectrometer and are reported using the following abbreviations: s (strong), m (medium), w (weak). #### 3.1.4 MS-Spectroscopy Mass spectra were recorded on a Varian CH7A mass spectrometer, high resolution mass spectroscopy (HRMS) was performed using a Varian MAT 711 spectrometer (PKF served as internal reference). #### 3.1.5 Polarimetry Optical rotations were recorded on a IBZ Messtechnik polarimeter. The specific optical rotation was calculated using the following formula: $$[\alpha]_{\lambda}^{\mathrm{T}} = \frac{\alpha \cdot 100}{c \cdot d}$$ where α is the angle of optical rotation in degrees, λ is the wavelength of the polarized light and is normally the sodium D-line (589 nm), T is the Celsius temperature at which the measurement is made, c is the mass concentration in g cm⁻³ and d is the length of the path of the light through the solution in dm. #### 3.1.6 Chromatography All reactions were monitored by thin layer chromatography (TLC), which was carried out on 0.25 mm Merck silica gel-60 F_{254} precoated plates. The following reagents were used as detectors: **Schlittler reagent**: 81 3 mL of 10% aqueous H₂PtCl₆ + 97 mL water + 100 mL 6% aqueous KI. This reagent is very specific for the detection of amides (white colour, not persistent) and amines (deep brown to black colour). **Anisaldhyde reagent:** 1 mL anisaldhyde and 2 mL concentrated sulfuric acid dissolved in 100mL of glacial acetic acid. Potassium permanganate reagent: 0.05% aqueous KMnO₄. _ ⁸¹ Schlittler, E.; Hohl, J. Helv. Chim. Acta 1952, 35, 29. **Bromokresol green reagent**: 40 mg bromokresol green indicator (3,3',5,5'-Tetrabromo-m-kresosulfon-phthalein) was dissolved in 100 ml of ethanol and treated with 0.1 M aqueous NaOH until a blue colour appeared. Basic compounds give a deep blue, acid or weak acid compounds a yellow colour. Ninhydrine reagent: 0.2 g of ninhydrine was dissolved in 100 mL of ethanol. #### 3.2 Syntheses of *N*-Allylpyrrolidines #### (S)-Proline methyl ester hydrochloride 42 To a stirred solution of (S)-Proline **41** (10 g, 86.9 mmol) in 100 mL dry methanol at 0 °C was added carefully thionylchloride (9.8 mL). After complete addition, the solution was refluxed for 3 hours and then the solvent was removed in vacuum to give (S)-Proline methyl ester hydrochloride **42** as pale yellow oil, which was used without further purification. #### (S)-N-Allylproline methyl ester 43 (S)-Proline methyl ester hydrochloride **42** (900 mg, 5.4 mmol) in DMF (80 mL) was subsequently treated with solid K_2CO_3 (4 g) and fresh distilled allyl bromide (0.56 mL, 6.48 mmol). The mixture was stirred overnight at 20 °C, then H_2O (50 mL) was added. The aqueous layer was extracted with Et_2O (4 × 20 mL), the combined organic layers were dried over $MgSO_4$ and concentrated to give the crude product. Purification by Kugelrohr distillation (140 °C / 0.01 mm Hg) gave 818 mg (89%) of (*S*)-*N*-Allylproline methyl ester **43** as colourless oil. ¹**H-NMR** (270 MHz, CDCl₃): δ = 1.66-1.95 (m, 3H, C H_2 CHH), 1.97-2.10 (m, 1H, CH₂CHH), 2.32 (ddd, 1H, J = 17.09 Hz, 7.81 Hz, 0.98 Hz, CH₂CHHN), 3.01-3.15 (m, 3H, NCHCOOCH₃, CH₂CHHN, NCHHCH=CH₂), 3.20-3.29 (ddt, 1H, J = 13.18 Hz, 6.35 Hz, 1.46 Hz, 0.98 Hz, NCHHCH=CH₂), 3.65 (s, 3H, COOC H_3), 5.02 (dd, 1H, J = 10.25 Hz, 0.98 Hz, CH₂CH=C \boldsymbol{H} H), 5.10 (dd, 1H, J = 17.09 Hz, 1.47 Hz, CH₂CH=CH \boldsymbol{H}), 5.77-5.92 (dddd, 1H, J = 17.09 Hz, 10.25 Hz, 6.84 Hz, 6.84 Hz, -CH₂C \boldsymbol{H} =CH₂) ppm ¹³C-NMR (68 MHz, CDCl₃): $\delta = 22.9$ (*C*H₂CH₂), 29.4 (CH₂*C*H₂), 51.6 (O*C*H₃), 53.3 (N*C*HCOOCH₃), 57.5 (CH₂*C*H₂N), 65.1 (N*C*H₂CH=CH₂), 117.2 (CH₂CH=*C*H₂), 135.1 (CH₂*C*H=CH₂), 174.4 (*C*OOCH₃) ppm #### (S)-N-Allylprolinol 44 Allylproline methyl ester **43** (1.57 g, 9.28 mmol) in anhyd. THF (30 mL) was treated dropwise with DIBAL-H (17 mL, 20.4 mmol, 1.2 M in toluene) at 0 °C. After stirring for 3 hours at 0 °C, the reaction was quenched with MeOH (5 mL), and after a further 10 minutes of vigorous stirring, aq. sat. NaHCO₃ (10 mL) and 30% aq. sodium potassium tartrate (15 mL) were added. The aqueous layer was extracted with Et₂O (5 × 20 mL), the combined organic layers were dried over MgSO₄ and concentrated to give 1.06 g (81%) of *N*-Allylprolinol **44**, which was used without further purification. ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 1.50\text{-}1.70$ (m, 3H, C*H*₂C*H*H), 1.83 (m, 1H, CH₂CH*H*), 2.29 (ddd, 1H, J = 8.83 Hz, 8.09 Hz, 1.47 Hz, CH₂C*H*HN), 2.60 (m, 1H, NC*H*CH₂OH), 2.90 (dd, 1H, J = 13.24 Hz, 7.36 Hz, NCH*H*CH=CH₂), 2.92 (br s, 1H, O*H*), 3.06 (dd, 1H, J = 9.56 Hz, 4.42 Hz, CH₂C*H*HN), 3.36 (m, 2H, NC*H*HCH=CH₂, CH*H*OH), 3.61 (dd, 1H, J = 10.30 Hz, 3.78 Hz, C*H*HOH), 5.06 (dd, 1H, J = 10.29 Hz, 1.47 Hz, CH=CH*H*), 5.15 (dd, 1H, J = 16.91 Hz, 1.47 Hz, CH=C*H*H), 5.92 (dddd, 1H, J = 16.91 Hz, 10.30 Hz, 7.36 Hz, 5.88 Hz, C*H*=CH₂) ppm ¹³C NMR (68 MHz, CDCl₃): δ = 23.2 (*C*H₂CH₂), 27.5 (CH₂*C*H₂), 54.2 (N*C*H₂CH=CH₂), 57.4 (CH₂*C*H₂N), 62.4 (N*C*HCH₂OH), 64.2 (NCH*C*H₂OH), 116.7 (CH=*C*H₂), 135.8 (*C*H=CH₂) ppm # (S)-N-Allyl-2-tert-butyldimethylsilyloxymethylpyrrolidine 45 Allylprolinol **44** (1 g, 7.08 mmol), imidazole (1 g, 14.7 mmol) and DMAP (10 mg) in anhyd. THF (50 mL) were treated with TBSCl (1.7 g, 11.3 mmol) at 0 °C. After 3 hours of stirring at 20 °C (TLC control), the mixture was quenched with MeOH (20 mL) and H_2O (20 mL). The aqueous layer was extracted with Et_2O (4 × 10 mL) and the combined organic layers were dried over MgSO₄. After removal of the solvent, the crude material was purified by Kugelrohr distillation (85 °C / 0.01 mm Hg), gave 1.77 g (98%) of **45** as colourless oil. $$[\alpha]_D^{20} = -50.1^{\circ} (c = 1.2, CHCl_3)$$ ¹**H-NMR** (500 MHz, CDCl₃): $\delta = 0.00$ (s, 6H, Si(C H_3)₂), 0.85 (s, 9H, (C H_3)₃C), 1.49-1.75 (m, 3H, C H_2 CHH), 1.75-1.92 (m, 1H, CH₂CHH), 2.20 (dd, 1H, J = 8.79 Hz, 8.30 Hz, -CH₂CHHN), 2.55 (m, 1H, NCHCH₂O), 2.88-3.05 (m, 2H, CH₂CHHN, NCHHCH=CH₂), 3.40 (dd, 1H, J = 9.77 Hz, 7.32 Hz, CHHO), 3.50 (dd, 1H, J = 13.66 Hz, 5.86 Hz, NCHHCH=CH₂), 3.65 (dd, 1H, J = 10.25 Hz, 5.37 Hz, CHHO), 5.04 (dd, 1H, J = 10.26 Hz, 1.47 Hz, CH=CHH), 5.12 (dd, 1H, J = 16.09 Hz, 1.47 Hz, CH=CHH), 5.85 (dddd, 1H, J = 16.90 Hz, 10.29 Hz, 7.35 Hz, 5.89 Hz, CH=CH₂) ppm ¹³C NMR (125 MHz, CDCl₃): $\delta = -5.4$ (Si(CH_3)₂), 18.2 ((CH₃)₃C), 22.8 (CH_2 CH₂), 25.8 ((CH_3)₃C), 28.3 (CH₂ CH_2), 54.6 (N CH_2 CH=CH₂), 58.6 (CH₂ CH_2 N), 64.7 (NCHCH₂O), 66.9 (CH_2 O), 116.5 (CH= CH_2), 136.3 (CH=CH₂) ppm IR (solution, CHCl₃): $1/\lambda = 3019$ (m), 2956 (m), 2857 (m), 2805 (m), 1471 (m), 1463 (m),1420 (w), 1389 (w), 1362 (w), 1257 (m), 1214 (s), 1096 (m) cm⁻¹ **MS** (EI, 80 eV, 30°C): m/z (%) = 255 (31, [M]⁺), 240 (33, [M-CH₃]⁺), 198 (59, [M-C₄H₉]⁺), 124 (23, [M-C₆H₁₅OSi]⁺), 110 (100, [M-C₇H₁₇OSi]⁺), 41 (87, [C₃H₅]⁺). **HRMS** (80 eV, 30 °C): m/z [M]⁺ calcd. for $C_{14}H_{29}NOSi$, 255.20184; found, 255.20433 # (S)-N-Allyl-2-tert-butyldiphenylsilyloxymethylpyrrolidine 46 Allylprolinol **44** (1 g, 7.08 mmol), imidazole (1 g, 14.7 mmol) and DMAP (10 mg) in anhyd. THF (50 mL) were treated with TPSCl (2.9 g, 10.5 mmol) at 0 °C. After 3 hours of stirring at 20 °C (TLC control), the mixture was quenched with H_2O (20 mL). The aqueous layer was extracted with Et_2O (4 × 10 mL) and the combined organic layers were dried over MgSO₄. After removal of the solvent, the crude material was purified by column chromatography (n-hexane / ethyl acetate = 4:1) to give 2.68g (99%) of **46** as colourless oil. $$[\alpha]_D^{20} = -46.2^{\circ} \text{ (c} = 1.9, \text{CHCl}_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 1.10$ (s, 9H, SiC(C H_3)₃), 1.60-1.85 (m, 3H, C H_2 CHH), 1.85-2.01 (m, 1H, CH₂CHH), 2.20-2.31 (m, 1H, NCHHCH₂), 2.62-2.74 (m, 1H, NCHCH₂O), 2.89-2.99 (dd, 1H, J = 13.18 Hz, 7.32 Hz, NCHHCH=CH₂), 3.03-3.11 (m, 1H, NCHHCH₂), 3.47-3.56 (m, 1H, NCHHCH₂), 3.49-3.58 (dd, 1H, J = 10.25 Hz, 6.84 Hz, CHHOTPS), 3.73-3.81 (dd, 1H, J = 10.26 Hz, 6.36 Hz, CHHOTPS), 5.01-5.08 (dd, 1H, J = 10.26 Hz, 0.98 Hz, CH=CHH), 5.09-5.19 (dd, 1H, J = 17.09 Hz, 1.46 Hz, CH=CHH), 5.79-5.96 (dddd, 1H, J = 17.09 Hz, 10.25 Hz, 7.32 Hz, 5.86 Hz, CH=CH₂), 7.30-7.55 (m, 5H, Ph), 7.65-7.82 (m, 3H, Ph) ppm ¹³C NMR (68 MHz, CDCl₃): δ = 19.1 (Si*C*(CH₃)₃), 22.8 (*C*H₂CH₂), 26.8 (SiC(*C*H₃)₃), 28.4 (CH₂*C*H₂), 54.4 (N*C*H₂CH=CH₂), 58.5 (N*C*H₂CH₂), 64.6 (N*C*HCH₂O), 67.5 (NCH*C*H₂O), 116.4 (CH=*C*H₂),
127.5, 129.4, 133.7, 136.2 (Ph), 135.5 (*C*H=CH₂) ppm IR (solution, CHCl₃): $1/\lambda = 3072$ (m), 3045 (m), 2807 (m), 3017 (s), 2964 (s), 2931 (s), 2859 (s), 2807 (m), 1472 (m), 1463 (w), 1428 (m), 1391 (w), 1215 (s), 1112 (s), 1050 (m) cm⁻¹ **MS** (EI, 80 eV, 40°C): m/z (%) = 379 (5, [M]⁺), 322 (6, [M-C₄H₉]⁺), 280 (4, [M-C₄H₉-C₃H₆]⁺), 199 (43, [HOSiPh₂]⁺), 110 (100, [C₇H₁₂N]⁺). **HRMS** (80eV, 30-40 °C): m/z [M]⁺ calcd. for $C_{24}H_{33}NOSi$, 379.23314; found, 379.23654 # (S)-N-Allyl-2-benzyloxymethylpyrrolidine 47 To a suspension of NaH (255 mg, 10.6 mmol) in anhyd. THF (30 mL) at 0°C was added a solution of allylprolinol 44 (1 g, 7.08mmol) in anhyd. THF (10 mL). The deprotonation was completed within 1 hour at 0 °C. Benzyl bromide (1.3 g, 7.6 mmol) in anhyd. THF (10 mL) was added and the mixture was stirred overnight at 20 °C. The mixture was quenched with $\rm H_2O$ (10 mL), the aqueous layer was extracted with $\rm Et_2O$ (3 × 10 mL), the combined organic layers were dried over MgSO₄, and the solvent was evaporated. The crude material was purified by kugelrohr distillation (115 °C / 0.01 mm Hg) to give 1.38 g (84%) of 47 as colourless oil. $$[\alpha]_D^{20} = -68.5^{\circ} (c = 1.4, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): δ = 1.49-1.75 (m, 3H, C*H*₂CH*H*), 1.75-1.92 (m, 1H, CH₂C*H*H), 2.21 (ddd, 1H, *J* = 8.93 Hz, 8.09 Hz, 1.47 Hz, NCH*H*CH₂), 2.65 (m, 1H, NC*H*CH₂O), 2.92 (dd, 1H, *J* = 13.24 Hz, 8.09 Hz, NCH*H*CH=CH₂), 3.06 (ddd, 1H, *J* = 9.56 Hz, 6.62 Hz, 2.94 Hz, CH₂C*H*HN), 3.36 (dd, 1H, *J* = 6.61 Hz, 5.88 Hz, CH*H*O), 3.50 (dd, 1H, *J* = 9.56 Hz, 5.14 Hz, C*H*HO), 3.56 (dd, 1H, *J* = 5.88 Hz, 1,47 Hz, NC*H*HCH=CH₂), 4.42 (s, 2H, PhC*H*₂), 5.06 (dd, 1H, *J* = 10.29 Hz, 1.47 Hz, CH=CH*H*), 5.12 (dd, 1H, *J* = 16.09 Hz, 1.47 Hz, CH=C*H*H), 5.85 (dddd, 1H *J* = 16.91 Hz, 10.29 Hz, 7.35 Hz, 5.88 Hz, C*H*=CH₂), 7.15-7.26 (m, 5H, Ph) ppm ¹³C NMR (68 MHz, CDCl₃): δ = 22.8 (*C*H₂CH₂), 28.6 (CH₂*C*H₂), 54.4 (N*C*H₂CH=CH₂), 58.3 (N*C*H₂CH₂), 62.7 (*C*HCH₂O), 73.2 (*C*H₂O), 73.7 (Ph*C*H₂), 116.6 (CH=*C*H₂), 136.2 (*C*H=CH₂), 127.4, 127.5,128.0,128.2, 138.4 (Ph) ppm IR (solution, CHCl₃): $1/\lambda = 3068$ (m), 3015 (s), 2970 (s), 2914 (s), 2872 (s), 2803 (m), 1732 (w), 1643 (w), 1496 (m), 1454 (m), 1420 (w), 1363 (m), 1216 (s), 1097 (s) cm⁻¹ **MS** (EI, 80 eV, 30°C): m/z (%) = 231 (12, [M]⁺), 110 (100, [M-C₈H₉O]⁺), 91 (77, [C₇H₇]⁺), 41 (89, [C₃H₅]⁺). **HRMS** (80 eV, 30 °C): m/z, $[M]^+$ calcd. for $C_{15}H_{21}NO$, 231.16231; found, 231.16482 #### (S)-N-Allyl-2-methoxymethylpyrrolidine 48 To a suspension of NaH (255 mg, 10.6 mmol) in anhyd. THF (30 mL) at 0°C was added a solution of allylprolinol 44 (1 g, 7.08mmol) in anhyd. THF (10 mL). The deprotonation was completed within 1 hour at 0 °C. Methyl jodide (1.2 g, 8.4 mmol) in anhyd. THF (10 mL) was added and the mixture was stirred overnight at 20 °C. The mixture was quenched with H_2O (10 mL), the aqueous layer was extracted with Et_2O (3 × 10 mL), the combined organic layers were dried over MgSO₄, and the solvent was evaporated. The crude material was purified by kugelrohr distillation (30 °C / 0.01 mm Hg) to give 880 mg (80%) of 48 as colourless oil. $$[\alpha]_D^{20} = -85.6^{\circ} (c = 2.0, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): δ = 1.40-1.65 (m, 3H, C H_2 CHH), 1.65-1.85 (m, 1H, CH₂CHH), 1.98-2.16 (dd, 1H, J = 8.92 Hz, 8.10 Hz, NCHHCH₂), 2.38-2.53 (m, 1H, NCHCH₂), 2.70-2.85 (dd, J = 13.24 Hz, 8.10 Hz, 1H, NCHHCH=CH₂), 2.85-2.92 (m, 1H, NCHHCH₂), 3.10-3.31 (m, 5H, OC H_3 , NCHC H_2), 3.31-3.44 (dd, 1H, J = 13.19 Hz, 4.40 Hz, NCHHCH=CH₂), 4.88-4.99 (d, 1H, J = 10.26 Hz, CH=CHH), 4.99-5.12 (d, 1H, J = 17.09 Hz, CH=CHH), 5.68-5.90 (m, 1H, CH=CH₂) ppm ¹³C NMR (68 MHz, CDCl₃): δ = 22.6 (*C*H₂CH₂), 28.2 (CH₂*C*H₂), 54.2 (N*C*H₂CH=CH₂), 58.1 (N*C*H₂CH₂), 58.8 (*C*HCH₂O), 75.8 (O*C*H₃), 116.4 (CH=*C*H₂), 136.0 (*C*H=CH₂) ppm IR (solution, CHCl₃): $1/\lambda = 3079$ (m), 2950 (s), 2900 (s), 2877 (s), 2753 (s), 2497 (w), 1675 (m), 1643 (m), 1460 (s), 1455 (s), 1420 (m), 1385 (m), 1349 (m), 1261 (m), 1217 (s), 1199 (s), 1109 (s), 994 (s), 969 (m), 922 (s) cm⁻¹ **MS** (EI, 80 eV, 30°C): m/z (%) = 155 (1.29, [M]⁺), 124 (0.81, [M-CH₃O]⁺), 110 (100, [M-C₂H₅O]⁺), 41 (23, [C₃H₅]⁺). **HRMS** (80 eV, 30 °C): m/z, [M]⁺ calcd. for C₉H₁₇NO, 155.13101; found, 155.13453 ### (2S,4R)-4-Hydroxyproline methyl ester hydrochloride 52 To a suspension of hydroxyproline **51** (5 g, 38 mmol) and dry methanol (30 mL) at 0 °C was added carefully thionylchloride (5 mL). After complete addition, the mixture was refluxed for 5 hours and then the solvent was removed in vacuum to give hydroxyproline methyl ester chloride **52** as colourless crystals, which were used without further purification. #### (2S,4R)-N-Allyl-4-hydroxyproline methyl ester 53 To a suspension of hydroxyproline methyl ester **52** (2 g, 11 mmol) in dry CH_2Cl_2 (50 mL) was added Et_3N (1.56 mL) and fresh distilled allyl bromide (1.12 mL, 13.2 mmol, d = 1.43). The mixture was stirred over night at 20 °C, then H_2O (30 mL) was added. The aqueous layer was extracted with CH_2Cl_2 (3 × 15 mL), the combined organic layers were dried over MgSO₄, and the solvent was removed in vacuum. The crude material was purified by column chromatography (Ethylacetate) to give 1.66 g (81.5%) of allyl hydroxyproline methyl ester **53** as pale yellow oil. $$[\alpha]_D^{20} = -87.3^{\circ} (c = 1.8, CHCl_3)$$ ¹**H-NMR** (500 MHz, CDCl₃): $\delta = 1.90\text{-}1.98$ (m, 1H, HOCHC*H*₂), 2.01-2.09 (m, 1H, HOCHC*H*₂), 2.29-2.35 (ddd, 1H, J = 9.90 Hz, 5.45 Hz, 4.45 Hz, NCH*H*), 3.01-3.07 (m, 1H, CH*H*CH=CH₂), 3.17-3.23 (m, 1H, C*H*HCH=CH₂), 3.23-3.29 (ddd, 1H, J = 10.40 Hz, 5.45 Hz, 4.95 Hz, NC*H*H), 3.34-3.40 (m, 1H, NC*H*), 3.43-3.55 (br, s, OH), 3.55 (s, OCH₃), 4.96-5.01 (dd, 1H, J = 10.03 Hz, 0.98 Hz, CH=CH*H*), 5.03-5.09 (dd, 1H, J = 17.05 Hz, 1.24 Hz, CH=C*H*H), 5.70-5.80 (m, 1H, C*H*=CH₂) ppm ¹³C NMR (125 MHz, CDCl₃): δ = 39.3 (HOCH*C*H₂), 51.6 (O*C*H₃), 57.1 (*C*H₂CH=CH₂), 61.0 (N*C*H₂), 63.4 (N*C*HCOOCH₃), 69.3 (*C*HOH), 117.6 (CH=*C*H₂), 134.4 (*C*H=CH₂), 173.9 (*C*OO) ppm IR (KBr, film): $1/\lambda = 3173$ (br, m, OH), 3072 (m), 3024 (m), 3007 (m), 2985 (m), 2975 (m), 2953 (m), 2945 (m), 2866 (m), 2823 (m), 1878 (w), 1747 (s, COO), 1706 (w), 1644 (w), 1462 (m), 1453 (m), 1432 (m), 1377 (m), 1364 (w), 1340 (m), 1320 (m), 1287 (w), 1266 (w), 1235 (m), 1218 (m), 1196 (s), 1174 (s), 1142 (m), 1127 (m), 1091 (s), 1061 (w), 1019 (m) cm⁻¹ **MS** (EI, 80 eV, 30°C): m/z (%) = 185 (7.4, [M]⁺), 126 (100, [M-C₂H₃O₂]⁺), 108 (7, [M-C₂H₅O₃]⁺), 41 (19, [C₃H₅]⁺). **HRMS** (80 eV, 30°C): m/z, $[M]^+$ calcd. for $C_9H_{15}NO_3$, 185.10519; found, 185.10733 ### (2S,4R)-N-Allyl-4-tert-butyldimethylsilyloxyproline methyl ester 54 Allyl hydroxyproline methyl ester **53** (1.4 g, 7.57 mmol), imidazole (1.13 g, 16.6 mmol) and DMAP (10 mg) in anhyd. THF (20 mL) were treated with TBSCl (2.28 g, 15.14 mmol) at 0 $^{\circ}$ C. After 3 hours of stirring at 20 $^{\circ}$ C (TLC control), the mixture was quenched with MeOH (20 mL) and H₂O (20 mL). The aqueous layer was extracted with Et₂O (4 × 10 mL) and the combined organic layers were dried over MgSO₄. After removal of the solvent, the crude material was purified by column chromatography (hexane-EtOAc, 5:1) to give 2.2 g (98%) of **54** as pale yellow oil. $$[\alpha]_D^{20} = -47.8^{\circ} (c = 1.5, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 0.00$ (s, 6H, Si(C H_3)₂), 1.35 (s, 9H, SiC(C H_3)₃), 1.87-1.99 (ddd, 1H, J = 12.69 Hz, 8.30 Hz, 3.91 Hz, NCHCHH), 1.99 (ddd, 1H, J = 12.70 Hz, 7.81 Hz, 7.25 Hz, NCHCHH), 2.24-2.32 (dd, 1H, J = 9.76 Hz, 6.88 Hz, NCHHCHO), 3.00-3.11 (dd, 1H, J = 13.19 Hz, 7.33 Hz, CHHCH=CH₂), 3.19-3.30 (m, 2H, NCHHCHO, CHHCH=CH₂), 3.31-3.39 (dd, 1H, J = 8.30 Hz, 7.81 Hz, NCH), 3.65 (s, 3H, OC H_3), 4.27-4.37 (m, 1H, TBSOCH), 4.97-5.09 (dd, 1H, J = 9.76 Hz, 0.98 Hz, CH=CHH), 5.09-5.15 (dd, J = 17.09 Hz, 1.47 Hz, CH=CHH), 5.71-5.88 (dddd, 1H, J = 17.09 Hz, 10.25 Hz, 9.76 Hz, 6.83 Hz, CH=CH₂) ppm ¹³C NMR (68 MHz, CDCl₃): δ = -5.0 (Si(*C*H₃)₂), 17.8 (Si *C*(CH₃)₃), 25.6 (SiC(*C*H₃)₃), 39.6 (OCH*C*H₂), 51.7 (O*C*H₃), 58.1 (N*C*H₂CH=CH₂), 61.6 (N*C*H₂), 64.0 (N*C*HCOOCH₃), 70.3 (O*C*HCH₂), 117.6 (CH=*C*H₂), 134.8 (*C*H=CH₂), 174.2 (*C*O) ppm IR (KBr, film): $1/\lambda = 3079$ (w), 2954 (s), 2929 (s), 2896 (m), 2857 (s), 2803 (m), 2710 (w), 1751 (s, CO), 1659 (w), 1643 (w), 1472 (m), 1463 (m), 1436 (m), 1420 (w), 1361 (m), 1312 (w), 1257 (s), 1198 (s), 1173 (s), 1131 (m), 1099 (s), 1033 (m), 1006 (m), 995 (m) cm⁻¹ **MS** (EI, 80 eV, 40°C): m/z (%) = 299 (3, [M]⁺), 284 (2, [M-CH₃]⁺), 240 (100, [M-C₂H₃O₂]⁺). **HRMS** (80 eV, 40°C): m/z, $[M]^+$ calcd. for $C_{15}H_{29}NO_3Si$, 299.19167; found, 299.19192 #### (2S,4S)-N-Allyl-4-acetoxyproline methyl ester 55 To a stirred solution of AcOH (120.7 μ L, 2.08 mmol) and DEAD (326 μ L, 2.08 mmol) in anhyd. Et₂O (10 mL) were added allyl hydroxyproline methyl ester **53** (350 mg, 1.89 mmol) and Ph₃P (556.8 mg, 2.08 mmol) in anhyd. Et₂O (10 mL) at 0 °C. After 20 hours, the reaction mixture was filtered and the solvent was evaporated. The residue was purified by column chromatography (n-hexane / EtOAc, 3:1) to give 370 mg (86%) of **55** as pale yellow oil. $$[\alpha]_D^{20} = -70.2^{\circ} (c = 2.0, CHCl_3)$$ ¹**H-NMR** (500 MHz, CDCl₃): δ = 1.96 (s, 3H, C H_3 CO), 1.91-2.05 (m, 1H, CHHCHCO₂), 2.43-2.59 (m, 1H, CHHCHCO₂), 2.48-2.55 (d, 1H, J = 5.37 Hz, NCHHCHOAc), 2.92-3.02 (ddd, 1H, J = 13.19 Hz, 7.33 Hz, 0.98 Hz, CHHCH=CH₂), 3.03-3.11 (t, J = 8.30 Hz, CHCO₂), 3.11-3.18 (d, 1H, J = 1.27 Hz, NCHHCHOAc), 3.24-3.36 (ddd, 1H, J = 13.18 Hz, 6.34 Hz, 0.98 Hz, CHHCH=CH₂), 3.65 (s, 1H, OC H_3), 4.30 (m, 1H, CHOH), 4.99-5.11 (m, 1H, CHOAc), 5.02-5.17 (m, 2H, CH=C H_2), 5.74-5.92 (dddd, 1H, J = 17.09 Hz, 13.68 Hz, 10.26 Hz, 6.85 Hz, CH=CH₂) ppm ¹³C NMR (125 MHz, CDCl₃): $\delta = 21.1$ (*C*H₃CO), 36.4 (*C*H₂CHCO₂), 51.9 (O*C*H₃), 57.3 (*C*H₂CH=CH₂), 58.9 (N*C*H₂CHO), 64.3
(N*C*HCO₂), 72.2 (*C*HOAc), 118.2 (CH=*C*H₂), 134.0 (*C*H=CH₂), 170.9 (CH₃*C*OO), 173.1 (*C*OOCH₃) ppm **IR** (KBr): $1/\lambda = 3077$ (w), 2979 (m), 2953 (m), 2804 (m), 1738 (s, COO), 1643 (w), 1437 (m), 1367 (m), 1245 (s), 1190 (m), 1165 (m), 1057 (m), 1017 (m), 922 (m) cm⁻¹ **MS** (EI, 80 eV, 50°C): m/z (%) = 227 (0.8, [M]⁺), 184 (0.5, [M-C₂H₃O]⁺), 168 (19, [M-C₂H₃O₂]⁺), 108 (100, [C₇H₁₀N]⁺). **HRMS** (80 eV, 50 °C): m/z, $[M]^+$ calcd. for $C_{11}H_{17}NO_4$, 227.11576; found, 227.11592 NOE data for 55 #### (S)-N-(2-tert-Butyldimethylsilyloxymethyl)prop-2-enyl proline methyl ester 50 Proline methyl ester hydrochloride **42** (1.14 g, 6.90 mmol) in DMF (100 mL) was treated with Et₃N (1.3 g, 6.90 mmol) and **49** (1.61 g, 5.75 mmol) at 0 °C. The mixture was stirred overnight at 20 °C, then H_2O (50 mL) was added. The aqueous layer was extracted with Et_2O (4×20 mL), the combined organic layers were dried over MgSO₄. After removal of the solvent, the crude material was purified by column chromatography (n-hexane / ethyl acetate = 5:1) to give 1.4 g (77%) of **50** as pale yellow oil. $$[\alpha]_D^{20} = -51.7^{\circ} (c = 1.7, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 0.05$ (s, 6H, Si(C H_3)₂), 0.90 (s, 9H, SiC(C H_3)₃), 1.65-1.97 (m, 3H, C H_2 CHH), 1.99-2.15 (m, 1H, CH₂CHH), 2.26-2.38 (dd, 1H, J = 16.60 Hz, 8.30 Hz, NCHHCH₂), 2.96-3.07 (m, 2H, NCHHCH₂, NCHHCH=CH₂), 3.11-3.18 (dd, 1H, J = 8.79 Hz, 5.37 Hz, NCHCO₂), 3.20-3.28 (d, 1H, J = 12.70 Hz, NCHHCH=CH₂), 3.65 (s, 3H, CO₂C H_3), 4.07-4.25 (dd, 2H, J = 21.49 Hz, 14.65 Hz, TBSOC H_2), 4.95 (s, 1H, CHH=C), 5.05 (s, 1H, CHH=C) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = -5.4$ (Si(*C*H₃)₂), 18.3 (Si*C*(CH₃)₃), 23.0 (*C*H₂CH₂), 25.8 (SiC(*C*H₃)₃), 29.3 (CH₂*C*H₂), 51.5 (O*C*H₃), 53.3 (N*C*HCO₂), 57.5 (N*C*H₂CH₂), 64.4 (N*C*H₂C=CH₂), 65.4 (TBSO*C*H₂), 111.3 (*C*H₂=C), 146.2 (CH₂=*C*), 174.6 (*C*O₂CH₃) ppm IR (KBr): $1/\lambda = 3092$ (w), 2954 (s), 2929 (s), 2884 (m), 2856 (s), 1752 (s, COO), 1737 (s, COO), 1658 (w), 1472 (m), 1462 (m), 1435 (m), 1406 (w), 1388 (w), 1361 (m), 1251 (s), 1196 (s), 1171 (s), 1108 (s), 1040 (w), 1006 (m), 938 (w), 906 (m) cm⁻¹ **MS** (EI, 80 eV, 40°C): m/z (%) = 313 (3, [M]⁺), 298 (3, [M-CH₃]⁺), 254 (100, [M-CO₂CH₃]⁺), 185 (19, [M-C₆H₁₀NO₂]⁺), 128 (33, [M-C₆H₁₁NO₂-C₄H₉]⁺). **HRMS** (80 eV, 40 °C): m/z, $[M]^+$ calcd. for $C_{16}H_{31}NO_3Si$, 313.20732; found, 313.20722 #### Data of **49**: ¹**H-NMR** (270 MHz, CDCl₃): δ = 0.05 (s, 6H, Si(C \textbf{H}_3)₂), 0.90 (s, 9H, SiC(C \textbf{H}_3)₃), 3.0 (s, 3H, C \textbf{H}_3 SO₃), 4.16 (s, 2H, TBSOC \textbf{H}_2), 4.72 (s, 2H, MsOC \textbf{H}_2), 5.25 (s, 1H, CHH=C), 5.33 (s, 1H, CHH=C) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = -5.4$ (Si(*C*H₃)₂), 18.2 (Si*C*(CH₃)₃), 25.7 (SiC(*C*H₃)₃), 37.7 (*C*H₃SO₃), 63.2 (TBSO*C*H₂), 69.9 (MsO*C*H₂), 115.7 (*C*H₂=C), 141.4 (CH₂=*C*) ppm #### 3.3 Syntheses of Carboxylic Acids #### Azidoacetic acid 61 To chloroacetic acid **60** (10.4 g, 0.11 mol) in Et₂O (15 mL) was added NaOH (30 mL, 3.3 M) and NaN₃ (8.2 g, 0.126 mol) at 0 °C. After complete dissolution, the solution was refluxed for 3 days at 60 °C. Then the solution was cooled to 0 °C and H₂SO₄ (30 mL, 2 M) was carefully added. The aqueous layer was extracted with Et₂O (10 × 200 mL), the combined organic layers were dried over Na₂SO₄. After removal of the solvent in vacuum 11 g (99%) of azidoacetic acid **61** was obtained as a colourless oil. ¹**H-NMR** (270 MHz, CDCl₃): δ = 3.90 (s, 2H, C**H**₂), 11.4 (s, 1H, COO**H**) ppm ¹³C **NMR** (68 MHz, CDCl₃): δ = 49.7 (*C*H₂), 173.2 (*C*OOH) ppm *N-tert*-Butyloxycarbonyl-*N*-(2,2-diethoxyethyl)aminoacetic acid 68 *N*-Benzyloxycarbonyl-*N*-(2,2-diethoxyethyl)aminoacetic acid 69 OEt $$NH_2$$ EtO OEt R OH OH 68: $R = BOC$ 69: $R = Cbz$ Aminoacetaldehyde diethylacetal **63** (1.33 g, 10 mmol) and Et₃N (1.01 g, 1.4 mL, 10 mmol) in anhyd. Et₂O (100 mL) were cooled to 0 °C. Ethyl bromoacetate **65** (1.67 g, 1.11 mL, 10 mmol) in anhyd. Et₂O (50 mL) was added slowly and the mixture was stirred overnight at 0 °C. Di *–tert-*butyl dicarbonate or benzyloxycarbonyl chloride (10 mmol) in anhyd. Et₂O (20 mL) was added and the mixture was stirred at r.t. for 5 hours. 1 N HCl (50 mL) was added to the mixture and the aqueous layer was extracted with Et_2O (4×40 mL). The combined organic layers were dried over MgSO₄ and the solvent was removed to give the crude protected α -amino esters. The crude protected α -amino ester was treated with 1 N NaOH (100 mL) and LiCl (0.5 g, 11.8 mmol). After stirring at 80 °C for 3 hours and at 20 °C for 1 hour, the solution was extracted with Et₂O (3×50 mL). The aqueous layer was acidified with aq. sat. KHSO₄ until the solution reached a pH of 4-5. The aqueous solution was extracted with Et₂O (4×50 mL) and the organic layers were dried over MgSO₄. After removal of the solvent, the carboxylic acids **68** and **69** were isolated pure enough for further transformations. #### Data of **68**: Yield: 2.46 g (84.5%); clear oil. ¹**H NMR** (270 MHz, CDCl₃): $\delta = 1.15$ (2×t, 6H, J = 7.35 Hz, C \textbf{H}_3 CH₂O), 1.40 (2×s, 9H, (C \textbf{H}_3)₃C), 3.30 (2×d, 2H, J = 5.15 Hz, NC \textbf{H}_2 CH(OEt)₂), 3.45 (m, 2H, CH₃C \textbf{H}_2 O), 3.55 (m, 2H, CH₃C \textbf{H}_2 O), 4.00 (2×s, 2H, NC \textbf{H}_2 COOH), 4.50 (2×t, 1H, J = 5.15 Hz, CH(OEt)₂), 10.95 (br s, 1H, COOH) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = 15.1$ (*C*H₃CH₂O); 28.0, 28.2 ((*C*H₃)₃C); 49.7, 50.7 (N*C*H₂COOH); 50.8, 51.1 (N*C*H₂CH(OEt)₂); 63.1, 63.4 (CH₃*C*H₂O); 80.7 ((CH₃)₃*C*); 101.8, 102.1 (*C*H(OEt)₂); 155.2, 155.5 (N*C*O); 175.1 (*C*OOH) ppm IR (in CHCl₃): $1/\lambda = 3019$ (s), 2980 (s), 2932 (s), 2898 (s), 1730 (s, COO), 1697 (s, CON), 1477 (m), 1456 (s), 1417 (s), 1396 (s), 1369 (s), 1306 (w), 1251 (s), 1220 (s), 1159 (s), 1060 (s), 973 (m), 927 (m) cm⁻¹ **MS** (neg. FAB): m/z (%) = 291 (17, [M]⁺), 290 (100, [M-H]⁺). Data of **69**: Yield: 2.05 g (63%); clear oil. ¹**H NMR** (270 MHz, CDCl₃): δ = 1.15 (m, 6H, C H_3 CH₂O), 3.35-3.75 (m, 6H, CH₃C H_2 O, NC H_2 CH(OEt)₂), 4.15 (2×s, 2H, NC H_2 COOH), 4.50 (2×t, 1H, J = 5.15 Hz, CH(OEt)₂), 5.14 (2×s, C H_2 Ph), 7.24-7.36 (m, 5H, Ph), 9.90 (br s, 1H, COOH) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = 15.1$ (*C*H₃CH₂O); 50.1 (N*C*H₂CH(OEt)₂); 51.0, 51.4 (N*C*H₂COOH); 63.2, 63.5 (CH₃*C*H₂O); 67.6, 67.8 (*C*H₂Ph); 101.7, 102.0 (*C*H(OEt)₂), 126.9, 127.6, 127.9, 128.0, 128.1, 128.4, 128.5, 136.1 (Ph); 156.1, 156.3 (N**C**O); 174.6 (**C**OOH) ppm IR (in CHCl₃): $1/\lambda = 3019$ (s), 2979 (s), 2930 (s), 2883 (s), 2658 (m), 2548 (m), 1728 (s, COO), 1697 (s, CON), 1604 (m), 1585 (m), 1498 (m), 1454 (s), 1422 (s), 1374 (s), 1216 (s), 1126 (s), 1059 (s), 994 (m), 960 (m) cm⁻¹ **MS** (pos. FAB): m/z (%) = 348 (1.08, [M+Na]⁺), 326 (1.04, [M+H]⁺), 280 (18, [M-CHO₂]⁺), 236 (15, [M-C₇H₇]⁺), 103 (35, [C₅H₁₁O₂]⁺), 91 (100, [C₇H₇]⁺). #### N-tert-Butyloxycarbonyl-N-(2,2-dimethoxyethyl)aminoacetic acid 70 Aminoacetaldehyde dimethyl acetal **64** (4.60 g, 43.8 mmol) and Et₃N (44.2 g, 61.3 mL, 43.8 mmol) in anhyd. Et₂O (250 mL) were cooled to 0 °C. Ethyl bromoacetate **65** (73.1 g, 48.6 mL, 43.8 mmol) in anhyd. Et₂O (100 mL) was added slowly and the mixture was stirred overnight at 0 °C. Di-*tert*-butyl dicarbonate (43.8 mmol) in anhyd. Et₂O (50 mL) was added and the mixture was stirred at r.t. for 5 hours. 1 M HCl (150 mL) was added to the mixture and the aqueous layer was extracted with Et₂O (4×80 mL). The combined organic layers were dried over MgSO₄ and the solvent was removed to give the crude protected α -amino esters. The crude protected α -amino ester was treated with 1 M NaOH (438 mL) and LiCl (1.86 g, 43.8 mmol). After stirring at 80 °C for 3 hours and at 20 °C for 1 hour, the solution was extracted with Et₂O (3×50 mL). The aqueous layer was acidified with aq. sat. KHSO₄ until the solution reached a pH of 4-5. The aqueous solution was extracted with Et₂O (4×100 mL) and the organic layers were dried over MgSO₄. After removal of the solvent, 7.60 g (66%) of the carboxylic acid **70** was isolated pure enough for further transformations. ¹**H NMR** (270 MHz, CDCl₃): δ = 1.25 (2 × s, 9H, C(C H_3)₃), 3.2 (s, 6H, OCH₃), 3.08-3.23 (m, 2H, NC H_2 CH(OCH₃)₂), 3.81 (2 × s, 2H, NC H_2 COOH), 4.15-4.50 (2 × dd, 1H, J = 5.37 Hz, 4.88 Hz, CH(OCH₃)₂), 8.80 (br, s, 1H, COOH) ppm ¹³C NMR (68 MHz, CDCl₃): δ = 27.7, 27.9 (C(CH₃)₃), 49.1, 49.6 (CH₂CH(OCH₃)₂), 49.9, 50.0 (CH₂COOH), 80.5, 80.6 (C(CH₃)₃), 103.7, 103.9 (CH(OCH₃)₂), 155.2, 155.3 (NCO), 173.4, 173.6 (COO) ppm IR (KBr, film): $1/\lambda = 3443$ (br, m, OH), 3200 (br, m, OH), 2977 (s), 2939 (s), 2836 (m), 1745 (s, COO), 1702 (s, CON), 1478 (s), 1458 (s), 1395 (s), 1368 (s), 1307 (m), 1252 (m), 1166 (s), 1125 (s), 1077 (s), 1024 (m), 968 (m) cm⁻¹ **MS** (EI, 80 eV, 80°C): m/z (%) = 263 (2.33, [M]⁺), 190 (6, [M-C₄H₉O]⁺), 176 (13, [M-C₅H₁₁O]⁺), 132 (11, [M-C₆H₁₁O₃]⁺, 75 (100, [C₃H₇O₂]⁺). **HRMS** (80 eV, 40 °C): m/z, $[M]^+$ calcd. for $C_{11}H_{21}NO_6$, 263.13688; found, 263.13885 #### N-Benzyl-N-(2,2-diethoxyethyl)amino acetic acid 71 Aminoacetaldehyde diethyl acetal **63** (1.33 g, 10 mmol) and Et₃N (1.01 g, 1.4 mL, 10 mmol) in anhyd. Et₂O (100 mL) were cooled to 0 °C. Ethyl bromoacetate **65** (1.67 g, 1.11 mL, 10 mmol) in anhyd. Et₂O (50 mL) was added slowly and the mixture was stirred overnight at 0 °C. Benzyl chloride (10 mmol) in anhyd. Et₂O (20 mL) was added and the mixture was stirred at r.t. for further 24 hours. H₂O (50 mL) was added to the mixture and the aqueous layer was extracted with Et₂O (4×40 mL). The combined organic layers were dried over MgSO₄ and the solvent was removed in vacuum. The crude material was purified by column chromatography to give α -amino ester. The α -amino ester was treated with 1 N NaOH (100 mL) and LiCl (0.5 g, 11.8 mmol). After stirring at 80 °C for 3 hours and at 20 °C for 1 hour, the solution was
extracted with Et₂O (3×50 mL). The aqueous layer was acidified with aq. sat. KHSO₄ until the solution reached a pH of 5. The aqueous solution was extracted with Et₂O (4×50 mL) and the organic layers were dried over MgSO₄. After removal of the solvent 1.2 g (65%) of the carboxylic acid **71** was isolated as a pale yellow oil. ¹**H NMR** (270 MHz, CDCl₃): $\delta = 1.20$ (m, 9H, C H_3 CH₂O, C H_3 CH₂OCO), 2.86 (d, 2H, J = 5.89 Hz, NC H_2 CH(OEt)₂), 3.43-3.56 (m, 4H, NC H_2 CO, CH₃C H_2 O), 3.57-3.67 (m, 2H, CH₃C H_2 O), 3.86 (s, 2H, C H_2 Ph), 4.13 (q, 2H, J = 7.35 Hz, CH₃C H_2 OCO), 4.54 (t, J = 5.15 Hz, CH(OEt)₂), 7.15-7.37 (m, 5H, Ph) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = 14.2$ (CH₃CH₂OCO), 15.2 (CH₃CH₂O), 55.0 (NCH₂CH(OEt)₂), 56.1 (CH₃CH₂OCO), 59.0 (NCH₂CO), 60.0 (CH₂Ph), 62.0 (CH₃CH₂O), 102.5 (CH(OEt)₂), 127.0, 128.1, 128.8, 139.1 (Ph), 171.7 (COO) ppm #### 4-Bromo-5-(bromomethyl)benzo (1,3)-dioxole 77 Piperonyl alcohol **76** (5 g, 32.9 mmol) was dissolved in acetic acid (10 mL) at 0 °C. A mixture of Bromine (2 mL) and acetic acid (6 mL) was added dropwise. The reaction mixture was stirred at rt for 1 hour, during this time a white solid precipitated. The mixture was filtered, and the solid residue was washed with ice water. The solid was dried in vacuum to give 9.09 g (92.5%) of **77** as colourless crystals. ¹**H NMR** (270 MHz, CDCl₃): δ = 4.53 (s, 2H, BrC $\textbf{\textit{H}}_2$), 5.98 (s, 2H, OC $\textbf{\textit{H}}_2$ O), 6.88 (s, 1H, BrCH₂CC $\textbf{\textit{H}}$), 6.99 (s, 1H, BrCC $\textbf{\textit{H}}$) ppm ¹³C NMR (68 MHz, CDCl₃): δ = 34.1 (Br*C*H₂), 102.0 (O*C*H₂O), 110.4, 113.0, 115.6, 129.7, 148.7 (Ph) ppm For further data see (a) Naik; Wheeler, *J. Chem. Soc.* **1938**, 1780. (b) Harrowven, D.C.; Nunn, M.I.T.; Blumire, N.J.; Fenwick, D.R. *Tetrahedron Lett.* **2001**, *57*, 4447. #### 2-Bromopiperonyl azide 78 Bromopiperonyl bromide 77 (500 mg, 1.7 mmol) was dissolved in anhyd. acetone (30 mL), NaN₃ (221 mg, 3.4 mmol) and NaI (10 mg) were added at 20 °C. The mixture was stirred overnight and H₂O (20 mL) was added. The aqueous layer was extracted with Et₂O (3 × 20 mL), the combined organic layers were dried over MgSO₄. The removal of the solvent in vacuum delivered 410 mg (95%) of bromopiperonyl azide 78 as colourless crystals, which decomposed at 38 °C (data is identical with that lined out in the literature: (a)Padwa, A.; Cochran, J.E.; Kappe, C.O.; *J. Org. Chem.* 1996, 61, 3706. (b) Jin, J.; Weinreb, S.M. *J. Am. Chem. Soc.* 1997, 119, 5773.) ¹**H NMR** (270 MHz, CDCl₃): $\delta = 4.32$ (s, 2H, N₃C $\textbf{\textit{H}}_2$), 5.95 (s, 2H, OC $\textbf{\textit{H}}_2$ O), 6.80 (s, 1H, N₃CH₂CC $\textbf{\textit{H}}$), 6.96 (s, 1H, BrCC $\textbf{\textit{H}}$) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = 54.3$ (N₃CH₂), 102.0 (OCH₂O), 109.8, 112.8, 114.4, 127.8, 147.5, 148.3 (Ph) ppm IR (in CHCl₃): $1/\lambda = 2993$ (s), 2901 (s), 2770 (w), 2466 (w), 2107 (s, N₃), 1686 (w), 1622 (m), 1504 (s), 1475 (s), 1436 (s), 1411 (s), 1391 (s), 1364 (s), 1335 (m), 1217 (s), 1167 (m), 1116 (s) cm⁻¹ **MS** (EI, 80 eV, 65 °C): m/z (%) = 255 (48, [M]⁺), 226 (14, [M-CHO]⁺), 213 (100, [M-N₃]⁺), 199 (5, [M-CH₂N₃]⁺), 119 (3, [M-CH₃BrN₃]⁺), 90 (27, [C₆H₂O]⁺). **HRMS** (80 eV, 60 °C): m/z, [M]⁺ calcd. for C₈H₆N₃O₂⁷⁹Br, 254.96433; found, 254.96621 #### 2-Bromopiperonyl amine 79 Bromopiperonyl azide **78** (412 mg, 1.61 mmol) in THF (20 mL) was treated with Ph_3P (633 mg, 2.41 mmol) and H_2O (1 mL). The mixture was stirred for 4 days at 20 °C. After removal of the solvent, HCl (1 M, 20 mL) was added. The aqueous layer was extracted with ethyl acetate (2 × 10 mL), NaOH (1 M) was added until the solution displayed a pH of 10. The aqueous layer was extracted with CH_2Cl_2 (4 × 10 mL), the combined organic layers were dried over Na_2SO_4 . The solvent was evaporated to give 310 mg (84%) of bromopiperonyl amine **79** as colourless crystals with m.p. = 78-79 °C. ¹**H NMR** (270 MHz, CDCl₃): $\delta = 1.45$ (s, 2H, N**H**₂), 3.70 (s, 2H, NC**H**₂), 5.88 (s, 2H, OC**H**₂O), 6.75 (s, 1H, NCC**H**), 6.90 (s, 1H, BrCC**H**) ppm ¹³C NMR (68 MHz, CDCl₃): δ = 46.7 (N*C*H₂), 101.6 (O*C*H₂O), 108.9, 112.6, 113.4, 135.5, 147.0, 147.3 (Ph) ppm IR (solution, CHCl₃): $1/\lambda = 3378$ (br, m, NH), 3307 (br, m, NH), 3018 (s), 2973 (m), 2896 (m), 1624 (w), 1504 (s), 1476 (s), 1410 (m), 1390 (m), 1355 (w), 1336 (w), 1237 (s), 1216 (s), 1110 (m), 1040 (s), 966 (m), 936 (s) cm⁻¹ **MS** (EI, 80 eV, 30 °C): m/z (%) = 229 (71, [M]⁺), 213 (20, [M-NH₂]⁺), 199 (16, [M-CH₄N]⁺), 150 (100, [M-Br]⁺), 122 (19, [M-CH₄BrN]⁺), 93 (33, [M-C₂H₅BrN]⁺). **HRMS** (80 eV, 30 °C): m/z, $[M]^+$ calcd. for $C_8H_8NO_2^{79}Br$, 228.97384; found, 228.97543 #### N-tert-Butyloxycarbonyl-N-(2-bromopiperonyl)aminoacetic ethyl ester 80 Piperonylamine **79** (300 mg, 1.31 mmol) and Et₃N (132 mg, 184 μ L, 1.31 mmol) in anhyd. THF (20 mL) were cooled to 0 °C. Ethyl bromoacetate **65** (219 mg, 146 μ L, 1.31 mmol) in anhyd. THF (5 mL) was added slowly and the mixture was stirred overnight at 0 °C. Di –tertbutyl dicarbonate (1.31 mmol) in anhyd. THF (5 mL) was added and the mixture was stirred at r.t. for 5 hours. 1 N HCl (10 mL) was added to the mixture and the aqueous layer was extracted with Et₂O (4×20 mL). The combined organic layers were dried over MgSO₄ and the solvent was removed in vacuum. The crude material was purified by column chromatography (n-hexane / ethyl acetate = 6:1) to give 540 mg (99%) of **80** as colourless oil. ¹**H NMR** (270 MHz, CDCl₃): $\delta = 1.20$ (2 × t, 3H, J = 7.36 Hz, CH₂C $\textbf{\textit{H}}_3$), 1.42 (2 × s, 9H, C(C $\textbf{\textit{H}}_3$)₃), 3.83 (2 × s, 2H, NC $\textbf{\textit{H}}_2$ Ar), 4.14 (q, 2H, J = 7.36 Hz, C $\textbf{\textit{H}}_2$ CH₃), 4.48 (2 × s, 2H, NC $\textbf{\textit{H}}_2$ COO), 5.92 (2 × s, 2H, OC $\textbf{\textit{H}}_2$ O), 6.80 (2 × s, 2H, NCH₂CC $\textbf{\textit{H}}$), 6.92 (2 × s, 2H, BrCC $\textbf{\textit{H}}$) ppm ¹³C NMR (68 MHz, CDCl₃): δ = 14.1, 14.2 (CH₂CH₃), 28.1, 28.2 (C(CH₃)₃), 47.8, 48.5 (NCH₂Ar), 50.8, 51.3 (NCH₂COO), 60.9 (CH₂CH₃), 80.6, 80.7 (C(CH₃)₃), 101.7 (OCH₂O), 108.7, 109.5, 112.4, 112.6, 113.5, 129.7, 147.6 (Ph), 155.5 (NCO), 169.6, 169.7 (COOEt) ppm IR (solution, CHCl₃): $1/\lambda = 3019$ (s), 2981 (s), 2935 (m), 2901 (m), 1747 (s, COO), 1697 (s, CON), 1504 (s), 1479 (s), 1410 (s), 1455 (s), 1406 (s), 1368 (s), 1216 (s), 1122 (s), 1108 (s), 1040 (s), 956 (m), 935 (s), 896 (m), 862 (m) cm⁻¹ **MS** (EI, 80 eV, 90 °C): m/z (%) = 415 (1.6, [M]⁺), 336 (4.3, [M-Br]⁺), 314 (11, [M-C₅H₉O₂]⁺), 280 (100, [M-C₄H₈Br]⁺), 234 (14, [M-C₆H₁₄BrO]⁺), 213 (37, [C₈H₆BrO₂]⁺). **HRMS** (80 eV, 30 °C): m/z, $[M]^+$ calcd. for $C_{17}H_{22}NO_6^{79}Br$, 415.06304; found, 415.06622 #### N-tert-Butyloxycarbonyl-N-(2-bromopiperonyl)aminoacetic acid 81 The protected aminoacetic ethyl ester **80** (500 mg, 1.20 mmol) was treated with NaOH (0.1 M, 12 mL) and LiCl (63 mg, 1.48 mmol). After stirring at 80 °C for 3 hours and at 20 °C for 1 hour, aq. sat. KHSO₄ was added until the solution displayed a pH of 4-5. The aqueous solution was extracted with Et₂O (4×20 mL) and the organic layers were dried over MgSO₄. The solvent was evaporated to give 433 mg (93%) of protected aminoacetic acid **81** as colourless crystal with m.p. = 122-123 °C. ¹**H NMR** (270 MHz, CDCl₃): δ = 1.40 (2 × s, 9H, C(C H_3)₃), 3.80 (2 × s, 2H, NC H_2 COOH), 4.40 (2 × s, 2H, NC H_2 Ar), 5.85 (2 × s, 2H, OC H_2 O), 6.70 (2 × s, 1H, NCH₂CCH), 6.85 (2 × s, 1H, BrCCH), 10.3 (s, 1H, COOH) ppm ¹³C NMR (68 MHz, CDCl₃): δ = 28.0, 28.1 (C(*C*H₃)₃), 47.5, 48.0 (N*C*H₂COOH), 50.7, 51.3 (N*C*H₂Ar), 81.0, 81.2 (*C*(CH₃)₃), 101.7 (O*C*H₂O), 108.7, 109.4, 112.4, 112.6, 113.4, 113.8, 129.3, 147.6, 17.7 (Ph), 15.5, 155.8 (*C*ON), 174.2, 174.3 (*C*OOH) ppm IR (in CHCl₃): $1/\lambda = 3100$ (s, br, COOH), 3018 (s), 2980 (s), 2928 (s), 2896 (s), 2703 (m), 2644 (m), 2567 (m), 1725 (s, COO), 1701 (s, CON), 1504 (s), 1476 (s), 1423 (s), 1398 (s), 1369 (s), 1265 (s), 1216 (s), 1158 (s), 1108 (s), 1040 (s), 959 (m), 934 (s) cm⁻¹ **MS** (EI, 80 eV, 140 °C): m/z (%) = 387 (1.95, [M]⁺), 331 (1.86, [M-C₄H₈]⁺), 314 (2, [M-C₄H₉O]⁺), 308 (3.8, [M-Br]⁺), 286 (9, [M-C₅H₉O₂]⁺), 252 (100, [M-C₄H₈Br]⁺), 213 (40, [C₈H₆BrO₂]⁺), 57 (90, [C₄H₉]⁺). **HRMS** (80 eV, 120 °C): m/z, $[M]^+$ calcd. for $C_{15}H_{18}NO_6^{79}Br$, 387.03174; found, 387.03421 #### 3.4 Syntheses of Carboxylic Acid Fluorides #### General Procedure of carboxylic acid fluoride: The amino acid (500 mg) in anhyd. CH_2Cl_2 (70 mL) at 0 °C was treated with pyridine (0.6 eq) and cyanuric fluoride (0.6 eq) with stirring. The mixture was stirred at 0 °C for about 1.5 hours (TLC monitoring: 0.5 mL sample of the reaction mixture was quenched with MeOH and detected on a TLC plate with n-hexane / ethyl acetate = 1:1). Work-up method A: Dry pentane (17 mL) was added to complete the precipitation of polar compounds. The solids were filtered off to result a clear solution. The solvents were carefully removed to give the carboxylic acid fluoride, which was found to be pure enough for further transformations. Work-up method B: The mixture was quenched with ice-water (50 mL), the aqueous layer was extracted with CH₂Cl₂ (3×20 mL), the combined organic layers were dried over MgSO₄, and concentrated to give the amino acid fluoride, which was immediately used without any further purification. #### Azidoacetyl fluoride 62 $$N_3$$ OH N_3 F Reaction starting from azidoacetic acid **61** (500 mg, 4.95 mmol) following the work-up method A. Yield: 500 mg (98%) of azidoacetic fluoride **62** as a yellow oil, which darkens after a short time. ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 4.07-4.12$ (d, 2H, ${}^3J[{}^1H, {}^{19}F] = 2.93$ Hz, C \textbf{H}_2) ppm ¹³**C NMR** (68 MHz, CDCl₃): $\delta = 48.2$ (d, ${}^2J[{}^{13}C, {}^{19}F] = 70$ Hz, $\textbf{C}H_2$), 158.9 (d, ${}^1J[{}^{13}C, {}^{19}F] = 364$ Hz, COF) ppm #### N-Phthaloylglycinyl fluoride 57
Reaction starting from phthaloylglycine **56** (1 g, 4.87 mmol) following the work-up method B. Yield: 1.0 g (99%) of phthaloylglycinyl fluoride **57** as a pale yellow oil. ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 4.57-4.67$ (d, 2H, 3J [1 H, 19 F] = 5.15 Hz, C $\textbf{\textit{H}}_2$), 7.72-7.80 (dd, 2H, J = 4.89 Hz, 2.95 Hz, Ph), 7.83-7.92 (dd, 2H, J = 5.88 Hz, 3.67 Hz, Ph) ppm (68 MHz, CDCl₃): $\delta = 36.8$ (d, 2J [13 C, 19 F] = 76 Hz, $\textbf{\textit{C}}$ H₂), 123.8 , 134.6 (Ph), # *N-tert*-Butyloxycarbonylaminoacetyl fluoride 59 $157.9 \text{ (d, }^{1}J\text{ [}^{13}\text{C, }^{19}\text{F]} = 363 \text{ Hz, COF) ppm}$ Reaction starting from acid **58** (500 mg, 2.86 mmol) following the work-up method B. Yield: 460 mg (91%) of aminoacetyl fluoride **59** as a pale yellow oil. ¹**H NMR** (270 MHz, CDCl₃): δ = 1.40 (s, 9H, (C*H*₃)₃C), 3.98 (m, 2H, NC*H*₂COF), 5.45 (br s, 1H, N*H*) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = 28.0$ (C(CH₃)₃); 40.0 (d, ${}^{2}J$ [13 C, 19 F] = 74 Hz, NCH₂CO), 80.6 (C(CH₃)₃); 155.7 (NCO); 158.4, 163.8 (d, ${}^{1}J$ [13 C, 19 F] = 367 Hz, COF) ppm #### *N-tert*-Butyloxycarbonyl-*N*-(2,2-diethoxyethyl)aminoacetyl fluoride 72 Reaction starting from acid **68** (500 mg, 1.72 mmol) following the work-up method B. Yield: 470 mg (93%) of **72** as a pale yellow oil. ¹**H NMR** (270 MHz, CDCl₃): δ = 1.12 (m, 6H, C \textbf{H}_3 CH₂O), 1.40 (2 × s, 9H, (C \textbf{H}_3)₃C), 3.30 (2 × d, 2H, J = 5.15 Hz, NC \textbf{H}_2 CH(OEt)₂), 3.36-3.49 (m, 2H, , CH₃C \textbf{H}_2 O), 3.56-3.67 (m, 2H, CH₃C \textbf{H}_2 O), 4.13 (2 × d, 2H, 3J [1 H, 19 F] = 3.69 Hz, NC \textbf{H}_2 COF), 4.42 (2 × t, 1H, J = 5.15 Hz, CH(OEt)₂) ppm ¹³C NMR (68 MHz, CDCl₃): δ = 15.1 (*C*H₃CH₂O), 27.9, 28.1 (C(*C*H₃)₃), 47.6 (2 × d , 2 *J* = 68 Hz, N*C*H₂COF); 50.6, 51.0 (N*C*H₂CH(OEt)₂); 63.1, 63.4 (CH₃*C*H₂O); 81.1, 81.2 (*C*(CH₃)₃); 102.0, 102.1 (*C*H(OEt)₂); 154.4, 154.9 (N*C*O); 157.1 (d, 1 *J*[13 C, 19 F] = 408 Hz, *C*OF) ppm #### N-Benzyloxycarbonyl-N-(2,2-diethoxyethyl)aminoacetyl fluoride 73 Reaction starting from acid **69** (500 mg, 1.54 mmol) following the work-up method B. Yield: 450 mg (89%) of **73** as a pale yellow oil. ¹**H NMR** (270 MHz, CDCl₃): $\delta = 1.23$ (2 × t, 6H, J = 7.35 Hz, , C**H**₃CH₂O), 3.34-3.74 (m, 6H, CH₃C**H**₂O, NC**H**₂CH(OEt)₂), 4.23 (d, 1H, ³J [¹H, ¹⁹F] = 3.67 Hz, NCH**H**COF), 4.26 (d, 1H, ³J [¹H, ¹⁹F] = 4.41 Hz, NC**H**HCOF), 4.48 (2 × t, 1H, J = 5.15 Hz, C**H**(OEt)₂), 5.14 (2 × s, 2H, C**H**₂Ph), 7.26-7.35 (m, 5H, Ph) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = 15.1$ (*C*H₃CH₂O), 47.9 (2 × d, ²*J* [¹³C, ¹⁹F] = 68 Hz, N*C*H₂COF), 50.9, 51.3 (N*C*H₂CH(OEt)₂), 63.2, 63.4 (CH₃*C*H₂O), 68.0 (*C*H₂Ph), 101.8, 101.9 (*C*H(OEt)₂), 127.9, 128.0, 128.2, 128.3, 128.5, 128.6, 128.7, 135.8, 135.9 (Ph), 155.4, 155.8 (N*C*O), 157.6 (d, ${}^{1}J[{}^{13}C, {}^{19}F] = 360 \text{ Hz}$, *C*OF) ppm #### N-tert-Butyloxycarbonyl-N-(2,2-dimethoxyethyl)aminoacetyl fluoride 74 Reaction starting from acid **70** (500 mg, 1.9 mmol) following the work-up method B. Yield: 480 mg (94.5%) of **74** as a pale yellow oil. ¹**H NMR** (270 MHz, CDCl₃): δ = 1.35 (2×s, 9H, C(C $\textbf{\textit{H}}_3$)₃), 3.25 (2 × s, 6H, OC $\textbf{\textit{H}}_3$), 3.22-3.30 (m, 2H, NC $\textbf{\textit{H}}_2$ CH(OCH₃)₂), 4.03 (2 × d, 2H, 3J [1 H, 19 F] = 3.42 Hz, C $\textbf{\textit{H}}_2$ COF), 4.20-4.28 (2× dd, 1H, J = 5.37 Hz, 4.88 Hz, C $\textbf{\textit{H}}$ (OCH₃)₂) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = 27.7$, 27.9 (C(*C*H₃)₃), 47.7 (2 × d, 2J [13 C, 19 F] = 68 Hz, *C*H₂COF), 50.0, 50.3 (*C*H₂CH(OCH₃)₂), 54.5, 54.6 (O*C*H₃), 80.8, 81.1 (*C*(CH₃)₃), 103.9, 104.0 (*C*H(OCH₃)₂), 154.3, 154.7 (*C*ON), 157.4 (2 × d, 1J [13 C, 19 F] = 374 Hz, *C*OF) ppm #### N-Benzyl-N-(2,2-diethoxyethyl)aminoacetyl fluoride 75 Reaction starting from acid **71** (500 mg, 1.78 mmol) following the work-up method B. Yield: 420 mg (84%) of **75** as a pale yellow oil. ¹**H NMR** (270 MHz, CDCl₃): δ = 1.15 (t, 6H, J = 7.35 Hz, CH₃CH₂O), 2.93 (dd, 2H, J = 5.15 Hz, 1.48 Hz, NCH₂CH(OEt)₂), 3.44 (q, 2H, J = 7.35 Hz, CH₃CH₂O), 3.61 (q, 2H, J = 7.35 Hz, CH₃C H_2 O), 3.67 (d, 2H, 3J [1 H, 19 F] = 2.94 Hz, NC H_2 COF), 3.90 (d, 2H, J = 1.47 Hz, C H_2 Ph), 4.53 (t, 1H, J = 5.15 Hz, NCH₂CH(OEt)₂), 7.30 (m, 5H, Ph) ppm ¹³C NMR (68 MHz, CDCl₃): δ = 15.1 (*C*H₃CH₂O), 52.2 (d, ²*J* [¹³C, ¹⁹F] = 61 Hz, N*C*H₂COF), 55.8 (N*C*H₂CH(OEt)₂), 58.9 (*C*H₂Ph), 62.3 (CH₃*C*H₂O), 102.2 (NCH₂*C*H(OEt)₂), 127.5, 128.4, 128.8, 137.8 (Ph), 158.4, 164.0 (d, ¹*J* [¹³C, ¹⁹F] = 380 Hz, COF) ppm #### N-tert-Butyloxycarbonyl-N-(2-bromopiperonyl)aminoacetyl fluoride 82 Reaction starting from acid **81** (1.80 g, 4.65 mmol) following the work-up method B. Yield: 1.80 g (99.5%) of **82** as a pale yellow oil. ¹**H NMR** (270 MHz, CDCl₃): δ = 1.40 (2 × s, 9H, C(C $\textbf{\textit{H}}_3$)₃), 3.95-4.12 (2 × d, 2H, 3J [1 H, 19 F] = 2.94 Hz, C $\textbf{\textit{H}}_2$ COF), 4.50 (2 × s, 2H, NC $\textbf{\textit{H}}_2$ Ar), 5.92 (s, 2H, OC $\textbf{\textit{H}}_2$ O), 6.70-6.85 (2 × s, 1H, NCH₂CC $\textbf{\textit{H}}$), 6.95 (2 × s, 1H, BrCC $\textbf{\textit{H}}$) ppm ¹³C NMR (68 MHz, CDCl₃): δ = 28.0, 28.1 (C(*C*H₃)₃), 45.4 (2 × d, ²*J* [¹³C, ¹⁹F] = 68 Hz, *C*H₂COF), 50.3, 50.9 (N*C*H₂Ar), 81.7 (*C*(CH₃)₃), 101.8 (O*C*H₂O), 109.0, 109.7, 112.5, 112.7, 114.1, 128.8, 147.8, 148.0 (Ph), 154.5 (*C*ON), 157.4 (d, ¹*J* [¹³C, ¹⁹F] = 367 Hz, *C*OF) ppm # 3.5 Zwitterionic Aza-Claisen Rearrangement #### **General Procedure**: Under Argon *N*-allylpyrrolidine and Na₂CO₃ (3 equivalent) in anhyd. CH₂Cl₂ were treated with freshly prepared acid fluoride in anhyd. CH₂Cl₂. Then AlMe₃ (2M in heptane) was injected slowly. A gas was evolved and the mixture darkened to light brown. The mixture was stirred until no reactant remained according TLC control. Then, MeOH was added dropwise and stirring was continued for a further 30 min at 20 °C. The polar side products and salts were filtered off by passing the mixture through a short silica gel column. The filtrate was concentrated and crude material was purified by column chromatography and HPLC (if necessary). (S)-2-Azidopent-4-enoic acid [(2S)-methoxycarbonylpyrrolidinyl]amide 85 (R)-2-Azidopent-4-enoic acid [(2S)-methoxycarbonylpyrrolidinyl]amide 86 Reaction with *N*-allylproline methyl ester **43** (440 mg, 2.6 mmol) and azidoactyl fluoride **62** (618 mg, 6 mmol) following the general procedure. Reaction temperature 20°C, 0°C and –20 °C, reaction time 3 hours. Purification via column chromatography (n-hexane / ethylacetate = 2:1). Yield: 480 mg (73%) (reaction at 20 °C), 510 mg (77%) (reaction at 0 °C) and 520 mg (79%) (reaction at –20 °C) of **85** and **86** as a yellow oil. Data of **85** and **86** (reaction temperature –20 °C): $$[\alpha]_D^{20} = -159.2^{\circ} (c = 1.3, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): δ = 1.70-2.00 (m, 3H, C H_2 CHH), 2.01-2.22 (m, 1H, CH₂CHH), 2.50 (m, 2H, C H_2 CH=CH₂), 3.35-3.79 (m, 6H, CH₂C H_2 N, NCHCOO, COOC H_3), 4.40 (2×dd, 1H, J = 7.30 Hz, 3.90 Hz, N₃CH), 5.14 (dd, 1H, J = 10.26 Hz, 0.98 Hz, CH=CHH), 5.22 (dd, 1H, J = 17.09 Hz, 1.46 Hz, CH=C**H**H), 5.80 (dddd, 1H, J = 17.09 Hz, 10.26 Hz, 6.84 Hz, 6.83 Hz, C**H**=CH₂) ppm ¹³C NMR (68 MHz, CDCl₃): δ = 22.0, 24.4 (*C*H₂CH₂), 28.6, 30.9 (CH₂*C*H₂), 34.3, 34.5 (*C*H₂CH=CH₂), 46.4, 46.6 (CH₂*C*H₂N), 51.9, 52.4 (COO*C*H₃), 58.7 (N*C*HCOO), 59.2 (N₃*C*H), 118.2, 118.6 (CH=*C*H₂), 132.3, 132.6 (*C*H=CH₂), 167.5 (*C*ON), 171.7, 171.9 (*C*OO) ppm IR (KBr, film): $1/\lambda = 3079$ (w), 2980 (m), 2954 (m), 2882 (m), 2103 (s, N₃), 1746 (s, COO), 1653 (s, CON), 1436 (s), 1363 (m), 1322 (m), 1280 (m), 1197 (s), 1175 (s), 1095 (m), 1043 (m), 996 (m) cm⁻¹ **MS** (EI, 80 eV, 110°C): m/z (%) = 252 (5.2, [M]⁺), 224 (1.5, [M-N₂]⁺), 210 (8.3, [M-N₃]⁺), 193 (5.8, [M-C₂H₃O₂]⁺), 165 (3.4, [M-C₂H₃O₂N₂]⁺), 128 (100, [C₆H₁₀NO₂]⁺), 70 (31, [C₄H₈N]⁺). **HRMS** (80 eV, 100 °C): m/z, $[M]^+$ calcd. for $C_{11}H_{16}N_4O_3$, 252.1222; found: 252.1236. # (R)-2-Azidopent-4-enoic acid [(2S)-tert-butyldimethylsilyloxymethylpyrrolidinyl]-amide 98 Reaction with allylamine **45** (500 mg, 1.96 mmol) and azidoacetyl fluoride **61** (605 mg, 5.87 mmol) following general procedure. Reaction temperature 0 $^{\circ}$ C, reaction time 3 hours. Purification via column chromatography (n-hexane / ethyl acetate = 5:1). Yield: 500 mg (76%) of **98** as a yellow oil. $$[\alpha]_D^{20} = -104.7^{\circ} (c = 1.4, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): δ = 0.00 (s, 6H, Si(C H_3)₂), 0.85 (s, 9H, SiC(C H_3)₃), 1.72-2.11 (m, 4H, C H_2 CH₂), 2.05 (m, 2H, CH₂=CHC H_2), 3.39-3.50 (m, 2H, NCH₂CHH, CHHO), 3.55-3.85 (m, 3H, NCH₂CHH, CHHO, NCHCH₂O), 4.10 (m, 1H, N₃HCH), 5.11 (d, 1H, H = 10.30 Hz, CH=CH**H**), 5.18 (d, 1H, J = 16.92 Hz, CH=C**H**H), 5.75 (dddd, 1H, J = 16.92 Hz, 10.30 Hz, 7.36 Hz, 6.62 Hz Hz, C**H**=CH₂) ppm ¹³C NMR (68 MHz, CDCl₃): δ = -5.5 (Si*C*H₃), 18.0 (SiC(*C*H₃)₃), 24.1, 24.3 (*C*H₂CH₂), 25.7 (SiC(*C*H₃)₃), 26.8 (CH₂*C*H₂), 34.6, 34.8 (*C*H₂CH=CH₂), 47.3, 47.5 (N*C*H₂CH₂), 58.6, 58.9 (N*C*HCH₂O), 59.5 (*C*H₂O), 62.4 (N₃*C*H), 118.7, 118.8 (CH=*C*H₂), 132.6, 132.9 (*C*H=CH₂), 168.9 (*C*ON) ppm IR (solution, CHCl₃): $1/\lambda = 3013$ (m), 2956 (s), 2930 (s), 2858 (m), 2101 (s, N₃), 1647 (s, CON), 1471 (m), 1462 (m), 1429 (s), 1381 (w), 1360 (w), 1319 (w), 1257 (s), 1193 (w), 1165 (w), 1103 (s), 1055 (m), 1004 (m), 956 (w), 919 (m) cm⁻¹ **MS** (pos. FAB): m/z (%) = 339 (48, $[M+H]^+$), 323 (3.76, $[M-CH_3]^+$), 281 (21, $[M-C(CH_3)_3]^+$). # (R)-2-Azidopent-4-enoic acid [(2S)-tert-butyldiphenylsilyloxymethylpyrrolidinyl]-amide 99 Reaction with allylamine **46** (540 mg, 1.42 mmol) and azidoacetyl fluoride **61** (510 mg, 4.95 mmol) following general procedure. Reaction temperature 0 °C, reaction time 3 hours. Purification via column chromatography (n-hexane / ethyl acetate = 5:1). Yield: 500 mg (76%) of **99** as a yellow oil. $$[\alpha]_D^{20} = -49.1^{\circ} (c = 1.9,
CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): δ = 1.05 (s, 9H, SiC(C H_3)₃), 1.80-2.20 (m, 4H, C H_2 C H_2), 2.4-2.7 (2×m, 1H, NCHHCH₂), 3.35-3.50 (m, 2H, C H_2 CH=CH₂), 3.50-3.60 (m, 1H, NCHHCH₂), 3.70-3.82 (m, 2H, NCH, OCHH), 3.83-3.95 (m, 1H, OCHH), 4.20-4.36 (m, 1H, N₃CH), 5.12-5.19 (2×d, 1H, J = 11.23 Hz, CH=CHH), 5.20-5.29 (2×d, 1H, J = 17.09 Hz, CH=CHH), 5.73-5.90 (2×dddd, 1H, J = 17.09 Hz, 11.23 Hz, 7.32 Hz, 6.84 Hz, CH=CH₂) ppm ¹³C NMR (68 MHz, CDCl₃): δ = 19.0, 19.1 (Si*C*(CH₃)₃), 21.4, 24.1 (*C*H₂CH₂), 26.7, 26.9 (SiC(*C*H₃)₃), 27.9 (CH₂*C*H₂), 34.6, 34.8 (*C*H₂CH=CH₂), 45.8, 47.2 (N*C*H₂CH₂), 58.3, 58.5 (N*C*H), 58.6, 59.4 (N₃*C*H), 63.2, 64.8 (*C*H₂O), 118.7 (CH=*C*H₂), 127.5, 129.5, 129.9, 132.0, 132.6, 134.9, 135.4 (Ph), 132.7, 133.3 (*C*H=CH₂), 167.4, 167.7 (*C*ON) ppm IR (KBr, film): $1/\lambda = 3070$ (m), 3048 (m), 2958 (s), 2930 (s), 2857 (s), 2245 (w), 2100 (N₃), 1827 (w), 1749 (w), 1651 (CON), 1588 (w), 1567 (w), 1471 (m), 1428 (s), 1390 (m), 1360 (m), 1341 (m), 1260 (m), 1235 (m), 1192 (m), 1164 (w), 1113 (s), 1054 (m), 997 (m) cm⁻¹ **MS** (EI, 80 eV, 130°C): m/z (%) = 462 (0.58, [M]⁺), 447 (0.32, [M-CH₃]⁺), 434 (0.77, [M-N₂]⁺), 405 (100, [M-C₄H₉]⁺), 377 (8, [M-C₄H₉N₂]⁺), 310 (14, [M-C₁₂H₈]⁺), 280 (11, [M-C₁₄H₁₄]⁺). **HRMS** (80 eV, 130 °C): m/z, [M]⁺ calcd. for $C_{26}H_{34}N_4O_2Si$, 462.24510; found, 462.24298 # (R)-2-Azido-4-(*tert*-butyldimethylsilyloxymethyl)pent-4-enoic acid [(2S)-methoxycarbonylpyrrolidinyl]amide 114 TBSO acid fluoride $$O_2$$ Me acid fluoride O_2 Me O_2 Me O_2 Me O_2 Me Reaction with N-allylproline methyl ester **50** (1g, 3.19 mmol) and azidoacetyl fluoride **61** (1g, 9.9 mmol) following general procedure. Reaction temperature 0 °C, reaction time 3 hours. Purification via column chromatography (n-hexane / ethyl acetate = 3:1). Yield: 1.0 g (79%) of **114** as a yellow oil. $$[\alpha]_D^{20} = -75.5^{\circ} (c = 2.1, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): δ = 0.01 (s, 6H, Si(C \textbf{H}_3)₂), 0.85 (s, 9H, C(C \textbf{H}_3)₃), 1.65-2.24 (m, 4H, C \textbf{H}_2 C \textbf{H}_2), 2.46-2.68 (m, 2H, N₃CHC \textbf{H}_2), 3.45-3.78 (m, 5H, OC \textbf{H}_3 , NC \textbf{H}_2 CH₂), 3.85-3.94 (m, 1H, NCHCOO), 4.03-4.22 (m, 2H, TBSOC \textbf{H}_2), 4.40-4.57 (m, 1H, N₃CH), 4.99 (2 × s, 1H, C=CHH), 5.15 (2 × s, 1H, C=CHH) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = -5.4$ (Si(*C*H₃)₂), 18.2 (Si*C*(CH₃)₃), 23.1, 24.6 (*C*H₂CH₂), 25.8 (SiC(*C*H₃)₃), 28.9, 29.3 (CH₂*C*H₂), 33.7 (N₃CH*C*H₂), 46.8 (N*C*H₂CH₂), 52.1, 51.2 (O*C*H₃), 57.9, 58.3 (N*C*HCOO), 58.7, 58.9 (N₃*C*H), 65.3, 66.0 (TBSO*C*H₂), 112.2, 113.2 (C=*C*H₂), 143.2 (*C*=CH₂), 168.7, 172.0 (*C*OOCH₃) ppm IR (solution, CHCl₃): $1/\lambda = 3079$ (w), 2955 (s), 2930 (s), 2885 (m), 2857 (s), 2106 (s, N₃), 1747 (s, COO), 1658 (s, CON), 1472 (m), 1435 (s), 1389 (m), 1362 (m), 1343 (m), 1252 (s), 1197 (s), 1176 (s), 1112 (m), 1006 (m), 939 (w), 908 (m) cm⁻¹ **MS** (EI, 80 eV, 80°C): m/z (%) = 396 (0.67, [M]⁺), 381 (0.91, [M-CH₃]⁺), 354 (5.9, [M-N₃]⁺), 339 (44, [M-CH₃N₃]⁺), 223 (100, [M-C₆H₁₅N₃OSi]⁺), 128 (58, [C₆H₁₀NO₂]⁺). **HRMS** (80 eV, 80 °C): m/z, $[M]^+$ calcd. for $C_{18}H_{32}N_4O_4Si$, 396.21928; found, 396.21969 # (R)-2-Azidopent-4-enoic acid [(2S)-methoxycarbonyl-(4R)-tert-butyldimethyl-silyloxypyrrolidinyl]amide 106 Reaction with allylamine **54** (500 mg, 1.67 mmol) and azidoacetyl fluoride **61** (506 mg, 5.01 mmol) following the general procedure. Reaction temperature 0 °C, reaction time 3 hours. Purification via column chromatography (n-hexane / ethyl acetate = 3:1). Yield: 480 mg (75%) of **106** as colourless crystals with m.p. = 67 °C. $$[\alpha]_D^{20} = -115.4^{\circ} (c = 0.5, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 0.00$ (s, 6H, Si(C H_3)₂), 0.85 (s, 9H, SiC(C H_3)₃), 1.95-2.06 (ddd, 1H, J = 13.19 Hz, 12.69 Hz, 2.99 Hz, CHHCHCO₂CH₃), 2.12-2.21 (m, 1H, CHHCHCO₂CH₃), 2.47- 2.67 (ddd, 2H, J = 14.65 Hz, 14.16 Hz, 3.17 Hz, C H_2 CH=CH₂), 3.32-3.42 8 (dd, 1H, J = 10.25 Hz, 1.46 Hz, NCHH), 3.60-3.80 (m, 5H, OC H_3 , NCHH, N₃CH), 4.45-4.55 (m, 1H, TBSOCH), 4.50-4.57 (dd, 1H, J = 11.72 Hz, 7.82 Hz, NCHCO₂CH₃), 5.07- 5.17 (dd, 1H, J = 10.25 Hz, 1.47 Hz, CH=CH**H**), 5.17-5.22 (dd, 1H, J = 17.09 Hz, 1.47 Hz, CH=C**H**H), 5.70-5.87 (dddd, 1H, J = 17.09 Hz, 10.25 Hz, 7.32 Hz, 6.84 Hz, C**H**=CH₂) ppm ¹³C NMR (68 MHz, CDCl₃): δ = -5.0, -4.8 (Si(*C*H₃)₂), 18.2 (Si*C*(CH₃)₃), 25.5 (SiC(*C*H₃)₃), 34.8 (*C*H₂CH=CH₂), 37.8, 40.0 (*C*H₂CHCO₂CH₃), 52.3 (O*C*H₃), 55.2 (N*C*H₂), 58.8 (N₃*C*H), 59.6 (N*C*HCO₂CH₃), 70.5 (TBSO*C*H), 118.9 (CH=*C*H₂), 132.3, 132.4 (*C*H=CH₂), 168.1 (*C*ON), 172.1 (*C*OOCH₃) ppm IR (in CHCl₃): $1/\lambda = 3087$ (w), 2992 (w), 2953 (m), 2928 (m), 2893 (w), 2856 (m), 2122 (s, N₃), 1765 (s, COO), 1647 (s, CON), 1470 (m), 1462 (m), 1434 (s), 1367 (m), 1324 (w), 1258 (m), 1240 (m), 1202 (m), 1192 (m), 1169 (s), 1150 (m), 1085 (s), 1023 (s), 1004 (m), 974 (m), 924 (m), 915 (m) cm⁻¹ **MS** (EI, 80 eV, 90°C): m/z (%) = 382 (0.55, [M]⁺), 367 (1.63, [M-CH₃]⁺), 325 (100, [M-C₄H₉]⁺), 258 (12, [C₁₂H₂₄NO₃Si]⁺). **HRMS** (80 eV, 90 °C): m/z, [M]⁺ calcd. for $C_{17}H_{30}N_4O_4Si$, 382.203634; found, 382.20578 [M-CH₃]⁺ calcd. for $C_{16}H_{27}N_4O_4Si$, 367.180159; found, 367.18466 [M-C₄H₉]⁺ calcd. for $C_{13}H_{21}N_4O_4Si$, 325.133209; found, 325.13534 # (S)-2-Phthaloylamidopent-4-enoic acid [(2S)-methoxycarbonylpyrrolidinyl]amide 83 (R)-2-Phthaloylamidopent-4-enoic acid [(2S)-methoxycarbonylpyrrolidinyl]amide 84 57 83, 84 Reaction with *N*-allylproline methyl ester **43** (270 mg, 1.6 mmol) and phthaloylglycinyl fluoride **57** (660 mg, 3.61 mmol) following the general procedure. Reaction temperature 0 °C, reaction time 16 hours. Purification and separation of the diastereomers via column chromatography (n-hexane-EtOAc = 1:1). Yield: 220 mg (38%) of **diastereomer 1** as colourless crystals with m.p. = 111-112 °C and 230 mg (40%) of **diastereomer 2** as a pale yellow oil. #### **Diastereomer 1**: $$[\alpha]_D^{20} = -104.7^{\circ} (c = 1.1, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): δ =1.85-2.11 (m, 4H, C H_2 C H_2), 2.85 (ddd, 1H, J = 14.71 Hz, 5.15 Hz, 5.15 Hz, CH₂=CHCHH), 3.09 (ddd, 1H, J = 14.71 Hz, 9.56 Hz, 9.56 Hz, CH₂=CHCHH), 3.30 (m, 1H, CHHN), 3.60-3.72 (m, 4H, CHHN, OCH₃), 4.45 (dd, 1H, J = 8.09 Hz, 2.95 Hz, CHCOO), 4.85 (dd, 1H, J = 10.29 Hz, 4.41 Hz, NCH), 4.96 (d, 1H, J = 10.30 Hz, CH=CHH), 5.01 (d, 1H, J = 16.91 Hz, CH=CHH), 5.74 (dddd, 1H, J = 16.91 Hz, 10.29 Hz, 7.32 Hz, 5.88 Hz, CH=CH₂) ppm ¹³C NMR (68 MHz, CDCl₃): δ =24.8 (*C*H₂CH₂), 28.6 (CH₂*C*H₂), 32.9 (CH₂=CH*C*H₂), 46.8 (*C*H₂N), 52,2 (N*C*HCOO), 52.2 (N*C*H), 59.3 (COO*C*H₃), 118.6 (*C*H₂=CH), 123.5 , 131.4, 134.2 (Ar), 133.4 (CH₂=*C*H), 167.0, 167.5 (*C*ON), 172.4 (*C*OO) ppm IR (solution, CHCl₃): $1/\lambda = 3020$ (s), 2982 (m), 2956 (m), 2882 (m), 1776 (s, COO), 1723 (s, CONCO), 1658 (s, CON), 1469 (m), 1437 (s), 1420 (s), 1383 (s), 1364 (s), 1214 (s), 1179 (s), 1116 (m), 1087 (m), 1047 (m) cm⁻¹ **MS** (EI, 80 eV, 150°C): m/z (%) = 356 (38.9, [M]⁺), 297 (18, [M-C₂H₃O₂]⁺), 228 (8, [M-C₆H₁₀NO₂]⁺), 200 (100, [M-C₆H₁₀NO₂-CO]⁺). **HRMS** (80 eV, 150 °C): m/z, $[M]^+$ calcd. for $C_{19}H_{20}N_2O_5$, 356.13722; found, 356.13565 #### Diastereomer 2: $$[\alpha]_D^{20} = +22.4^{\circ} (c = 4.3, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): δ = 1.72-2.08 (m, 3H, C H_2 CHH), 2.10-2.27 (m, 1H, CH₂CHH), 2.82 (m, 1H, CH₂=CHCHH), 3.03 (m, 1H, CH₂=CHCHH), 3.33 (dd, 1H, J = 15.35 Hz, 7.35 Hz, CHHN), 3.55 (m, 1H, CHHN), 3.63 (s, 3H, COOCH₃), 4.48 (m, 1H, CHCOO), 4.97 (m, 3H, NCH, CH=CH₂), 5.70 (m, 1H, CH=CH₂) ppm ¹³C NMR (68 MHz, CDCl₃): δ =25.2 (*C*H₂CH₂), 28.6 (CH₂*C*H₂), 32.9 (CH₂=CH*C*H₂), 46.9 (*C*H₂N), 51.7 (N*C*HCOO), 52.1 (N*C*H), 59.5 (COO*C*H₃), 118.8 (CH=*C*H₂), 123.5 , 131.4, 134.1 (Ar), 133.4 (*C*H=CH₂), 166.8, 167.2 (*C*ON), 172.4 (*C*OO) ppm IR (KBr, Film): $1/\lambda = 3079$ (w), 2980 (m), 2953 (m), 2879 (m), 2252 (m), 1775 (s, COO), 1716 (s, CONCO), 1660 (s, CON), 1468 (m), 1434 (m), 1382 (s), 1281 (m), 1196 (m), 1174 (m), 1087 (m), 1052 (m), 1027 (w), 996 (m) cm⁻¹ **MS** (EI, 80 eV, 100°C): m/z (%) = 356 (25, [M]⁺), 297 (14, [M-C₂H₃O₂]⁺), 228 (9, [M-C₆H₁₀NO₂]⁺), 200 (100, [M-C₆H₁₀NO₂-CO]⁺). **HRMS** (80 eV, 100 °C): m/z, $[M]^+$ calcd. for $C_{19}H_{20}N_2O_5$, 356.13722; found, 356.13556 # (2R)-2-(tert-Butylcarbonylamino)pent-4-enoic acid [(2S)-tert-butyldimethyl-silyloxymethylpyrrolidinyl]amide 100 Reaction with *N*-allylprolinol silyl ether **45** (500 mg, 1.96 mmol) and *N*-BOC-glycinyl fluoride **58** (630 mg, 3.58 mmol) following the general procedure. Reaction temperature 0 °C, reaction time 16 hours. Purification via column chromatography (EtOAc). Yield: 73 mg (6%) of **100** as yellow oil. $$[\alpha]_D^{20} = -40.8^{\circ} (c = 0.6, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): δ = 0.01 (s, 6H, Si(C H_3)₂), 0.90 (s, 9H, SiC(C H_3)₃), 1.40 (s, 9H, OC(C H_3)₃), 1.80-2.10 (m, 4H, C H_2 C H_2), 2.35 (m, 2H, CH₂=CHC H_2), 3.43 (m, 1H, NCHH), 3.52-3.78 (m, 3H, NCHH, C H_2 O), 4.10 (br s, NH), 4.45 (dd, 1H, J = 14.71 Hz, 6.62 Hz, NCHCH₂O), 5.05 (d, 1H, J = 10.30 Hz, CH=CHH), 5.10 (d, 1H, J = 16.91 Hz, CH=CHH), 5.33 (dd, 1H, J = 18.39 Hz, 8.82 Hz, NCHCO), 5.71 (dddd, 1H J = 16.91 Hz, 10.30 Hz, 7.35 Hz, 6.62 Hz, CH= CH₂) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = -5.5$ (Si(CH₃)₂), 18.1 (SiC(CH₃)₃), 23.9, 24.3 (CH₂CH₂), 25.8 (SiC(CH₃)₃), 26.6, 26.9 (CH₂CH₂), 27.9, 28.2 (OC(CH₃)₃), 37.4, 37.5 (CH₂=CHCH₂), 47.2, 47.4 (CH₂N), 51.5, 51.7 (NCHCO), 58.4, 58.5 (CH₂O), 62.3, 62.5 (NCHCH₂O), 79.3 (OC(CH₃)₃), 118.2 (CH=CH₂), 132.8, 132.9 (CH= CH₂), 169.9 (CON) ppm IR (KBr, Film): $1/\lambda = 3291$ (br, m, NH), 3077 (w), 2955 (s), 2929 (s), 2883 (m), 2857 (m), 1711 (s, OCON), 1640 (s, CON), 1498 (m), 1472 (m), 1435 (s), 1390 (m), 1366 (m), 1252 (s), 1172 (s), 1101 (m), 1053 (m), 1020 (m), 915 (m) cm⁻¹ **MS** (EI, 80 eV, 60°C): m/z (%) = 412 (1.47, [M]⁺), 355 (30, [M-C₄H₉]⁺), 299 (57, [M-C₄H₉-C₄H₈]⁺), 57 (100, [C₄H₉]⁺).
HRMS (80 eV, 150 °C): m/z, $[M]^+$ calcd. for $C_{12}H_{40}N_2O_4Si$, 412.27573; found, 412.27682 # Pent-4-enoic acid [(2S)-methoxycarbonyl-(4R)-tert-butyldimethyl-silyloxypyrrolidinyl]amide 116 Reaction with allylamine **54** (300 mg, 1.00 mmol) and acetyl chloride **115** (236 mg, 3.00 mmol) following the general procedure. Reaction temperature 0 $^{\circ}$ C, reaction time 1.5 hours. Purification via column chromatography (n-hexane / ethyl acetate = 5:1). Yield: 240 mg (70%) of **116** as pale yellow oil. $$[\alpha]_D^{20} = -53.6^{\circ} \text{ (c} = 1.2, \text{CHCl}_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 0.00$ (s, 6H, Si(C H_3)₂), 0.80 (s, 9H, SiC(C H_3)₃), 1.93-2.07 (m, 1H, NCHCHH), 2.10-2.20 (m, 1H, NCHCHH), 2.25-2.45 (m, 4H, NCOC H_2 C H_2), 3.32-3.39 (dd, 1H, J = 10.25 Hz, 1.46 Hz, NCHH), 3.68-3.75 (m, 4H, OC H_3 , NCHH), 4.45-4.56 (m, 2H, NCH, TBSOCH), 5.07- 5.17 (dd, 1H, J = 10.25 Hz, 1.47 Hz, CH=CHH), 5.17-5.22 (dd, 1H, J = 17.09 Hz, 1.47 Hz, CH=CHH), 5.70-5.87 (dddd, 1H, J = 17.09 Hz, 10.25 Hz, 7.32 Hz, 6.84 Hz, CH=CH $_2$) ppm ¹H-NMR (500 MHz, CDCl₃): δ = -5.0, -4.9 (Si(*C*H₃)₂), 17.7 (Si*C*(CH₃)₃), 25.4 (SiC(*C*H₃)₃), 28.5, 28.7 (*C*H₂CH=CH₂), 32.7, 33.5 (NCO*C*H₂), 38.0, 40.2 (NCH*C*H₂), 52.0, 52.4 (O*C*H₃), 54.2, 55.1 (N*C*H₂), 57.3, 58.0 (N*C*H), 68.8, 70.5 (TBSO*C*H), 115.0 (CH=*C*H₂), 137.1 (*C*H=CH₂), 167.5 (*C*ON), 171.1, 172.7 (*C*O₂CH₃) ppm IR (solution, CHCl₃): $1/\lambda = 3077$ (w), 2953 (s), 2929 (s), 2856 (s), 1750 (s, COO), 1655 (s, CON), 1472 (m), 1432 (s), 1388 (m), 1361 (m), 1321 (m), 1289 (m), 1258 (s), 1199 (s), 1177 (m), 1127 (m), 1092 (s), 1022 (m), 910 (m) cm⁻¹ **MS** (EI, 80 eV, 70°C): m/z (%) = 341 (2.53, [M]⁺), 326 (2.66, [M-CH₃]⁺), 284 (100, [M-C₄H₉]⁺), 202 (21, [M-C₉H₁₅O]⁺). # (2R)-2-(N-tert-Butyloxycarbonyl)-N-(2,2-diethoxyethyl)aminopent-4-enoic acid-[(2S)-benzyloxymethylpyrrolidinyl]amide 104 Reaction with *N*-allylprolinol benzyl ether **47** (1.0 g, 4.33 mmol) and acid fluoride **71** (2.5 g, 8.66 mmol) following the general procedure. Reaction temperature 0 °C, reaction time 20 hours. The crude material was dissolved in CH_2Cl_2 (30 mL). Et₃N (1.2 mL) and Di *-tert*-butyl dicarbonate (4.5 mmol) were added. The mixture was stirred for 3 hours. H_2O (20 mL) was added and the aqueous layer was extracted with CH_2Cl_2 (3×20 mL), and the combined organic layers were dried over MgSO₄. After removal of the solvent, the crude material was purified by column chromatography (n-hexane / ethyl acetate = 6:1). Yield: 1.70 g (78%) of **104** as a pale yellow oil. $$[\alpha]_D^{20} = +20.8^{\circ} (c = 2.3, CHCl_3)$$ ¹**H-NMR** (500 MHz, CDCl₃): $\delta = 1.05$ (2×t, 6H, CH(OCH₂C H_3)₂), 1.35 (s, 9H, C(C H_3)₃), 1.68-1.93 (m, 4H, C H_2 C H_2), 2.28-2.44 (m, 1H, CHHCH=CH₂), 2.44-2.58 (ddd, 1H, J = 14.16 Hz, 7.33 Hz, 6.83 Hz, CHHCH=CH₂), 2.96-3.66 (m, 10H, NC H_2 CH₂, NCHC H_2 O, NC H_2 CH(OEt)₂, CH(OC H_2 CH₃)₂), 4.14-4.25 (m, 1H, NCH), 4.33-4.72 (m, 3H, OC H_2 Ph, COCH), 4.77-4.82 (t, 1H, J = 7.81 Hz, CH(OEt)₂), 4.88-4.92 (d, 1H, J = 9.76 Hz, CH=CHH), 9.76-5.13 (d, 1H, J = 15.58 Hz, CH=C**H**H), 5,50-5.80 (m, 1H, C**H**=CH₂), 7.10-7.29 (m, 5H, Ph) ppm ¹³C NMR (125 MHz, CDCl₃): $\delta = 15.0$, 15.1 (CH(OCH₂CH₃)₂), 24.2 (CH₂CH₂), 27.0 (CH₂CH₂), 28.1, 28.2 (C(CH₃)₃), 34.3, 34.6 (CH₂CH=CH₂), 45.2, 45.4 (NCH₂CH₂), 46.3, 46.5 (NCH₂CH), 56.7, 56.8 (NCH), 61.8, 61.9, 62.1, 62.2 (CH(OCH₂CH₃)₂), 69.4 (CH₂OBn), 72.8 (OCH₂Ph), 79.9, 80.0 (C(CH₃)₃), 100.0, 100.8 (CH(OEt)₂), 116.9, 117.1 (CH=CH₂), 127.1, 127.2, 127.3, 128.0, 128.1, 134.3, 138.3 (Ph), 134.7, 135.2 (CH=CH₂), 155.5 (OCON), 168.8 (CON) ppm IR (solution, CHCl₃): $1/\lambda = 3067$ (m), 3008 (s), 2978 (s), 2924 (s), 2872 (s), 1679 (s, OCON), 1635 (s, CON), 1496 (m), 1445 (s), 1309 (s), 1252 (m), 1217 (m), 1164 (s), 1063 (s), 918 (m), 876 (m) cm⁻¹ **MS** (EI, 80 eV, 140°C): m/z (%) = 504 (1.93, [M]⁺), 475 (11, [M-C₂H₅]⁺), 458 (4.5, [M-C₂H₆O]⁺), 431 (2, [M-C₄H₉O]⁺), 403 (6, [M-C₅H₉O₂]⁺), 212 (5, [C₁₁H₁₈NO₃]⁺), 190 (4, [C₁₂H₁₆NO]⁺), 184 (11, [C₁₀H₁₈NO₂]⁺), 103 (100, [C₅H₁₁O₂]⁺), 91 (17, [C₇H₇]⁺). **HRMS** (80 eV, 140 °C): m/z, $[M]^+$ calcd. for $C_{28}H_{44}N_2O_6$, 504.31993; found, 504.31845 # (2R)-2-[(N-tert-Butyloxycarbonyl)-N-(2,2-dimethoxyethyl)]aminopent-4-enoic acid [(2S)-tert-butyldimethylsilyloxymethylpyrrolidinyl]amide 102 Reaction with *N*-allylprolinol silyl ether **45** (500 mg, 1.96 mmol) and acid fluoride **73** (1.0 g, 3.77 mmol) following the general procedure. Reaction temperature 0 °C, reaction time 16 hours. After quenching with methanol, the mixture was filtrered. The solvent was removed in vacuum and the residue was dissolved in THF (30 mL). Di *-tert*-butyl dicarbonate (2 mmol) was added and the mixture was stirred at rt for 16 hours. H_2O (20 mL) was added and the aqueous layer was extracted with Et_2O (4×20 mL). The combined organic layers were dried over MgSO₄. After removal of the solvent, the crude material was purified by column chromatography (n-hexane / ethyl acetate = 1:1) to give 710 mg (72%) of **102** as a yellow oil. $$[\alpha]_D^{20} = +14.9^{\circ} (c = 1.4, CHCl_3)$$ ¹**H-NMR** (500 MHz, CDCl₃): δ = 0.00 (s, 6H, Si(C H_3)₂), 0.80 (s, 9H, SiC(C H_3)₃), 1.40 (s, 9H, NCOOC(C H_3)₃), 1.71-2.05 (m, 4H, NCH₂C H_2 C H_2), 2.36-2.49 (m, 1H, CHHCH=CH₂), 2.49-2.57 (m, 1H, CHHCH=CH₂), 3.08-3.81 (m, 12H, C H_2 OSi, CH(OC H_3)₂, NC H_2 CH₂, NC H_2 CH(OCH₃)₂), 4.02-4.18 (m, 1H, NCHCH₂OSi), 4.38-4.58 (m, 1H, CH(OCH₃)₂), 4.60-4.67 and 4.83-4.91 (2×m, 1H, CHCH₂CH=CH₂), 4.94-5.02 (d, 1H, J = 10.04 Hz, CH=CHH), 5.03-5.10 (d, 1H, J = 17.18 Hz, CH=CHH), 5.62-5.77 (m, 1H, CH=CH₂) ppm ¹³C NMR (125 MHz, CDCl₃): $\delta = -5.5$ (Si(*C*H₃)₂), 18.0 (Si*C*(CH₃)₃), 24.1 (NCH*C*H₂CH₂), 25.8 (SiC(*C*H₃)₃), 26.5 (NCHCH₂*C*H₂), 28.2 (NCOOC(*C*H₃)₃), 34.4 (*C*H₂CH=CH₂), 44.6, 45.6 (N*C*H₂CH(OCH₃)₂), 46.8 (*C*H₂OSi), 53.3, 53.7 (CH(O*C*H₃)₂), 53.9 (*C*HCH₂CH=CH₂), 58.7 (N*C*HCH₂OSi), 62.3, 65.0 (*C*H₂OSi), 80.2 (NCOO*C*(CH₃)₃), 103.1 (*C*H(OCH₃)₂), 117.0 (CH=*C*H₂), 134.4, 134.7 (*C*H=CH₂), 154.9, 155.7 (N*C*OOC(CH₃)₃), 176.5 (*C*ON) ppm IR (KBr, Film): $1/\lambda = 3076$ (w), 2954 (s), 2930 (s), 2884 (m), 2758 (m), 1695 (s, OCON), 1648 (s, CON), 1471 (m), 1438 (m), 1402 (m), 1390 (m), 1366 (m), 1348 (w), 1308 (w), 1253 (m), 1168 (m), 1125 (s), 1079 (m), 1025 (w), 996 (w), 977 (w) cm⁻¹ **MS** (EI, 80 eV, 90°C): m/z (%) = 500 (3, [M]⁺), 485 (10, [M-CH₃]⁺), 468 (5, [M-CH₄O]⁺), 443 (16, [M-C₄H₉]⁺), 429 (8, [M-C₅H₁₁]⁺), 413 (13, [M-C₅H₁₁O]⁺), 369 (23, [M-C₆H₁₁O₃]⁺), 355 (78, [M-C₇H₁₇OSi]⁺), 299 (17, [M-C₁₁H₂₅OSi]⁺). **HRMS**: $(80 \text{ eV}, 90^{\circ}\text{C})$: m/z, [M]⁺ calcd. for $C_{25}H_{48}N_2O_6Si$, 500.32816; found, 500.32655. # (2R)-2-(N-Benzyloxycarbonyl)-N-(2,2-diethoxyethyl)aminopent-4-enoic acid [(2S)-tert-butyldimethylsilyloxymethylpyrrolidinyl]amide 105 Reaction with *N*-allylprolinol silyl ether **45** (800 mg, 3.14 mmol) and acid fluoride **72** (1.2 g, 3.67 mmol) following the general procedure. Reaction temperature 0 °C, reaction time 16 hours. Purification via column chromatography (ethyl acetate). Yield: 1.32 g (75%) of **105** as a pale yellow oil. $$[\alpha]_D^{20} = +2.4^{\circ} (c = 1.8, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 0.00$ (s, 6H, Si(C H_3)₂), 0.84 (s, 9H, SiC(C H_3)₃), 1.10 (2×t, 6H, J = 7.35 Hz, C H_3 CH₂O), 1.80 (m, 4H, C H_2 C H_2), 2.50 (m, 2H, C H_2 CH=CH₂), 3.06-3.73 (m, 10H, (CH₃C H_2 O)₂CH, C H_2 O, CbzNC H_2 CH, NC H_2 CH₂), 4.08 (m, 1H, NCHCHO₂), 4.58 (m, 1H, CH(OEt)₂), 4.88-5.23 (m, 5H, C H_2 =CH, NCH, PhC H_2), 5.70 (m, 1H, CH₂=CH), 7.30 (m, 5H, Ph) ppm ¹³C NMR (68 MHz, CDCl₃): δ = -5.5 (Si(*C*H₃)₂), 15.1 (*C*H₃CH₂O), 18.0 (Si*C*(CH₃)₃), 24.0, 24.2 (*C*H₂CH₂), 25.7 (SiC(*C*H₃)₃), 26.5, 26.9 (CH₂*C*H₂), 34.4, 34.6 (CH₂=CH*C*H₂), 46.1, 46.4 (N*C*H₂CH₂), 47.1, 47.4 (N*C*H₂CH(OEt)₂), 56.9, 57.3 (CH*C*H₂O), 58.7 (N*C*HCH₂O), 62.2, 62.3 (N*C*H), 62.4, 62.6 (CH₃*C*H₂O), 67.5, 67.6 (Ph*C*H₂), 100.0, 101.0 (*C*H(OEt)₂), 117.1, 117.3 (*C*H₂=CH), 127.9, 128.0, 128.2, 128.3, 128.5, 134.0, 136.2 (Ph), 134.5, 134.8 (CH₂=*C*H), 156.6 (O*C*ON), 168.5 (*C*ON) ppm IR (KBr, Film): $1/\lambda = 3068$ (w), 3032 (w), 2955 (s), 2929 (s), 2857 (s), 1701 (s, OCON), 1648 (s, CON), 1605 (m), 1547 (w), 1517 (w), 1498 (w), 1442 (s), 1404 (s), 1375 8m), 1345 (m), 1308 (m), 1252 (s), 1102 (s), 1064 (s), 1003 (m), 913 (m) cm⁻¹ **MS** (EI, 80 eV, 125°C): m/z (%) = 562 (1.6, [M]⁺), 547 (1.4, [M-CH₃]⁺), 533 (11, [M-C₂H₅]⁺), 505 (20, [M-C₄H₉]⁺), 103 (100, [CH(OEt)₂]⁺), 91 (55, [C₇H₇]⁺). **HRMS**: (80 eV, 100°C): m/z, [M]⁺ calcd. for $C_{30}H_{50}N_2O_6Si$, 562.34381; found: 562.34576 # (2R)-2-[N-(2-Bromo-4,5-methylenedioxyphenyl)methyl]-N-(tert-butyloxycarbonyl)-aminopent-4-enoic acid [(2S)-tert-butyldimethylsilyloxymethyl-pyrrolidinyl]amide 103 Reaction with *N*-allylprolinol silyl ether **45** (1.0 g, 4.33 mmol) and acid fluoride **81** (2.5 g, 8.66 mmol) following the general procedure. Reaction temperature 0 °C, reaction time 20 hours. The crude material was dissolved in CH_2Cl_2 (30 mL). Et₃N (1.2 mL) and Di–*tert*–butyl dicarbonate (4.5 mmol) were added. The mixture was stirred for 3 hours. H_2O (20 mL) was added and the aqueous layer was extracted with CH_2Cl_2 (3×20 mL), and the combined organic layers were dried over MgSO₄. After removal of the solvent, the crude material was purified by column chromatography (n-hexane / ethyl acetate = 6:1) to give 1.79 g (82%) of **103** as a pale yellow oil. $$[\alpha]_D^{20} = +12.5^{\circ} (c = 1.6, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 0.00$ (s, 6H, Si(C H_3)₂), 0.85 (s, 9H, SiC(C H_3)₃), 1.40, 1.50 (2×s, 9H, OC(C H_3)₃), 1.55-2.02 (m, 4H, C H_2 C H_2), 2.30-2.45 (ddd, 1H, J = 14.71 Hz, 7.36 Hz, 7.35 Hz, CHHCH=CH₂), 2.46-2.66 (dd, 1H, J = 13.97 Hz, 7.35 Hz, CHHCH=CH₂), 2.88, 3.13 (2×m, 1H, NCHHCH₂), 3.40-3.69 (m, 3H, NCHHCH₂, OC H_2), 4.05 (m, 1H, NCHCH₂), 4.20-4.56 (m, 2H, ArC H_2),
4.97-5.25 (m, 3H, BOCNC H_3 , CH=C H_2), 5.61-5.81 (m, 1H, CH=CH₂), 5.90 (2×s, 2H, OC H_2 O), 6.35, 6.55 (2×s, 1H, NCH₂CC H_3), 6.90 (2×s, 1H, BrCC H_3) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = -5.5$ (Si(CH₃)₂), 18.0, 18.2 (SiC(CH₃)₃), 23.8 (CH₂CH₂), 25.8, 25.9 (SiC(CH₃)₃), 26.5, 27.3 (CH₂CH₂), 28.0, 28.2 (OC(CH₃)₃), 34.2 (CH₂CH=CH₂), 46.8, 47.1 (NCH₂CH₂), 55.6 (NCH), 58.1 (NCHCH₂OTBS), 58.6 (TBSOCH₂), 61.6 (NCH₂Ar), 80.5 (OC(CH₃)₃), 101.4 (OCH₂O), 107.0, 118.0, 133.8, 146.6 (Ar), 112.4 (CH=CH₂), 133.9 (CH=CH₂), 155.6 (OCON), 168.6 (CON) ppm IR (KBr, Film): $1/\lambda = 3077$ (w), 2954 (s), 2929 (s), 2883 (s), 2857 (s), 1694 (s, OCON), 1649 (s, CON), 1503 (s), 1480 (s), 1449 (s), 1412 (s), 1400 (s), 1391 (s), 1367 (s), 1342 (m), 1310 (s), 1252 (s), 1163 (s), 1102 (s), 1038 (s), 996 (m), 963 (m) cm⁻¹ **MS** (EI, 80 eV, 160°C): m/z (%) = 624 (8.8, [M]⁺), 568 (8.2, [M-C₄H₈]⁺), 523 (7.4, [M-C₅H₉O₂]⁺), 511 (17, [M-C₆H₁₅Si]⁺), 489 (6.4, [M-C₄H₈Br]⁺), 445 (8.6, [M-C₅H₈O₂Br]⁺), 297 (93, [M-C₁₄H₂₀O₂BrSi]⁺), 213 (90, [C₈H₆O₂Br]⁺), 70 (100, [C₄H₈N]⁺), 57 (85, [C₄H₉]⁺). **HRMS**: $(80 \text{ eV}, 160^{\circ}\text{C})$:m/z,[M]⁺ calcd. for $C_{29}H_{45}N_2O_6\text{Si}^{79}\text{Br}$, 624.22302; found, 624.22631 ## (R)-2-Chloropent-4-enoic acid [(2S)-methoxycarbonylpyrrolidinyl]amide 108 Reaction with allylamine **43** (500 mg, 2.95 mmol), chloroacetyl chloride **112** (470 μ L, 5.91 mmol, d = 1.418, M = 113) and AlMe₃ (3 mL) following general procedure. Reaction temperature - 20 °C, reaction time 1 hour. Purification via column chromatography (n-hexane /ethyl acetate = 3:1). Yield: 510 mg (70%) of **108** as a brown oil. $$[\alpha]_D^{20} = -93.7^{\circ} (c = 1.3, CHCl_3)$$ ¹**H-NMR** (500 MHz, CDCl₃): $\delta = 1.78-2.25$ (m, 4H, NCH₂C $\textbf{\textit{H}}_2$ C $\textbf{\textit{H}}_2$), 2.51-2.62 (m, 1H, C $\textbf{\textit{H}}$ HCH=CH₂), 2.72-2.81 (m, 1H, CH $\textbf{\textit{H}}$ CH=CH₂), 3.46-3.60 (m, 1H, NC $\textbf{\textit{H}}$ H), 3.65 (2×s, 3H, OC $\textbf{\textit{H}}_3$), 3.78-3.85 (m, 1H, NCH $\textbf{\textit{H}}$), 4.01, 4.24 (2×d, 1H, J = 7.28 Hz, 5.91 Hz, ClC $\textbf{\textit{H}}$), 4.45, 4.62 (2×d, 1H, J = 9.94 Hz, 3.99 Hz, NC $\textbf{\textit{H}}$ CO₂CH₃), 5.02-5.14 (m, 2H, CH=C $\textbf{\textit{H}}_2$), 5.66-5.79 (2×dddd, 1H, J = 17.18 Hz, 10.17 Hz, 7.14Hz, 6.88 Hz, C $\textbf{\textit{H}}$ =CH₂) ppm ¹³C NMR (125 MHz, CDCl₃): δ = 22.2, 24.5 (NCH₂CH₂), 28.8, 30.8 (NCH₂CH₂CH₂), 38.0 (CH₂CH=CH₂), 40.7, 54.2 (ClCH), 46.7, 46.8 (NCH₂), 52.1, 52.7 (CO₂CH₃), 58.9, 59.0 (N*C*HCO₂), 118.4, 118.7 (CH=*C*H₂), 132.8, 132.9 (*C*H=CH₂), 166.7, 167.1 (*C*ON), 171.8, 172.0 (*C*O₂CH₃) ppm IR (KBr, Film): $1/\lambda = 3079$ (w), 2980 (m), 2954 (m), 2883 (w),1746 (s, COO), 1660 (s, CON), 1436 (s), 1364 (m), 1337 (m), 1282 (m), 1197 (s), 1175 (s), 1118 (w), 1095 (w), 1044 (w), 998 (m), 924 (m) cm⁻¹ **MS** (EI, 80 eV, 40°C): m/z (%) = 245 (10, [M]⁺), 210 (11, [M-Cl]⁺), 186 (75, [M-C₂H₃O₂]⁺), 150 (6, [M-C₂H₄O₂Cl]⁺), 128 (16, [C₆H₁₀NO₂]⁺), 89 (12, [C₄H₆Cl]⁺), 70 (100, [C₄H₈N]⁺), 41 (12, [C₃H₅]⁺). **HRMS**: $(80 \text{ eV}, 40^{\circ}\text{C})$: m/z, [M]⁺ calcd. for $C_{11}H_{16}O_3N^{35}Cl$, 245.08188; found, 245.08255. ## (R)-2-Chlor-4-enoic acid [(2S)-tert-butyldimethylsilyloxymethylpyrrolidinyl]amide 109 Reaction with allylamine **45** (500 mg, 1.96 mmol), chloracetyl chloride **112** (310 μ L, 3.89 mmol, d = 1.418, M = 113) and AlMe₃ (2 mL) following general procedure. Reaction temperature - 20 °C, reaction time 1 hour. Purification via column chromatography (n-hexane /ethyl acetate = 7:1). Yield: 450 mg (69%) of **109** as a pale yellow oil. $$[\alpha]_D^{20} = -72.5^{\circ} (c = 3.0, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 0.00$ (s, 6H, Si(CH₃)₂), 0.70 (s, 9H, SiC(CH₃)₃), 1.68-2.10 (m, 4H, NCH₂C*H*₂C*H*₂), 2.49-2.71 (m, 2H, C*H*₂CH=CH₂), 3.29-3.50 (m, 2H, NC*H*₂), 3.50-3.71 (m, 2H, OC*H*₂), 4.01-4.18 (m, 1H, NC*H*), 4.18-4.23, 4.50-4.62 (2×m, 1H, ClC*H*), 5.01-5.15 (m, 2H, CH=C*H*₂), 5.64-5.81 (m, 1H, C*H*=CH₂) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = -5.5$, -5.6 (Si(CH₃)₂), 17.9, 18.2 (SiC(CH₃)₃), 21.7, 24.0 (NCH₂CH₂CH₂), 25.6, 25.7 (SiC(CH₃)₃), 26.7, 27.8 (NCH₂CH₂CH₂), 38.0, 38.1 (*C*H₂CH=CH₂), 45.7, 47.1 (N*C*H₂), 54.5, 54.6 (N*C*H), 58.5, 58.7 (NCH*C*H₂OTBS), 61.8, 65.2 (Cl*C*H), 118.4 (CH=*C*H₂), 133.2 (*C*H=CH₂), 166.6, 167.3 (*C*ON) ppm IR (KBr, Film): $1/\lambda = 3080$ (w), 2954 (s), 2929 (s), 2883 (m), 2856 (m), 1652 (s, CON), 1576 (w), 1558 (w), 1539 (w), 1521 (w), 1471 (m), 1436 (s), 1386 (w), 1360 (w), 1340 (w), 1254 (m), 1189 (w), 1165 (w), 1102 (m), 1054 (m), 997 (m), 920 (m), 836 (s, CCl) cm⁻¹ **MS** (EI, 80 eV, 70°C): m/z (%) = 331 (0.62, [M]⁺), 316 (3, [M-CH₃]⁺), 296 (1, [M-Cl]⁺), 274 (100, [M-C₄H₉]⁺), 186 (19, [M-C₇H₁₇OSi]⁺), 70 (53, [C₄H₈N]⁺). **HRMS**: (80 eV, 70°C):m/z,[M]⁺ calcd. for $C_{16}H_{30}NO_2Si^{35}Cl$, 331.17343; found, 331.17466. [M-CH₃]⁺ calcd. for $C_{15}H_{27}NO_2Si^{35}Cl$, 316.14996, found, 316.14866. [M-C₄H₉]⁺ calcd. for $C_{12}H_{21}NO_2Si^{35}Cl$, 274.10300; found, 274.10288. ### (S)-2-Azidopent-4-enoic acid [(2S)-methoxycarbonylpyrrolidinyl]amide 110 To chloroamide **108** (500 mg, 2.04 mmol) in DMF (50 mL) was added NaN₃ (600 mg, 9.23 mmol). The mixture was stirred at room temperature for 16 hours. H_2O (20 mL) was added and the aqueous layer was extracted with Et_2O (4×10 mL), and the combined organic layers were dried over MgSO₄. After removal of the solvent, the crude product was purified by column chromatography (n-hexane / ethyl acetate = 1:1) to give 500 mg (97%) **110** as a yellow oil. $$[\alpha]_D^{20} = -26.8^{\circ} (c = 1.4, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 1.78\text{-}2.01$ (m, 3H, NCH₂C*H*HC*H*₂), 2.01-2.20 (m, 1H, NCH₂CH*H*), 2.45-2.66 (m, 2H, C*H*₂CH=CH₂), 3.31-3.55 (m, 2H, N₃C*H*, NC*H*H), 3.60 (s, 3H, CO₂C*H*₃), 3.60-3.69 (m, 1H, NCH*H*), 4.41-4.48 (m, 1H, NCHCO₂CH₃), 5.02-5.11 (d, 1H, J = 10.74 Hz, CH=C*H*H), 5.10-5.21 (d, 1H, J = 17.09 Hz, CH=CH*H*), 5.58-5.86 (2×dddd, 1H, J = 17.09 Hz, 10.25 Hz, 7.32 Hz, 6.84 Hz, C*H*=CH₂) ppm ¹³C NMR (68 MHz, CDCl₃): δ = 21.9, 24.6 (NCH₂CH₂), 28.7, 31.0 (NCH₂CH₂CH₂), 34.9, 35.5 (CH₂CH=CH₂), 46.6, 46.7 (NCH₂), 52.0, 52.7 (CO₂CH₃), 58.7, 58.8 (NCHCO₂CH₃), 59.1, 59.3 (N₃CH), 118.8, 118.9 (CH=CH₂), 132.2 (CH=CH₂), 168.3 (CON), 171.9 (CO₂CH₃) ppm IR (KBr, Film): $1/\lambda = 3078$ (w), 2979 (m), 2881 (m), 2841 (w), 2101 (s, N₃), 1746 (s, COO), 1657 (s, CON), 1435 (s), 1363 (m), 1340 (m), 1324 (m), 1280 (m), 1197 (s), 1175 (s), 1119 (w), 1095 (m), 1044 (w), 999 (m) cm⁻¹ **MS** (EI, 80 eV, 60°C): m/z (%) = 252 (1, [M]⁺), 224 (1, [M-N₂]⁺), 221 (1, [M-CH₃O]⁺), 210 (3, [M-N₃]⁺), 193 (6, [M-C₂H₃O₂]⁺), 165 (8, [M-C₂H₃O₂N₂]⁺), 137 (20, [M-C₃H₅O₂N₃]⁺), 128 (100, [C₆H₁₀NO₂]⁺), 68 (37, [C₄H₆N]⁺), 41 (36, [C₃H₅]⁺). **HRMS**: (80 eV, 60°C): m/z, $[M]^+$ calcd. for $C_{11}H_{16}N_4O_3$, 252.12224; found, 252.12422. ## (S)-2-Azidopent-4-enoic acid [(2S)-tert-butyldimethylsilyloxymethylpyrrolidinyl]-amide 111 To chloroamide **109** (200 mg, 0.60 mmol) in DMF (20 mL) was added NaN₃ (200 mg, 3.07 mmol). The mixture was stirred at room temperature for 16 hours. H_2O (20 mL) was added and the aqueous layer was extracted with Et_2O (4×10 mL), and the combined organic layers were dried over MgSO₄. After removal of the solvent, the crude product was purified by column chromatography (n-hexane / ethyl acetate = 5:1) to give 200 mg (99%) **111** as a yellow oil. $$[\alpha]_D^{20} = -4.2^{\circ} (c = 2.1, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 0.00$ (s, 6H, Si(C H_3)₂), 0.85 (s, 9H, SiC(C H_3)₃), 1.72-2.11 (m, 4H, C H_2 C H_2), 2.05 (m, 2H, CH₂=CHC H_2), 3.31-3.52 (m, 3H, NCHH, CHHO, NCHCH₂O), 3.52-3.78 (m, 2H, NCHH, CHHO), 3.78-3.85, 4.08-4.10 (2×m, 1H, N₃CH), 5.11 (d, 1H, J = 10.26 Hz, CH=CH**H**), 5.18 (dt, 1H, J = 17.08 Hz, 1.47 Hz CH=C**H**H), 5.75 (dddd, 1H, J = 17.08 Hz, 10.26 Hz, 7.33 Hz, 6.84 Hz, C**H**=CH₂) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = -5.6$ (Si*C*H₃), 17.9 (SiC(*C*H₃)₃), 21.5, 24.3 (NCH₂*C*H₂CH₂), 25.6, 25.7 (SiC(*C*H₃)₃), 26.7, 28.1 (NCH₂CH₂*C*H₂), 35.2, 35.6 (*C*H₂CH=CH₂), 45.7, 47.4 (N*C*H₂CH₂), 58.6, 58.8 (N*C*HCH₂O), 59.1 (*C*H₂OTBS), 62.3, 64.5 (N₃*C*H), 118.7, 118.8 (CH=*C*H₂), 132.5 (*C*H=CH₂), 168.9 (N*C*O) ppm **IR** (KBr, Film): $1/\lambda = 3080$ (w), 2954 (s), 2929 (s), 2883 (m), 2857 (s), 2099 (s, N₃), 1652 (s, CON), 1471 (m), 1462 (m), 1429 (s), 1381 (w), 1360 (w), 1319 (w), 1257 (s), 1193 (w), 1165 (w), 1103 (s), 1055 (m), 1004 (m), 956 (w), 919 (m) cm⁻¹ **MS** (EI, 80 eV, 70°C): m/z (%) = 338 (0.36, [M]⁺), 323 (1, [M-CH₃]⁺), 310 (2, [M-N₂]⁺), 281 (100, [M-C₄H₉]⁺), 253 (32, [M-C₄H₆N₃]⁺), 242 (21, [C₁₂H₂₄NO₂]⁺). **HRMS**: (80 eV, 70°C):m/z,[M-CH₃]⁺ calcd.for $C_{15}H_{27}N_4O_2Si$, 323.19034; found, 323.19111. [M-N₂]⁺ calcd.for $C_{16}H_{30}N_2O_2Si$, 310.20764; found, 310.20833. [M-C₄H₉]⁺ calcd.for $C_{12}H_{21}N_4O_2Si$, 281.14337; found, 281.14533. ### 3.6 Syntheses of Piperazine and Furanone Derivatives (3*S*,6*R*)-6-Allyl-1-(2,2-diethoxyethyl)-3,4-propylidene-1,4-piperazine-2,5-dione 96 (3*S*,6*S*)-6-Allyl-1-(2,2-diethoxyethyl)-3,4-propylidene-1,4-piperazine-2,5-dione 97 Aza-Claisen rearrangement starting from *N*-allylproline methyl ester **43** (120 mg, 0.71 mmol) and acid fluoride **71** (250 mg, 0.85 mmol) following the general procedure. Reaction temperature 0 °C, reaction time 16 hours. The reaction was quenched with methanol (20 mL). After stirring for 30 min. thionyl chloride (5 mL) was added dropwise at 0°C. The solvent was removed in vacuum and the residue was purified via column chromatography (ethyl acetate) to give 160 mg (73%) of **96** / **97** as yellow oil. (Ratio **96** : **97** >15 : 1, via analytical HPLC: Nucleosil 50-5, 4×250; 20% propan-2-ol in hexane, 2 mL/min, 140 bar; $t_{96} = 7.16$ min, $t_{70} = 7.58$ min.) $$[\alpha]_D^{20} = -48.3^{\circ} (c = 1.1, CHCl_3) (data of 96/97)$$ Data obtained from mixture, separated peaks of 96: ¹**H-NMR** (270 MHz, CDCl₃;): $\delta = 1..02$ (t, 3H, J =
7.35 Hz, C H_3), 1.10 (t, 3H, J = 7.35 Hz, C H_3), 1.75-1.92 (m, 3H, C H_2 CHH), 2.28 (m, 1H, CH₂CHH), 2.49 (m, 2H, CH₂=CHC H_2), 2.85 (dd, 1H, J = 13.97 Hz, 7.35 Hz, NCHHCH(OEt)₂), 3.27-3.68 (m, 6H, CH₃C H_2 O, C H_2 NCO), 3.82 (dd, 1H, J = 13.97 Hz, 3.67 Hz, NCHHCH(OEt)₂), 4.01 (dd, 1H, J = 7.83 Hz, 6.62 Hz, COCHN), 4.12 (t, 1H, J = 5.88 Hz, NCHCH₂CH=CH₂), 4.49 (dd, 1H, J = 7.35 Hz, 3.67 Hz, CH₂CH(OEt)₂), 5.01(d, 1H, J = 9.66 Hz, CHH=CH), 5.06 (dd, 1H, J = 16.91 Hz, 1.47 Hz, CHH=CH), 5.68 (dddd, 1H, J = 16.91 Hz, 10.30 Hz, 7.36 Hz, 7.35 Hz, CH₂=CH) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = 15.1$ (CH₃CH₂O), 22.2 (CH₂CH₂), 29.4 (CH₂CH₂), 35.9 (CH₂=CHCH₂), 45.2 (NCH₂CH₂), 48.3 (NCH₂CH(OEt)₂), 58.3 (NCHCO), 63.1 (CH₃CH₂O), 63.8 (N*C*HCH₂CH=CH₂), 64.2 (CH₃*C*H₂O), 100.6 (CH₂*C*H(OEt)₂), 119.9 (*C*H₂=CH), 131.8 (CH₂=*C*H), 165.2, 167.7 (*C*ON) ppm IR (KBr, Film): $1/\lambda = 3077$ (w), 2975 (s), 2884 (s), 1666 (s, CON), 1454 (s),1375 (m), 1343 (m), 1298 (m), 1261 (m), 1205 (m), 1120 (s), 1063 (s), 923 (m) cm⁻¹ **MS** (EI, 80 eV, 90°C): m/z (%) = 310 (1.4, [M]⁺), 269 (6.5, [M-C₃H₅]⁺), 265 (18, [M-C₂H₅O]⁺), 103 (100, [C₅H₁₁O₂]⁺), 75 (49, [C₃H₇O₂]⁺), 70 (17, [C₄H₈N]⁺). **HRMS**: $(80 \text{ eV}, 90^{\circ}\text{C})$: m/z, $[\text{M}]^{+}$ calcd. for $C_{16}H_{26}N_{2}O_{4}$, 310.18925; found, 310.18777 NOE data of 96 Data obtained from mixture, separated peaks of 97: ¹**H-NMR** (270 MHz, CDCl₃;): $\delta = 1.02$ (t, 3H, J = 7.35 Hz, CH₂CH₃), 1.10 (t, 3H, J = 7.35 Hz, CH₂CH₃), 1.75-1.92 (m, 3H, CH₂CHH), 2.28 (m, 1H, CH₂CHH), 2.68 (m, 1H, CH₂=CHCHH), 2.85 (m, 1H, CH₂=CHCHH), 2.90 (dd, 1H, J = 13.97 Hz, 7.35 Hz, NCHHCH(OEt)₂), 3.27-3.68 (m, 6H, (CH₃CH₂O)₂, CH₂NCO), 3.90 (m, 1H, NCHCO), 4.11 (m, 1H, NCHH), 4.28 (m, 1H, NCHCH₂CH=CH₂), 4.55 (dd, 1H, J = 6.62 Hz, 2.94 Hz, CH₂CH(OEt)₂),4.97 (m, 2H, CH₂=CH), 5.45 (dddd, 1H, J = 16.91 Hz, 10.30 Hz, 7.36 Hz, 7.35 Hz, CH₂=CH) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = 15.1$ (CH₃CH₂O), 21.7 (CH₂CH₂), 29.6 (CH₂CH₂), 33.4 (CH₂=CHCH₂), 44.8 (NCH₂CH₂), 45.3 (NCH₂CH(OEt)₂), 58.7 (NCHCO), 60.5 (NCHCH₂CH=CH₂), 63.1 (CH₃CH₂O), 64.2 (CH₃CH₂O), 100.4 (CH₂CH(OEt)₂), 119.4 (CH₂=CH), 131.9 (CH₂=CH), 164.1, 167.3 (CON) ppm NOE data of 97 (3*R*,6*S*)-1,6-3,4-Bis(propylidene)-1,4-piperazine-2,5-dione 92 (3*S*,6*S*)-1,6-3,4-Bis(propylidene)-1,4-piperazine-2,5-dione 93 A solution of BH₃•S(CH₃)₂ (197 mg, 2.6 mmol) in anhyd. CH₂Cl₂ (5 mL) was cooled to 0 °C under Argon. Cyclohexene (428 mg, 5.2 mmol) was added over a period of 5 minutes by means of syringe. After stirring at 0 °C for 3 hours, α -azido amide 85 / 86 (220 mg, 0.87 mmol) in anhyd. CH₂Cl₂ (5 mL) was added. The cooling bath was removed and the reaction mixture was stirred overnight at 20 °C, the colour of the mixture turned to bright yellow. The reaction was quenched with sat. aq. NH₄Cl (10 mL). After stirring for 30 minutes, sat. aq. NaHCO₃ (5 mL) was added and the mixture was stirred for further 1 hour. Then, the aqueous layer was extracted with CH₂Cl₂ (5 × 15 mL), the combined organic layers were dried over MgSO₄, and concentrated to give crude product which was purified by column chromatography (ethyl acetate / methanol = 9 : 1) and gave 115 mg (68%) of 92 / 93 as a white solid material. Ratio of diastereomers, 4:1 (20 °C), 7:1 (0 °C), 9.5:1 (-20 °C) depending on the reaction temperature of the rearrangement. Data of 92/93 are identical with that lined out in the literature.⁵⁴ Data of **92**: $$[\alpha]_D^{20} = 0^{\circ} (c = 1.4, H_2O)$$ ¹**H-NMR** (270 MHz, CDCl₃): δ = 1.60-2.02 (m, 3H, CH₂C $\textbf{\textit{H}}_2$ CH₂, CHCH $\textbf{\textit{H}}$), 2.35 (ddd, 1H, J = 11.03 Hz, 5.89 Hz, 5.88 Hz, CHC $\textbf{\textit{H}}$ H), 3.24 (ddd, 1H, J = 12.5 Hz, 9.56 Hz, 4.41 Hz, CH $\textbf{\textit{H}}$ N), 3.84-3.97 (m, 2H, C $\textbf{\textit{H}}$ HN), C $\textbf{\textit{H}}$ CON) ppm ¹³C NMR (68 MHz, CDCl₃): δ =21,6 (CH₂CH₂CH₂), 29.7 (CHCH₂), 44.3 (CHCON), 60.9 (CH₂N), 164.1 (CON) ppm Data of 93: $$[\alpha]_D^{20} = -144.4^{\circ} (c = 0.2, H_2O) (literature.^{54(c)} [\alpha]_D^{36} -149.5^{\circ}, c = 1 in H_2O)$$ ¹**H-NMR** (270 MHz, CDCl₃): δ = 2.02-2.32 (m, 4H, CH₂CH₂CH₂, CHCH₂), 3.52 (dd, 2H, J = 8.79 Hz, 5.37 Hz, CH₂N), 4.17 (dd, 1H, J = 8.30 Hz, 7.81 Hz, CHCON) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = 23.2$ (CH₂CH₂CH₂), 27.5 (CHCH₂), 45.1 (CHCON), 60.4 (CH₂N), 164.1 (CON) ppm Data of **92** and **93**: IR (KBr, Film): $1/\lambda = 2988$ (m), 2958 (m), 2876 (m), 1650 (s, CON), 1456 (s), 1345 (w), 1330 (m), 1300 (m), 1204 (m), 1181 (m), 1154 (m), 1073 (w), 1006 (m), 966 (w) cm⁻¹ **MS** (EI, 80 eV, 100°C): m/z (%) = 194 (33, [M]⁺), 166 (6, [M-CO]⁺), 96 (13, [C₅H₆NO]⁺), 70 (100, [C₄H₈N]⁺). ## (3S,6S)-6-Allyl-3,4- propylidene-1,4-piperazine-2,5-dione 113 Azido pentenoic acid amide 110 (200 mg, 0.79 mmol) in THF (20 mL) was treated with PPh₃ (230 mg, 0.87 mmol) and H₂O (1 mL). The mixture was stirred at 20 °C for 16 hours, H₂O (20 mL) was added and the aqueous layer was extracted with CH_2Cl_2 (4×15 mL). The combined organic layers were dried over MgSO₄. After removal of the solvent, the crude material was purified by column chromatography (n-hexane / ethyl acetate = 1:2) to give 140 mg (91%) of piperazine 113 as a pale yellow oil. $$[\alpha]_D^{20} = -108.8^{\circ} (c = 1.5, CHCl_3)$$ ¹**H-NMR** (500 MHz, CDCl₃): $\delta = 1.77-1.90$ (m, 1H, NCH₂C*H*H), 1.90-2.07 (m, 2H, NCH₂CH*H*, NCH₂CH₂C*H*H), 2.22-2.32 (m, 1H, NCH₂CH₂CH*H*), 2.35-2.44 (m, 1H, C*H*HCH=CH₂), 2.77-2.85 (m, 1H, CH*H*CH=CH₂), 3.43-3.58 (m, 2H, NC*H*₂), 3.97-4.02 (dd, 1H, J = 8.39 Hz, 3.30 Hz, C*H*CH₂CH=CH₂), 4.02-4.09 (dd, 1H, J = 8.94 Hz, 7.56 Hz, NC*H*CO), 5.08-5.17 (m, 2H, CH=C*H*₂), 5.66-5.76 (m, 1H, C*H*=CH₂) ppm ¹³C NMR (125 MHz, CDCl₃): $\delta = 22.3$, (NCH₂CH₂), 27.9 (NCH₂CH₂CH₂), 34.4 (CH₂CH=CH₂), 45.1 (NCH₂), 53.9 (CHCH₂CH=CH₂), 58.8 (NCHCO), 119.5 (CH=CH₂), 132.8 (CH=CH₂), 164.9 (NCO), 169.7 (NHCO) ppm IR (KBr, Film): $1/\lambda = 3480$ (br, m, NH), 3234 (br, m, NH), 3079 (m), 2982 (m), 2954 (m), 2882 (m), 1668 (s, CONH, CON), 1558 (w), 1540 (w), 1429 (s), 1339 (m), 1305 (m), 1276 (m), 1212 (w), 1231 (w), 1212 (w), 1162 (w), 1146 (w), 1119 (w), 1002 (m), 922 (m) cm⁻¹ **MS** (pos. FAB): m/z (%) = 195 (100, [M+H]⁺), 194 (18, [M]⁺), 193 (22, [M-H]⁺), 153 (13, [M-C₃H₅]⁺), 125 (25, [M-C₄H₇N]⁺), 69 (96, [C₄H₇N]⁺), 42 (29, [C₃H₆]⁺). **MS** (EI, 80 eV, 40°C): m/z (%) = 194 (56, [M]⁺), 153 (18, [M-C₃H₅]⁺), 125 (50, [C₆H₇NO₂]⁺), 70(100, [C₄H₈N]⁺), 41 (38, [C₃H₅]⁺). **HRMS** (80 eV, 40°C): m/z, $[M]^+$ calcd for $C_{10}H_{14}N_2O_2$, 194.10553; found, 194.10633. relevant NOE's of 113 from NOESY ## (3S,6R)-6-Allyl-3,4-(2-tert-butyldimethylsilyloxyl)propylidene-1,4-piperazine-2,5-dione 107 Azido pentenoic acid amide **106** (110 mg, 0.28 mmol) in THF (20 mL) was treated with PPh₃ (91 mg, 0.34 mmol) and H₂O (1 mL). The mixture was stirred at 20 °C for 16 hours, H₂O (10 mL) was added and the aqueous layer was extracted with Et₂O (4×15 mL). The combined organic layers were dried over MgSO₄. After removal of the solvent, the crude material was purified by column chromatography (ethyl acetate) to give 80 mg (85%) of piperazine **107** as colourless crystals with m.p. = 139-140°C. $$[\alpha]_D^{20} = -48.1^{\circ} (c = 0.6, CHCl_3)$$ ¹**H-NMR** (500 MHz, CDCl₃): $\delta = 0.00$ (s, 6H, Si(C H_3)₂), 0.80 (s, 9H, SiC(C H_3)₃), 1.87-1.95 (ddd, 1H, J = 12.51 Hz, 12.09 Hz, 4.12 Hz, CHHCHOTBS), 2.23-2.30 (dd, 1H, J = 12.93 Hz, 5.91 Hz, CHHCHOTBS), 2.47-2.61 (m, 2H, C H_2 CH=CH₂), 3.37 (d, 1H, J = 12.92 Hz, NCHHCHOTBS), 3.73-3.75 (dd, 1H, J = 12.93 Hz, 4.54 Hz, NCHHCHOTBS), 3.93-3.99 (m, 1H, NHC \boldsymbol{H}), 4.36-4.45 (m, 2H, NHCOC \boldsymbol{H} , C \boldsymbol{H} OTBS), 5.14-5.23 (m, 2H, CH=C \boldsymbol{H}_2), 5.72-5.83 (dddd, 1H, J=17.32 Hz, 10.17 Hz, 7.44 Hz, 7.15 Hz, C \boldsymbol{H} =CH₂), 7.30 (br, s, 1H, N \boldsymbol{H}) ppm ¹³C NMR (125 MHz, CDCl₃): $\delta = -5.0$, -4.8 (Si(*C*H₃)₂), 17.8 (Si*C*(CH₃)₃), 25.6 (SiC(*C*H₃)₃), 38.7 (*C*H₂CHOTBS), 38.9 (*C*H₂CH=CH₂), 55.2 (N*C*H₂), 56.5 (*C*HOTBS), 57.4 (NH*C*H), 68.2 (NHCO*C*H), 120.2 (CH=*C*H₂), 131.7 (*C*H=CH₂), 165.2 (N*C*O), 169.8 (NH*C*O) ppm IR (KBr, Film): $1/\lambda = 3213$ (m), 3165 (w), 3122 (w, NH), 2956 (m), 2928 (m), 2889 (w), 2856 (m), 1680 (s, CONH), 1646 (s, CON), 1498 (w), 1471 (m), 1461 (m), 1439 (m), 1419 (m), 1376 (m), 1361 (w), 1328 (w), 1308 (m), 1285 (w), 1256 (m), 1210 (w), 1161 (w), 1142 (w), 1109 (m), 1086 (m), 1026 (m), 1006 (m), 940 (w), 917 (m) cm⁻¹ **MS** (EI, 80 eV, 160°C): m/z (%) = 324 (0.17, $[M]^+$), 309 (5, $[M-CH_3]^+$), 267 (100, $[M-C_4H_9]^+$), 239 (67, $[M-C_6H_{13}]^+$). **HRMS** (80 eV, 160°C): m/z $[M-C_4H_9]^+$ calcd for $C_{12}H_{19}N_2O_3Si$, 267.11649; found, 267.11733. relevant NOE's of 107 from NOESY (3*R*,5*S*)-3-Azido-5-methyl-2(3*H*)-furannone 87 (3*R*,5*R*)-3-Azido-5-methyl-2(3*H*)-furannone 88 α -Azidoamide **85/86** (140 mg, 0.55 mmol) was heated (bath temperature 80 °C) with 6 M aq. HCl (5 mL) for 20 hours. After cooling to 20 °C, the mixture was extracted with Et₂O (3 × 10 mL), the organic layers were dried over MgSO₄, and the solvent was removed. Purification of the diastereomers via column chromatography (n-hexane / ethyl acetate = 4:1) afforded 20 mg (26%) of lactone **87** and 21 mg (27%) of lactone **88** as clear oils. Data of **87**: $$[\alpha]_D^{20} = +143.8^{\circ} (c = 0.3, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): δ = 1.45 (d, 3H, J = 5.88 Hz, C $\textbf{\textit{H}}_3$), 1.74 (ddd, 1H, J = 12.50 Hz, 11.03 Hz, 9.56 Hz, CH $\textbf{\textit{H}}$), 2.66 (ddd, 1H, J = 13.24 Hz, 8.82 Hz, 5.88 Hz, C $\textbf{\textit{H}}$ H), 4.33 (dd, 1H, J = 11.03 Hz, 8.82 Hz, C $\textbf{\textit{H}}$ N₃), 4.53 (ddt, 1H, J = 11.03 Hz, 5.88 Hz, 5.88 Hz, C $\textbf{\textit{H}}$ O) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = 20.8$ (*C*H₃), 36.5 (*C*H₂), 58.1 (*C*HN₃), 74.3 (*C*HO), 172.9 (*C*OO) ppm Data of **88**: (data is identical with those published in the literature⁵¹) $$[\alpha]_D^{20} =
+192.7^{\circ} (c = 0.5, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 1.40$ (d, 3H, J = 6.62 Hz, C H_3), 2.10 (ddd, 1H, J = 13.98 Hz, 8.09 Hz, 5.88 Hz, CHH), 2.25 (ddd, 1H, J = 13.24 Hz, 7.35 Hz, 5.89 Hz, CHH), 4.29 (dd, 1H, J = 8.09 Hz, 5.88 Hz, CHN₃), 4.74 (ddt, 1H, J = 13.24 Hz, 6.62 Hz, 5.88 Hz, CHO) ppm (68 MHz, CDCl₃): $\delta = 20.9$ (CH₃), 35.6 (CH₂), 57.3 (CHN₃), 75.5 (CHO), 172.9 (COO) ppm ## Data of **87** and **88**: IR (solution, CHCl₃): $1/\lambda = 3022$ (s), 2986 (s), 2936 (s), 2127 (s, N₃), 1790 (s, COO), 1321 (m), 1259 (m), 1178 (m), 955 (m) cm⁻¹ **MS** (EI, 80 eV, 30°C): m/z (%) = 141 (8, [M]⁺), 126 (3, [M-CH₃]⁺), 113 (3, [M-N₂]⁺), 42 (100, [N₃]⁺). **HRMS** (80 eV, 30°C): m/z $[M]^+$ calcd for $C_5H_7N_3O_2$, 141.05383; found, 141.05621 ### 3.7 Syntheses of Pent-4-enoic Acid Derivatives #### α-Azido pent-4-enoic acid 89 α -Azidoamide **85/86** (1.40 g, 5.50 mmol) was heated (bath temperature 80 °C) in 2 M aq. H₂SO₄ (35 mL) for 20 hours. After cooling to 20 °C, the mixture was extracted with Et₂O (3 × 50 mL), the organic layers were dried over MgSO₄. The solvent was removed in vacuum to give 500 mg (64%) of α -azido pent-4-enoic acid **89** as a pale yellow oil, which was used without further purification. ¹**H-NMR** (270 MHz, CDCl₃): δ = 2.48-2.73 (m, 2H, CH₂CH=CH₂), 3.92-4.02 (dd, 1H, J = 7.81 Hz, 5.37 Hz, N₃CH), 5.10-5.30 (m, 2H, CH=CH₂), 5.71-5.89 (m, 1H, CH=CH₂) 11.7 (br, s, COOH) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = 35.5$ (*C*H₂CH=CH₂), 61.1 (N₃*C*H), 119.5 (CH=*C*H₂), 131.6 (*C*H=CH₂), 175.6 (*C*OOH) ppm ## (R)-α-Azido pent-4-enoic acid benzyl ester 90 $$\begin{array}{c|c} & & & & \\$$ α -Azido pent-4-enoic acid **89** (140 mg, 1.00 mmol) was treated with *N,N*'-diisopropyl-*O*-benzylisourea **91** (281 mg, 1.20 mmol). After stirring at 20 °C for 1 hour, anhyd. THF (20 mL) was added. The mixture was stirred at 20 °C for a further 3 days. During this time a white precipitate occurred. The solids were filtered off and the solvent was removed in vacuum, the crude material was purified by column chromatography (n-hexane / ethyl acetate = 5:1) to give 200 mg (86.5%) of α -Azido pent-4-enoic acid benzyl ester **90** as a clear oil. $$[\alpha]_D^{20} = +17.2^{\circ} (c = 2.3, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 2.47$ -2.69 (m, 2H, C H_2 CH=CH₂), 3.91-3.99 (dd, 1H, J = 7.81 Hz, 5.37 Hz, N₃CH), 5.11-5.26 (m, 2H, CH=C H_2), 5.22 (s, 2H, C₆H₅C H_2), 5.68-5.86 (dddd, 1H, J = 17.09 Hz, 10.25 Hz, 7.33 Hz, 6.83 Hz, CH=CH₂), 7.35 (m, 5H, C₆ H_5) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = 35.7$ (*C*H₂CH=CH₂), 61.3 (N₃C*H*), 67.4 (C₆H₅*C*H₂), 119.2 (CH=*C*H₂), 128.4, 128.6, 128.7, 134.9 (*C*₆H₅), 131.9 (*C*H=CH₂), 169.8 (*C*OOBn) ppm IR (KBr, Film): $1/\lambda = 3067$ (m), 3034 (m), 2956 (m), 2513 (w), 2105 (s, N₃), 1744 (s, COO), 1643 (m), 1608 (w), 1587 (w), 1498 (m), 1455 (m), 1438 (m), 1417 (m), 1379 (m), 1347 (m), 1268 (s), 1185 (s), 1128 (m), 1081 (w), 989 (m), 924 (m) cm⁻¹ **MS** (EI, 80 eV, 40°C): m/z (%) = 231 (0.71, [M]⁺), 203 (0.56, [M-N₂]⁺), 162 (3, [M-C₃H₅N₂]⁺), 91 (100, [C₇H₇]⁺). **HRMS**: (80 eV, 40°C): m/z, $[M]^+$ calcd. for $C_{12}H_{13}N_3O_2$, 231.10078; found, 231.10067 ### 3.8 Syntheses of Diastereomers of \(\alpha\)-Amino-pent-4-enoic Acid Derivatives ## General procedure: #### Method A: The product of the rearrangement in anhyd. THF was cooled to -78 °C. Lithium diisopropyl amide (1 eq., 1.8 M in heptane / tetrahydrofuran / ethyl benzene) was added and the mixture was stirred at -78 °C for 1 hour. Then, the temperature was slowly raised to -40 °C and the mixture was stirred at -40 °C for a further 3 hours. The reaction was quenched with sat. aq. NH₄Cl. The aqueous layer was extracted with Et₂O, and the combined organic layers were dried over MgSO₄. After removal of the solvent, the diastereomers were separated by HPLC. #### Method B: The product of the rearrangement was dissolved in DMF and treated with Na_2CO_3 (5 eq.). The reaction mixture was refluxed. After cooling to room temperature, H_2O was added and the aqueous layer was extracted with Et_2O . The combined organic layers were dried over MgSO₄. After removal of the solvent, the diastereomers were separated by means of HPLC. # (2*S*)-2-(*N-tert*-Butyloxycarbonyl)-*N*-(2,2-diethoxyethyl)aminopent-4-enoic acid [(2*S*)-benzyloxymethylpyrrolidinyl]amide 121 Reaction starting from amide **105** (200 mg, 0.39 mmol) following the general procedure A, the diastereomers were seperated by means of HPLC (2% iso-Propanol / n-hexane, Nucleosil 50-5, 32×110 mm, flow 64 mL/min, retention time: $t_{121} = 4.40$ min, $t_{105} = 5.65$ min). Yield: 90 mg **121** (45%) and 90 mg **105** (45%). Reaction starting from amide **105** (200 mg, 0.39 mmol) following the general procedure B, reaction time 5 hours, the diastereomers were separated by means of HPLC to give 30 mg **121** (15%) and 150 mg **105** (75%). #### Data of **121**: $$[\alpha]_D^{20} = -78.1^{\circ} (c = 1.4, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 1.05$ (m, 6H, (OCH₂C H_3)₂), 1.40 (2×s, 9H, OC(C H_3)₃), 1.65-2.10 (m, 4H, C H_2 C H_2), 2.32-2.60 (m, 2H, C H_2 CH=CH₂), 3.10-3.67 (m, 10H, NC H_2 CH₂, NCHC H_2 O, NC H_2 CH(OEt)₂, CH(OC H_2 CH₃)₂), 4.08-4.22 (m, 1H, NCH), 4.30-4.55 (m, 3H, OC H_2 Ph, COCH), 4.77-5.10 (m, 3H, CH(OEt)₂), CH=C H_2), 5,53-5.73 (m, 1H, CH=CH₂), 7.20 (m, 5H, C₆ H_5) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = 15.1$ (CH(OCH₂CH₃)₂), 24.0 (CH₂CH₂), 27.2, 27.3 (CH₂CH₂), 28.1 (C(CH₃)₃), 34.3 (CH₂CH=CH₂), 45.9 (NCH₂CH₂), 46.3, 46.6 (NCH₂CH), 56.0, 56.7 (NCH), 61.2, 62.1 (CH(OCH₂CH₃)₂), 69.7 (CH₂OBn), 72.9 (OCH₂Ph), 80.1 (C(CH₃)₃), 100.0, 100.8 (CH(OEt)₂), 117.2 (CH=CH₂), 127.2, 128.1, 134.1, 138.3 (Ph), 134.5 (CH=CH₂), 155.7 (OCON), 168.8 (CON) ppm IR (solution, CHCl₃): $1/\lambda = 3067$ (m), 3011 (s), 2978 (s), 2931 (s), 2872 (s), 1811 (m), 1751 (m), 1682 (s, OCON), 1640 (s, CON), 1496 (m), 1476 (m), 1452 (s), 1394 (s), 1368 (s), 1346 (m), 1310 (m), 1252 (s), 1216 (s), 1162 (s), 1122 (s), 1064 (s), 922 (m) cm⁻¹ **MS** (EI, 80 eV, 120°C): m/z (%) = 504 (0.59, [M]⁺), 475 (4.9, [M-C₂H₅]⁺), 458 (3.2, [M-C₂H₆O]⁺), 431 (1.2, [M-C₄H₉O]⁺), 403 (4, [M-C₅H₉O₂]⁺), 212 (5, [C₁₁H₁₈NO₃]⁺), 190 (4, [C₁₂H₁₆NO]⁺), 184 (10, [C₁₀H₁₈NO₂]⁺), 103 (100, [C₅H₁₁O₂]⁺), 91 (16, [C₇H₇]⁺). **HRMS**: (80 eV, 120°C): m/z, $[M]^+$ calcd. for $C_{28}H_{44}N_2O_6$, 504.31993; found, 504.31765 $[M-C_2H_5]^+$ calcd. for $C_{26}H_{39}N_2O_6$, 475.28081; found, 475.28332 # (2*S*)-2-[*N*-(2-Bromo-4,5-methylenedioxyphenyl)methyl]-*N*-(tert-butyloxycarbonyl)-aminopent-4-enoic acid [(2*S*)-tert-butyldimethylsilyloxymethyl-pyrrolidinyl]amide 125 Reaction starting from amide **103** (250 mg, 0.24 mmol) following the general procedure B, reaction time 20 hours. The diastereomers were seperated by HPLC (20% ethyl acetate / n-hexane, Nucleosil 50-5, 32×110 mm, flow 64 mL/min, retention time: $t_{125} = 6.86$ min, $t_{103} = 8.09$ min). Yield: 90 mg **125** (36%) and 140 mg **103** (56%). #### Data of **125**: $$[\alpha]_D^{20} = -52.8^{\circ} (c = 1.6, CHCl_3)$$ ¹**H-NMR** (500 MHz, CDCl₃): δ = 0.00 (s, 6H, Si(C H_3)₂), 0.80 (s, 9H, SiC(C H_3)₃), 1.30 (s, 9H, OC(C H_3)₃), 1.70-2.15 (m, 4H, C H_2 C H_2), 2.35- 2.58 (m, 2H, C H_2 CH=CH₂), 3.36-3.62 (m, 2H, NCHHCH₂, OCHH), 3.62-3.81 (m, 2H, NCHHCH₂, OCHH), 3.90 (m, 1H, BOCNCH), 4.35 (d, 1H, J = 16.92 Hz, NCHHAr), 4.51 (d, 1H, J = 16.92 Hz, NCHHAr), 4.96-5.15 (m, 3H, NCH, CH=C H_2), 5.60-5.77 (m, 1H, CH=CH₂), 5.90 (s, 2H, OC H_2 O), 6.50 (s, 1H, Ar-H), 6.90 (s, 1H, Ar-H) ppm ¹³C NMR (125 MHz, CDCl₃): $\delta = -5.5$ (Si(*C*H₃)₂), 18.0 (Si*C*(CH₃)₃), 22.1, 24.5 (*C*H₂CH₂), 25.7 (SiC(*C*H₃)₃), 26.8, 27.3 (CH₂*C*H₂), 28.0 (OC(*C*H₃)₃), 31.5 (N*C*HCH₂OTBS), 34.3 (*C*H₂CH=CH₂), 46.9, 47.4 (N*C*H₂CH₂), 55.2 (N*C*H), 58.6 (TBSO*C*H₂), 62.4 (N*C*H₂Ar), 80.5 (O*C*(CH₃)₃), 101.4 (O*C*H₂O), 106.7, 118.1, 132.1, 147.1 (Ar), 112.3 (CH=*C*H₂),
133.5 (*C*H=CH₂), 155.6 (O*C*ON), 168.6 (*C*ON) ppm IR (solution, CHCl₃): $1/\lambda = 3070$ (w), 3017 (s), 2976 (s), 2956 (s), 2930 (s), 2885 (s), 2858 (s), 1812 (w), 1682 (s, OCON), 1642 (s, CON), 1504 (s), 1480 (s), 1452 (s), 1412 (s), 1368 (s), 1340 (m), 1313 (m), 1216 (s), 1161 (s), 1105 (s), 1041 (s), 999 (m) cm⁻¹ **MS** (EI, 80 eV, 140°C): m/z (%) = 624 (16, [M]⁺), 567 (11, [M-C₄H₉]⁺), 523 (13, [M-C₅H₉O₂]⁺), 511 (30, [M-C₆H₁₅Si]⁺), 297 (100, [M-C₁₄H₂₀O₂BrSi]⁺), 213 (97, [C₈H₆O₂Br]⁺), 70 (25, [C₄H₈N]⁺), 57 (15, [C₄H₉]⁺). **HRMS** (80 eV, 140 °C):m/z,[M]⁺ calcd. for C₂₉H₄₅N₂O₆Si⁷⁹Br, 624.22302; found, 624.22564 ## 3.9 Syntheses of Isoquinolone Derivatives # (2R)-2-[N-(2-Bromo-4,5-methylenedioxyphenyl)methyl]-N-(2,2-diethoxyethyl)aminopent –4-enoic acid [(2S)-tert-butyldimethylsilyloxymethyl-pyrrolidinyl)]amide 118 Reaction starting from *N*-allylprolinol silyl ether **45** (700 mg, 2.74 mmol) and *N*-BOC glycinyl fluoride **71** (965 mg, 3.29 mmol) following the general procedure as described for the zwitterionic aza-Claisen rearrangement. Reaction temperature 0 °C, reaction time 16 hours. The major part of the BOC-protective group had been removed during the course of the workup. The crude amide in EtOH (10 mL) cooled to 0 °C. SOCl₂ (5 mL) was added and the mixture was stirred at 20 °C for 16 hours. Aq. NaHCO₃ (20 mL) was added, then, the mixture was extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄ and the solvent was evaporated to give the crude amide. The TBS group was reintroduced following the procedure as described for the silyl ether **45**: Imidazole (380 mg, 5.59 mmol), DMAP (10 mg), TBSCl (650 mg, 4.33 mmol), anhyd. CH₂Cl₂ (30 mL), reaction time 16 hours. The crude silyl ether and K_2CO_3 (3 g, 21.7 mmol) in anhyd. MeCN (20 mL) were treated with 2-bromopiperonyl bromide 77 (1 g, 3.4 mmol). The mixture was refluxed overnight. After cooling to 20 °C, H_2O (20 mL) was added and the aqueous layer was extracted with Et_2O (4×10 mL). After drying over MgSO₄, the solvent was removed and the crude benzyl ether was purified via column chromatography (n-hexane / ethyl acetate = 7:1) to give 900 mg (51%) of **118** as a yellow oil. $$[\alpha]_D^{20} = -13.5^{\circ} (c = 0.9, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 0.00$ (s, 6H, Si(C H_3)₂), 0.84 (s, 9H, SiC(C H_3)₃), 1.15 (2×t, 6H, J = 7.35 Hz, C H_3 CH₂O), 1.70-1.98 (m, 4H, C H_2 C H_2), 2.40 (ddd, 1H, J = 13.97 Hz, 7.36 Hz, 6.61 Hz, CH₂=CHCHH), 2.55 (ddd, 1H, J = 13.97 Hz, 7.35 Hz, 6.61 Hz, CH₂=CHCHH), 2.88 (dd, 2H, J = 13.97 Hz, 5.15 Hz, NC H_2 CH(OEt)₂), 3.17 (m, 1H, NCHHCH₂), 3.31-3.70 (m, 8H, NC \boldsymbol{H} HCH₂, NC \boldsymbol{H} CH₂CH=CH₂, (CH₃C \boldsymbol{H} ₂O)₂, C \boldsymbol{H} ₂O), 3.79 (d, 1H, J = 14.81 Hz, ArCH \boldsymbol{H}), 3.93 (d, 1H, J = 15.44 Hz, ArC \boldsymbol{H} H), 4.13 (m, 1H, NC \boldsymbol{H} CH₂O), 4.31 (t, 1H, J = 5.15 Hz, C \boldsymbol{H} (OEt)₂), 4.97 (d, 1H, J = 10.30 Hz, CH=CH \boldsymbol{H}), 5.05 (d, 1H, J = 16.91 Hz, CH=C \boldsymbol{H} H), 5.75 (dddd, 1H, J = 16.91 Hz, 10.30 Hz, 7.36 Hz, 6.61 Hz, CH=CH₂), 5.91 (s, 2H, OC \boldsymbol{H} ₂O), 6.90 (s, 1H, Ar-H), 7.05 (s, 1H, Ar-H) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = -5.4$ (Si(CH₃)₂), 15.2 (*C*H₃CH₂O), 18.0 (Si*C*(CH₃)₃), 24.3 (*C*H₂CH₂), 25.7 (SiC(*C*H₃)₃), 26.8 (CH₂*C*H₂), 31.7 (CH₂=CH*C*H₂), 46.8 (N*C*H₂CH₂), 54.5 (N*C*H₂CH(OEt)₂), 55.3 (CH*C*H₂O), 58.3 (N*C*HCH₂O), 61.9 (CH₂=CHCH₂*C*HN), 62.1 (Ar*C*H₂), 62.4, 62.6 (CH₃*C*H₂O), 101.4 (*C*H(OEt)₂), 103.0 (O*C*H₂O), 116.7 (*C*H₂=CH), 110.2, 112.2, 113.8,132.8 146.9, 147.2 (Ar), 135.4 (CH₂=*C*H), 170.7 (*C*ON) ppm IR (solution, CHCl₃): $1/\lambda = 3078$ (w), 3017 (s), 2977 (s), 2952 (s), 2930 (s), 2897 (s), 2885 (s), 2853 (s), 1632 (s, CON), 1504 (s), 1475 (s), 1440 (s), 1409 (m), 1375 (m), 1252 (s), 1233 (s), 1214 (s), 1106 (s), 1041 (s), 1001 (m), 965 (w), 936 (m) cm⁻¹ **MS** (EI, 80 eV, 160°C): m/z (%) = 640 (3.6, [M]⁺), 594 (4, [M-CH₂O₂]⁺), 537 (17, [M-C₅H₁₁O₂]⁺), 398 (83, [M-C₁₂H₂₄NO₂Si]⁺), 213 (100, [C₈H₆O₂Br]⁺), 103 (24, [C₅H₁₁O₂]⁺). **HRMS** (80 eV, 160 °C):m/z, [M]⁺calcd. for C₃₀H₄₉⁷⁹BrN₂O₆Si, 640.25432; found, 640.25744 (2R)-2-[N-(2-Bromo-4,5-methylenedioxyphenyl)methyl]-N-(2,2-diethoxyethyl)aminopent -4-enoic acid [(2S)-benzyloxymethylpyrrolidinyl)]amide 120 (2S)-2-[N-(2-Bromo-4,5-methylenedioxyphenyl)methyl]-N-(2,2-diethoxyethyl)aminopent -4-enoic acid [(2S)-benzyloxymethylpyrrolidinyl)]amide 122 The benzyl ether **105** (1 g, 1.98 mmol) or **121** (90 mg, 0.17 mmol) in dry EtOH (30 mL) was treated with SOCl₂ (0.5 mL) at 0 °C. The mixture was stirred at 20 °C for 16 hours. Aq. NaHCO₃ (20 mL) was added, then the mixture extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄ and the solvent was evaporated to give the crude amide. The crude silyl ether and K_2CO_3 (3 g, 21.7 mmol) in anhyd. MeCN (20 mL) was treated with 2-bromopiperonyl bromide 77 (1 g, 3.4 mmol). The mixture was refluxed overnight. After cooling to 20 °C, H_2O (20 mL) was added and the aqueous layer was extracted with Et_2O (4×10 mL). After drying over MgSO₄, the solvent was removed and the crude benzyl ether was purified via column chromatography (n-hexane / ethyl acetate = 7:1) to give 1.06 g (87%) of 120 or 90 mg (82%) of 122 as yellow oils. #### Data of **120**: $$[\alpha]_D^{20} = -39.3^{\circ} (c = 0.8, CHCl_3)$$ ¹H-NMR (500 MHz, CDCl₃): $\delta = 1.25$ (2×t, 6H, J = 7.35 Hz, (CH₃CH₂O)₂), 1.75-1.85 (m, 2H, CHHCHH), 1.85-2.02(m, 2H, CHHCHH), 2.32-2.45 (m, 1H, CHHCH=CH₂), 2.49-2.63 (m, 1H, CHHCH=CH₂), 2.72-2.82 (m, 1H, CHHCH(OEt)₂), 2.82-2.92 (m, 1H, CHHCH-(OEt)₂), 3.15 (m, 1H, NCHHCH₂), 3.23-3.70 (m, 8H, (CH₃CH₂O)₂, BnOCH₂, NCOCH, NCHHCH₂), 3.75-3.82 (d, 2H, J = 1.96 Hz, ArCH₂), 4.20-4.37 (m, 3H, CONCH, CH(OEt)₂, OCHHC₆H₅), 4.45 (s, 1H, OCHHC₆H₅), 4.89-5.01 (2×dd, 1H, J = 10.11 Hz, 0.95 Hz, CH=CHH), 4.90-5.11 (2×dd, 1H, J = 17.16 Hz, 1.53 Hz, CH=CHH), 5.60-5.69, 5.72-5.82 (2×dddd, 1H, J = 17.16 Hz, 10.11 Hz, 7.25 Hz, 6.96 Hz, CH=CH₂), 5.85-5.90 (2×s, 2H, OCH₂O), 6.89 (2×s, 1H, Ar-H), 7.05 (2×s, 1H, Ar-H), 7.18-7.32 (m, 5H, C₆H₅) ppm ¹³C NMR (125 MHz, CDCl₃): $\delta = 15.2$ ((*C*H₃CH₂O)₂), 18.3, 21.7 (*C*H₂CH₂), 24.0, 27.2 (CH₂CH₂), 28.5, 30.0 (*C*H₂CH=CH₂), 45.4, 46.7 (N*C*H₂CH₂), 54.0, 54.2 (*C*H₂CH(OEt)₂), 55.0, 55.1 (N*C*H₂Ar), 55.5, 56.4 (CON*C*H), 61.5, 61.6, 61.9, 62.0 ((CH₃*C*H₂O)₂), 62.1, 62.4 (CO*C*HN), 69.6, 71.6 (BnO*C*H₂), 72.9 (O*C*H₂C₆H₅), 101.4 (O*C*H₂O), 102.6, 102.9 (*C*H(OEt)₂), 112.1, 112.2, 113.7, 113.8, 137.8, 138.4, 146.9, 147.2 (Ar), 116.7, 116.9 (CH=*C*H₂), 127.3, 127.4, 127.5, 128.1, 128.2, 132.5 (*C*₆H₅), 135.5, 135.6 (*C*H=CH₂), 170.3, 170.5 (CON) ppm IR (solution, CHCl₃): $1/\lambda = 3064$ (w), 3018 (s), 2978 (s), 2887 (m), 1630 (s, CON), 1503 (m), 1476 (s), 1453 (m), 1409 (m), 1375 (m), 1328 (w), 1213 (s), 1107 (m), 1041 (s), 966 (w) cm⁻¹ MS (EI, 80 eV, 170° C): m/z (%) = 618 (3.4, [M]⁺), 616 (3, [M]⁺), 577 (8, [M-C₃H₅]⁺), 575 (8, [M-C₃H₅]⁺), 515 (31, [M-C₅H₁₁O₂]⁺), 513 (30, [M-C₅H₁₁O₂]⁺), 400 (85, [M-C₁₃H₁₆NO₂]⁺), 398 (83, [M-C₁₃H₁₆NO₂]⁺), 215 (99, [C₈H₆O₂Br]⁺), 213 (100, [C₈H₆O₂Br]⁺), 103 (16, [C₅H₁₁O₂]⁺), 91 (29, [C₇H₇]⁺). **HRMS** (80 eV, 170 °C):m/z, $[M]^+$ calcd. for $C_{31}H_{41}N_2O_6^{79}Br$, 616.21479; found, 616.21673 #### Data of 122: $[\alpha]_D^{20} = -21.2^{\circ} (c = 1.1, CHCl_3)$ ¹**H-NMR** (500 MHz, CDCl₃): $\delta = 1.10$ (2×t, 6H, J = 7.35 Hz, (C H_3 CH₂O)₂), 1.75-1.80 (m, 1H, CH₂CHH), 1.85-2.02(m, 3H, C H_2 CHH), 2.32-2.44 (ddd, 1H, J = 13.19 Hz, 6.84 Hz, 6.34 Hz, CHHCH=CH₂), 2.48-2.61 (ddd, 1H, J = 14.16 Hz, 7.82 Hz, 6.34 Hz, CHHCH=CH₂), 2.77-2.94 (dd, 2H, J = 5.37 Hz, 4.88 Hz, C H_2 CH(OEt)₂), 3.02 (m, 1H, NCHHCH₂), 3.26-3.68 (m, 8H, (CH₃C H_2 O)₂, BnOC H_2 , NCOC H_2 , NCOC H_2 , NCOC H_2 , 3.76 (d, 1H, J = 15.13 Hz, ArCH H_2), 3.93 (d, 1H, J = 15.14 Hz, ArC H_2 H), 4.19-4.28 (m, 1H, CONC H_2), 4.29 (dd, 1H, J = 5.37 Hz, 4.88 Hz, C H_2 (OEt)₂), 4.36-4.43(d, 1H, J = 12.21 Hz, OCH H_2 C6H₅), 4.43-4.51 (d, 1H, J = 12.21 Hz, OC H_2 HC6H₅), 4.89-4.91 (dd, 1H, J = 10.25 Hz, 1.95 Hz, CH=CH H_2), 4.90-5.11 (dd, 1H, J = 17.09 Hz, 1.46 Hz, CH=C H_2 H), 5.63-5.78 (dddd, 1H, J = 17.09 Hz, 10.25 Hz, 7.33 Hz, 6.83 Hz, CH=CH₂), 5.86-5.90 (2×s, 2H, OC H_2 O), 6.89 (s, 1H, Ar-H), 7.05 (s, 1H, Ar-H), 7.15-7.39 (m, 5H, C₆ H_3) ppm ¹³C NMR (125 MHz, CDCl₃): δ = 15.2 ((*C*H₃CH₂O)₂), 24.2 (*C*H₂CH₂), 27.4 (CH₂*C*H₂), 31.7 (*C*H₂CH=CH₂), 46.5 (N*C*H₂CH₂), 54.3 (*C*H₂CH(OEt)₂), 55.3 (N*C*H₂Ar), 56.4 (CON*C*H), 61.8, 61.9, 62.0, 62.1 ((CH₃*C*H₂O)₂), 62.5 (CO*C*HN), 69.8 (BnO*C*H₂), 73.0 (O*C*H₂C₆H₅), 101.4 (O*C*H₂O), 103.0 (*C*H(OEt)₂), 110.1, 112.1, 113.7, 138.4, 146.9, 147.1 (Ar), 116.7 (CH=*C*H₂), 127.2, 128.1, 128.2, 132.6 (*C*₆H₅), 135.1 (*C*H=CH₂), 170.7 (CON) ppm IR (solution, CHCl₃): $1/\lambda = 3062$ (w), 3026 (m), 3007 (s), 2978 (s), 2881 (s), 1632 (s, CON), 1503 (s), 1476 (s), 1453 (s), 1409 (m), 1375 (m), 1235 (s), 1107 (m), 1041 (s), 966 (w) cm⁻¹ **MS** (EI, 80 eV, 170°C): m/z (%) = 618 (4.1, [M]⁺), 616 (3.9, [M]⁺), 577 (6, [M-C₃H₅]⁺), 575 (7, [M-C₃H₅]⁺), 515 (33, [M-C₅H₁₁O₂]⁺), 513 (33, [M-C₅H₁₁O₂]⁺), 400 (86, [M-C₁₃H₁₆NO₂]⁺), 398 (87, [M-C₁₃H₁₆NO₂]⁺), 215 (96, [C₈H₆O₂Br]⁺), 213 (100, [C₈H₆O₂Br]⁺), 103 (16, [C₅H₁₁O₂]⁺), 91 (27, [C₇H₇]⁺). **HRMS** (80 eV, 170 °C):m/z, $[M]^+$ calcd. for $C_{31}H_{41}N_2O_6^{79}Br$, 616.21479; found, 616.21679 # (3*R*)-3-Allyl-*N*-(2,2-diethoxyethyl)-6,7-methylenedioxy-1,2,3,4-tetrahydro-4-isoquinolone 119 Under argon, *N*-piperonylprolinol silyl ether amide **118** (550 mg, 0.86 mmol) in anhyd. THF (20 mL) was cooled to -78 °C. BuLi (650 μ L, 1.04 mmol, 1.6 M in hexane) was injected dropwise. The temperature was raised to -40 °C and the mixture was stirred under these conditions for a further 3 hours (TLC-monitoring). Sat. aq. NH₄Cl (10 mL) was added to the mixture and the aqueous layer was extracted with Et₂O (4×10 mL), and the combined organic layers were dried over MgSO₄. After removal
of the solvent, the crude material was purified by column chromatography (n-hexane / ethyl acetate = 5:1) gave 210 mg (81%) of **119** as a yellow oil. Reaction with **120** (700 mg, 1.13 mmol) as described above for **118**. Yield: 290 mg (83%) of **119** as a yellow oil. $$[\alpha]_D^{20} = -6.1^{\circ} (c = 1.3, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 1.10$ (2×t, 6H, J = 7.35 Hz, (C H_3 CH₂O)₂), 2.45 (ddd, 2H, J = 13.97 Hz, 7.36 Hz, 6.62 Hz, CH₂=CHC H_2), 2.73 (dd, 2H, J = 13.97 Hz, 5.15 Hz, NC H_2 CH(OEt)₂), 3.35-3.43 (m, 3H, CH₃C H_2 O, NCHCO), 3.51-3.64 (m, 2H, CH₃C H_2 O), 3.86 (d, 1H, J = 16.91 Hz, ArCHH), 4.18 (d, 1H, J = 16.91 Hz, ArCHH), 4.48 (t, 1H, J = 5.15 Hz, CH(OEt)₂), 4.99 (d, 1H, J = 10.29 Hz, CH=CHH), 5.03 (dd, 1H, J = 16.92 Hz, 2.21 Hz, CH=CHH), 5.82 (dddd, 1H, J = 16.92 Hz, 10.30 Hz, 7.35 Hz, 6.62 Hz, CH=CH₂), 5.94 (s, 2H, OC H_2 O), 6.53 (s, 1H, Ar-H), 7.35 (s, 1H, Ar-H) ppm ¹³C NMR (68 MHz, CDCl₃): δ = 15.2 ((*C*H₃CH₂O)₂), 31.8 (CH₂=CH*C*H₂), 50.7 (N*C*H₂CH(OEt)₂), 56.2 (N*C*HCO), 62.1, 62.2 ((CH₃*C*H₂O)₂), 68.4 (N*C*H₂Ar), 101.5 (*C*H(OEt)₂), 102.4 (O*C*H₂O), 105.7, 125.0, 125.0, 137.7, 147.2, 152.2 (Ar), 116.7 (CH=*C*H₂), 135.0 (*C*H=CH₂), 195.1 (*C*O) ppm IR (solution, CHCl₃): $1/\lambda = 3017$ (s), 2978 (s), 2899 (s), 1732 (m), 1673 (s, CO), 1617 (m), 1504 (s), 1481 (s), 1376 (m), 1323 (m), 1263 (s), 1214 (s), 1124 (s), 1041 (s), 938 (m) cm⁻¹ MS (EI, 80 eV, 130°C): m/z (%) = 347 (0.23, [M]⁺), 306 (100, [M-C₃H₅]⁺), 103 (75, [C₅H₁₁O₂]⁺). **HRMS** (80 eV, 120°C): m/z $[M-C_3H_5]^+$ calcd. for $C_{16}H_{20}NO_5$, 306.13414; found, 306.13733 # (3*R*)-3-Allyl-(*N*-tert-butyloxycarbonyl)-6,7-methylenedioxy-1,2,3,4-tetrahydro-4-isoquinolone 124 Under argon, *N*-piperonylprolinol silyl ether amide **103** (500 mg, 0.80 mmol) in anhyd. THF (20 mL) was cooled to -78 °C. BuLi (575 μ L, 0.92 mmol, 1.6 M in hexane) was injected dropwise. The temperature was raised to -40 °C and the mixture was stirred under these conditions for a further 3 hours (TLC-monitoring). Sat. aq. NH₄Cl (10 mL) was added to the mixture and the aqueous layer was extracted with Et₂O (4×10 mL), and the combined organic layers were dried over MgSO₄. After removal of the solvent, the crude material was purified by column chromatography (n-hexane / ethyl acetate = 5:1) to give 110 mg (41.5%) of **124** as a yellow oil. $$[\alpha]_D^{20} = -4.7^{\circ} (c = 1.3, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 1.40$ (s, 9H, C(C H_3)₃), 2.30-2.55 (m, 2H, CH₂=CHC H_2), 4.12-4.35 (m, 1H, NCHCO), 4.65-5.25 (m, 4H, NC H_2 Ar, CH=C H_2), 5.62-5.87 (m, 1H, CH=CH₂), 5.98 (s, 2H, OC H_2 O), 6.60 (s, 1H, Ar-H), 7.35 (s, 1H, Ar-H) ppm ¹³C NMR (68 MHz, CDCl₃): δ = 28.2 (C(*C*H₃)₃), 34.4 (CH₂=CH*C*H₂), 40.8 (N*C*HCO), 60.1 (N*C*H₂Ar), 80.7 (*C*(CH₃)₃), 101.9 (O*C*H₂O), 105.3, 106.1, 147.6, 152.7, 154.2 (Ar), 118.3 (CH=*C*H₂), 133.5 (*C*H=CH₂), 192.8 (*C*O) ppm IR (solution, CHCl₃): $1/\lambda = 3019$ (s), 2978 (m), 2900 (w), 1681 (s, CO), 1619 (m), 1505 (m), 1482 (s), 1412 (s), 1369 (m), 1350 (w), 1316 (m), 1282 (m), 1245 (s), 1215 (s), 1162 (s), 1122 (w), 1041 (m) cm⁻¹ **MS** (EI, 80 eV, 110°C): m/z (%) = 331 (1.26, [M]⁺), 290 (17, [M-C₃H₅]⁺), 274 (1.59, [M-C₄H₉]⁺), 258 (3, [M-C₄H₉O]⁺), 234 (12, [M-C₇H₁₃]⁺), 190 (62, [M-C₈H₁₃O]⁺), 57 (100, [C₄H₉]⁺). **HRMS** (80 eV, 100°C): m/z $[M]^+$ calcd. for $C_{18}H_{21}NO_5$, 331.14197; found, 331.14422 # (3*R*,4*R*)-3-Allyl-*N*-(2,2-diethoxyethyl)-4-hydroxy-4-trimethylsilylmethyl-6,7-methylenedioxy-1,2,3,4-tetrahydroisoquinoline 133 Under argon, isoquinolone **119** (250 mg, 0.72 mmol,) in anhyd. THF (10 mL) was cooled to -78 °C. Trimethylsilyl methyl lithium **132** (870 μ L, 0.87 mmol, 1 M in heptane) was injected dropwise. The mixture was stirred at -78 °C for 3 hours (TLC-monitoring). Sat. aq. NH₄Cl (10 mL) was added to the mixture and the aqueous layer was extracted with Et₂O (4×10 mL), and the combined organic layers were dried over MgSO₄. After removal of the solvent, the crude material was purified by column chromatography (n-hexane / ethyl acetate = 7:1) to result 240 mg (76.6%) of **133** as a yellow oil. ¹**H-NMR** (500 MHz, CDCl₃): $\delta = 0.00$ (s, 9H, Si(C H_3)₃), 1.12 (2×t, 6H, J = 7.35 Hz, (C H_3 CH₂O)₂), 1.35 (d, 1H, J = 4.71 Hz, SiCHH), 1.63 (d, 1H, J = 5.44 Hz, SiCHH), 1.84 (s, 1H, OH), 2.10-2.19 (m, 1H, CHHCH=CH₂), 2.28-2.36 (m, 1H, CHHCH=CH₂), 2.68-2.75 (dd, 1H, J = 13.24 Hz, 5.15 Hz, NCHHCH), 2.78-2.85 (dd, 1H, J = 13.24 Hz, 5.15 Hz, NCHHCH), 2.99-3.03 (dd, 1H, J = 6.61 Hz, 5.89 Hz, NCH), 3.46-3.57 (m, 2H, CH₃C H_2 O), 3.60-3.70 (m, 3H, CH₃C H_2 O, NCHHAr), 3.82 (d, 1H, J = 5.44 Hz, NCHHAr), 4.57 (t, 1H, J = 5.15 Hz, CH(OEt)₂), 4.93-5.05 (m, 2H, CH=C H_2), 5.85 (2×s, 2H, OC H_2 O), 5.90-6.00 (m, 1H, CH=CH₂), 6.40 (s, 1H, Ar-H), 7.04 (s, 1H, Ar-H) ppm ¹³C NMR (125 MHz, CDCl₃): δ = 0.4, 0.6 (Si(*C*H₃)₃), 15.3 (*C*H₃CH₂O), 28.8 (*C*H₂CH=CH₂), 34.0 (Si*C*H₂), 51.2 (N*C*H₂Ar), 57.7 (N*C*H₂CH), 61.6, 62.1 (CH₃*C*H₂O), 67.6 (N*C*H), 76.7 (HO*C*), 100.6 (O*C*H₂O), 100.9 (*C*H(OEt)₂), 105.1, 106.8, 126.0, 136.5, 146.1, 146.4 (Ar), 115.7 (CH=*C*H₂), 138.7 (*C*H=CH₂) ppm NOE data of 79 # (3R)-3-Allyl-N-(2,2-diethoxyethyl)-4-methylene-6,7-methylenedioxy-1,2,3,4-tetrahydro-isoquinoline 134 $$(EtO)_2CH \qquad N \qquad O \qquad (EtO)_2CH \qquad N \qquad O \qquad O$$ $$133 \qquad 134$$ #### Method A: Under argon, NaH (14 mg, 0.47 mmol, in 80% mineral oil) in anhyd. THF (10 mL) was cooled to 0 °C. Isoquinoline **133** (170 mg, 0.39 mmol) in anhyd. THF (10 mL) was added. The mixture was stirred at 0 °C for 1 hour and then refluxed for a further 3 hours. The mixture was cooled to 0 °C again, sat. aq. NH₄Cl (10 mL) was added dropwise. The aqueous layer was extracted with Et₂O (4×10 mL), and the combined organic layers were dried over MgSO₄. After removal of the solvent, the crude material was purified by column chromatography (n-hexane / ethylacetate = 6:1) to give 110 mg (81.5%) of 134 as a yellow oil. #### Method B: Isoquinoline **133** (150 mg, 0.34 mmol) in dry CHCl₃ (10 mL) was treated with acetic acid (5 mL). The mixture was stirred at 20 °C for 3 hours (TLC-monitoring). Sat. aq. K_2CO_3 was added until the solution reached a pH of 10. The aqueous layer was extracted with CHCl₃ (4 × 10 mL), the combined organic layers were dried over Na_2SO_4 . The solvent was evaporated, and the crude material was purified by column chromatography (n-hexane / ethylacetate = 6:1) to give 100 mg (85%) of **134** as yellow oil. $$[\alpha]_D^{20} = +31.0^{\circ} (c = 1.7, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 1.20$ (2×t, 6H, J = 7.35 Hz, (C \textbf{H}_3 CH₂O)₂), 2.06-2.20 (m, 1H, CHHCH=CH₂), 2.30-2.42 (m, 1H, CHHCH=CH₂), 2.60-2.66 (dd, 2H, J = 5.15 Hz, 4.68 Hz, NC \textbf{H}_2 CH), 3.36-3.44 (dd, 1H, J = 8.09 Hz, 6.62 Hz, NCH), 3.44-3.68 (m, 4H, (CH₃C \textbf{H}_2 O)₂), 3.68-3.78 (d, 1H, J = 6.91 Hz, NCHHAr), 3.96-4.07 (d, 1H, J = 7.65 Hz, NCHHAr), 4.59 (t, 1H, J = 5.15 Hz, CH(OEt)₂), 4.79 (s, 1H, CHH=C), 4.91-5.03 (m, 2H, CH=C \textbf{H}_2), 5.35 (s, 1H, CHH=C), 5.70-5.90 (m, 1H, CH=CH₂), 5.85 (s, 2H, OC \textbf{H}_2 O), 6.43 (s, 1H, Ar-H), 7.04 (s, 1H, Ar-H) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = 15.3$ ((CH₃CH₂O)₂), 35.0 (*C*H₂CH=CH₂), 50.6 (N*C*H₂CH), 56.7 (N*C*H₂Ar), 61.9, 62.0 ((CH₃*C*H₂O)₂), 65.1 (N*C*H), 100.7 (O*C*H₂O), 102.6 (*C*H(OEt)₂), 103.8, 106.0, 125.6, 127.2, 146.6, 147.6 (Ar), 107.8 (*C*H₂=C), 115.8 (CH=*C*H₂), 136.1 (*C*H=CH₂), 140.1 (CH₂=*C*) ppm IR (solution, CHCl₃): $1/\lambda = 3019$ (s), 2977 (m), 2896 (m), 1504 (m), 1482 (s), 1421 (w), 1389 (w) cm⁻¹ **MS** (EI, 80 eV, 80-100°C): m/z (%) = 344 (0.1, $[M-H]^+$), 304 (100, $[M-C_3H_5]^+$), 300 (15, $[M-C_2H_5]^+$), 242 (32, $[M-C_5H_{11}O_2]^+$), 103 (24, $[C_5H_{11}O_2]^+$), 75 (25, $[C_3H_7O_2]^+$). **HRMS** (80 eV, 100°C): m/z [M-C₃H₅]⁺ calcd. for C₁₇H₂₂NO₄, 304.15488; found, 304.15643 # (3R,4R)-3,4-Diallyl-N-(2,2-diethoxyethyl)-4-hydroxy-6,7-methylenedioxy-1,2,3,4-tetrahydroisoquinoline 140 Under argon, allyltriphenyltin 136 (576 mg, 1.47 mmol) was dissolved in anhyd. THF (3 mL). Phenyllithium 135 (816 μ L, 1.47 mmol, 1.8 M in cyclohexane / ether) was added. The mixture was stirred at 20 °C for 30 minutes, during this time a white precipitate occurred and the colour of the mixture was changed from colourless to green. The so formed allyllithium 137 was then cooled to -78° C and isoquinolone 119 (390 mg, 1.27 mmol) was injected dropwise. The mixture was stirred at -60° C for a further 1 hour (TLC-monitoring). Methanol (10 mL) was added and the solid was filtered off. The solvent was evaporated, and the crude material was purified by column chromatography (n-hexane / ethalacetate = 6:1) to give 390 mg (88%) of 140 as a yellow oil. $$[\alpha]_D^{20} = +87.2^{\circ} (c = 0.4, CHCl_3)$$ ¹**H-NMR** (500 MHz, CDCl₃): $\delta = 1.12$ (2×t, 6H, J = 6.59 Hz, (C H_3 CH₂O)₂), 2.05 (s, 1H, OH), 2.09-2.16 (m, 1H, NCHCHH), 2.16-2.25 (m, 1H, NCHCHH), 2.40-2.46 (dd, 1H, J = 12.93 Hz, 6.98 Hz, CHHCH=CH₂), 2.64-2.70 (dd, 1H, J = 12.80 Hz, 4.78 Hz, NCHHCH), 2.77-2.82 (dd, 1H, J = 12.93 Hz, 6.98 Hz, CHHCH=CH₂), 2.98-3.02 (dd, 1H, J = 6.09 Hz, 5.43 Hz, NCH), 3.40-3.50 (m, 2H, (CH₃C H_2 O)₂), 3.56-3.65 (m, 3H, (CH₃C H_2 O)₂, NCHHAr), 3.78 (d, 1H, J = 14.74 Hz, NCHHAr), 4.50 (t, 1H, J = 5.04 Hz, CH(OEt)₂), 4.87-4.96 (m, 2H, NCHCH₂CH=C H_2), 5.05-5.12 (m, 2H, HOCCH₂CH=C H_2), 5.80 (s, 2H, OC H_2 O), 5.80-5.91 (m, 2H, 2×CH=CH₂), 6.38 (s, 1H, Ar-H), 6.92 (s, 1H, Ar-H) ppm ¹³C NMR (125 MHz, CDCl₃): δ = 15.1, 15.2 ((*C*H₃CH₂O)₂), 28.3 (NCH*C*H₂CH=CH₂), 47.4 (HOC*C*H₂CH=CH₂), 50.7 (N*C*H₂Ar), 58.4 (N*C*H₂CH(OEt)₂), 61.8, 61.9 ((CH₃CH₂O)₂), 64.6 (N*C*H), 75.3 (HO*C*Ar), 100.6 (O*C*H₂O), 102.0 (*C*H(OEt)₂), 105.0, 106.1, 126.9, 133.5, 146.2, 146.3 (Ar), 115.7 (NCHCH₂CH=*C*H₂), 119.0 (HOCCH₂CH=*C*H₂), 134.2 (HOCCH₂*C*H=CH₂), 138.7 (NCHCH₂*C*H=CH₂) ppm IR (solution, CHCl₃): $1/\lambda = 3019$ (s), 2977 (m), 2896
(w), 1637 (w), 1503 (w), 1483 (m), 1433 (w), 1390 (w), 1216 (s), 1127 (w), 1042 (m), 929 (w) cm⁻¹ **MS** (EI, 80 eV, 80-100°C): m/z (%) = 389 (0.4, [M]⁺), 348 (100, [M-C₃H₅]⁺), 307 (53, [M-C₆H₁₀]⁺), 245 (23, [M-C₈H₁₆O₂]⁺), 204 (25, [M-C₁₁H₂₁O₂]⁺), 103 (20, [C₅H₁₁O₂]⁺). **HRMS** (80 eV, 100°C): m/z $[M-C_3H_5]^+$ calcd. for $C_{19}H_{26}NO_5$, 348.18110; found, 348.18123 ## Z-(3R)-3-Allyl-4-allylidene-N-(2,2-diethoxyethyl)-6,7-methylenedioxy-1,2,3,4-tetrahydro isoquinoline 141 Under argon, allyl isoquinoline **140** (100 mg, 0.25 mmol) in anhyd. DMSO (10 mL) was treated with MsCl (35 mg, 0.30 mmol) and KOC(CH₃)₃ (34 mg, 0.30 mmol). The mixture was stirred at 20 °C for 2 days. H_2O (10 mL) and Et_2O (10 mL) were added, the aqueous layer was extracted with Et_2O (4×10 mL), and the combined organic layers were dried over MgSO₄. After removal of the solvent in vacuum, the crude material was purified by column chromatography (n-hexane / ethyl acetate = 5:1) to give 37 mg (38%) of **141** as a brown oil, which easily tended to decompose. ¹H-NMR (500 MHz, CDCl₃): $\delta = 1.13$ (2×t, 6H, J = 6.83 Hz, (CH₃CH₂O)₂), 2.01-2.15 (m, 1H, CHHCH=CH₂), 2.29-2.42 (m, 1H, CHHCH=CH₂), 2.51-2.57 (dd, 1H, J = 13.67 Hz, 4.88 Hz, NCHHCH), 2.58-2.65 (dd, 1H, J = 13.67 Hz, 5.38 Hz, NCHHCH), 3.38-3.50 (m, 2H, CH₃CH₂O), 3.53-3.65 (m, 3H, CH₃CH₂O, NCHHAr), 3.93-3.98 (dd, 1H, J = 7.81Hz, 7.32 Hz, NCH), 4.01 (d, 1H, J = 17.09 Hz, NCHHAr), 4.51-4.59 (dd, 1H, J = 5.37 Hz, 4.88 Hz, CH(OEt)₂), 4.88-4.98 (m, 2H, CH₂CH=CH₂), 5.06-5.10 (dd, 1H, J = 9.77 Hz, 1.95 Hz, C=CHCH=CHH), 5.21-5.26 (dd, 1H, J = 16.11 Hz, 1.95 Hz, C=CHCH=CH₂), 5.81 (s, 2H, OCH₂O), 6.38 (s, 1H, Ar-H), 6.45 (d, 1H, J = 11.23 Hz, C=CHCH=CH₂), 6.54-6.63 (ddd, 1H, J = 16.11 Hz, 11.23 Hz, 9.77 Hz, C=CHCH=CH₂), 6.99 (s, 1H, Ar-H) ppm ¹³C NMR (125 MHz, CDCl₃): δ = 15.2 ((*C*H₃CH₂O)₂), 34.7 (*C*H₂CH=CH₂), 49.9 (N*C*H₂Ar), 57.3 (N*C*H₂CH), 58.4 (N*C*H), 61.8, 62.0 ((CH₃*C*H₂O)₂), 100.7 (O*C*H₂O), 102.5 (*C*H(OEt)₂), 103.4, 106.0, 127.3, 133.9, 135.7, 146.7, 147.3 (Ar), 116.0 (CH₂CH=*C*H₂), 117.7 (C=CHCH=*C*H₂), 123.2 (C=*C*HCH=CH₂), 126.0 (*C*=CHCH=CH₂), 132.5 (C=CH*C*H=CH₂), 135.7 (CH₂*C*H=CH₂) ppm IR (solution, CHCl₃): $1/\lambda = 3076$ (m), 3018 (s), 2978 (s), 2933 (s), 2897 (s), 2775 (w) 1639 (m), 1616 (m), 1504 (s), 1481 (s), 1444 (m), 1375 (m), 1332 (m), 1231 (s), 1217 (s), 1175 (m), 1126 (m), 1042 (s), 987 (m) cm⁻¹ **MS** (EI, 80 eV, 100°C): m/z (%) = 330 (100, [M-C₃H₅]⁺), 284 (15, [M-C₄H₇O₂]⁺), 268 (16, [M-C₅H₁₁O₂]⁺), 212 (41, [M-C₉H₁₉O₂]⁺), 103 (13, [C₅H₁₁O₂]⁺), 75 (14, [C₃H₇O₂]⁺), 41 (12, [C₃H₅]⁺). ### (3R)-N-(2,2-Diethoxyethyl)-8,9-methylenedioxy-4,4a,5,6-tetrahydrophenanthridine 143 Under argon, allyl isoquinoline **142** (100 mg, 0.27 mmol) in anhyd. DMSO (10 mL) was treated with MsCl (35 mg, 0.30 mmol) and KOC(CH₃)₃ (34 mg, 0.30 mmol). The mixture was stirred at 20 °C for 2 days. H_2O (10 mL) and Et_2O (10 mL) were added, the aqueous layer was extracted with Et_2O (4×10 mL), and the combined organic layers were dried over MgSO₄. After removal of the solvent in vacuum, the crude material was purified by column chromatography (n-hexane / ethyl acetate = 1:1) to give 20 mg (21%) of **143** as a brown oil, which easily tended to decompose. $$[\alpha]_D^{20} = +162.9^{\circ} (c = 0.47, CHCl_3)$$ ¹**H-NMR** (500 MHz, CDCl₃): δ = 1.15 (2×t, 6H, J = 7.33 Hz, CH₃CH₂), 2.11-2.28 (m, 1H, CHHCHN), 2.44-2.57 (m,1H, CHHCHN), 2.61-2.69 (dd, 1H, J = 14.16 Hz, 5.37 Hz, NCHH CH(OEt)₂), 2.69-2.77 (dd, 1H, J = 14.16 Hz, 4.88 Hz, NCHHCH(OEt)₂), 3.40-3.50 (m, 2H, CH₃CH₂), 3.53-3.65 (m, 2H, CH₃CH₂), 3.65-3.78 (d, 1H, J = 15.63 Hz, NCHHAr), 3.83-3.92 (d, 1H, J = 15.13 Hz, NCH \boldsymbol{H} Ar), 4.52-4,59 (dd, 1H, J = 5.37 Hz, 4.88 Hz, C \boldsymbol{H} (OEt)₂), 5.82 (2×s, 2H, OC \boldsymbol{H} ₂O), 5.80-5.88 (m, 1H, CH₂C \boldsymbol{H} =CH), 5.95-6.02 (m, 1H, CH=C \boldsymbol{H} CH=C), 6.02-6.24 (m, 1H, CH=CHC \boldsymbol{H} =C), 6,43 (s, 1H, C \boldsymbol{H} CCH₂N), 6.97 (s, 1H, C \boldsymbol{H} CC=CH) ppm ¹³C NMR (125 MHz, CDCl₃): δ = 15.2 (*C*H₃CH₂), 28.2 (*C*H₂CHN), 53.6 (N*C*H₂CH(OEt)₂), 56.2 (N*C*H₂Ar), 59.9 (N*C*H), 61.8, 62.0 (CH₃*C*H₂), 100.6 (O*C*H₂O), 102.0 (*C*H(OEt)₂), 102.4, 106.7, 128.9, 132.9, 146.8, 146.9 (Ar), 115.7 (CH₂*C*H=CH), 124.7 (CH=CH*C*H=C), 125.7 (CH=*C*HCH=C), 126.3 (CH=*C*) ppm IR (solution, CHCl₃): $1/\lambda = 3019$ (s), 2977 (m), 2928 (m), 2897 (m), 2413 (w), 1602 (w), 1503 (m), 1481 (s), 1377 (w), 1215 (s), 1122 (m), 1043 (m), 939 (m) cm⁻¹ **MS** (EI, 80 eV, 100°C): m/z (%) = 343 (100, [M]⁺), 298 (8, [M-C₂H₅O]⁺), 240 (25, [M-C₅H₁₁O₂]⁺), 211 (30, [M-C₆H₁₄NO₂]⁺), 181 (60, [M-C₇H₁₄O₄]⁺), 103 (35, [C₅H₁₁O₂]⁺), 75 (25, [C₃H₇O₂]⁺). **HRMS** (80 eV, 100°C): m/z [M]⁺ calcd. for C₂₀H₂₅NO₄, 343.17835; found, 343.17654 ### (5R,9R)-3,4-Diallyl-2,4-(2-ethoxy-3-oxapropylidine)-6,7-methylenedioxy isoquinoline 144 ### Method A: Under argon, diallyl compound **140** (200 mg, 0.51 mmol) was dissolved in anhyd. CHCl₃ (30 mL) and SmCl₃ (5 mg) and acetyl chloride (140 μ L) was added at room temperature. The reaction mixture was stirred for 30 min. (TLC monitoring) at room temperature. NaOH (1 M) was added until pH reached 9-10 and the aqueous layer was extracted with CHCl₃ (4×10 mL). The combined organic layers were dried over MgSO₄ and the solvent was removed. The residue was purified by column chromatography (n-hexane / ethyl acetate = 3:1) to give 150 mg (85%) of **144** as a yellow oil. ### Method B: Diallyl compound **140** (200 mg, 0.51 mmol) was treated with aq. HCl (1M, 20 mL). The reaction mixture was heated to 50°C for 20 hours. NaOH (1 M) was added until pH reached 9-10 and the aqueous layer was extracted with CHCl₃ (4×10 mL). The combined organic layers were dried over MgSO₄ and the solvent was removed. The residue was purified by column chromatography (n-hexane / ethyl acetate = 3:1) to give 110 mg (62%) of **144** as a yellow oil. ¹**H-NMR** (500 MHz, CDCl₃): $\delta = 1.05$ (t, 3H, J = 7.33 Hz, C H_3 CH₂), 2.40-2.60 (m, 3H, CHHCAr, CHHCHN, NCHHCH), 2.70-2.92 (m, 4H, CH₂CHN, CHHCAr, CHHCHN, NCHHCH), 3.12-3.26 (m, 1H, CH₃CHH), 3.64-3.76 (m, 1H, CH₃CHH), 3.77-3.85 (d, 1H, J = 17.58 Hz, NCHHAr), 4.23-4.30 (m, 2H, NCH₂CH(OEt), NCHHAr), 4.91-5.15 (m, 4H, C H_2 =CHCH₂CHN, C H_2 =CHCH₂CAr), 5.31-5.47 (m, 1H, CH₂=CHCH₂CAr), 5.72-5.88 (m, 1H, CH₂=CHCH₂N), 5.91 (s, 2H, OC H_2 O), 6.42 (s, 1H, Ar-H), 6.92 (s, 1H, Ar-H) ppm ¹³C NMR (125 MHz, CDCl₃): $\delta = 15.0$ (*C*H₃CH₂O), 29.8 (NCH*C*H₂CH=CH₂), 38.3 (ArC*C*H₂CH=CH₂), 50.5 (N*C*H₂Ar), 57.4 (N*C*H₂CH), 57.8 (CH₃*C*H₂), 64.3 (N*C*H), 71.9 (CH₂*C*Ar), 94.3 (NCH₂*C*H(OEt)₂), 100.8 (O*C*H₂O), 104.6, 105.9, 131.6, 131.7, 146.8, 147.0 (Ar), 115.9 (NCHCH₂CH=*C*H₂), 118.5 (ArCCH₂CH=*C*H₂), 128.3 (ArCHCH₂*C*H=CH₂), 138.7 (NCHCH₂*C*H=CH₂) ppm IR (solution, CHCl₃): $1/\lambda = 3079$ (m), 3017 (s), 2979 (s), 2932 (m), 2896 (m), 1713 (w), 1641 (m), 1504 (s), 1486 (s), 1454 (m), 1440 (m), 1380 (m), 1332 (m), 1310 (m), 1266 (m), 1243 (s), 1215 (s), 1163 (m), 1129 (m), 1105 (m), 1041 (s), 939 (m) cm⁻¹ **MS** (EI, 80 eV, 80°C): m/z (%) = 343 (50, [M]⁺), 284 (27, [M-C₃H₇O]⁺), 269 (44, [M-C₃H₆O₂]⁺), 228 (77, [M-C₆H₁₁O₂]⁺), 202 (100, [M-C₉H₁₇O]⁺). ### 3.10 Syntheses of Acyclic \(\alpha\)-Amino Ketone Derivatives ### (R)-2-Azido-1-(3,4-methylendioxyphenyl)-4-penten-1-one 130 Under argon, 1-Bromo-3,4-methylendioxybenzene **126** (170 μ L, 1.42 mmol, d = 1.678, M = 201) in anhyd. THF (20 mL) was cooled to -78 °C. Butyl lithium (568 μ L, 1.42 mmol, 2.5 M in hexane) was injected dropwise. The mixture was stirred at -78 °C for 15 min. A solution of amide **98** (400 mg, 1.18 mmol) in 5 mL anhyd. THF was added slowly. The mixture was stirred at -78 °C for a further 30 min (TLC-monitoring). Sat. aq. NH₄Cl (10 mL) was added to the mixture and the aqueous layer was extracted with Et₂O (4×10 mL). The combined organic layers were dried over MgSO₄. After removal of the solvent, the crude material was purified by column chromatography (n-hexane / ethylacetate = 7:1) to give 250 mg (78%) of **130** as a yellow oil. $$[\alpha]_D^{20} = +1.2^{\circ} (c = 1.3, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): δ = 2.5-2.73 (m, 2H, CH₂=CHC H_2), 4.48-4.57 (dd, 1H, J = 8.30 Hz, 5.37 Hz, C H_2 N₃), 5.15-5.28 (m, 2H, C H_2 =CH), 5.75-5.91 (dddd, 1H, J = 17.09 Hz, 10.25 Hz, 6.83 Hz, 6.83 Hz, CH₂=CH), 6.07 (s, 2H, OC H_2 O), 6.85-6.90 (d, 1H, J = 7.81 Hz, Ar-H), 7.41 (d, 1H, J = 1.96 Hz, Ar-H), 7.49-7.55 (dd, 1H, J = 8.30 Hz, 1.95 Hz, Ar-H) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = 35.4$ (CH₂=CH*C*H₂), 61.7 (*C*HN₃), 101.9 (O*C*H₂O), 108.0, 108.1, 124.9, 129.1, 148.4, 152.4 (Ph), 118.9 (*C*H₂=CH), 132.3 (CH₂=*C*H), 193.7 (*C*O) ppm IR (KBr Film): $1/\lambda = 3079$ (w), 2980 (w), 2907 (m), 2785 (w), 2612 (w), 2500 (w), 2103 (s, N₃), 1680 (s, CO), 1641 (m), 1603 (s), 1504 (s), 1489 (s), 1445 (s), 1363 (m), 1323 (w), 1259 (s), 1141 (w), 1105 (m), 1039 (s), 994 (w) cm⁻¹ **MS** (EI, 80 eV, 70°C): m/z (%) = 245 (24, [M]⁺), 217 (8, [M-N₂]⁺), 149 (100, [M-C₄H₆N₃]⁺), 121 (85, [M-C₅H₆N₃O]⁺), 91 (13, [C₆H₃O]⁺). **HRMS** (80 eV, 70°C): m/z $[M]^+$ calcd. for $C_{12}H_{11}N_3O_3$, 245.08005; found, 245.08222. (*R*,*S*)-Ethyl *E*-3-(3,4-methylenedioxyphenyl)-4-azido-2,6-heptadienoate *E*-145 (*R*,*S*)-Ethyl *Z*-3-(3,4-methylenedioxyphenyl)-4-azido-2,6-heptadienoate *Z*-145 Under argon, triethyl phosphonoacetate (400 μ L, 2.0 mmol, d = 1.120, M = 224) in anhyd. THF (20 mL) was cooled to -78 °C. Lithium diisopropyl amide (1.10 mL, 2.0 mmol, 1.8 M in hexane) was injected. The mixture was stirred at -78 °C for 1 hour. A solution of azid ketone **130** (240 mg, 0.98 mmol) in 5 mL anhyd. THF was added slowly. The mixture was stirred at -20°C for a further 20 hours (TLC-monitoring). Sat. aq. NH₄Cl (20 mL) was added to the mixture. The aqueous layer was extracted with Et₂O (4×20 mL), and the combined organic layers were dried over MgSO₄. After removal of the solvent, the crude material was purified by
column chromatography (n-hexane / ethyl acetate = 7:1) to give 120 mg (38.8%) of *E*-**145** and 60 mg (19.4%) of *Z*-**145** as yellow oils. ### Data of *E***-145**: ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 1.25$ (t, 3H, J = 6.84 Hz, CH₂C \textbf{H}_3), 2.10-2.39 (m, 2H, C \textbf{H}_2 CH=CH₂), 4.10-4.22 (q, 2H, J = 6.84 Hz, C \textbf{H}_2 CH₃), 4.91-5.08 (m, 2H, CH=C \textbf{H}_2), 5.59-5.75 (dddd, 1H, J = 17.58 Hz, 10.75 Hz, 6.83 Hz, 6.35 Hz, CH=CH₂), 5.82-5.96 (m, 3H, OC \textbf{H}_2 O, N₃CH), 5.98 (s, 1H, C=CHCO₂Et), 6.75 (d, 1H, J = 7.81 Hz, Ar-H), 6.84-6.99 (m, 2H, Ar-H) ppm ¹³C NMR (68 MHz, CDCl₃): $\delta = 14.0$ (CH₂CH₃), 37.4 (CH₂CH=CH₂), 58.9 (N₃CH), 60.4 (CH₂CH₃), 101.2 (OCH₂O), 108.0, 108.3, 121.5, 121.9, 147.4, 148.1 (Ar), 117.9 (CH=CH₂), 128.0 (C=CHCO₂), 133.3 (CH=CH₂), 154.8 (C=CHCO₂), 165.5 (COO) ppm IR (KBr Film): $1/\lambda = 3077$ (w), 2980 (m), 2902 (m), 2777 (w), 2466 (w), 2098 (s, N₃), 1849 (w), 1712 (COO), 1604 (m), 1503 (s), 1488 (s), 1438 (m), 1371 (m), 1356 (w), 1322 (w), 1231 (s), 1179 (s), 1143 (m), 1107 (m), 1040 (s), 994 (w) cm⁻¹ **MS** (EI, 80 eV, 70°C): m/z (%) = 315 (15, [M]⁺), 287 (16, [M-N₂]⁺), 273 (49, [M-N₃]⁺), 258 (24, [M-C₂H₅N₂]⁺), 246 (100, [M-C₃H₅N₃]⁺), 214 (74, [M-C₃H₅N₂O₂]⁺), 200 (40, [M-C₃H₅N₃O₂]⁺). **HRMS** (80 eV, 70°C): m/z $[M]^+$ calcd. for $C_{16}H_{17}N_3O_4$, 315.12192; found, 315.12266. Data for *Z***-145**: ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 1.09$ (t, 3H, J = 7.33 Hz, CH₂C $\textbf{\textit{H}}_3$), 2.05-2.38 (m, 2H, C $\textbf{\textit{H}}_2$ CH=CH₂), 4.10-4.22 (q, 2H, J = 7.33 Hz, C $\textbf{\textit{H}}_2$ CH₃), 4.13-4.21 (ddd, 1H, J = 7.82 Hz, 5.37 Hz, 0.97 Hz, N₃C $\textbf{\textit{H}}$), 4.97-5.13 (m, 2H, CH=C $\textbf{\textit{H}}_2$), 5.60-5.78 (ddt, 1H, J = 17.09 Hz, 10.25 Hz, 6.83 Hz, C $\textbf{\textit{H}}$ =CH₂), 5.90 (s, 2H, OC $\textbf{\textit{H}}_2$ O), 6.01 (s, 1H, C=C $\textbf{\textit{H}}$ CO₂Et), 6.55-6.67 (m, 2H, Ar-H), 6.77 (d, 1H, J = 7.81 Hz, Ar-H) ppm ¹³C NMR (68 MHz, CDCl₃): δ = 13.8 (CH₂CH₃), 36.8 (CH₂CH=CH₂), 60.1 (CH₂CH₃), 67.1 (N₃CH), 101.0 (OCH₂O), 108.0, 108.3, 119.8, 121.2, 147.3, 147.6 (Ar), 118.6 (CH=CH₂), 129.9 (C=CHCO₂), 132.6 (CH=CH₂), 153.5 (C=CHCO₂), 165.2 (COO) ppm IR (KBr Film): $1/\lambda = 3078$ (w), 2981 (m), 2903 (m), 2100 (s, N₃), 1711 (s, COO), 1641 (m), 1605 (m), 1503 (s), 1488 (s), 1441 (s), 1372 (m), 1240 (s), 1179 (s), 1143 (m), 1107 (m), 1039 (s), 995 (w), 933 (m) cm⁻¹ **MS** (EI, 80 eV, 70°C): m/z (%) = 315 (12, [M]⁺), 273 (4, [M-N₃]⁺), 246 (15, [M-C₃H₅N₃]⁺), 214 (10, [M-C₃H₅N₂O₂]⁺), 149 (100, [M-C₈H₁₀N₂O₂]⁺), 121 (13, [C₇H₅O₂]⁺). **HRMS** (80 eV, 70°C): m/z $[M]^+$ calcd. for $C_{16}H_{17}N_3O_4$, 315.12192; found, 315.12233. ### (R,S)-2-(N-tert-Butyloxycarbonyl)amino-1-(3,4-methylendioxyphenyl)-4-penten-1-one 131 Ketone 130 (100 mg, 0.31 mmol) in THF (10 mL) and H_2O (0.5 mL) was treated with Ph_3P (100 mg, 0.38 mmol) and di-tert-butyl dicarbonate (80 μ L, 0.36 mmol, d = 1.02, M = 218). The reaction mixture was stirred at room temperature for 16 hours. H_2O (10 mL) was added and the aqueous layer was extracted with Et_2O (4×50 mL). The combined organic layers were dried over MgSO₄ and the solvent was removed. The residue was purified by column chromatography (n-hexane / ethyl acetate = 7:1) to give 100 mg (81%) carbamate **131** as a yellow oil. $$[\alpha]_D^{20} = 0^{\circ} (c = 0.6, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): δ = 1.40 (s, 9H, OC(C H_3)₃), 2.23-2.37 (ddd, 1H, J = 14.16 Hz, 6.84 Hz, 6.83 Hz, CHHCH=CH₂), 2.52-2.66 (m, 1H, CHHCH=CH₂), 4.91-5.04 (m, 2H, CH=C H_2), 5.15-5.25 (m, 1H, NCH), 5.38-5.46 (2×s, br, 1H, NH), 5.52-5.69 (dddd, 1H, J = 17.58 Hz, 10.25 Hz, 7.33 Hz, 6.83 Hz, CH=CH₂), 6.79-6.83 (d, 1H, J = 8.30 Hz, Ar-H), 7.70 (d, 1H, J = 1.96 Hz, Ar-H), 7.50-7.56 (dd, 1H, J = 8.31 Hz, 1.96 Hz, Ar-H) ppm ¹³C NMR (68 MHz, CDCl₃): δ = 28.1 (OC(*C*H₃)₃), 37.6 (*C*H₂CH=CH₂), 54.1 (N*C*H), 79.5 (O*C*(CH₃)₃), 101.8 (O*C*H₂O), 107.9, 108.1, 124.8, 129.2, 148.2, 152.1 (Ar), 118.6 (CH=*C*H₂), 132.1 (*C*H=CH₂), 155.1 (N*C*O), 196.3 (*C*O) ppm IR (KBr Film): $1/\lambda = 3420$ (br, m, NH), 3351 (br, m, NH), 3078 (w), 3004 (m), 2978 (s), 2929 (s), 1711 (s, CO), 1676 (s, NCO), 1641 (m), 1605 (m), 1504 (s), 1443 (s), 1391 (m), 1366 (s), 1330 (m), 1253 (s), 1169 (s), 1106 (m), 1039 (s), 994 (m), 932 (s) cm⁻¹ **MS** (EI, 80 eV, 140°C): m/z (%) = 319 (8.4, $[M]^+$), 278 (15, $[M-C_3H_5]^+$), 246 (11, $[M-C_4H_9O]^+$), 170 (59, $[M-C_8H_5O_3]^+$), 149 (100, $[C_8H_5O_3]^+$), 70 (45, $[C_4H_8N]^+$), 57 (48, $[C_4H_9]^+$). **HRMS** (80 eV, 70°C): m/z $[M]^+$ calcd. for $C_{17}H_{21}NO_5$, 319.14197; found: 319.14244. ## (2R)-2-[(N-tert-Butyloxycarbonyl)-N-(2,2-dimethoxyethyl)]amino-3,4-methylenedioxyphenyl-4-penten-1-one 129 Under argon, 1-Bromo-3,4-methylendioxybenzene **126** (110 μ L, 0.91 mmol, d = 1.678, M = 201) in anhyd. THF (20 mL) was cooled to -78 °C. Butyllithium (360 μ L, 0.90 mmol, 2.5 M in hexane) was injected dropwise. The mixture was stirred at -78 °C for 15 min. A solution of amide **102** (400 mg, 0.80 mmol) in 5 mL anhyd. THF was added slowly. The mixture was stirred at -78 °C for a further 30 min (TLC-monitoring). Sat. aq. NH₄Cl (10 mL) was added to the mixture and the aqueous layer was extracted with Et₂O (4×10 mL), and the combined organic layers were dried over MgSO₄. After removal of the solvent, the crude material was purified by column chromatography (n-hexane / ethyl acetate = 5:1) to give 220 mg (67.5%) of **129** as a yellow oil. $$[\alpha]_D^{20} = +110.7^{\circ} (c = 1.2, CHCl_3)$$ ¹**H-NMR** (270 MHz, CDCl₃): δ = 1.40 (s, 9H, OC(C H_3)₃), 2.44-2.59 (m, 2H, C H_2 CH=CH₂), 2.95, 3.06 (2×s, 3H, OC H_3), 2.98-3.17 (m, 2H, C H_2 CH(OCH₃)₂), 3.19, 3.27 (2×s, 3H, OC H_3), 4.20-4.27, 4.37-4.45 (2×dd, 1H, J = 4.88 Hz, 4.39 Hz, CH(OCH₃)₂), 4.92-4.98 (d, 1H, J = 11.23 Hz, CH=CHH), 5.01-5.09 (d, 1H, J = 17.09 Hz, CH=CHH), 5.43-5.52 (dd, 1H, J = 7.82 Hz, 6.83 Hz, CHCON), 5.61-5.84 (m, 1H, CH=CH₂), 5.94 (2×s, 2H, OC H_2 O), 6.71-6.79 (d, 1H, J = 8.30, Ar-H), 7.39-7.45 (d, 1H, J = 5.86 Hz, Ar-H), 7.50-7.67 (dd, 1H, J = 24.90 Hz, 8.30 Hz, Ar-H) ppm ¹³C NMR (68 MHz, CDCl₃): δ = 28.1 (OC(*C*H₃)₃), 32.8, 33.4 (*C*H₂CH=CH₂), 46.2, 48.0 (*C*H₂CH(OCH₃)₂), 54.3, 54.5, 54.6 (O*C*H₃), 58.2, 61.1 (*C*HCON), 80.6, 81.0 (O*C*(CH₃)₃), 101.5 (O*C*H₂O), 103.1, 103.5 (*C*H(OCH₃)₂), 107.6, 108.1, 124.1, 124.6, 130.7, 147.8, 151.4 (Ar), 117.3 (CH=*C*H₂), 134.2, 134.5 (*C*H=CH₂), 154.8, 155.4 (N*C*OO), 194.6, 195.3 (Ar*C*O) ppm IR (KBr, CHCl₃): $1/\lambda = 3076$ (w), 2977 (m), 2932 (m), 1685 (s, CO, NCO), 1642 (w), 1605 (w), 1505 (m), 1489 (m), 1447 (s), 1402 (m), 1367 (m), 1305 (w), 1252 (s), 1166 (m), 1123 (m), 1075 (m), 1039 (m) cm⁻¹ **MS** (EI, 80 eV, 110°C): m/z (%) = 407 (2, [M]⁺), 334 (4, [M-C₄H₉O]⁺), 276 (9, [M-C₆H₁₁O₃]⁺), 258 (78, [M-C₈H₅O₃]⁺), 202 (28, [M-C₁₂H₁₃O₃]⁺), 158 (100, [M-C₁₃H₁₃O₅]⁺). **HRMS** (80 eV, 110°C): m/z [M]⁺ calcd. for $C_{21}H_{29}NO_7$, 407.19440; found, 407.19533. # (4*R*,5*R*)-4-(3,4-Methylenedioxyphenyl)-5-*N*-(*tert*-butyloxycarbonyl)-*N*-(2,2-dimethoxyethyl)amino-1,7-octadien-4-ol 146 Under argon, allyltriphenyltin **136** (210 mg, 0.53 mmol) was dissolved in anhyd. THF (10 mL). Phenyllithium **135** (298 μ L, 0.53 mmol, 1.8 M in cyclohexane / ether) was added. The mixture was stirred at 20 °C for 30 minutes, during this time a white precipitate occurred and the colour of the mixture was changed from colourless to green. The so formed allyllithium 137 was then cooled to -78 °C and ketone 129 (200 mg, 0.49 mmol) was injected dropwise. The mixture was stirred at -60 °C for a further 1 hour (TLC-monitoring). Methanol (10 mL) was added and the solid was filtered off. The solvent was evaporated to give diallyl 146 as a yellow oil, which was used without further purification. ¹**H-NMR** (270 MHz, CDCl₃): $\delta = 1.40$ (2×s. 9H, OC(C H_3)₃), 2.09 (m, 1H, OH), 2.25-2.90 (m, 4H, CHC H_2 CH=CH₂, CC H_2 CH=CH₂), 2.90-3.37 (m, 8H, NC H_2 , CH(OC H_3)₂), 3.95-4.12 (2×m, 1H, CH(OCH₃)₃), 4.21-4.35, 4.50-4.61 (2×m, 1H, NCH), 4.76-5.11 (m, 4H, CHCH₂CH=C H_2), CCH₂CH=C H_2), 5.73-5.98 (m, 2H, CHCH₂CH=CH₂, CCH₂CH=CH₂), 6.81 (s, 2H, OC H_2 O), 6.60-7.01 (m, 3H, Ar-H) ppm ¹³C NMR (68 MHz, CDCl₃): δ = 28.0 (OC(*C*H₃)₃), 30.9, 32.0 (CH*C*H₂CH=CH₂), 44.0, 45.7 (C*C*H₂CH=CH₂), 46.7, 46.9 (*C*H₂CH(OCH₃)₂), 53.8, 54.5 (O*C*H₃), 58.5, 60.4 (N*C*H), 78.8, 79.0 (O*C*(CH₃)₃), 79.7 (Ar*C*), 100.6 (O*C*H₂O), 104.0, 104.2 (*C*H(OCH₃)₂), 106.7, 106.9, 115.9, 116.9, 128.4, 128.9, 136.6, 137.0, 138.8, 139.1, 146.8, 147.3 (Ar), 117.2, 117.8 (CHCH₂CH=*C*H₂), 118.9, 119.1 (CCH₂CH=*C*H₂), 133.8, 134.9 (CHCH₂*C*H=CH₂), 136.6, 137.0 (CCH₂*C*H=CH₂), 156.3, 157.4 (N*C*O) ppm ### (4*R*,5*R*)-3-(2,2-Dimethoxyethyl)-4,5-diallyl-5-(3,4-methylenedioxyphenyl)-2-oxazolidinone 147 Under argon, the crude diallyl **146** in anhyd. THF (20 mL) was treated with KHMDS (1.0 mL, 0.5 M in toluene) at 0°C. The reaction mixture was stirred at 0°C for 30 min (TLC control). Sat. aq. NH₄Cl (20 mL) was added to the mixture. The aqueous layer was extracted with Et₂O (4×10 mL). The combined organic layers were dried over MgSO₄. After removal of the solvent, the crude material was purified by column chromatography (n-hexane / ethyl acetate = 5:1) to give 150 mg (81.4% from ketone **129**) of **147** as a pale yellow oil. $$[\alpha]_D^{20} = +10.0 \circ (c = 2.4, CHCl_3)$$ ¹**H-NMR** (500 MHz, CDCl₃): $\delta = 2.46-2.57$ (m, 2H, CHC H_2 CH=CH₂), 2.57-2.62 (dd, 1H, J = 14.43 Hz, 7.42 Hz, ArCCHH), 2.75-2.81 (dd, 1H, J = 14.44 Hz, 6.32 Hz, ArCCHH), 2.92-2.98 (dd, 1H, J = 14.71 Hz, 7.01 Hz, NCHHCH(OCH₃)₂), 3.01 (s, 3H, OC H_3), 3.54-3.59 (dd, 1H, J = 14.71 Hz, 3.99 Hz, NCHHCH(OCH₃)₂), 3.91-3.96 (dd, 1H, J = 6.46 Hz, 5.50 Hz, NCH), 4.10-4.14 (dd, 1H, J = 7.01 Hz, 3.99 Hz, CH(OCH₃)₂), 5.43-5.53 (dddd, 1H, J = 17.58 Hz, 10.26 Hz, 7.32 Hz, 6.35 Hz, ArCCH₂CH=CH₂), 5.73-5.82 (dddd, 1H, J = 17.09 Hz,10.17 Hz, 7.02 Hz,
6.88 Hz, NCHCH₂CH=CH₂), 5.90 (s, 2H, OC H_2 O), 6.71-6.74 (d, 1H, J = 6.11 Hz, Ar-H), 6.75-6.80 (m, 2H, Ar-H) ppm ¹³C NMR (125 MHz, CDCl₃): δ = 33.0 (CH*C*H₂CH=CH₂), 39.6 (ArC*C*H₂CH=CH₂), 44.0 (*C*H₂CH(OCH₃)₂), 54.3, 55.1 (CH(O*C*H₃)₂), 65.9 (N*C*H), 84.9 (NCOO*C*), 101.0 (O*C*H₂O), 103.1 (*C*H(OCH₃)₂), 105.6, 107.9, 118.1, 136.9, 146.7, 147.7 (Ar), 118.8, 118.9 (CH=*C*H₂), 131.3 (ArCCH₂*C*H=CH₂), 133.2 (CHCH₂*C*H=CH₂), 156.7 (N*C*O) ppm **IR** (KBr, Film): $1/\lambda = 3086$ (w), 3052 (w), 2992 (m), 2948 (s), 2898 (s), 2835 (m), 1732 (br, s, NCOO), 1635 (w), 1612 (m), 1507 (s), 1490 (s), 1438 (s), 1420 (s), 1392 (m), 1383 (m), 1357 (m), 1347 (m), 1316 (m), 1296 (m), 1283 (m), 1251 (s), 1210 (m), 1192 (m), 1178 (m), 1145 (m), 1121 (s), 1071 (s), 1035 (s), 1020 (s), 999 (m), 972 (m), 964 (m), 928 (m) cm⁻¹ **MS** (EI, 80 eV, 110°C): m/z (%) = 375 (13.9, [M]⁺), 344 (4, [M-CH₃O]⁺), 334 (14, [M-C₃H₅]⁺), 315 (10, [M-C₂H₄O₂]⁺), 293 (3, [M-C₆H₁₀]⁺), 274 (4, [M-C₅H₉O₂]⁺), 258 (23, [M-C₅H₉O₃]⁺), 228 (7, [M-C₆H₁₁O₄]⁺), 75 (100, C₃H₇O₂). **HRMS** (80 eV, 110°C): m/z $[M]^+$ calcd. for $C_{20}H_{25}O_6N$, 375.16818; found, 375.16911. relevant NOE's of 147 from NOESY # (4R,5R)-4-(3,4-Methylenedioxyphenyl)-5-(4-methoxy-2-oxazolidinonyl)-1,7-octadien -4-ol 150 ### Method A: Diallyl **146** (150 mg, 0.33 mmol) in DMSO (30 mL) and H_2O (1 mL) was heated to 80-90°C for 20 hours. The mixture was then cooled to room temperature and H_2O (10 mL) was added. The aqueous layer was extracted with Et_2O (4×10 mL), and the combined organic layers were dried over MgSO₄. After removal of the solvent, the crude material was purified by column chromatography (n-hexane / ethyl acetate = 2:1) to give 90 mg (74% from ketone **129**) of **150** as a yellow oil. ### Method B: Under argon, the crude diallyl **146** (150 mg, 0.33 mmol) in anhyd. CHCl₃ (20 mL) was treated with cat. SmCl₃ and acetyl chloride (90 μ L) at room temperature. The reaction mixture was stirred for 30 min (TLC monitoring). Sat. aq. NaHCO₃ (20 mL) was added until pH was reached to 9-10 and the aqueous layer was extracted with CHCl₃ (4×10 mL). The combined organic layers were dried over MgSO₄ and the solvent was removed. The residue was purified by column chromatography (n-hexane / ethyl acetate = 2:1) to give 80 mg (66% from ketone **129**) of **150** as a yellow oil. #### Method C: Diallyl **146** (150 mg, 0.33 mmol) in anhyd. CH_3OH (30 mL) at 0°C was treated with $SOCl_2$ (1 mL). The mixture was stirred at 0°C for 3 hours. After removal of the solvent, Na_2CO_3 (10 mL) was added. The aqueous layer was extracted with Et_2O (4×10 mL), and the combined organic layers were dried over $MgSO_4$. After removal of the solvent, the crude material was purified by column chromatography (n-hexane / ethyl acetate = 2:1) to give 70 mg (58% from ketone **129**) of **150** as a yellow oil. Data obtained from mixture, separated peaks of diastereomer 1: ¹**H-NMR** (500 MHz, CDCl₃): δ = 2.39-2.70 (m, 4H, 2×C H_2 CH=CH₂), 3.02-3.08 (dd, 1H, J = 10.59 Hz, 3.02 Hz, NCHH), 3.29 (s, 3H, OC H_3), 3.49-3.54 (dd, 1H, J = 10.59 Hz, 6.60 Hz, NCHH), 3.80-3.90 (m, 1H, NCH), 4.93-5.09 (m, 5H, 2×CH=C H_2 , CHOCH₃), 5.22-5.30 (m, 1H, ArCCH₂CH=CH₂), 5.60-5.71 (m, 1H, NCHCH₂CH=CH₂), 5.82 (2×s, 2H, OC H_2 O), 6.62-6.67 (d, 1H, J = 1.46 Hz, Ar-H), 6.73-6.78 (dd, 1H, J = 8.31 Hz, 1.96 Hz, Ar-H), 6.80-6.84 (d, 1H, J = 7.81 Hz, Ar-H) ppm ¹³C NMR (125 MHz, CDCl₃): δ = 30.4 (NCH*C*H₂), 44.4 (ArC*C*H₂CH=CH₂), 55.4 (O*C*H₃), 61.0 (N*C*H), 78.4 (Ar*C*), 98.4 (O*C*HOCH₃), 100.8 (O*C*H₂O), 106.8, 107.7, 120.1, 137.6, 146.4, 147.7 (Ar), 118.2 (CH=*C*H₂), 118.9 (CH=*C*H₂), 132.6 (*C*H=CH₂), 134.5 (*C*H=CH₂), 157.5 (*C*ON) ppm Data obtained from mixture, separated peaks of diastereomer 2: ¹**H-NMR** (500 MHz, CDCl₃): δ = 2.39-2.70 (m, 4H, 2×C H_2 CH=CH₂), 3.22-3.28 (dd, 1H, J = 10.17 Hz, 2.20 Hz, NCHH), 3.22-3.28 (m, 4H, OC H_3 , NCHH), 3.90-4.00 (m, 1H, NCH), 4.93-5.09 (m, 5H, 2×CH=C H_2 , CHOCH₃), 5.30-5.39 (m, 1H, ArCCH₂CH=CH₂), 5.60-5.71 (m, 1H, NCHCH₂CH=CH₂), 5.82 (2×s, 2H, OC H_2 O), 6.62-6.67 (d, 1H, J = 1.46 Hz, Ar-H), 6.73-6.78 (dd, 1H, J = 8.31 Hz, 1.96 Hz, Ar-H), 6.80-6.84 (d, 1H, J = 7.81 Hz, Ar-H) ppm ¹³C NMR (125 MHz, CDCl₃): δ = 30.4 (NCH*C*H₂), 45.0 (ArC*C*H₂CH=CH₂), 55.7 (O*C*H₃), 61.5 (N*C*H), 78.3 (Ar*C*), 98.6 (O*C*HOCH₃), 100.8 (O*C*H₂O), 106.1, 107.8, 120.3, 137.3, 146.5, 147.6 (Ar), 117.6 (CH=*C*H₂), 118.3 (CH=*C*H₂), 132.3 (*C*H=CH₂), 134.0 (*C*H=CH₂), 156.8 (CON) ppm #### Data of diastereomers 1 and 2: IR (KBr, Film): $1/\lambda = 3423$ (br, m, OH), 3077 (m), 3005 (m), 2977 (m), 2957 (m), 2938 (m), 2843 (w), 2777 (w), 2249 (w), 1734 (s, CON), 1640 (m), 1610 (w), 1504 (s), 1488 (s), 1433 (s), 1377 (s), 1335 (m), 1238 (s), 1183 (m), 1125 (m), 1074 (m), 1040 (s), 1017 (m), 971 (m), 915 (m) cm⁻¹ **MS** (EI, 80 eV, 150°C): m/z (%) = 361 (8, [M]⁺), 343 (1, [M-H₂O]⁺), 330 (2, [M-CH₃O]⁺), 288 (2, [M-C₃H₅O₂]⁺), 191 (47, [M-C₈H₁₀O₄]⁺), 149 (100, [C₈H₅O₃]⁺), 121 (6, [C₇H₅O₂]⁺). **HRMS** (80 eV, 150°C): m/z $[M]^+$ calcd. for $C_{19}H_{23}NO_6$, 361.15253; found, 361.15366. ### 3.11 Ring-Closing Olefin Metathesis ## (4a*R*,10b*R*)-*N*-(2,2-Diethoxyethyl)-8,9-methylenedioxy-1,4,4a,5,6,10b-hexahydro phenanthridine 142 Diallyl **140** (100 mg, 0.25 mmol) in CH_2Cl_2 (50 mL) was treated with Benzylidene-bis(tricyclohexylphosphine) dichlororuthenium **40** (10 mg, 0.012 mmol). The mixture was refluxed at 60°C. Another portion of Grubbs catalyst **40** (10 mg, 0.012 mmol) was added every 24 hours. After 96 hours, the reaction mixture was stirred at room temperature for 2 hours. The mixture was filtered over silica gel and the solvent wae evaporated. The residue was purified by HPLC (ethyl acetate / n-hexane = 1:1, Nucleosil 50-5, 32×110 mm, flow 64 mL/min, retention time: 5.0 min) to give 60 mg (66%) of **142** as a brown oil. $$[\alpha]_D^{20} = -144.5^{\circ} (c = 1.6, CHCl_3)$$ ¹**H-NMR** (500 MHz, CDCl₃): δ = 1.15 (2×t, 6H, J = 7.01 Hz, CH₃CH₂), 2.10-2.20 (m, 2H, CHHCHN, CHHCOH), 2.34-2.42 (m, 1H, CHHCHN), 2.51-2.57 (dd, 1H, J = 13.88 Hz, 4.81 Hz, NCHHCH(OEt)₂), 2.67-2.73 (dd, 1H, J = 10.76 Hz, 5.50 Hz, NCH), 2.78-2.85 (m, 1H, CHHCOH), 2.86 (s, br, 1H, OH), 3.02-3.08 (dd, 1H, J = 13.88 Hz, 5.67 Hz, NCHHCH-(OEt)₂), 3.48-3.56 (m, 2H, CH₃CH₂), 3.56-3.61 (d, 1H, J = 14.85 Hz, NCHHAr), 3.62-3.74 (m, 2H, CH₃CH₂), 3.91-3.97 (d, 1H, J = 14.99 Hz, NCHHAr), 4.62-4.66 (dd, 1H, J = 5.49 Hz, 5.09 Hz, CH(OEt)₂), 5.63-5.68 (m, 1H, CH=CHCH₂COH), 5.69-5.75 (m, 1H, CH=CH-CHN), 5.88 (d, 2H, J = 1.37 Hz, OCH₂O), 6.39 (s, 1H, Ar-H), 6.89 (s, 1H, Ar-H) ppm ¹³C NMR (125 MHz, CDCl₃): δ = 15.31, 15.32 (*C*H₃CH₂), 26.4 (*C*H₂CHN), 35.8 (*C*H₂COH), 53.5 (N*C*H₂CH(OEt)₂), 56.3 (N*C*H₂Ar), 61.4 (CH₃*C*H₂), 61.6 (CH₂*C*HN), 62.4 (CH₃*C*H₂), 68.1 (*C*OH), 100.7 (O*C*H₂O), 101.4 (*C*H(OEt)₂), 105.3, 105.5, 127.4, 133.7, 146.5, 146.6 (Ar), 123.5 (CH=*C*HCH₂COH), 124.2 (CH=*C*HCH₂CHN) ppm IR (solution, CHCl₃): $1/\lambda = 3320$ (w, OH), 3019 (s), 2978 (m), 2897 (m), 1605 (w), 1504 (m), 1486 (m), 1389 (w), 1294 (w), 1215 (s), 1126 (m), 1043 (m), 909 (s) cm⁻¹ **MS** (EI, 80 eV, 120°C): m/z (%) = 361 (1.37, [M]⁺), 343 (9, [M-H₂O]⁺), 316 (6, [M-C₂H₅O]⁺), 258 (100, [M-C₅H₁₁O₂]⁺), 103 (7, [C₅H₁₁O₂]⁺). **HRMS** (80 eV, 100°C): m/z [M]⁺ calcd. for $C_{20}H_{27}NO_5$, 361.18892; found, 361.18744. [M-H₂O]⁺ calcd. for $C_{20}H_{25}NO_4$, 343.17835; found, 343.17654. [M-C₂H₅O]⁺ calcd. for $C_{18}H_{22}NO_4$, 316.15488; found, 316.15622. [M-C₅H₁₁O₂]⁺ calcd. for $C_{15}H_{16}NO_3$, 258.11301; found, 258.11633. # (4a*R*,10b*R*)-4,10b-(2-Ethoxy-3-oxapropylidine)-8,9-methylenedioxy-1,4,4a,5,6,10b-hexahydro phenanthridine 161 Diallyl **144** (120 mg, 0.35 mmol) in CH₂Cl₂ (80 mL) was treated with Benzylidene-bis(tricyclohexylphosphine) dichlororuthenium **40** (14 mg, 0.017 mmol), the mixture was refluxed at 60°C. Another portion of Grubb's Carbene **40** (14 mg, 0.017 mmol) was added every 24 hours. After 96 hours, the reaction mixture was stirred at room temperature for 2 hours. The mixture was filtered over silica gel and the solvent was evaporated. The residue was purified by HPLC (ethyl acetate / n-hexane = 3:1, Nucleosil 50-5, 32×110 mm, flow 64 mL/min, retention time: 5.0 min) to give 75 mg (68%) of **161** as a brown crystal with m.p. = 138-139°C. $$[\alpha]_D^{20} = -49.1^{\circ} (c = 1.3, CHCl_3)$$ ¹**H-NMR** (500 MHz, CDCl₃): $\delta = 1.02$ (t, 3H, J = 7.15 Hz, C H_3 CH₂), 2.11-2.19 (m, 1H, CH=CHCHHCHN), 2.36-2.44 (m, 1H, CH=CHCHHCAr), 2.59-2.65 (dd, 1H, J = 14.57 Hz, 3.57 Hz, NCHHCHOEt), 2.75-2.84 (m, 2H, CH=CHCHHCHN, CH=CHCHHCAr), 2.94-2.99 (dd, 1H, J = 10.86 Hz, 6.19 Hz, NCHCH₂), 3.09-3.15 (dd, 1H, J = 14.57 Hz, 10.03 Hz, NCHHCHOEt), 3.18-3.25 (m, 1H, CH₃CHH), 3.71-3.77 (m, 1H, CH₃CHH), 3.81-3.87 (d, 1H, J = 17.05 Hz, NCHHAr), 4.24-4.35 (d, 1H, J = 17.05 Hz, NCHHAr), 4.33-4.37 (dd, 1H, J = 10.05 Hz, 3.71 Hz, EtOCHO), 5.50-5.60 (m, 1H, CH=CHCH₂CAr), 5.65-5.75 (m, 1H, CH=CHCH₂CHN), 5.90 (s, 2H, OCH₂O), 6.42 (s, 1H, Ar), 6.85 (s, 1H, Ar) ppm ¹³C NMR (125 MHz, CDCl₃): δ = 15.0 (*C*H₃CH₂), 24.7 (NCH*C*H₂), 36.3 (CH=CH*C*H₂CAr), 51.1 (N*C*H₂CH), 54.6 (N*C*HCH₂), 57.7 (N*C*H₂Ar), 64.3 (CH₃*C*H₂), 67.4 (O*C*Ar), 95.2 (NCH₂*C*HOEt), 100.8 (O*C*H₂O), 104.4, 105.4, 130.3, 131.0, 146.9, 147.0 (Ar), 122.9 (CH=*C*HCH₂CAr), 124.7 (CH=*C*HCH₂CHN) ppm IR (solution, CHCl₃): $1/\lambda = 3016$ (s), 2978 (s), 2928 (s), 2896 (s), 2775 (w), 2654 (w), 1665 (w), 1622 (w), 1504 (s), 1483 (s), 1450 (m), 1424 (m), 1380 (m), 1349 (m), 1333 (m), 1307 (m), 1260 (m), 1237 (s), 1214 (s), 1185 (m), 1161 (m), 1141 (m), 1111 (s), 1040 (s), 991 (w), 970 (w) cm⁻¹ **MS** (EI, 80 eV, 110°C): m/z (%) = 315 (7, $[M]^+$), 270 (1, $[M-C_2H_5O]^+$), 241 (51, $[M-C_3H_6O_2]^+$), 226 (21, $[M-C_4H_9O_2]^+$), 212 (100, $[M-C_4H_9NO_2]^+$). **HRMS** (80 eV, 100°C): m/z $[M]^+$ calcd. for $C_{18}H_{21}NO_4$, 315.14705; found, 315.14932 ## (3a*R*,7a*R*)-
3-(2,2-Dimethoxyethyl)-7a-(3,4-methylenedioxyphenyl)-3a,4,7,7a-tetrahydrobenzo oxazol-2-one 162 Diallyl **147** (100 mg, 0.27 mmol) in CH_2Cl_2 (80 mL) was treated with Benzylidene-bis(tricyclohexylphosphine) dichlororuthenium **40** (11 mg, 0.013 mmol). The reaction mixture was refluxed at 60°C for 3 hours (TLC control). After removal of the solvent, the residue was purified by column chromatograph (n-hexane / ethyl acetate = 3:1) to give 80 mg (86%) **162** as a pale yellow oil. $$[\alpha]_D^{20} = -37.3^{\circ} (c = 1.7, CHCl_3)$$ ¹**H-NMR** (500 MHz, CDCl₃): $\delta = 2.17-2.25$ (m, 1H, NCHC*H*H), 2.36-2.43 (m, 1H, ArCC*H*H), 2.48-2.53 (ddd, 1H, J = 15.63 Hz, 5.37 Hz, 2.93 Hz, NCHCH*H*), 2.58-2.65 (dd, 1H, J = 16.60 Hz, 5.86 Hz, ArCCH \boldsymbol{H}), 2.91-2.96 (dd, 1H, J = 14.65 Hz, 6.35 Hz, NC \boldsymbol{H} H), 3.21 (s, 3H, OC \boldsymbol{H}_3), 3.32 (s, 3H, OC \boldsymbol{H}_3), 3.51-3.56 (dd, 1H, J = 14.65 Hz, 4.39 Hz, NCH \boldsymbol{H}), 4.07-4.12 (dd, 1H, J = 4.89 Hz, 2.93 Hz, NC \boldsymbol{H}), 4.33-4.38 (dd, 1H, J = 5.86 Hz, 4.40 Hz, C \boldsymbol{H} (OCH₃)₂), 5.89-5.93 (m, 1H, C \boldsymbol{H} =CH), 5.92 (s, 2H, OC \boldsymbol{H}_2 O), 5.93-6.01 (m, 1H, CH=C \boldsymbol{H}), 6.67-6.71 (d, 1H, J = 8.30 Hz, Ar-H), 6.78-6.83 (dd, 1H, J = 8.30 Hz, 1.96 Hz, Ar-H), 6.83-6.85 (d, 1H, J = 1.46 Hz, Ar-H) ppm ¹³C NMR (125 MHz, CDCl₃): δ = 25.6 (NCH*C*H₂), 36.0 (ArC*C*H₂), 43.5 (N*C*H₂), 54.4, 55.1 (O*C*H₃), 63.0 (N*C*HCH₂), 82.9 (NCOO*C*), 101.1 (O*C*H₂O), 102.9 (*C*H(OCH₃)₂), 105.0, 107.9, 117.2, 138.6, 147.0, 147.8 (Ar), 125.8 (*C*H=CH), 127.4 (CH=*C*H), 157.3 (N*C*O) ppm IR (KBr, Film): $1/\lambda = 3086$ (w), 3052 (w), 2992 (w), 2948 (m), 2898 (m), 2835 (m), 1847 (w), 1732 (s, CON), 1635 (w), 1612 (w), 1507 (s), 1490 (s), 1438 (s), 1420 (s), 1392 (m), 1383 (m), 1357 (m), 1347 (m), 1326 (m), 1316 (m), 1296 (s), 1283 (m), 1251 (s), 1210 (m), 1192 (m), 1178 (m), 1145 (m), 1121 (m), 1071 (s), 1035 (s), 1020 (s), 999 (m), 972 (m), 964 (m), 928 (s) cm⁻¹ **MS** (EI, 80 eV, 120°C): m/z (%) = 347 (8, [M]⁺), 200 (8, [C₁₃H₁₂O₂]⁺), 75 (100, [C₃H₇O₂]⁺). **HRMS** (80 eV, 120°C): m/z [M]⁺ calcd. for C₁₈H₂₁NO₆, 347.13690; found, 347.13588. # (1R,6R)-1-(3,4-Methylenedioxyphenyl)-6-N-(4-methoxy-2-oxazolidinonyl)-3-cyclohexen-1-ol 163 Diallyl **150** (160 mg, 0.44 mmol) in CH₂Cl₂ (100 mL) was treated with Benzylidene-bis(tricyclohexylphosphine) dichlororuthenium **40** (16 mg, 0.022 mmol). The reaction mixture was refluxed at 60°C for 3 hours (TLC control). After removal of the solvent, the residue was purified by column chromatograph (ethyl acetate) to give 130 mg (88%) **163** as colourless crystals with m.p.= 188-189°C. Data obtained from mixture, separated peaks of diastereomer 1: ¹**H-NMR** (500 MHz, CDCl₃): δ = 2.13-2.36 (m, 2H, NCHC*H*H, ArCC*H*H), 2.48-2.63 (m, 2H, NCHCH*H*, ArCCH*H*), 3.18-3.25 (dd, 1H, *J* = 10.74 Hz, 2.44 Hz, NC*H*H), 3.37 (s, 3H, OC*H*₃), 3.50-3.56 (dd, 1H, *J* = 10.74 Hz, 6.34 Hz, NCH*H*), 4.29-4.37 (dd, 1H, *J* = 10.72 Hz, 5.91 Hz, NC*H*), 5.07-5.10 (dd, 1H, *J* = 6.46 Hz, 2.47 Hz, CH₃OC*H*O), 5.54-5.64 (m, 1H, ArCCH₂C*H*=CH), 5.72-5.82 (m, 1H, ArCCH₂CH=C*H*), 5.90 (s, 2H, OC*H*₂O), 6.75 (d, 1H, *J* = 7.81 Hz, Ar-H), 6.88-6.93 (dd, 1H, *J* = 8.31 Hz, 1.96 Hz, Ar-H), 7.01 (d, 1H, *J* = 1.46 Hz, Ar-H) ppm ¹³C NMR (125 MHz, CDCl₃): $\delta = 25.9$ (NCH*C*H₂), 43.9 (ArC*C*H₂), 50.8 (N*C*H₂), 55.2 (N*C*H), 55.3 (O*C*H₃), 74.8 (Ar*C*CH₂), 98.4 (CH₃O*C*HO), 100.9 (O*C*H₂O), 105.9, 107.9, 118.0, 138.8, 146.5, 147.6 (Ar), 124.2 (ArCCH₂*C*H=CH), 125.7 (ArCCH₂CH=*C*H) ppm Data obtained from mixture, separated peaks of diastereomer 2: ¹**H-NMR** (500 MHz, CDCl₃): δ = 2.13-2.36 (m, 2H, NCHC*H*H, ArCC*H*H), 2.48-2.60 (m, 1H, ArCCH*H*), 2.62-2.73 (m, 1H, NCHCH*H*), 3.32-3.36 (dd, 1H, *J* = 10.45 Hz, 2.61 Hz, NC*H*H), 3.29 (s, 3H, OC*H*₃), 3.41-3.49 (dd, 1H, *J* = 10.45 Hz, 6.35 Hz, NCH*H*), 4.01-4.07 (dd, 1H, *J* = 10.45 Hz, 5.37 Hz, NC*H*), 5.14-5.17 (dd, 1H, *J* = 6.32 Hz, 2.61 Hz, CH₃OC*H*O), 5.54-5.64 (m, 1H, ArCCH₂C*H*=CH), 5.72-5.82 (m, 1H, ArCCH₂CH=C*H*), 5.90 (s, 2H, OC*H*₂O), 6.77 (d, 1H, *J* = 8.31 Hz, Ar-H), 6.88-6.93 (dd, 1H, *J* = 8.31 Hz, 1.96 Hz, Ar-H), 7.01 (d, 1H, J = 1.96 Hz, Ar-H) ppm ¹³C NMR (125 MHz, CDCl₃): $\delta = 25.7$ (NCH*C*H₂), 43.2 (ArC*C*H₂), 49.0 (N*C*H₂), 55.7 (O*C*H₃), 57.2 (N*C*H), 75.0 (Ar*C*CH₂), 98.4 (CH₃O*C*HO), 100.9 (O*C*H₂O), 106.3, 107.8, 118.2, 138.2, 146.5, 147.7 (Ar), 124.5 (ArCCH₂CH=CH), 125.1 (ArCCH₂CH=*C*H) ppm Data of diasteromers 1 and 2: IR (KBr, Film): $1/\lambda = 3375$ (br, m, OH), 3073 (w), 3063 (w), 3031 (w), 3000 (w), 2962 (w), 2925 (w), 2904 m), 2836 (w), 1733 (s, CON), 1654 (w), 1612 (w), 1505 (s), 1483 (s), 1447 (s), 1424 (s), 1389 (s), 1364 (s9, 1347 (w), 1338 (w), 1329 (w), 1315 (w), 1271 (s), 1247 (s), 1236 (s), 1216 (s), 1192 (m), 1151 (w), 1133 (w), 1125 (w), 1112 (m), 1100 (w), 1091 (w), 1068 (w), 1047 (s), 1040 (s), 1020 (s), 977 (s) cm⁻¹ **MS** (EI, 80 eV, 150°C): m/z (%) = 333 (37, [M]⁺), 216 (26, [M-C₄H₇NO₃]⁺), 149 (100, $[C_8H_5O_3]^+$), 121 (8, $[C_7H_5O_2]^+$). **HRMS** (80 eV, 150°C): m/z [M]⁺ calcd. for $C_{17}H_{19}NO_6$, 333.12125; found, 333.12322.