9. Tabellen- und Abbildungsverzeichnis

Tab.	1.1:	ATP und NAD(P) ⁺ sind universelle Energie- und Signalmoleküle.	1
Abb.	1.1:	Die Struktur des NAD(P) ⁺ und seine Funktion im Energiestoffwechsel.	3
Abb.	1.2:	NAD ⁺ als Substrat für kovalente Proteinmodifikationen;	
		Mono-ADP-Ribosylierung und Poly-ADP-Ribosylierung.	5
Abb.	1.3:	Struktur der 2`-O-Acetyl-ADP-Ribose.	8
Abb.	1.4:	Struktur der cyclischen ADP-Ribose.	11
Abb.	1.5:	Struktur des Calcium-Mediators NAADP+.	12
Abb.	1.6:	Die Synthese von cADP-Ribose und NAADP+ durch die	
		NAD ⁺ -Glykohydrolase.	14
Abb.	1.7:	Der NAD ⁺ -Abbau.	15
Abb.	1.8:	Der NADP ⁺ -Abbau.	17
Abb.	1.9:	NAD ⁺ -Synthese.	18
Abb.	1.10:	NADP ⁺ -Synthese.	19
Tab.	3.1:	Reinigung der NAD ⁺ -Kinase aus Rinderleber.	55
Abb.	3.1:	Aktivitätsnachweis der NAD+-Kinase aus Rinderleber nach nativer	
		Gelelektrophorese.	55
Abb.	3.2:	Analyse der gereinigten NAD+-Kinase aus Rinderleber durch native PAGE.	56
Abb.	3.3:	Amplifikation der putativen NAD+-Kinase-cDNA aus Gesamt-cDNA humaner	
		Zellen.	57
Abb.	3.4:	Überexpression der humanen NAD+-Kinase in E. coli.	58
Abb.	3.5:	Kodierende cDNA-und Aminosäure-Sequenz der humanen NAD+-Kinase.	59
Abb.	3.6:	Homologie der humanen NAD+-Kinase zu den anderen inzwischen klonierten	
		NAD ⁺ -Kinasen.	60
Abb.	3.7:	Gewebespezifische Expression der NAD+-Kinase-mRNA.	61
Abb.	3.8:	Nachweis der genomischen DNA der humanen NAD+-Kinase.	62
Abb.	3.9:	Intron-Exon-Struktur des Gens der humanen NAD+-Kinase.	63
Tab.	3.2:	Reinigung der rekombinanten humanen NAD+-Kinase.	64
Abb.	3.10:	Reinigung der rekombinanten humanen NAD ⁺ -Kinase.	64
Abb.	3.11:	Überexpression der NAD ⁺ -Kinase-Verkürzungskonstrukte in E. coli.	65
Abb.	3.12:	Nachweis der humanen endogenen NAD+-Kinase im Western Blot.	66
Abb.	3.13:	Zelluläre Lokalisation der eukaryotisch exprimierten, FLAG-markierten	
		NAD ⁺ -Kinase in HeLa-S3-Zellen.	67
Abb.	3.14:	Molekulargewichtsbestimmung der NAD+-Kinase durch	
		Größenausschlußchromatographie.	68
Tab.	3.3:	Einfluß zweiwertiger Kationen auf die Aktivität der NAD+-Kinase.	69
Tab.	3.4:	Eigenschaften der humanen NAD+-Kinase.	69
Abb.	3.15:	Humane rekombinante NAD ⁺ -Kinase weist keine NAAD ⁺ -Kinase-Aktivität auf.	70
Tab.	3.5:	Substratspezifität der humanen rekombinanten NAD+-Kinase.	71
Abb.	3.16:	Nachweis der endogenen humanen NMNAT durch spezifische Antikörper.	72
Abb.	3.17:	Zelluläre Lokalisation der humanen NMNAT.	73
Abb.	3.18:	Comutergestützte Analyse der Aminosäuresequenz der humanen NMNAT.	74
Abb.	3.19:	In vitro-Phosphorylierung der rekombinanten NMNAT mit Kernextrakten.	75
Abb.	3.20:	In vitro-Phosphorylierung der endogenen NMNAT mit Kernextrakten.	75
Abb.	3.21:	In vitro-Phosphorylierung der rekombinanten NMNAT durch PKC und CKII.	76
Abb.	3.22:	Einfluß von Effektoren auf die in vitro-Phosphorylierung der rekombinanten	
		NMNAT mit Kernextrakten.	77

Abb.	3.23:	In vivo-Phosphorylierung der NMNAT.	77
Abb.	3.24:	Partielle Verdauung phosphorylierter NMNAT durch verschiedene Proteasen.	78
Abb.	3.25:	Phosphorylierung der rekombinanten NMNAT mit Kernextrakten und	
		nachfolgende partielle tryptischer Verdauung.	79
Abb.	3.26:	Auftrennung tryptischer NMNAT-Peptide nach Phosphorylierung mit PKC.	80
Abb.	3.27:	Identifizierung eines NMNAT-Phosphopeptids durch	
		massenspektrometrische Analyse.	81
Abb.	3.28:	In vitro-Phosphorylierung der NMNAT-Mutanten S136A und S135A/S136A	
		im Vergleich zum Wildtyp.	83
Abb.	3.29:	Zelluläre Lokalisation der eukaryotisch exprimierten NMNAT,	
		NMNAT-S136A und NMNAT- S135/136A.	84
Abb.	3.30:	In vitro-Interaktion von NMNAT und PARP-1.	86
Abb.	4.1:	Die Kristallstruktur der humanen NMNAT.	89
Abb.	4.2:	Struktur der humanen NAD+-Kinase und eines humanen bislang uncharak-	
		terisierten humanen Proteins mit konservierter NAD+-Kinase-Domäne.	91