Medizinische Fakultät der Charité – Universitätsmedizin Berlin Campus Benjamin Franklin aus der Medizinischen Klinik I, Institut für Gastroenterologie Direktor/Abteilungsleiter: Prof. Dr. Martin Zeitz

Untersuchungen zur Bedeutung des kostimulatorischen Moleküls CD2 bei Colitis im Tiermodell

Inaugural-Dissertation
zur Erlangung des Grades
Doctor rerum medicarum
der Charité – Universitätsmedizin Berlin
Campus Benjamin Franklin

vorgelegt von Nina Pawlowski aus Krefeld

Referent: PD Dr. Jörg C. Hoffmann				
Korreferent: Prof. Dr. med. T. Weinke				
Gedruckt mit Genehmigung der Charité - Universitätsmedizin Berlin Campus Benjamin Franklin				
Promoviert am: 17.03.2006				

Zusammenfassung

Chronisch-entzündliche Darmerkrankungen (CED) gehören zu den am häufigsten auftretenden chronisch rezidivierenden Entzündungen. Obwohl in den letzten Jahren viele neue Erkenntnisse zu ihrer Pathogenese gesammelt wurden, sind bislang noch immer viele Aspekte der Entstehung ungeklärt. Daher gibt es bislang keine Therapie, die an den Ursachen ansetzt. Diese Arbeit liefert einen möglichen neuen Ansatzpunkt für die Behandlung chronisch-entzündlicher Darmerkrankungen, da im Verlauf dieser Arbeit zum ersten Mal gezeigt werden konnte, dass durch die Modulation von CD2 der Verlauf experimenteller Colitis positiv beeinflusst werden kann.

Durch die Behandlung von Mäusen mit dem anti-CD2 mAk 12-15 konnte eine Verbesserung (Transfer ConA-aktivierter T-Zellblasten) bzw. Verzögerung (Transfer von CD45RBhigh T-Zellen) einer, durch adoptiven Transfer CD4 positiver T-Zellen induzierten, Colitis erreicht werden. Bei etablierter Transfercolitis führte die Therapie mit diesem anti-CD2 mAk zu einer Abschwächung der Entzündung. Untersuchungen des Zytokinprofils und der Proliferation von Lymphozyten dieser anti-CD2 mAk behandelten Transfercolitis-Mäuse zeigten sowohl eine signifikant geringere IL-2 Produktion als auch eine gehemmte T-Zellproliferation. Die am Beispiel einer Infektion mit *Toxoplasma gondii* untersuchte Infektabwehr wurde durch die anti-CD2 mAk Behandlung nicht beeinflusst. CD2 defiziente Mäuse wiesen in diesem Modell sogar signifikant weniger *T. gondii* Vakuolen im Darm auf als ebenfalls infizierte Kontrollmäuse.

Auf Grund ihrer Immunpathologie wird die Toxoplasmen-Infektion auch als Crohn-Modell genutzt. Bei Untersuchung dieses Th_1 -vermittelten Aspekts einer T. gondii-Infektion zeigte sich ein nicht signifikanter Trend für ein verlängertes Überleben nach anti-CD2 mAk Behandlung. CD2 defiziente Mäuse allerdings überlebten signifikant länger, und wiesen einen niedrigeren histologischen Score sowie eine geringere Produktion von IL-6 und IFN- γ auf.

Schließlich konnten durch *in vitro*-Untersuchungen an verschiedenen Populationen humaner Lymphozyten sowie human CD2 transgener Splenozyten 5 humane anti-CD2 mAk identifiziert werden, die sowohl die Proliferation als auch die IFN- γ Synthese stimulierter Lymphozyten inhibieren. Damit könnten diese anti-CD2 mAk potentielle Kandidaten für eine CD2 gerichtete Colitis-Immuntherapie beim Menschen sein.

Inhaltsverzeichnis

_	ERZEICHNIS	
A BKÜRZUI	NGEN	IV
1.	EINLEITUNG	1
1.1	GASTROINTESTINAL-TRAKT UND INTESTINALES IMMUNSYSTEM	1
1.1.1	Besonderheiten intestinaler T-Zellen	3
1.2	CHRONISCH-ENTZÜNDLICHE DARMERKRANKUNGEN	4
1.3	CED-TIERMODELLE	7
1.3.1	Transfercolitis	
1.3.2	Orale Infektion der Maus mit Toxoplasma gondii	
1.4	CD2	10
1.4.1	Aufbau und Liganden von CD2	
1.4.2	Rolle von CD2 bei Entzündungen	13
2.	FRAGESTELLUNG & ZIELSETZUNG	14
3.	MATERIAL UND METHODEN	15
3.1	MATERIAL	
3.1.1	Geräte	
3.1.2	Chemikalien und Reagenzien	
3.1.3	Verbrauchsmaterialien	
3.1.4 3.1.5	Antikörper und Hybridome Antikörper für die Durchflusszytometrie	
3.1.5 3.1.6		
3.1.0 3.1.7	Reagenzien zur Zytokinmessung Häufig verwendete Lösungen und Puffer	
3.1. <i>1</i> 3.1.8	Medien	
3.1.0 3.1.9	Mäuse	
3.1.10	Zelllinien	
3.2	METHODEN	
3.2.1	Zellisolation	
3.2.1.1	Splenozyten	
3.2.1.2	Lymphozyten der mesenterialen Lymphknoten	
3.2.1.3	Murine Lamina propria Lymphozyten	
3.2.1.4	Humane Lymphozyten der Lamina propria	
3.2.1.5	Periphere Blut-Lymphozyten	
3.2.1.6	CD4 positive T-Zellen	26
3.2.2	Zellkultur und Antikörperaufreinigung	27
3.2.2.1	Zellkultur	27
3.2.2.1.1	Kultivierung und Stimulation von Zellen	27
3.2.2.1.2	Einfrieren und Auftauen von Zellen	
3.2.2.1.3	Bestimmung der Zellzahl	
3.2.2.1.4	Colonkultur	28
3.2.2.1.5	Mitomycin-Behandlung	
3.2.2.2	Antikörperaufreinigung	29

3.2.3	Durchflusszytometrie	30
3.2.3.1	Fixieren von Zellen	30
3.2.3.2	Färbung von Oberflächenmolekülen	31
3.2.3.3	Intrazelluläre Färbung	
3.2.4	Induktion von Transfercolitis	
3.2.4.1	CD4-T-Zellblasten-Transfercolitis	32
3.2.4.2	CD45RB ^{high} -Transfercolitis	
3.2.5	Behandlung mit dem anti-CD2 mAk 12-15	
3.2.6	Versuche zur Infektabwehr	34
3.2.6.1	Infektion mit <i>Toxoplasma gondii</i> nachfolgende anti-CD2 mAk	
	Behandlung	34
3.2.6.2	Infektion CD2-defizienter Mäuse mit Toxoplasma gondii	34
3.2.7	Endoskopie	34
3.2.8	Depletionsversuche	35
3.2.9	Proliferationstest	35
3.2.9.1	³ H-Thymidin-Test	35
3.2.9.2	CFSE-Markierung	36
3.2.10	Zytokinmessungen (ELISA)	
3.2.11	Proteinbestimmung nach Bradford (modifiziert)	37
3.2.12	Histologische Untersuchungen & mikroskopisches Scoring	
3.2.12.1	Hämatoxylin/Eosin-Färbung	
3.2.12.2	Polyklonale Immunperoxidase-Färbung	38
3.2.12.3	Giemsa-Färbung von Blutausstrichen	
3.2.12.4	Mikroskopisches Scoring	
3.2.12.5	Makroskopisches Scoring	40
3.2.12.6	Endoskopisches Scoring	
3.2.13	Typisierung	
3.2.13.1	Durchflusszytometrische Typisierung huCD2tg-Mäuse	
3.2.13.2	Genotypisierung CD2 defizienter Mäuse	
3.2.13	Statistische Auswertung	42
4.	ERGEBNISSE	43
4.1		
4.1.1	MURINE IN VITRO-VERSUCHE	43 43
4.1.1.1	Der anti-CD2 mAk 12-15 hemmt die Proliferation	43 43
4.1.1.2	Der anti-CD2 mAk 12-15 moduliert die Zytokinsekretion	
4.1.1.3	Der anti-CD2 mAk 12-15 führt <i>in vivo</i> weder zur Depletion	
4.1.1.0	noch zur Induktion regulatorischer T-Zellen	45
4.2	In vivo-Ergebnisse	
4.2.1	Adoptiver Transfer CD4 positiver ConA-Blasten	48
4.2.1.1	Die präventive Gabe des anti-CD2 mAk 12-15 schützt vor	
	T-Zellblasten-Transfercolitis	48
4.2.1.2	Therapie etablierter T-Zellblasten-Transfercolitis mit dem	
	anti-CD2 mAk 12-15 führt zu verlängertem Überleben	53
4.2.1.3	Behandlung mit dem anti-CD2 mAk 12-15 verringert die IL-2	
	Produktion in CD3/CD28 stimulierten Lymphozyten	55
4.2.1.4	Behandlung mit dem anti-CD2 mAk 12-15 senkt die	
	Proliferation CD3/CD28 stimulierter Lymphozyten	

4.2.2	In vivo-Versuche mit dem anti-CD2 mAk 12-15 bei CD45RBhigh-	
	Transfercolitis	58
4.2.2.1	Behandlung mit dem anti-CD2 mAk 12-15 beeinflusst	
	Überleben und Gewichtsverlauf nach Transfer von	
	CD45RB ^{high} -T-Zellen nicht	58
4.2.2.2	Der anti-CD2 mAk 12-15 verzögert den Verlauf einer	
	klassischen CD45RB ^{high} -Transfercolitis	
4.2.2.3	Behandlung mit dem anti-CD2 mAk 12-15 verringert die Produktion	
	von Th ₁ - und Th ₂ -Zytokinen in stimulierten Lymphozyten	64
4.2.2.4	Behandlung mit dem anti-CD2 mAk 12-15 senkt die Proliferation	00
4005	stimulierter Splenozyten und LPL	66
4.2.2.5	Keine Induktion von regulatorischen T-Zellen durch Behandlung	07
4.0.0	mit dem anti-CD2 mAk 12-15	
4.2.3	Einfluss von CD2 auf eine Infektion mit <i>T. gondii</i>	68
4.2.3.1	Die Modulation von CD2 hat keine immunsuppressiven Effekte	00
	auf die Kontrolle einer murinen <i>T. gondii</i> -Infektion	68
4.2.3.2	Eine CD2-Defizienz hat positive Effekte auf ein durch <i>T. gondii</i>	20
4.0	induziertes Crohn-Modell	
4.3	HUMANE IN VITRO-VERSUCHE	
4.3.1	Hemmung der Proliferation über L-58-Zellen	
4.3.2	Hemmung der Proliferation über anti-CD2 mAk	
4.3.2.1	Untersuchungen an PBL	
4.3.2.2	Untersuchungen an CD4 ⁺ peripheren T-Zellen	
4.3.3	Hemmung der IFN-γ Synthese durch anti-CD2 mAk	
4.3.3.1	Untersuchungen an peripheren Lymphozyten	
4.3.3.2	Untersuchungen an intestinalen Lymphozyten	
4.3.4	Induktion regulatorischer T-Zellen	
4.3.5	In vitro-Versuche an human CD2tg Lymphozyten	
4.3.6	Zusammenfassung der humanen in vitro-Ergebnisse	86
5.	DISKUSSION	87
5.1	EINFLUSS DES MURINEN ANTI-CD2 MAK 12-15 AUF ADOPTIVE	
5.1	TRANSFERCOLITIS	97
5.2	EINFLUSS VON CD2 AUF DIE PERORALE INFEKTION MIT <i>T. GONDII</i>	
5.2.1	CD2 und die Kontrolle einer <i>T. gondii</i> -Infektion	
5.2.2	CD2 und <i>T. gondii</i> -induzierte Dünndarmpathologie	
5.3	In vitro-Effekte humaner anti-CD2 mAk	
5.4.	AUSBLICK	
J. 4 .	AUSBLICK	101
6.	ZUSAMMENFASSUNG	102
7.	ANHANG	103
7.1	LITERATURVERZEICHNIS	103
7.2	Danksagung	
7.3	TABELLARISCHER LEBENSLAUF	
7.4	EIGENE PUBLIKATIONEN	

Tabellarischer Lebenslauf

Persönliche Daten

Name, Vorname Pawlowski, Nina

Geburtsdatum, -ort 20.02.1976, Krefeld

Familienstand ledig

Staatsbürgerschaft deutsch

Eltern Hans-Ulrich Pawlowski,

geb. in Friedeberg

Gisela Pawlowski, geb. Küsters,

geb. in Moers

Geschwister Viola Pawlowski, geb. in Krefeld

Schulbildung, Studium und Beruf

1982-1986	Grundschule an	der Landwehrstral	Re in Moers
1002 1000	Cranaschaic an	acı Lanawcınstiai	

1986-1995 Gymnasium Adolfinum in Moers, Abschluss Abitur

1995-2000 Studium der Biopharmakologie an der Ernst-Moritz-Arndt-Universität in

Greifswald, Abschluss Diplom

2000-2001 Wissenschaftliche Mitarbeiterin im Institut für Immunologie und Trans-

fusionsmedizin an der Ernst-Moritz-Arndt-Universität in Greifswald

2001-2005 Doktorandin im Institut für Gastroenterologie der Medizinischen Klinik I,

der Medizinischen Fakultät der Charité, Campus Benjamin Franklin