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Collaborative work

Successful research can never be achieved by a single person alone. In the course
of this thesis some parts were obtained in collaboration with fellow scientists. Here,
the implementation of core algorithms for the finite element methods was done by
Wolfgang Giese. The molecular biology in this thesis was performed together with
Gabriele Schreiber, who was involved in all experiments found in chapter 3.
Additionally, even though not scope of this thesis, I also published work together with
Thomas Spießer and Matteo Barberis in the field of yeast DNA replication and cell
cycle [1, 2].

Structure of this thesis

I will begin this thesis with some general introductions to cellular signaling and System
Biology in chapter 1. In the same chapter, I will also motivate the usage of yeast
for molecular biology and introduce the biological system I investigate in this thesis,
the pheromone response in the yeast Saccharomyces cerevisiae. Chapter 2 begins
with an introduction into the experimental biology employed in this thesis. This
is followed by the theory of reaction-diffusion systems. Even though stochastic and
deterministic methods are usually treated as two different strategies to solve reaction-
diffusion problems, I will rather derive the deterministic methods from the stochastic
ones, showing under which conditions they converge to each other. Chapter 3 will
present the performed investigation and results. This will not be done in chronological
order, but rather in an order that allows for a better interpretation of the results. I
will close the main part of this thesis with interpretations of the results and putting
them into a larger context in chapter 4.
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Zusammenfassung

Eine der grundlegenden Fähigkeiten, welche zelluläre Organismen im Laufe ihrer Evo-
lution erworben haben, ist die Wahrnehmung von Informationen über ihre Umwelt
und die Verwendung dieser zum eigenem Vorteil. Eigenschaften der Umwelt werden
hier durch spezifische Rezeptoren an der Zelloberfläche wahrgenommen und an eine
Signalkaskade weitergegeben, was in einer spezifischen Genexpression resultiert. Die ko-
rrekte Funktion dieser Signaltransduktion ist essentiell für alle Lebewesen und Fehler
haben starke Auswirkungen auf die Vitalität des Organismus. Dies gilt insbesondere für
die Kommunikation zwischen einzelnen Zellen wie sie in höheren Eukaryonten auftritt.
In dieser Arbeit untersuche ich die Fähigkeit eines prototypischen Signalsystems die
mitunter unsicheren Informationen über die Umwelt optimal zu nutzen. Das studierte
System ist die Pheromonantwort der Bäckerhefe Saccharomyces cerevisiae. Während
dieser formen zwei haploide Hefezellen unterschiedlichen Typus, MATa oder MATα,
eine diploide Zelle. Dies wird durch die Sekretion von spezifischen Pheromonen real-
isiert, welche durch Zellen des jeweils anderen Typus wahrgenommen werden können
und Informationen über die Lokalisation potentieller Konjugationspartner in der Pop-
ulation transmittiert. Die lokale Pheromonverteilung muss daher von den auch in der
Präsenz ungünstiger Bedingungen, wie zum Beispiel starken Fluktuationen oder gerin-
gen Konzentrationen, von den Zellen genau wahrgenommen und interpretiert werden.
In dieser Arbeit präsentiere ich mehrere Mechanismen die dies realisieren. Mittels ein-
er neu entwickelten Methode, welche mathematische Modellierung direkt mit Exper-
imenten verbindet, quantifizieren wir die vorher nicht beobachtbare Verteilung von
Pheromonen im extrazellulären Medium. Wir zeigen, dass diese Verteilung massiv
durch die Aktivität der von MATa-Zellen sekretierten Aspartylprotease Bar1 reguliert
wird. Dies erhöht den Informationsgehalt der Pheromonverteilung und koordiniert
Wachstum mit Kommunikation in der Zellpopulation. Aufbauend darauf konstruieren
wir ein detailliertes 3-D-Modell der Zelle welches genutzt wird um zu erklären wie
Zellen auch winzige Pheromonverteilungen von nur ein paar Molekülen in eine genaue
Antwort übersetzen und die Richtung der Partnerzelle identifizieren. Wir observieren
dass MATa-Zellen Signalmoleküle über kurze Zeit an der Membran sammeln um Un-
genauigkeiten zu minimieren. In einem letzten Schritt zeigen wir, mittels Analyse von
partiellen Differentialgleichungen, dass die Bildung eines Multiproteinkomplexes an der
Membran die Zellen in die Lage versetzt auch kleine Unterschiede im Raum in eine
extreme Verdichtung an der Membran zu überführen.
Die identifizierten Mechanismen übersetzen spezifische Proteininteraktionen in deren
Funktionen während der Wahrnehmung von extrazellulären Signalen und bieten einen
neuen Einblick in das evolutionäre Design von Zell-Zell-Kommunikation.
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1 Introduction

1.1 Communication in cell populations

One of the dogmas of Evolutionary Biology is that no living organism can exist com-
pletely independent of its environment. It is the capability to cope with a complex and
possibly changing environment that will decide how successful a life form will be in
surviving and passing its genes to the next generation. It is, therefore, of no surprise
that one of the most ubiquitous features of life is the ability to sense information about
the environment and to use it advantageously.
All cellular organisms employ specialized sets of proteins and protein interactions in
order to sense various signals from their environment and convert them into an intra-
cellular response. Those signals can be various and range from obvious choices, such
as the availability of nutrients or the presence of harmful substances, to complex phys-
iochemical properties of the environment, such as pressure, temperature, or osmotic
properties. The ability to sense an extracellular signal and transmit it into the cell by
a set of biochemical reactions is summarized in the term signaling, and the cascade
of protein-protein interactions transmitting the signal is termed a signaling pathway.
However, signaling pathways are far from being simple carriers of information that
statically transmit any signal without modification. Signaling pathways rather serve
the interpretation of the signal and may include an inherent ability to analyze it as
well. For instance, a signaling pathway may employ a threshold where the signal is
only transmitted when it is potentially large enough to be of use to the cell, or it may
inherit feedback systems in order to diminish small signals but amplify large signals.
In general, the more complex the organism, the more complex the signaling pathways
and even simple organisms may include vast amounts of regulation in order to exe-
cute complex signaling. Additionally, cells may depend on very different properties of
the extracellular signals such as concentrations, duration or even differences in space,
called gradients1.
Even though the name might imply otherwise, even single-cell organisms do not live
alone, but rather share their environment with millions, and sometimes billions, of
cells with the same or a different genotype. Those cell populations form a large part
of the environment and it is one of the most interesting features of evolution that indi-
viduals of these populations can employ signaling in order to communicate with each
other. Cell-cell communication can be observed from bacteria to human, however, the
mechanics and complexity of this communication differs greatly between species.
Bacteria employ a very basic, yet elegant, communication. Here, every individual in
the population produces an identical signaling molecule on a low concentration. Every

1The term gradient originates from the mathematical expression denoting a change relative to a
reference variable. However, where gradient is often used to denote a change over time in mathe-
matics, in the biology of signaling molecules it rather denotes the presence of inhomogeneities in
the distribution of signaling molecules in space. The gradient, or strength of the gradient, thus,
denotes the derivative of the signal in space.
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1 Introduction

cell in the population is at the same time capable of sensing the produced molecule
by a distinct signaling pathway. The pathway entails a threshold which prohibits ac-
tivation of the pathway by the low concentration of signaling molecules produced by a
single cell. However, as the population grows very dense the concentration of signaling
molecules produced jointly by all the individuals increases drastically, leading to an
activation of the signaling pathway. As all individuals contribute to the signal equally
this type of intercellular communication has been termed quorum sensing [3, 4]. This
simple communication mechanism is made powerful by its cooperative nature. This
is illustrated fatally in the capability of many bacteria to employ quorum sensing in
order to initiate the production of individually small amounts of substances chang-
ing the extracellular environment into a favorable state for the entire population: a
biofilm. The formed biofilm does not only provide optimal growth conditions, but also
includes several substances that harm potential competitors and prohibit the entry of
unfavorable substances, most importantly antibiotics. As a consequence, one of the
most prominent causes of death from bacterial infections is the formation of biofilms
[5, 6].
In single-cell eukaryotes we find a degree of communication that already hints to the
complex communication between cells of multi-cellular organisms. Simple eukaryotes,
like yeast, may employ pheromone-like proteins in order to signal complex proper-
ties of the cell population. Here, haploid cells of different genotypes, such as mating
types2, may employ chemically distinct signaling molecules. The underlying signaling
pathways can sense complex information such as signaling gradients and, thus, the lo-
cation of individual cells in the population. Those signaling pathways may control cell
proliferation and fusion. We can also find first occurrences of proteins that act in the
extracellular medium in order to modify the signaling environment of the pheromones
in order to enable a more informative signal. This may be prototypical for the large
amount of signal regulation in higher organisms such as organ segmentation or vessel
systems, however, there is little research up to now concentrating on this hypothesis.
Either way, the complex cell-cell signaling employed by populations of single-cell eu-
karyotes prepared the road for the formation of the first multi-cellular organisms that
culminated in the tightly regulated cell population that constitutes the human body.
The dependence of a functioning organism on cell-cell communication was discovered
in the sixties when there were first indications that cancer may be caused by a re-
duced level of communication between human cells [7]. This started a vast amount of
research in signaling pathways but with the presence of more and more data it also
became clear that the traditional methods were limited in explaining the function and
inner workings of signaling pathways. Why is that? The problem lies within the in-
herent complexity of signaling. Signaling is realized by several interactions of proteins
occurring in fast succession and often simultaneously. The pure study of the individual
components can, however, not deliver essential information, for instance about how the
signaling pathway actually modifies the signal. We could elucidate whether there is
a feedback with classical experimental methods, but we can not answer the question
what advantage this provides during signal sensing. This complexity is amplified even
more when switching to cell populations, where communication between cells makes a
clear functional explanation even more problematic. As such, the more data became
available, the less likely it became to explain the actual function of a biological mech-

2A predecessor of what we know as genders.
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1.2 How Systems Biology fixes your radio

anism. A fact that was also illustrated by the discontent following the sequencing of
the human genome and the realization that knowledge of the genome alone was not
sufficient to understand the resulting function.
A remedy to this paradox came along with the realization that an abstraction of the
underlying principles was needed. The basic function of a signaling pathway is trans-
mission and modification of the sensed signal. As such it resembles a mathematical
function, where applying the function to a distinct input, the signal, would render
a response, the phenotype of the cell. By combining methodology of mathematics,
physics, engineering and, of course, molecular biology a new field of biology was born
and termed Systems Biology, denoting the study of complex biological systems. But
how did this new field aim at succeeding where others had failed?

1.2 How Systems Biology fixes your radio

The major complication in Systems Biology is that is inherently ambitious in its goals.
Whereas large parts of Biology are mostly exploratory, observing something and inter-
preting it, Systems Biology asks for a functional characterization. This simply means
that many project in this field will aim at answering a single question “How does it
work?”. It seems natural to assume that given the output of a system, so knowing
“what it does”, in combination with its ingredients, should lead to some idea of how
its components interact in order to achieve the observed outcome. But this is by no
means trivial. One of the most popular analogies illustrating this has been introduced
by Yuri Lazebnik who compares the problem to understanding how a radio works
using Biology [8]. Even though there is a clear outcome – the radio plays music –
and a defined set of components it can be extremely difficult to unravel how all those
components finally end up in the music playing, a problem that becomes even harder
within a biological setting.
In Systems Biology we aim to understand how a biological system works by a bottom-
up approach. This means that we try to decipher the system by tinkering with its com-
ponents and/or observing its behavior in a variety of settings. In reaction-diffusion
systems our components are oligopeptides, genes and, sometimes, small molecules.
Unfortunately, none of those components are per se visible, so we have to modify the
components even if we just want to visualize them. Owing to this fact, performing
experiments on reaction-diffusion systems will always require some sort of interference,
where we will usually treat components in the system by either tagging, deletion or
substitution. Here, tagging is supposed to be the least invasive way and consists of
adding a marker to the protein (or gene) which will allow tracking of the protein by
some consecutive assay. In contrast, deletion is the most invasive way to interfere with
a distinct protein since it means deleting the corresponding gene from the genome and,
thus, abolishing the protein in the system. This may give very clear effects compared
to the non-deleted case but may lead to only little information gain if the component
is required for viability, since this will render the organism dead. For this reason,
there is also an intermediate way, where the gene is substituted either with a version
having an altered expression or with a version which carries some kind of mutation,
modifying the function of the corresponding protein. Both ways, modification of ex-
pression or function, may then lead to an altered system outcome. The information we
are gaining by the experiment is consecutively translated into a hypothesis about the

3
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design

hypothesis

quantify

adapt
experiment

model

Figure 1.1: The life cycle of Systems Biology. Repeated modification and probing of the biolog-
ical systems is used to unravel an abstract functional description of the system, the
model, that is used in turn to generate hypotheses which are validated or falsified by
experiments.

functionality of the system, the model. The model is supposed to be a clear concise
and minimal description of the biological system which formulates how we think it
works. By repeatedly generating predictions from the model we can design new ex-
periments in order to falsify or validate our hypothesis [9, 10]. This “life cycle” forms
the central paradigm of Systems Biology and may, given the right circumstances and
luck, converge to an adequate understanding how the biological system works.
The challenge lies within coupling both parts of the cycle, because, even though they
both belong to the Natural Sciences, Biology and Mathematics share only little com-
mon language that would facilitate an easy communication between the two. However,
it is crucial for validation that we are able to couple experimental results to models
and vice versa. The important part here is having a concise framework which lets us
quantify how well a model agrees with the data and whether the outcome of an experi-
ment significantly supports our current hypothesis. As a consequence Systems Biology
will incorporate a variety of subfields, such as the “Omics” Sciences, Optimization,
Statistics and Synthetic Biology, each covering a part of the required abilities.

However, as the name suggests the main interest of Systems Biology lies within the
system. As such, we are limited to study biological systems which permit us to tinker
with them in the way we need in order validate our hypothesis. This requires extensive
experimentation, because the only way to do this is modifying the system itself and
observing the new outcome. Naturally, we are mostly interested in biological systems
which are important to ourselves, thus, the biology of the human. However, this
imposes some problems. First of all, experimentation on humans to the extent which is
required would impose quite a lot of ethical problems and many experiments are clearly
out of question as they would harm human beings. As such we would be limited to
study isolated cell lines which are in a completely artificial environment which has little
to do with its natural state. Second, human cells have evolved quite elaborate measures
to protect their genome from foreign modification. Because the genome is the blueprint

4



1.3 Why yeast?

of the cell, even simple experiments turn out to be complicated. Thus, to understand
the underlying principles it might be better to find a biological system which is easy
to treat experimentally, but is sufficiently related in its own composition to allow
extrapolation of the results to human. An organism fulfilling those requirements is
called a model organism. But which eukaryotic organism is sufficiently close to human
to have a similar biochemistry of signaling and communication without the ethical and
experimental problems? Surprisingly, this “relative” has lived undiscovered among us
for thousands of years.

1.3 Why yeast?

No other microorganism has been used as extensively by humans as the yeast Saccha-
romyces cerevisiae, which is one of the oldest domesticated organisms [11]. Without
doubt yeast is, and has been, the most used microorganism in the history of man. Even
though Saccharomyces cerevisiae was not discovered until 1680 by Van Leuuwenhook,
it has already been employed for beer brewing in Sumeria and Babylonia, for wine
production in Georgia, and dough leavening in Egypt around 6.000 B.C. With Van
Leeuwenhook began the introduction of yeast into Science when he observed micro-
scopically that beer included a small living organism. However, it took almost 200 years
more before yeast was associated with alcoholic fermentation by Cagnaird-Latour in
1835 and it was mostly the work of Louis Pasteur in the 1850s which connected fer-
mentation to the yeast metabolism. The importance of yeast for beer production was
fortified in 1837 by Meyen who placed the found organism into a new genus, Saccha-
romyces, and termed the strain discovered in malt cerevisiae, for its usage in making
beer. With the discovery that yeast alone was capable of producing alcoholic products
from sugar began the industrial and scientific usage of yeast, not all of the developments
positive as it was also used by Karl Neuberg in 1915 to produce glycerol. Glycerol
was used to a large extent as a basis for trinitroglycerol, enabling the introduction of
heavy explosives into modern warfare. Nevertheless, yeast led to the early discovery
of fundamental biological processes and the realization that proteins within the yeast
metabolism catalyze alcoholic fermentation. This is impressively mirrored in the name
of these proteins: enzymes, stemming from the Greek expression en zymi, in yeast.
With the rise of genetics yeast was introduced as a biological model organism by H.
Roman in the mid-1930s and was soon considered an ideal model organism for genetics.
This was due to several reasons. First, yeast is an eukaryote, thus having a similar
cell architecture and fundamental cellular mechanism as the cells in higher eukaryotes
such as animals or human. Second, because in contrast to higher eukaryotes yeast is
unicellular, it can be grown on defined media giving a complete control over environ-
mental properties. Third, because yeast reproduces mitotically by budding (simple cell
division) as well as meiotically (by sexual reproduction) it is tractable to many classic
genetic techniques (compare Figure 1.2). As a consequence the first genetic map of
yeast was published by Lindegren already in 1949 [12]. Additionally, yeast has played
a large part in the development of reverse genetic engineering and molecular biology
when it was discovered in 1978 that it could take up foreign DNA and recombine it
into its own genome, a process termed transformation [13]. As such, prior to the Yeast
Genome Project in 1989 (finalized in 1996) 1.200 genes (about 20% of all yeast genes)
had already been mapped to the 16 yeast chromosomes or distinct phenotypes in yeast
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1 Introduction

[14].
It was not until the Human Genome Project was finished that scientists realized that
this small simple organism inherited a huge hidden potential. In fact, yeast shares
many similarities with human cells. 31% of the known yeast genes associated with
a biological function have homologs in human [15]. Obviously, this is an underesti-
mation as about 1.000 of the 6.000 genes in yeast are not associated with a function yet.

Nowadays, yeast as a model organism has helped to elucidate a large wealth of
knowledge about the inner workings of the cell. This comprises biochemical processes
– such as carbon, nitrogen and fatty acid metabolism as well as the underlying regula-
tory mechanisms – cytology studies – such as mechanisms in meiosis and mitosis, and
biogenesis of organelles and cytoskeletal structure and function – and genetic regula-
tion – such as mechanisms of recombination, control of cell cycle and gene expression,
the involvement of chromatin structure, and the function of oncogenes [11, 15, 16].
However, research on yeast is still ongoing which is illustrated by the observation that
in the last 11 years 3 Nobel prizes have been awarded to research performed in yeast
(Lee Hartwell in 2001, Roger D. Kornberg in 2006 and Jack W. Szostak in 2009) a
streak that has started already in 1907 by Eduard Buchner3.

In this thesis we will use yeast as a model organisms for another biological process
that is shared together with humans: the realization of cell-to-cell communication and
its transduction into a directed cellular response. This process is present in yeast in a
remarkable signaling mechanism: the yeast pheromone response.

MATa

MATα
MATa/α

MATa/α

MATa/α

MATα

MATa

budding

mating

sporulation

Figure 1.2: The life cycle of Saccharomyces cerevisiae. Haploid yeast cells can either reproduce
asexually by budding or recombine into a new diploid cell by mating. Diploid cells can
produce spores which again yield haploid cells. The transition of a haploid into a diploid
population likely takes place in a newly awaken culture.

3The first Nobel prizes were awarded in 1901.
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1.4 Yeast and pheromones

1.4 Yeast and pheromones

The most extensively studied signaling pathways in Saccharomyces cerevisiae, and
probably one of the most studied signaling systems in molecular biology, is the pheromone
signaling pathway of MATa cells [11]. Budding yeast cells may exist in either the
haploid cell state (single set of chromosomes) or the diploid state (double set of chro-
mosomes) and the two states can be traversed by distinct developmental programs.
Haploid yeast cells may occur in two mating types, MATa and MATα, and are formed
from diploid MATa/α cells via sporulation.
A diploid cell will always form two MATa and two MATα spores. Spores are dormant
haploid cells which can resist a wide variety of unfavorable environmental conditions,
most importantly the depletion of nutrients. When the environment returns to a state
which allows growth anew, the haploid spores return to the normal haploid cell state,
which yields a haploid population again. In contrast MATa/α diploids are formed by
conjugation of a MATa with a MATα cell. As yeast is not capable of chemotaxis,
haploid yeast cells signal their location by the secretion of pheromones into the sur-
rounding environment which will be picked up by nearby mating partners as a cue.
Detection by an opposite mating partner then induces the pheromone response which
culminates into expression of several mating-specific genes and a change of cell shape
in the direction of the pheromone signal, forming a so called “shmoo”4. As soon as
the MATa and MATα cell touch, they will engage cell fusion, resulting in a diploid
cell.
Considering this, the biological function of diploid formation in yeast is not trivial.
The common view on diploid formation is that it is necessary since it underlies mei-
otic reproduction, however, Saccharomyces cerevisiae as any other yeast strain, can
also reproduce asexually by mitotic division (budding). Consequently, yeast does not
require the formation of diploids to reproduce. However, survival of starvation condi-
tions is absolutely dependent on the formation of diploids. Each MATa/α diploid will
yield four spores which can survive extreme conditions, making it an efficient survival
strategy during nutrient depletion. Therefore, diploid formation in yeast might provide
a strategy to survive starvation conditions rather than sexual reproduction. This is
supported by the observation that many other yeast strains explicitly link the ability
to respond to pheromones to nutrient depletion, only triggering diploid formation in
those conditions [17, 18]. Even though Saccharomyces cerevisiae does not require nu-
trient depletion in order to induce mating, diploid formation still might be interpreted
as a survival strategy (also compare Figure 1.2). Furthermore, since haploid cells will
only be present in newly formed yeast populations formed from progenitor spores, this
process has to be coordinated with the growth of a new yeast population. As I will
show later on, the pheromone response pathway has evolved specifically to achieve that
and many parts of the signaling transduction are optimized to maintain population
fitness despite the transition from the haploid to the diploid cell state.

1.4.1 The extracellular pheromone signal and its regulation

As mentioned above the signals haploid yeast cells employ in order to detect the pres-
ence of nearby mating partners are the pheromones secreted by both cell types. The

4A reference to a comic character by Al Capp with a similar body form.
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1 Introduction

pheromones are denoted mating factors and MATα cells secrete α-factor whereas
MATa cells secrete a-factor. Presence of sufficiently high concentrations of the mat-
ing factors induce cell cycle arrest in order to maintain the integrity of the DNA and
chromosomes, and induce shmoo formation. Even though both mating types have to
react essentially the same, there is a significant level of asymmetry between the sig-
naling in MATa and MATα, which is mostly encountered on the level of the secreted
pheromones and its extracellular regulation.
Both pheromones are small oligopeptides composed of 12 (a-factor) and 13 amino acids
(α-factor), however, they differ greatly in export mechanisms and processing. α-factor
is produced from a larger precursor protein which begins with a secretion signal, fol-
lowed by four tandem copies of mature α-factor, separated by spacers which contain
proteolytic sequences [19]. α-factor is produced on a low basal concentration from
this precursor, and since it contains a secretion signal it is likely to be exported by
the vesicular secretion pathway. There is a putative induction of α-factor secretion by
about 3-fold during activation of the pheromone response in MATα cells, providing a
regulated α-factor output [20, 21].
a-factor on the other hand is produced as two different molecules, each being present
in two gene copies containing a single sequence of mature a-factor [22]. This is fol-
lowed by various modification steps which are under active regulation and include
several terminal modifications of the protein, attaching a N-terminal methyl ester and
a farnesyl group, both being important for its biological function [23–26]. a-factor is
not exported via the secretory pathway, but by an active ATP-dependent export cat-
alyzed by the membrane-bound a-factor exporter Ste6 [27]. Ste6 is expressed by some
basal gene expression but also induced by the activation of the pheromone response in
MATa cells and newly produced Ste6 preferentially recruits to the shmoo tip [28, 29].
Similar to α-factor, the production of a-factor is up-regulated in response to α-factor
[20]. However, many mechanisms might lead to the induction of high-level a-factor
expression, such as gene expression of a-factor, regulation of protein modifications or
a higher export rate due to larger Ste6 abundances. In any case, the induced expres-
sion of a-factor by MATa cells seems to be required in order to trigger the pheromone
response in MATα cells, since they only induce mating in sufficiently high concentra-
tions of a-factor [30].
As described before, MATa cells highly regulate the level of a-factor they secrete in
quantity, by induction of a-factor secretion, as well as in location, by recruiting the
a-factor transporter Ste6 selectively to the shmoo tip. However, this is not the only
manner in which MATa cells regulate the distribution of extracellular pheromones.
Interestingly, MATa also strongly regulate the extracellular distribution of α-factor,
the pheromone that is not even secreted by them. They achieve that by secretion of
the aspartyl protease Bar1 into the extracellular medium which cleaves and, therefore,
inactivates α-factor. The name Bar1 stems from the ability of the protease to form
a barrier for the freely diffusible α-factor and illustrates an elegant experiment per-
formed by Hicks and Herskowitz in the seventies in order to demonstrate that Bar1 is
indeed active in the extracellular environment (illustrated in Figure 1.3)[31].

The experiment performed by Hicks and Herskowitz included two parts: in the
first a streak of MATα cells was placed on an agar plate to the left with a set of
micromanipulated assay MATa cells to the right. Depending on the distance the assay
cells would show a continued budding when exposed to low α-factor concentrations,
or the shmoo phenotype when exposed to high α-factor concentrations. Putting a
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MATa
MATα

α source cells barrier assay cells

barrier test

α source cellstest strain assay cells

diffusion test

30° incubation

Figure 1.3: The barrier experiment performed by Hicks and Herskowitz demonstrating the pres-
ence of a α-factor-inhibiting protein in MATa and the presence of this protein in the
extracellular medium.

streak of “barrier” MATa cells between the source and assay cells, they observed a
switch of the assay strain phenotypes from shmooing to budding. Thus the MATa
barrier lowered the perceived α-factor concentration. As such, MATa cells must have
an intrinsic ability to lower the activity of α-factor.
In a second experiment the streak of MATa cells was now put to the left of the source
cells incubated for a short period, cut away, and the source and assay strains observed
under the microscope for up to 24 hours. When using wild type MATa cells this again
led to a switch from the shmoo phenotype to budding, however, this was not the case
for an empty lane or MATa mutants lacking the BAR1 gene. Since the MATa test
cells were cut away before measurement only substances secreted into the extracellular
space would be able to influence the response of the assay MATa cells. They concluded
that the gene BAR1 must encode for a protein inhibiting α-factor which additionally
is secreted into the extracellular medium.
Later, the activity of Bar1 in the extracellular medium of MATa cells was confirmed
and it was also shown that Bar1 secretion by MATa cells increases by about 3 to
5-fold when stimulating the cells with α-factor [32]. Finally, Bar1 was identified as a
aspartyl protease cleaving α-factor between Leu6 and Lys7 and thereby rendering it
non-functional [33, 34].
Even though the activity of Bar1 is characterized, we still lack a distinct understanding,
why MATa cells have an intrinsic activity to destroy the signal they need to sense (α-
factor). The striking difference to many other negative regulators of signaling is that
Bar1 is exported into the extracellular medium of cell populations where it remains
active. I will introduce a possible explanation for this behavior in section 3.2.

1.4.2 The signaling pathway of MATa cells

Despite the fact that MATa and MATα cells differ in the way they secrete and
regulate the extracellular pheromones, there are only little differences on the level
of the intracellular signaling pathway. As a convention, genetic analyses have, thus,
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concentrated on the signaling pathway in MATa cells.
As pointed out before, two processes have to coordinated during pheromone signaling:

1. induction of pheromone response-specific genes, in case there is a potential mat-
ing partner and if the external pheromone signal permits succesful mating, and
[35]

2. recruitment of various proteins to the membrane site closest to the potential
mating partner in order to induce shmoo formation and initiate cell-cell fusion
by the formation of a large multi-protein complex (the “polarisome”)[36].

Thus, MATa cells have to synchronize pheromone-dependent gene expression with cell
polarization, a feat that is realized by a complex signaling cascade.

In MATa cells the pheromone response is initiated by binding of α-factor to the
seven transmembrane-bound receptor Ste2. Binding of the α-factor to the third extra-
cellular loop is a multi-step process which leads to a high affinity of Ste2 for α-factor
and goes along with a conformational change of the receptor [37–39]. This activates
the C-terminal end of the receptor which transmits the active state into the cell [40].
The C-terminal end of the receptor is also subject to various modifications which con-
trol its activity. The most important regulation takes place on the level of receptor
turnover at the membrane. A single Ste2 molecule normally spends only little time on
the yeast membrane since it is constantly phosphorylated by the kinases Yck1, Yck2
and Yck3. The phosphorylation then induces internalization of the receptor by the
ubiquitination pathway with final destiny either being the vacuole or a return to the
membrane [41–43].

The active C-terminal end of the receptor transmits the signal by interacting with a
heterotrimeric G protein consisting of the proteins Gpa1 (Gα), Ste4 and Ste18 (Gβγ)
[44]. The inactive G protein exists in a trimer state with a GGDP

α Gβγ configuration.
Interaction of the C terminus of Ste2 triggers exchange of the previously bound GDP
with GTP which yields an unstable GGTP

α Gβγ state where the Gβγ dimer rapidly disso-
ciates from the trimer and yields a free GGTP

α subunit [45]. Different from many other
organisms, further activation of the pathway is not promoted by the active GGTP

α sub-
unit but rather by the Gβγ dimer.
In Saccharomyces cerevisiae Gα is instead used to regulate the activity of the G protein
by various mechanisms. First of all, Gα has an intrinsic GTPase activity that may cat-
alyze a spontaneous dephosphorylation of the bound GTP to GDP which returns Gα

to its high affinity state for Gβγ, thus, again capturing it and resulting in the inactive
trimer. Furthermore, the transient interaction of Gα with Ste2 keeps the the activated
Gα close to its Gβγ binding partners [46, 47]. This might promote a fast inactivation
as the interaction partners remain close.
The intrinsic GTPase activity can be increased by two to three orders of magnitude
due to interaction of the protein Sst2 with Gα [48]. Sst2 belongs to the family of RGS
proteins (regulator of G protein signaling) and seems to be responsible for deactiva-
tion of the pathway by a fast hydrolyzation of G proteins. Absence of Sst2 leads to a
hypersensitivity to α-factor as well as a prolonged inhibition of cell cycle progression.
Sst2 itself is regulated on the transcriptional as well as on the posttranscriptional level
[49]. Here, expression of Sst2 is induced by activation of pheromone-dependent gene

10



1.4 Yeast and pheromones

expression, which provides an increased level of Sst2 and, thus, a negative feedback on
G protein activation as it accelerates deactivation of G protein subunits. Additionally,
Sst2 is also phosphorylated by the active MAPK Fus35 which induces degradation of
Sst2 by the ubiquitin pathway. This promotes a positive feedback on the pheromone
pathway which acts on a small time scale and probably serves the regulation of the
duration of pathway activation. Finally, Sst2 binds to the receptor Ste2 in the same
region the Yck kinases do [50]. However, it is still unclear what function this might
fulfill, though it has been argued that it might promote a close coupling of Sst2 with
Ste2-bound Gpa1, promoting an efficient inhibition.
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Figure 1.4: Overview of the pheromone response pathway in MATa cells of Saccharomyces cere-
visiae.

As mentioned before, further signaling is driven by the Gβγ subunit which recruits
a variety of proteins to the membrane in order to drive all further pathway activation.
The two subunits of the Gβγ protein fulfill distinct functions. The γ-subunit Ste18 is
responsible for the membrane binding of Gβγ. This is realized by a dual lipid modi-
fication consisting of a farnesylation and a palmitoylation which tether the γ-subunit
to the membrane [51]. This is crucial for the function of Gβγ and a deletion of the
lipid binding domain leads to deficiencies in signaling. Additionally, a full deletion
of Ste18 leads to a complete loss of the ability to mate [52–54]. The β-subunit Ste4
rather serves as a multiple adapter which sequestrates all the proteins binding Gβγ.
A deletion of Ste4 also leads to an absence of pheromone sensitivity [55, 56]. As a
consequence, the ability to sequester proteins as well as the ability to sequester those
proteins specifically to the membrane is crucial to the activity of the pathway.

5a kinase activated later in the pheromone response
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Two routes have to be completed downstream from the G protein: activation of gene
expression and construction of the protein complex forming the shmoo. As the two
use distinct sets of proteins and pathways I will start with the signaling route leading
to the expression of the pheromone-specific genes and continue with the formation of
the polarisome afterwards.

1.4.3 The path to gene expression

In order to relay the signal from the membrane to the nucleus Saccharomyces cerevisiae
employs a conserved mitogen-activated kinase cascade (MAPK cascade) [57]. Here, a
phosphorelay system consisting of three kinases, Ste11, Ste7 and Fus3, is used. Upon
activation of the G protein double phosphorylated Ste11 phosphorylates and activates
Ste7, yielding double phosphorylated Ste7PP , which in turn phosphorylates and acti-
vates Fus3, yielding double phosphorylated Fus3PP , the central effector protein within
the pheromone response. Ste11 also phosphorylates Kss1, the central protein for the
filamentous growth response [58]. Activated Fus3 induces transcriptional activation
and cell cycle arrest by phosphorylation of a variety of downstream signaling compo-
nents.

The kinases are not activated directly by interaction with the Gβγ subunit of the G
protein but require the prior binding to the scaffold protein Ste5 [59]. Ste5 tethers the
three kinases into a close proximity and, upon pheromone induction, it is recruited to
the membrane by binding the β-subunit of Gβγ and also as connects directly to the
membrane via an internal PM/NLS domain [60, 61]. The recruitment to the membrane
as well as the binding to Gβγ are required for a tight connection of Ste5 and promotion
of MAPK activation [62].
Even though scaffold proteins are known to be important parts of signaling networks
none has been as well studied as Ste5 [63, 64]. Ste5 strongly regulates the behavior of
the signaling cascade by controlling the activation of the bound kinases. Major parts
of the regulation and feedbacks in the pheromone response are exercised on Ste5. The
most important being a negative feedback somehow related to Sst2 which limits the
time Ste5 resides on the membrane as well as a competitive phosphorylation and de-
phosphorylation cycle of Ste5 by Fus3 and Ptc1. It has been shown that the negative
feedback is required to align the activation of the pathway with the activation of the
receptor Ste2 [65]. This enables a a pheromone response which efficiently incorporates
the information of the occupied receptors. The phosphorylation cycle on Ste5 however
is exercised directly by the kinase Fus3 and the phosphatase Ptc1 [66]. Here, Fus3
as well as Ptc1 bind to specific docking motives on Ste5 and then compete for the
phosphorylation (by Fus3) and dephosphorylation (by Ptc1) of four residues on Ste5.
A full phosphorylation is required for a fast dissociation of phosphorylated Fus3PP ,
thus, providing a strong positive feedback which is thresholded by a fast dephosphory-
lation by Ptc1. As this process is tightly local to Ste5 this results in a tightly coupled
feedback. As a result, the activation of Fus3 has a steep sigmoidal form where low
pheromone concentrations result in low levels of Fus3 phosphorylation as it remains
bound to Ste5. A high pheromone concentration, however, results in a rapid release of
activated Fus3PP and a stable high concentration of Fus3PP . Consequently, the acti-
vation of Fus3 shows a Hill-like kinetic with an unusually high Hill coefficient which is
an order of magnitude higher than normaaly known for phosphorylation cycles. The
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response encoded in Fus3 is therefore essentially switch-like, leading to a full activation
of Fus3 when a threshold concentration is crossed. The decision to express pheromone-
induced genes or not is an all-or-none commitment regulated by Ste5. On the contrary,
activation of Kss1 is independent of Ste5 and does only require active Ste7.
As mentioned before, membrane recruitment of Ste5 is required for activation of the
MAPK cascade. Initiation of this cascade requires an initial phosphorylation for the
activation of Ste11 taking place at one the membrane. This reaction is catalyzed by
the protein Ste20 a member of a large family of kinases, the p21-activated kinases.
Ste20 resides on the membrane and activates Ste11 after it has been recruited along
with Ste5 [67, 68]. The activity of Ste20 strongly depends on binding to active Gβγ

as well as binding to proteins involved in formation of the polarisome, such as Cdc42
and Bem1 [69–72]. This results in a co-localization of Ste20 with the sites of active
polarisome formation, thus, explicitly coupling the activation of Fus3 to the correct
formation of the polarisome [73].

Activation of Fus3 strongly depends on membrane recruitment of Ste5. However, as
Ste5 also binds the membrane with a low affinity in absence of Gβγ, there is a low basal
activity of Fus3 in the in the absence of pheromone [74]. Activation of gene expression
induced by this basal activity is prevented by the switch-like response of Fus3 on Ste5
but also by unspecific phosphorylation of Fus3 in the cytosol. Because the regulation
of gene expression of Fus3 takes place in the nucleus, this dephosphorylation results in
a gradient of Fus3 phosphorylation emanating from the membrane and declining as it
approaches the nucleus [75]. It has been speculated that the basal activity allows for
a high signaling fidelity and enables a fast response which can deal with extracellular
signals that change rapidly [74].

As soon as Fus3PP reaches the nucleus, it associates with a protein complex contain-
ing the transcription factor Ste12 [76]. Ste12 controls the expression of two distinct
set of proteins: proteins required for the pheromone response and proteins required
for a filamentous growth response induced by nutrient depletion [77]. The complex
required for the activation of pheromone-specific genes consists of Ste12 bound to the
two repressors Dig1 and Dig2 [78]. Fus3PPphosphorylates all of the three proteins
which relieves the repression of Dig1 and Dig2 and enables binding of Ste12 to the
pheromone response elements (PRE ) that encode loci for pheromone specific genes
[79, 80]. Binding of liberated Ste12 finally induces the gene expression of pheromone-
specific genes.
Apart from expressing pheromone-specific genes, Ste12 also participates in the expres-
sion of genes specific to the filamentous growth response. This response is activated in
conditions with diminishing nutrients and results in the formation of long connected
cells in order to invade a new environment [11]. During filamentous growth, Kss1 is
phosphorylated by the same MAPK cascade employed in the pheromone response in
a Ste5-independent manner. Double phosphorylated Kss1PP also interacts with Ste12
complexes. However, the complex responsible for induction of the filamentous growth
response consists of Ste12, Dig1 and Tec1 [77]. Kss1 phosphorylates all three pro-
teins in the same manner as Fus3 but its phosphorylation leads to a derepression of
Dig1 and a stabilization of Tec1. The liberated Ste12-Tec1 complex than binds to
several loci encoding for filamentous response-specific genes (FREs). But how do cells
avoid an unwanted activation of the filamentous growth response by activation of the
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Figure 1.5: The activation of Fus3 on Ste5 and its effect on the gene expression. Fus3 blocks ac-
tivation of the filamentous growth response by inducing the degradation of Tec1, a
component of the filamentous transcription factor complex. The small P indicates phos-
phorylation events.

pheromone response? This is also achieved by Fus3PP which phosphorylates Tec1 and
therefore targets it for ubiquitin-dependent degradation [81, 82]. Kss1 on the other
hand is incapable of phosphorylating Dig2 and, thus, the Ste12-Dig1-Dig2 complex
can not be derepressed by Kss1, which blocks expression of pheromone-specific genes
by Kss1 (also illustrated in Figure 1.5). Cell cycle progression is blocked in both path-
ways (filamentous growth and pheromone response) by inducing the expression of the
protein Far1, which binds and inhibits the cell cycle regulator Cdc28 [83, 84]. This
results in an arrest of the MATa cell in a cell cycle stage prior to DNA replication, the
G1 phase. In all other phases of the cell cycle, the yeast pheromone response can not
be initiated due to deactivation of Ste5 by proteins involved in cell cycle progression
[85]. This ensures that signaling may take place exclusively in the G1 phase.

1.4.4 The polarisome and induction of cell-cell fusion

Apart from inducing pheromone-specific genes, MATa cells also need to prepare cell
fusion by forming the shmoo. This is achieved by a large protein complex which
is mainly preformed at the membrane, but whose final activation depends on the
pheromone-induced gene expression. The formation of this complex is restricted to
the sites of the highest extracellular pheromone signal, thus, involving a spontaneous
symmetry breaking in the spatial distribution of those complexes on the membrane.
This specialized localization is driven by two major steps [86]:

1. initial spontaneous binding of a Rho-GTPase cycle which is stabilized by a pos-
itive feedback, and
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2. recruitment of various proteins which promote the reorganization of the actin
cytoskeleton, transport of new cell wall material and proteins involved in cell-
cell fusion as well as membrane rearrangements.

The involvement of Rho proteins in the formation of localized protein complexes within
the cell is highly conserved in eukaryotes and is used in various processes, for instance
mitotic division, cell migration, dendrite formation, embryonic development, and neu-
trophil polarity [87–92]. The name Rho stems from its close homology to the small G
protein Ras (Ras HOmolog) and all Rho proteins are small G proteins with an intrin-
sic GTPase activity, thus, having an active GTP-bound form as well as an inactive
GDP-bound form.
In Saccharomyces cerevisiae, as well as in many other eukaryotes, the principal Rho
protein promoting cell polarization is Cdc42. Cdc42 is capable of inducing spontaneous
symmetry breaking and is required for the formation of the mating projection during
the pheromone response [93, 94]. Activation of Cdc42 by a GTP-GDP exchange on
the inactive GDP-bound Cdc42 is catalyzed by the guanosine exchange factor (GEF)
Cdc24 [95, 96]. During the pheromone response Cdc42 is recruited to the membrane
sites with high extracellular pheromone concentrations by interaction with Ste20, which
links it to the active Gβγ subunit [97–99]. Activation of the pheromone response leads
to expression of the nuclear export receptor Msn5 which catalyzes the export of a
Far1-Cdc24 complex [100]. Cytosolic Far1 then links Cdc24 to Gβγ by binding directly
to Gβγ [101, 102].

As the Ste20-Cdc42 complex is also linked to Gβγ, this promotes initial activation of
Cdc42. However, membrane-bound Cdc24 also recruits the protein Bem1 which binds
Gβγ, Ste5 and Ste20 [103]. This double recruitment allows the activation of nearby
Cdc42 molecules by forming clusters, thus, enabling a positive feedback where single
active Cdc42-Cdc24 complexes promote the recruitment of further Cdc42 and Cdc24
molecules. This positive feedback is sufficient to induce a strong polarization of active
Cdc42 where activation of Cdc42 is enhanced on membrane-sites with high levels of
Cdc42 but quickly drops at sites where only few active Cdc42 molecules are present
[104, 105].
Stably activated Cdc42 then targets the recruitment of various proteins to the site of
polarization and induces a reorganization of the actin cytoskeleton. This is achieved
by the recruitment of the proteins Bni1, Pea2 and Bud6. Bni1 is a formin which is
capable of recruiting actin and initiating the formation of actin cables at the site of
polarization in a Cdc42-dependent manner [106]. The formation of actin cables at the
recruited Bni1 is initiated by Bud6 which is regulated by the recruited Pea2 [107, 108].
This leads to the formation of actin cables which originate at the site of polarization
and promote the active transport of new cell wall material and several proteins required
for pheromone signaling and cell-cell fusion.

The polarisome also recruits several regulators of cell-cell fusion. This includes
Bem3, a negative regulator of Cdc42 which controls the termination of mating pro-
jection formation, and proteins required for membrane fusion of the mating MATa
and MATα cell such as Fus1, Fus2 and Por1 [36, 86]. The formation of an intact
mating projection with a stable membrane is further promoted by the recruitment of
the protein Spa2 which forms a scaffold for the the sensors of the cell wall integrity
pathway, Mkk1 and Mpk1 [109–112].
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Figure 1.6: Components involved in the formation of the polarisome and budding of Saccharomyces
cerevisiae.

Formation of new cell wall is catalyzed by recycling several proteins that are also
involved in the mitotic division of Saccharomyces cerevisiae, more specifically: in bud
formation. This includes another Rho-GTPase cycle consisting of the Rho protein
Rho1 and its regulators Rom1, Rom2 and Bem2 [113–115]. Rho1 directly binds to
Gβγ and induces the recruitment and activation of protein kinase C (Pkc1) and Fks1,
which directly results in the formation of new membrane on the sites of active Rho1
[116, 117].

Interestingly, the spontaneous selection of the bud site itself uses the same mecha-
nism as the polarization in the pheromone response. During mitotic division the bud
site is not marked by active Gβγ, but by yet another Rho-GTPase cycle consisting of
the proteins Rsr1, Bud2 and Bud5 which are constitutively active on the membrane
during G1 phase [118]. Rsr1 also recruits Bem1, thus, inducing two negative feedback
loops by Cdc42-Cdc24 and Rsr1-Bud2-Bud5. This induces strong symmetry breaking
and creates the clue for the new bud site [119]. As a result, MATa cells subject to
a uniform pheromone concentration and, thus, a uniform Gβγ profile will form mat-
ing projections that coincide with the former bud site which further illustrates the
strong connection between mitotic division and the formation of the mating projection
[120, 121].

1.4.5 A blueprint for spatial signaling in human cells?

I have argued before that Saccharomyces cerevisiae is an excellent modeling organism
for human cell lines, but what can we gain from studying only one specific signaling
pathway in yeast? Despite the fact that Homo sapiens has several different pathways
controlling cellular shape and spatially directed responses, virtually all of them show
the same mechanisms as the yeast pheromone response. Of course, we find a much
more complicated picture as in yeast. However, this is mostly due to a higher level
of regulation, as most human cells are highly specialized in function. Nevertheless,
not only the mechanisms are conserved but also the individual participating proteins.
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What is the reason for that? The answer lies in the importance of those signaling
pathways. Spatial segregation is essential for the organization and correct functioning
of higher eukaryotes. Important processes where cells have to respond to signals in
space and initiate directed responses include developmental programs, neural growth,
the immune response and intracellular organization of the spindle bodies during cell di-
vision [122–131]. Mutations in key components, thus, have vile consequences and lead
to inviable cells, which is why many mutations in those proteins are disease-associated
[132]. As a consequence, those proteins are strictly conserved in human.
Many proteins involved in the pheromone response can be found in humans in the
same configuration as in yeast with remarkable homology. Transmembrane receptors
as Ste2 are involved in a vast majority of human signaling pathway, the GPA1 gene
encoding for the Gα subunit in yeast has a homolog in almost all higher eukaryotes,
(GNAI2 ). The same holds for FUS3 which is encoded by MAPK3 in higher eukary-
otes and STE20 which is encoded by SLK. Many components of the polarisome are
conserved as well and the essential Cdc42-dependent mechanism is conserved to such
a degree, that a deletion of Cdc42 in Saccharomyces cerevisiae can be complemented
by its human counter-part, the Cdc42 of Homo sapiens. Particularly the studies with
Cdc42 have shown that cell polarization in human is governed by the same principles
as in the pheromone response of yeast and takes place in processes such as dendrite
formation, immune responses, epithelial morphogenesis and the formation of filopo-
dia [133–135, 92]. Additionally, the Wiskott-Aldrich syndrome an X-chromosomal
immuno-deficiency is directly connected to a malfunctioning Cdc42 [136].

Given that tight relation between signaling in yeast and the signaling pathways
occurring during cell polarization in human, we can probably extrapolate results from
yeast to human. The pheromone response in yeast serves the search for nearby cells of
opposing mating type and a dependent gene expression as well as polarization of the
cell in the direction of the potential mating partner. However, the important question
here is why the pheromone response in yeast, as well as many other pathways, is
composed the way it is. The question how the proteins and their interactions in the
pheromone response deliver the required functionality will therefore be our scope from
hereon.

1.5 The Systems Biology of yeast signaling

The ease of experimental manipulation and the wealth of already existing knowledge
have made signaling in yeast one of the principal objects of study in Systems Biology.
This is also due to a good timing. In the mid nineties, many favorable circumstances
came together in order to secure the entry of yeast into Systems Biology. The Human
Genome Project was finished, the analyses had begun, and it became more and more
obvious that many proteins in human were homologes of yeast proteins, particularly
in signaling. At the same time, computers started to become cheap and more powerful
and the mathematical methods applying to dynamic systems could finally employed
on a large scale in order to simulate the behavior of complex biological systems. Last,
but not least, the molecular biology of yeast was well established at this point and
many questions concerning dynamic behavior had arisen already. As such the time
was right to establish the first successful cycles of Systems Biology in this field.
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1 Introduction

Two pathways in Saccharomyces cerevisiae were extensively studied employing the
methodology of Systems Biology: the osmotic shock response and the pheromone re-
sponse. The first, because it existed in the same form in all higher eukaryotes and was
thought to be prototypical for the way cells dealt with stress, and the latter because
it employed intercellular communication and a complex transcriptional program.
It was the introduction of mathematical methods that could predict the behavior of
the systems in time, that made Systems Biology so prominent here, since data could
be generated by experimentation in the same manner. Starting from initial coarse
models that could reproduce the system at least qualitative in the mid nineties the
Systems Biology practice rapidly took over the research of those pathways, delivering
more and more complex and quantitative models by 2010 which could be validated
experimentally [66, 75, 137–139].

For the pheromone response in yeast the methodology of Systems Biology has de-
veloped to be the prominent strategy in investigating the function of the pathway.
Most research has concentrated on modeling and understanding the path from recep-
tor binding to gene expression. The first full model of those processes was developed
by Kofahl and Klipp in 2004 and could already explain the various mutants and re-
produce the dynamics of the pathway [140]. A reduced model was used in 2005 in a
combined model of several signaling cascades in yeast in order to predict several new
features during the osmotic stress response, which could be validated experimentally
[141]. Further research concentrated on the scaffold Ste5 and its regulatory ability
during the pheromone response. It was mainly Systems Biology that elucidated Ste5’s
function in regulating the signal transduction and its essential ability to convert a
continuous input in an ultrasensitive switch [64, 66, 142, 143]. As such, the function of
Ste5 was identified to enable the cells to execute an all-or-none response, an essential
feature as yeast cells have to commit to forming a diploid or continuing budding, but
can not execute an intermediate of those two processes.
Recently, there have also been attempts to model the process of polarization in Sac-
charomyces cerevisiae in order to investigate how yeast cells can maintain a strict
polarization. It was discovered that yeast employs a mechanisms which is in perfect
agreement with the requirements Turing proposed in 1952 in order to promote forma-
tion of patterns, and that polarization is mainly promoted by the Cdc42 activation
cycle[105, 144, 145].

However, there are still basic question remaining about the signaling and commu-
nication between yeast cells. As mentioned earlier, the research of the pheromone
response began with the observation that yeast cells secrete specific pheromones in or-
der to signal their location to potential mating partners. From early on it was assumed
that this would create complex gradients in mating yeast populations. However, this
part was skipped in further research and virtually all further studies would study the
response of the pathway to artificially added concentrations of pheromone or to gra-
dients which were introduced artificially as well. Today, we still have no idea how the
distribution of pheromone looks in vivo. However, from higher eukaryotes we know
that the control of signaling molecules is crucial for the functioning of cell populations.
In humans the availability of growth factors, for instance, is highly controlled and re-
stricted to small spatial areas in order to promote regulated growth. For this we have
developed several mechanisms which include local dispersal of signaling components,
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negative regulation of their presence and spatial segregation which is provided by or-
ganelles and the vessel system. Studying Saccharomyces cerevisiae in this context is
interesting as it seems to be a system in transition from a simple single cell organism
to an entity which entails cell-cell communication. Additionally, yeast is one of the
first eukaryotic organisms where an extracellular control of the signaling components
in form of a negative regulation by Bar1 has been shown. This makes Bar1 secretion
a prime example for the regulation of signaling components in a cell population. As
such, I will place large emphasis on introducing a combined experimental and theoret-
ical assay in order to visualize and quantify the distribution of pheromones in mating
yeast populations and present a cooperative mechanism of Bar1-induced regulation of
the pheromone signal in chapter 3.2.
Other open questions regard the the response of the cells to a shallow or noisy signal.
Even with very high secretion rates of α-factor the fast diffusion of this small peptide
will result in very shallow signals where often only a few α-factor molecules are present
on any given MATa cell. Still, we can observe a reliable activation of the pathway,
even with a very high noise level in the order of magnitude of the actual pheromone
concentration. How can yeast cells reliably detect the distance to a nearby mating
partner in the presence of those noise levels? Using an in silico system which can be
used to study the complete pathway activation in time and space, we will describe a
possible mechanism in chapter 3.3.
Following the sensing of extracellular signals all pathways inducing polarization are
capable of condensing even shallow differences of activated receptors on the membrane
to a single dense point of active polarisomes. This condensation is so extreme that
even MATa cells exposed to an artificially homogeneous α-factor concentration will
form single polarisome structures on a random position on the membrane.
Even though the Turing mechanism explains how this asymmetry is maintained sta-
bly, it remains an open question how this strong amplification of spatial differences
occurs and how it is condensed into a single point-like structure on the membrane. We
will treat this problem in chapter 3.4 and show that the formation of a multi-protein
complex, as given by the polarisome, has the potential of providing a single strong
polarization as a emergent property by controlling the location and quantity of polar-
isome complexes in a gradient-dependent manner.

However, in order to study all of those effects we will first have to dive deeper into
the experimental and theoretical methodology which is available to study a signaling
process taking place in time as well as space.
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2 Systems Biology of
reaction-diffusion systems

2.1 2012: Another Space Odyssey

A reaction-diffusion system is a biological system whose behavior is, as the name sug-
gests, governed by two processes: biochemical reactions and passive or active diffusion.
The biological entities which can be considered here are numerous and stretch over
several space scales, the most popular being small molecules, proteins, multi-protein
structures and cellular organisms. Both processes, reactions and diffusion, are assumed
to have an influence on the behavior of the system, where reactions change the system
in a temporal manner and diffusion does so in a spatial manner. As a consequence,
one crucial part is to track the system in time as well as space.
Even in a standard setting, recovering the functionality of a biological system will re-
sult in performing many experiments and model modifications. This complicates even
more in reaction-diffusion systems, because we treat space as an explicit variable. This
can be illustrated easily when looking at the functionality that has to be recovered. In
general our system behaves according to a multidimensional function F depending on
some parameters θ1 and the independent variables ν2. If we assume this relationship,
the state of the system S is given as

S = F(θ,ν) (2.1)

Obviously, the complexity of finding F, possibly along with θ, depends on the com-
plexity of ν. In “classical” Systems Biology the only considered independent variable
is the time (ν = t). So one typical way to enter the Systems Biology cycle would
be by measuring some biological quantity for a set of time points and relating this to
some quantity of the modeled state S. For this we will need one data point per time
point, so the complexity equals the number of time points. However, as argued before,
reaction-diffusion system require that space is explicitly treated as an independent
variable. This transfers the problem from a univariate to a multivariate problem with
ν = {t,x}. Additionally, space is usually multidimensional by itself, for instance being
composed as x = {xx, xy} in a 2-D system. The resulting rise in complexity can be
seen by a simple example. A typical resolution for a fluorescence microscopy picture
is 512×512 pixels. Thus, where we had one data point per time point in a “classical”
model, every pixel will now have a different location in space, which results in more
than 250,000 data points per time point in a reaction-diffusion system.

1From hereon all bold variables will denote vectors and all cursive variables scalars. The same holds
for function, thus, bold functions return vectors.

2Independent variables denote quantities which are not governed by the system but rather drive the
system such as time, pressure, etc.
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This argument holds for the complexity of experimental as well as for the complex-
ity of computational methods and creates the major obstacle when studying reaction-
diffusion systems. Thus, it is not advisable to use this framework for biological systems
where we expect the behavior to be homogeneous in space, since there is no appar-
ent use in considering space if it does not influence the system. On the other hand,
it might be crucial to treat space explicitly in biological systems which show strong
spatial inhomogeneities. The biological system treated in this thesis clearly belongs to
this second class, which is why we will now introduce the experimental methodology
which is needed to treat those systems experimentally as well as computationally.

2.2 Experimental Techniques

Experimentally probing the studied biological system is crucial in a working Systems
Biology study and is much too often neglected. This is due to the fact that often
the model is confused to be an alternative to study the biological system, but as has
been pointed out in section 1.2, it is just the representation of a hypothesis and does
not describe the biological system per se. There is no way around testing the model,
i.e. the hypothesis, against the biological system in order to neglect or accept it.
As a consequence, the quality of our model, and with that also the quality of our
functional understanding of the system, will depend on how rigorously we challenge
it by experiments. This is why we will begin with the experimental techniques, since
without them there would be little use in Systems Biology.
The major difference in treating a system as a reaction-diffusion system is the explicit
treatment of space. This makes experimental techniques delivering spatial data the
most important in studying reaction-diffusion systems. The obvious technique fulfilling
that requirement is microscopy, which is certainly the most established experimental
technique to study biological systems in space. Additional, since large parts of this
thesis deal with population effects there is also a direct requirement to quantify cellular
behavior on a population level. In principle, one could also use microscopy to do that,
but this would only allow studying very small, and possibly unrepresentative, fraction
of the population. Thus, we will also provide some techniques which allow us to use
the same cell populations used for microscopy, but in combination with assays better-
suited for populations studies. Finally, there will be a short overview concerning the
basic ways one can genetically modify yeast (yeast transformation) in order to visualize
and study the reaction-diffusion dynamics.

2.2.1 Fluorescence microscopy

Molecular Fluorescence

The discovery of fluorescence goes back to the Irish physicist George Gabriel Stokes. In
a particularly elegant experiment in 1852 he moved a tube of quinine through the solar
spectrum formed by means of a prism. As long as he would move the tube through
the visible spectrum of light it would remain transparent but as soon as he passed the
visible violet part of the spectrum into the ultraviolet the tube would start emitting
a bright blue color [146]. Stokes concluded that the incoming non-visible light was
somehow modified by the quinine and emitted as light of a longer wave length. He
named this phenomenon fluorescence, coming from the mineral fluorite which showed
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the same behavior. The apparent shift in wave lengths is hence called the Stokes shift
and is the basis for any functional fluorophore [147]. During a Stokes shift some part
of the incoming light is absorbed by the fluorescent molecules and leads to a shift in
the internal energy of the molecules into a higher energy level, thus, electrons move to
higher orbitals (excitation). A molecule in an excited state may spontaneously return
to its ground state by emitting the remaining energy difference through light. However,
some part of the energy of the incoming photon is lost due to changes in the rotational
or vibrational state of the molecules.
Excited molecules may spontaneously return to their ground state by emitting photons
with an energy which equals the difference in their current state and the ground state.
The wave length λ of the emitted photon will be given by

λ =
h · c
E

(2.2)

and, thus, by the Planck constant h the speed of light c and the photons energy
E [148]. Due to the internal loss of energy, this will result in emitted light with a
longer wave length, however, it took almost 100 years after Stokes discovery before this
was known. Excitation occurs rapidly within the order of femtoseconds and emission
usually occurs within nanoseconds after excitation, which, by any human standard,
makes fluorescence an instantaneous process. However, fluorescent molecules are lim-
ited to absorbing photons which correspond to possible energy transitions within the
molecules. As a consequence, fluorophores will only absorb a small part of the spec-
trum, called the excitation spectrum. This also results in a specific emission spectrum
which corresponds to the possible transitions the molecule may undergo from the ex-
cited to the ground state.
When studying biological systems in vivo one is mostly interested in using fluorophores
which can be excited with relatively low energy light from the visual spectrum in or-
der to minimize interference with the system. This property is usually provided in
the presence of conjugated double-bonds, especially within aromatic rings, where the
delocalization of π-orbitals assists passage into a higher energy state. Here, the most
popular representative is certainly the enhanced green fluorescent protein (eGFP), a
derivative of the original green fluorescent protein from the jellyfish Aequorea victo-
ria [149]. It exhibits an excitation maximum at a wave length of 475 nm and shows
a good absorption coefficient, quantum yield and slow bleaching [150]. Most impor-
tantly, since the DNA sequence is known, one can integrate it within the genome of
living organisms and, thus, use it to visualize protein location or processes such as
gene activation [151].

Most fluorophores used within cellular systems are derivatives of GFP, yielding a
variety of different colors and enabling combinations of several fluorophores. Even
though there are many individual criteria by which a fluorophore can be optimized,
the major obstacle is usually resolution, since observing and quantifying fluorescence
is needed on the level of individual cells whose sizes lie within the micrometer range
[152].

Epifluorescence and confocal microscopy

Given the inherited physics of fluorescence, a general fluorescence microscope can be
constructed from a few basic components. In principle, the only thing required is an
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2 Systems Biology of reaction-diffusion systems

Figure 2.1: Structure of green fluorescent protein (GFP). GFP shows a barrel-like protein structure
with an active core consisting of the amino acids Ser65–Tyr66–Gly67 which form the
active chromophore by a stacking of the two aromatic rings.

excitation light source and a fluorescence detector. Nowadays, the most common set-
ting for those components is the epifluorescence3 microscope, where the light source
and detector are both placed at the same side from the specimen. This has the ad-
vantage that only the light reflected from the specimen, and not the transmitted light,
has to be measured, which strongly reduces the background illumination. However,
this imposes the need for an additional component, which may separate the incoming
excitation light from the emitted light coming from the specimen, a dichroic mirror
or beam splitter. In the conventional epifluorescence setup depicted in figure 2.2 light
is coming from an evenly illuminating light source such as a xenon or mercury arc
lamp4 which is passed through an excitation filter blocking all wave lengths except
the excitation wave length and followed by a collimator to concentrate the light to a
small area [153]. Light is consecutively transmitted onto the beam splitter which lets
the excitation light pass onto the specimen but redirects the returning emission light
towards a photon counter. The photon counter will consecutively transmit the signal
to a computer where further analysis or visualization might take place.
Since the entire focal plane is illuminated during image acquisition epifluorescence is

considered a wide field method. Thus, measuring fluorescence within the entire focal
plane will take only a single stimulation and image acquisition, which makes it rapid
compared to local scanning techniques where each pixel is mapped to a point in the
focal plane which are illuminated and measured individually. Even though the even
illumination in the xy-plane5 is beneficial to image acquisition, it also accumulates
fluorescence over the z-axis6. This is due to the fact that the excitation light will be

3Coming from the Greek word epi, meaning above.
4In very recent setups you may also find LEDs. Alternatively, the light may also come from a laser

which abolishes the need for a wave length filter.
5the plane perpendicular to the direction of the excitation
6the axis parallel to the excitation direction
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Figure 2.2: Schematic view of the main components of an epifluorescence microscope.

capable of passing the specimen to a certain depth. Since there is no filter discrim-
inating the emission coming from different z-depths every pixel within the xy-plane
will be the accumulated signal over the entire z-depth the excitation may pass. As
such epifluorescence microscopes have a diminished resolution along the z-axis, up to
two orders of magnitude larger than the xy-resolution [154]. As a consequence, the
preferred application for epifluorescence microscopes is given in situations where one
needs the integrated fluorescence over the z-axis combined with fast acquisition times
(e.g. for gene expression time course data in individual cells).
Another popular microscope design is laser scanning confocal microscopy. The major
difference between the confocal and epifluorescence design is the addition of a pinhole
filter in front of the emission detector [154]. The pinhole is adjusted in a way that
it will exclusively allow passage of light waves whose source coincides with the focal
point (see Figure 2.3). This filtering immediately increases the resolution along the
z-axis, as it prohibits light from points outside the focal plane to reach the detector.
The resolution along the z-axis is now only limited by diffraction7 which enables the
visualization of slices of the specimen and enhances contrast [155]. However, blocking
light from outside the focal point prevents confocal imaging to be used as a wide field
technique and requires the specimen to be scanned focal point by focal point in order
to compose an image of the entire focal plane. Thus, the excitation has to be local-
ized to the focal points in order to prevent bleaching of nearby fluorophores, which is
why the light sources for confocal microscopy are usually lasers which allow a strong
condensation of the light at the focal point. Thus, most confocal microscopes using a
pinhole usually belong to the class of laser scanning confocal microscopes. The scan-
ning process makes image acquisition slower compared to wield field methods, but also
introduces an additional level of information along the z-axis which is, for instance,
required for the acquisition of three-dimensional data.
In an alternative setup the specimen is excited using a pulsed laser which stimulates

7Diffraction denotes the blurring of fluorescence due to the microscope.
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Figure 2.3: Schematic view of a confocal microscope and the obstruction of light from outside the
focal point.

the specimen twice with light in the infrared spectrum whose energy corresponds to
only half of the required excitation energy, the so-called two-photon laser scanning
microscopy. Fluorophores will now need to absorb two photons in order to enter the
excited state, the probability of that decreasing with the power of four along the dis-
tance from the focal point [156]. Due to this strongly localized excitation there is no
need for a pinhole since all emission comes from the focal point. Additionally, light in
the infrared spectrum is capable of passing even thick structures without interference
which increases the maximum scanning depth on the z-axis compared to a conventional
laser scanning confocal microscope. The two-photon setup is usually more complex
and expensive but provides less bleaching and an increased z-depth during scanning
and is, thus, especially useful when imaging living tissues.

Super-resolution microscopy

Even though the design of modern fluorescence microscopes is by far more complicated
than that of conventional light microscopes, they both share a common limitation:
their resolution is still constrained by diffraction. The first theoretical limitations for
the resolution of optical microscopes were proposed by Helmholtz, but it was Ernst
Abbe who should experimentally probe the resolution limit of microscopes [157]. He
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found the resolution limit8 on the xy-plane (∆r) and along the z-axis (∆z) to be

∆r =
0.61λ

η
and ∆z =

2λn

η2
. (2.3)

Here λ denotes the wave length of the used light and η the numerical aperture [155].
The numerical aperture quantifies how much light from the sample will be redirected
onto the lens and is given by the refractive index n of the medium and the maximum
half-angle θ at which light can still enter the lens through the relation

η = n · sin θ. (2.4)

Because θ quantifies the capability of the lens to capture light from a sample spot and
n quantifies the additional amount of light redirected onto the lens at the interface of
the sample and transmission medium, the numerical aperture counteracts diffraction
to a certain amount, as it is reflected in the formula.
In a confocal microscope, the light beam hast to pass the lens during excitation and
emission which leads to multiplication of the individual intensity functions of the in-
dividual beams which yields a slightly better resolution of

∆rc =
0.37λ

η
and ∆zc =

√
2λn

η2
. (2.5)

Abbe’s diffraction limit immediately imposes a fundamental problem in the microscopy
of biological samples: as mentioned before it is necessary to use low energy light to
minimize interference with the sample, but low energy light has relatively long wave
lengths, which decreases the resolution. Using some oil objectives one can end up with
a maximum numerical aperture of about 1.5, and since eGFP has an emission maxi-
mum at 509 nm this limits the resolution of a fluorescence microscope to a minimum
of 200 nm in the xy-plane and 450 nm along the z-axis. However, the entities we
would like to study are proteins, whose size ranges within 10 nm. Thus, the required
accuracy is actually much lower than the diffraction limit [158]. A lot of effort was put
in developing microscopes with a higher resolution while still using low-energy light,
but it took almost 130 years after Abbe discovered the diffraction limit to break it.
However, in order to understand how this was achieved, we first have to understand
how diffraction influences the optics of a sample.
Even though diffraction will blur an emitting point source during detection, it will not
do so randomly. Depending on the physical properties of the microscope the point
source will be blurred in a deterministic manner, yielding a shape which often resem-
bles as a Gaussian shape on the xy-plane and a hour-glass shape along the z-axis. The
function describing the spatial intensity distribution of a point source after diffraction
is called the point spread function (PSF). Early approaches to increase microscope
resolution have mostly concentrated on trying to deconvolve the observed signal with
a measured or theoretical point spread function of the microscope, however, since two
Gaussian shapes are hard to distinguish below the level of their standard deviations,
deconvolution will again not be able to distinguish point emitters which are close to
each other. Nevertheless, the initial observation that the position of a single emitter

8This formula holds for an ideal optical system obeying the Fraunhofer diffraction. It does not
include chromatic aberrations or transmission blur.
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can be determined to arbitrary accuracy in the absence of other emitters in close vicin-
ity, opened the door to break the limitation of Abbe’s law during the beginning of the
20th century.
The methods to visualize structures beyond the diffraction limit using visible light
are quite diverse, but all share a common approach. In order to use the determinism
contained in the point spread function, stimulation of the fluorophores is executed
in a manner that no two fluorophores in close vicinity to each other are ever excited
at the same time. This will now enable to identify the location of the excited spot
independently of the diffraction limit, thus overcoming Abbe’s law. Since all those
methods may depict entities beyond the normal resolution limit, they are collectively
termed super-resolution microscopy. One of the first proposed strategies to overcome

excitation stimulated emission

detection

assembly

activation

photon collection

A B

Figure 2.4: Super-resolution can either be achieved by (A) the RESOLFT principle (e.g. STED) or
by (B) PALM/STORM.

the diffraction limit was stimulated emission depletion (STED) which was introduced
by Stefan Hell as early as 1994 and has achieved some significant improvements and
applications since then [159, 160]. During stimulated emission depletion microscopy
the focal point is first excited as in conventional fluorescence microscopy, however the
excitation is followed by a second laser beam, in the shape of a ring on the xy-plane
with a confined zero intensity valley in the middle. This laser has a wave length which
induces a stimulated emission, meaning that it pushes molecules towards emitting a
photon with a rate faster than spontaneous emission. This will leave only molecules
within a tiny spot within their excited state (also see figure 2.4). The resolution is now
dependent on how effective the stimulated emission can deplete excitation of the fluo-
rophores surrounding the valley. As such the resolution limit is given by the relation
between the intensity used to stimulate the emission (IE) and the minimum intensity
required to outperform spontaneous emission IS. This results in a new resolution limit

∆r =
0.61λ

η
√

1 + IE/IS
. (2.6)

Increasing IE the resolution can be arbitrarily enhanced, thus truly breaking the
diffraction limit, however, the resulting light intensity might also harm the sample
and increase bleaching, which again limits the resolution. A way to minimize those
effects is not to use stimulated emission, but photoswitches, i.e. fluorophores which
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Figure 2.5: Example of the resolution gain using PALM. Shown are cryosections of E. coli stained
with two membrane-anchored reversibly switchable fluorophores. The resolution of using
conventional confocal imaging (upper) shows much less details than the PALM images
(lower). Scale bars 500 nm, figure adapted from Andresen et. al [162].

can be brought into a non-excitable state using a specific light stimulus. Since those
transitions are spontaneous this strongly lowers IS and, thus, allows to use light with
a low intensity again. Using this strategy STED has achieved lateral resolutions as
small as 16 nm [161]. There exist several variations of the STED principle which
usually only differ on how they induce de-excitation within the crest of the depletion
spot. They are often referred to as reversible saturable optical fluorescence transitions
(RESOLFT). Using switchable fluorophores the group of Hess proposed an alterna-
tive method called photo-activated localization microscopy (PALM) [163]. The same
method was independently discovered in Zhouang’s group where it was called stochas-
tic optical reconstruction microscopy (STORM) [164]. Here the focal plane is first
collectively brought into the non-excitable state by a non-specific laser pulse, followed
by a laser pulse of weak intensity which reactivates the fluorophores. Due to the low
intensity, activation is a stochastic event with low probability which will only switch
a few scattered fluorophores. If few enough fluorophores are active the probability of
two fluorophores being closer to each other than the diffraction limit drops to zero.
Consecutive cycles of excitation and emission allow recording of the point spread func-
tion and thus calculation of the fluorophores centroids. The cycles are either continued
until bleaching or terminated by a global deactivation and the stochastic activation
is repeated until the entire image can be reconstructed. The resolution accuracy of
PALM/STORM is, thus, given by how well the centroid can be identified by sampling
from the point spread function. Due to the law of large numbers the resolution of
PALM/STORM depends on the number of detected photons Np per activated fluo-
rophore with

∆r =
0.61λ

η
√
Np

. (2.7)

PALM/STORM needs less intensity light, but takes long to assemble the image and
is vulnerable to background flourescence.
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Figure 2.6: Structure of the reversibly switchable fluorescent protein Padron with its cis-trans chro-
mophore center. Adapted from Brakemann et. al. [165].

There is a shift in priorities within super-resolution microscopy since resolution now
depends on the quality of the fluorophore instead of the wave length of the light source.
All super-resolution techniques require fluorophores with efficient switching character-
istics and a high photon yield. All reversibly switchable fluorescent proteins (RSFPs)
are derivatives of asFP595 which initially yielded a poor quantum yield, but has been
optimized by mutation assays in order to yield a variety of efficient fluorophores such
as rsFastLime, Padron or Dronpa. They all are capable of undergoing a stimulated
rapid cis-trans-switch in their chromophore [158, 162, 165, 166]. Current limitations
of super-resolution microscopy lie within the strong bleaching involved, since STED
requires rather strong de-excitation intensities and PALM/STORM require a large
number of excitation cycles. However, one can expect those problems to decline as
better fluorophores become available.

2.2.2 Assays for population studies

Flow cytometry and fluorescence-activated cell sorting

Apart from analyzing molecular properties within single cells, we are also often inter-
ested how a certain property behaves within a population of cells. However, microscopy
only gives access to the small fraction of the population contained in the focal volume,
which may not be representative for the ensemble. Of course, one could assemble in-
formation on a population level by repeatedly analyzing different focal volumes, but
this may turn out to be a rather lengthy task.
The pioneering work of extending the fluorescence principle to a high-throughput
method was executed by Leonard A. Herzenberger, who extended the earlier works
of Coulter in order to device a method to automatically analyze cells based on their
fluorescence characteristics, flow cytometry [167]. In principle, the excitation and
emission can be incorporated in the same manner as in an epifluorescence microscope,
the difficulty is separating the individual cells while passing them through the scan-
ning unit. Naively one could think that this could be achieved by a needle as thin as
the cells, which may inject the cell solution into the scanning unit. However, liquids
tend to interact with the surface of the needle interior, creating substantial force if
the volume contained is small in comparison to the interior area. This is due to the
relatively strong adhesion forces in this setting which counteracts gravity or advection
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of the solution9. Due to this capillary effect, pushing the cell solution through the
needle would require extremely high pressure and destroy the cells. This is overcome
by injecting the cells into a liquid stream of a high density fluid (sheath fluid) which
creates a stable hydrodynamic effect and results in the formation of a thin stream of
cell solution within the liquid stream. This now enables the desired separation of cells
into a line of single cells, which can be passed to the acquisition unit where the stream
is constantly scanned by a one or several laser or diode units. During conventional

FSC

SSC fluorescence detection
laminar flow 
chamber

light source

cell sorter
digital converter

Figure 2.7: Components of a FACS system, including the liquid chamber generating the laminar
flow, the acquisition unit and the optional cell sorting unit.

flow cytometry characterization of the particles itself is first performed by measuring
the amount of scattering the particle produces when being stimulated with a laser.
This is achieved by measuring two different scatter types, forward scatter (FSC) and
side scatter (SSC). Forward scattering is observed by placing a detector directly in
the line of the laser behind the particle stream. Directly transmitted light, not influ-
enced by the particle, is blocked by an obscuration bar in front of the sample so that
only scattered light might reach the detector. Thus, forward scatter is correlated with
the amount of light hitting the specimen, since all matter will slightly scatter the light
beam. This is mostly influenced by the volume of the scanned object, as a consequence
FSC correlates with the volume of the individual particles or cells [168]. The side scat-
ter is generated by redirection of the light beams along rather solid obstacles and, thus,
indicates the composition and complexity of the cells. FSC in combination with SSC
is usually sufficient for quite elaborate characterizations of cells via their morphology.
Additionally, fluorescence tagging can be analyzed and allows the quantification and
classification of cells via biochemical features. In a more advanced setting this can
be employed to sort cells from a population by various fluorescence characteristics.
Here, the carrying liquid is charged and passed through a set of conductor plates after
detection. This can be used to pull the cells into specified collector tubes depending
on the signal from the detection, which allows sorting of individual cells [169]. Com-
bining flow cytometry with cell sorting is termed Fluorescence-Activated Cell Sorting,

9An effect most of us now from their childhood trying to drink fast through a thin straw.
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commonly known as FACS.

Cell cycle synchronization and elutriation

A common complication when studying cell populations of budding yeast during sig-
naling events is the large variety of responsiveness across the yeast cell cycle. As I have
pointed out in chapter 1, this is especially true for the yeast pheromone response, as
haploid yeast cells will only respond to pheromone during a short time frame of the
cell cycle, the G1 phase (see section 1.4.3). As a consequence, studying responses to
pheromone in an arbitrary culture is inherently problematic, as we can not tell per se
whether a cell shows no response due to a low local pheromone concentration or due
to being in a non-responsive cell cycle stage.
This can be overcome by treating the cell populations in a way that the majority of the
cells are in the same cell cycle stage, a state called cell cycle synchronization. There
is a variety of methods to synchronize yeast cells, however they all have their spe-
cific drawbacks. The first class of synchronization methods is formed by the so-called
block-and-release methods, where yeast cells are treated with a chemical that inhibits
further cell cycle progression but can be reversed by repeated washing of the culture.
The most common chemicals used here are the mating pheromones, which, for obvi-
ous reasons, are not suited for our purposes. Other chemicals include Hydroxyurea or
Nocodazole which may be used in the same manner. Unfortunately, apart from their
ease of use, block-and-release methods induce a variety of stress responses which may
strongly interfere when studying cellular signaling [170].
A less invasive method uses an indirect way to synchronize yeast cells: sorting them by
size. This is a reasonable approach as cell size strongly correlates with cell cycle stage
[171]. Size sorting is achieved by a physical method termed elutriation, which makes
use of the balance between two distinct forces, centrifugal force and advection. During
elutriation cells, as well as the medium, are pumped through a chamber arrested in a
conventional centrifuge with a flow direction leading from the outside of the centrifuge
to its center, thus, in the reversed direction of the centrifugal force. Advection affects
small particles much stronger than large particles, which pushes them to the inside
of the chamber, whereas the centrifugal force pushes all particles to the outside of
the chamber. When correctly adjusted, this will lead to stationary state where newly
arriving particles settle in an area of the chamber which corresponds to their specific
equilibrium state of centrifugal and advection forces. Increasing the pump rate will
push the smallest cells out of the chamber into a tube system which can be used to
collect the cells [172]. Rotor speed and pump rate are usually kept low, so elutriation
does not induce a stress response within the cells. As such, elutriation is one of the
least invasive methods to synchronize yeast cells, but is limited by the low fraction of
cells recovered from the entire population, its complicated adjustment and extraction
protocol and the degree of correlation between cell size and cell cycle stage.

2.2.3 Basics of yeast cloning

We have seen that there is a variety of methods to study intracellular properties using
fluorescence and population studies, however, none of them will provide exceptionally
interesting insights when used with the wild type. To investigate any interesting prop-
erty within the cells we will need to modify them genetically. Independent on whether
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we want to tag a protein, delete, or substitute a gene, we need to be able to integrate
a set of custom DNA into the genome of the yeast strain under investigation. This
task can be split into two sub-tasks: the construction of the required DNA by PCR
fusion techniques or by plasmid modification and introduction of the designed DNA
fragment into the genome of the yeast strain. The most common approaches will be
roughly outlined here, however, for detailed descriptions the reader shall be referred
to a standard manual on yeast genetics [173, like].

Yeast transformation

One of the major reasons why is yeast is such a popular lab organism is because
it is very easy to modify genetically. Under certain conditions yeast is capable of
incorporating single stranded DNA as well as plasmids from the external environment.
Cells that are capable of doing so are called competent and the process of taking
up DNA from the environment is called transformation [174]. The most common
way to transform yeast is by rendering the population chemically competent. This is
achieved through mixing with polyethylene glycerol (PEG) and lithium acetate [175].
The efficiency of the transformation can furthermore be improved by adding a single-
stranded carrier DNA in relatively high concentration [176]. Apart from its ability to
take up plasmid vectors, one of the advantages of transforming yeast is its ability to
integrate external DNA into is own genome by homologous recombination.
Under normal conditions homologous recombination serves the repair of double break
strands during replication. The split DNA strand is first cut back along the its 5’ ends
during a resection step yielding two single-stranded 3’ ends [177]. The protein Rpa
now binds the loose 3’ ends and, together with several other proteins, finds and invades
another DNA template with the sequence homologous to the free 3’ end [178]. The free
3’ ends then serve as a primer for the synthesis of the repaired DNA strand. During
that process the replication fork is often cleaved and ligated again to yield crossover
events [179]. Homologous recombination can be used to integrate external DNA by
constructing DNA strands with 3’ ends homologous to some specific genomic entry
points. This will yield recombinant DNA which can autonomously serve as a template
during homologous recombination and will result in at least one daughter cell with
the genomic insert. Depending on the genomic entry points chosen as a basis for the
recombinant sites of the construct, one can achieve a variety of genomic modifications
such as deleting genes or adding a marker to a protein under its native promoter (see
figure 2.8). However, it turns out that the construction of the custom DNA is often
much more time-consuming than the actual transformation, which can be done within
a few hours plus 2-3 days for growth of the culture on the selective medium.

Building the DNA construct

Building up custom DNA constructs requires site-specific cutting as well as consec-
utive assembly of different DNA sequences. As such it is no surprise that molecular
cloning was founded along with the discovery of restriction enzymes, proteins which are
capable of cutting DNA strands at short specific palindromic sequences, and ligases,
proteins which are consecutively capable of rejoining those separated DNA strands.
These enzymes, for the first time, made it possible to cleave sets of DNA strands and
reassemble a new DNA strand in a controlled manner via the use of ligases.
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Figure 2.8: Examples for constructs achieving different kinds of mutations during a homologous
recombination event.

This was soon used to build up distinct circular double-stranded DNA strands, called
plasmid vectors, which included various potential cutting sites along with a set of genes
for selection of the transformed cultures, termed auxotrophy markers. The choice of
plasmids is due to historical reasons since the only method to artificially replicate
a custom DNA construct was to introduce it as plasmid into bacteria like E. coli.
The original plasmids contained an E. coli origin of replication along with a selective
marker. The selective marker, a gene usually encoding an enzyme enabling synthesis of
an essential amino acid not contained in the medium, would allow E. coli cells contain-
ing the plasmid to grow on a distinct selective medium, whereas cells not containing
the plasmid would starve to death due to the lack of the amino acid. Thus, transform-
ing an E. coli population with the plasmid induced its replication and multiplication
in the culture.
Nowadays, this technique for DNA amplification has been superseded by the much
faster polymerase chain reaction (PCR) in which repeated cycles of heating and cooling
are used for DNA melting (separation of the double strand) and consecutive replication
[180, 181]. During a PCR, a DNA template is mixed together with a set of primers
flanking the sequence to be amplified at the 5’ ends of the strands, a heat-stable DNA
polymerase and the four deoxyribonucleotide triphosphates (dNTPs). A PCR cycle
begins with a denaturation step during which the solution is heated to 94-98 ◦C to
break the DNA double helix into its single strands. This is followed by an annealing
step during which the temperature is dropped to 50-65 ◦C which allows the primers
to bind the DNA templates and recruits the polymerase. In the elongation step the
temperature is now again raised to 75-80 ◦C to induce efficient DNA synthesis by the
polymerase. Since the newly synthesized DNA will serve as a new template for the
next PCR cycle this results in an exponential amplification of the initial template,
which enables rapid and exponential amplification of DNA fragments between custom
positions. Still, plasmid vectors have asserted their position in Molecular Biology, as
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they are easy to modify and can be used within most bacteria as well as yeast.
In order to integrate the construct into the yeast genome by homologous recombina-
tion it has to be flanked by two sequences homologous to the genomic entry points.
This can be achieved conveniently by adding the homologous sites to the 5’ ends of
the primers as this will add them to the 3’ ends of the synthesized strands. This yields
recombinant DNA which can later be used for transformation. Building a function-
ing construct, however, will require to combine a variety of elements such as selective
markers, fluorophores or modified versions of the proteins (also see figure 2.8). This
assembly of different constructs can either be achieved by classical cutting and ligation
or by newer PCR methods such as fusion PCR [182]. Fusion PCR utilizes two complete
PCR runs where the first run uses primers with short 5’ overhang regions fitting the
end of the segment to be fused, yielding DNA strands with homologous overhangs. The
DNA fragments containing the overhang are purified via gel extraction and undergo a
second PCR run with the normal primers for the final product. During the annealing
step this will induce recombination of the overhang strands yielding the assembled
template for the fused product which can again be purified via gel extraction [183]. In
principle, one can directly create the recombinant DNA for yeast transformation via
fusion PCR, abolishing the need for plasmid vectors [184]. However, during large scale
mutation projects it might still be beneficial to use plasmid vectors as they allow a
highly modular design, well-suited for performing many similar mutations or marker
assays [185].

2.3 Computational Techniques

What we are interested in is the function and mechanism of a given system. But how
can we formulate this rather arbitrary question in an abstract way that allows us to
study a biological system in a systematic way? I have stated earlier that in Systems Bi-
ology this question is resolved by applying some dogmas from statistics, more specific,
hypothesis testing. We will formulate hypothesis about the biological system which
we can either test experimentally or theoretically, employing computational methods.
The core of Systems Biology is the model, which can either have a biological or math-
ematical interpretation, both describing the identical biological system. The property
which is the most prominent and observable in Biology as well as Mathematics is the
state of a system. The state describes the composition of the biological system in a
fixed condition, thus, with fixed independent variables (e.g. at a fixed point in time
and space). In an abstract sense the state is nothing else than a vector S of quantities
which can denote a variety of biological entities, such as number of cells, number of
molecules, concentrations, or volumes. Obviously, those properties can change in time
t as well as space x, thus, yielding the state as a function of those two independent
variables, S(t,x). The dynamics of the system will be what changes the system in
time as well as space and this can be done by a variety of processes such as chemical
reactions, diffusion or spontaneous molecular rearrangements, all depending on a set
of additional parameters, such as diffusion rates, kinetic constants, cell volumes, etc.
Consequently, the system will dictate the state of the system by a distinct function F,
depending on the dependent variables t and x and the external parameters θ. This
yields the basic equation of Systems Biology:

S = F(t,x,θ). (2.8)
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The core belief of Systems Biology is, that F can be found repeating the life cycle of
Systems Biology (see figure 1.1). As such, we look for a mathematical function which
can fully predict the state of the system up to some limits. If we have found such a
function the system has become transparent to us, allowing us a wide array of studies
concerning system properties.
However, there are limits to this. The most strict limitation arises on the level of
physics. The systems studied in Systems Biology are often very small making the
state a vector of molecule numbers. Thus, the processes changing the state must
not be deterministic, but may rather occur with some random variation. As such we
can not identify a single state for a given time point in space, but will be limited to
expressing probabilities to be in a certain state at a given time point in space.
Finding the function governing the evolution of the system state is not trivial. As
such, I will start from basic principles here which initially might only treat a partial
problem, such as finding the probabilities for a given state in time when space is no
issue. We will use those simpler solutions to transit into more general solutions or
extract properties of the state which are interesting to us, rather than the full state.
The general strategy, however, will remain the same for all steps and will consist of
the following: assuming we already now one initial state of the system, S0(t0,x), we
will describe the change of the state by summing up all individual processes that may
change the state of the system in time. However, which processes may this be and
how do they interact with the system state?

2.3.1 Stochastic Processes and the Master Equation

The biological systems which we will investigate are usually biochemical pathways. As
such, the state of the system is given by the individual numbers of molecules. Fur-
thermore, we will initially assume that space has no influence on the sate any more,
thus, that the fast movement of the molecules equilibrates their distribution in space.
Even though this assumption might be correct for many processes, it is obvious that
it is not holding in general. However, we will start from this assumption but drop it
later on. The temporal evolution of system in a probabilistic setting will be driven
by a process that is inherently random. In a mathematical setting those processes are
called stochastic processes and will give us the methodology to study ways to observe
the probability distribution of the system state.

Since there are no fractional numbers of molecules in the system our state space
will consist of vectors of non-negative integers. Furthermore, in a probabilistic set-
ting we can not assign a unique state to a certain time point anymore, but we can
assign a probability to be in a certain state at some time t. If we do that for all the
states we end up with a (possibly multidimensional) probability distribution for the
states P(S, t). In order to characterize this distribution we will have to make some
basic assumptions about the nature of the stochastic process. The major assumption
underlying the stochastic processes we will deal with is the Markov property. The
assumption simply states that the system has no memory of its past. So after we once
are in a certain state the system will not be able to remember in what state it was
before; it is memory-less. Thus, if we knew the events that change the state, we could
derive the probability for a specific state from the probability of another state and the
probability of the event happening.
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In biochemical reaction systems we know that the state can only be changed by reac-
tions in the system (we will regard all in- and effluxes as reactions too). So what do
we know about the reactions? The time, as we consider it, is continuous. Analogous
to continuous probability distributions we will not be able to assign a probability for a
reaction happening at a certain time t, but only for a very small interval (t, t+ ∆t]. If
the minimum number of substrates required for the reaction is present, we know that
we have a positive probability for the reaction happening in some interval (t, t + ∆t].
If we also assume that the system is well-stirred, which means that we can ignore
the movement of molecules as a contributing factor to the probabilities, we can derive
those probabilities quite simple. By common sense we expect a reaction happening
once every second to happen once if we wait one second and twice if we wait two
seconds. So we would expect the probability for a reaction to scale with the length of
the time interval. As such the probability for a reaction will be linear in ∆t for very
small intervals. So if we had the minimum number of substrates required for a single
reaction the probability P(j,∆t) for a reaction of type j within some (t, t+ ∆t] would
be

P(j,∆t) = kj ·∆t, (2.9)

with some constant kj measured in s−1. However, if we had more available molecules
of one substrate than we need, we could have several possible reactions for any subset
of molecules. So, for a reaction only taking a single molecule as a substrate but having,
for instance, two possible molecules of the substrate available, we could have the first
molecule reacting or the second, which leads to an addition of the two probabilities.
Thus, the probability for a reaction also depends on the state S of the system and we
have to multiply the probability shown above by the number of possibilities to choose
the required molecules from the actual available molecules. Defining aj = (ak)k as
the vector of required molecules of type k to react in reaction j and S = (Sk)k as the
state (number of molecules of type k) of the system we can now derive the general
probability by simple combinatorics:

P(j,S,∆t) = kj ·
∏
k

(
Sk
ak

)
·∆t =: rj(S, t) ·∆t. (2.10)

The terms rj(S, t) are often called propensities or infinitesimal characterization.
Given the propensities, we can now construct the probability for being in a given

state at a certain time point, if we know the initial time t0 and the initial probability
distribution of the state P(S0, t0). There are only four basic ways to actually influence
the probability for a state: (i) we stay in the state, (ii) a reaction within (t, t + ∆t]
gets us into the state, (iii) we leave the state due to a reaction in (t, t + ∆t] or (iv)
the state changes due to several reactions within (t, t + ∆t]. Thus, the probability to
be in a certain state after ∆t, P(S, t + ∆t|S0, t0), is the sum of the mentioned four
probabilities.

The probability of (i) is the probability of being in a state exactly one reaction j away
from entering the desired state and having that reaction actually happening within
the next ∆t. Defining φj as the state change propagated by the reaction (denoting
which which and how many molecules will be consumed or produced by the reaction),
this is given by ∑

j

P(S− φj, t|S0, t0) · rj(S− φj, t) ·∆t, (2.11)
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with probabilities of negative states being equal to zero. Analogous the probability for
leaving the state in ∆t (ii) is given by∑

j

P(S, t|S0, t0) · rj(S, t) ·∆t (2.12)

The probability for being in the state simply is P(S, t|S0, t0) and since the probability
for having more than one reaction within ∆t will at some point include the term (∆t)k

for k > 1, it will be a term in o(∆t). That means that dividing it by ∆t and having
∆t → 0 the entire probability for (iv) will become zero. Since either of the events
can change the probability we have to sum them to get the joint probability (with
probability contributions leaving the state being negative), leading to

P(S, t+ ∆t|S0, t0) = P(S, t|S0, t0)

+
∑
j

P(S− φj, t|S0, t0) · rj(S− φj, t) ·∆t

−
∑
j

P(S, t|S0, t0) · rj(S, t) ·∆t

+ o(∆t)

(2.13)

We still have the problem of the ∆t. To actually fulfill the assumptions we have to
eliminate all secondary effects on that equation which will only hold for a ∆t smaller
than the minimum time to the next reaction. Since there is a positive probability for
all positive ∆t we have to consider that equation in the limit of ∆t → 0. We will do
that by first subtracting the P(S, t|S0, t0) from both sides of the equation, dividing by
∆t and letting ∆t→ 0 which leads to the definition of the derivative on the left side

lim
∆t→0

P(S, t+ ∆t|S0, t0)− P(S, t|S0, t0)

∆t
=

lim
∆t→0

∑
j

[
P(S− φj, t|S0, t0) · rj(S− φj, t)− P(S, t|S0, t0) · rj(S, t)

]
+
o(∆t)

∆t
. (2.14)

This gives us the so-called chemical master equation, with

dP(S, t|S0, t0)

dt
=
∑
j

[
P(S− φj, t|S0, t0) · rj(S− φj, t)− P(S, t|S0, t0) · rj(S, t)

]
.

(2.15)
As we can see, on the left side we have the probabilities for all possible states, which are
in theory all vectors of non-negative integers. So solving the chemical master equations
means solving an infinite and nonlinear set of differential equations. Thus, except for
very simple systems, we can solve the chemical master equation neither analytically
nor numerically.

This may seem quite an effort to formulate a problem we can not solve. However, in
practice we do not need the entire probability distribution. We would be quite content
with having some approximation for the mean and variance and to generate possible
outcomes of the process. As we will see now, that is by far easier than dealing with
the master equation.
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Markov Jumping and Gillespie’s Direct Method

If we go back to our basic assumptions we see that we have defined a process on a
continuous time but with finite propensities. This means the “rate” by which reactions
appear in our system might be stochastic but it is not unbounded. This makes sense
as we would not expect an infinite number of reactions happening in real life either.
So the process characterized by the chemical master equation takes a form where the
state is only changed by reactions with a waiting time between consecutive reactions.
Thus, the process waits for some random time before it suddenly jumps and changes
the state. Because of that, processes defined as the one here are also referred to as
Markov jump processes.
So can we say something about the waiting times? An entire derivation can be found
in the appendix 6.1. We can find expressions for the probability of waiting some time τ
till the next reaction happens and which reaction this will be. The probability P(τ, 0)
that we have to wait a time τ before the next reaction happens is

P(τ, 0) = r0(S, t) exp (−r0(S, t)τ) , with r0(S, t) :=
n∑
j=1

rj(S, t). (2.16)

The probability P(j|τ) that the next reaction will be reaction j has the form

P(j|τ) =
rj(S, t)

r0(S, t)
. (2.17)

Summarizing those two results we can now obtain the probability P(τ, j|S, t) of waiting
time τ before the next reaction and that reaction being of type j, given we are in time
t and in state S, as

P(τ, j|S, t) =
rj(S, t)

r0(S, t)
· r0(S, t) exp (−r0(S, t)τ) = rj(S, t) exp (−r0(S, t)τ) . (2.18)

This concise solution regarding the jump characterization of the process was intro-
duced to biochemical systems by Daniel T. Gillespie [reviewed in 186]. He is also
responsible for almost all of the following theory and algorithms, the first of them
being his direct method, which uses the results stated above to simulate a stochastic
system and thus generate an exact sample.
The algorithm is straight forward and is shown in the following (also see Figure 2.9):

Data: S0, t0, tmax, rj
Result: S(t)

Sample state S0 from P(S0);1

t = t0;2

S = S0;3

while t < tmax do4

r0 =
∑

j rj(S, t);5

draw a random τ from P(τ, 0) = r0(S, t) exp (−r0(S, t)τ);6

draw a random reaction according to P(j|τ) =
rj(S,t)

r0(S,t)
;7

update S;8

t = t+ τ ;9

end10

return S;11
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So we see that, even if the formulation of the probability distribution is quite com-
plicated, we can derive a very simple exact procedure to generate samples from it. If
we would now generate several samples we could simply calculate the population mean
and variance and would get a good approximation for the expectation and variance
of the distribution10. Additionally, we could also run a lot of samples and actually
approximate the probability for being in a certain state at time t. Even though this
only generates an exact solution to the chemical master equation if we run an infinite
number of samples, it can be used to approximate the solution.

Gillespie’s direct method is exact for arbitrary small or large numbers of molecules
and the most accurate system sampling one can get. But it also has some drawbacks.
The most obvious is the necessity of repeating the sampling quite often in order to get
good approximations for the mean and variance. Additionally, the algorithm strongly
depends on the reaction propensities. As we can see, the number of times we have to
update is given by the relation between the time interval simulated and the frequency of
the reactions taking place. For that reason the algorithm can be quite slow for systems
that have either fast reactions or some molecules in high abundances. Therefore, we
will now direct our attention towards finding some ways to speed up our sampling.

Tau-leaping

As we have seen in the previous section, the Gillespie method will update the system
every time a single reaction takes place. This makes us quite dependent on the rates
in the method, since we know that the mean of an exponential distribution is given by
λ−1, with λ as the rate parameter. So to simulate 100 seconds of a reaction which, in
average, has 1 substrate available and happens with a rate of 1s−1 we would need in
average 100 updates, whereas a reaction with 1000 substrates available and a rate of
10s−1 takes in average 10·1000·100 = 1.000.000 updates. Thus, in particular if at least
one substrate is highly abundant or the reaction rates are large, the Gillespie algorithm
becomes unfeasibly slow. Even though there are many variations of the Gillespie
method in order to deal with a high number of reactions11, all of them essentially
inherit the strong rate-dependence [187, 188].

However, in the unfortunate situation of constantly high substrate numbers and/or
fast reactions it is easy to see that a single reaction may only slightly change the state
of the system. In fact, since the state only changes slightly the reaction rates will
also differ only slightly from the ones calculated in the previous step. This basically
means that our reaction rates are now close to being constant. So instead of merely
executing a single reaction, we could also execute several reactions at once. We can
use the following “tactic”: first we choose a small time step τ 12. We now try to find
out how many reactions of each type might happen in this time step. In the following
step we execute those possible reactions and advance by the whole time step τ . If our
requirements from above are met, this would allow us to execute many reactions at
once without sacrificing too much accuracy. From the Gillespie method we already
know the probability distribution of the waiting time for a single reaction, but how

10...because population mean and variance are both unbiased estimators
11In fact, one can even design the algorithm completely independent of the number of different

reactions in the system, but with a large constant.
12thus the name tau-leaping
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do we get this distribution for several reactions? Since our rates are close to being
constant, the Markov jump process now becomes a simple Poisson process, and the
distribution of several occurrences of a reaction is Poisson distributed. Thus we can
update our system state the following way13:

S(t+ τ) = S(t) +
∑
j

ρj · φj,

with P(ρj = k,S, t) = exp(−rj(S, t) · τ) · (rj(S, t)τ)k

k!
.

(2.19)

However, we are still left with one problem: choosing the τ . Up to now we just
assumed that there is a τ so that the reaction rates stay constant. But for what τ do
they actually do that? Our reaction rates can of course still be nonlinear so we can
not expect to answer that question in general. Furthermore, the change of the system
still depends on the realizations of the Poisson variables we are using. However, what
we can do is linearize the average change in the reaction rates taking place in (t, t+ τ ].
If we also do that for the variance of the change in the reaction rates we get safe
boundaries for that change. After applying a Taylor expansion14 we end up with the
following results for the mean and variance of the rate changes15:

〈
∆rj(S, τ)

〉
≈
∑
k

∂rj(S, t)

∂Sk

∑
l

φkl · rj(S, t)τ =
∑
l

Djl · rj(S, t)τ (2.20)

Var (∆rj(S, τ)) ≈
∑
k

(
∂rj(S, t)

∂Sk

)2∑
l

φ2
kl · rj(S, t)τ =

∑
l

D2
jl · rj(S, t)τ (2.21)

with Djl :=
∑
k

∂rj(S, t)

∂Sk
· φkl. (2.22)

With that approximation we can now choose our τ in such a way that the reaction
rates only slightly deviate from the overall reaction rate and as such stay close to
constant. We will do that by requiring the τ to be small enough that individual
reaction rates will in average not change by more than a fraction ε compared to the
overall reaction rate r0. We assume that this is is valid if neither the mean nor the
standard deviation of the rate changes deviate by more than ε · r0(S, t), therefore,
fulfilling the so called leap condition

∀j :
〈
∆rj(S, τ)

〉
≤ ε · r0(S, t) and Var(∆rj(S, τ)) ≤ ε2 · r0(S, t)2. (2.23)

The maximum τ fulfilling that is now given by

τ = min
j

{
ε · rj(S, t)

|
∑

lDjl · rj(S, t)|
,

ε2 · rj(S, t)2∑
lD2

jl · rj(S, t)

}
. (2.24)

13φj is again the stoichiometry of reaction j
14The entire derivation can be found in appendix 6.1.
15
〈
X
〉

denotes the expectation, Var(X) =
〈(
X−〈X〉

)2〉
the variance and φkl denotes the kth element

of φl.
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Figure 2.9: Comparison of the original Gillespie algorithm (a) to the Tau-leaping algorithms (b).

Notice here that Djl can be computed prior to the simulation and will not change
during the simulation. So the only thing left to do is calculating the updated reaction
rates during the simulation which is more or less the same thing we had to do in the
Gillespie method (compare 2.9). So for each individual step of the simulation we will
need as much time as the Gillespie method, but we will need less simulation steps,
which speeds up the simulation.

The Chemical Langevin Equation and transition to deterministic methods

If our molecule numbers are generally high we can simplify our previous results even
more. The Poisson distribution can be well approximated by a Normal distribution
N (µ, σ2) in that case. Let us now assume we would always be able to choose a τ that
fulfills the leap condition and still allows for a high number of reactions within (t, t+τ ].
Then we can now formulate our tau-leaping update in the following way:

S(t+ τ) = S(t) +
∑
j

ρj · φj,

with P(ρj = k,S, t) ∝ N
(
rj(S, t)τ, rj(S, t)τ

)
,

(2.25)

with S(t) being the current state at time t.
If we now use the scaling properties of the Normal distribution16 we can further

decompose our distribution of reaction numbers by

N
(
rj(S, t)τ, rj(S, t)τ

)
= rj(S, t)τ +

√
rj(S, t)τ · N

(
0, 1

)
. (2.26)

Plugging that into the update rule gives

S(t+ τ) = S(t) +
∑
j

(
rj(S, t)τ +

√
rj(S, t)τ · ηj

)
· φj (2.27)

= S(t) +
∑
j

rj(S, t)τ · φj +
∑
j

√
rj(S, t)τ · ηj · φj, (2.28)

(2.29)

16N (µ, σ2) = µ+ σ · N (0, 1)
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where ηj are standard normal i.i.d.17 variables. This leaping formula is now a much
faster version than the ones regarded above, since Normal distributed random variables
can be generated much faster than Poisson variables. Due to our assumptions, we will
also leap over several reactions in each step and can still use a large τ .

Subtracting S(t) and dividing both sides of the equation by τ now yields

S(t+ τ)− S(t)

τ
=
∑
j

φj · rj(S, t) +
∑
j

φj ·
√
rj(S, t) ·

ηj√
τ
. (2.30)

After taking the limit for τ → 0 we end up with the Chemical Langevin Equation

dS(t)

dt
=
∑
j

φj · rj(S, t)︸ ︷︷ ︸
deterministic term

+
∑
j

φj ·
√
rj(S, t) · Γj(t)︸ ︷︷ ︸

noise term

. (2.31)

The term Γj(t) is the so-called Gaussian White Noise with

Γj(t) := lim
τ→0+

ηj√
τ
∝ N (0, dt−1). (2.32)

It describes what would happen to a Normal distribution if the variance would scale
inversely with the time step of the derivative. Furthermore, it is uncorrelated for
all j. The important observation here is that the equation consists of two terms on
the right hand side, where the first one does not include a stochastic variable, and is
deterministic, and the second term drives all fluctuations in the system. There are two
other important consequences which should be noted here:

1. When we defined the Langevin update we already approximated the number of
reactions taking place by a normal distribution. A normal distribution, however,
is defined on real numbers. As such the number of reactions as well as the
state variables are now real numbers which somewhat opposes our interpretation
of the variables as molecule numbers. One could transform the variables to
concentrations to get rid of that problem but that would be nothing else than
a dirty trick. In the end we are still approximating a discrete state space by a
continuous one.

2. The Langevin equation also is a differential equation in time. As such the stochas-
tic process we now define is continuous in time. This also contradicts our view
of waiting certain time steps, since now the system is constantly changing.

The fundamental consequence is the following: we now describe a state- and time-
continuous stochastic process, however one that still treats the same system generated
from the same initial assumptions, with the difference that we also assumed that
many reactions will occur constantly. This assumption however is not as arbitrary as
it might seem. A cell is composed of millions of molecules and even simple biochemical
pathways include several thousand molecules, making this assumption quite correct
for many cases. Additionally, in this equation we can easily derive the mean value

17i.i.d. , identically independently distributed
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of the state for a given time point. Applying the expectation, 〈·〉, to equation 2.31
immediately yields:〈

dS(t)

dt

〉
=
∑
j

φj · rj(S, t) +
∑
j

φj ·
√
rj(S, t) ·

〈
Γj(t)

〉
(2.33)

and with
〈
Γj(t)

〉
= 0 (2.34)

follows
d
〈
S(t)

〉
dt

=
∑
j

φj · rj(S, t). (2.35)

Thus, the mean state is governed by a deterministic ordinary differential equation.
But what are the consequences regarding the stochastic character of the system?

This question can be answered quite elegantly by visual inspection of equation 2.31.
As we see the only term including a random variable is the second part of the sum.
This “noise term” includes the square root of a reaction rate. As such, the randomness
of the state change in time is governed by the relation of the reaction rate to its square
root. As the reaction rates become very big the first term of the sum will take over the
equation, making the random term negligible and leaving the state only few possibilities
to deviate from its mean. Thus, under the condition of large molecule numbers and
fast reactions in the system, the state is now deterministic, meaning it can be identified
uniquely at each time point. This makes the treatment of the system and simulation of
the model much simpler, a strategy which we employ later to solve reaction-diffusion
systems.

The reaction-diffusion master equation

As we have seen before, we can express the probabilistic evolution of the state by ex-
pressing its change over time in a master equation. Up to know we have only dealt with
problems homogeneous in space, such that the spatial dependence of S was abolished
(S(t,x) = S(t)). However, we have argued extensively before, that this might not be
the case, in particular for the biological system we aim to treat with these methods.
But how can we introduce space into the methodology we already derived?
The solution can be found in relaxing our initial requirements a little: even though
there is no homogeneous distribution in space, there may be one in small parts of the
entire space of the model. In fact, if we divide the entire space into many individually
small subspaces, spatial homogeneity may be assumed for the small subspaces only.
This is somehow equivalent by treating the entire spatial part of the system state by
a sum of small very simple functions (constant functions). We will use the most sim-
ple subdivision one could think of for a complex, possibly three-dimensional, space: a
partition into equally sized cubes. Because the subdivision is finer than the original
tracking of quantities solemnly in the total volume (macroscopic), but rougher than
treating molecules individually (microscopic), this treatment of a system is called meso-
scopic. For each cube with index k out of nc cubes we will now have an assigned state
Sk(t) and the complete system state will have the form mathbfS = {S1, . . . ,Snc}.
Obviously the fact that we track the species numbers now for each cube will make our
state vector much bigger, meaning that from an initial state vector with nS entries we
will go to a nS · nc state vector.
The partition now forces us to include diffusion as a way to change the system and,
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thus, its state. Molecules can diffuse from each cube into a neighboring cube. The
rate with which that may happen is related to the macroscopic diffusion rate Di for
the molecule type i. As all molecules in the current cube diffuse equally, the number
of molecules leaving the cube is proportional to their diffusion rate and quantity. As
macroscopic diffusion rates are formulated in area per time, we have to incorporate
the size of the cube as well. As such the mesoscopic diffusion rate di, thus, the rate at
which molecules leave the cube is given by:

di(Sk, t)∆t =
Di

l2
· Si,k(t)∆t, (2.36)

where Di is the macroscopic diffusion rate, l the side length of the cube and Si,k(t) the
number of molecules from species i in cube k at time t.
But how is the state changed by the diffusion? Molecules can either leave the cube k
by diffusing out of it in any of the neighboring cubes, or enter the cube by diffusing
into it from neighboring cubes. In order to express this in a mathematical term it,
thus, helps to define the neighborhood of a cube with index k as the indices of cubes
which are adjoint to it. We will denote the neighborhood of cube k as N(k) and a
vector being one in position m and zero elsewhere will be denoted 1m.
The state S(t, k) in cube k can be reached by diffusion of a molecule of any species
i from a neighboring cube within ∆t, if the previous state was the state with one
molecule of this species less in cube k:∑

i

∑
m∈N(k)

P(S− 1m, t, k) · di(Sm, t)∆t. (2.37)

The state can be left within ∆t by any of the molecules of a species i leaving the cube
k and entering any of the |N(k)| cubes18:∑

i

|N(k)|P(S, t, k) · di(Sk, t). (2.38)

This gives all the changes in probability due to diffusion and we can now construct the
entire master equation analogously to section 2.3.119 by summing up all the changes
due to reactions in a cube k and all the changes due to diffusion that may happen in
an time step ∆t, yielding the following expression for P(S, t+ ∆t, k):

P(S, t+ ∆t, k) = P(S, t, k)

+
∑
j

P(Sk − φj, t, k)rj(Sk − φj, t)∆t

−
∑
j

P(S, t, k)rj(Sk, t)∆t

+
∑
i

∑
m∈N(k)

P(S− 1m, t, k) di(Sm, t)∆t

−
∑
i

|N(k)|P(S, t, k)di(Sk, t)∆t+ o(∆t).

(2.39)

18The operator | · | applied to a vector will denote the number of elements in this vector from hereon,
whereas || · || will denote a norm.

19To keep the notation concise we will drop the explicit dependence on the initial conditions here,
even though it still applies, thus P(S, t, k) = P(S, t, k|S0, t0)
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Analogous to the chemical master equation (Eq. 2.15) we can convert this equation
to a differential equation yielding the reaction-diffusion master equation

∀k :
dP(S, t, k)

dt
=
∑
j

P(Sk − φj, t, k)rj(Sk − φj, t)−
∑
j

P(S, t, k)rj(Sk, t)

+
∑
i

∑
m∈N(k)

P(S− 1m, t, k)di(Sm, t)−
∑
i

|N(k)|P(S, t, k)di(Sk, t)

(2.40)

Why would it be helpful to us to formulate a master equation for a reaction-diffusion
system if even the simpler chemical master equation can not be solved? This becomes
obvious when comparing the reaction terms of the reaction-diffusion master equation
with the diffusion terms. The diffusion events have a very similar form as the reaction
terms. In fact, by defining a set of new propensity functions for each molecule capturing
the diffusion of this molecule in one specific neighbor cube, the diffusion events can be
treated exactly the same as reaction events. The difference will solemnly be found in
the φj vector. φj will be non-zero only within one k-block for reaction events, which
will not be the case for diffusion events.
As such the reaction-diffusion master equation is nothing else than a normal master
equation as seen before, only with a large state space and additional propensities.
Nevertheless, all the previous derivations immediately apply, including the sampling
procedures we derived. This immediately gives us the Gillespie method however with
a huge set of possible reactions and diffusions as every cube has its own set of reaction
and diffusion events. The entire evolution, thus, can be sampled using Gillespie’s
method, but it would be very slow due to the many calculations we have to execute for
every time step. However, we know that every event we execute, may it be diffusion or
a reaction, will only involve a state update in at most two cubes, whereas all the other
parts of the state vector S and the propensities for all other cubes will not change.

The next subvolume method

A more efficient algorithm was developed by Johan Elf which uses this property in
order to speed up the sampling significantly [189, 190]. In the algorithm of Elf the
state is stored in a nS × nc matrix which tracks the state for each cube. Additionally,
the sum of reaction propensities, r0,k, and diffusion propensities, d0,k are also stored
for each cube k. The time until the next event, reaction or diffusion, occurs is sampled
using Gillespie’s formula for each individual cube initially and entered into a priority
queue. The priority queue is a dynamic data structure which allows to find the cube
with the smallest associated waiting time in at most log2 nc steps. In each simulation
step the cube with the minimum waiting time is identified and the corresponding reac-
tion or diffusion event executed (similar to a normal Gillespie step in that cube alone).
As mentioned before, this will only involve update of at most two cubes. The sum
of reaction and diffusion propensities for each cube are recalculated and new waiting
times for the cubes are sampled. This results in the following algorithm:
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Data: S0(t, k), t0, tmax, rj, Di, geometry
Result: S(t,k)

t = t0;1

initialize priority queue Q;2

construct N(k) from geometry;3

for k = 1, . . . , nc do4

Sk = S0,k;5

r0,k =
∑

j rj(Sk, t);6

d0,k =
∑

i |N(k)|di(Sk, t);7

draw a random τk from P(τk, 0) = (r0,k + d0,k) exp (−(r0,k + d0,k)τk);8

insert (τk, k) into Q;9

end10

while t < tmax do11

get cube k with minimum τk from Q;12

sample random number r in [0, 1];13

if r < r0,k/(r0,k + d0,k) then14

draw a random reaction according to P(j|τk) =
rj(Sk,t)

r0,k
;15

update Sk;16

r0,k =
∑

j rj(Sk, t);17

d0,k =
∑

i |N(k)|di(Sk, t);18

draw new τk;19

update (τk, k) in Q;20

end21

else22

draw a random diffusion according to P(i|τk) = di(Sk,t)
d0,k

;23

randomly select a neighbor m from N(k);24

update Sk and Sm;25

recalculate r0,k, d0,k, r0,m, d0,m draw new τk and τm;26

update (τk, k) and (τm,m) in Q;27

end28

end29

return S(t, k)30

Using the property that the remaining cubes have assigned waiting times that are
still valid samples, Elf proved that this algorithm generates exact samples to the
reaction-diffusion master equation. Because the core of his algorithm is to quickly
find the “subvolume” with the smallest waiting time in each step, he termed his algo-
rithm the next subvolume method (also summarized in Figure 2.10).

This gives us a clear idea how to sample solutions from the reaction-diffusion master
equation, but until now we did not care about the subdivision into cubes at all. Is
any subdivision with any cube size l permissible? The limitation for cube sizes are
found within the approximation for reaction rates we have made before. The reaction
constants kj include the probability of encounter between two species in a reference
volume, as such they scale with volume. In the case of the subdivision into cubes
the reaction rates have to be rescaled by the cube volume. However, if the cube size
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Figure 2.10: The next subvolume method as derived by Elf.

becomes close to molecule sizes this is not valid anymore as now other microscopic pro-
cesses govern the reaction propensity. As thus, the cube size should be large enough so
that the initial assumptions still hold but small enough to account for spatial inhomo-
geneities. As a general rule the minimum side length l of a cube should not be smaller
than the mean reactive path pr [191]. pr denotes the average distance a molecule will
pass before encountering a reaction and is given by:

pr =

√〈
Di

〉〈
rj(S, t)

〉 . (2.41)

It remains to mention that there have been recent advances in speeding up the sample
generation from the reaction-diffusion master equation by employing massive paral-
lelization. Here each thread will simulate a single cube and the strategy deviates a bit
from the next subvolume method. In the parallelization it is first calculated what the
minimum waiting time for any diffusion event will be, and the Gillespie algorithm is
executed for all cubes at once in this time step. Employing hardware which enables
a parallelization in such magnitudes, e.g. graphic processing units (GPUs), one can
achieve significant speed-ups [192, 193]. However, those speed-ups are dependent on
the minimum waiting time for a diffusion event. In the regime of very fast diffusion the
waiting times for diffusion events will be very small, thus, only few reactions will take
place and most of the advantage of parallelization will be lost. This is resolved by the
implementations in rather using the mean waiting time for a diffusion event, however,
this will introduce an approximation and the algorithm will not necessarily generate
completely exact samples. In the biological system we will consider in this thesis fast
diffusion of various molecules is present. As a consequence, for all stochastic models
used in this thesis we will remain with the next subvolume method, as it guarantees
exactness.

2.3.2 Partial differential equations and finite element methods

The reaction-diffusion equation

As we have seen in section 2.3.1 a master equation induces a corresponding Langevin
equation which gives us a transition from a stochastic to a deterministic system. The
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advantage of this transition is, that it also gives us some idea what conditions must
hold in order that the system becomes deterministic. Free diffusion of molecules is
usually fast compared to reaction rates. Consequently, we can expect many diffusion
events to take place if our subdivision into cubes is sufficiently fine. As thus, the
same assumptions as for the reaction events can be made for diffusion events and the
number of diffusion events can be approximated by a Normal distribution. Analogous
to equation 2.31 we can also formulate a Langevin equation for the reaction-diffusion
master equation. Given an existent subdivision of the modeled volume into cubes with
indices k and neighborhoods N(k) we can formulate the following update rule for the
state change:

S(t+ τ, k) = S(t, k) +
∑
j

ρjφj +
∑
i

( ∑
m∈N(k)

ζmi 1m

)
− ζki |N(k)|1i


with P(ρj = x) ∝ N

(
rj(S, t)τ, rj(S, t)τ

)
and P(ζki = x) ∝ N

(
di(Sk, t)τ, di(Sk, t)τ

)
.

(2.42)

Again we will use the scaling properties of the Normal distribution and take the
limit case as τ → 0 which results in the Langevin equation

dS(t, k)

dt
=
∑
j

φjrj(Sk, t) +
∑
i

 ∑
m∈N(k)

1mdi(Sm, t)− |N(k)|1idi(Sk, t)


︸ ︷︷ ︸

deterministic term

+
∑
j

φj

√
rj(Sk, t)Γj(t) +

∑
i

[∑
m

1m
√
di(Sm, t)Λi(t)− |N(k)|1i

√
di(Sk, t)Ξi(t)

]
︸ ︷︷ ︸

noise term

,

(2.43)

where Γj(t),Λi(t) and Ξi(t) are Gaussian white noises. The equation behaves as for
the non-spatial case, however it is interesting to see, that the diffusion part of the noise
term uses two Gaussian white noise terms, one for the diffusive influx, Λi(t), and one
for the diffusive efflux, Ξi(t). Because all of the noise terms behave the same, we see
that the diffusive terms can contribute proportionally more to the noise than the re-
action terms. As thus, diffusion might result in increased noise in the biological system.

As we have seen earlier the deterministic term of this Langevin equation are also the
mean value of the state change, which gives us a deterministic ODE equation for the
evolution of the state S. Up to now we have considered a distinct discrete partition of
the modeling volume into cubes. We will now attempt to drop this assumption in order
to formulate a more general expression. We have seen that in the Langevin equation
the state becomes continuous in time. Consistent with that we will, thus, also try to
express the state continuous in space. How can we achieve that? We will first switch
from expressing S in coordinates in space instead of cube indices k. This has been done
implicitly with the cubes already as each cube had a position in space x = {x, y, z}.
Thus, we will now explicitly express S as function of x. The neighborhood of a cube
can still be expressed easily, for instance the neighbors of the state S(t, {x, y, z}) on
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the x-axis are given by S(t, {x− l, y, z}) and S(t, {x+ l, y, z}), thus, the midpoints of
the previous cubes. We will also keep the cube side length l as a variable now, thus
explicitly including the propensity equation for di for species Si as given in equation
2.36. This results in the following reformulation of the Langevin equation20:

d
〈
S(t,x)

〉
dt

=
∑
j

φjrj(S, t,x)

+
∑
i

Di

l2

[
Si(t, {x+ l, y, z}) + Si(t, {x− l, y, z})

+ Si(t, {x, y + l, z}) + Si(t, {x, y − l, z})

+ Si(t, {x, y, z + l}) + Si(t, {x, y, z − l})− |N(k)|Si(t, {x, y, z})
]

(2.44)

We are now in continuous space. Thus our state S will be transformed to concentra-
tions of molecules, with the variables continuous in time as well as space. This results
in the following limit case for the propensities rj derived in equation 2.10

rj(S, t,x) = k̃j
∏
k

Sk(t,x)ak . (2.45)

Also, l can now be fully varied. The sum over i is nothing else than multiplication
of all the state vectors in the diffusion term by a diagonal matrix whose entries are
given by the diffusion rates Di. We will denote this matrix by D. Furthermore, we
will for now assume an unbounded space, so every cube has |N(k)| = 6 neighbors21.
As many reactions happen, the mean reaction path will be shorter and shorter and l
will approach zero. Applying some rearrangements and letting l → 0 this results in
the following equation:

d
〈
S(t,x)

〉
dt

=
∑
j

φjrj(S, t,x)

+ lim
l→0

D

[
S(t, {x+ l, y, z})− 2S(t,x) + x(t, {x− l, y, z})

l2

+
S(t, {x, y + l, z})− 2S(t,x) + x(t, {x, y − l, z})

l2

+
S(t, {x, y, z + l})− 2S(t,x) + x(t, {x, y, z − l})

l2

]
.

(2.46)

The expressions appearing in the diffusion term are second order central differences,
as such the limit cases are the second-order partial derivatives in space and the sum
is nothing else than the Laplace operator defined in 3-D space and for multivariate
functions as22

∆xf(x) =

∇x · ∇xf1
...

∇x · ∇xfn

 =
∂f

∂x
+
∂f

∂y
+
∂f

∂z
=

∆xf1
...

∆xfn

 . (2.47)

20This is still the mean of the previous Langevin equation.
21Note, that all transformations can also be executed for a one- or two-dimensional space. In general

every cube would then have 2 · d neighbors with d being the dimension.
22fi are the vector components of the multivariate function f .
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Assuming the absence of fluctuations, or explicitly modeling the mean state, this trans-
forms in the reaction-diffusion equation given as

dS(t,x)

dt
=
∑
j

φjrj(S, t,x) + D∆xS(t,x). (2.48)

This equation now includes derivatives in space and time at the same time, thus, it
is a partial differential equation (PDE). We will treat strategies to solve this equation
later but before that we will make a short excursion to boundaries in space.

Boundary and initial conditions

In the previous section we defined an equation for the evolution of the system state
in time and space. This reaction-diffusion equation defines the solution of the system,
but is the equation sufficient to derive a unique solution for the state of the system?
Even though we have not looked at the theory of solution strategies we can already
say that the equation as we have defined it here imposes some problems.
In order to derive equation 2.48 we assumed an infinite space, however, this will not
ever be the case in our modeling approaches. In most cases, our system will be modeled
in a distinct volume Ω. The equation fully describes the system within that volume,
but what happens at the boundary ∂Ω? The boundary is also part of the solution, so
for different boundary conditions we may expect different solutions. As a consequence,
defining the system without boundary conditions prevents existence of a unique so-
lution. As such the problem is already ill-posed and we need to provide boundary
conditions.
Luckily, there are only few restrictions on the form of the boundary conditions. In
fact, any unique function on ∂Ω is a suitable boundary condition, even though we
will see later that some boundary conditions are more suitable than others. What are
the most common boundary conditions when modeling biological systems? The most
trivial choice would be to fix the value of the solution on the boundary. Thus, we get

S(t,x) = f(t,x) for x ∈ ∂Ω. (2.49)

Boundary conditions of this type are called Dirichlet boundary conditions. This may
look trivial, but if we do not know S we often will not know its values on ∂Ω. It will
be much more common, however, that we know some fluxes or conservation properties
on the boundary. We will define this boundary condition via the normal n of the
boundary. The normal is a vector which is perpendicular to the boundary, thus its
scalar product 〈·, ·〉 will evaluate to zero, 〈n, ∂Ω〉 = 0. With this definition the direction
of the normal is not unique, thus, we will define it to always point outwards. This
gives the Neumann boundary condition

dS(t,x)

dn
= f(t,x) on ∂Ω. (2.50)

Having a Neumann boundary of zero would correspond to an isolated system, as it
means that no substances are exchanged over the boundary. Consequently, a negative
Neumann boundary describes an influx into the volume Ω over the boundary and a
positive Neumann boundary an efflux. Neumann boundaries can be interpreted much
easier biologically and are, thus, the preferred choice in Systems Biology.
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Finally, the last boundary condition we will introduce is the Robin boundary condition
which is a mixture of the Dirichlet and Neumann boundary condition and has the form

αS(t,x) + β
dS(t,x)

dn
= f(t,x) on ∂Ω, (2.51)

with α and β being scalars. It can be seen as a coupling between the boundary value
and its normal derivative, thus it acts like an equilibrium boundary condition.

Even with fully defined boundary conditions we still can not expect to find a solution
to the problem formulated in equation 2.48. This is due to the fact that the equation
describes the temporal and spatial evolution of the state, which will depend on the
initial state S0(x) = S(0,x). However, if we provide the initial state as well we finally
end up with a fully defined reaction-diffusion problem which is given by:

1. its reaction-diffusion equation dS(t,x)/dt =
∑

j φjrj(S, t,x) + D∆xS(t,x),

2. its boundary conditions on ∂Ω

3. and its initial condition S0(x).

The central question is if, and how, we can solve this problem which, as we will see,
will bring us to a large class of mathematical problems.

Weak formulations and bilinear forms

What we aim to find is a function S(t,x) which solves our reaction-diffusion problem.
Classical algebra or calculus will not help us here, because were are not looking for
a specific value, but the entire function. Additionally, we also want to find a unique
solution. Because, some of the steps we will use may seem counterintuitive I will
first exemplify them on a very simple problem and extend the solution strategy to
the reaction-diffusion problem afterwards. The main strategy we will employ will be
looking for a solution in a specific function space V of test functions. The test functions
are chosen in a way that they form a basis of a large function space in which we aim
to find our solution function u. Because the test functions vi form a basis, a function
u can be expressed by u =

∑
i uivi, thus by a coefficient vector. We will apply this

strategy to the following example problem of a linear system

Au = f with u, f ∈ Rn. (2.52)

Our test functions vi will be the unit vectors ei which form a basis of Rn. For each
basis function we will now apply the scalar product on both sides of the equation,
yielding

∀i : 〈Au, ei〉 = 〈f , ei〉. (2.53)

Applying the basis property to u results in

〈A
∑
j

uiej, ei〉 = 〈f , ei〉 (2.54)∑
j

uj〈Aej, ei〉 = 〈f , ei〉 (2.55)
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This is now an equation which only acts on the test functions in order to find u. As it
is formulated on a finite subspace of functions which might be smaller than the original
function space, it is called the weak formulation of the problem. But does that imply
a unique solution to the problem. Letting u = ui be the coefficient vector to vi and
f = {fi} = {〈f , ei〉}, one can see easily that the matrix formulation of this problem,
Au = f , is equivalent to the original problem. The weak formulation also induces a
bilinear form for all v ∈ V : a(u, v) = vTAu. The problem can, thus, be formulated
in the following standard form of the weak formulation: find u ∈ V such that for
any v ∈ V it holds that a(u, v) = f(v). In particular it seems to hold that the weak
formulation implies existence and uniqueness of the solution.

The example makes it intriguing to ask whether this strategy always implies exis-
tence and uniqueness. Indeed, there is a large class of problems where this holds, the
conditions being given by the following theorem [proof in 194].

Theorem 2.1 (Lax-Milgram Theorem). Let V be a Hilbert space, V ′ the dual of V
and a(u, v) a bilinear form on V . Then if a(u, v) is

1. bounded: ||a(u, v)|| ≤ c · ||u|| · ||v||, c ∈ R and

2. coercive: ||a(u, u)|| ≥ a · ||u||2, a ∈ R, a > 0

it follows that for any f ∈ V ′ there is a unique solution u ∈ V to the equation

a(u, v) = f(v)

and that ||u|| ≤ 1
c
||f ||.

We will now apply the same strategy to our reaction diffusion equation, thus, we
aim to find a solution u = S(t,x) fulfilling

dS(t,x)

dt
=
∑
j

φjrj(S, t,x) + D∆xS(t,x). (2.56)

This formulates an equation for each component ui of the solution u(x) =
(
ui(x)

)
i

as

∀i :
dui
dt

=
∑
j

φi,jrj(u) +Di∆xui. (2.57)

We will use the induced scalar product in the function spaces given by

〈f, g〉 =

∞∫
−∞

f · g dx, with f, g ∈ V. (2.58)

Multiplication with the test functions v and integration leads to the following formu-
lation of our reaction-diffusion problem: find ui ∈ V such that for all v ∈ V∫

Ω

dui
dt
vds =

∑
j

φi,j

∫
Ω

rj(u)vds +Di

∫
Ω

(∆xui)vds. (2.59)
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In order to transform this into a more standardized weak formulation we have to
separate terms which do not explicitly include the solution u. This will be the case for
all zero-order reactions, meaning reaction propensities which are solemnly composed
by a constant kj. We will collect those reaction terms in a vector f given by the set of
all zero order reaction indices R0 in the following way

f =
∑
j∈R0

φjrj(u) =
∑
j∈R0

φjkj. (2.60)

All the remaining reaction rj should now be at least first order, yielding∫
Ω

dui
dt
vds−

∑
j

φi,j

∫
Ω

rj(u)vds−Di

∫
Ω

(∆xui)vds =

∫
Ω

fivds. (2.61)

Applying Green’s identity furthermore results in∫
Ω

dui
dt
vds−

∑
j

φi,j

∫
Ω

rj(u)vds +Di

∫
Ω

∇xui∇xvds−Di

∫
∂Ω

(∇xui · n)vds =

∫
Ω

fivds.

(2.62)
Apart from reducing the order of the derivatives this has an important consequence:
we now have a term defined on the boundaries of the volume Ω. In particular it already
includes a spatial derivative of ui. This allows us to insert the Neumann boundaries
directly into the equation23. A similar strategy can be employed for Dirichlet and
Robin boundaries. However, we will not treat Robin boundaries here. The strategy is
similar, but since we will not use them further, they shall not be treated here.
Thus, we assume our volume boundary ∂Ω can be divided completely into a Neumann
boundary ΓN and a Dirichlet boundary ΓD. Furthermore, let the Neumann boundary
be given by

du

dn
=
(
γiN(x)

)
i

= γN(x) on ΓN (2.63)

and the Dirichlet boundary by

u =
(
γiD(x)

)
i

= γD(x) on ΓD, (2.64)

thus, by a set of boundary conditions for each component of the solution ui. Plugging
this into equation 2.62 and sorting terms yields∫

Ω

dui
dt
vds +

∑
j

φi,j

∫
Ω

rj(u)vds−Di

∫
Ω

∇xui∇xvds =

∫
Ω

fivds +Di

∫
ΓN

(γiN · n)vds +Di

∫
ΓD

dγiD
dn

vds. (2.65)

However, even though this equation forces the derivative of the Dirichlet condition to
be included it does not enforce the solution to have Dirichlet values on the boundary,
which can be seen particularly easy when the Dirichlet boundary condition is a con-
stant. The equation still implicitly induces a zero Dirichlet boundary. This can be

23This is why Neumann boundaries are often called natural boundary conditions.
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fixed by substituting ui by ui + γiD. Assuming we use a basis which vanishes on the
boundary, this will result in the correct Dirichlet boundary values. Substituting this
into equation 2.65, leads to

∫
Ω

dui
dt
vds +

∑
j

φi,j

∫
Ω

rj(u + γD)vds−Di

∫
Ω

∇xui∇xvds =

∫
Ω

fivds +Di

∫
ΓN

(γiN · n)vds +Di

∫
ΓD

dγiD
dn

vds−Di

∫
Ω

∇xγ
i
D∇xvds−

∫
Ω

dγiD
dt

vds

(2.66)

This equation now already has a standardized weak form. For now we can not
reduce it further as we remain with the nonlinearities introduced by the reaction rate
functions rj and the derivative in t. We will treat strategies to solve nonlinear systems
and ordinary differential equations later, but for that we first need a finite space for
our test functions and solutions. The problem formulation for now is still for a Hilbert
space and since the equations includes derivatives as well as the induced scalar product,
this will be the Sobolev space H0, which is non-finite. So we we will now try to find a
finite basis which gives good approximations of the solution.

The finite element method

We aim at finding the solution to our reaction-diffusion problem, u, in a finite space
which allows a good approximation of the real solution. There is a large theory of
approximating functions by simpler functions spaces in mathematics and it is closely
connected to interpolation. Taylor’s theorem gives a way to approximate any function
by a polynomial of possibly infinite degree:

Theorem 2.2 (Taylor’s theorem). Let f : Rn → R be a k-times differentiable function
at the point a then there exists a function Ra : Rn → R such that

f(x) =
k∑
|j|=0

Djf(a)

j!
(x− a)j +

∑
|j|=k

Ra(x)(x− a)j, (2.67)

with lim
x→a

Ra(x) = 0.

As thus, it seems natural to choose a basis of polynomials up to some degree k as
a basis to approximate our function u. Another principle from interpolation theory is
the approximation of higher order functions by piecewise polynomials of lower order.
Thus, if we subdivide our volume Ω into a set Ω =

⋃
h Ωh and choose a set of basis

functions which is only non-zero on one element we can select a low-order polynomial
basis in order to express the solution u within that basis. Because for this we will
subdivide our volume into finite set of distinct elements those methods are called finite
element methods. Thus, our basis will be given by the piecewise polynomial of degree
k on each subvolume Ωh

{vh|vh ∈ Pk,vh : Ωh → Rn}. (2.68)
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We will concentrate on cases for two space dimensions in order to illustrate the
construction of the basis functions as those are the ones we will use in our thesis.
However, the derivation is completely equivalent for higher space dimensions. The
subdivision of the volume

⋃
h Ωh is usually done by a triangulation, thus, by subdividing

the area Ω into a set of triangles. The same can be done with rectangles or any other
shape24. The coefficients of the basis functions are the quantities which we want to
identify. However, we know that any polynomial of degree k in dimension d is also
fully specified by k · d of its function values. As such the idea is to define a set of
control points on the triangles or rectangles used and to express the function vh by
the values ui on the control points. We will execute this for the univariate case only,
as the basis for the multivariate case is just the same basis applied to every variable in
the solution vector. First let us assume we have a triangular or rectangular element Ωh

with their respective corners Pi = (xi, yi) each. In a first step we want to transform the
finite elements into a coordinate system where every element is standardized. Thus if
our original element was a function of x and y we want to map it to a α-β coordinate
system where α and β are in [0, 1] and the shapes are mapped as illustrated in figure
2.11. The transformation allowing that for the triangle shape is

x = x1 + (x2 − x1)α + (x3 − x1)β (2.69)

y = y1 + (y2 − y1)α + (y3 − y1)β (2.70)

and for the quadratic shape

x = x1 + (x2 − x1)α + (x3 − x1)β + (x4 − x1)αβ (2.71)

y = y1 + (y2 − y1)α + (y3 − y1)β + (y4 − y1)αβ. (2.72)

There are obviously several basis for the polynomials. The one we want to choose
is defined by the control points, thus, if our control points have solutions ui assigned
to the control point Pi our basis functions vi = vi(α, β) should allow our solution s to
be expressed as

s =
∑
i

uivi = uv. (2.73)

In order to derive this basis we start with an Ansatz based on the monomes mi with
coefficients ci, thus the solution is given by

s = c ·m = u · v (2.74)

The trick is to find the vector c. For this we identify the coefficients that lead to the
correct values ui at the control points Pi = (α1, β1). This condition is given by the
following linear system:m1(α1, β1) . . . mn(α1, β1)

...
. . .

...
m1(αn, βn) . . . mn(αn, βn)

 ·
c1

...
cn

 = A · c = u (2.75)

Plugging this into equation 2.74 leads to

s = A−1u ·m = u · v (2.76)

→ s = u · (A−1)Tm = u · v (2.77)

→ v = (A−1)Tm. (2.78)

24In 3-D the most common shape is the tetrahedron.
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Figure 2.11: The shapes of the finite elements and their standardized mapping into a new coordinate
system. Control points for the linear basis functions are shown as dark blue dots. The
additional control points for the cubic basis functions are shown as red diamonds.

This gives us our basis functions vi. One needs one control point for each initial
monom basis function. Thus, for higher order polynomials, we have to add control
points to the elements as illustrated in figure 2.11. If we keep the control points of
lower order polynomials and only add new ones for higher order polynomials, this
basis allows a quite simple transition between basis functions if the geometry of finite
elements Ωh remains unchanged. In particular, if we want to find a solution in the
higher polynomial basis ṽ we can easily map the solution of the lower polynomial basis
v and use it as an initial guess for the new solution which allows a fast error reduction
and fast computation of the new solution. Another advantage of those basis functions
is that we can express our Dirichlet zero boundary by directly setting control points on
the boundary to zero. This abolishes the need for the additional terms introduced in
equation 2.66. However, one can see that only for linear basis functions this will result
in a truly complete zero boundary. Consequently, if one wants to have good solutions
at the boundaries, linear basis functions should be chosen for those elements.
The corresponding basis functions v = {vi(α, β)} for the linear and cubic case are
given by:

vl =

1− α− β
α
β

 and vc =


(1− α− β)(1− 2α− 2β)

α(2α− 1)
β(2β − 1)

4α(1− α− β)
4αβ

4β(1− α− β)

 . (2.79)

With any of those basis functions v we can now express our solution ui by the
function values at the control points phi,k and over the finite element Ωh with basis
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functions vhi . However, our solution is also a function of time. We can still use the
same basis if we simply convert the coefficients into functions of time. Thus, let us
assume we have a total of nh finite elements, then the basis vi can be defined as

vi =

 v1
i
...

vnhi

 (2.80)

with the coefficients pi(t)

pi =

 p1
i (t)
...

pnhi (t)

 . (2.81)

Thus, the size of our basis will depend on the polynomial degrees as well as the number
of finite elements nh. With this basis we now can express our solution ui simply by

ui(t) =
∑
k

pi,k(t) · vi,k, (2.82)

where k denotes an index running over the individual components of the basis functions
vhi . Plugging this into our weak formulation 2.65 now yields25

∀l :
∑
k

dpi,k
dt

∫
Ω

vi,kvi,lds +
∑
j

φi,j

∫
Ω

rj(u)vi,lds−Di

∑
k

pi,k

∫
Ω

∇xvi,k∇xvi,lds =

∫
Ω

fivi,lds +Di

∫
ΓN

(γiN · n)vi,lds +Di

∫
ΓD

dγiD
dn

vi,lds (2.83)

The expression now defines our solution in terms of the coefficients pi(t). All the other
terms are already completely defined by our basis functions. In order to make this
more apparent we will now define a set of matrices and functions.

We begin with defining the so called mass matrix Mi with

Mi =

 〈vi,1, vi,1〉 . . . 〈vi,nib , vi,1〉
...

. . .
...

〈vi,1, vi,nib〉 . . . 〈vi,nib , vi,nib〉

 (2.84)

using the induced scalar products

〈∇xvi,k,∇xvi,l〉 =

∫
Ω

∇xvi,k · ∇xvi,lds (2.85)

and nib being the number of basis functions for ui.
We also define the stiffness matrix Si with

Si =

 〈∇xvi,1,∇xvi,1〉 . . . 〈∇xvi,nib ,∇xvi,1〉
...

. . .
...

〈∇xvi,1,∇xvi,nib〉 . . . 〈∇xvi,nib ,∇xvi,nib〉

 . (2.86)

25Note that for the special case that we choose the same basis for all solution components it holds
that ∀k, i, j : vi,k = vj,k.
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The left hand side of the equation will be expressed in the linear form Li = (lij)j
with

lij =

∫
Ω

fivi,jds +Di

∫
ΓN

(γiN · n)vi,jds +Di

∫
ΓD

dγiD
dn

vi,jds (2.87)

Finally, the nonlinear terms are collected in Fi with

Fi(p) =


∑

j φi,j〈rj(u), vi,1〉
...∑

j φi,j〈rj(u), vi,nib〉

 . (2.88)

This now allows us to express the entire problem in a standard nonlinear ordinary
differential equation (ODE) for each solution component ui given by

∀i : Mi
dpi
dt

+ Fi(p) + Sipi = Li. (2.89)

Obviously, by defining matrices M,S with the individual matrices for each ui on their
diagonal and appending all coefficients, nonlinear terms and left hand sides into vectors
F,p,L the solution u is governed by the ODE system

M
dp

dt
+ F(p) + Sp = L. (2.90)

What do we gain with this formulation? We have started from a nonlinear ODE sys-
tem for u, however the original system contained several integrals which we could not
determine as well as derivatives of the unknown solution in time as well as space. In
equation 2.90 we find only derivatives and integrals over basis functions which we have
defined ourselves. In fact, if we maintain the basis, all integrals and derivatives can
be computed before solving the system once and used accordingly. Furthermore, the
basis has small support, meaning that many of the products of the basis functions and
their derivatives will evaluate to zero. Due to the definition of the basis this is the case
for all scalar products involving basis functions from different finite elements. Because
any finite element has a small bounded numbers of neighbors (three for triangles for
instance), only a small fraction of the used matrices will be filled. Thus, the number
of non-zero matrix entries is linear in the product of the numbers of basis functions
and finite elements, making it very sparse.
Strategies how to solve this nonlinear ODE system will be introduced shortly in this
section, however, before that we will introduce another method to formulate the prob-
lem over finite elements.
In order to reduce the complexity of our problem we have defined the solution ui as
a continuous function given by the finite element basis. This strategy is also known
as the Galerkin method. However, this assumes that our solution will be continuous
over the finite elements. This not only becomes problematic if our solutions is not
continuous but also when the solution includes some extreme jumps in space. In or-
der to express those jumps one would have to make the grid very fine, and thus, the
finite elements extremely small. Thus, in those cases it would be advantageous to
relax the condition of a continuous function and sometimes allow for jumps between
neighboring finite elements (also illustrated in Figure 2.12). Thus, we are looking for
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a stable method which would allow those jumps but still formulates a solution con-
sistent with the weak formulation. Looking at equation 2.65 and 2.90 we see that we
can add arbitrary functions to both sides of the equation or zero expressions to any
side without loosing equivalence to the original system. This defines an infinite set of
Galerkin methods to solve the system and we will aim at finding the class of methods
which allows for the jumps. As we will allow for discontinuities in the solution those
methods are called discontinuous Galerkin methods (dG-FEM).

x

u*

x

u
FEM

dG

x

u

Figure 2.12: Allowing for discontinuities in space of the approximated solution u may sometimes
be advantageous to a completely continuous solution as in FEM methods. Thus, the
discontinuous Galerkin (dG) method may allow for discontinuities which improve the
approximation even if the real solution u∗ is continuous.

Discontinuous Galerkin methods

We will now construct a method to approximate the continuous solution u by piecewise
discontinuous function. In order to maintain the equations concise we will use a simple
example to introduce this discontinuous Galerkin method. For this, we will first define
a few quantities to describe the jumps we will now allow between finite elements.
On the boundary ∂Ω we already had an assigned normal pointing outwards of the
boundary. We will extend this to all inner edges Ψj as well, thus the edges between
finite elements. The normal will again point outwards of the finite element. Any
function defined on the finite elements now may take two different values approaching
the boundary depending on the direction it is coming from. We define the boundary
value coming from the inside of the finite element as

f i = lim
h→0−

f(x+ hn), (2.91)

and the function value when approaching an edge point from the outside as

f o = lim
h→0+

f(x+ hn). (2.92)
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We will furthermore define the average
〈
·
〉

and the jump [[·]] as〈
f
〉

=
1

2
(f i + f o) [[f ]] = f i − f o. (2.93)

The sample problem we will treat is the Poisson equation with mixed boundary con-
ditions

∆u = 0 (2.94)

du(x)

dn
= 0 on ΓN (2.95)

u(x) = C on ΓD (2.96)

Again we will multiply the equation by the test functions v and apply Green’s identity.
However, since we now have interior boundaries and smooth functions only on the
individual finite elements, we have to apply Green’s identity to each finite element,
which yields

∀v :

∫
Ω

∇xu∇xvds =

∫
∂Ω

(∇xu · n)vds+
∑
j

∫
Ψj

(∇xu · n)[[v]]ds. (2.97)

u is still a continuous functions, thus, at the boundaries we will have u =
〈
u
〉
. Ad-

ditionally, plugging in the boundary conditions the term for the outer boundaries
disappears and we have∫

Ω

∇xu∇xvds =
∑
j

∫
Ψj

(∇x
〈
u
〉
· n)[[v]]ds. (2.98)

We see that we now have a term that depends on the jumps of the basis functions,
however no term that includes jumps in the solution u. We will make the equation
more symmetric by adding a zero function to the left side which has a similar form as
the term for the jumps in v, but now with the jumps in u∑

j

∫
Ψj

(∇x
〈
v
〉
· n)[[u]]ds = 0. (2.99)

This expression is zero due to the continuity of u, and for the sake of consistency this
should also hold for the outer Dirichlet boundaries. Thus add the following expression
to both sides of equation 2.98 ∑

j

∫
ΓD

(∇x
〈
v
〉
· n)[[u]]ds. (2.100)

This yields the following discontinuous Galerkin equation∫
Ω

∇xu∇xvds+
∑
j

∫
ΓD

(∇x
〈
v
〉
· n)[[u]]ds+

∑
j

∫
Ψj

(∇x
〈
v
〉
· n)[[u]]ds =

∑
j

∫
Ψj

(∇x
〈
u
〉
· n)[[v]]ds+

∑
j

∫
ΓD

(∇x
〈
v
〉
· n)[[u]]ds. (2.101)
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Due to the addition of the terms (and not subtraction) the resulting bilinear form
will not be completely symmetric, which is why this discontinuous Galerkin method
is called non-symmetric interior penalty Galerkin method (NIPG). The advantage of
this method over other interior penalty methods for us is that it fulfills a conservation
law, meaning that integrals over the real solution u are conserved in the solution of
the NIPG method. The importance for this will become more apparent in section 3.2.
The method as formulated in equation 2.101 is still very unstable. This is due to
the fact that we allow jumps and do not restrict them, which gives a lot of freedom
to either approximate the solution by the polynomials or the jumps. As such there
are many different solutions which “almost” fulfill the equation. However, if we can
approximate the solution very well without the jumps we would like to have a fully
continuous solution. As such, it would be beneficial to penalize large jumps. Due to
this, we can stabilize the method significantly by adding a jump penalty to the left
side

−
∑
j

∫
Ψj

σj[[u]] · [[v]]ds = 0. (2.102)

This finally yields the stabilized NIPG method for the Poisson equation given by∫
Ω

∇xu∇xvds+
∑
j

∫
ΓD

(∇x
〈
v
〉
· n)[[u]]ds+

∑
j

∫
Ψj

(∇x
〈
v
〉
· n)[[u]]ds

−
∑
j

∫
Ψj

σj[[u]] · [[v]]ds =
∑
j

∫
Ψj

(∇x
〈
u
〉
· n)[[v]]ds+

∑
j

∫
ΓD

(∇x
〈
v
〉
· n)[[u]]ds.

(2.103)

The parameter σj must only be larger than zero to assure convergence. However, one
can improve the performance by normalizing the penalties, so that jumps are penalized
the same independent of edge properties. This can be achieved by scaling σj with the
edge length lj, thus

σj =
A

lj
, A > 0 ∈ R. (2.104)

We see that any normal FEM formulation can be transformed easily into a NIPG
method by adding the interior integrals of Green’s identity, the symmetry terms and
the jump penalty. The jumps are defined on the basis functions only and can be pre-
computed again. Thus, we result in a nonlinear ODE as in equation 2.90.

We can now ask ourselves how we can solve the resulting nonlinear ODE system.
The main strategy one employs when solving such systems is to discretize the system
in time and solve nonlinear equations systems for each time-step. Thus, we will begin
to introduce strategies to solve nonlinear systems and continue with time discretization
techniques.

Nonlinear root finding

The Newton-Raphson method
Nonlinear systems also arise when looking for steady state solution, thus, solutions

where the system state is in equilibrium. In our framework, this means that the solution
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components ui are constant in time. Thus their coefficients for the basis functions must
be as well26 and equation 2.90 reduces to

F(p) + Sp = L. (2.105)

This is the steady state equation and it is obviously a nonlinear equation system.
Furthermore, if we define a function G(p) = F(p) + Sp − L we can formulate the
problem into the usual form of nonlinear systems, given by

G(p) = 0. (2.106)

Thus, in the general case we aim to solve the nonlinear system

F(x) = 0. (2.107)

In order to identify the vector x∗ which fulfills this property we will use a succession
of linear approximations of the function F. From the Taylor theorem 2.2 we know that
we can approximate F linearly by

F(x) = F(x0) +DF(x0)(x− x0), (2.108)

where DF is the Jacobian matrix of F given by

DF =


dF1

dx1
. . . dF1

dxn
...

. . .
...

dFn
dx1

. . . dFn
dxn

 . (2.109)

Applying this to our nonlinear system we derive

F(x) = 0 (2.110)

F(x0) +DF(x0)(x− x0) = 0 (2.111)

DF(x0)(x− x0) = −F(x0) (2.112)

DF(x0)∆x = −F(x0) (2.113)

This defines an iterative rule to approximate the optimal coefficients x∗ by starting
from an arbitrary initial set x0 and applying the method repetitively yielding xk+1

in each iteration. If xk is sufficiently close to x∗ the iteration will converge with the
order two, meaning that the difference between approximation and real coefficients
will decline by a power of two in each iteration [195]. This is essentially a consequence
of the Taylor theorem as the linear approximation describes linear functions, thus,
functions of order one, exactly. Consequently, the update rule given by the linear
system

DF(xk)∆xk = −F(xk) (2.114)

defines an iterative method to derive better approximations xk+1 for x∗, with xk+1 =
xk + ∆xk. The method is known as the Newton-Raphson method.
One of the major obstacles is finding an initial candidate solution which is close enough

26 dp
dt = 0
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to the real solution in order to assure convergence. If our initial guess is to far away we
run into the danger of overshoot, meaning that we chose a too large ∆xk and actually
increase the distance to the real solution. This local convergence can be transformed
into global convergence by a damping strategy. Here the step size ∆xk is multiplied by
a damping factor λk chosen in a way to assure convergence of the method. A strategy
to choose λk is based on the natural monotonicity test, where we first test with the old
Jacobian whether the step λkxk will bring us closer to the solution [196]. The resulting
globally converging algorithm looks the following:

Data: x0,F,DF, εres, εred
Result: xk ≈ x∗

xk = x0;1

repeat2

λk = 1;3

solve DF(xk)∆xk = −F(xk);4

solve DF(xk)∆xk = −F(xk + λk∆xk);5

while ∆xk ≤ (1− λk/2)∆xk is not fulfilled do6

λk = λk/2;7

solve DF(xk)∆xk = −F(xk + λk∆xk);8

end9

xk+1 = xk + λk∆xk;10

until ||λk∆xk|| < εred and ||F(xk+1)|| < εres ;11

return xk+112

Here εred and εres denote stopping criteria for the step size and residual, respectively.
One should note that one can implement the damping efficiently by calculating a LU-
decomposition of the Jacobian matrix, as this allows for fast solution with varying
right hand sides as it is the case here.

Applying the Newton-Raphson method to our weak formulation requires the function
G but also DG which is given by

DGi
= DFi + Si =

(∑
k

φi,k〈
drk(u)

dpj
, vi〉

)
i,j

+ Si. (2.115)

It is important here to mention that the Jacobian defined in this way will exist for all
coefficients, as long as our reaction propensities are differentiable for all coefficients27.
In this case all the linear systems arising in the Newton-Raphson method exist and
have a unique solution.
The linear system arising in the Newton-Raphson iteration with the form

DF(xk)∆xk = −F(xk) (2.116)

can be solved using standard algorithms for solving linear system, most prominently
the Gauss algorithm, which yields a LU-decomposition of the matrix. However, given

27When using our initial definition of reaction propensities from equation 2.10 this will always be the
case
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the sparse structure and instabilities in the original system the most efficient methods
are the ones reordering the original system. Let us assume we start from an initial
system Ax = b, then we can multiply this system by a row ordering matrix P, a
column ordering matrix QT and a diagonal scaling matrix R yielding

PRAxQT = PRbQT (2.117)

PRAQx = PRQb. (2.118)

The matrices used P,R and Q are chosen in a way that they maximize stability and
sparsity and allow for rapid calculation of the LU-decomposition. Two of the fastest
implementations of this kind are SuperLU and UMFPACK [197, 198].

Picard iteration
Next to Newton methods there exists another simpler method for some special cases.

Let us assume our nonlinear part of the ODE system F(u) = F(p) can be decomposed
into the following form

F(u) = λ(u)u + g(u). (2.119)

In this case there is already an implied linearization of the system, and we can construct
a simple iteration scheme by delaying the nonlinearities in the following manner:

F(uk+1) = λ(uk)uk+1 + g(uk), k = 0, 1, 2, . . . (2.120)

This iterative scheme can be shown to converge to the real solution as well [199].
Additionally, it has the advantage of not requiring the Jacobian, thus, it is fully defined
by the weak formulation alone. In this thesis we will introduce an additional speed-up
of the Picard method in the following manner.
Let us assume that Fi(u) does not depend on all functions contained in u but rather
a subset denoted by a dependence d =

{
i|i ∈ {1, . . . , ns},F = F(ui)

}
. Then we can

order the system such that the equations for the ui with the fewest dependencies |d|
are solved first, giving better approximations for the delayed nonlinearities. Thus,
given a new ordering of ui beginning with the smallest dependencies and ending with
the largest dependency, we now derive the following equations for ui:

λi(uj≥i,k, uj<i,k+1)ui,k+1 + g(uj≥i,k, uj<i,k+1) + Sipk+1 = Li (2.121)

∀l :λi(pj≥i,k,pj<i,k+1)
∑
j

pji,k+1vj,lvi,l + gi(pj≥i,k,pj<i,k+1) + Sipk+1 = Li (2.122)

diag(λi(pj≥i,k,pj<i,k+1))Mpk+1 + Spk+1 = Li − gi(pj≥i,k,pj<i,k+1). (2.123)

Here diag(x) denotes a diagonal matrix with the entries being x. All those systems
are linear, if the dependency is completely resolved. Thus, if one equation is linear,
another equation nonlinear only in one solution etc., this method solves the system in
one iteration. For any other case intermediate approximations are incorporated in the
solution of the equations providing better convergence within a single iteration.

This gives us an efficient methods to solve nonlinear systems. Thus, we will now
look at methods to achieve the time discretization for our ODE system.
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Runge-Kutta methods for large sparse systems

Analogous to our spatial discretization by the finite elements, we will also discretize
our solution in time. For this we will advance in time by a distinct step size h. Thus
in each time step we will advance from a time point ti to a time point ti + h.
We will begin by bringing our system into a standard form for an ODE system in the
following manner

M
dp

dt
+ F(p) + Sp = L (2.124)

→dMp

dt
= L− F(p)− Sp (2.125)

→dp

dt
= M−1f(p) with f(p) = L− F(p)− Sp. (2.126)

Thus, the general form of this ODE system is

dy(t)

dt
= f(y, t). (2.127)

Using our time stepping scheme and applying the fundamental theorem of calculus,
we can write down the solution to this problem directly as

y(tk + h) = y(tk) +

tk+h∫
tk

f(y, t)dt. (2.128)

However, this integral is usually not solvable analytically so we will approximate it by
a quadrature formula with s stages yielding [200]

y(tk + h) ≈ y(tk) + h
s∑
i

bif(y, tk + cih). (2.129)

However, we do not know y and as such neither y(tk + cih). Thus, we will have to
substitute y(tk + cih) by another quadrature formula as well yielding

f(y, tk + cih) ≈ ki = f(yk + h
∑
j

aijkj, tk + cih). (2.130)

This yields the general form of the Runge-Kutta methods, which are defined by its
coefficients b, c and the coefficient matrix A = (aij)ij. As such an s stage Runge-
Kutta method is represented by its Butcher array given by

c A
b

(2.131)

As one can see, if A is lower triangular with a zero diagonal all quantities can be
directly computed by forward substitution, yielding the approximation explicitly. This
class of Runge-Kutta methods is called explicit methods whereas all other methods are
called implicit methods. Explicit Runge-Kutta methods with s stages can employ
error reduction in the order of O(hs). Additionally, there are embedded Runge-Kutta
schemes were an s stage method and an s + 1 stage method share s of their stages,
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which can be used for error control and adaptive step size selection.
Given this information, one might think that explicit methods might me a good general
choice for most problems given their simple computation, good error properties and
adaptivity. However, it turns out that there is a large class of problem where explicit
methods perform very bad and require extreme step size reduction on smooth parts
of the solution to uphold a given error constraint. Equations of this kind are called
stiff. Integration methods which can deal efficiently with stiffness are generally called
stable. There is a large theory concerning stability of ODE solvers which we will not
recapitulate here as we will treat ODE systems only marginally in this thesis. For more
information on stability and the underlying mathematics we refer to some standard
books in this area [201, 200, 202]. For us it will be sufficient to know that no explicit
method is stable. This is unfortunate as many reaction as well as reaction-diffusion
systems employ a high degree of stiffness. This is due to the different time scales at
which diffusion and reactions can take place.
Whereas no explicit method is stable, there is a large class of implicit methods that are
stable. For instance, a class of implicit Runge-Kutta methods, the Gauss collocations
methods [202]. An s stage Gauss collocation method assures error reduction in O(h2s),
however due to its completely filled coefficient matrix A it also needs more computation
as we will see now.
An s stage Gauss collocation method is again defined by its Butcher array A,b, c with
the Runge-Kutta equations

y(tk + h) = y(tk) + h
s∑
i=1

bif(ki, tk + cih), (2.132)

where ki = y(tk) + h
s∑
j=1

aijf(kj, tk + cjh). (2.133)

The quadrature rules for the intermediate solutions ki formulate a nonlinear equation
system with

∀i : Fi(k) = ki − yi(tk)− h
s∑
j=1

aijf(kj, tk + cjh) = 0 (2.134)

We can solve this method using the Newton-Raphson method which will require us to
calculate the LU decomposition of the Jacobian DFi to obtain

DFi(ki,n)∆ki,n+1 =


I− ha11J1 −ha12J2 . . . −ha1sJs
−ha21J1 I− ha22J2 . . . −ha2sJs

...
...

. . .
...

−has1J1 −has2J2 . . . I− hassJs

∆ki,n+1 = −Fi(ki,n)

(2.135)
with Ji = Df (ki,n, tk + cih). Defining k = (ki)i,J = Df (kn) and F = (Fi)i we can write
the entire system compactly as

DF(kn)∆kn+1 =


I− ha11J −ha12J . . . −ha1sJ
−ha21J I− ha22J . . . −ha2sJ

...
...

. . .
...

−has1J −has2J . . . I− hassJ

∆kn+1 = −F(kn) (2.136)

= (I− hA⊗ J)∆kn+1 = −F(kn), (2.137)
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where ⊗ defines the Kronecker product. As we see in each step we have to decompose
a matrix with dimensions ms×ms, where m is a product of the polynomial degree of
the basis functions the number of solution components and number of finite elements.
The resulting LU factorization becomes computationally expensive which makes a fully
implicit method unfeasible for solving reaction-diffusion equations28. As thus we will
look at a special case of implicit Runge-Kutta methods.
We will use an implicit Runge-Kutta method with a lower triangular matrix A and a
diagonal where all the entries are equal. Those methods are called singly diagonally
implicit Runge-Kutta methods (SDIRK). Due to the special structure (aii = α) this
results in a Jacobian matrix

DF(kn) =


I− hαJ 0 . . . 0
−ha21J I− hαJ . . . 0

...
...

. . .
...

−has1J −has2J . . . I− hαJ

 . (2.138)

Here J has to be factorized only once and the rest of the system can be solved with
forward substitutions, which lowers the computational effort considerably. Addition-
ally, SDIRK methods are still stable up to 3 stages and have a error reduction of at
least order O(hs), which make them an appropriate method to solve ODE systems
arising from the weak formulation of reaction-diffusion systems. Those methods were
introduced by Roger Alexander which is why they are also often called Alexander s-
parameter method [203]. The Butcher arrays for Alexander’s methods of order 1 to 3
are given by the following schemes.

1
2

1
2

1

α α 0
1 1− α α

1− α α

α α 0 0
1+α

2
1+α

2
− α α 0

1 b1 b2 α
b1 b2 α

α = 1± 1

2

√
2 α3 − 3α2 +

3

2
α− 1

6
= 0

b1 = −(6α2 − 16α + 1)

4

b2 =
6α2 − 20α + 5

4

(2.139)

This gives us three different options to solve the temporal component of our system
stably and with error reduction in different orders.

Some final observations

We have derived a general strategy to solve reaction-diffusion equations based on weak
formulations and finite element basis functions. This scheme has many advantages over
naive methods such as finite differences or line methods. The most important being
clear existence of solutions and stability. Additionally, we have seen that many sub-
classes such as steady state approximations result in large, but simple linear systems

28Typical examples are solved on 20.000 finite elements with 2-5 solution components and polynomial
order 2. Using a 2 stage method we have to factorize a matrix of size 400.000× 400.000.
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which can be solved efficiently. The major complication with defining weak formu-
lations for any partial differential equation is the derivation of an appropriate weak
formulation. Additionally, if the system is nonlinear one either needs a linearization
for Picard iteration or the Jacobian for the nonlinear parts of the Galerkin scheme.
Those parts can not be automatized. Consequently, the implemented libraries for finite
element methods rather concentrate on managing the grid, standardizations of finite
elements and the basis functions. For the Newton-Raphson method it is not necessary
that the user actually specifies the derivatives in the coefficient vector, which would
be inefficient if one wants to use different basis functions. Rather one only provides
the derivative in ui. Application of the chain rule then results in:

dF

dp
=
dF

dui

dui
dp

. (2.140)

Because dui
dp

is a property of the basis, this can be managed by the library easily.
Consequently, the user usually specifies the weak formulation, the grid, boundary,
and initial condition whereas assembly of the nonlinear systems and their solution is
handled by the libraries. Some of the most powerful implementation in this field are
DUNE (www.dune-project.org) and Hermes (www.hpfem.org).

2.3.3 Nonlinear Optimization

A crucial part of Systems Biology is connecting the model with experimental data in a
consistent manner. In an abstract sense we have seen that any reaction-diffusion system
inherits some freedom due to the arbitrary parameters of the reaction propensities and
the initial conditions. Given some experimental data, we want to choose the model
that is most consistent with the data. To achieve that, we will choose a quantity
M(S, t,x,θ) depending on the parameters θ and relate it to the data D. For this we
choose some quality function Q : θ × D → R which measures the agreement of the
model with the data, or differently said, how good or bad the data agrees with the
model. We aim to optimize the quality, thus, enforcing

Q(θ,D)
!−→ min

θ
/max

θ
, (2.141)

where the type of optimization depends on the form of Q. I will introduce a combina-
tion of methods to solve this problem efficiently and we will derive two different forms
of Q depending on the type of data we have available.
We will require that Q is strictly monotonous in all θi and thus lower or upper un-
bounded. Then a sufficient condition for the existence of a minimum or maximum at
θ∗ is

∇θQ(θ∗,D) = 0. (2.142)

This requires the differentiability of Q. If Q is even twice differentiable we can employ
the Newton-Raphson method we have introduced in section 2.3.2. However, in practice
this turns out to be very slow as any evaluation of the function Q usually requires
solving the reaction-diffusion problem before extracting M. As thus we will introduce
some methods which orientate on Newton-Raphson methods but are much faster, the
quasi Newton-Raphson methods.
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The BFGS method

Applying the Newton-Raphson method to equation 2.142 yields the following iteration
scheme for θk:

HQ(θk)∆θk+1 = −∇θQ(θk,D) = −∇θQ(θk). (2.143)

Here HQ is the Hessian matrix of Q given by

HQ = ∇θ∇T
θQ =


d2Q
dθ21

d2Q
dθ1θ2

. . . d2Q
dθ1θn

d2Q
dθ2θ1

d2Q
dθ22

. . . d2Q
dθ2θn

...
...

. . .
...

d2Q
dθnθ1

d2Q
dθnθ2

. . . d2Q
dθ2n

 . (2.144)

The costly part of the calculation is the evaluation of the Hessian matrix for Q and its
LU decomposition. As such we try to substitute HQ by an approximation Hk

Q which
is sufficiently close. We will define an update scheme for Hk

Q which is easy to compute
as it uses only matrix additions of easily constructable matrices Uk,Vk

Hk+1
Q = Hk

Q + Uk + Vk. (2.145)

The two matrices are symmetric rank-one matrices, which means they can be expressed
as a product of two vectors

A = abT . (2.146)

In order to derive a condition for the update of Hk
Q we will use a linear approximation

of ∇θ which yields the following derivation

∇θQ(θk+1) = ∇θQ(θk + ∆θk) (2.147)

∇θQ(θk + ∆θk) ≈ ∇θQ(θk) +Hk+1
Q (θk)∆θk (2.148)

Hk+1
Q (θk)∆θk = ∇θQ(θk+1)−∇θQ(θk). (2.149)

We define ∆k = ∇θQ(θk+1)−∇θQ(θk) and solve for the matrices Uk and Vk fulfilling
the condition. Again we will allow a dampening, thus, our step size may be given by
λkθk. This yields an update rule for the Hessian, with

Hk+1
Q = Hk+1

Q +
∆k∆

T
k

∆T
k λk∆θk

−
Hk
Qλk∆θk(λk∆θk)

THk
Q

(λk∆θk)THk
Qλk∆θk

. (2.150)

This provides a strategy to calculate the Hessian for each step using only evaluations
of ∇θQ, which was already calculated before. Moreover, in this methods we do not
even have to factorize Hk+1

Q as the inverse is directly given by the Sherman-Morrison
formula

H−1
k+1 = H−1

k +
(λk∆θk)

T∆k + ∆T
kH−1

k ∆k)(λk∆θk(λk∆θk)
T )

((λk∆θk)T∆k)2

− H
−1
k ∆k(λk∆θk)

T + λk∆θk∆
T
kH−1

k

(λk∆θk)T∆k

. (2.151)
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Substituting the approximated Hessian and update rules into a dampened Newton-
Raphson scheme yields the Broyden-Fletcher-Goldfarb-Shanno method29 (BFGS). A
simple initialization for the Hessian H0

Q is the identity matrix I, which corresponds to
an initial gradient descent step.

Simulated Annealing

The BFGS method provides fast convergence and clear mathematical frameworks for
the existence of an optimum, but it has some severe limitations. The first is the ne-
cessity of a continuously differentiable function Q. This does not have to be the case
in general. Additionally, the BFGS method will only find local optima, and in the
existence of multiple optima it will find the one closest to the initial value, but not
necessarily the global optimum.
Another optimization strategy not bounded by this limitations is inspired by the pro-
cess used in hardening steel (annealing). Here, the steel is heated and cooled down
slowly. In high temperatures iron atoms will move and may even exit favorable energy
states, but as the temperature diminishes those molecules are forced more and more
to reside in efficient energy states. As a result, this process converges to an annealed
configuration of atoms, which is more stable than the initial one.
This strategy, can be adapted to build up an optimization strategy. Starting from an
initial temperature T0, randomly new vectors θ are sampled from a large neighborhood
and the new parameters are accepted randomly, allowing acceptance of parameters even
if the new approximation is not better than the previous one, but still favoring better
parameter sets. As the temperature drops, new solutions are sampled from smaller and
smaller neighborhoods to ensure convergence. Due to their inspiration in metallurgy
those optimization strategies are called Simulated Annealing. As Simulated Annealing
only finds minima the problem hast to be transformed to a minimization problem first.
If Q is to be maximized this can be done simply by redefining Q = −Q. The choice
of the cooling schedule for the temperature T , as well as the function generating new
candidates, can be chosen freely and will influence the convergence of the Simulated
Annealing method. The acceptance of new candidate solutions θk+1 coming from θk is
inspired by thermodynamics and Markov theory. It is chosen by the Gibbs distribution
which coincides to be a Metropolis-Hastings acceptance probability

P(θk → θk+1) = max

{
1, exp

(
−Q(θk+1,D)−Q(θk,D

T

)}
. (2.152)

The candidate generation will be governed by a Gaussian kernel with a scale parameter
proportional to the temperature T . The cooling schedule will be chosen in a way to
optimize convergence properties given the the current total iteration k [204]

Tk+1 =
Tk

log (k − 1− exp(1))
. (2.153)

For each temperature the sampling is repeated nR times which results in the following
optimization algorithm:

29In some implementations the choice of the dampening factor is not the natural monotonicity test
as we have employed it in this thesis, however, all of them belong to the larger class of linesearch
strategies.
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Data: Q,D,θ0, T0, nR, imax
Result: θ∗

T = T0, i = 0,θ = θ0, σ = T−1
0 ;1

θopt = θ;2

while i < imax do3

for j = 1, . . . , nR do4

i = i+ 1;5

T = T
log(k−1−exp(1))

;6

Generate new candidate with ∀i : θi ∝ N (θi, (σ · T )2);7

Accept new candidate with P(θ → θ) = max
{

1, exp
(
−Q(θ,D)−Q(θ,D

T

)}
;8

if Q(θ,D) < Q(θopt,D) then9

θopt = θ10

end11

end12

end13

return θopt14

This Simulated Annealing algorithm will find global minima because it is allowed
to jump out local ones in order to find a new global optimum. Furthermore, it will
converge to the optimum in probability and uses only the function itself and no deriva-
tives [204]. However, in practice Simulated Annealing is very efficient in finding minima
coarsely, but converges slowly when very close to the minimum. As such, a good strat-
egy for general optimization is to start of with a few iterations of Simulated Annealing
to come close to the global optimum and continue with the BFGS method which will
converge rapidly to the optimum (due to its quasi-quadratic error reduction in this
area).
This provides a global optimization strategy and we will now take a look at the form
of the function Q.

Residual sum of squares and log-likelihood

Our conditions for the function Q were strict monotonicity and differentiability, as well
as boundedness in one direction. Clearly, there is a large class of functions that can be
found to comply with those conditions. We will introduce the two most popular ones.
We begin with functions that can be used if our data is represented by a simple
vector of individual data points, each corresponding to a different value of independent
variables30. The corresponding model quantity to the data will be denoted as Mθ =
M(S, t,x,θ). Then, a feasible function Q is given by

Q(θ,D) =
∑
i

(M i
θ −Di)

2 = (Mθ −D)2. (2.154)

Q has a lower bound of zero and is strictly monotonous and differentiable if M is
strictly monotonous and differentiable. Due to its definition it is called Residual Sum
of Squares (RSSQ). If the residuals Mθ − D are approximately Normal distributed,

30for instance different time points
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statistical significance of the optimization can be tested with the F-test. Here the,
RSSQ is compared to the RSSQ of a reference model (for instance the zero model
for a no-intercept model or the mean value of the data for an intercept model). The
resulting test statistic F for two models where model 1 is nested within model 2 and
for n data points is given by

F =
(n− p2)(RSSQ1 −RSSQ2)

(p2 − p1)(RSSQ2)
. (2.155)

p1 and p2 denote the number of parameters for each model and the value F is tested
against an F-distribution with p2 − p1 and n− p2) degrees of freedom.

However, we may obtain more information experimentally. Thus, we will now de-
scribe a function Q if we can not only measure D but actually obtain a statistic of D for
a given set of independent variables. In this case we aim to identify the model which
has the largest probability under the obtained data. D defines a vector of random
variables Di, each inducing a continuous probability density

ϕ(Di, x) = ϕi(x) where P(Di ≤ x) =

x∫
−∞

ϕi(s)ds. (2.156)

This can either be a distribution assumed to hold (often the Normal distribution) or
a non-parametric approximation given by a density approximation (for instance by a
sum of Gaussian kernels). The joint probability of the model quantity Mθ is then
given by the likelihood Lθ with

Lθ =
∏
i

ϕi(M
i
θ). (2.157)

The likelihood has an upper bound of 1 and is continuous and differentiable. However,
it is rarely used due to instable numerics arising from the multiplication of many
quantities smaller than one. A stable transformation is the log-likelihood which is has
an upper bound of zero and is given by

logLθ = log
∏
i

ϕi(M
i
θ) =

∑
i

logϕi(M
i
θ). (2.158)

Maximization of the log-likelihood employs information over the entire statistics of the
data. The implied statistical test is the χ2-test with test statistic R. Again we will
assume we have a nested models 1 and 2 with respective log-likelihoods and degrees
of freedom df1 and df231. Then we can define the likelihood ratio as

R = 2 logL2
θ − 2 logL1

θ. (2.159)

The likelihood ratio is tested against a χ2-distribution with df2− df1 degrees of free-
dom.

31A feasible reference model is that the entire set of data points is just governed by a single normal
distribution, even when coming from different independent variables.
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2 Systems Biology of reaction-diffusion systems

This now provides us with methods to couple the model to our data and to identify
the underlying parameters globally. Furthermore, we are equipped with statistics to
quantify the significance of our model to the experimental data. This brings us back
to the life cycle of Systems Biology where we aim to connect the hypothesis formu-
lated by our model with the data obtained by experiments. We now have a consistent
framework to do that with our models, composed of reaction-diffusion master equa-
tions or deterministic reaction-diffusion equations, and our experimental data, coming
from microscopy and populations studies as well as mutants. This framework has
been applied to study the biological system we have started with in chapter 1, the
communication of yeast via pheromones, as we will see in the following chapters.
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3 The yeast pheromone response as a
complex communication system

3.1 Introduction

In the preceding chapters we have introduced the molecular biology of the yeast
pheromone response and the Systems Biology of reaction-diffusion equations. As such,
we have all the methodology and biology at hand which was needed to obtain the
results I will present now. We have seen in section 1.5 that significant knowledge has
been obtained already concerning the functioning of the yeast pheromone response.
For a biologically edible interpretation of a signaling pathway it is necessary to con-
nect biological pathways with distinct functions. In order to do this we will treat the
pheromone signaling occurring in yeast as an abstract signal sensing mechanism that
has evolved specifically to create, sense and interpret information about the surround-
ing cell population. In order to do this three main goals have to be achieved by the
yeast population:

1. An informative signal has to be created using as few resources as possible.

2. The signal has to be detected reliably with a minimum loss of information.

3. Detection of the signal has to induce a complex all-or-none response which is
aimed in the direction of the gradient.

Those three main points formed the road map for the investigations I performed on this
pathway and which will be presented in the following. In the first part I will introduce
a non-invasive method to visualize and quantify the signaling environment produced
by yeast populations in vivo. In particular I studied the effect of Bar1 on shaping
and modifying this environment. We have discovered that an active regulation of the
extracellular signaling components is crucial for the correct formation of diploids and
that its absence leads to severely altered phenotypes and abolishment of cell growth.
Those results will be provided in section 3.2 in this chapter. In section 3.3 we will take
a look at the ability of the pathway to detect even small differences in extracellular
pheromone concentration and propose a mechanism where cells accumulate signal in
order to reduce noise levels dramatically. Furthermore, we will see in section 3.4 that
the downstream formation of large multi-protein complexes such as the polarisome
can transform shallow gradients in point-like distribution patterns of the membrane
while at the same time making the number of formed polarisomes dependent on the
extracellular gradient.
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3 The yeast pheromone response as a complex communication system

3.2 Bar1 regulates the extracellular signaling
environment during mating

I have argued in section 1.4.1 that in particular MATa cells of yeast employ a variety
of mechanisms in order to control the extracellular signaling environment provided
by the pheromones. Apart from regulating the secretion of a-factor, one important
feature of this regulation is the secretion of Bar1, an aspartyl protease, which degrades
α-factor [33, 34]. Bar1 was found in the periplasmic space of MATa cells as well as in
the growth medium. Additionally, basal Bar1 activity can be stimulated by exposure
of MATa cells to α-factor [31, 32]. It has been argued about the beneficial effect for
MATa cells to destroy the signal they need to sense. Previous work indicated that se-
cretion of a negative regulator provides an increased ability to distinguish the direction
of the gradient, gives benefit due to its negative regulation, or might help MATa cells
to avoid each other during shmoo formation [205–208]. However, secreting a small
molecule into the extracellular space strongly dilutes it, reducing the possibility to
benefit the secreting cell.

Secretion of molecules into the culture medium, however, is often associated with co-
operative behavior, quorum sensing, communication, and social behavior in microbial
communities including yeast [209–214]. This raised the question how Bar1 influences
the distribution of α-factor in a population of mixed haploid yeast cells, particularly
since extracellular Bar1 is shared across the mating cell population. Unfortunately,
studying the extracellular distribution of α-factor is strongly limited by the fast diffu-
sion, low concentration, and small size of the pheromone, which prevents it from being
visualized by purely experimental approaches. Furthermore, due to its small size, tag-
ging α-factor alters its mass and, consequently, its diffusion rate. Furthermore, at
least C-terminal modification of α-factor was also shown to influence its affinity for
the Ste2 receptor [38].

Physical principles, however, capture diffusion of small particles and their interac-
tion in fluids and allow for calculation of spatial distributions from a few parame-
ters [215, 216]. We used such an inference method here to identify the most likely
α-factor distribution within mixed haploid yeast populations directly from confocal
microscopic images with fluorescently tagged marker proteins. We coupled physical
reaction-diffusion models with experimental imaging in order to quantify the spatial
distribution of extracellular proteins. The use of simple marker constructs, that altered
neither α-factor nor Bar1, served for minimal interference with the biological system.
We used this approach to directly estimate the influence of Bar1 on the distribution of
α-factor in a mixed yeast population and to explain its influence on the coordination
of growth and signaling.

3.2.1 An assay to quantify extracellular signaling molecules in
yeast from in vivo microscopy images

We combined image analysis with spatiotemporal mathematical modeling to determine
spatial concentration distributions of Bar1 and of α-factor. The general concept of
the approach is the following:

1. Take images, detect cell location and mating type, and quantify pheromone stim-
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3.2 Bar1 regulates the extracellular signaling environment during mating

ulation of MATa cells with a fluorescent marker.

2. Use a mathematical model based on real cell location and activation to calculate
the distribution of Bar1 and α-factor in the extracellular space.

3. Predict effects on population growth and mating efficiency, confirmed by further
experiments.

In mathematical terms the problem is described as a purely extracellular reaction-
diffusion process for α-factor and Bar1 with distinct boundary conditions.

How do we connect the model to the experimental data? As mentioned above,
there is no way of obtaining the α-factor concentration directly by experimentation.
However, there is an indirect method to quantify the amount of α-factor a MATa
cell is exposed to. As described in chapter 1, there are a variety of proteins which
are expressed upon stimulation with pheromone. By taking one of those proteins and
adding a fluorescent marker we can read the pathway output for individual MATa cells.
If we now construct a calibration curve of this pathway output in a strain lacking Bar1
with various artificially added uniform α-factor concentrations, we can associate the
fluorescence of the marker with the extracellular concentration of α-factor the cells
are exposed to. This gives us information about the extracellular concentration of
α-factor at the cell membrane, a quantity which is explicitly contained in the model.
However, this requires us to modify the system first in order to obtain the desired
output.

Used strains and constructs

In this study, we used the wild type MATa reporter strains Fus1-GFP and Rpl9a-GFP,
based on BY4741 (MATa his3∆1 leu2∆0 met15∆0 ura3∆0 ) and part of the yeast GFP
collection [217]. Additionally, we also employed a MATα reporter strain expressing
mCherry under control of the constantly active TDH3 promoter. This strain, MATα
can1∆::STE2pr-SpHIS5 lyp1∆::STE3pr-LEU2 his3∆1 leu2∆0 ura3∆0 met15∆
ho∆0::TDH3pr-mCherry-NATMX4 ) was a friendly gift of Alexander DeLuna [218].
Yeast strains were cultivated at 30 ◦C in synthetic medium1. In all the MATa reporters
strains we inserted Bar1 deletions by homologous integration of a URA3 cassette in
the BAR1 locus (bar1∆0::URA3 ). Here, we used the methodology described in sec-
tion 2.2.3. PCR amplification of the URA3 cassette from plasmid template pESC-Ura
(Stratagene) was done by sequential amplification with the primer pairs, which are
provided in table 3.1.

This was followed by transformation and selection on agar plates with synthetic
medium lacking uracil. Verification of the Bar1 deletion was done with a physiological
assay based on growth inhibition by α-factor pheromone [32]. This gave us the required
strains to construct the calibration curves.

1Synthetic medium: 0.17 % yeast nitrogen base without amino acids; 0,5% ammonium sulfate, 2%
glucose, 55mg/l adenine, 55 mg/l L-thyrosine, 55 mg/l uracil, 20 mg/l L-arginine, 10 mg/l L-
histidine, 60 mg/l L-isoleucine, 60 mg/l L-leucine, 40 mg/l L-lysine, 10 mg/l L-methionine, 60
mg/l L-phenylalanine, 50 mg/l L-threonine and 40 mg/l L-tryptophane
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3 The yeast pheromone response as a complex communication system

Name Sequence Use
Primer 1 5’-GAAGGGTCATATAATGTCGCGCGTTTCGGTGATG-3’ PCR1
Primer 2 5’-CTCCAGATTTCTTAGTTTTGCTGGCCGC-3’ PCR2
Primer 3 5-GGTTCGTATCGCCTAAAATCATACCAAAATAAAAAGAGT PCR3

GTCTAGAAGGGTCATATAATG-3’
Primer 4 5’-GACTATATATTTGATATTTATATGCTATAAAGAAATTGTA PCR4

CTCCAGATTTCTTA-3’

Table 3.1: The primers used for sequential amplification of PCR products in order to obtain the
BAR1 ∆ strains.

Confocal microscopy and calibration curves

Microscopic images were acquired with an inverted FluoView 1000 microscope (Olym-
pus, Tokio, Japan) equipped with a 60x (1.2 N.A) water-immersion objective and a
climate chamber (Tokai Hit, Japan). GFP was excited with a 488 nm argon laser and
fluorescence emission was detected in the range of 500-545 nm. Image acquisition for
α-factor calibration curves was done with synchronized cultures of Fus1-GFP in wild
type or BAR1 ∆ background. Cultures were synchronized in G1 phase by elutriation
with a Beckman Coulter JE-5.0 elutriation system. Synchronized cells were incubated
with α-factor pheromone for 3 hours at 30 ◦C.
Normally, microscopic inspection requires cells to be fixed on the culture dish in order
to avoid sedimentation during image acquisition. This is usually achieved by coating
the dish with Concanavalin A, a chemical which interacts with the surface sugars of
the yeast cell wall. However, we observed that this abolishes pheromone signaling,
probably by inhibiting the diffusion of pheromones. Thus, we constructed insets for a
conventional centrifuge to hold the culture dishes. This way we could create low forces
pushing the cells onto the culture dish, which abolished sedimentation and fixed the
majority of the cells on the bottom of the dish. Using this “forced sedimentation”,
cells were spinned down on the glass surface of the culture dish (MatTek Corporation,
Ashland, US) by centrifugation at 100g. Clearly, cells in a non-moving medium would
also sink to the bottom of the culture dish just by gravitation. However, since this
takes time synchrony of the population would be lost. Thus, the method we employ
can be seen as an acceleration of the sedimentation taking place in any cell culture put
in a non-moving medium.
For the calibration curve with Fus1-GFP constructs carrying BAR1 ∆ we used α-factor
concentrations in the range of 0.1nM−1µM . The cultures where then observed under
the confocal microscope and several z-stacks (images at different depth positions) were
obtained for the bright field2 and the fluorescence channel. In order to prepare them
for analysis, all z positions in the bright field starting from the focal plane to the most
extreme out-of-focus coordinate (thus, the upper half of the z-stack) were projected
over the z-axis via an average intensity projection. This was done in order to obtain
out-of-focus images with low noise levels. Since far out-of-focus images in the fluores-
cent channels generally showed a strong autofluorescence, only the three slices closest
to the focus were used for an average intensity z-projection here.

2a general laser with no specific excitation which will result in black and white images of the cells
by contrast.
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3.2 Bar1 regulates the extracellular signaling environment during mating

The generated projections were consecutively analyzed using programs which allow
automatic segmentation and tracking of cells by identifying cell boundaries from out-
of-focus images (see figure 3.1). The programs we employed were VCellID and a
modified version of CellID [219]. Here, the modification of CellID led to additional
text file output containing the individual boundaries for each detected cell along with
a list of all interior pixels and by-pixel fluorescence values contained within an area
extending the cell boundary by 3 pixels. Parameters for CellID were chosen within
VCellID to maximize the fraction of detected cells. The output was further analyzed
with the statistical scripting environment R [220].

brightfield + tracking GFP mCherry merge

A

B

Figure 3.1: Confocal microscopy images of mixed cell populations with different fluorescent markers
in (A) Bar1 wild type and (B) BAR1 ∆.

Using CellID output, we first transformed the x and y locations to micrometers.
For each cell i the fluorescence level (mCherry for MATα and GFP for MATa) was
translated to the average fluorescence per pixel Fi with

Fi =
F i
tot

nipix
− Fbg. (3.1)

Here, F i
tot denotes the total fluorescence for a given cell with index i, nipix the number

of contained pixels and Fbg is the background fluorescence, which is calculated from
the intensities of the pixels not contained in cells.

Since it has been reported that the response behavior of the pathway follows a
Hill curve, we fitted the fluorescence values to that functional form [65, 66]. This
yielded a functional relationship between Fus1-GFP expression Fobs and local α-factor
concentrations α, given the saturated fluorescence Fmax, the Hill coefficient H, the half
maximum concentration EC50, and the background flourescence Fbase:

Fobs = Fmax ·
αH

αH + ECH
50

+ Fbase. (3.2)
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3 The yeast pheromone response as a complex communication system

Figure 3.2: The calibration curve obtained from Fus1-GFP-BAR1 ∆ strains. The confidence for
each data set is shown in green. Tick marks at the upper border indicate the α-factor
concentrations used for the experiments. The fitted hill curve is shown in black along
with parameter values and statistics.

For a given α-factor concentration the distribution of fluorescence values showed a
normal distribution (105-588 cells for each concentration, see appendix figure 6.4). The
fitting of the Hill curve was, thus, performed by optimizing the log-likelihood of the
calculated curve under the data by iteratively using a Simulated Annealing run followed
by a BFGS optimization as described in section 2.3.3. Significance was assessed using
the F-test3. The resulting calibration curve along with confidences obtained from the
data is shown in figure 3.2.

For any given local α-factor concentration equation 3.2 provides a unique relation-
ship between the concentration and the steady state Fus1-GFP fluorescence. As a con-
sequence, for a given observed Fus1-GFP expression we can derive the local α-factor
concentration αi in direct vicinity of the MATa cell i from the observed Fus1-GFP
fluorescence Fi in steady state as

αi = EC50 ·
(

Fi
Fmax + Fbase − Fi

) 1
H

. (3.3)

This gives us a way to couple the data to a reaction-diffusion model only describing
the extracellular diffusion of α-factor and its degradation by Bar1. This model can
be formulated by the deterministic reaction-diffusion equation 2.48 due to the large
volume and the large number of cells jointly secreting α-factor.

3We used the F-test here, because it is more conservative. The χ2-test resulted in even smaller
p-values since we optimized the test statistic. This was not the case for the F-test.
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3.2 Bar1 regulates the extracellular signaling environment during mating

The reaction-diffusion equations for the extracellular signaling environment

Due to the calibration, we only needed to describe the extracellular events, given by
the diffusion of α-factor and Bar1 and the degradation of α-factor by Bar1. This
resulted in a simple reaction-diffusion system given by

∂α(x, t)

∂t
= Dα∆α(x, t)− k ·Bar1(x, t) · α(x, t) in Ω× (0, T ) (3.4)

∂Bar1(x, t)

∂t
= DB∆Bar1(x, t) in Ω× (0, T ). (3.5)

However, this model is quite badly defined due to the product k ·Bar1. One can easily
see that one could choose any combination of values resulting in the same product here.
As we were not interested in the concentration of Bar1, but rather the distribution of α-
factor, we substituted this term by a degradation activity B(x, t) = k ·Bar1(x, t). This
activity now comprises spontaneous degradation of α-factor as well as its degradation
by Bar1 in an identifiable term. The former system then immediately implies the new
system

∂α(x, t)

∂t
= Dα∆α(x, t)−B(x, t) · α(x, t) in Ω× (0, T ) (3.6)

∂B(x, t)

∂t
= DB∆B(x, t) in Ω× (0, T ). (3.7)

An important question remaining is the dimensionality of the considered space. The
biological system acts in three dimensions as such should our model. However, in any
non-moving liquid cells will sink to the bottom of the culture dish which arranges them
on a plane. Furthermore, we do not know how gravity might affect α-factor diffusion
in the z-axis. The way microscopy visualizes fluorescence is by a projection over the z-
axis resulting in 2-D images. We aimed at reproducing those images. Furthermore, we
aimed at reproducing a visualization from a microscope in the hypothetical case that
α-factor and Bar1 could be visualized without modification. Thus, the appropriate
transformation for our model would be the integration over the z-axis, yielding a model
which still describes a process in 3-D, but is effectively a 2-D model.

This model is still not very well defined as it is lacking several parts. The first is the
computational domain, thus the area on which we solved the equations. We treated
the domain as a circular disc corresponding roughly to the area of the microscope
image. As we only modeled processes between, but not in the cells, all cells were cut
out of the disc. This resulted in several boundaries: one for the disc, termed Γsur and
individual boundaries for all the MATa cells, Γai , and MATα cells, Γαi , respectively.
The entire space Ω is also depicted in figure 3.3.

Furthermore, we still lacked parts of the biological and mathematical description.
From the view of biology, we still miss the secretion kinetics of Bar1 and α-factor.
In terms of mathematics we still miss parts to make the problem well-posed, most
importantly, the boundary conditions. Thus, we had to describe the secretion char-
acteristics somehow by the boundary conditions. For this we chose to use the most
simple descriptions available in order to express the biological knowledge with the least
unknown parameters possible. For the outer boundary Γsur we assumed an equilibrium
with the environment, thus no substances enter of leave the system. This resulted in
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MATa
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Figure 3.3: The subdivision and boundaries of the space Ω used for the model.

a zero Neumann condition with

dα

dn
= 0 =

dB

dn
on Γsur. (3.8)

The α-factor secretion rate is a consequence of the induction by a-factor, which is not
included in our model. However, the spatial distribution of a-factor is not regulated in
the extracellular medium. Thus, we can assume that its large diffusion rate effectively
results in a uniform distribution in the small volume that is captured by the image.
Consequently, we assume that for one image all MATα cells have the same α-factor
secretion rate, but those might be different for different images. This effectively results
in a constant secretion rate Jα for each image, corresponding to the average flux of α-
factor per second at each point on the cell boundary. This yields a Neumann boundary
with

dα

dn
= Jα on Γαi . (3.9)

The most complex boundary condition has to be employed for the degradation activity
B on MATa cells. We have a basal degradation activity in the medium due to Bar1 and
spontaneous degradation but there is also the induction of Bar1 due to the response to
α-factor. In the case that there are no MATα cells this should result in a steady state
where the basal activity is homogeneously distributed over the entire space. This can
be achieved with a Dirichlet boundary condition for each MATa cell corresponding
to the basal degradation activity and Neumann zero boundary condition at Γsur

4. In
the case of induction of Bar1 in MATa cells a similar argumentation holds, only that
now each MATa cell has a Dirichlet condition corresponding to the induced activity,

4This implies a solution who has the value of the Dirichlet condition at the cell and a derivative of
zero at the boundary, thus a constant function in steady state.
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which gives differences in distribution even with diffusion. Thus, we can still use
the Dirichlet boundary for the MATa cell i, but it will now depend on the average
extracellular pheromone concentration at the cell given by:

µα,i =
1

C

∫
Γai

α(x, t)ds, (3.10)

where C denotes the circumference of the cells and, thus, the length of the boundary
Γαi . Since there is only one promoter present for the expression of pheromone induced
genes, we assumed that the induction of Bar1 expression is governed by the same
kinetics as Fus1, thus, we can use the obtained parameters of the Hill curve. However,
the expression of Bar1 will take some time, resulting in a delay τ until secretion of
Bar1 occurs. This results in the following boundary conditions for B

B(x, t) = gD(i, α, t) = k0 + k1
µα,i(x, t− τ)H

µα,i(x, t− τ)H + EC50H
on Γai . (3.11)

All other boundary conditions on the cell borders were zero Neumann. For the initial
state of the model we chose a zero distribution for α-factor and k0 for the degradation
activity B. This resulted in a fully specified model, which was fully non-linear due to
the coupling induced in the Dirichlet boundary for B which depends on α. Due to the
stacked dependencies, we resolved nonlinearities by the Picard iteration as introduced
in section 2.3.2. This was particularly simple for this problem, as the equation without
the boundary conditions defined one linear equation for B and a nonlinear equation for
α depending only on B. Thus, without the Dirichlet boundary one could simply solve
for B first and plug the solution into the equation for α now yielding two successive
linear systems. Thus, in the Picard iteration we only needed to linearize the boundary
condition gD. However, since the reaction-diffusion equation for B is just the Poisson
equation introduced in section 2.3.2, this could be achieved by fixing the values for the
Dirichlet boundaries in the coefficient vector according to giD(αk, t) when calculating
Bk+1. Using this property, we could now construct the initial weak form for the
discontinuous case as

∀v :

∫
Ω

dB

dt
vds+DB

∫
Ω

∇xB∇xvds−DB

∑
j

∫
Ψj

(∇x
〈
B
〉
· n)[[v]]ds = 0 (3.12)

∫
Ω

dα

dt
vds+Dα

∫
Ω

∇xα∇xvds+

∫
Ω

B · αds (3.13)

−Dα

∑
j

∫
Ψj

(∇x
〈
α
〉
)[[v]]ds = Dα

∑
i

∫
Γαi

(Jαn)vds

with Bk+1 = giD(αk, t) on Γαi . (3.14)

This scheme is easy to implement. For each iteration one only has to update the
Dirichlet boundary conditions for B using the previous solution for α. In order to
obtain the NIPG method we, furthermore, added the corresponding symmetry terms
and jump stabilization as described in section 2.3.2. As basis functions we used the
linear and cubic basis functions as defined in equation 2.79. This defined our model and
the corresponding NIPG method to solve it. Thus, we now concentrated on identifying
the parameters of the model from microscope images.
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Model parameterization based on microscope images

The unknown parameters are given by Jα, k0, k1, τ,Dα and DB. Not all of the param-
eters had to be obtained by optimization. The diffusion rates can be derived from
simple physical principles due to the fact that diffusion here takes place in an aqueous
solution. In this condition the diffusion rate can be obtained from the Einstein-Stokes
equation

D =
kBT

6π · η · r
, (3.15)

where kB denotes the Boltzmann constant, T the temperature of the medium, η the
viscosity of the medium and r the protein radius. The radius r is approximated from
the density derived via the protein mass and applying the correction of Fischer et. al.
[221] to approximate the density of the protein from its mass:

ρ(M) = 1.41 + 0.145 · exp

(
M [kDa]

13

)
[g · cm−3]. (3.16)

Converting that to [kg · cm−3] and assuming a globular shape for the protein within
the aqueous medium M with viscosity ηM the diffusion rate of a protein P is given by

D(P ) =
kBT

6π · ηM
·
(

750 ·MP

π · ρ(MP )

)−1/3

. (3.17)

Substituting the masses by the ones known for α-factor and Bar1 results in effective
diffusion rates of 361.48µm2s−1 and 104.63µm2s−1, respectively. The relevant tem-
perature was 30 ◦C.
Thus, we remained with quantifying Jα, k0, k1 and τ . One can see that in the case
of broad spatial distributions, the degradation activity and α-factor are highly con-
nected so that a high α distribution can be counteracted by a high B activity. Thus,
optimizing all parameters at once is highly unstable due to the correlation. We tried
to overcome this limitation in a setting where we can identify the set of parameters
for only B first. This was achieved by stimulating wild type MATa cells carrying
the Fus1-GFP marker with controlled concentrations of α-factor and observing their
response after some time point tobs = 3h. As these cells secrete Bar1 and there are
no MATα cells, the observed fluorescence is a consequence of the remaining α-factor
concentration after degradation. Furthermore, if α-factor is added to the cells in a
spatially homogeneous distribution with concentration α0, this results in a homoge-
neous Bar1 degradation activity and we can reduce the equations system to an ODE.
This depended crucially on the conservation law of the NIPG method as it allowed for
integration over Ω yielding

d

dt
αtot(t) = −αtot(t)

(
k0 + k1

µ(αtot, t− τ)H

µ(αtot, t− τ)H + (EC50)H

)
(3.18)

αtot(0) = α0. (3.19)

The experimental data was obtained in the same way as the former calibration curve,
only this time with the Fus1-GFP strain carrying the wild type BAR1 gene and a
concentration range of 0.1µM −10µM (147-746 cells for each concentration, 2458 cells
in total). The observed flourescence values Fi(tobs) were then fitted to the predicted
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fluorescence values F (tobs) given by equation 3.2. This resulted in the following log-
likelihood optimization problem

Find k0, k1, τ such that for

F(t) = {Fi(tobs)} :
Nc∑
i=1

ln fi(Fi(tobs), µi, σi)→ max . (3.20)

Here, fi are again the Normal distributions given by the data. The results are shown
in figure 3.4.
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Figure 3.4: Results of the parameter optimization for the degradation activity by Bar1. Shown are
the mean values of the fluorescence measurements and the resulting parameters.

The ODE was solved by the fully adaptive implicit LSODA method and used during
the optimization by again iterating Simulated Annealing and BFGS runs. Significance
was assessed again using an F-test. The fitted parameters were the steady state (stim-
ulated) Bar1 activities and the delay time τ under the given number of cells in the
population and the given volume.
The delay time τ was optimized here as well since this was the only time course op-
timization we performed (α-factor secretion parameter is fitted later to the steady
state). The activation of the Ste12 transcription factor takes at least 5 minutes [65].
Considering that Bar1 also has to be transcribed, translated, modified and exported,
we do expect that cells will need more time to adequately react with an increased Bar1
secretion. The fitted value of τ ≈ 30min is in good agreement with this consideration
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and our own observations that expression of Fus1 started roughly half an hour after
mixing of cultures.
However, since all cells secrete Bar1, the steady state Bar1 activity is dependent on
the number, and possibly, size of the cells in the population. Since the overall Bar1
activity will scale linearly with the total amount of Bar1 secreted, we normalized the
obtained parameters by the fraction of the image area occupied by the total area
of the MATa cells. For any given cell configuration on an image we calculated the
corresponding Bar1 activity parameters. The fitted parameters are in volume units
(nMs−1µm−3), however the model was expressed in integrated quantities over the
z-axis (nMs−1µm−2), so we still had to integrate the Bar1 activity over the z-axis.
Because in the experimental setting Bar1 was uniformly distributed, the integration
was simply a multiplication by the height of the liquid film. This height h is given by
the surface tension γ of the medium (aqueous solution), the gravitational acceleration
g and the liquid density ρ via

h = 2

√
γ

gρ
. (3.21)

This finally yielded the Bar1 activity with and without stimulation, which was plugged
into the reaction-diffusion equations (also see figure 3.4). The fitted Bar1 activity indi-
cated a pheromone-dependent induction of about 3-fold which was in good agreement
with previous measurements after 3 hours of incubation (3.4± 1.1 [32]). The approxi-
mated Bar1 activity in a typical liquid film (h ≈ 170µm) where the bottom is covered
completely with cells (due to the normalization) was derived as 0.24 nM/s without α-
factor induction and could rise to 0.6 nM/s when induced by α-factor. Consequently,
if the entire volume would be filled by cells, the cooperative secretion could lead to a
maximum Bar1 activity of 60nM/s within the medium (assuming that approximately
100 cells can fit above each other in the liquid film). Thus, the Bar1 activity is strongly
coupled to the cell mass in the medium and can reach a substantial value in high den-
sity cultures.

We were only left with one parameter, the flux of α-factor Jα. We optimized this
parameter from the steady state equations by data generated from mixed MATa-
MATα cell populations. Here the MATa-Fus1-GFP cells were elutriated, mixed to a
1:1 relation with MATα-mCherry cells and sedimented by centrifugation as described
before. Following that, cells were placed in a climate chamber for 3h under the confocal
microscope and time course data as well as several images after 3 hours were obtained.
The images were analyzed with VCellID and our own modified version of CellID.
MATα cells were identified by having no significant GFP signal and a mCherry signal
which was at least 4 times higher than the average background fluorescence in the
mCherry channel. Further analysis was performed in R.

For each MATa cell we obtained the α-factor concentration at the membrane by
the calibration curve for Fus1-GFP-BAR1 ∆. The grid for the NIPG-FEM method
was obtained by first reading all boundary pixels for each individual cell from CellID
output. For each cell pixel, values were transformed into µm and expressed in polar
coordinates. A smoothing spline was calculated in order to convert the border into a
smooth functions for each cell. Overlaps between cells were resolved using a heuristic
algorithm where parts of the smoothing spline were iteratively diminished until there
were no more overlapping pixels of the two cells. The entire space was then transformed
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3.2 Bar1 regulates the extracellular signaling environment during mating

Figure 3.5: Meshes generated from microscope images with different degrees of coarseness.

into a Gmsh file by creating a disc with a radius equal to the image width and height
and cutting out the smooth cell shapes [222, 223]. In order to obtain a triangulation
that performed well, particularly at points where the solution would change a lot, we
assigned each point at the cell surface a target triangle size. This size was chosen to be
very small at points where cell density was highest and increased exponentially while
approaching the boundary of the disk. Thus, the target size s was assigned to each
point used in the geometry of the grid via the relation

s = max{λs · exp(−γD(x, y)), λM}, (3.22)

where D(x, y) is the local density of the point and γ, λS and λM were scaling param-
eters controlling the minimum and maximum target size. The local density D was
obtained from the binned densities of all original boundary points returned by CellID
with 128 bins in the x and y direction. The target size was used consecutively by the
Frontal algorithm implemented in Gmsh in order to construct the triangulation [224].
Additionally, each cell boundary was assigned a unique ID associated with the mating
type and, if MATa the unique local α-factor distribution αi.

The steady state was solved by implementing the NIPG method5 as described in
section 2.3.2 for equation 3.7 in DUNE using the UG grid library and PDElab [225–
228]. The integrals required by µ(α) were computed using a quadrature over the cell
edges of MATa cells and used to update the Picard iteration with the acceleration
described in section 2.3.2. Here the iteration was considered converged when the
summed difference of coefficients from the previous solution was smaller than 10−5.
Convergence was usually rapid with less than 10 iterations necessary to obtain the
required accuracy. The occurring linear systems were solved with SuperLU.
Given the local alpha concentration αi observed via Fus1-GFP fluorescence we could

5σj was chosen as σj = 4/lj .
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estimate Jα for several images by solving the following RSSQ optimization problem:

Find Jα such that for α = {αi} :
Na∑
i=1

(µ(α)|Γai − αi)
2 → min . (3.23)

Due to the strict monotonicity for Jα > J∗α
6 a local optimizer was sufficient. Here we

employed the BFGS method as described in section 2.3.3 with a stable numeric ap-
proximation of the derivative. The results were cross-checked with another optimizer,
the Nelder-Mead optimization, which yielded the same results. We fitted the secretion
rate of α-factor to 10 images obtained on 2 different days. Only the 9 fits with a
significant F-test were used to obtain Jα (a total of 52 MATα and 90 MATa cells).
The fitted Jα for the nine images showed a distribution with several peaks, where the
largest group contained 5 images with Jα values clustered around 5 nM · s−1 which
corresponded to an average secretion rate of about 2300 molecules per cell and second
(see appendix figure 6.5). Because this was measured after 3 hours of incubation with
accumulated a-factor secreted by the MATa cells, this likely describes the induced α-
factor secretion. The obtained value was in good agreement with recent experimental
results obtaining a secretion rate of around 2000 molecules per second and cell. The
remaining 4 images showed significantly higher α-factor fluxes than the first group up
to 40 nM · s−1. This is likely a consequence of the boundary condition for α-factor on
Γsur because additional MATα cell in the vicinity of the image increase the α-factor
level which is compensated by the optimization by a higher Jα.
Significance was assessed for all fits using the F-test for a zero-intercept-one-parameter
model. Additionally, we also tested whether the obtained mean secretion flux obtained
from all 9 significant fits could reliably predict the fluorescence values from an inde-
pendent image not used in the optimization, which it did (F-test p-value < 2.2 · 10−6,
67 MATα cells and 78 MATa cells). This was a validation for the model and also
proved that the approximation of the 3-D process by a 2-D model was capable to
correctly predict α-factor distributions. The resulting mean flux Jα was estimated as
15.11nM/s.
This fully characterized the model which could now be used to quantify the extracellu-
lar signaling environment during mating. The full assay along with some representative
results is given in figure 3.6.

3.2.2 Bar1 induces α-factor hot-spots

With the parameterized model we could now start to analyze the distribution of α-
factor in the presence or absence of Bar1. From steady state distributions of α-factor
we observed that the wild type had much more restricted pheromone distributions
coinciding with higher gradients (compare figure 3.6B). Additionally, approximating
the temporal evolution of α-factor distributions in time by using the parameterized
model on time course data, we observed that the pheromone distribution initially rises
to a high concentration with little gradients which is quickly counteracted in time
by the high-level secretion of Bar1 and declines to the steady state afterwards (see
figure 3.7). The pheromone distribution in time was obtained by implementing the
reaction-diffusion system by a 2-stage Alexander method. Interestingly, the formation

6Increasing Jα results in higher and higher distributions which means the RSSQ grows.
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Figure 3.6: (A) The full assay to quantify the extracellular signaling environment. (B) Obtained
α-factor distributions for the wild type and BAR1 ∆.

of shmoos coincided with the stabilization of the gradient, indicating that yeast cells
wait for a stable α-factor distribution before committing to mating.

In general, we observed large differences in the estimated local α-factor concentra-
tions between wild type cell populations and cell populations with a BAR1 ∆ back-
ground. Wild type cell populations showed a strongly localized α-factor distribution
at sites of high MATα cell density, with α-factor concentration quickly declining with
distance. Consequently, MATa cells farther away from a MATα cell than what could
normally be bridged by shmooing experienced significantly lower local α-factor con-
centrations that were often non-permissive for induction of the pheromone response. In
populations with BAR1 ∆ background the α-factor showed an almost uniform distri-
bution of very high pheromone concentrations, resulting in global pathway activation
as evidenced by high Fus1-GFP expression.

We wanted to see whether this behavior arises in general and independently of the
exact spatial composition of the culture. Thus, we performed a systematic computa-
tional study using randomly generated cell populations mimicking the ones observed
microscopically with varying cell densities. For that we generated cell populations in
silico with varying total numbers of 1:1 mixed haploid cells. The cells here were cir-
cular with radii sampled from a Normal distribution obtained from the zero samples
of the calibration curve (n = 730, µ = 1.98µm, σ = 0.25µm). This was done for
populations sizes of 2 up to 700 cells, roughly corresponding to a range of 20 up to
10,000 cells per mm2. Each virtual population was simulated both with wild type
Bar1 secretion and in BAR1 ∆ background and for each fixed number of MATa and
MATα cells we simulated 16 randomly sampled cell configurations. The α-factor flux
Jα was chosen as the mean value obtained from the 9 significant fits. This allowed to
track key components of the α-factor distribution without the influence of the exact
spatial composition. Furthermore, in this cultures we could directly compare the α-
factor distributions within the same exact cell configuration in wild type and BAR1 ∆
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3 The yeast pheromone response as a complex communication system

Figure 3.7: Time course data of mixed haploid yeast populations consisting of wild type MATa-
Fus1-GFP and MATα-mCherry and the resulting pheromone gradients.

conditions.
So, how can we quantify the influence of Bar1 on the information provided by the
α-factor distribution? In an abstract sense the maximum information Imax that can
be provided by the distribution of α-factor is given by the entropy of the α-factor dis-
tribution. In order to obtain this quantity, we started by taking the overall α-factor
distribution from all pixels of the simulated image (N = 512 × 512 points). The ob-
served α-factor concentrations were subdivided into Nbins bins and the number of bins
chosen by Sturges’ law

Nbins = dlog2N + 1e. (3.24)

This was used to obtain a discrete distribution from which the bin probabilities pi
(i = 1, . . . , Nbins) were approximated using a shrinkage estimator [229]. The entropy
H, and thus the maximum information content Imax, was finally computed as

Imax = H = −
Nbins∑
i=1

pi ln pi (3.25)

For each population density the entropy was averaged over the 16 replicates.
Another important property of the α-factor distribution are the resulting gradients
which are perceived by the individual MATa cells as those mark the location of nearby
mating partners. In order to do that, we implemented an additional output in DUNE
that would return the boundary values for all edges forming the boundary of any
MATa cell. For each MATa cell we then computed the front-back ratio of α-factor,
defined as the relative difference between the point with the highest and the points
with the lowest α-factor concentration on the cell surface, given by

di =

max
x∈Γai

α(x, t)− min
x∈Γai

α(x, t)

min
x∈Γai

α(x, t)
(3.26)
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. This quantity was averaged over all MATa cells in the 16 replicates for a distinct
cell density.

A B

Figure 3.8: (A) Maximum information content and (B) relative front-back ratios (gradients) pro-
duced by the α-factor distribution in wild type and BAR1 ∆ conditions. The theoretical
maximum information content of any distribution with the same binning is given as a
dashed line.

Virtual wild type populations exhibited a strong gain of the information content of
the α-factor distribution for growing population size (figure 3.8A), which was accompa-
nied by increasing gradients across MATa cells (figure 3.8B). In contrast, populations
not secreting Bar1 showed information contents close to zero as well as insignificant
pheromone gradients, both independently of population density (figure 3.8, red sym-
bols). We noted that the overall pheromone concentration remained constrained in
wild type, but in the mutant linearly increased with population density (see appendix
figure 6.6). Altogether, the results indicate that particularly in high cell densities the
gradients and, thus, the direction of nearby mating partners can only be detected
faithfully in cell populations secreting Bar1.

Additionally, we simulated various scenarios where a high-density subpopulation was
placed next to a low-density subpopulation (figure 3.9). Here, the wild type is capable
of limiting the α-factor distribution to the corresponding subpopulation, leaving the
low-density subpopulation unaffected by the high local α-factor concentration of the
high-density sub-population. This creates α-factor hot-spots where only locally dense
sub-populations are exposed to α-factor concentrations permissive for mating. Again,
this behavior was not observed in the absence of Bar1, showing that Bar1 activity
restricts the distribution of α-factor.

The obtained results created two important hypotheses concerning mating yeast
populations. First, we observed that the activity of Bar1 greatly improves the infor-
mation contained in the α-factor signal, resulting in steep gradients in the presence of
Bar1. This should make it easier for MATa cells to find a MATα cell for conjugation
and should result in a more efficient formation of diploids in the presence of Bar1.
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wt bar1

Figure 3.9: In the presence of Bar1 activity high α-factor concentrations are kept within high density
mating sub-populations. This creates hot-spots of α-factor activity. This effect is absent
in BAR1 ∆ conditions.

Second, the lack of Bar1 induces a globally high α-factor concentration which should
induce activation of the mating pathway in all MATa cells and result in a global growth
arrest of the culture, because MATa as well as MATα do not have an extracellular
protease activity in this setting. In the wild type, however, mating is concentrated
to the α-factor hot-spots which should result in a recovered growth compared with
BAR1 ∆ cultures. We now set out to investigate the validity of these hypotheses.

3.2.3 Bar1 coordinates growth along with mating in mixed haploid
populations

In order to test the validity of this prediction we observed mating between MATa
cells (here marked with the constitutively expressed RPL9a-GFP) and MATα cells
(marked with mCherry) and quantified their growth rates with FACS analysis and cell
counting in wild type and in BAR1 ∆ populations during 5 hours of incubation.
To measure the diploid formation rate independently of the population density and
without destroying extracellular gradients, we used flow cytometry (see 2.2.2) for mixed
populations of MATa and MATα to quantify the fractions of MATa, MATα and
MATa/α diploids over time for a fixed number of cell counts.
Growth of equally mixed MATa and MATα reporter strains, as well as a haploid
control strain was analyzed by measuring optical density at 600nm with a Photometer
(Eppendorf BioPhotometer plus) and in parallel by analysis of cell number and cell
size distribution with a cell counter (Casy Counter TTC, Schärfe System). Yeast
cells were incubated in a water bath at 30 ◦C without shaking. In time steps of 15
minutes samples were removed from the water bath, vortexed, appropriately diluted,
and analyzed in duplicate.

We measured fluorescence intensities for GFP and mCherry of 10.000 living cells
of each sample by FACS analysis taking advantage of the fluorescence of MATa-
RPL9a-GFP and MATα-mCherry in a BD FACS AriaII cell sorter (Becton Dickinson,
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Figure 3.10: Flourescence obtained by flow cytometry of mixed haploid cultures in wild type (A,B)
and BAR1 ∆ conditions (C,D). Points are colored by local density from blue to red.

Franklin Lakes, NJ), equipped with a 488 nm and a 561 nm Laser with filter sets for
GFP (525/50 BP, 505LP) and for mCherry (610/20BP, 600LB). Cultures were in-
cubated in a water bath at 30 ◦C without shaking. In 20 min time steps, duplicate
samples were removed from the water bath, mixed vigorously, diluted in PBS and
FACS analysed. Gates for MATa, MATα and diploids were set by hand identifying
the cell types as shown in figure 3.10.

We found no difference in the rate of diploid formation between wild type and
BAR1 ∆ cultures before completion of the first cell cycle (<120 min). This observation
is in agreement with our results that positive effects on the perceived pheromone
gradients require higher cell densities. However, after approximately passing the first
cell cycle, the relative fraction of diploids is clearly larger in the wild type cultures
than in the mutant (see figure 3.11A). This is consistent with the general view that
Bar1 activity helps to recover the position of mating partners [205–207].

When looking at population growth during mating we found strong differences be-
tween wild type and BAR1 ∆ cultures (figure 3.11B). For BAR1 ∆ cultures, the global
activation of the pheromone response in effectively all MATa cells of the population
led to an almost complete loss of population growth (figure 3.11B,C). This also caused
a characteristic population phenotype with many pheromone-stimulated MATa cells
being significantly larger than normal MATa cells and showing multiple mating pro-
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A B

wt bar1

MATa Rpl9A-GFP / MAT    mCherry

A B C

D

Figure 3.11: (A-B) Results of the FACS experiment. Each point denotes fractions obtained from
2 × 10.000 living cells. Error bars denote differences of the two biological samples in
order indicate reproducibility of the experiment. (C-D) Cell numbers and and sizes
(error bars denote standard deviation, n=6). The box indicates phenotypes in mixed
cultures.

jections (figure 3.11E). This phenotype was never encountered in unperturbed wild
type mixtures of MATa and MATα cells, but could be induced by swirling them
rapidly to inhibit cell fusion. Thus, this phenotype appears associated with induction
of pheromone response in vivo under conditions where a cell cycle arrest has been
induced but successful mating is inhibited.
Wild type cultures exhibited significant growth on the population level despite the
higher rate of diploid formation and a normal phenotype of MATa cells (figure 3.11B,D).
The effect of Bar1 secretion on haploid growth rates was even more prominent when
looking at the MATa/MATα ratio in the population (figure 3.11C). There is no se-
cretion of an extracellular protease described for MATα cells. Co-cultured wild type
MATa cells strongly outperform MATα cells in growth during mating to an extent
that within 5 hours MATa is the predominant haploid cell type in the population.
This cannot be observed in BAR1 ∆ background where the MATa/MATα ratio re-
mains constant, presumably because both haploid cell types are equally inhibited in
growth.
In summary, secretion of Bar1 enables a high mating rate on a population level, but
also strongly optimizes the population growth rate by avoiding unnecessary cell cycle
arrest when successful mating is improbable.
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3.3 Signal accumulation and linear distance encoding
in the yeast pheromone response

We saw that the extracellular pheromone signal is highly regulated in mating yeast
populations. However, we also observed that the resulting concentrations of α-factor
are quite low (≈ 10nM). Even though the average α-factor distribution is highly
informative, how is this information sensed by the cells in the presence of high noise
due to the fast diffusion and small abundance of α-factor? As we have seen in section
2.3.2, small abundance together with fast diffusion can introduce significant noise into
a system. This can indeed be observed to be true when looking at the response of
MATa cells secreting Bar1 incubated with defined initial concentrations of α-factor
in figure 3.12.

Figure 3.12: The presence of Bar1 also induces higher noise levels in the response. Compare to
figure 3.2.

The increased noise levels impose a challenge to the sensing cell, particularly when
only few secreting MATα cells and thus little pheromone is available to sense. Addi-
tionally, MATa cells do not only have to recover the abundance of α-factor but also
its distribution in space as it marks the site of the future polarisome. Thus we set
out to study the early response to pheromones in detail considering a modeling which
would allow us to quantify the stochastic properties as well as spatial arrangements.

3.3.1 A spatial stochastic model of the early pheromone response

Even though the volume of the entire cell population is high and the overall number
of α-factor molecules as well, this does not necessarily hold for an individual MATa
cell in the population. Due to this we used a characterization by the reaction diffusion
master equation described in section 2.3.1. In particular we used the next subvolume
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method implemented in the program MesoRD (http://mesord.sourceforge.net) to
obtain the spatial dynamics of the system [189]. As we were interested in the parts
of the system participating in noise reduction, we constructed a much more detailed
model containing 18 different types of molecules influenced by 24 unique reactions. The
system included the entire early onset activation of the yeast pheromone response as
described in section 1.4.2, including secretion of α-factor and Bar1, receptor regulation,
G protein activation and Ste5 recruitment. Those processes were implemented in a
MATa cell with a single nearby MATα cell. The model could be parameterized
completely by values obtained from published measurements or direct derivation. Here,
the entire derivation of kinetic parameters can be found in the appendix 6.2. Diffusion
rates for individual molecules were again calculated from the Einstein-Stokes relation
as described earlier in section 3.2.1 (also see appendix 6.2). The volume in which the
cells were immersed was modeled as an outer “world” compartment having a ellipsoid
shape and containing a single MATa and MATα cell with variable distance to each
other. Both cells were assumed to be large haploid cells with ellipsoid shapes having a
radius of 2.5 µm over the xy-plane and a height of 1.5 µm over the z-plane. The entire
computational domain is illustrated in figure 3.13. Apart from the nucleus indicated in

Figure 3.13: The geometry of the used model. The MATa cell is shown in green with blue nucleus
and the MATα cell in blue with red nucleus. The outer boundary of the simulated
volume is indicated with the lightgreen ellipsis.

the images, the MATa cell is subdivided into several biological compartments. Here,
the most important is the membrane/cell wall, which is the space protruding 100 nm
from the cell boundary into the MATa cell volume. Furthermore, we define the cytosol
as the cell volume which is neither part of the membrane nor of the nucleus. Diffusion
rates and reactions are automatically adapted depending in which compartment the
molecules reside. Furthermore, a 100 nm space protruding from the outer boundary of
the world compartment is reserved as a unique compartment “end of world” in order
to enforce various boundary conditions. Boundary conditions are much more different
to enforce than in the PDE model as they have to be expressed in the formalism of
“events” as used by the next subvolume method.
The expression of α-factor was modeled by having it produced with a constant rate
of 4000molecs/s with an almost instantaneous export due to very high diffusion rates
within the MATα cell. This corresponds to an unstimulated secretion of α-factor. In
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order to obtain significant gradients of Bar1 and α-factor the viscosity of the volume
between the cells (in the “world”) was chosen as to be the same as in the yeast cytosol.
Furthermore, we wanted to model the cells as being immersed into much larger empty
volume than explicitly treated by the system. In order to do this we made the “end of
world” compartment absorbing, meaning that any molecule entering it will not exit it
anymore. We then created a reaction destroying any molecule x from this volume with
a constant rate (P(destroy) = c · x). The constant was finally chosen to reproduce the
α-factor and Bar1 profiles obtained from an analytical solution of constant secretion
from a spherical volume into an infinite space. Any point with the distance dC from
the center of the emitting volume than has a local concentration C(dC) with

C(dC) =

T∫
0

[
kE
2
·
(

erf

(
a− dC
2
√
D · t

)
+ erf

(
a+ dC

2
√
D · t

))

− kE
a

√
D · t
π

(
exp

(
−(a− dC)2

4D · t

)
− exp

(
−(a+ dC)2

4D · t

))]
dt,

(3.27)

where kE is the secretion rate, D is the diffusion rate, a the radius of the emitting
spheroid and T the time point at which the profile is taken [230]. The function erf
denotes the Gaussian error function given by

erf(x) =
2√
π

x∫
0

exp(−t2)dt. (3.28)

Obviously the relation can be calculated independent of the actual secretion rate as it
only enters the equation by a constant factor. We simulated the profiles with MesoRD
and chose the constants which would reproduce the infinite profile obtained by the
approximate analytical solution (F-test p-value < 2 · 10−16). With the model and the
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Figure 3.14: The approximation of the analytical solution by the outer boundary condition.

boundary condition defined we lacked only the initial condition for simulation. Overall
molecule numbers were obtained from literature and are summarized in the appendix
6.2. The spatial distribution was obtained by an initial run were the molecules were
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placed in arbitrary compartments without any reactions. This model was simulated
until a steady state was reached. Continuing the simulation after the steady state,
statistics for the abundance of each molecule in each compartment were obtained and
used as initial state for all further simulations.
Simulation trajectories were generated for 6 different distances between the cells rang-
ing from 0.5 to 6 µm and for a simulation time of 10 minutes. Each trajectory was
obtained in 10 independent replicates. Those replicates were computed in parallel on
a cluster since a single simulation would take almost a week to simulate. Output pars-
ing was performed in Python (http://www.python.org) and statistical analysis in R.
Visualization of the molecules in 3-D was obtained by parsing the MesoRD output
via custom scripts in Python into ray shading scenes which were rendered in PovRay
(http://www.povray.org).

Even with the model formulated, the question remained how well it would connect to
real data. We employed a big amount of parameters and, even though we could derive
them directly, it gives some insecurity how well the model connects to experimental
data. Thus, we used an experimental data set, not included in our model construction
to see how well the model performed. The data set employed was previously published
and was particularly adapted to our model as it used a kinase-dead Fus3 mutant, thus,
corresponding to our model which did not consider the MAPK cascade [231]. In order
to account for the constant α-factor concentration used in the experiment we added α-
factor which was not depleted by binding to the receptor7, in the same concentration in
the membrane compartment. It can be seen in figure 3.15 that the data corresponded
well to the model simulation. Additionally, the noise of the measured data seems to be
reconstructed by the model as well, as the measurement points lie within the confidence
area of around 95%. As such we could now employ the model to study the dynamics

Figure 3.15: Validation of the model simulations using and independent data set from Yu et. al.
(triangles, [231]). The dynamics and noise levels are correctly predicted by the model.

of the pheromone detection under varying distances of the MATa and MATα cell.

7More precisely, the concentration of α-factor remained constant in the cell wall/membrane, which
mimicked the constant concentration kept in the experiment.

98

http://www.python.org
http://www.povray.org


3.3 Signal accumulation and linear distance encoding in the yeast pheromone
response

3.3.2 Linear distance encoding and global noise reduction

In contrast to the constant external α-factor distribution (as in figure 3.15) where a
plateau phase was reached within a minute, we observed that the small secreted gradi-
ents led to a different temporal behavior of the global activation. Here, the activation
of receptors was gradually accumulating until reaching the plateau phase at the end
of 10 minutes. This behavior was mirrored by the number of active Gβγ molecules
at the membrane and by the number of recruited Ste5 molecules. As observable in
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Figure 3.16: Activation profiles of key components in the pheromone detection. The six curves
correspond to increasing cell distances from bottom (0.5 µm) to top (3 µm). Means
and quartiles were smoothed by a sliding mean approach over the 10 replicates.

figure 3.16, the slower response seems to go along with a significant amplification of
the signal. The different distances resulted in an average 5-20 α-factor molecules on
the cell membrane at each time point, however, this lead to an activation of up to
750 receptors and 350 G proteins. It seemed that the signal was well separated in
abundance, thus the activation curves of Ste2 could be distinguished between different
distances. The question was now how this relates to the distances of the cells and
the noise of the α-factor profile. For this we studied the statistics of the α-factor
abundance on the membrane along with the abundances of the last 10 seconds of the
plateau phase for Ste2, Gβγ, and Ste5. Figure 3.17 shows the results. We observed
that on the level of α-factor it almost seemed as if any distance would lead to the same
α-factor abundance at the cell membrane, in mean varying only by 5-10 molecules and
having high noise levels. Global noise levels were strongly reduced on the level of the
activated receptors. Here, the response was almost perfectly linear in the distances
showing significant separation of the number of activated receptors by distance (see
figure 3.17). This was also the case for the G proteins.
Thus, we concluded that the strong fluctuations in the number of α-factor molecules
at the membrane are efficiently reduced by the receptors. This is achieved by accumu-
lating the signal over time. The quality improvement acquired that way is passed on
to the G protein, however not to the number of recruited Ste5 molecules. However,
the activation of the MAPK cascade also depends on Ste20, whose activation depends
again on Gβγ.
That indicated that MATa cells collect signal over time in order to improve the relia-
bility, a process that seems particularly helpful in shallow concentrations of α-factor.
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3 The yeast pheromone response as a complex communication system

Figure 3.17: The distance is linearly encoded in the molecule abundances as shown by the regression
lines. However, good separation is only achieved on the level of receptors and G
proteins, whereas α-factor itself and G proteins show very high noise levels.

Thus, MATa cells employ a simple but effective noise reduction strategy, temporal
signal accumulation on the level of the receptor, that allows for a linear encoding of
the distance between mating partners in activated pathway components and enables
reliable detection of cell distances smaller than 500 nm.

3.3.3 Local noise reduction and depletion

The observation that cell distances are encoded in the overall concentrations of sig-
naling molecules raises the question why MATa cells do not employ the spatial dis-
tribution of α-factor in order to do this, but rather its total abundance over time. In
order to investigate the reason for this, we studied the arising distributions of signaling
molecules (gradients) at the membrane. Initial visualization lead to disperse distribu-
tions which seemed to vary only little with distance, which raised the question whether
the spatial distributions were indeed the same (figure 3.18). In order to quantify the
resulting gradients, we reduced the complexity by switching to a polar coordinate sys-
tem. This was done by taking the imaginary line connecting the centers of the two cells
as an “optimum” and calculating the angles between the vector emanating from the
cell center of MATa cells to any molecule on its membrane and the optimum line. The
gradient could than be quantified by the angular distribution of molecules, where a
single peak at the zero angle would indicate complete polarization on the point closest
to the MATα cell. Analogously, a uniform distribution would indicate a completely
dispersed distribution over the cell membrane and, thus, the absence of polarization.
Gradients were then visualized by binning the angles and calculating the average num-
ber of molecules in the cubes corresponding to a single bin over all replicates. Finally,
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response

Figure 3.18: Three dimensional rendering of simulation output. Setup shown here is for a cell
distance of 0.5 µm, but the spatial distribution varied only little with distance. The
illustration in the lower right shows the calculation of angles used to quantify the
gradients.

in order to make the angular distribution comparable between different molecules, we
divided those numbers by its integral to obtain distributions. The angular distribution
of α-factor was non-discernible in different distances. This was also true for active
receptors, G proteins and recruited Ste5 molecules. Why does the accumulation of sig-
nal on the level of Ste2 receptors not increase the detection of gradients? We observed
that the effect of accumulation on a local level in space was counteracted by the local
depletion of non-active receptors. As such, locations on the yeast membrane of MATa
cells were quickly running out of remaining non-activated Ste2 receptors (see appendix
figure 6.7). Local depletion, thus, seemed to be the reason that gradients are only a
poor indicator of the distance to the MATα cell, which makes it more efficient to use
total concentrations.
Even though, the mean angular distribution did not vary over different distances we
observed a strong local noise reduction. This was quantified by calculating the angular
distribution as before but now calculating the noise level ηM for a molecule M in each
cube c given by

ηM =

√
Var(Mc)〈
Mc

〉 . (3.29)

Normally, one desires a noise level where the standard deviation is significantly smaller
than the mean, thus η < 1.

We observed a noise level bigger than one for α-factor which dropped strongly as
the signal was passed to the receptors and G proteins, stabilizing the gradient (figure
3.20). Interestingly, noise levels were not constant in space but rather varied with
location.
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Figure 3.19: Angular distributions of key components in the pheromone detection system at a cell-
to-cell distance of 0.5 µm.

3.4 Multi-protein complexes and polarization

As we have observed in the previous section, gradients are transmitted accurately from
the extracellular environment into the distribution of active receptors and Gβγ on the
cell membrane. However, this transmission is preserving and shallow gradients will
result in shallow differences in the membrane distributions of those compounds. When
looking at markers for the distribution of polarisome complexes, however, we observe a
quite different picture. Here even uniform α-factor distributions can induce a massive
condensation of the membrane distribution as indicated in figure 3.21A. It is known
that positive feedback loops in polarization can induce stable symmetry breaking (see
section 1.4.4). But what induces the strong polarization? In order to study this phe-
nomenon we did not construct a detailed model. Rather, we reduced our research to
the basic principles that form the polarisome.
We have introduced the processes forming the polarisome in yeast in section 1.4.4. The
polarisome is mostly formed by the recruitment and activation of proteins to precur-
sor components. Those proteins can either be membrane-bound before recruitment or
tethered to the membrane upon presence of the signal, as it is the case for key com-
ponents like Far1, Cdc24 or Cdc42. The recruited components then interact to induce
further activation and formation of the polarisome. Thus, the basic motif used here is
the activation of proteins during presence of an extracellular signal and their posterior
interaction. The most basic structure of such a system is shown in figure 3.21B. It con-
sists of a model that considers only the activation and interaction of effector proteins.
Here, proteins are either pre-bound to the membrane and activated directly (direct
model), or are recruited from the cytosol to the membrane, which induces activation
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Figure 3.20: Local noise levels for the key components of the pheromone detection.

(recruited model).

3.4.1 The motifs promoting complex formation

We have seen that complexes can be formed by direct or recruited activation. The
most simple motifs are the ones where only two components interact. We will denote
those two components as A and B, and the extracellular signal the cell is exposed to
as S(x, t)8. For the direct model this leads to the following set of reactions

A
k1S

�
k2

Aon B
k3S

�
k4

Bon Aon +Bon
k5
�
k6

ABon, (3.30)

where the “on” state denotes the active state of the molecules. As we are interested
in the basic processes, we will treat those reactions on a crude representation of a cell
membrane/cell wall, represented by a circular shape in the xy-plane. This corresponds,
for instance, to a cut through a cell in the xy-plane. We assigned a cell a constant
radius r which allows us to reduce the dimensionality to a 1-D problem by switching to
polar coordinates. This allows the space to be treated as a line with circular boundaries
as illustrated in figure 3.22. This now implies the following set of reaction-diffusion

8As before the extracellular signal is a function of time t and space x.
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Figure 3.21: (A) Wild type MATa carrying a Fus1-GFP marker. Fus1 is recruited to the polarisome
before conjugation. The cells were subjected to a uniform concentration of 25 µM of α-
factor for 1 hour. (B) The basic processes governing the construction of the polarisome.

Figure 3.22: The simplifications applied to reduce the dimensionality of the space.

equations for the direct model 9:

∂A(x, t)

∂t
= k2A

on(x, t)− k1A(x, t)S(x) +DA∆A(x, t) (3.31)

∂Aon(x, t)

∂t
= k1A(x, t)S(x) + k6AB

on(x, t)− k2A
on(x, t)− k5A

on(x, t)Bon(x, t)

+DA∆Aon(x, t)

(3.32)

∂B(x, t)

∂t
= k4B

on(x, t)− k3B(x, t)S(x) +DB∆B(x, t) (3.33)

∂Aon(x, t)

∂t
= k3B(x, t)S(x) + k6AB

on(x, t)− k4B
on(x, t)− k5A

on(x, t)Bon(x, t)

+DB∆Bon(x, t)

(3.34)

∂ABon(x, t)

∂t
= k5A

on(x, t)Bon(x, t)− k6AB
on(x, t) +DAB∆ABon(x, t) (3.35)

9Since we only consider a single angular dimension, the Laplace operator is given by: ∆f(x, t) =
∂2f(x, t)/∂x2.
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3.4 Multi-protein complexes and polarization

with the boundary conditions

A(−πr, t) = A(πr, t) B(−πr, t) = B(πr, t) Aon(−πr, t) = Aon(πr, t)
(3.36)

Bon(−πr, t) = Bon(πr, t) ABon(−πr, t) = ABon(πr, t) (3.37)

and initial conditions

A(x, 0) = A0 B(x, 0) = B0 Aon(x, 0) = Bon(x, 0) = ABon(x, 0) = 0 (3.38)

for some arbitrary S(x). The reactions of the recruitment model are essentially the
same as the in the direct model with the difference that the proteins A and B are cy-
tosolic and are recruited to the membrane in a signal-dependent manner. Recruitment
to the membrane than enables formation of the ABm heteromer.

A
k1S

�
k2

Am B
k3S

�
k4

Bm Am +Bm
k5
�
k6

ABm

The resulting reaction-diffusion equations are exactly same as in the direct model ex-
cept that the diffusion rates of the free A and B proteins are now cytosolic diffusion
rates Dc

A and Dc
B. The boundary and initial conditions are equivalent to the direct

model. As such the major difference between the two mechanisms is given by the
differences between the cytosolic and membrane diffusion rates of the free proteins.
However, this difference may have large impacts, since those diffusion rates usually
differ by two orders of magnitude [as measured in 232].

The resulting system was mostly treated by analyzing the steady state solution which
could be derived analytically for the simple model (see appendix 6.1). We preferred
this strategy, because the parameters were mostly unknown and by solving the steady
state analytically one could observe how they influence the response. Additionally, we
also simulated the model for some particular sets of parameters in order to validate
the results obtained by the analytical solution. To this end we first discretized the
space by decomposing it into n = 100 intervals with respective lengths h = 2πr/n. For
each interval i we treated the system state as a vector of constants Y. The Laplace
operator was approximated by central differences which yielded

∆Yi ≈
1

h2
(Yi−1 − 2Yi + Yi+1).

The resulting ODEs were solved numerically with the deSolve package within the
scripting language R. We applied the lsode method with a rearranged system yielding
a banded Jacobian [233, 220]. As input signals we used triangular, rectangular, cubic
and Gaussian shapes with varying width parameters w. The detailed descriptions of
those shapes can be found in appendix 6.1.

3.4.2 Complex formation enables increased polarization

Analytically solving the steady state for the reaction-diffusion model provided expres-
sions for the spatial distribution of the downstream effectors upon activation of the
motif. Here, the monomers showed a spatial distribution according to

Aon(x) =
a · S(x)

b+ c · DA
D∗
A
· S(x)

(3.39)
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3 The yeast pheromone response as a complex communication system

where a, b, c are constants composed of the kinetic rates and initial conditions and DA
D∗
A

is the ratio of diffusion rates for the active (or recruited) protein and the inactive (or
free) protein (again a detailed derivation can be found in appendix 6.1). An equiv-
alent formula holds for the Bon monomer. Relationship (3.39) describes a hyperbola
depending on the local value of S(x). Its behavior will be greatly influenced by its
parametrization and can be divided into two general classes.
In the presence of high local signal concentrations S(x), it will show a saturation effect.
Mechanistically, this can again be explained by the local depletion of of non-active pro-
teins, since most proteins in the vicinity of a strong signal concentration will be in their
active state. In that case the steady state expression for the concentration of active
protein complexes takes a rather complicated form with

ABon(x) =
1

2
p(S, x,k)−

√
1

4
p(S, x,k)2 − q(k). (3.40)

p(S, x,k) is a non-trivial function, composed of the signal function S(x) and the pa-
rameters k, and q(k) is a constant function depending on the parameters k.

In case the signal concentration is globally low, saturation of the curve is not achieved
and local depletion will not occur, since only a small fraction of the proteins will be in
the active state. The expression for the active protein complexes now simplifies to

ABon = d · S(x)2, (3.41)

with a constant d composed of the kinetic rates and initial conditions. This resembles
a high-pass filter since the quadratic term will suppress the signal at positions x with a
low signal concentration and amplify it at positions x with a high signal concentration.

It can be seen from equation (3.39) that the sensitivity to local depletion is strongly
influenced by the ratio of diffusion rates. In case the proteins are also membrane-bound
in their inactive forms the diffusion ratio will be close to one, enabling strong local
depletion. However, in case the proteins are cytosolic and recruited to the membrane
during activation, the ratio of diffusion rates will become negligible. Thus, recruitment
of cytosolic proteins to the membrane upon activation will abolish the effect of local
depletion due to their fast diffusion rates.
This effect is also confirmed by numerical simulations of the models. In the direct model
the analytical steady state approximations agree with the simulation results, showing
a strong local depletion of free monomers during complex formation of membrane-
bound proteins, which leads to a less defined distribution of active monomers. On the
level of active complexes, however, the effect of local depletion is counteracted and
the spatial distribution resembles that of the initial signal (see figure 3.23). This is
also reflected in the activated membrane area. 95% of the signal covers 67% of the
membrane, whereas 95% of the active monomers cover 75% of the membrane and the
active complexes cover only 59% of the membrane.
As predicted, simulations of the recruitment model, where complexes are formed from
recruited cytosolic proteins, abolishes local depletion. Due to the linear relationship
this leads to a distribution of active monomers which resembles the distribution of
the signal, whereas the active complexes show a sharper spatial distribution than the
signal. Thus, the active monomers, as well as the signal, cover 67% of the membrane,
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3.4 Multi-protein complexes and polarization

whereas the active complexes cover only 49%. This effect presents a sharpening in the
local distribution from monomers to complexes.
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Figure 3.23: Simulation of the reaction-diffusion systems. The steady state approximation is
shown in triangles. Chosen parameters: r = 2.5µm,w = πr/3, A(x, 0) = B(x, 0) =
1, Aon(x, 0) = Bon(x, 0) = ABon(x, 0) = 0, k1 = 8, k2 = 1, k3 = 0.5, k4 = 1, k5 =
10, k6 = 1, k7 = 1, k8 = 1. Diffusion rates are 0.05µm2s−1 in the direct model and
5µm2s−1 for cytosolic proteins in the recruited model.

3.4.3 Gradient-response encoding

The nonlinearity introduced by the complex formation also has another consequence
for the formation of the complexes. For any linear kinetic the total response Rtot in
steady state will depend on the signal Stot in a linear form, thus, the overall response
Rtot(S, x) is given by

Rtot(S) =

π·r∫
−π·r

a · S(x)dx = a · Stot. (3.42)

Thus, it is independent of the signal width w and, in consequence, also independent
of the gradient. However, in the case of complex formation, this does not hold. For
the recruited model, we found that the responses of the active complexes ABon are
inversely proportional to the signal width w for all three signal shapes with

Rtot(S) = kP · kS ·
1

w
, (3.43)

where kP is a constant which arises from the kinetic parameters and initial concentra-
tions of the model and kS is a constant determined by the type (shape) of the signal
S(x) (the mathematical derivation can be found in the appendix 6.1). Since w−1 is
monotonously decreasing in w, a decrease in the signal width leads to an increase in
the response facilitated by the complexes (see figure 3.24). In the direct model one can
again observe that local depletion counteracts this effect on the sites of large signal
S again, which leads to a peak-and-decline behavior. Here the expressions could not
be calculated analytically, but were obtained by integrating the steady state solution
numerically. One should note that this form is exactly the same found for the receptor
and G protein complexes in the previous section (compare figure 3.19), indicating that
this relation between gradient and response is ubiquitous for local depletion. In gen-
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no local depletion (recruited) with local depletion (direct)

Figure 3.24: The relation between signal widths and the amount of formed complexes. Numbers
represent the fraction of of initial A and B molecules bound in complexes.

eral, we found that for any complex formation, the response will scale inversely with
the signal width, thus encoding the shape of the response and steepness of the signal
gradient into the number of formed complexes. I will denote this property gradient-
response encoding. We found gradient-response encoding with the same form for all
three signal shapes analyzed here (see appendix figure 6.1).

3.4.4 Combination of the motifs leads to exponential polarization

We have observed that a single complex formation is capable of inducing an enhanced
polarization. Thus, we now investigated the question whether combination of this
motifs can induce the point-like polarization observed in the yeast cells as in figure
3.21. We considered two general forms of motif combination, summarized in figure
3.25. In the first mechanism, called stacking, formed complexes serve as enzymes for
the formation of a different complex, for instance by a phosphorylation or acting as
an activator for a GTP exchange. Alternatively, the complexes can also participate
in the formation of a multi-protein complex by directly forming a large complex from
several heteromers. We call this coupling.
Stacking of the motifs means that already formed complexes form even higher order
complexes. Considering, for instance, two complexes ABon and XY on with steady
state responses (according to the appendix 6.1)

ABon = k1 · A0B0S(x)2 (3.44)

XY on = k2 ·X0Y0S(x)2, (3.45)

formation of a higher order complex ABXY on leads to a response

ABXY on = k3 · ABonXY on = k3A0B0X0Y0 · S(x)4. (3.46)

Repeated stacking of responses will lead to a general response R(x) with

R(x) = α · S(x)K , (3.47)
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Figure 3.25: (A) the considered mechanisms of motif combination. (B) The resulting amplified
polarization, due to the exponential dependence on the signal S, here exemplified for
a Gaussian signal.

with a constant α, which comprises the kinetic parameters and initial concentrations,
and a response degree K which denotes the number of individual proteins bound in
the complex.

During coupling several different effectors Ei are activated by independent complex
formation motifs each having a specific response Ri according to equation 3.47 with

Ri = αi · SKi . (3.48)

If all those different effectors participate in a joint reaction producing a substance C,
thus

E1 + E2 . . .+ EN
k7
�
k8

C, (3.49)

this leads to the following reaction-diffusion equation for C:

∂C(x, t)

∂t
= k7

N∏
i=1

Ei − k8A+DC∆C(x, t). (3.50)

This system has the steady state

C(x) =
k7

k8

N∏
i=1

Ei +
DC

k2

∆C(x) (3.51)

→ C(x) =
k7

k8

(
N∏
i=1

αi

)
· S

∑N
i=1Ki +

DC

k8

∆C(x) (3.52)

As such the degree of the response will be the sum of degrees of the individual effectors
with the same form as in stacking the motifs.

Consequently both mechanisms to combine the motifs lead to an exponential depen-
dence on the signal S. This results in a strong amplification at locations where the
signal is high, but a diminishing response at sites with low signal, resulting in a strong

109
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polarization which may become point-like. However, the strong amplification will
also result in a spontaneous amplification of random fluctuations of the signal, which
explains the observed spontaneous polarization occurring in MATa cells exposed to
uniform α-factor concentrations. As our motifs do not inherit a intrinsic ability to
unite individual polarisome complexes, however, we can not explain why only a single
polarisome is formed. To some extent this is controlled by the low number of formed
polarisome complexes, due to the gradient-response encoding. However, additional
mechanisms are necessary to assure convergence to a single polarisome. This was not
scope of our work, but we will briefly mention this topic again in the discussion.
The central result of this section is that the formation of multi-protein complexes does
inherit a strong polarization of those complexes on the membrane and, furthermore,
induces a higher number of formed polarisomes specifically in the presence of strong sig-
nal gradients. This effect may be counter-acted by local depletion of membrane-bound
complexes, which is avoided by rather recruiting key components from the cytosol,
where the fast diffusion assures availability.
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4 Discussion

4.1 Conclusions

In the beginning of this thesis I motivated the use of Systems Biology as a way to to
gain some new understanding of a prototypical signaling pathway. So what have we
learned about the signaling in yeast? In a first part we looked at the very basic pre-
requisite of signaling itself, the signal. To that extent we studied the phenomenon that
MATa cells of budding yeast actively alter their extracellular signaling environment
through the secretion of a protease that acts in the extracellular space by destroying
α-factor. As we have seen, this strongly alters the characteristic of the signal, result-
ing in an apparent quality gain. Not only does the information content of the signal
increase, but regulated signal degradation also allows for the coordination of signal-
ing with growth. This is achieved by restricting α-factor to distinct local regions in
space, corresponding to locations with high local cell densities. As we have shown,
this strategy is very beneficial because the diploid formation is particularly efficient
in those regions as the cells are very close. The remainder of the population is left to
continued growth, probably a good decision as those cells are to far apart to conjugate.
This is done on the cost of a lower abundance of signaling molecules in the extracel-
lular medium, resulting in a small range α-factor levels spanning approximately 15 nM.

α-factor efficiently encodes spatial information about the cell culture which is real-
ized by restricting it in space. The degradation by an additionally secreted protease
is a metabolically cheap strategy to achieve that. This becomes clear when looking
at the alternative mechanisms to achieve the same outcome. In the original work of
Turing, spatial inhomogeneities were created by differences in diffusion rates [144]. In
fact, a restricted distribution of α-factor can be achieved by slow diffusion. However,
the diffusion rate is governed by the viscosity of the medium and the size of the pro-
tein. Thus, lowering the diffusion rate to the necessary value, the α-factor oligopeptide
would have to be substituted by a much larger protein which would be very costly for
MATa cells. The secretion of Bar1 is a much efficient mechanism mainly due to two
reasons. First, a single Bar1 molecule may degrade many α-factor molecules consecu-
tively. Second, because Bar1 is a quickly diffusing molecules it is shared between all
the MATa cells in the cell population, which essentially results in an accumulation of
the individually secreted Bar1 concentrations. As thus, the MATa populations may
jointly create Bar1 concentrations which are by a factor of 1000 higher than what could
be produced by a single cell, resulting in a mutual benefit.

However, the low concentration of α-factor molecules resulting from its degradation
by Bar1 also has a negative consequence: the introduction of noise. The presence of
few α-factor molecules on the MATa cell membrane together with its fast diffusion
converts it into a highly fluctuating signal. Consequently, yeast cells had to adapt
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4 Discussion

to make reliable decisions based on this noisy signal. I have demonstrated that this
is achieved by very simple mechanism where the α-factor signal is collected by the
Ste2 receptors over a short time interval. As this, results in many activated receptors,
even in the presence of few α-factor molecules, the noise decreases. This leads to
a linear relation between the number of activated receptors and G proteins between
and the distance between the perceiving MATa cell and a potential MATα partner
cell. This relation is very exact and leads to distinguishable differences in activa-
tion for distances differing by less than 500 nm. The spatial distribution of α-factor
molecules, and consequently also of active receptors and G proteins, does only dif-
fer mildly with the distance between the cells. As such, it seems as yeast cells have
adapted to rather use the concentration of α-factor as a measure of the distance to
the nearest mating partner. As described by others, and also observed by us, the ac-
tivation of pheromone-dependent gene expression has a sigmoidal dependence on the
logarithm of the extracellular α-factor concentration (compare [231, 66] and section
3.2). This gives a switch-like dependence of pathway activation on the distance of the
cells, where the pheromone response is induced by passing a threshold distance to the
nearest MATα cell. This is also due to the fact that gradients can not be recovered
with complete accuracy from the environment, a consequence of the local depletion of
sensing molecules such as the Ste2 receptor and G proteins.
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Figure 4.1: The functional interpretation of different parts of the pheromone response as obtained
in this thesis.

Detection of the extracellular signal is followed by a strong polarization on the
membrane even in the presence of shallow gradients. Our results indicate that this
is a consequence of the formation of multi-protein complexes at the membrane, the
polarisomes. The positive feedbacks intrinsic to this process can concentrate polari-
somes to a small region corresponding to the direction of the mating partner. Local
depletion can be avoided here by recruiting polarisome components from the cytosol
rather than the membrane because the fast cytosolic diffusion enables availability of
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the entire pool of recruitable molecules. The formation of those polarized structures
also takes place preferentially in the presence of signal gradients where the number of
formed complexes is anti-proportional to the signal width. During microscopy we have
observed that this strong polarization is indeed observed in vivo and results in a single
polarisome. The convergence of individual polarisome to a single structure was not
investigated, but seems to be a consequence of components which we have not consid-
ered here. Probable suspects converging the polarisome into a single super-structure
are actin cables formed from the individual polarisome and protruding into the cell
(recall section 1.4.4). This creates directed transport of polarisome components along
the cables. Molecular transporters can jump between actin cables, but this jump might
have higher probability of success when actin cables are parallel. Thus, the transport
will be preferential into directions where already several polarisomes cluster. Another
mechanism could be given by the resulting forces. The actin cables formed from the
individual polarisomes can be compared to individual ropes connected to a metal ring.
As the polarisome start to integrate new membrane into the cell wall, the cell begins
to grow due to the shmoo formation. This corresponds to pulling the ropes connected
to the metal ring all at once, which will result in convergence to a single point.

4.2 The evolution of intercellular signaling: talking
yeasts

In this thesis I have spent a large amount of time on the communication taking place
in cell populations of yeast. In the field it is still accepted almost dogmatically that
the extracellular signaling environment is basically passive. That means it is believed
that MATa cells secrete the pheromone α-factor, providing the signal, and MATα
react to this constant and basically unchanged signal, and vice versa. In this thesis,
we have seen that this is not the case. In an initial state MATa cells and MATα cells
do secrete basal levels of α-factor and a-factor, but this is by no means the end of the
story. Both cells will induce a higher secretion level in the presence of pheromone of the
opposing mating partner and particularly MATa cells highly regulate the extracellular
signaling environment by secreting Bar1. This makes signaling in yeast different from
bacteria, where signaling is usually governed by basal secretion and a global detection
of signaling molecules. Thus, we can observe an evolutionary leap in the complexity
of the signaling environment formed by the cells from bacteria to the simple eukaryote
yeast. This leap was probably enforced by the necessity to coordinate responses in
a spatial manner in a population. An argument for this is found in the bacterium
Dictyostelium discoideum. Dictyostelium is a bacterium which is capable of forming a
super-organism from many identical cells. The formation of this multicellular structure
is coordinated by the secretion and detection of cAMP. Similar to yeast, Dictyostelium
regulates this signal through degradation by several phophodiesterases (PDEs), which
can be found in membrane-bound and secreted forms [234, 235]. As thus, it might be
that Bar1 has evolved from an initially membrane-bound form to a secreted form. The
benefit of this behavior is the cooperative accumulation of Bar1 in the medium which
allows the cells to save resources and to secrete individually small amounts of Bar1.
Additionally, since yeast in nature can switch its mating type spontaneously during
budding mixed haploid populations probably consist of equal fractions of MATa and
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MATα cells. As a consequence, due to the cooperative secretion of Bar1, the level of
Bar1 activity will scale with the number of MATα cells. Bar1 is also regulated by the
activity of the pheromone response in MATa cells and, thus, adapts depending on the
perceived concentration of α-factor.
But how can the cooperative secretion of Bar1 prevail in evolution, even though it can
be exploited easily by “cheater” cells which do not secrete Bar1 but benefit from the
Bar1 secreted by other cells? This can be explained from the nature of yeast mating.
In the beginning of this thesis we have introduced the life cycle of Saccharomyces cere-
visiae (see figure 1.2). Haploid cells do normally occur only in populations awakening
from spores. As thus, few spores form local populations of MATa and MATa cells,
and because yeast does not employ chemotaxis, populations arising from budding of
a single haploid progenitor will remain close. As a consequence, cells sharing Bar1
are likely to be genetically related. On the other hand, offspring from a “cheater”
progenitor will also be cheaters and, therefore, there will be no Bar1 activity, resulting
in loss of growth and a clear evolutionary disadvantage1. This process is commonly
known as kin-selection and is indeed a condition in which cooperative behavior can
arise stably [236, 237].

However, Saccharomyces cerevisiae also takes a special place in the kingdom of
yeasts, since it forms diploids independent of the presence of starvation conditions. As
such, Saccharomyces cerevisiae already adapts to a potential future lack of nutrients,
even though this condition may never arrive. Thus, budding yeast cells anticipate a
future lack of nutrients by already converting part of the culture into a protected state.
Probably for that reason it is so important to perform this transition without drawing
resources from normal cell growth or metabolism. This gives a possible explanation
why Saccharomyces cerevisiae invests intricate mechanisms to ensure growth during
the formation of diploids.

Given the entire knowledge we have about the formation of the extracellular signaling
environment in budding yeast, we can derive the following sequence of events. In a
newly formed haploid culture both haploid cell types initially secrete small amount
of pheromones and MATa cells also a basal amount of Bar1. Because a-factor is not
degraded by an extracellular protease like Bar1, it will accumulate rapidly. This leads
to an initial induction of the pheromone response in MATα cells and results in an
increased secretion of α-factor. This induces the pheromone response in MATa cells
and is followed by a strong secretion of Bar1 again decreasing the α-factor signal. This
creates a negative feedback which leads to a diminished Bar1 secretion and a resulting
steady state distribution of α-factor which coincides with the induction of shmooing
in both cell types. Thus, both haploid cell types do repeatedly adapt their behavior
in response to changes in the extracellular environment.
This describes a complex communication going on back and forth between cooperating
MATa and MATα cells in order to optimize information flow in the extracellular
environment and to assure future survival under starvation without sacrificing growth.
This communication uses information about the signaling pathway activation of other

1This would not work if Saccharomyces cerevisiae was capable of chemotaxis, since it would allow
cheaters to invade non- cheater populations, thus, the absence of chemotaxis favors the evolution
of cooperative behavior here.
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cells as it is encoded by the quantity of available pheromones. One could see this
as a rudimentary mechanism to adapt the cellular response to the behavior of other
cells in the population. Communication in such complexity between individuals of a
cell population is not observed in bacteria and is often believed to require at least
multicellular organisms. Thus, Saccharomyces cerevisiae seems to be an exemplary
organism for the study of cell-cell communication.

4.3 Can we generalize from yeast?

Of course, it will also be important to discuss the results in the light of other organisms
than yeast. The results obtained on the level of the intracellular pheromone response
have direct implications for signaling in higher eukaryotes as well, since the results can
be extrapolated to their homologes. I have discussed this in length already in section
1.4.5. The accurate detection of noisy extracellular signals is a general requirement
for many signaling pathways and accumulation on the receptor level to reduce noise
might a strategy used by many cells. The study of polarization employed in this thesis
was constructed from the start not to be restricted to a particular pathway. The fact
that many eukaryotes employ polarisome-like structures indicates that they may use
the same mechanisms in yeast in order to achieve polarization.
The regulation of the extracellular signaling environment in yeast does not have a
direct relation to other cells, however the used methods do. In particular the developed
assay in order to quantify extracellular signaling environments can be applied to any
cell population and might be applied to various purposes. A particular example is
found in the formation of biofilms. Biofilms are formed by many bacteria and are
a leading cause of death in bacterial infection [5, 238]. The obtained results about
communication in cell populations and application of our methodology might help to
study potential ways to disrupt the formation of biofilms.
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[29] R Kölling and C P Hollenberg. The ABC-transporter Ste6 accumulates in the plasma membrane
in a ubiquitinated form in endocytosis mutants. The EMBO journal, 13(14):3261–71, July 1994.

[30] V Brizzio, A E Gammie, G Nijbroek, S Michaelis, and M D Rose. Cell fusion during yeast
mating requires high levels of a-factor mating pheromone. The Journal of cell biology, 135(6 Pt
2):1727–39, December 1996.

[31] James B. Hicks and Ira Herskowitz. Evidence for a new diffusible element of mating pheromones
in yeast. Nature, 260(5548):246–248, March 1976.

[32] T R Manney. Expression of the BAR1 gene in Saccharomyces cerevisiae: induction by the alpha
mating pheromone of an activity associated with a secreted protein. J Bacteriol, 155(1):291–301,
July 1983.

[33] V L MacKay, S K Welch, M Y Insley, T R Manney, J Holly, G C Saari, and M L Parker. The
Saccharomyces cerevisiae BAR1 gene encodes an exported protein with homology to pepsin.
Proceedings of the National Academy of Sciences of the United States of America, 85(1):55–9,
January 1988.

118



5 Bibliography

[34] W Ballensiefen and H D Schmitt. Periplasmic Bar1 protease of Saccharomyces cerevisiae is
active before reaching its extracellular destination. European journal of biochemistry / FEBS,
247(1):142–7, July 1997.

[35] Lee Bardwell. A walk-through of the yeast mating pheromone response pathway. Peptides,
26(2):339–350, February 2005.

[36] Robert A Arkowitz. Chemical gradients and chemotropism in yeast. Cold Spring Harbor
perspectives in biology, 1(2):a001958, August 2009.

[37] Anshika Bajaj, Andjelka Celic, Fa-Xiang Ding, Fred Naider, Jeffrey M Becker, and Mark E
Dumont. A fluorescent alpha-factor analogue exhibits multiple steps on binding to its G protein
coupled receptor in yeast. Biochemistry, 43(42):13564–13578, October 2004.

[38] Anshika Bajaj, Sara M Connelly, Austin U Gehret, Fred Naider, and Mark E Dumont. Role of
extracellular charged amino acids in the yeast alpha-factor receptor. Biochimica et biophysica
acta, 1773(6):707–17, June 2007.

[39] Melinda Hauser, Sarah Kauffman, Byung-Kwon Lee, Fred Naider, and Jeffrey M Becker. The
first extracellular loop of the Saccharomyces cerevisiae G protein-coupled receptor Ste2p un-
dergoes a conformational change upon ligand binding. The Journal of biological chemistry,
282(14):10387–97, April 2007.

[40] Kyeong-Man Kim, Yong-Hun Lee, Ayca Akal-Strader, M Seraj Uddin, Melinda Hauser, Fred
Naider, and Jeffrey M Becker. Multiple regulatory roles of the carboxy terminus of Ste2p a yeast
GPCR. Pharmacological research : the official journal of the Italian Pharmacological Society,
65(1):31–40, January 2012.

[41] D D Jenness and P Spatrick. Down regulation of the alpha-factor pheromone receptor in S.
cerevisiae. Cell, 46(3):345–353, August 1986.

[42] L Hicke, B Zanolari, and H Riezman. Cytoplasmic tail phosphorylation of the alpha-factor
receptor is required for its ubiquitination and internalization. J Cell Biol, 141(2):349–358,
April 1998.

[43] J Mulholland, J Konopka, B Singer-Kruger, M Zerial, and D Botstein. Visualization of receptor-
mediated endocytosis in yeast. Molecular biology of the cell, 10(3):799–817, March 1999.

[44] Chunhua Shi, Susan Kaminskyj, Sarah Caldwell, and Mich?le C Loewen. A role for a complex
between activated G protein-coupled receptors in yeast cellular mating. Proceedings of the
National Academy of Sciences of the United States of America, 104(13):5395–5400, March 2007.

[45] H Dohlman. G Proteins and pheromone signaling. Annual Review of Physiology, 64:129–152,
2002.

[46] M Dosil, K A Schandel, E Gupta, D D Jenness, and J B Konopka. The C terminus of the
Saccharomyces cerevisiae alpha-factor receptor contributes to the formation of preactivation
complexes with its cognate G protein. Molecular and cellular biology, 20(14):5321–9, July 2000.

[47] M J Durán-Avelar, L Ongay-Larios, A Zentella-Dehesa, and R Coria. The carboxy-terminal tail
of the Ste2 receptor is involved in activation of the G protein in the Saccharomyces cerevisiae
alpha-pheromone response pathway. FEMS microbiology letters, 197(1):65–71, April 2001.

[48] H G Dohlman, J Song, D Ma, W E Courchesne, and J Thorner. Sst2, a negative regulator of
pheromone signaling in the yeast Saccharomyces cerevisiae: expression, localization, and genetic
interaction and physical association with Gpa1 (the G-protein alpha subunit). Molecular and
cellular biology, 16(9):5194–209, September 1996.

119



5 Bibliography

[49] Nan Hao, Necmettin Yildirim, Yuqi Wang, Timothy C Elston, and Henrik G Dohlman. Reg-
ulators of G protein signaling and transient activation of signaling: experimental and compu-
tational analysis reveals negative and positive feedback controls on G protein activity. J Biol
Chem, 278(47):46506–46515, November 2003.

[50] Daniel R Ballon, Paul L Flanary, Douglas P Gladue, James B Konopka, Henrik G Dohlman,
and Jeremy Thorner. DEP-domain-mediated regulation of GPCR signaling responses. Cell,
126(6):1079–1093, September 2006.

[51] J E Hirschman and D D Jenness. Dual lipid modification of the yeast ggamma subunit Ste18p
determines membrane localization of Gbetagamma. Molecular and cellular biology, 19(11):7705–
11, November 1999.

[52] C L Manahan, M Patnana, K J Blumer, and M E Linder. Dual lipid modification motifs
in G(alpha) and G(gamma) subunits are required for full activity of the pheromone response
pathway in Saccharomyces cerevisiae. Molecular biology of the cell, 11(3):957–68, March 2000.

[53] M Whiteway, L Hougan, D Dignard, D Y Thomas, L Bell, G C Saari, F J Grant, P O’Hara, and
V L MacKay. The STE4 and STE18 genes of yeast encode potential beta and gamma subunits
of the mating factor receptor-coupled G protein. Cell, 56(3):467–77, March 1989.

[54] M Whiteway, D Dignard, and D Y Thomas. Mutagenesis of Ste18, a putative G gamma subunit
in the Saccharomyces cerevisiae pheromone response pathway. Biochemistry and cell biology /
Biochimie et biologie cellulaire, 70(10-11):1230–7, 1992.

[55] L H Hartwell. Mutants of Saccharomyces cerevisiae unresponsive to cell division control by
polypeptide mating hormone. The Journal of cell biology, 85(3):811–22, June 1980.

[56] Scott A Chasse, Paul Flanary, Stephen C Parnell, Nan Hao, Jiyoung Y Cha, David P Siderovski,
and Henrik G Dohlman. Genome-scale analysis reveals Sst2 as the principal regulator of mating
pheromone signaling in the yeast Saccharomyces cerevisiae. Eukaryotic cell, 5(2):330–46, March
2006.

[57] Z G Goldsmith and D N Dhanasekaran. G protein regulation of MAPK networks. Oncogene,
26(22):3122–3142, May 2007.

[58] Raymond E Chen and Jeremy Thorner. Function and regulation in MAPK signaling pathways:
lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta, 1773(8):1311–
1340, August 2007.

[59] P M Pryciak and F A Huntress. Membrane recruitment of the kinase cascade scaffold pro-
tein Ste5 by the Gbetagamma complex underlies activation of the yeast pheromone response
pathway. Genes & development, 12(17):2684–97, September 1998.

[60] Y Feng, L Y Song, E Kincaid, S K Mahanty, and E A Elion. Functional binding between Gbeta
and the LIM domain of Ste5 is required to activate the MEKK Ste11. Curr Biol, 8(5):267–278,
February 1998.

[61] Lindsay S Garrenton, Susan L Young, and Jeremy Thorner. Function of the MAPK scaffold
protein, Ste5, requires a cryptic PH domain. Genes Dev, 20(14):1946–1958, July 2006.

[62] Matthew J Winters, Rachel E Lamson, Hideki Nakanishi, Aaron M Neiman, and Peter M
Pryciak. A membrane binding domain in the ste5 scaffold synergizes with gbetagamma bind-
ing to control localization and signaling in pheromone response. Molecular cell, 20(1):21–32,
October 2005.

[63] D N Dhanasekaran, K Kashef, C M Lee, H Xu, and E P Reddy. Scaffold proteins of MAP-kinase
modules. Oncogene, 26(22):3185–3202, May 2007.

[64] E A Elion. The Ste5p scaffold. Journal of cell science, 114(Pt 22):3967–78, November 2001.

120



5 Bibliography

[65] Lu Yu, Maosong Qi, Mark A Sheff, and Elaine A Elion. Counteractive control of polarized mor-
phogenesis during mating by mitogen-activated protein kinase Fus3 and G1 cyclin-dependent
kinase. Mol Biol Cell, 19(4):1739–1752, April 2008.

[66] Mohan K Malleshaiah, Vahid Shahrezaei, Peter S Swain, and Stephen W Michnick. The scaffold
protein Ste5 directly controls a switch-like mating decision in yeast. Nature, 465(7294):101–5,
May 2010.

[67] F Drogen, S M O’Rourke, V M Stucke, M Jaquenoud, A M Neiman, and M Peter. Phosphory-
lation of the MEKK Ste11p by the PAK-like kinase Ste20p is required for MAP kinase signaling
in vivo. Current biology : CB, 10(11):630–9, June 2000.

[68] Rachel E Lamson, Matthew J Winters, and Peter M Pryciak. Cdc42 regulation of kinase
activity and signaling by the yeast p21-activated kinase Ste20. Molecular and cellular biology,
22(9):2939–51, May 2002.

[69] E Leberer, D Dignard, D Harcus, D Y Thomas, and M Whiteway. The protein kinase homologue
Ste20p is required to link the yeast pheromone response G-protein beta gamma subunits to
downstream signalling components. The EMBO journal, 11(13):4815–24, December 1992.

[70] M Peter, A M Neiman, H O Park, M van Lohuizen, and I Herskowitz. Functional analysis of
the interaction between the small GTP binding protein Cdc42 and the Ste20 protein kinase in
yeast. The EMBO journal, 15(24):7046–59, December 1996.

[71] T Leeuw, C Wu, J D Schrag, M Whiteway, D Y Thomas, and E Leberer. Interaction of a G-
protein beta-subunit with a conserved sequence in Ste20/PAK family protein kinases. Nature,
391(6663):191–5, January 1998.

[72] Matthew J Winters and Peter M Pryciak. Interaction with the SH3 domain protein Bem1
regulates signaling by the Saccharomyces cerevisiae p21-activated kinase Ste20. Molecular and
cellular biology, 25(6):2177–90, March 2005.

[73] April S Goehring, David A Mitchell, Amy Hin Yan Tong, Megan E Keniry, Charles Boone, and
George F Sprague. Synthetic lethal analysis implicates Ste20p, a p21-activated potein kinase,
in polarisome activation. Molecular biology of the cell, 14(4):1501–16, April 2003.

[74] Javier Macia, Sergi Regot, Tom Peeters, Núria Conde, Ricard Solé, and Francesc Posas. Dy-
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6.1 Derivations

Gillespie Method

We will first compute the probability that no reaction takes place in a time interval (t, t + τ ]. For
that we assume that we already know the probability for no reaction happening in the τ -interval,
P0(τ), and now want to know what the probability is that there is also no reaction happening in the
extended interval (t, t+τ+dτ ], where dτ is an infitesimal time-interval in which only a single reaction
can happen. So we want to know the probability that no reaction happened after τ and no reaction
happens in the next dτ . The probability that no reaction happens is the opposite of the probability
that any reaction happens in dτ . This translates into

P(τ + dτ, 0) = P0(τ) · (1− r0(S, τ)dτ). (6.1)

Here r0(S, t)dτ is the probability that any reaction happens in dτ , so r0 is given by

r0(S, t)dτ =

n∑
j=1

rj(S, t)dτ. (6.2)

. We now rearrange P0(τ) the same way we have done it with the master equation and get

P0(τ + dτ)− P0(τ

dτ
= −r0(S, t)P0(τ). (6.3)

Letting again dτ → 0 gives us an ordinary differential equation for P0(τ):

P0(τ

dτ
= −r0(S, t)P0(τ), (6.4)

which now has the solution
P0(τ) = exp(−r0(S, t)τ). (6.5)

How long do we have to wait and which reaction will happen after we are done waiting? In order to
respond to this, we need the probability of first waiting some time τ and than having the reaction
j happening in an infitesimal dτ , which we will call P(τ, j|S, t)dτ . So using the same trick as before
this is again the probability of first having no reaction happening in τ and than having reaction j
happening:

P(τ, j|S, t) = P0(τ) · rj(S, t)dτ. (6.6)

Plugging in our solution from before we immediately get

P(τ, j|S, t) = rj(S, t) · exp(−r0(S, t)τ). (6.7)

Multiplying the solution by (r0/r0 = 1) yields

P(τ, j|S, t) =
rj(S, t)

r0(S, t)
· r0(S, t) exp(−r0(S, t)τ) (6.8)

= P(j|τ) · P(τ, 0), (6.9)

where P(τ, 0) is the probability that we have to wait a time τ until any next reaction happens and
which is uniquely defined by an exponential distribution with rate parameter r0(S, t). P(τ, j) now is
the probability that the next reaction will be reaction j.
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Tau-leap step size
The change of reaction rates in some time interval (t, t+ τ ] is given by

∆rj(S, τ) = rj(S, t+ τ)− rj(S, t). (6.10)

This leads to the following first order Taylor expansion in S:

∆rj(S, τ) ≈ 0 +
∑
k

∂rj(S, t)

∂Sk
(S(t+ τ)− S(t)) . (6.11)

Applying the update rule for our state (Sk(t+ τ) = Sk(t) +
∑
l ρl · φkl) to the equation than yields

∆rj(S, τ) ≈
∑
k

∂rj(S, t)

∂Sk

∑
l

ρl · φkl. (6.12)

Here φkl is again the stoichiometry. So it describes how the substance Sk changes when reaction l is
executed. Applying the expectation and using the fact that

〈
ρl
〉

= rl(S, t)τ finally gives us the mean
change in the reaction rate〈

∆rj(S, τ)
〉
≈
〈∑
k

∂rj(S, t)

∂Sk

∑
l

ρl · φkl
〉

(6.13)

≈
∑
k

∂rj(S, t)

∂Sk

∑
l

〈
ρl
〉
· φkl (6.14)

≈
∑
k

∂rj(S, t)

∂Sk

∑
l

rl(S, t)τ · φkl (6.15)

〈
∆rj(S, τ)

〉
≈
∑
l

Djl · rl(S, t)τ, with Djl =
∑
k

∂rj(S, t)

∂Sk
· φkl (6.16)

We repeat the same procedure for the variance of ∆rj(S, τ):

Var(∆rj(S, τ)) ≈ Var(
∑
k

∂rj(S, t)

∂Sk

∑
l

ρl · φkl) (6.17)

≈
∑
k

∂rj(S, t)

∂Sk

∑
l

Var(ρl) · φkl (6.18)

≈
∑
l

(∑
k

∂rj(S, t)

∂Sk
· φkl

)2

· rl(S, t)τ (6.19)

Var(∆rj(S, τ)) ≈
∑
l

D2
jl · rl(S, t)τ, with Djl =

∑
k

∂rj(S, t)

∂Sk
· φkl (6.20)

Additional derivations for section 3.4

Derivation of the steady states

Enforcing the steady state condition on the reaction-diffusion equations (equations 1 – 5 in the main
text) leads to the following equation system

0 = k2A
on(x, t)− k1A(x, t)S(x) +D∗A∆A(x, t) (6.21)

0 = k1A(x, t)S(x) + k6AB
on(x, t)− k2Aon(x, t)− k5Aon(x, t)Bon(x, t)

+DA∆Aon(x, t)
(6.22)

0 = k4B
on(x, t)− k3B(x, t)S(x) +D∗B∆B(x, t) (6.23)

0 = k3B(x, t)S(x) + k6AB
on(x, t)− k4Bon(x, t)− k5Aon(x, t)Bon(x, t)

+DB∆Bon(x, t)
(6.24)

0 = k5A
on(x, t)Bon(x, t)− k6ABon(x, t) +DAB∆ABon(x, t) (6.25)
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with identical boundary conditions as for the original reaction-diffusion equations. Here, D∗A and D∗B
can either be the diffusion rates for membrane-bound proteins (with D∗A ≈ DA and D∗B ≈ DB) or the
cytosolic diffusion rates (where D∗A � DA and D∗B � DB). Furthermore, from now on if a function
is written without its arguments this will denote its steady state value, thus Y := Y (x, t)|t→∞ = Y (x).

Rearranging the system leads to an intermediate steady state description with

A =
k2
k1S

Aon +
D∗A
k1S

∆A (6.26)

Aon =
k1
k2
A · S +

1

k2
(k6AB

on − k5AonBon) +
DA

k2
∆Aon (6.27)

B =
k3
k4S

Bon +
D∗B
k3S

∆B (6.28)

Bon =
k3
k4
B · S +

1

k4
(k6AB

on − k5AonBon) +
DB

k4
∆Bon (6.29)

ABon =
k5
k6
AonBon +

DAB

k6
∆ABon (6.30)

Combining equation 6.26 and 6.27 immediately leads to

A =
k2
k1S

(
k1
k2
A · S +

DAB

k2
∆ABon +

DA

k2
∆Aon

)
+
D∗A
k1S

∆A (6.31)

→ A = A+
DAB

k1S
∆ABon +

DA

k1S
∆Aon +

D∗A
k1S

∆A (6.32)

→ ∆A = −DAB

D∗A
∆ABon − DA

D∗A
∆Aon. (6.33)

This is now a simple second order differential equation and can be solved directly by applying the
fundamental theorem of calculus.

x∫
0

x∫
0

A(s)ds2 = −DAB

D∗A

x∫
0

x∫
0

∆ABon(s)ds2 − DA

D∗A

x∫
0

x∫
0

∆Aon(s)ds2 + α · x+ β, α, β ∈ R (6.34)

→ A(x) = α · x+ β − DAB

D∗A
ABon(x)− DA

D∗A
Aon(x) (6.35)

Due to the boundary condition A(−πr, t) = A(πr, t) it immediately follows that α = 0. From the
equation it also follows that A = β if ABon = Aon = 0. However in that case, where no A is used in
other complexes it must hold that A = A0, thus β = A0 and equation 6.35 resolves to

A(x) = A0 −
DAB

D∗A
ABon(x)− DA

D∗A
Aon(x) (6.36)

Combining equations 6.27, 6.30, 6.35 and using the property that membrane diffusion rates will be
much smaller than average reaction rates yields

Aon =
k1
k2

(
A0 −

DAB

D∗A
ABon − DA

D∗A
Aon

)
S +

DAB

k2
∆ABon +

DA

k2
∆Aon (6.37)

→
(
k2 +

k1DA

D∗A
S

)
Aon = k1A0S −

k1DAB

D∗A
ABonS +DAB∆ABon +DA∆Aon (6.38)

→ Aon =
k1A0S

k2 + k1DA

D∗A S
−
k1

DAB

D∗
A
ABonS

k2 + k1
DA

D∗
A
S

+DAB∆ABon +DA∆Aon (6.39)

Fully solving this equation would require integration of the original function S(x) which can not be
done for arbitrary functions S. However, since DA and DAB denote diffusion rates in the membrane,
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which are small, the last two terms will be vanishing for most biologically relevant systems, which
yields the approximation

Aon ≈ k1A0S

k2 + k1DA

D∗A S
−
k1

DAB

D∗
A
ABonS

k2 + k1
DA

D∗
A
S

(6.40)

In case the signal is only transferred via the monomers (ABon = 0), the monomers Ãon take a
hyperbolic form with

Ãon ≈ k1A0S

k2 + k1DA

D∗A S
(6.41)

Similar results can be obtained for B, Bon and B̃on when combining equations 6.28 – 6.30:

B(x) = B0 −
DAB

D∗B
ABon(x)− DB

D∗B
Bon(x) (6.42)

Bon ≈ k3B0S

k4 + k3
DB

D∗
B
S
−
k3

DAB

D∗
B
ABonS

k4 + k3
DB

D∗
B
S

(6.43)

B̃on ≈ k3B0S

k4 + k3
DB

D∗
B
S

(6.44)

Substituting equations 6.40 and 6.43 into equation 6.30 yields a quadratic algebraic equation for
non-zero S1

0 = (ABon)
2 − p(x) ·ABon + q, with (6.45)

p(x) :=

(
A0D

∗
A +B0D

∗
B

DAB
+
k6(k2 + k1

DA

D∗
A
S)(k4 + k3

DB

D∗
B
S)D∗AD

∗
B

D2
ABk1k3k5S

2

)
and (6.46)

q :=
A0B0D

∗
AD
∗
B

D2
AB

. (6.47)

This equations may have two real solutions, however only one of them fullfills the property that no
ABon complexes can be formed when the signal approaches zero S

lim
S(x)→0

ABon(x) = 0. (6.48)

The remaining solution is given by

ABon(x) ≈ 1

2
p(x)−

√
1

4
p(x)2 − q (6.49)

Interpretation

All of the derived solutions become constant if S → ∞, which would correspond to a saturation
of the signaling molecules which results in a homogeneous distribution at the cell membrane. When
complexes are formed at the membrane directly, by activated membrane-bound proteins, the diffusion
rates within the model will be in the same order of magnitude which results in D∗A = D∗B = DA =
DB = DAB . Therefore, the system may operate in a non-saturated state, if S and ABon are low, or

1Note that p(x) and q(x) are both approaching infinity if D∗A and D∗B are high compared to the
remaining diffusion rates. This may lead to numerical problems when evaluating the formula
(especially for small S(x)).
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in a saturated state, if S and ABon are high.
In the non-saturated state the expressions for Aon and Bon simplify to

Aon ≈ k1
k2
A0S (6.50)

Bon ≈ k3
k4
B0S. (6.51)

This directly implies a non-saturated steady state for the complexes ABon as well, with

ABon ≈ k1k3k5
k2k4k6

A0B0 · S2. (6.52)

However this is only valid for relatively low activation levels of ABon, thus, if only few complexes are
formed.

If the complexes, however, are formed from cytosolic proteins which are recruited to the membrane
this results in fast diffusion of the free proteins A and B. Due to that the diffusive ratios become
close to zero:

DA

Dc
A

≈ DB

Dc
B

≈ DAB

Dc
A

≈ 0. (6.53)

Applying this to the equations 6.40, 6.43 and 6.30 also directly leads to the linear and quadratic
forms

Am ≈ k1
k2
A0S (6.54)

Bm ≈ k3
k4
B0S (6.55)

ABm ≈ k1k3k5
k2k4k6

A0B0 · S2. (6.56)

This however does not require S or ABm to be low. As a direct consequence, in the case of recruited
cytosolic proteins, saturation is diminished by the ratio of the cytosolic to membrane diffusion rates.

Response behavior for different signals

Using the response behavior derived from the steady states, we can analyze the shape and overall
response of several types of signals. We repeat the analysis for three different kinds of signal: a linear
(triangle) signal, a quadratic signal and a Gaussian shape. The signals may all have different widths
but will all have the same overall abundance Stot. Without loss of generality we assume that the space
variable x is given in angular coordinates (radians). For each signal we then calculate the resulting
response as well as the overall response. Following from that, all signals fulfill the property

π∫
−π

S(x,w)dx = Stot ∀w ≤ π (6.57)

Linear signal (triangle)

The linear signal with width w is given by

S(x,w) :=


Stot

w2 (x+ w) if −w ≤ x ≤ 0
Stot

w2 (w − x) if 0 < x ≤ w
0 else

. (6.58)

If the signal is not saturated this results in the response

R(x,w) =


αStot

w4 (x+ w)2 if −w ≤ x ≤ 0

αStot

w4 (w − x)2 if 0 < x ≤ w
0 else

(6.59)
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with the overall response

π∫
−π

R(x,w)dx = 0 +
αStot
w4

0∫
−w

(x+ w)2dx+
αStot
w4

w∫
0

(w − x)2dx (6.60)

=
2

3
· αStot

w
(6.61)

Quadratic Signal

The quadratic signal with width w is given by

S(x,w) :=

{
3Stot

4w

(
1− x2

w2

)
if |x| ≤ w

0 else
. (6.62)

The non-saturated response is given by

R(x,w) =

 9αStot

16w2

(
1− x2

w2

)2
if |x| ≤ w

0 else
(6.63)

with the overall response

π∫
−π

R(x,w)dx = 0 +
9αStot
16w2

w∫
−w

(
1− x2

w2

)2

dx (6.64)

=
3

5
· αStot

w
(6.65)
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Figure 6.1: Considered signal shapes and gradient-response encoding in the presence of local deple-
tion.
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Gaussian Signal
The gaussian signal with width w is given by

S(x,w) := Stot
exp

(
x2

2w2

)
∫ π
−π exp

(
x2

2w2

)
dx

(6.66)

and has the response function

R(x,w) =
αStot exp

(
x2

w2

)
(∫ π
−π exp

(
x2

2w2

)
dx
)2 . (6.67)

There is no analytic formula for the overall response produced by arbitrary gaussian signals, but there

is one if the signal width is well below the perimeter of the cell, such that
∫ π
−π exp

(
x2

2w2

)
dx ≈

√
2πw2.

In this case the overall response is given by

π∫
−π

S(x,w)dx ≈ 1

2πw2

π∫
−π

exp

(
x2

w2

)
dx (6.68)

≈ 1

2
√
π
· αStot

w
, (6.69)

because exp(−x2/w2) is a Gaussian with parameter ŵ := w/
√

2 < w.

6.2 Additional Data

Reactions and rates used in 3-D stochastic model
This list includes the kinetic rates used in the large stochastic model presented in section 3.3.

Kdis
Reaction: alpha → ∅
Value: 25 s−1 Derivation: Chosen to reproduce the original α-factor profile from the analytical solu-
tion.
Sources: [230]

Ksec
Reaction: ∅→ alpha
Value: 4000 s−1

Derivation: Chosen as a MATα with low secretion of α-factor.
Sources: [20]

Kdeg alpha
Reaction: Bar1 + alpha → Bar1
Value: 0.93 l µmol−1s−1

Derivation: The Km for Bar1 is 0.03 mmol/l. Since our local pheromone concentration is always far
below this Km (pheromone is about 10nM whereas the Km is in the range of 30000 nM). Therefore,
from S < Km it follows that Vmax·S

Km+S = Vmax
Km · S = kcat

Km · E · S.
Sources: For the kcat we take the mean of two secreted aspartyl proteases from Candida parapsilosis
which yields a kcat of 28 s−1. Km has been measured [239, 240].

Kdis Bar1
Reaction: Bar1 → ∅
Value: 10s−1

Derivation: Chosen to reproduce analytical solution.
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Sources: [230]

Ksynth Bar1
Reaction: ∅→ Bar1
Value: 1000s−1

Derivation: The actual value does not really matter here. Together with the secretion rate the equi-
librium will be the measured Bar1 abundance of 672 molecs/cell.
Sources: See Bar1 abundance.

Kon alpha
Reaction: Ste2 + alpha → Ste2:alpha
Value: 0.185 l µmol−1s−1

Derivation: Calculated rom the Kd and Koff rate by kon=koff/Kd.

Koff alpha
Reaction: Ste2:alpha → Ste2 + alpha
Value: 1.0± 0.1 · 10−3 s−1

Derivation: Average of 3 experiments.
Sources: [241, 242, 37]

Kd alpha
Reaction: none
Value: 5.4± 2.5nM
Derivation: Average from 9 experiments. Internal parameter to calculate the on- and off-rates.
Sources: [243, 41, 244, 245, 46, 246–248, 37]

Kp alpha
Reaction: Ste2 + Yck1/2→ Ste2.P + Yck1/2
Value: 0.6668 l mmol−1s−1

Derivation: Approximated by fitting to a small ODE model with the data from Hicke.
Sources: Data from the Hicke Paper, Molecular abundances [42].

Kp Ste2alpha
Reaction: Ste2:alpha + Yck1/2 → Ste2.P:alpha + Yck1/2
Value: 0.01713 l µmol−1s−1

Derivation: Approximated by fitting to a small ODE model with the data from Hicke.
Sources: Data from the Hicke Paper, Molecular abundances.

Kdeg Ste2
Reaction: Ste2.P:* → ∅
Value: 0.00561s−1

Derivation: Approximated by fitting to a small ODE model with the data from Hicke and the con-
straint that the degradation should be slower than the phosphorylation rate of the pheromone-bound
form.
Sources: Data from the Hicke Paper, Molecular abundances.

Kon G spont
Reaction: Gpa1.Ste4.Ste18 → Gp1.GTP + Ste4.Ste18
Value: 6.17 · 10−4s−1

Derivation: measured
Sources: [249]

Kon G rec
Reaction: Gpa1.Ste4.Ste18 +Ste2.*:alpha → Gpa1.GTP + Ste4.Ste18 + Ste2.*:alpha
Value: 74.353 l µmol−1s−1

Derivation: We ignored the value measured by Yi since it is impossible given the diffusion limit.
Following Linder the rate-limiting step is the disassociation oft GDP which happens with a rate of
0.19min−1 at 30 ◦C. We assume that is for one GAP protein and recalculate the second-order con-
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Figure 6.2: Fit of a simple ODE model to the data generated by Hicke et. al. in order to approximate
the phosphorylation and degradation rate of Ste2. Significance was assessed using the
F-test resulting in a p-value smaller 0.01.

stant by multiplying the amount of 1 nm molecules in our cell which yields the given rate.
Sources: Rate taken from the paper. Molecule number for 1nm in the our cell (23.49 molecules) [250].

Khyd spont
Reaction: Gpa1.GTP → Gpa1.GDP
Value: 0.0045 s−1

Derivation: Again we rather take values measured experimentally then fitted to data. Thus we take
values for the rat Galpha again which is 0.27min−1.
Sources: [250]

Khyd Sst2
Reaction: Gpa1.GTP + Sst2:* → Gpa1.GDP + Sst2:*
Value: 0.1031 l µmol−1s−1

Derivation: We assume that presence of the RGS protein globally increases the rate of hydrolysis
600-fold, as is has been shown for other G proteins. However since we assume that this is a cumula-
tive effect of the all Sst2 molecules in the vicinity of the membrane this rate is further divided by the
abundance of Sst2 bound to Ste2 or at the membrane in steady state. Thus the final rate is given by
Khyd spont · 600 · Sst2[nm]−1mem.
Sources: [251]

Ktrim G
Reaction: Gpa1.GDP + Ste4.Ste18 → Gpa1.Ste4.Ste18
Value: 23.486 l µmol−1s−1

Derivation: We calculate that from the rate of 1 (molecspercell)−1 as from the Yi paper and use the
equivalence from our model that 1nM = 23.486 molecules.
Sources: They did fit his to data, but it is quite clear that due to the low diffusion rate in the mem-
brane this reaction is diffusion limited anyways [252].

Kon Sst2
Reaction: Ste2:* + Sst2 → Ste2:*:Sst2
Value: 1 l µmol−1s−1

Derivation: Chosen to be in the range of other binding constants and Kds in the model.

Koff Sst2
Reaction: Ste2:*:Sst2 → Ste2:* + Sst2
Value: 1s−1

Derivation: Arbitrarily chosen to be in the range of other binding constants and Kds in the model.
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Kon Ste5
Reaction: Ste4.Ste18 + Ste5 → Ste5:Ste4.Ste18
Value: 0.83 l µmol−1s−1

Derivation: [253]

Koff Ste5
Reaction: Ste5:Ste4.Ste18 → Ste5 + Ste4.Ste18
Value: 0.084 s−1

Derivation: Derived from the FRAP recovery of membrane-localized Ste5 as ln(2)/t0.5 [254].

Kdim Ste5
Reaction: Ste5:* + Ste5:* → Ste5:*:Ste5:*
Value: 10 l µmol−1s−1

Derivation: Since Ste5 dimers are hard to be detected we assume that they have a fast binding an
disociation rate. Furthermore we observed that a Kd of about 0.1µM nicely reproduced the fraction
of 10% dimers as observed by Slaughter et. al. [255].

Kdimoff Ste5
Reaction: Ste5:*:Ste5:* → Ste5:* + Ste5:*
Value: 1s−1

Derivation: See previous comments.

Kdeg Sst2
Reaction: Sst2 → ∅
Value: 3.85 · 10−4s−1

Derivation: Taken from a half life time of 30 min [48].

Ksynth Ste2
Reaction: ∅→ Ste2
Value: 0.79095s−1

Derivation: Chosen to reproduce the steady state amount of Ste2 in the cell.
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Figure 6.3: Approximation of the synthesis rates for Sst2 and Ste2 was performed by first simulat-
ing the model without synthesis and using a linear regression to approximate the rate
required to counteract the molecule loss.

Ksynth Sst2
Reaction: ∅→ Sst2
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Value: 0.47864s−1

Derivation: Chosen to reproduce the steady state amount of Sst2 in the cell.

Molecular abundances for various components of the yeast
pheromone response

protein molecules per cell (mean) sources
Fus3 4250 [256, 75, 255]
Gpa1 5584 only myristoilated,[256, 252, 257, 49]
Ste4 820 [256, 252, 51]
Ste2 6600 [41, 245, 46, 24, 248, 243, 241, 258, 259]
Kss1 3205 [256, 255]
Msg5 829 [256, 255]
Sst2 2000 [49]
Ste5 600 [75, 255]
Ste7 985 [75, 255]
Ste11 658 [75, 255]
Ste20 259 [256]
Ptp2/3 917 [256]
Yck1/2 7790 [256]

Diffusion rates for different proteins in the yeast pheromone
response
All values assume room temperature (25 ◦C). We used measured viscosities for different parts of the
yeast cell [232, 255]. Diffusion rates are given in µm2/s.

protein cytosol/nucleus membrane
Bar1 8.2285 1.4539·10−3

Ste2 9.0589 1.6064·10−3

α-factor 28.427 5.0229·10−3

Yck1/2 8.3 1.46·10−3

Gpa1 8.6941 1.5362·10−3

Ste4 9.1412 1.6152·10−3

Ste18 14.292 2.5254·10−3

Sst2 7.6356 1.3492·10−3

Ste20 7.0246 1.2412·10−3

Msg5 8.6865 1.5348·10−3

Ptp2/3 7.2 1.27·10−3

Ste5 7.0162 1.2397·10−3

Ste11 7.6038 1.3435·10−3

Ste7 8.5066 1.5031·10−3

Fus3 9.5613 1.6894·10−3

Kss1 9.4139 1.6634·10−3
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6.3 Additional figures
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Figure 6.4: Histogram and QQ-Plot for studentized Fus1-GFP fluorescence. For each α-factor dis-
tribution the GFP fluorescence was centered by its mean and scaled by its standard
deviation to yield the studentized measurements. Both plots show that the fluorescence
values are Normal distributed (n=3320).

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

Jα

D
en

si
ty

Figure 6.5: Distribution of obtained α-factor fluxes. A flux of 1 nM roughly corresponds to 450
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roughly 2300 molecules per cell and second.
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6.3 Additional figures
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Figure 6.6: The average α-factor concentration observed in in silico populations of yeast in wild
type (left) and BAR1 ∆ conditions (right). The dashed line denotes the concentration
of α-factor which is usually sufficient to induce mating.
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