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Short AbstratUntil a ouple of years ago the sienti� mainstream held that geneti informa-tion, stored as DNA strands, is transribed to RNA, and RNA sequenes arein turn translated to proteins, the atual funtional units in the ell. RNA wasgenerally believed to be a helper moleule in the ell until the beginning of thenew millennium. This view hanged. We see the potential of RNA as one of thekey ellular players.In this thesis we present a novel framework for omputing sequene-struturealignments of RNA sequenes. Our ontribution is twofold: �rst, we give a graph-theoreti model for the omputation of multiple sequene-struture alignments.We phrase the model as an integer linear program (ILP) and show how we anrelax the ILP suh that we are able to ompute optimal or near-optimal solutionsfor the original problem. In a subsequent step, we augment the initial modelwith staking energies. Staking base pairs greatly ontribute to the energetistability of the overall struture and should therefore be additionally rewarded.We extend the original ILP suh that staking energies are inorporated.Seond, we give extensive omputational results on real data from the Rfamdatabase. We ompare the performane of truly multiple sum-of-pairs sequene-struture alignments to heuristi sequene-struture alignments. We show thatthe objetive funtion value of the sum-of-pairs model is generally higher om-pared to the heuristially inferred alignments. At the same time, we sketh theomputational limits for the sum-of-pairs multiple sequene-struture model.The omputational osts for omputing exat multiple sequene-struturealignments are generally very high. To validate our approah on a larger testset, we run two implementations that take two sequenes as their input. LaRAand sLaRA�based on the initial and the stak model�ompute all pairwisesequene-struture alignments and use the external program T-Coffee to in-fer a onsisteny-based multiple sequene-struture alignment. Additionally, werun the progressive versions pLaRA and psLaRA on the same input data set.Our experiments on the BRAliBase benhmark set show that our tools are top-ranked for all input lasses. Furthermore, our implementations need less runningtime ompared to similar approahes.Subsequently, we ompare two di�erent algorithms for omputing the optimalvalue of the Lagrangian dual and show that in our test setting the oneptuallyeasier subgradient method is superior to the bundle method. Finally, we inor-porate our Lagrangian relaxation approah into a branh-and-bound framework.We show for whih instanes we are able to ompute provably optimal solutionsand ompare our results with previously published results of a branh-and-boundapproah for the related quadrati knapsak problem.
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Chapter
1 Introdution

Kumm her und huah zua,i erzähl Dir a Gshiht.Wolfgang Ambros(Das Leben, die Liebe und der Tod)
1.1 The Past and Future of Genetis
3, 080, 419, 4801 haraters enode who we are: the olor of our hair, the shape ofour body, and the risk for ertain diseases. The joint publiation of the sequene ofthe human genome by the Human Genome Projet [26℄ and the private ompanyCelera [140℄ marked a milestone in human history. Sine then, it is possible toread the book of life: but the more we read and the more we begin to understand,the more ompliated it gets.The history of genetis started by redisovering the work of Gregor JohannMendel in the early 20th entury. In 1865, Mendel performed studies aboutinheritane patterns in plants and realized that inheritane was not a randomproess. It took several deades to �nally illuminate the moleular basis andmain proesses of genetis. Hugo de Vries introdued the terms pangenesis andpangen for the smallest partile responsible for inheritane, a term that was laterabbreviated to gene by Wilhelm Johannsen. In 1910, Thomas Hunt Morganshowed that genes are loated on hromosomes and proposed a linear arrangementof genes on the hromosomes. His student Alfred Sturtevant determined thelinear order of genes on the hromosomes, however, it was still unlear what theatual moleular basis of inheritane is. The two possibilities were either DNAor proteins. DNA is a biopolymer, a hain of four di�erent nuleotides: eitheradenine (A), ytosine (C), guanine (G), or thymine (T); proteins are ompositionsof 20 di�erent amino aids that were �rst desribed by Berzelius in 1838.In 1944, Oswald Avery, Colin MLeod, and Malyn MCarty disovered thatit was DNA and not proteins that harbor the genes. Building upon work byFrederik Gri�th they worked with two di�erent strains of the same baterium,and then removed either proteins or DNA from the bateria and showed that byremoving DNA the �rst strain ould not transform into the seond strain. Theydid not observe this e�et by removing proteins. Hene, they had onlusive evi-dene that DNA is the arrier of genes. In subsequent work, Hershey and Chase1 We alulated this number by simply summing up the length of all 24 hromosomes of thehuman genome from GenBank. We are aware of the fat that giving an exat number is notpossible.



2
disovered DNA as the geneti foundation of viruses. Finally, in 1953 FranisCrik and James Watson revealed the double helix as the struture of DNA andthey onstruted a physial model for the dupliation and reonstrution of part-ner strands. In subsequent years, massive researh e�orts, aimed at unravellingthe mehanism that governs the proesses of transforming DNA into proteins,were onduted until �nally transription of DNA into RNA, and the translationof RNA into proteins beame apparent. RNA is similar to DNA, i.e., it is a hainof nuleotides, but there are some important di�erenes: RNA is single-stranded,in ontrast to the double-helial struture of DNA, and the nuleotide urail (U)replaes thymine. By folding bak onto itself RNA builds hydrogen bonds andforms the seondary struture (see Fig. 1.2 (b) for an example).In 1958, Franis Crik postulated the entral dogma of moleular biology[28; 29℄, whih essentially desribed the proessing of geneti information as alinear �ow: DNA is opied into messenger RNA (mRNA in short), and mRNAin turn serves as the template to synthesize the funtional units in the ell, theproteins. In the original formulation, RNA solely ats as the working opy ofDNA, and proteins alone are able to trigger or inhibit funtions in the ell. Inthe years to ome, new tehnologies were developed that revolutionized moleulargenetis. Sanger [123℄ developed the �rst sequening method that allows thedetermination of a DNA sequene. Weber and Myers [145℄ introdued whole-genome shotgun sequening : this tehnique was used by the private ompanyCelera to determine the genomi sequene of the human, the �y, and the mouse.The standard sequening method nowadays is pyrosequening [119℄ whih sharplyredues the osts for (re-)sequening of genomes.Together with the growing amount of available sequene data, tehniques likemiroarrays allow the measurement of genes that are expressed. Gene regulationdeals with the mehanisms that ontrol the expression of proteins, and severalkey players were identi�ed: promoters and transription fators that ontrol thetransription of DNA to RNA, or enhaners, for instane, that regulate the tran-sription of ertain DNA sequenes. Still, the main work�ow was still assumedto be valid to a large extend.There were, however, already divergent opinions from the beginning. CarlWoese [152℄ postulated the possibility that RNA was not a helper medium fromthe start, but that RNA sequenes�having atalyti properties�built the basisof the origin of life. Altman [54℄ and Ceh [156℄ �nally provided evidene thatRNA sequenes are indeed able to perform atalyti ations. Walter Gilbertexpressed the possibility of an RNA world [50℄ as the origin of life in his ommenton the disovery of atalyti RNAs.In the 1990s, sienti� �ndings �nally hanged the prevalent understanding ofthe moleular mehanisms behind genetis. Lee et al. [93℄ desribe small RNAsthat regulate proteins. Their paper marks the disovery of a new lass of atalytiRNAs, the so alled miroRNAs. Their full importane was not realized until2001 when a series of papers [92; 90; 88℄ desribes them as an abundant lassof RNAs. In 2002, Siene Magazine announed RNA as the breakthrough of
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the year [27℄. Sine then, the interest in nonoding RNAs, i.e., funtional RNAsequenes not oding for proteins, has risen tremendously: examples omprisemiroRNAs, snoRNAs, siRNAs, or piRNAs.First sans of several genomes [143; 144℄ point�despite a high false positiverate�to a large number of possible funtional elements. At the time this thesisis being written, reent studies [25; 128; 76; 24; 23; 146℄ even hallenge ourpereption of three layers that are separated, sine they provide evidene thatthe entire transriptome is in fat a puzzle of overlapping transripts from bothstrands of the helix and that almost the entire genome is transribed at somepoint. What all these studies have in ommon is that they substantiate therole of RNA as one of the major players in driving ellular proesses. For mostnonoding-RNA families, however, the atual funtion is mostly unknown. Onemajor exeption is the above mentioned lass of miroRNAs: these 22 nuleotidelong RNAs are known to be involved in a wide range of mehanisms, rangingfrom aner genesis and lassi�ation [100; 98; 111℄, silening of genes [120℄, thediversity of anti-bodies [85℄, or to the division of stem ells [57℄.In biology, sequenes of high similarity usually share the same struture orfuntion. Therefore, one of the main tasks in bioinformatis is the omparison ofdi�erent sequenes to searh for onserved patterns, i.e., subsequenes that ourin all sequenes. Alignments are a way to ompare di�erent sequenes. We writethe sequenes on top of eah other suh that haraters that are evolutionaryrelated are in the same olumn. We model geneti variability by inserting gapharaters into the sequenes. Figure 1.1 gives a small example of a multiplesequene alignment.

Figure 1.1: An example of a multiple sequene alignment of four input sequenes. Char-aters that are evolutionary related are written in the same olumn of thealignment. Insertion and deletions are modelled by the insertion of gapharaters.Alignments provide the basis for various subsequent tasks: phylogeneti anal-ysis, the study of evolutionary proesses, or searhing for homologous sequenes.The alignment of DNA sequenes based on sequene information works well, be-ause the sequene remains evolutionary onserved, i.e., by onsidering only theharaters of the sequene it is possible to build reliable alignments. In the ase
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of RNA the situation is di�erent. Although two RNA sequenes an be divergenton the sequene level, they might still share a ommon struture. This is due toompensatory mutations, a entral feature in RNA evolution: ompensatory mu-tations of bases that form hydrogen bonds do hange the sequene, but they do notalter the seondary struture. As an example, reent studies [48; 138; 139; 148℄have shown that the strutural similarity is a dominant fator and has to be takeninto aount in the alignment step of RNA sequenes. Instead of omputing puresequene-based alignments we then ompute sequene-struture alignment, i.e.,alignments that onsider both the sequene and struture information. Due tothe reent �ndings about the importane of nonoding-RNAs, the developmentof new approahes for the alignment of RNA sequenes that take the seondarystruture into aount is a worthwile endavour.In the following, we will present onstraints that a valid seondary struturemust satisfy. Additionally, we show di�erent representations of RNA struturesand sketh the algorithms that ompute seondary strutures given only the RNAsequene.
1.2 RNA Strutures and Struture PreditionRNA sequenes an be represented as strings over the four letter alphabet ΣRNA =
{A,G,C, U}, and�in ontrast to DNA sequenes�an RNA sequene folds bakonto itself and builds hydrogen bonds between omplementary nuleotides. Wedistinguish between the set of anonial base pairs G-C and A-U, and the wobblebase pair G-U. A set P of pairings forms the seondary struture of a sequene
s. The elements of the seondary struture form nonovalent bindings that giverise to the 3D struture of an RNA moleule. Figure 1.2 gives the primary,seondary, and tertiary struture of a tRNA sequene. We all the determinationof the seondary and tertiary struture of a sequene s the struture preditionproblem.The Holy Grail of RNA struture predition researh is the determination ofthe tertiary struture of a given sequene, and not only of the seondary strutureelements. Unfortunately, the knowledge about the tertiary folding proess is farfrom being omplete, similar to the problem of determining the 3D struture ofa protein given only its amino aid sequene. Funtional RNA moleules usu-ally have a distintive tertiary struture that is important for their funtion, andadditionally their seondary struture remains evolutionary onserved. There-fore, most of the struture predition researh fouses on the easier problem ofprediting the seondary struture of an RNA moleule, sine a harateristi se-ondary struture forms a sa�old for the tertiary struture. This led to e�ientalgorithms�based on dynami programming�for a variety of struture predi-tion problems. We want to stress, however, that the ultimate goal in struturepredition is still the determination of the 3D struture, and not only preditingthe seondary struture.
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GCCCCCAUAGCUUAACCCACAAAGCAUGGCACUGAAGAUGCCAAGAUGGUACCUACUAUACCUGUGGGCA(a) Primary sequene
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Figure 1.2: Primary, seondary, and tertiary struture of a tRNA sequene. The se-ondary struture (b) was reated using RNAfold from the Vienna RNApakage [66℄. We downloaded the tertiary struture () from the PDBdatabase.

In the following, Set. 1.2.1 gives a formal desription of RNA seondarystrutures, along with typial representations for these strutures. Finally, Se-tion 1.2.2 desribes the energy model that builds the basis for most of the stru-ture predition algorithms.
1.2.1 RNA StruturesFormally, the seondary struture P of a sequene s ∈ Σ∗RNA is a list of base pairs
(i, j) suh that the following onstraints are satis�ed:(a) for eah position i ∈ 1, . . . , |s| there is at most one element (k, l) ∈ P suhthat i = k or i = l, i.e., every nuleotide takes part in at most one basepairing.(b) for every base pair we have |i − j| > 3, i.e., the minimal distane betweentwo paired nuleotides has to be greater than 3 due to physial reasons.() paired bases have to be nested, i.e., ∀(i, j), (k, l) ∈ P we have k ∈ [i, j] ↔ l ∈

[i, j].Constraint (a) ensures that a valid seondary struture does not inlude basetriplets or quartets. Suh motifs do our, but only in tertiary strutures and they
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are exluded for seondary strutures. The bakbone of an RNA sequene annotbend too sharply; hene, onstraint (b) sets the minimal number of residues be-tween any paired bases to three. Finally, onstraint () marks the major di�erenebetween seondary and tertiary strutures: the nested harater of a valid se-ondary struture allows the deomposition of the overall struture into smallerindependent subproblems. Most RNA related researh makes use of this de-omposability property and devises algorithms based on dynami programming.Constraints (a)-() give rise to a hierarhy of possible strutures, namely:(a) Plain: there are no base pairs at all, i.e., only the sequene information isavailable.(b) Chain: every nuleotide is inident to at most one base pair, and there areno nested base pairs, i.e., ∀(i, j), (k, l) ∈ P we have either j < k or l < i.() Nested: every nuleotide is inident to at most one base pair, and we onlyhave nested base pairs.(d) Crossing: every nuleotide is inident to at most one base pair, and wehave rossing base pairs.(e) Unlimited: there are no restritions at all.A base pair that violates onstraint () is said to form a pseudoknot. Pseudo-knots are a �rst step from seondary strutures towards tertiary strutures, andthey exert important biologial funtions [131℄. Like for the omplete tertiarystruture predition problem, however, we have an inomplete understanding offolding kinetis and properties of pseudoknots.There are various representations for seondary strutures. Beside the 2D-plot from Fig. 1.2, Fig. 1.3 shows �ve major representation forms for seondarystrutures. Due to the nested struture of the pairings we are able to draw a validseondary struture as an outer planar graph with the residues being aligned on airle and base pairs forming hords of the graph. Another representation framesseondary strutures as trees: the parent/hild relationship of the nodes is givenby the nesting of the paired bases. The sequential order of the sequene de�nes theorder of sibling nodes. There are di�erent resolutions for the labeling of the nodes:internal nodes orrespond to paired bases, whereas the leaves of the tree representunpaired bases, or nodes might orrespond to staked regions of the seondarystruture. See Fig. 1.3 () for an illustration where the nodes orrespond to pairedand unpaired bases. The mountain plot enodes for eah residue i the numberof pairings that enlose i. Eah mountain orresponds to a staked region inthe seondary struture. The dotplot ontains more information than just asingle struture: the matrix is divided into two triangles, with the lower triangleontaining one single struture of the sequene indiated by blak squares. Theupper triangle of the dotplot ontains the probability for eah pair of nuleotidesto pair. The bigger the square is, the higher is the probability to form a base pair.Finally, a more tehnial desription of RNA seondary struture is the Viennanotation: brakets and dots denote paired and unpaired bases, respetively. Sine
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we do not allow pseudoknots, there is a unique orrespondene between pairednuleotides and pairs of opening and losing brakets.
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Figure 1.3: Various representations for RNA strutures. We have the graph represen-tation (a), RNA strutures as a tree (b), the mountain plot (), the dotplot(d), and the Vienna string notation (e).

So far, we have only disussed the properties that a valid seondary struturemust satisfy, and we presented various representations of seondary strutures.We did not, however, sketh the algorithms to ompute the seondary struturegiven only the nuleotide sequene. We will make extensive use of these algo-rithms in our omputational experiments, beause our default soring systemrelies on them. Therefore, this will be the topi of the following setion whih ismainly based on the exposition of Hofaker and Stadler [69℄.
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1.2.2 RNA Struture PreditionThe �rst attempts to ompute the seondary struture of an RNA sequene s aimat maximizing the number of paired base pairs, i.e., we want to �nd a set P overall possible strutures P suh that we have

|P| = maxP̄∈P |P̄ | .Nussinov et al. [110℄ give reursions for omputing P . The reursion handlesthe two basi ases of a nuleotide i, i.e., whether it is paired or unpaired. Let
E[i, . . . , j] be the maximal number of base pairs for substring s[i, . . . , j]. Then,the reursion reads

E[i, . . . , j] = max{

E[i + 1, . . . , j]maxk,(i,k)pair (E[i + 1, . . . , k − 1], E[k + 1, . . . , j]) + 1
.

Figure 1.4 gives an illustration.
=

i j i j i jki + 1 k − 1 k + 1

Figure 1.4: The Nussinov algorithm omputes the maximal number of paired base pairsof a sequene s. The reursions distinguish two basi ases: either a nu-leotide i is paired or unpaired.
Due to its simple objetive funtion the experimental performane of theNussinov algorithm is not satisfatory. Hene, more sophistiated algorithmshave been developed that inorporate more knowledge about seondary stru-tures. Nested seondary struture allow the deomposition of the total strutureinto di�erent loops: given an element (i, j) ∈ P , we all nuleotide h aessiblefrom (i, j) if there is no other element (k, l) ∈ P suh that i < k < h < l < j.A base pair (k, l) ∈ P is aessible from (i, j) if both k and l are. We all the

k − 1 elements of P and k′ unpaired bases that are aessible from the pairednuleotides (i, j) the k-loop losed by (i, j). We now distinguish di�erent typesof loops aording to the number of base pairs aessible from (i, j):1. A 1-loop is alled a hairpin loop.2. If only one single base pair (i′, j′) is aessible from (i, j), then we all this
2-loop a(a) staked pair if we have i′ − i = 1 and j − j′ = 1.(b) bulge loop if either i′ − i > 1 or j − j′ > 1.() interior loop if both i′ − i > 1 and j − j′ > 1.
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A

Figure 1.5: The are �ve main elements in RNA strutures: staked base pairs (A),multiloops (B), interior loops (C), bulges (D), and hairpin loops (E). Theblak irles and grey lines denote residues and hydrogen bonds betweenomplementary residues.
3. We all a k-loop with k ≥ 3 a multiloop.Figure 1.5 gives an illustration for the di�erent loop types.The k-loop deomposition builds the foundation of the standard energy modelto predit the seondary struture. Eah loop l has an energy ontribution e(l),and the total free energy of a struture P is given by ∑

l∈P e(l). Hene, we swithour objetive funtion for struture predition from the number of paired bases tothe free energy of the ensemble. In partiular, we are interested in the struturethat has the minimum free energy among all possible strutures.Note that the dominant terms for the energy alulation are staked basepairs, hydrogen bonds, and loop energies. The energy ontributions depend onthe type and the size of the loop. Furthermore, the overall struture is stabilizedby onseutive staking of paired bases: we all onseutive staked base pairsa staked region or a stem. Zuker and Stiegler [161℄ �rst proposed reursionsfor the omputation of the minimum free energy, and the main onepts remainvalid sine then. The time and spae omplexity of the algorithms is in O(n3)and O(n2), respetively. There are two main implementations of the foldingreursions, mfold [160℄ and RNAfold [66℄. Reently, Wexler et al. [147℄ gavea redution of the running time to O(n2).The reursions use four DP tables�F , C, M , and M1�for storing interme-diate results:(a) F [i, . . . , j] gives the optimal energy value for subsequene s[i, . . . , j].(b) C[i, . . . , j] gives the optimal energy value for subsequene s[i, . . . , j] giventhat (i, j) forms a base pair. This ase overs hairpin and interior loops.() M [i, . . . , j] gives the optimal energy value for subsequene s[i, . . . , j] suhthat s[i, . . . , j] is part of a multiloop with at least one outgoing stem.
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(d) M1[i, . . . , j] gives the optimal energy value for subsequene s[i, . . . , j] suhthat s[i, . . . , j] is part of a multiloop with exatly one outgoing stem and wehave a losing base pair (i, h) with some h satisfying i < h ≤ j.Figure 1.6 shows how the omputation of the entire optimal seondary struturedeomposes into the di�erent ases. For the atual reursions the reader is referredto [69℄.
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Figure 1.6: A visualization of the reursions energy model for the ab initio preditionof RNA seondary strutures using the loop-base energy model: all possibleRNA strutures an be deomposed into these subases. The illustration istaken from [69℄.
The energeti ontribution of a multiloop is given by EML = a+ b ·degree+ c ·size. Therefore, table M1 is neessary to keep trak of the size and the degree ofmultiloops. The reursions model a multiloop as the onatenation of a substru-ture that ontains at least one stem, and another substruture that is enlosedby a base pair and ontains exatly one outgoing stem. Observe that F [1, . . . , |s|]only gives the minimum free energy value of the optimal struture. One has tobaktrak starting from F [1, . . . , |s|] to ompute the struture.We now have a model that is muh more developed ompared to Nussinov'salgorithm. The problem is, however, that the minimum free energy strutureneeds not math the seondary struture that an RNA moleule exhibits. An-other way to desribe the strutural features of an RNA sequene s are base pairprobabilities. Instead of giving one single struture that we ompute using theenergy model, MCaskill [105℄ proposed a way to ompute the partition funtionof s, and subsequently derive base pair probabilities for every pair (i, j) of s.The partition funtion is an important term from statistial mehanis andlinks marosopi phenomena, like the free energy or the entropy of a system, tothe mirosopi world of moleules or partiles. Assume we are given a system
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of di�erent states and energy levels Ei, then the probability pi to �nd the systemin the ith state follows the Boltzmann distribution, i.e.,

pi = e−Eiβwith β = 1
kT
: T and k are the temperature in Kelvin and the Boltzmann onstant,respetively. All pi have to sum up to 1, beause the system has to be in somestate. Hene, we have to ompute a saling onstant c for the energy values suhthat ∑

i pi = 1. Then, we have the following terms:
1 =

∑

i

ce−Eiβ

c =
1

Z
with Z =

∑

i

e−Eiβ .

Z is alled partition funtion (observe that Z originates from the German word�Zustandssumme� whih aptures the meaning of the partition funtion). Now,we an give the probability for state i as
pi =

e−Eiβ

Z
.We an use Z to ompute the probability pij that (i, j) forms a base pair. Themain idea is to ompute the partition funtion Ẑij for strutures outside of subse-quene s[i, . . . , j]. Then, we need to ompute the partition funtion for struturesthat inlude the base pair (i, j). The probability reads

pij = ẐijZi+1,j−1e
−Eijβ

Zwith Eij being the energy ontribution of base pair (i, j). We will make extensiveuse of base pair probabilities as struture sores in Chap. 5.As stated in Set. 1.2.1 the ultimate goal of RNA struture predition isthe predition of the entire tertiary struture of an RNA sequene s. Both theNussinov et al. and the Zuker/Stiegler algorithm, however, onsider only nestedstrutures and disard all possible pseudoknots. There are some approahes[118; 114; 115; 34; 35; 151℄ that aim at prediting seondary strutures inlud-ing pseudoknots, but all these approahes su�er from two main problems: �rst,the algorithms are restrited to speial lasses of pseudoknots, beause the gen-eral problem of prediting arbitrary pseudoknotted strutures was shown to beNP-omplete [99℄. Even on these restrited ases, the algorithms remain ompu-tationally expensive whih limits their appliability to short sequenes. Seond,we lak a set of sound energy parameters for pseudoknotted strutures. Theenergy parameters [102; 155; 104℄ for nested seondary strutures are empiri-ally derived from optial melting experiments. These experiments, however, donot work anymore in the ase of pseudoknotted strutures, leading to other ap-proahes like learning the parameters from a positive and negative set [34℄. Dueto the importane of pseudoknots [131℄, this is an area of ative researh.
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1.3 OverviewThis thesis introdues a novel model for the omputation of multiple sequene-struture alignments whih is based on mathematial optimization. Chapter 2provides all mathematial tools that we will use throughout the rest of the thesis.This inludes basi de�nitions from graph theory in Set. 2.1, and from linearprograms and integer linear programs in Set. 2.2. Subsequently, Set. 2.3 givesa desription of Lagrangian relaxation and how the assoiated dual problem anbe solved. Finally, Set. 2.4 brie�y overs onepts from statistis of whih wewill make use during the evaluation of our omputational results. Chapter 3desribes the main algorithms and onepts for sequene-struture alignmentsthat were presented in the past.Chapter 4 desribes our formulation for the omputation of exat multiplesequene-struture alignments. We start by formally de�ning sequene-struturealignments and show how we an phrase the problem de�nition in graph-theoretialterms. We prove that the formulation mathes the problem that we gave before.Setion 4.2 presents the transformation of the graph-based model into an integerlinear program. We identify a suitable lass of onstraints that we are able to re-lax in a Lagrangian fashion. We solve the relaxed problem to provable optimality.We give the omputation of a feasible solution to the original problem afterwards:we desribe a redution to the omputation of maximum weight mathings.We present an important extension to our initial model in Set. 4.3: thesoring of onseutive staked base pairs. Again, we start by formally de�ningthe problem. We then give an integer linear program that mathes the problemde�nition, and this time we drop two lasses of onstraints and move them to theobjetive funtion afterwards.Chapter 5 starts by desribing the input and the parameters that signi�antlyin�uene the solution proess of the models desribed in Chapt. 4. Thereafter,we give results on exat multiple sequene-struture alignments in Set. 5.3. Inthe following setion, we present the omputational results on the BRAliBasebenhmark set. Based on the pairwise ase of our multiple model we heuristiallyompute multiple alignments by either using the external software pakage T-Coffee or by progressively aligning all input sequenes. We ompare our resultsto several state-of-the-art programs both in terms of the quality of the solutionsand the running time. Thereafter, we ompare the performane of the subgradientto the bundle method. Finally, we implemented our approah within a branh-and-bound framework to obtain provably optimal solutions even if the bounds donot oinide. We report on the appliability and the limits of this method. Weonlude the thesis by disussing the major �ndings and skething possible linesof future researh.



Chapter
2 MathematialPreliminaries

Well, your faith was strong,but you needed proof.Leonard Cohen(Hallelujah)
This hapter introdues onepts that we will use throughout the thesis. First,Set. 2.1 outlines elementary graph theory, whereas Set. 2.2 and 2.3 desribe thebasis of (integer) linear programs and how to derive solutions using Lagrangianrelaxation. Finally, Set. 2.4 presents some statistial methods of whih we willmake use in Set. 5.The following exposition is based on various textbooks, for details the inter-ested reader is referred to [33; 10; 107; 116℄. Several soures [55; 46; 45; 94℄provide additional information espeially on Lagrangian relaxation.First, we introdue some notation from linear algebra: R,R+, Z, and Z+ de-note the sets of real, nonnegative real, integer, and nonnegative integer numbers,respetively. Given an ordered �nite set E = {e1, e2, . . . , en} and a �eld X, wedenote by XE the set of vetors in whih we index the omponents of eah vetorby the elements in E. In the ase of E = {1, . . . , n} we write Xn. We onsidervetors as olumn vetors and denote row vetors as transposed olumn vetors

yT . Given a set of vetors XE = {x1, . . . , xk}, we all x a onvex ombination of
x1, . . . , xk if x =

∑k

i=1 λixi, with λi ≥ 0 and ∑k

i=1 λi = 1.
2.1 Graph TheoryA graph is a pair G = (V,E) where the sets V and E denote the verties andedges of the graph. An edge e = (u, v) ∈ E denotes a pair of nodes u and v.Both u and v are said to be inident to edge e. Two nodes u and v are adjaentif there exists an edge e = (u, v) ∈ E. We denote the number of nodes and edgesby |V | and |E|.We all G′ = (V ′, E ′) a subgraph of G if V ′ ⊆ V and E ′ ⊆ E. If G′ is asubgraph of G, then we all G the supergraph of G′.We all an alternating sequene of verties and edges (v0, e0, v1, . . . , en−1, vn−1)with ei = (vi, vi+1), 0 < i < n − 1 where all nodes and edges are distint a pathof length n. If the path is losed, i.e., v0 = vn−1, we all the path a yle.If we are able to partition the vertex set V of G into k disjoint sets V ′

0 , . . . , V
′
k−1suh that no two verties within the same set are adjaent, we all G a k-partitegraph. A lique in a graph G = (V,E) is a subgraph of G′ with V ′ ⊆ V and

E ′ ⊆ E suh that every pair of nodes in V ′ is adjaent.
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A direted graph, or digraph in short, is a pair D = (V,A) with V and A beingthe sets of verties and direted ars. An ar a = (u, v) ⊆ V × V is an orderedpair of elements of V , and we all a inident from u and inident to v. Two nodes

u and v are adjaent if there exists an ar a = (u, v) ∈ A. For a = (u, v), we all
u and v the soure and target node of a. The two funtions s(a) and t(a) returnthe soure and target node for an ar a.A mixed graph G = (V,E,A) onsists of a vertex set V , the edge set E, anda set of direted ars A. A path p = (v0, e0, v1, . . . , en−1, vn−1) in a mixed graphis an alternating series of verties and edges or ars suh that ei = (vi, vi+1) ∈ Eor ei = (vi, vi+1) ∈ A with 0 < i < n − 1. All verties and edges of the path aredistint. If at least one edge ei ∈ E and one ar ei ∈ A are part of path p, thenwe all p a mixed path. We all p a mixed yle if v0 = vn−1.The transitive losure of a graph G = (V,E) is de�ned as the graph G′ =
(V,E ′) suh that E ′ ontains an edge e = (u, v) if there exists a path from u to vin G. The transitive losure of a digraph G is identially de�ned as for undiretedgraphs.An independent set of a graph G = (V,E) is de�ned as a set I ′ ⊆ V suh thatthere are no two verties i, j ∈ I ′ that are adjaent. The maximal independentset is the subset I ′ with the maximal number of verties. The omputation of amaximal independent set is NP-omplete [49℄.A mathing in a graph G = (V,E) is an edge set M ⊆ E suh that no twoedges e0, e1 ∈ M share the same vertex. If |M | = |V |

2
holds true, we all M aperfet mathing. For a graph where eah edge ei ∈ E is assoiated with an edgeweight wi, the mathing of maximum weight is the edge set M suh that M is amathing and ∑|M |−1

i=0 wi is maximal.
2.2 Linear Programming
Intuitively speaking, a linear programming problem alls for the omputation ofan optimal solution with respet to a linear objetive funtion, satisfying a set oflinear onstraints. The following exposition assumes that we want to maximizethe value of the objetive funtion, but we an easily transform the de�nitions tothe ase of minimization problems.Let A ∈ R

m×n be a matrix and let b ∈ R
m and c ∈ R

n two vetors. A linearprogramming problem is a system of Ax ≤ b of linear inequalities and a linearobjetive funtion cT x. We all a vetor x̄ ∈ R
n suh that Ax̄ ≤ b a feasiblesolution of the problem. If there does not exist suh a vetor x̄, we all the linearprogram infeasible. The linear programming problem, or LP in short, addressesthe omputation of an optimal feasible solution x∗ with respet to the objetivefuntion cT x, i.e.,

cT x∗ = max{cT x | Ax ≤ b}
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A di�erent notation is max cT x (p)subjet to Ax ≤ b .An important onept in linear programming is duality theory. Every linearprogram (p) has its dual problem whih is de�ned asmin yT b (d)subjet to AT y = c

y ≥ 0We all (p) the primal problem and (d) its assoiated dual. Observe that the dualof (d) is again (p). One deep result of duality theory desribes the relationshipbetween the primal and the dual problem.Theorem 2.1 (Strong duality theorem of linear programming). Let (p) and (d)be linear programs whih are dual to eah other.(a) If (p) and (d) have feasible solutions, then they have optimal solutions andthe optimal objetive funtion values are the same.(b) If (p) is infeasible, (d) is either infeasible or unbounded.() If (p) is unbounded, (d) is infeasible.The simplex method, developed by George Dantzig in 1947, omputes anoptimal solution of a linear program. Although the algorithm has exponentialworst-ase omplexity, it has proven to work well in pratie. Reently, Spielmanand Teng [130℄ gave an explanation for the exellent average-ase performane ofthe simplex algorithm. Karmarkar [77℄ introdued the interior point method tosolve linear problems in polynomial time in the worst ase.Linear programs formulating real-world problems often add integrality on-straints on the set of feasible solutions. We all suh a linear program a generalinteger linear program, or ILP in short, whih has the general formmax cT x (2.1)subjet to Ax ≤ b (2.1.1)
x ∈ Z (2.1.2)If we substitute onstraints (2.1.2) by x ∈ {0, 1}, we get a (0/1)-integer linearprogram. Computing optimal solutions for an ILP is NP-omplete [49℄. Popu-lar methods that aim at solving ILPs, for example branh-and-ut algorithms,use the LP-relaxation of an integer linear program: by dropping the integralityonstraints of an ILP, we get the orresponding LP-relaxation. Another popularmethod to takle ILP is Lagrange relaxation whih we will present in the followingsetions.
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2.3 Lagrange RelaxationConsider the following ILP with A ∈ R

k×n and C ∈ R
l×n:max cT x (ip)subjet to Ax ≤ b

Cx ≤ d

x ∈ Z
n
+Suppose that the onstraints Ax ≤ b are di�ult onstraints, whereas optimizingover onstraints Cx ≤ d alone is easy. The main idea is to drop the ompliatingonstraints whih yields an ILP that is easier to solve than the original one. Then,onsider the following ILP with λ ∈ R

k
+:max cT x + λT (b − Ax) (lr)subjet to Cx ≤ d

x ∈ Z
n
+We all LR(λ) the Lagrangian relaxation of the original problem (ip), and thevetor λ the Lagrangian multipliers. Lagrangian multipliers at as penalty termsthat beome ative as soon as onstraints Ax ≤ b are violated. The followinglemma states that LR(λ) provides a bound on the optimal value zip of (ip).Lemma 2.1. LR(λ) is a relaxation of ( ip) for all λ ≥ 0.A onsequene of Lemma 2.1 is that zip ≤ LR(λ) for all λ ≥ 0. De�ning a set

Q as Q = {x ∈ Z
n
+ | Cx ≤ d}, we an see LR(λ) from a di�erent viewpoint, i.e.,maxxi∈Q cT xi + λT (b − Axi) (2.2)Now, LR(λ) is the maximum of a �nite set of linear funtions in λ, and thereforeit is onvex and pieewise linear. We are interested in the tightest bound, i.e., wewant to �nd the value of λ that minimizes LR(λ):minλ≥0 max cT x + λT (b − Ax) (ld)subjet to Cx ≤ d

x ∈ Z
n
+We all problem (ld) the Lagrangian dual of (ip) with respet to Ax ≤ b. zlddenotes the optimal value of the Lagrangian dual. It is important to state thatthe strong duality theorem from Set. 2.2 does not hold true anymore for theLagrangian dual. Instead, we have weak duality in the ase of the Lagrangiandual.Lemma 2.2. We have zip ≤ zld.
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Formulation 2.2 provides another desription about the relationship betweenthe optimal value zip and zld: omputing the optimal value of the Lagrangiandual is equivalent to the searh for a onvex ombination x∗ of elements in Q thatsatis�es the dropped onstraints Ax ≤ b as well. Then, we have cT x∗ = zld. Themain observation now is that omputing x∗ ∈ onv(Q) with Ax∗ ≤ b is dual tothe Lagrangian dual. In this ase strong duality of linear programming applies.It is important to state that this also implies that omputing the optimal valueof the Lagrangian dual does not neessarily yield a solution that is also valid for(ip).An obvious question is the relationship between zip, zld, and zlp.Lemma 2.3. For zip, zld, and zlp we have zip ≤ zld ≤ zlp. Additionally, thefollowing holds true:

(a) We have zip = zld for all ost vetors c if and only if
onv(Q ∩ {x | Ax ≤ b}) = onv(Q) ∩ {x | Ax ≤ b} .

(b) We have zlp = zld for all ost vetors c if and only if
onv(Q) = {x | Cx ≤ d} .

This means that zip and zld oinide if the polyhedron that is spanned bythe ompliating onstraints Ax ≤ b, i.e., the set P = {x ∈ R
n
+ | Ax ≤ b},has integer extreme points. Furthermore, if the LP-relaxation on Cx ≤ d hasintegral extreme points, then zld equals zlp, i.e., the value of the LP-relaxation ofthe original ILP. Figure 2.1 shows a small polyhedron together with zip, zld, and

zlp. A speial ase of relaxing an ILP in a Lagrangian fashion is Lagrangian de-omposition [56; 129℄ whih is also known as variable splitting [106℄ or variablelayering [51℄. The main idea is to opy or rename variables in some of the on-straints and treat them as independent variables afterwards. We must, however,enfore that the deoupled variables have the same values, i.e., we have to addequality onstraints to the ILP. In a subsequent step, we drop the equality on-straints and move them to the objetive funtion assoiated with Lagrangianmultipliers. Consider the following ILP:
max cT xsubjet to Ax ≤ b

Cx ≤ d

x ∈ Z
n
+
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Figure 2.1: The thik lines span the polyhedron given by onv(Q), i.e., the integer pointsof the polyhedron indued by the easy onstraints Cx ≤ d. The shaded areagives the intersetion of onv(Q) with the area satisfying the ompliatedonstraints Ax ≤ b. For the ost vetor c0 we have zip < zld < zlp. Observethat we an onstrut ost vetors c suh that zip = zld = zlp holds true.
The ILP is learly equivalent to max cT xsubjet to Ax ≤ b

Cy ≤ d

x = y

x, y ∈ Z
n
+Dualizing the equality onstraint x = y yieldsmax cT x + λT (y − x)subjet to Ax ≤ b

Cy ≤ d

x, y ∈ Z
n
+whih an be deomposed intomaxx{(c

T − λT )x | Ax ≤ b, x ∈ Z
n
+} + maxy{λ

Ty | Cy ≤ d, y ∈ Z
n
+} .Again, we are interested in the sharpest possible bound, i.e.,

zl̂d = minλ[maxx{(c
T − λT )x | Ax ≤ b, x ∈ Z

n
+}+maxy{λ

T y | Cy ≤ d, y ∈ Z
n
+}] .Guignard and Kim [56℄ proved that zl̂d, i.e., the bound obtained by dualizingthe equality onstraints, an dominate the bounds that we get by dualizing eitherset of onstraints.So far, we only onsidered how to relax an ILP in a Lagrangian fashion, butwe did not explain how we an ompute the optimal value of the Lagrangiandual. In the following two setions, we will address this issue by desribing twoalgorithms that aim at omputing optimal values of the dual problem.
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2.3.1 Subgradient MethodThe subgradient method is a general method to minimize any nondi�erentiableonvex funtion. As we desribed in Set. 2.3, the Lagrangian dual an be seenas a �nite olletion of linear funtions, and therefore it is onvex and nondi�er-entiable. The subgradient method is similar to gradient methods that are used indi�erentiable optimization problems. There are, however, some important di�er-enes: subgradient methods, for instane, are not desent methods, meaning thatthe funtion values are not stritly dereasing during the optimization proess.Let θ : R

n → R be a onvex funtion. We all a vetor g a subgradient of θat position x if θ(y) ≥ θ(x) + gT (y − x) holds true for all values of y. We all theset of all subgradients of θ at position x the subdi�erential of θ at x and denoteit by ∂θ(x). If θ is di�erentiable at x, then we have ∂θ(x) = {∇θ(x)}, i.e., thesubdi�erential onsists only of the gradient of θ at x. The following lemma givesa neessary and su�ient ondition for the minimum of a onvex funtion.Lemma 2.4. Let θ : R
n → R be a onvex funtion. A vetor x∗ minimizes θover R

n if and only if 0 ∈ ∂θ(x∗).Algorithm 2.1 desribes the main stages of the iterative subgradient method.The basi priniple is to start at some initial point x0 and move along a subgra-dient st for a ertain stepsize γt through the searh spae. As long as we haven'tfound the provably optimal solution, i.e., 0 ∈ ∂θ(xt), or we have not reahed aprede�ned number of iterations, we move on.
Algorithm 2.1: Main steps of the subgradient method.Start from an initial point x0, set t = 0;1 while stopping riterion not met do2 Given xt, hoose a subgradient st ∈ ∂θ(xt);3 if st == 0 then4 stop;5 Compute stepsize γt;6 Set xt+1 = xt + γtst;; // update the urrent point7
Sine the subgradient method is not a desent method, we have to keep trakof the best solution value found so far, i.e., θbest = min{θ(x0), . . . , θ(xt)}. Thereare various approahes for the omputation of stepsize γt, a fundamental resultdue to Poljak [113℄ states that for stepsize adaption shemes that satisfy

lim
k→∞

γk = 0 and ∞∑

k=0

γk = ∞

the series of θ(xt) onverges to the optimal value x∗. Setting γk = 1
k
satis�esboth onditions, but the pratial onvergene rate is poor. Held and Karp [60℄
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propose a di�erent way to adapt the stepsize:

γt+1 = µ
θ(xt) − θ(x̂)

|st|with µ being a user-spei� parameter and θ(x̂) being an estimate of the optimalvalue θ(x∗). Estimates for θ(x∗) ould, for instane, be omputed by heuristiallyinferring solutions that are feasible in the primal problem given the urrent point
(xt).In pratie, the stopping riterion in Algorithm 2.1 is rarely met. Typially,the optimization proess is stopped after a �xed number of iterations. In ouromputational experiments from Chap. 5, for example, we set the number ofiterations to 500, sine we usually did not observe any dramati improvement ofthe value of the Lagrangian dual after that.It is possible to use the single xt to infer solutions p(xt) that are feasible inthe primal problem. Given p(xt) after n iterations, then we an stop if

θbest = max {p(xt)} 0 ≤ t < n .Figure 2.2 shows two typial runs of the subgradient method: either the on-vergene proess gets stuk, leaving a gap between the Lagrangian dual and aheuristially inferred primal solution, or we obtain a provably optimal solutionfor the Lagrangian dual if the upper and lower bound oinide.
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Figure 2.2: Two typial onvergene senarios using the subgradient method. The blakline gives the values of the Lagrangian dual, whereas the red line denotesthe sores of heuristially inferred primal solutions. Left side: after somehundred iterations the onvergene proess gets stuk, leaving a gap betweenthe upper bound and primal solution. Right side: there is no gap leftbetween the upper and the lower bound, yielding a provably optimal solutionfor the Lagrangian dual.
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2.3.2 Bundle MethodThe basi idea of the subgradient method is to evaluate the onvex funtion θ atsome point x and use a subgradient s to obtain the diretion towards the nextpoint. We do not, however, keep trak of where we ame from, i.e., we disardall information about previous points and subgradients that we evaluated.The bundle method removes this limitation. The main idea is to keep abundle B of k subgradients and use the set B to �t a quadrati funtion to thesubgradients. We are keeping a stability enter x̂ whih ats as the point fromwhih we build our models. The minimum of the quadrati model yields the nextpotential point xk+1. We do, however, hek whether the derease of the objetivefuntion value, θ(xk+1) − θ(x̂), is big enough. If this is the ase, we perform adesent step and move the stability enter to xk+1. Otherwise, we perform a nullstep and simply add xk+1�together with an assoiated subgradient gk+1�to thebundle and onstrut an updated quadrati model. Algorithm 2.2 lists the mainstages of the generi bundle method. Observe that we assume to have aess toa funtion orale that evaluates the funtion value θ(xk+1) for a point xk+1 andthat returns a subgradient gk+1. The funtion θ̂ de�nes the set of pieewise linearfuntions as given by the bundle and returns the maximal value at position xk;see the left side of Fig. 2.3 for an illustration.
Algorithm 2.2: Main steps of the bundle method.Input : hoose a bundle size k and an initial stability enter x̂while stopping riterion not met do1 Solve the quadrati program2

min(x,r)∈Rn+1 r +
1

2t
||x − x̂||2

r ≥ θ(xi) + gT
i (x − xi) ∀0 ≤ i < kSet xk+1 = x;3 Get θ(xk+1) and gk+1 using the funtion orale;4 Determine the regularized gradient ĝ = (x̂ − xk+1)/t;5 Compute δ = θ(x̂) − θ̂(xk+1);6 if θ(xk+1) ≤ θ(xk) − κ · δ then7

x̂ = xk+1; ; // perform a desent step8 if |δ| < ǫδ and ||ĝ|| < ǫg then9 stop;10 Add (xk+1, gk+1) to the bundle;11
Line 2 ontains the parameter t that is ruial for the performane of the bun-dle method, beause t spei�es the impat of the quadrati term on the objetivefuntion value. If t is large, then the impat is small leading to new points xk+1
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that are far away from the urrent stability enter x̂. Small values of t, on theother side, onstrain the next point xk+1 to be in the viinity of x̂. The right sideof Fig. 2.3 gives an illustration of the models with di�erent two di�erent settingsfor t.
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Figure 2.3: Left side: the funtion θ̂ evaluates the bundle and returns the maximumvalue at xk. Right side: we get di�erent models for di�erent values of thespring strength t. If the value t is small, we get models that look like t1 andthat are loser to the stability enter x̂. If we have a large value for t, weget models that look like t2.
Line 7 gives the riterion for updating the stability enter: κ ∈ [0, 1] denotes auser-spei� parameter, and we are testing the derease of the objetive funtionompared to δ. If the di�erene is big enough, we perform a desent step.Line 9 ontains the stopping riteria for the bundle method. If the expetedderease is smaller than a user-spei� threshold ǫδ and the regularized gradient,i.e., the di�erene between the urrent and the new stability enter, is smallenough, then we stop the method, beause we found the minimum of the onvexfuntion θ. In Chap. 5.4.4 we ompare the performane of the subgradient to thebundle method within the sequene-struture alignment senario. For a detaileddesription of the bundle method, the reader is referred to [94; 108℄.

2.4 StatistisThis setion brie�y overs the statistial algorithms that we will use in Chap. 5.We use Lowess urves and rank tests to visualize the results and ompare theperformane of ���< .mine di�erent programs. A more detailed desription ofSet. 2.4.2 an be found in any introdutory textbook for statistis. =======di�erent programs. The two tests desribed in Set. 2.4.2 an be found in anystatistial textbook. ���> .r2179
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2.4.1 Lowess CurvesLowess is also known as loally weighted polynomial regression, and it was de-sribed by Cleveland [22℄ for the �rst time. Lowess regression is used to �t asmoothed urve to a data set to illustrate a trend within the data. The main ideais to �t a low-degree polynomial to a subset of the input data at eah data point
x. We ompute the oe�ients of the polynomial by the weighted least-squaresmethod, i.e., we assign a higher weight to points that are lose to the urrentpoint x. Typial implementations of the Lowess algorithm use polynomials of�rst or seond order to avoid loal over�tting of the data.More formally, the set X = {x0, . . . , xn−1} denotes n data points with theirassoiated funtion values f(xi). We have a weight funtion wk(xi) that assignsweights to eah point xk while evaluating the urrent point xi. Then, for eah datapoint xi, 0 ≤ i < n, we ompute estimates β̂j(xi), 0 ≤ j ≤ d, of the oe�ientsin the polynomial regression of degree d, i.e., we want to ompute β̂j(xi) thatminimize

n−1∑

k=0

wk(xi)(f(xk) − β0 − β1xk − · · · − βdx
d
k)

2

The smoothed funtion value f̂(xi) is given by the value of the �tted regression.The subset of points xi that are used for �tting the polynomial, i.e., points sat-isfying wk(xi) > 0 greatly in�uenes the smoothness of the urve. One usuallyhas to set a parameter s that spei�es the fration of all data points used for theomputation of the polynomial. With s = 0.0 we do not onsider any points inthe viinity of xi, yielding a zig-zagged line. The other extreme is setting s = 1.0whih yields the smoothest urve possible, beause at eah point xi we take allother points into aount. Figure 2.4 shows a satterplot with Lowess urves thathave di�erent values for s.
2.4.2 Friedman Rank Sum Test and WiloxonSigned-Rank TestThe nonparametri Friedman Rank Sum Test detets di�erenes between testresults aross c test attempts (or samples). To be more spei�, it heks whetherthe c di�erent sample groups are having the same median.Given n observations, eah onsisting of c test values, we then replae thedata by their ranks within eah of the observation. The smallest one gets rank 1,and we assign rank c to the largest value in the row. If two values are equal, theirrank is the average of the ranks that they would have been assigned otherwise.Then, we build a matrix R ∈ R

n×c with the matrix entry R(i, j) being the rankof the jth test attempt in the ith observation.The null hypothesis H0 assumes that there are no signi�ant di�erenes amongthe c test attempts, i.e., eah ranking within an observation is equally likely.Aepting H0 means that there will be no di�erene among the average ranks
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Figure 2.4: The ruial parameter for the shape of the Lowess urve is the parameter
s that spei�es how many of the data points in the neighborhood shouldbe taken into aount. The blue line shows the urve for s = 0.0, i.e., noneighboring points are onsidered. The red and orange lines represent theLowess urve for s = 0.2 and s = 1.0. One an learly see that the urvebeomes smoother with an inreasing value of s.

for eah test attempt. Otherwise, we know that there are signi�ant di�erenesamong the c test attempts and we have to perform pairwise omparisons to detetsigni�ant di�erenes between two test attempts.The Wiloxon Signed-Rank Test performs suh a pairwise omparison. Itis a nonparametri test to hek whether the median of n paired data di�erssigni�antly. The main idea is to rank the di�erenes between the paired data bytheir absolute value, and assign 1 to the smallest and n to the largest di�erene.Then we sum up the ranks of the positive and the negative di�erenes. The teststatisti is the smaller one of the two values. If the null hypothesis H0 is true,i.e., the median of the two observed samples is the same, then we expet the ranksum of the positive and the negative ranks to be the same. In this ase, we aept
H0, and we rejet it otherwise.If we perform multiple Wiloxon tests, then we have to orret the p-valuefor multiple testing. In our experiments we used the onservative Bonferroniorretion to adapt the p-values. Using a signi�ane value p for k tests, we haveto set the signi�ane level for eah test to p

k
.



Chapter
3 Previous Work

Früher war alles besser,früher war alles gut.Die Toten Hosen(Wort zum Sonntag)
This hapter summarizes the main onepts of previous approahes for theproblem of omputing sequene-struture alignments. Setion 3.1 reviews varioussequene-struture alignment senarios, together with a brief desription of thefour main sequene-struture alignment models. Thereafter, we present eahmodel in detail.Setion 3.2 gives two general paradigms for the omputation of multiple align-ments. Both progressive and onsisteny-based alignment algorithms originatefrom pure sequene-based alignment algorithms, but an be extended to inorpo-rate strutural information.

3.1 Sequene-Struture Alignments3.1.1 IntrodutionDepending on the available knowledge about the (putative) strutures that wewant to align, there are three di�erent alignment senarios for two RNA stru-tures, whih readily extend to the multiple ase.1. Struture-to-struture alignment algorithms align two known seondarystrutures, typially the minimum free energy strutures. This senarioapplies if one searhes for ommon strutural motifs that are shared byboth strutures and there is reason to believe that the seondary struturesare orret.2. Struture-to-unknown alignment algorithms align a given struture to asequene with unknown struture. Appliations are �nding homologoussequenes by inferring a onsensus struture to a sequene. This has beendone, for example, in ase of the ITS2 database [153℄.RNA �ltering software, like FastR[159℄ or PFastR [158℄, employ a two-stage strategy to �nd homologous strutures for a given RNA struture.First, they searh for regions in the database that show similar sequene orstrutural properties using fast searhing strategies like indies, allowing fora higher number of false positives. Thereafter, a veri�ation phase followsthat separates the true from the false positives. The veri�ation phase in
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the FastR and PFastR pakages are performed as sequene-to-unknownalignments. Searhing homologous strutures of nonoding-RNAs in largegenomi sequenes has reently sparked onsiderable interest in the researhommunity, see [47℄ for a survey.3. In the unknown-to-unknown alignment problem, no previous strutural in-formation is given. It applies when two RNA sequenes are suspeted toshare a ommon, but still unknown, struture. We onstrain the spae ofpossible strutures by the entire set of possible Watson-Crik and wobblepairs. A redution of the size of this spae is possible, for instane, byomputing the partition funtion to obtain the base pair probabilities [105℄.Then, one only onsiders those interations whose probabilities are above aertain threshold.Figure 3.1 gives artoon illustrations of the three senarios.
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(a) (b) (c)Figure 3.1: Di�erent input alignment senarios of RNA sequenes (pairwise ase): (a)the alignment of two known strutures, (b) of one known and one unknownstruture, and () of two unknown strutures. The angled and round edgesrepresent �xed and unknown strutures, respetively.There are four major alignment models for RNA strutures that takle theprevious desribed alignment senarios: annotated sequenes, tree models, prob-abilisti models, and graph-based models. We give small examples for eah modelin Fig. 3.2. Table 3.1 lassi�es previous work in the area of strutural RNA align-ment aording to the di�erent models and senarios. In the following setionswe will desribe previous approahes for eah model.
3.1.2 Annotated SequenesWe all a sequene augmented by strutural information an annotated sequene.In the unknown-to-unknown senario we want to perform a simultaneous om-putation of the alignment and onsensus struture. The omputational problemof simultaneously onsidering sequene and struture of an RNA moleule wasinitially addressed by Sanko� in [124℄, where the author proposed a DP algorithmto align and fold a set of RNA sequenes at the same time. The CPU and mem-ory requirements of the original algorithm are O(n3k) and O(n2k), with k and
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Figure 3.2: Di�erent models representing RNA strutures: (a) annotated sequenes, (b)graph-based, () probabilisti, and (d) tree-based models.tree-based annotated sequenesstruture-to-struture [134; 157; 75℄ [3; 44; 74℄struture-to-unknown � [3; 43; 12℄unknown-to-unknown � [124; 103; 101; 59; 58; 67;137; 148; 81; 16; 133; 132℄
probabilisti graph-basedstruture-to-struture [41; 122℄ [95; 4; 6; 89; 20; 18; 31℄struture-to-unknown [41; 125; 121℄ [95; 4; 6; 89; 20; 18; 31℄unknown-to-unknown [72; 70; 71; 38℄ [95; 4; 6; 89; 20; 18; 31℄

Table 3.1: Classi�ation of previous work.
n being the number of sequenes and their maximal length, respetively. The
O(n3) and O(n2) terms for time and spae onsumption follow from the reur-sions for RNA folding: the improvements from [147℄, where the authors presentan algorithm that runs in O(n2), brings the running time down to O(n2k). Em-ploying the original Sanko� algorithm restrits the length of the input sequenesto 100 − 200 nuleotides. Therefore, various approahes have been proposed toheuristially prune parts of the solution spae. Current implementations modifySanko�'s algorithm by imposing limits on the size or shape of substrutures, e.g.,Dynalign [103; 101℄, or Foldalign [58℄ that ombine a sliding window andbanded alignment approah. These approahes, however, still apply a loop-based
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Si,j;k,l = max







Si+1;j;k,l + γ

Si;j;k+1,l + γ

Si+1,j;k+1,l + σ(Ai, Bk)maxh≤j,q≤l

(
SM

i,h;k,q + Sh+1,j;q+1,l

)

SM
i,j;k,l = Si+1,j−1;k−1,l−1 + pA

ij + pB
kl + τ(Ai, Aj;Bk, Bl)

Figure 3.3: Nussinov-style reursions for omputing a sequene-struture alignment oftwo RNA sequenes. The fourth ase leads to a running time of O(n6)in the unonstrained ase. The matrix Si,j;k,l holds the optimal valueof the sequene-struture alignment between subsequenes A[i, . . . , j] and
B[k, . . . , l]. The values SM

i,j;k,l give the optimal value for the alignment be-tween subsequenes A[i, . . . , j] and B[k, . . . , l] given that (i, j) and (k, l)form base pairs.
energy model making the omputational requirements very expensive. The latestversion of Foldalign [59℄ additionally applies a dynami pruning algorithm thatdisards parts of the DP matrix that does not sore above a length-dependentthreshold.Hofaker, Bernhart, and Stadler [67℄ follow a di�erent trak: instead of inor-porating the omplete loop-based folding model they mimi an energy model byomputing the base pair probability matries, as given by the partition funtion[105℄. Afterwards, they align the matries using reursions that are essentiallythe same as the ones desribed in [124; 3℄. Intuitively, their approah relates tothe loop-based Sanko� algorithm like the original Nussinov folding algorithm tothe Zuker energy model.Figure 3.3 gives the reursions to ompute a sequene-struture alignmentwith linear gap osts of two RNA sequenes. One reognizes the similarity tothe Nussinov reursions presented in Set. 1.2.2: γ represents the gap penalty,
σ(Ai, Bk) assigns a sequene sore to the sequene alignment of ith haraterof sequene A to the kth harater of sequene B. The variable p

A|B
ij gives thepairing probability for pair (i, j) in sequene A or B. Finally, τ(Ai, Aj;Bk, Bl)denotes the sequene sore for mathing base pair (i, j) in sequene A with (k, l)in sequene B. In the unonstrained ase, the reursions have a time and spaeomplexity of O(n6) and O(n4). By banding the range of possible alignmentpositions, i.e., by restriting the range of variables h and q for the fourth reursionase in Fig. 3.3, the time and spae omplexity drops to O(n4) and O(n3). For themultiple ase, they align onsensus base pair probability matries in a progressivefashion. Their original program pakage PMComp is written in Perl whihin�uenes the running time and memory onsumption. Therefore, there are tworeimplementations of the PMComp ansatz, FoldalignM [137℄ and LoARNA[148℄ written in Java and C++, respetively.
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FoldalignM restrits the maximal length di�erene of the alignment of twosubsequenes to a parameter δ, whih yields a redued running time of O(n2δ2).Seondly, a two-stage proedure �lls the DP matrix: the authors identify possiblebranhing points in the �rst plae, dividing the sequenes into unbranhed sub-sequenes. These unbranhed parts are then used to align the entire sequenes.On the other hand, LoARNA makes use of the sparse nature of base pair prob-ability matries, i.e., there is only a onstant number of signi�ant entries perrow. By onsidering only the signi�ant positions in the DP �lling stage, theauthors redue the overall time and spae onsumption to O(n2(n2 + m2)) and

O(n2 + m2), respetively.Kiryu et al. [81℄ desribe a reent reimplementation of the Sanko� reursions,where they employ two strategies�the strip and the skip approximation on-straints�for keeping the running time low. The strip approximation limits theset of possible alignment positions to a band of width δ around an initial pairhidden Markov model alignment, i.e., this �rst alignment is based on sequeneinformation alone. Seondly, the skip approximation onstrains the set of possi-ble bifuration points to positions that are within the band omputed during thestrip approximation stage. The set size of putative branhing points is addition-ally ontrolled via a user-spei� parameter.Bonhoe�er [16℄ suggested the following idea to align sequenes of unknownstrutures using the base pair probability matries: one takes the highest up-and downstream probability and uses these values as the sores for a traditionalsequene alignment. Given a sequene A, let puA,i and pdA,i be the highest up- anddownstream base pair probabilities of sequene A at position i. Then, the sore
s(i, j) for a math between positions i and j reads

s(i, j) =
√

pu
A,i · p

u
B,j +

√

pd
A,i · p

d
B,jfor two sequenes A and B. Given a matrix ∆ with ∆(i, j) = s(i, j) we om-pute a traditional sequene alignment using ∆ as the soring matrix. A reentimplementation of this idea is the Stral tool [30℄.Tabei et al. [133; 132℄ desribe a di�erent approah based on base pair prob-ability matries. They use the matries to extrat ungapped stem fragments oflength l. Given a base pair probability matrix pA, a putative stem-fragment isa set F of ontinuous nested base pairs suh that for eah (i, j) ∈ F we have

pA
ij > α: α de�nes the threshold for a probability to be onsidered. The authorsalign these stem fragments in a onsistent fashion, i.e., if we have overlappingstem fragments in sequene A, then the aligned stem fragments in B have tobe overlapping as well. Note that the aligned stem fragments de�ne the align-ment of the helial parts of the sequene, i.e., loops are not aligned at this point.Therefore, in a seond step the loop regions are aligned by using the aligned stemfragments as anhor points in a sequene alignment.In the restrited struture-to-struture senario, one an resort to more sophis-tiated edit-models (Edit in short) like the one proposed by Jiang et al. in [74℄
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Figure 3.4: The operations in the edit model by Jiang et al.: we have both operationson the struture and the sequene level, eah one assoiated with a ertainost. Given two annotated sequenes A and B, we aim at �nding the seriesof edit operations of minimum ost suh that we transform A into B.
where the authors speify operations�eah assoiated with a spei� ost�bothon the sequene and the struture level: the operations are ar math, ar mis-math, ar altering, ar breaking, and ar removing modifying the strutures, andbase math, base mismath, and base deletion on the sequene level. Figure 3.4gives a artoon illustration for the single operations.Similar to the notion of the edit-distane on the level of nuleotide sequenes,the authors devise algorithms to ompute the edit distane between two annotatedsequenes. As stated above, eah edit operation ei is assoiated with a ertainost δ(ei). Given a series of edit operations Γ = {e0, e1, · · · , en} the overall ostis given by ∑n

i=0 δ(ei). We now want to �nd the series Γ̄ = {ē0, ē1, · · · , ēn} suhthat ∑n

i=0 δ(ēi) is minimal and Γ̄ transforms the �rst into the seond annotatedsequene. Jiang et al. give a dynami programming algorithm that runs in O(n4)to infer a known struture onto a seond sequene, making the omputation rathertedious for longer sequenes.Evans [44; 43℄ started a new line of researh by introduing the longest ar-preserving ommon subsequene problem (or Laps in short). The Laps isde�ned as follows: we are given two annotated input sequenes (S1, P1) and
(S2, P2), with S1 and S2 being sequenes from some alphabet Σ. P1 and P2 areannotations, possibly ontaining rossing interations, and we have a target length
l. The output is true if there exists a mapping M ⊆ {1, . . . , |S1|} × {1, . . . , |S2|}suh that |M | = l, and false otherwise. Furthermore, the following onstraintshave to be satis�ed:1. M has to be a proper alignment, i.e., the order of the subsequenes has tobe preserved.2. ars indued by the mapping have to be preserved, i.e., ∀(i1, j1), (i2, j2) ∈ Mif (i1, i2) ∈ P1 i� (j1, j2) ∈ P2.3. the subsequene indued by M is a ommon subsequene, i.e., ∀(i1, j1) ∈ Mwe have S1[i1] = S2[j1].
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Espeially the seond onstraint distinguishes this model from the other align-ment models for annotated sequenes, beause we have to enfore that ars from

P1 are onserved in P2 via M . As we will see in Set. 3.1.6, omputing the Lapsis already NP-omplete if both input annotations are nested strutures. Blin etal. [12℄ extend the original model by Evans and introdue the maximum ar-preserving ommon subsequene (or Maps in short). The Maps introduestwo soring funtions fa : Σ4 → N
∗ and fb : Σ2 → N

∗ that assign sores to themapping of nuleotides (fb) and the onservation of ars (fa). Then, we aim at�nding a mapping (M,Q), with M being the ommon subsequene of S1 and S2,and Q being the onserved ars of P1 and P2, suh that
∑

(i,j)∈M

fb(S1[i], S2[j]) +
∑

(i,j,k,l)∈Q

fa(S1[i], S1[j], S2[k], S2[l])

is maximized. The original onstraints for the Laps problem remain valid forthe omputation of the Maps.
3.1.3 Tree-Based ModelsAs we have seen in Set. 1.2, nested RNA seondary strutures may be viewed astrees. Hene, algorithms that ompare trees an be applied to RNA strutures.A �rst model was introdued by Tai [134℄ and generalizes the edit problem onstrings [142℄ to tree strutures whih is known as the tree-edit problem. Informallyspeaking, we have a set of operations Ω = {e0, . . . , en}, eah assoiated with aertain ost δ(ei),∀ei ∈ Ω. We are given trees T1 and T2 whose nodes have labelsfrom some alphabet Σ, and n = |T1| and m = |T2| with n ≥ m. Let Σ̄ = Σ ∪ λ,with λ being the null symbol. We are searhing for the series S of edit operationsof minimum ost suh that S transforms T1 into T2. For sake of simpliity weassume in the following that the nodes and their labels are idential. The tree-editmodel provides three distint operations:(a) node relabeling (X → Y ): the label of node X in T1 is hanged to Y .(b) node deletion (X → λ): we delete node X from T1, all hildren of Xbeome hildren of the parent node of X, preserving the sibling relation ofthe parent node. If X is the root node of T1, the deletion of X yields theforest of the hildren nodes of X.() node insertion (λ → X): we insert a new node X into T1.Figure 3.5 shows a small example of transforming tree T1 into another tree T2.Given a series of edit operations Γ = {e0, e1, · · · , en} the overall ost is givenby ∑n

i=0 δ(ei). We now aim at �nding a series Γ̄ = {ē0, ē1, . . . , ēn} suh that
∑n

i=0 δ(ēi) is minimal and Γ̄ transforms T1 into T2. Tai's original algorithm runsin O(n · m · leaves(T1)
2 · leaves(T2)

2), whih Zhang and Shasha [157℄ improve to
O(n·m·min(leaves(T1), depth(T1))·min(leaves(T2), depth(T2))). There are severalreent papers that report on variations on the original Zhang-Shasha algorithm,
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the interested reader is, for example, referred to [126; 39; 82℄. Finally, Demaineet al. [32℄ show that the worst ase time omplexity for the tree edit problem isin O(n3).An alternative way to ompare trees is tree alignment whih was introduedJiang et al. in [75℄. Instead of transforming one tree into another one by a seriesof edit operations, we are now searhing for a ommon supertree T whose nodeshold labels from Σ̄ × Σ̄, and the pairwise projetions π(T |1) and π(T |2) yieldthe two input trees T1 and T2. A pairwise projetion π(T |1) or π(T |2) is de�nedas the tree that we get by taking the �rst (or seond) symbols of the nodes ofthe ommon supertree T , and by deleting all nodes that have the null symbol λafterwards. Given a ost funtion δ : Σ̄ × Σ̄ → R that sores the nodes of thesupertree, we want to �nd the supertree T̄ suh that ∑

(a,b)∈V (T ) δ(a, b) is minimal.Figure 3.6 shows a small example of a tree alignment of two input trees. Treealignment algorithms have omplexities that are on average only slightly worsethan onventional sequene alignment. More preisely, their running time is in
O(n2 ·∆2), where ∆ denotes the maximum number of branhes of a multiloop inthe input strutures.
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A tool that builds upon the tree alignment paradigm is RNAForester [64;65℄. It omputes multiple struture-to-struture alignments of RNA sequenes byperforming tree alignment in a progressive fashion.

3.1.4 Probabilisti ModelsThe use of hidden Markov models (HMMs) and pro�le hidden Markov models hasproven to be a very useful onept in the ontext of genomi sequene analysis.Applying these algorithms diretly to RNA related problems is not straightfor-ward, beause HMMs are not able to aount for the strutural information ofRNA sequenes.Therefore, Eddy and Durbin [41℄ (and simultaneously Sakakibara and owork-ers [122℄) desribe stohasti ontext free grammars (SCFGs) for measuring theseondary struture and primary sequene onsensus of RNA sequene families.A grammar ontains a set of rules to generate strings, starting from some startsymbol. The main omponents of a grammar are a set N of nonterminal sym-bols, a set T of terminal symbols, and a set P of prodution rules. In the ase ofstohasti grammars eah prodution rule is assoiated with a probability. Thelanguage of a grammar are all strings that, starting from the start symbol, anbe generated by suessively applying the prodution rules.SCFGs are grammars that model the tree-like struture of RNAs. A simpleSCFG that aptures ungapped RNA strutures is the following grammar, with
N = {W,P,L,R,B, S,E} and T = {ǫ, A,C,G, U}. The nonterminal W denotesany of the six other nonterminals (P ,L,R,B,S,E), and a, b ∈ T :P → aWb (pairwise emission)L → aW (leftwise emission)R → Wa (rightwise emission)B → SS (bifuration)S → W (start prodution rule)E → ǫ (end)Then, the RNA seondary struture from Fig. 3.7 yields the orresponding parsetree.The simple SCFG from above does not inorporate the presene of gaps,and hene has to be extended by insertion and deletion states. The resultinggrammars�alled ovariane models�are quite omplex, and there are threemain algorithms used in the ontext of ovariane models: the inside, the inside-outside, and the Coke-Younger-Kasami (CYK) algorithm. These algorithmsompute the likelihood of an observed sequene x of length n, the expeted num-ber that eah prodution rule is used, and the maximum likelihood parse ofsequene x, respetively. The runtime of these algorithms sales in O(n3). For adetailed desription the reader is referred to [40℄.The SCFGs desribed so far are not suited to ompute a sequene-struturealignment of two sequenes, beause they are emitting at most one single symbol
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Figure 3.7: A toy example of an RNA seondary struture with the orresponding parsetree of the SCFG.
on either side. The idea of pair HMMs that works for nuleotide sequenes an beextended to SCFGs: a pair SCFG aptures the strutural interation of the inputsequenes and emits two symbols on either side. The omputational omplexityto ompute strutural alignments using a pair SCFG mathes the one of theunonstrained Sanko� algorithm, i.e., the spae and time requirements sale in
O(n2m2) and O(n3m3), respetively. This makes the unonstrained usage ofpair SCFGs pratial only for short sequenes. Hene, there are several papers[72; 70; 71; 38℄ that propose heuristial onstraints to improve the runtime.In [72℄ Holmes and Rubin introdued the notion of a fold envelope. Instead ofiterating over all possible substrings like in the unonstrained ase, the authorsonly onsider substrings of the input sequenes that are onsistent with preom-puted seondary strutures. Along these lines, Holmes [70; 71℄ generalizes theonept of fold envelopes to alignment envelopes. Alignment envelopes speify aset of positions between the two sequenes that have to be aligned. By employingalignment and fold envelopes the author is able to signi�antly redue the overallrunning time. Dowell and Eddy [38℄ also resort to the onept of alignment en-velopes. They all an alignment envelope a pin and use pins as anhors in theiralignment: a pin is a �xed position in the alignment and they ompute a set of
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pins via the posterior probability for eah possible pair of aligned residues usingpair HMMs. Subsequently, these pins serve as onstraints in their pair SCFGformulation.Sakakibara [121℄ ombines pair HMMs with the tree alignment algorithm byJiang et al. and performs sequene-struture alignments of a known to an un-known struture using pair HMMs on tree strutures. In subsequent work [125℄,Sato and Sakakibara build upon the reursions from [121℄, but they employ on-ditional random �elds (CRFs) [87℄ to learn the parameters for their model. CRFsrepresent an undireted graphial model that generalizes standard HMMs in thesense that CRFs are able to model overlapping and non-independent featuresof the output. Furthermore, arbitrary funtions replae the onstant transitionprobabilities of HMMs, and the feature funtions�whih map urrent observa-tions at a ertain node in the graphial model�may depend on the entire observedsequene.
3.1.5 Graph-Based ModelsKeeioglu [79℄ has introdued a graph-theoretial model for the lassial pri-mary sequene alignment problem. Lenhof, Reinert and Vingron [95℄ inorpo-rate strutural information and frame the sequene-struture alignment problemas an integer linear program. Their objetive funtion maximizes the sum ofaligned sequene sores plus the sores of interations that are onserved by thealignment. They propose a branh-and-ut algorithm and perform struture-to-unknown alignments on data from the European Ribosomal Database [154℄ andompare the performane of their algorithm to sequene and manually uratedalignments. With an inreasing number of variables, however, the omputationalrequirements beome prohibitive.Based on the formulation from [95℄, Lania and oworkers [89℄ give an ILPformulation for the related problem of omputing the maximal ontat map over-lap of two proteins. The ontat map of a protein A is a graph G = (V,E)with V and E being the sets of verties and edges. For eah amino aid of theprotein we have a vertex vi ∈ V , and we insert an edge ei = (vi, vj) ∈ E i� thetwo orresponding amino aids i and j are spatially lose enough, i.e., i and jare in ontat with eah other. The maximal ontat map overlap problem oftwo ontat maps aims at omputing a non-rossing mapping of residues fromthe �rst onto the seond protein suh that the number of onserved ontats ismaximal. A ontat from the �rst protein is onserved if its mapped endpointsin the seond protein are also in ontat with eah other.The algorithm in [89℄ is based on the branh-and-ut priniple, and the au-thors are able to ompute the optimal ontat map overlap of small- and medium-sized proteins. Following earlier work [21℄ on the quadrati knapsak problem,the authors swith from branh-and-ut to Lagrangian relaxation in their subse-quent paper [20℄. Using Lagrangian relaxation they are able to solve instanesto provable optimality that are an order of magnitude bigger ompared to the
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Figure 3.8: Given two proteins, the maximal ontat map overlap problem alls forthe maximal number of ontats that are onserved through a mapping ofamino aids from the �rst onto the seond protein. The mapping shown herepreserves three ontats, i.e., the ontat map overlap is three. Sine thereis no mapping with a higher number of onserved ontats, the maximalontat map overlap is 3.
branh-and-ut algorithm. We adapted the formulation of Lania and Caprara[20℄ for the omputation of RNA sequene-struture alignments in previous work[4℄. Compared to the �rst formulation of Lenhof et al. [95℄ we are able to solveinstanes with a muh higher number of variables in less omputation time.Davydov and Batzoglou [31℄ present a graph-theoretial model for the align-ment of multiple RNA strutures based on the notion of a nested linear graph(we all this model Mlg in short). A graph is a linear graph if we an plaeits verties on some line. Nuleotide sequenes naturally give rise to suh lineargraphs if we take the single nuleotides as the verties of the graph. We add edgesbetween omplementary base pairs. Then, given m linear graphs G1, . . . , Gm theauthors aim at �nding the largest ommon nested linear subgraph (MAX-NLS)among all m graphs. The MAX-NLS is de�ned as the largest nested graph GCsuh that GC is a subgraph of Gi with 1 ≤ i ≤ m. The authors show that �ndingthe MAX-NLS is NP-omplete, but they give polynomial time approximation al-gorithms with an approximation ratio of O(log2 S) with S being the size of theoptimal solution.Note that the graph-based model naturally deals with all three alignmentsenarios. In addition, unlike other algorithmi approahes, the graph-based al-gorithms do not restrit the input in any way and hene an handle arbitrarypseudoknots. They have been shown to play important roles in a variety ofbiologial proesses, see [131℄ for a reent review. Most DP-based algorithmsassume nested seondary strutures to ompute subproblems e�iently. Few ex-eptions exist, for example [37℄, but these algorithms are always restrited toertain lasses of pseudoknots (like H-type pseudoknots) and do not handle thegeneral ase. Brinkmeier [18℄ presents an algorithm to align various lasses ofpseudoknots, but the reursion sale in O(n14) and O(n8) for time and spae,making the algorithm inappliable even for short sequenes.
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3.1.6 Computational ComplexityThe omplexity of pairwise sequene-struture alignments of RNA sequenes isan intriate topi. The omplexity does not only depend on the omplexity ofthe input struture, i.e., we do allow pseudoknots or not, but also on the modelthat we are using and in some ases also on the soring system.The omplexity of tree-based and probabilisti sequene-struture alignmentmodels is settled, as we have polynomial time algorithms that perform sequene-struture alignments. Furthermore, the Sanko� algorithm and all its variants runin polynomial time as well. The omputation of a Laps, a sequene-struturealignment using the edit model and graph-based models is more involved.In Set. 1.2 we desribed the four lasses of possible input strutures for RNAstrutures, namely Chain, Nested, Crossing, and Unlimited. Table 3.2whih is taken from [12℄ gives an overview of the omputational omplexity inthe Laps, Edit, and Mlg model (remember that Laps, Edit, and Mlgdenote the longest ar-preserving ommon subsequene, the edit-model by Jianget al., and the maximum linear subgraph, respetively).

A × B
Chain Nested Crossing UnlimitedChain Chain Nest Chain Nest Cros Chain Nest Cros UnlimEdit O(nm) O(nm3) NPC MAX-SNP hard[43℄ [73℄ [13℄ [74℄Laps O(nm) O(nm3) NPC[43℄ [73℄ [43; 73℄Mlg O(nm) O(n2m) O(n2m2) O(n4 log3 n) NPC O(n4 log3 n) NPC[63℄ [97℄ [97℄ [86℄ [17; 141℄ [86℄ [17; 141℄

Table 3.2: The omputational omplexity of omputing sequene-struture alignmentsin di�erent models under di�erent input strutures.
Blin and Touzet [14℄ further re�ne the omputational omplexity onsidera-tions by restriting the allowed operations in the Edit model. They introduethree submodels of Jiang's general model, suh that we allow all substitution op-erations, base-deletions and ar-removings (model I), additionally ar-alterings(model II), or ar-alterings and ar-breakings (model II). Furthermore, one of themain results of the paper is the proof that the Laps model an be redued toa speial ase of the Edit model. In Set. 3.1.2 we desribe the Maps as avariant of the original Laps problem. Blin et al. [12℄ prove that omputing theMaps is NP-omplete already in the ase of two nested input strutures.Of partiular interest for this thesis is the table entry for omputing the Mlgif both input strutures are rossing. This problem orresponds exatly to theomputation of RNA sequene-struture alignments in our graph-based model.Goldman et al. show in [52℄ that omputing the maximal ontat map overlapis NP-hard in the pairwise ase. They also state that the omputation of themaximal ontat map overlap, if every node has a maximum degree of 1, isalready NP-hard. This problem orresponds exatly to the sequene-struturealignment of RNA strutures in our model. Unfortunately, they omit the proofand there is no full version of the paper available [112℄.
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Vialette [141℄ introdues the 2-interval pattern problem that orresponds ex-atly to the sequene-struture alignment of RNA sequene with rossing inputstrutures. We sore eah onserved interation with 1 and disard sequene-spei� information. Then, omputing the maximal set of onserved 2-intervalpatterns orresponds to the sequene-struture alignment problem in our model.The authors give an expliit redution from 3SAT to the 2-interval pattern prob-lem and therefore prove that the problem is NP-omplete.

3.2 Multiple AlignmentsThis setion overs two general paradigms for omputing multiple alignments thatwere originally developed for the omputation of pure sequene-based alignments.They an, however, be extended to inorporate strutural information.
3.2.1 Building Progressive AlignmentsThe main idea behind progressive alignment is to build a multiple alignment froma series of pairwise alignments. In the beginning, we align two sequenes and takethe resulting alignment as �xed. Suessively, we hoose a third sequene andalign it to the �xed alignment. This is repeated until no more sequenes areavailable.Typially, the order in whih the sequenes are aligned is given by a guidetree. We onstrut the guide tree using standard phylogeneti algorithms, e.g.,weighted average linkage (WPGMA) or average linkage (UPGMA). Starting fromthe leaves of the tree we align the sequenes in a bottom-up fashion. The mainstages of a progressive alignment of k input sequenes are the following:1. ompute the distane matrix ∆ for the k sequenes, i.e., entry ∆(i, j) de-notes the distane between sequenes i and j.2. ompute the guide tree using a phylogeneti tree onstrution algorithmlike UPGMA.3. perform the progressive alignment along the guide tree.Figure 3.9 shows a toy example by aligning four input sequenes in progressivefashion. The �gure also exhibits the main weakness of progressive alignments;mistakes that are made in the lower part of the tree annot be orreted lateron, whih is summarized by the one a gap, always a gap paradigm. Figure 3.9exempli�es the weakness of progressive alignments: seqA and seqB are the �rstpair to be aligned, and fast at of seqB is aligned to last fat of seqA. Takinga look at the entire alignment, one realizes that aligning fast at to fat atwould improve the overall multiple alignment.The progressive approah an be extended to inorporate strutural informa-tion. Previous work, like [65; 67℄, perform pairwise sequene-struture alignments
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Figure 3.9: The main stages of progressive alignments: (a) The input sequenes. (b)Compute the matrix ∆ ontaining all pairwise distanes between the inputsequenes, and onstrut the guide tree using ∆ (). The atual alignment isomputed by pairwise alignments along the guide tree (d). The illustrationis taken from [109℄.
along a preomputed guide tree and ompute onsensus strutures at the innernodes of the tree. A straightforward way to ompute a onsensus sore betweenpositions (i, j) is to take the average values of the struture sores between po-sitions i and j and ompute the arithmeti mean of them. Figure 3.10 showsan example of a sequene-struture alignment of �ve tRNA sequenes using thePMComp software pakage [67℄. As one an observe, the onsensus struturethins out along the guide tree.
3.2.2 Building Consisteny-Based AlignmentsAs a remedy for the pure progressive alignment method, the authors of [109℄ pro-pose onsisteny-based alignments. Although their algorithm is also progressivein nature, they introdue a preproessing stage that redues the probability ofmaking a mistake early in the alignment phase.The main idea behind onsisteny-based alignments is to perform all pair-wise alignments, and then hek for eah aligned pair of residues how onsistentthis pair is with the remaining pairwise alignments. Figure 3.11 shows the mainonepts by aligning the four input sequenes from Fig. 3.9. Given the input
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Figure 3.10: Progressive sequene-struture alignment of �ve tRNA sequenes. The�gure was generated using the PMComp software pakage [67℄.
sequenes (a), we ompute all pairwise alignments and assign their pairwise se-quene identity as their weights (b). Then, we hek for eah pair of alignedpositions how well the aligned pair is represented by the remaining pairwisealignments. As an example, we take the G in seqA and seqB denoted by GAand GB. We then examine the alignment of seqA and seqB through seqC. Weobserve that GA is also aligned to GB via GC . Hene, we add the smaller of thetwo weight values W1 = W (GA, GC) and W2 = W (GC , GB). In our ase this sumsup to 88+min(77, 100) = 165, with 88 being the weight of the alignment betweensequenes seqA and seqB. We all the proess of heking aligned positions viathe alignment of other sequenes library extension. The weights omputed duringthe library extension omputation are used as sores in the progressive alignmentphase.The �rst implementation of onsisteny-based alignments is the T-Coffeesoftware pakage [109℄. Subsequently, several other programs resort to the sameidea, like Mafft [78℄ or ProbCons [36℄. T-Coffee is, however, the onlyprogram that o�ers the possibility to inorporate alignment information from ex-ternal soures. MARNA was the �rst program that uses this feature to omputemultiple sequene-struture alignment heuristially. In [5℄ we presented a �rstversion of our multiple alignment tool based on the pairwise information fromthe model presented in Chapt. 4. This eventually led to the �rst version of theLaRA software pakage.



41

SeqA

SeqB

GARFIELD THE LAST FAT CAT

GARFIELD THE FAST CAT ---

Weight = 88

SeqA

SeqC

GARFIELD THE LAST FA-T CAT

GARFIELD THE VERY FAST CAT

Weight = 77

SeqA

SeqD

GARFIELD THE LAST FAT CAT

-------- THE ---- FAT CAT

Weight = 100

SeqA

SeqB

GARFIELD THE LAST FAT CAT

GARFIELD THE FAST CAT ---

Weight = 88

SeqA

SeqC

GARFIELD THE LAST FA-T CAT

GARFIELD THE VERY FAST CAT

Weight = 77

SeqA

SeqD

GARFIELD THE LAST FAT CAT

-------- THE ---- FAT CAT

Weight = 100

SeqB

SeqC

GARFIELD THE ---- FAST CAT

GARFIELD THE VERY FAST CAT

Weight = 100

SeqB

SeqD

GARFIELD THE FAST CAT

-------- THE FA-T CAT

Weight = 100

SeqC

SeqD

GARFIELD THE VERY FAST CAT

-------- THE ---- FA-T CAT

Weight = 100

SeqA

SeqB

SeqC

SeqD

GARFIELD THE LAST FAST CAT

GARFIELD THE FAST CAT

GARFIELD THE VERY FAST CAT

THE FAT CAT

SeqA

SeqB

GARFIELD THE LAST FAT CATSeqA

SeqB

GARFIELD THE LAST FAT CAT

GARFIELD THE FAST CAT

SeqA

SeqC

GARFIELD THE LAST FAT CATSeqA GARFIELD THE LAST FAT CAT

GARFIELD THE VERY FAST CAT

SeqB GARFIELD THE FAST CAT

SeqA

SeqD

GARFIELD THE LAST FAT CATSeqA GARFIELD THE LAST FAT CAT

THE FAT CAT

SeqB GARFIELD THE FAST CAT

Weight = 88

Weight = 77

Weight = 100

(a)

(b)

(c)

SeqA

SeqB

GARFIELD THE LAST FAT CATSeqA

SeqB

GARFIELD THE LAST FAT CAT

GARFIELD THE FAST CAT

(d)(d)

SeqA

SeqB

GARFIELD THE LAST FA-T CAT

SeqB GARFIELD THE FAST CAT

(e)
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Chapter
4 A Model for the MultipleSequene Case

Sie ist ein Modell,und sie sieht gut aus. Kraftwerk(Das Modell)
In this hapter we present a model for the problem of omputing multiplesum-of-pairs sequene-struture alignments. The formulation uni�es the modelsfrom [4℄ and [1℄. Setion 4.3 desribes an extension to the initial model thattakes the e�ets of staking of adjaent base pairs into aount. Main parts ofthis hapter are published as [8℄. Mind that for the moment we restrit ourselvesto the desription of the formulation, we give extensive omputational results inChap. 5.3.

4.1 An Exat Framework for the MultipleSequene-Struture Alignment ProblemSetion 4.1.1 starts with mathematial de�nitions of alignments, gaps, and appro-priate soring funtions. We then give a graph-based view of these de�nitions inSet. 4.1.2. Subsequently, Set. 4.2 shows how we an transform the graph-basedmodel into an integer linear program (ILP), relax it and solve the relaxed ILPe�iently.
4.1.1 Basi De�nitionsDe�nition 4.1. Let Σ be some alphabet exluding the gap harater �-�, and let
Σ̂ = Σ∪{-}. Given a set S of k strings s1, . . . , sk over Σ, we all A = (ŝ1, . . . , ŝk)a multiple alignment of the sequenes in S if and only if the following onditionsare satis�ed:1. the sequenes ŝi, 1 ≤ i ≤ k, are over the alphabet Σ̂.2. all sequenes ŝi have the same length |A|.3. sequene ŝi without �-� orresponds to si, for 1 ≤ i ≤ k.4. there is no index j suh that ŝi

j = �-�, 1 ≤ i ≤ k. By si
j we refer to the

jth harater in sequene si. We de�ne Mi(j) as the mapping of si
j to itsposition in the alignment, and refer by M−1

i (j) to the mapping from the
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Figure 4.1: Given the sequenes from (a), a linear gap funtion would assign the samegap sore to the alignment of (b) and (). The beginning of a gap, however,should be penalized higher ompared to subsequent gap haraters, andtherefore the alignment of () is biologially more aurate.
position in the alignment to the atual position in the sequene. If ŝi

j 6= �-�and ŝl
j 6= �-�, 1 ≤ j ≤ |A|, then we say that si

M−1
i (j)

is aligned to sl

M−1
l

(j)
,and to a gap otherwise.Alphabets ommonly used in omputational biology are the four letter alpha-bet Σ = {A,G,C, T} or Σ = {A,G,C, U} in the ase of DNA or RNA sequenes,respetively. We de�ne a soring funtion σ : Σ̂× Σ̂ → R that represents the ben-e�t of aligning the two haraters. Usually, pairs of idential haraters reeivea high sore, whereas di�erent haraters get a low sore. We extend the sorede�nition to alignments:De�nition 4.2. Given a set S of k strings s1, . . . , sk, an alignment A onsistingof strings ŝ1, . . . , ŝk, and a soring funtion σ, the sum-of-pairs (SPS) sore of Ais de�ned by SPS(A, σ) =

k−1∑

i=1

k∑

j=i+1

|A|
∑

l=1

σ(ŝi
l, ŝ

j
l ) .

Intuitively speaking, the sum-of-pairs sore adds up all sores of pairs ofaligned haraters in the alignment A. Usually, we are interested to �nd anoptimal multiple sequene alignment under the soring funtion σ.De�nition 4.3. Given a soring funtion σ and a set S of sequenes, we aim atomputing an alignment A∗ withSPS(A∗, σ) = maxA∈A SPS(A, σ) ,where A is the set of all possible multiple alignments for S. We all A∗ an optimalmultiple sequene alignment of S under the soring funtion σ.This sore model does not expliitly model gaps; they are inherently present bythe alignment of a gap harater to a non-gap harater. Hene, it is not possibleto penalize di�erent numbers of onseutive gaps di�erently. For example a gapof length three�aligning three `A's to three gaps�ahieves the same sore asthree separate individual gaps, see Fig. 4.1 (b) and ().Biologial �ndings motivate a more ompliated gap model: the beginning ofa gap should be penalized higher ompared to subsequent gap haraters. This
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leads to a�ne gap osts that sore a gap of length x by a + (x− 1)b, where a > bare the gap open and gap extension penalties. Using this model learly favors thesingle gap, see Fig. 4.1 (), over the three individual gaps, see Fig. 4.1 (b).We therefore introdue the following sore whih models gaps expliitly andhene an assign a�ne gaps osts (or any other gap ost) to the gaps in analignment. We denote a gap of length ℓ in sequene i at position j by a triple
(i, j, ℓ) and assign it a penalty sore γ(i, j, ℓ) ∈ R≤0.De�nition 4.4. Given a set S of k strings s1, . . . , sk, an alignment A onsistingof strings ŝ1, . . . , ŝk, a sequene soring funtion σ, and a gap penalty funtion γ.We denote the gaps in A with

G(A) := {(i, j, ℓ) | sequene i has a gap of length ℓ at position j in A} .The gapped sum-of-pairs (GSPS) sore of A is de�ned by
GSPS(A, σ, γ) =

k−1∑

i=1

k∑

j=i+1

|A|
∑

l=1

σ(ŝi
l, ŝ

j
l ) +

∑

(i,j,ℓ)∈G(A)

γ(i, j, ℓ) .

Note that γ assigns negative sores to gaps in the alignments.As desribed in Set. 1, sequene alignments are in general not su�ient tobuild reliable RNA alignments. Therefore, in addition to the gaps, we proposeto inorporate strutural information. This leads to the notion of annotatedsequenes.De�nition 4.5. Let s = s1, . . . , sn be a sequene of length n over the alphabet
Σ = {A, C, G, U}. A pair (si, sj) is alled an interation if i < j and nuleotide iinterats with j. In most ases, these pairs will be (G,C), (C,G), (A,U), (U,A),
(G,U), or (U,G). The set p of interations is alled the annotation of sequene s.Two interations (se, sf ) and (sg, sh) are said to be inonsistent if they share onebase; they form a pseudoknot if they ross eah other, that is if e < g < f < hor g < e < h < f . A pair (s, p) is alled an annotated sequene. Note that astruture where no pair of interations is inonsistent with eah other forms avalid seondary struture of an RNA sequene, possibly with pseudoknots.De�nition 4.6. Given a sequene alignment A = (ŝ1, . . . , ŝk) of k sequenes,onsider two annotated sequenes (si, pi) and (sj, pj). We all two interations
(si

e, s
i
f ) ∈ pi and (sj

g, s
j
h) ∈ pj a strutural math if si

e is aligned with sj
g and si

fis aligned with sj
h. Two strutural mathes (ŝi

e, ŝ
i
f ), (ŝj

e, ŝ
j
f ) and (ŝi

g, ŝ
i
h), (ŝj

g, ŝ
j
h)are inonsistent if either e = g, f = g, e = h, or f = h. We de�ne a soringfuntion τ : Σ4 → R that assigns a sore to quadruples of haraters representingthe bene�t of mathing the two interations.In other words, in the ase of a strutural math of two interations, their �left�and �right� endpoints are aligned by A. Two strutural mathes are inonsistent
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-GCGGAUAACCCC

GG-AUA-CCA-UC

U--GAC-CCU-CC

ŝ
1

ŝ
2

ŝ
3

Figure 4.2: Realized strutural mathes are highlighted with grey edges. The struturalmath x = [(ŝ2
1, ŝ

2
5), (ŝ3

1, ŝ
3
5)] (the red dotted edges) is inonsistent with thestrutural math y = [(ŝ2

5, ŝ
2
10), (ŝ3

5, ŝ
3
10)], that is we either sore x or y.

if they share an aligned olumn. In the ase of RNA sequenes, we allow eahnuleotide to be paired with at most one other nuleotide, inonsistent mathesrepresent pairings with two or more nuleotides whih we do not allow for RNAsequenes. This leads to the de�nition of sequene-struture alignments of RNAstrutures.De�nition 4.7. Given a set S of k strings s1, . . . , sk and an alignment A onsist-ing of strings ŝ1, . . . , ŝk. Let G(A) be the set of all gaps of A, and let σ, τ , γ befuntions for soring sequene, strutural mathes, and gaps. Then, the gappedstrutural sum-of-pairs sore of A is de�ned by GSSPS(A, σ, τ, γ) =

k−1∑

i=1

k∑

j=i+1





|A|
∑

l=1

σ(ŝi
l, ŝ

j
l ) +

|A|−1
∑

l=1

|A|
∑

m=l+1

τ(ŝi
l, ŝ

j
l , ŝ

i
m, ŝj

m)



 +
∑

(i,j,ℓ)∈G(A)

γ(i, j, ℓ) ,

whih does not sore inonsistent strutural mathes, that is, every base is partof at most one strutural math.Figure 4.2 gives an illustration for the de�nitions from above. In analogy to theoptimal sequene alignment problem, we onsider the optimal sequene-struturealignment of RNA strutures:De�nition 4.8. Given soring funtions σ, τ , and γ for soring sequene, stru-tural mathes and gaps. Let S be a set of k sequenes s1, . . . , sk. We aim atomputing an alignment A∗ withGSSPS(A∗, σ, τ, γ) = maxA∈AGSSPS(A, σ, τ, γ) ,where A is the set of all possible multiple alignments for S. We all A∗ an optimalmultiple sequene-struture alignment of S.
4.1.2 Graph-Based Model for Strutural RNA AlignmentBasi Model We are given a set of k annotated sequenes {(s1, p1), . . . , (sk, pk)}and model the input as a mixed graph (V, L∪F ∪D∪G). The set V denotes the
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. . .Figure 4.3: Basi graph model of three annotated sequenes ontaining lines (grey solidlines) and interation edges (blue dotted edges). For sake of larity we donot show all alignment edges, only the ones inident to v1

1.
verties of the graph, in this ase the bases of the sequenes, and we write vi

j forthe jth base of the ith sequene. The set L ontains undireted alignment edgesbetween verties of two di�erent input sequenes�for sake of better distintionalled lines. A line l ∈ L with l = (vi
k, v

j
l ), i 6= j represents the alignment of the

kth harater in sequene i with the lth harater in sequene j. The set Lijrepresents all lines between sequenes i and j. We address the soure node andtarget node of line l by s(l) and t(l). For l = (vi
k, v

j
l ) we have s(l) = vi

k and
t(l) = vj

l . The set Lij

vi
k

is the subset of Lij ontaining only alignment edges whosesoure node is vi
k. Observe that the graph (V, L) is k-partite.The edge set F models the annotation of the input sequenes in our graph.Consequently, we have interation edges between verties of the same sequene,i.e., edges (vi

k, v
i
l) representing the interation between verties vi

k and vi
l . Fig-ure 4.3 illustrates these de�nitions.

Conseutivity and Gap Ars In addition to the undireted alignment andinteration edges we augment the graph by the set D of direted ars representingonseutivity of haraters within the same string. We have an ar that runs fromevery vertex to its �right� neighbor, i.e., D = {(vi
j, v

i
j+1) | 1 ≤ i ≤ k, 1 ≤ j < |si|}.At this point, gaps are not represented in our graph model. Hene, we intro-due the edge set G: for eah pair of sequenes (i, j) we have an edge aij

ef from vi
eto vi

f representing the fat that no harater of the substring si
e . . . si

f is aligned toany harater of the sequene j, whereas si
e−1 (if e > 1) and si

f+1 (if f + 1 ≤ |sj |)are aligned with some haraters in sequene j. We say that vi
e, . . . , v

i
f are spannedby the gap ar aij

ef . The entire set G is partitioned into distint subsets Gij with
i, j = 1, . . . , k, i 6= j, and Gij = {aij

lm ∈ G | 1 ≤ l ≤ m ≤ |si|}. Intuitively, foreah sequene i we have k− 1 ars between eah pair of nodes (vi
e, v

i
f ) in order torepresent gaps between the sequene and the remaining k − 1 sequenes.Two gap ars aij

ef , aij
mn ∈ Gij,w.l.o.g. e < m, are in on�it with eah otherif {e, . . . , f + 1} ∩ {m, . . . , n} 6= ∅, that is, we do not allow overlapping or even
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Figure 4.4: A longer gap annot be split into two shorter gaps: the two dashed gapedges are in on�it with eah other and are replaed by the solid gap edgespanning the two shorter gap edges.
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(b)Figure 4.5: (a) Basi graph model augmented by gap edges (interation edges are notdisplayed). The olour of the gap edges indiates to what other input se-quene the gap edges refer to. The right side (b) shows an instane of amixed yle.
touhing gap ars. This is intuitively lear, beause we do not want to split alonger gap into two separate gaps; as a result there has to be at least one alignedharater between two realized gap ars. We de�ne a set C ontaining all maximalsets of pairwise on�iting gap ars. Finally, we de�ne Gij

vi
e↔vi

f

as the set of gapars that span the nodes vi
e . . . vi

f . See Fig. 4.4 for an illustration.
Mixed Cyles A path in (V, L∪D) is an alternating sequene v1, e1, v2, e2, . . .of verties vi ∈ V and lines or ars ei ∈ L ∪ D. It is a mixed path if it ontainsat least one ar in D and one line in L. A mixed path is alled a mixed yleif the start and end vertex are the same. A mixed yle represents an orderingon�it of the letters in the sequenes. In the two-sequene ase a mixed yleorresponds to lines that ross eah other. The set of all mixed yles is denotedby M. A subset L ⊆ L orresponds to an alignment of the sequenes s1, . . . skif L ∪ D does not ontain a mixed yle [79; 117℄. In this ase, we use the termalignment for L.
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Interation Math Two interation edges r = (vi

k, v
i
l) ∈ pi and s = (vj

m, vj
n) ∈

pj form an interation math if two lines e = (vi
k, v

j
m) and f = (vi

l , v
j
n) exist suhthat e and f do not ross eah other. A subset L ⊂ L realizes the interationmath (e, f) if e, f ∈ L. Observe that the de�nition of an interation math isa graph-based reformulation of a strutural math as de�ned in Set. 4.1.1. Theset I ontains all possible interation mathes of L.

Gapped Strutural Trae A triple (L, I,G) with L ⊆ L, I ⊆ I, and G ⊆ Gdenotes a valid gapped strutural trae if and only if the following onstraintsare satis�ed:1. For i, j = 1, . . . , k, i 6= j we de�ne Lij = Lij ∩ L. Then, for l = 1, . . . , |si|the vertex vi
l is inident to exatly one alignment edge e ∈ Lij or spannedby a gap ar g ∈ Gij.2. An alignment edge l an realize at most one single interation math (l,m).3. There is no mixed yle M ∈ M suh that M ∩ L = M .4. There are no two gaps ars aij

kl, a
ij
mn ∈ G suh that aij

kl is in on�it with
aij

mn.5. Given L, we denote by H(L) the transitive losure of L. Then
H(L) = Lmust hold true. This makes sure that alignment L also realizes all transitiveedges indued by L. See Fig. 4.6(a) for an illustration.Fig. 4.6(b) shows a valid gapped strutural trae and the orresponding align-ment.Observation 4.1. There is a one-to-one mapping between alignments realizingstrutural mathes and gapped strutural traes.Proof. The orrespondene follows the observation in [1℄. In our ase, however,we have to additionally map strutural mathes to realized interation mathes inthe gapped strutural trae. Due to the one-to-one mapping between struturalmathes and interation mathes, this is straightforward.We assign positive weights wl and wij to eah line l and eah interationmath (i, j), respetively, representing the bene�t of realizing the line or themath. Although we an set eah weight independently, line weights are usuallyset by empirially derived mutation sore matries where σ(si

k, s
j
l ) gives a highvalue for idential (or similar) haraters. In Set. 5.4.2 we will further elaborateon ommonly used soring shemes.Note that sine eah interation edge ours in two interation mathes (m, l)and (l,m) we divide the weight of these edges by two. Finally, we assign nega-tive weights to gap edges aij

kl representing the gap penalty for aligning substring
si

k . . . si
l with gap haraters in sequene j.
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(b)Figure 4.6: (a) Transitive edges must be realized: if k and l are part of the alignment,then m has to be realized as well. (b) Example of a valid gapped struturaltrae of three annotated sequenes. Three interation mathes are onservedby the alignment.
4.2 Integer Linear Program and LagrangianRelaxationThis setion starts by desribing our integer linear programming formulation forthe multiple sequene-struture alignment problem, whih is based on the modelfrom the previous setion. We then show how to ompute solutions to this integerlinear program (ILP) using the Lagrangian relaxation method.
4.2.1 Integer Linear ProgramWe assoiate binary variables with eah line, interation math, and gap edge, andmodel the onstraints of a valid gapped strutural trae by suitable inequalitiesin the ILP.The handling of lines and gap edges is straightforward. We assoiate an x anda z variable to eah line and gap edge having the following interpretation: we set
xl = 1 if and only if line l ∈ L is part of the alignment L, and za = 1 if and onlyif gap edge a ∈ G is realized.Interation mathes, however, are treated slightly di�erently. Instead of as-signing an ILP variable to eah interation math, we split an interation math
(l,m) into two separate direted interation mathes (l,m) and (m, l) that aredetahed from eah other. A direted interation math (l,m) is realized by thealignment L if l ∈ L. We then have ylm = 1 if and only if the direted intera-tion math (l,m) is realized (note again that ylm and yml are distint variables).Figure 4.7 gives an illustration of the variable splitting. This does not hange theunderlying model, it just makes the ILP formulation more onvenient for furtherproessing as we shall see in the setions to ome.Splitting interation mathes has �rst been proposed by Caprara and Laniain the ontext of ontat map overlap [20℄. The general onept of variable
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l m
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G A U CG

G A U C

G A U CG

Figure 4.7: One interation math is split into two direted interation mathes.
splitting, or Lagrangian deomposition, is, however, a well-known tehnique inmathematial programming [56℄.

max ∑

l∈L

wlxl +
∑

g∈G

wgzg +
∑

l∈L

∑

m∈L

wlmylm (4.1)
s. t. ∑

l∈L∩M

xl ≤ |L ∩ M | − 1 ∀M ∈ M (4.2)
xl + xk − xm ≤ 1 ∀ (l, k,m) ∈ L, (xl, xk, xm) forming a yle (4.3)
∑

a∈C

za ≤ 1 ∀C ∈ C (4.4)
∑

l∈L
ij

s(m)

xl +
∑

a∈G
ij

s(l)↔s(l)

za = 1 1 ≤ i, j ≤ k, i 6= j,∀m ∈ Lij (4.5)
∑

m∈L,(l,m)not rossing ylm ≤ xl ∀ l ∈ L (4.6)
ylm = yml ∀ l,m ∈ L (4.7)
x ∈ {0, 1}L y ∈ {0, 1}L×L (4.8)
z ∈ {0, 1}G (4.9)

Figure 4.8: Master ILP
De�nition 4.9. We all the ILP (4.1)�(4.9) of Fig. 4.8 the master ILP.Note that we set the weights wl, wg, and wlm for l,m ∈ L and g ∈ G asdesribed in Set. 4.1.2, and therefore we have wg < 0 for g ∈ G.Lemma 4.1. A feasible solution to the ILP (4.1)�(4.9) orresponds to a validgapped strutural trae and vie versa.Proof. We �rst prove that a feasible solution (x̂, ŷ, ẑ) of the ILP desribes a validmultiple gapped strutural trae.
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Let L̂ = {l ∈ L | x̂l = 1}. Observe that onstraints (4.2) guarantee that L̂does not ontain mixed yles. If L̂ generated a mixed yle M , then |L̂ ∩ M | =

|M |. But this would ontradit (4.2) that ∑

l∈L̂∩M xl ≤ |L̂∩M |−1. Furthermore,there annot be lines k, l ∈ L̂ suh that there exists a line m 6∈ L̂ that is induedby k and l, i.e., m is the transitive edge indued by k and l. If this was the ase,we have a sum of 2, ontraditing onstraints (4.3).Constraints (4.4) guarantee that there are no mutually rossing gap edges:assume there exist two gap edges aij
kl and aij

mn that ross eah other. Consequently,they are in the same set C ∈ C of on�iting gap edges ontraditing that thesum of (4.4) is onstrained by 1.Equality (4.5) guarantees that every node is inident to exatly one alignmentedge or spanned by exatly one gap edge. If a node was not inident to any lineor gap edge, we had a sum of 0. There annot be any node inident to a line andspanned by a gap edge, beause this implies a sum of 2.Finally, a line annot realize more than one direted interation math, oth-erwise this violates onstraints (4.6).To omplete the proof, we have to show that a valid gapped strutural traerepresents a feasible solution to the ILP. Given (L, I,G) with L ⊆ L, I ⊆ I, and
G ⊆ G that form a valid multiple gapped strutural trae. Set the values of the
x̂, ŷ, and ẑ variables in orrespondene if the respetive edges are part of L, I, or
G.De�nition 4.10. We all the relaxed ILP onsisting of (4.1)�(4.9) without (4.7)the slave ILP.Lemma 4.2. The slave ILP is equivalent to the multiple sequene alignmentproblem with arbitrary gap osts.Proof. The key observation is that after the removal of onstraints (4.7), variables
ylm appear only in onstraints (4.6); thus, eah variable xl is assoiated with aset of ylm, the set of outgoing interation mathes that l an realize.Hene, we have to distinguish two ases, depending on whether a line l is partof an alignment or not. First, assume xl = 0. In this ase, as a onsequeneof (4.6), all ylm must be zero as well. If, however, a line l = (vi

k, v
j
l ) is part ofan alignment, its maximal ontribution to the sore is given by solving the ILPshown in Fig. 4.9. Inequality (4.11) states that we an hoose only one singleinteration math from the set of outgoing interation mathes that alignmentedge l an possibly realize. Aording to the objetive funtion (4.10) it is learthat this will be the one with the largest weight wlm. Furthermore, there annotbe a gap ar that spans vertex vi

k or vj
l , sine otherwise onstraints (4.12) wouldbe violated. This ILP (for eah line l) is easily solvable by just seleting the mostpro�table outgoing interation math (l, m̂) suh that l and m̂ are not in on�it,whih an be done in linear time. Therefore, the pro�t a line an possibly ahieveis solely omputed by onsidering the weights of line l and of the best diretedinteration math (l, m̂) that line l an realize, i.e., pl = wl + wlm̂.
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pl := max wl +

∑

m∈L

wlmylm +
∑

a∈{Gij

s(l)↔s(l)
∪G

ji

t(l)↔t(l)
}

waza (4.10)
s. t. ∑

m∈L,(l,m)not rossing ylm ≤ 1 (4.11)
∑

a∈{Gij

s(l)↔s(l)
∪G

ji

t(l)↔t(l)
}

za = 0 (4.12)
x ∈ {0, 1}L y ∈ {0, 1}L×L (4.13)
z ∈ {0, 1}G (4.14)

Figure 4.9: Constraints that have to satis�ed if an alignment edge l is part of the align-ment, i.e., if xl = 1.
In the seond step, we ompute the optimal sore by solving the ILP onsistingof the remaining onstraints, whih is listed in Fig. 4.10.
max ∑

l∈L

plxl +
∑

g∈G

wgzg

s. t. ∑

l∈L∩M

xl ≤ |L ∩ M | − 1 ∀M ∈ M

xl + xk − xm ≤ 1 ∀ (l, k,m) ∈ L, (xl, xk, xm) forming a yle
∑

a∈C

za ≤ 1 ∀C ∈ C

∑

l∈L
ij

s(m)

xl +
∑

a∈G
ij

s(l)↔s(l)

za = 1 1 ≤ i, j ≤ k, i 6= j,∀m ∈ Lij

x ∈ {0, 1}L

z ∈ {0, 1}G

Figure 4.10: Computing the solution for the relaxed problem. Observe that the ILP onlyontains x and z variables, beause the values of the y variables dependon the x variables.
The remaining ILP only onsiders x and z variables, beause due to the asedistintion desribed above the values of the y variables depend on the value ofthe orresponding x variables. Then, the remaining onstraints orrespond to the
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multiple sequene alignment formulation given in [1℄.Let (x∗, z∗) be the solution to this problem. We laim that an optimal solutionof the relaxed problem is given by (x∗, y∗, z∗) by setting y∗

lm = x∗
mylm̂ (rememberthat ylm̂ is the highest soring direted interation math that l an realize), andby setting the x and z variables aording to the solution of the multiple sequenealignment problem. First, it is easy to see that (x∗, y∗, z∗) is indeed a feasiblesolution of the relaxed problem, sine (x∗, z∗) represent a valid alignment (witharbitrary gap osts) and our hoie of y∗ does not violate the restritions givenin (4.6). To see that (x∗, y∗, z∗) is optimal, observe that its value is determinedby

∑

l∈L

plx
∗
l +

∑

g∈G

wgz
∗
g =

∑

l∈L

(wl + wlm̂)x∗
l +

∑

g∈G

wgz
∗
g

=
∑

l∈L

wlx
∗
l +

∑

g∈G

wgz
∗
g

︸ ︷︷ ︸optimal sol. for MSA
+

∑

l∈L

∑

m∈L

wlmy∗
lm

︸ ︷︷ ︸optimal sol. for ylm̂ due to (4.10)�(4.14)
We now proof that (x∗, y∗, z∗) is indeed the optimal solution. Assume thatthere exists a valid solution (x̄∗, ȳ∗, z̄∗) that has a higher objetive funtion valuethan (x∗, y∗, z∗). Clearly, (x∗, z∗) and (x̄∗, z̄∗) di�er in at least one position, andboth form valid alignments (we have to onsider only x and z variables, beausethe values of y follow from the hoie of x). If, however, (x̄∗, z̄∗) forms a validsequene alignment, we would have found it in the �rst plae, beause we areomputing optimal multiple sequene alignments.

4.2.2 Lagrangian RelaxationObviously we have not yet solved the master ILP, sine we dropped equali-ties (4.7). Instead of just dropping them, we relax the master ILP in a Lagrangianfashion. We move the dropped onstraints into the objetive funtion and assigna penalty term�the Lagrangian multiplier�to eah dropped onstraint. Themultipliers represent a penalty to the objetive funtion in the ase the droppedonstraint is not satis�ed. Moving onstraints (4.7) into the objetive funtionyields the Lagrangian dual, whih is the slave ILP with the objetive funtionmax ∑

l∈L

wlxl +
∑

g∈G

wgzg +
∑

l∈L

∑

m∈L

wlmylm +
∑

l∈L

∑

m∈L

λlm(ylm − yml) . (4.15)
Exploiting the fat that λlm = −λml, whih we ensure below, (4.15) an bereformulated tomax ∑

l∈L

wlxl +
∑

g∈G

wgzg +
∑

l∈L

∑

m∈L

(wlm + λlm)ylm . (4.16)
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Note that, aording to Lemma 4.2, we an solve instanes of the Lagrangianproblem by solving a multiple sequene alignment problem with arbitrary gaposts where the pro�ts of the interation mathes are oded in the weights of thelines.We want to determine the Lagrangian multipliers that provide the best boundto the original problem. In pratie, iterative subgradient optimization, that wedesribed in Set. 2.3.1, is widely used. This method determines the multipliersof the urrent by adapting the values from the previous iteration.More formally, we set λ1

lm = 0,∀m, l ∈ L and
λi+1

lm =







λi
lm if si

lm = 0

λi
lm − γi if si

lm = 1

λi
lm + γi if si

lm = −1

where si
lm = y∗

lm − y∗
ml and γi = µ

vU − vL
∑

l,m∈L

(si
lm)2

.

Here, µ is a ommon adaption parameter and vU and vL denote the best upperand lower bounds, respetively.In eah iteration of the subgradient optimization proedure we get a value forthe Lagrangian dual. Given this series (v1, v2, . . . , vn) we an set vU to min{vi |
1 ≤ i ≤ n}, the lowest objetive funtion value of the Lagrangian dual solved sofar. The omputation of a lower bound is more involved and we show in Set. 4.2.3how to use the solution of the relaxed problem to dedue a good feasible solution.In our omputational experiments we also tried more advaned methods tosolve the Lagrangian dual, for example bundle methods [94℄. However, urrentlythe desribed subgradient optimization exhibits better onvergene propertiesthan bundle methods as the results from Set. 5.4.4 show.Note that unless the lower and the upper bound vL and vU oinide, weannot guarantee optimality. Even if we had already found the optimal value
v∗ of the Lagrangian dual, the solution orresponding to v∗ is not neessarily avalid solution in the primal problem. Our experiments, however, show that in thease of instanes that share medium or high strutural similarity, the lower andupper bound often oinide yielding provably optimal solutions for our originalproblem. If, however, the two bounds do not math, an inorporation of theLagrange bounds into a branh-and-bound framework is straightforward. Wereport the results of the branh-and-bound implementation in Set. 5.5.4.
Solving the relaxed problem in the pairwise ase. The solution of the re-laxed problem in the multiple ase amounts to the omputation of an exat mul-tiple sequene alignment. If we onsider the speial ase of two input sequenes
s1 and s2, with n = |s1| and m = |s2| and n > m, then we an use standarddynami programming algorithms to solve the relaxed problem in O(n2).
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For the total running time of k iterations we have to additionally onsiderother fators. We have O(n2) possible alignment edges, and if we allow inter-ations between every pair of nuleotides, then every alignment edge has O(n)possible partner edges. We store the partner edges in a priority queue leading to aomplexity of O(n lg n) for building and updating eah one of the O(n2) priorityqueues. This yields a omplexity of O(n3 lg n) for a �xed number of iterations.Priority queues are neessary, beause we adapt the Lagrangian multipliers ineah iterations, and we want to aess the highest soring interation math inonstant time.For an RNA sequene the number of potential interations is, however, typi-ally onstant, leading to a onstant number of possible partner edges in the aseof sequenes. Therefore, the O(n lg n) term is in fat onstant, yielding a totalrunning time of O(n2).

4.2.3 Computing a Feasible SolutionA solution (x∗, y∗, z∗) of the Lagrangian dual yields a multiple alignment L (rep-resented by x∗) plus some information about interation mathes oded by the
y∗-values; see Fig. 4.11 (a). If for all lines l and m the equation y∗

lm = y∗
ml holds,then the solution is a feasible multiple strutural alignment, and we have foundan optimal solution to the original problem. Otherwise, some pairs y∗

lm and y∗
mlontradit eah other. For a valid seondary struture, however, we have to ensurethat y∗

lm = y∗
ml for all pairs of l,m ∈ L.The set of lines and gap edges that onstitute the alignment is �xed: theproblem is to �nd a subset Î of interation edges of maximum weight suh thatthe strutural information for eah sequene is valid, that is, eah base is pairedwith at most one other base. Figure 4.11 (a) illustrates the problem: the align-ment L = (l, k,m, n, o) provides di�erent possibilities to augment L by struturalmathes. We an for example either realize the strutural math (l,m) or (l, n),but not both. Realizing both interation mathes would result in an invalid se-ondary struture. We therefore de�ne the problem of �nding the best struturalompletion of an alignment L.De�nition 4.11. Given an alignment L and a set I of interation mathes that Lrealizes. Find a subset Î ⊆ I suh that Î forms a valid seondary struture�thestrutural ompletion�of maximal weight on L.We an formulate this problem as a general weighted mathing problem inan auxiliary graph MS, the interation mathing graph: we have MS = (V,E)where the set V and E onstitute verties and edges, respetively. We have

V = (v̂1, . . . , v̂|L|) where v̂i orresponds to the ith element of L. We insert anedge ei = (v̂i, v̂j) if and only there exists a pair of interation edges (vi
k, v

i
l) and

(vj
m, vj

n) whose endpoints are adjaent to a pair (o, p) ∈ L×L (see Fig. 4.11 (b)).The weight of edge ei is given by the weight of the two interation edges (vi
k, v

i
l)and (vj

m, vj
n).
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(c)Figure 4.11: Given the alignment L = (l, k, m, n, o) , we have di�erent possibilities toaugment the alignment with strutural mathes. Creating an interationmathing graph (b) and alulating a general mathing of maximum weightyields the best strutural ompletion of L ().
Lemma 4.3. A mathing of maximum weight in the interation mathing graph
MS orresponds to the best strutural ompletion of L.Proof. The equivalene follows diretly from the onstrution of MS and thede�nition of a mathing.
4.3 Inorporating Staking Energies Into theModelSetion 1.2 desribes the loop-energy model that builds the basis for the om-putational predition of RNA strutures. The staking energies of paired basesbuild the prevalent ontribution to the overall stability of an RNA struture. Themodel that we desribed in Set. 4.1.2 does not aount for staking energies, be-ause it treats every interation separately. There is no additional bene�t forrealizing adjaent paired bases.We all two interation mathes (l, k) and (m,n) with s(l) = s(m)−1, s(k) =
s(n) + 1, t(l) = t(m) − 1, and t(k) = t(n) + 1 the staking interation math
[(l, k), (m,n)]. Figure 4.12 shows the staking interation math [(l, k), (m,n)].

l m n k

Figure 4.12: The two interation mathes (l, k) and (m, n) form the staking interationmath [(l, k), (m, n)].
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In the following, we will extend the model from Set. 4.1.2 by inorporat-ing staking interation mathes. For sake of simpliity, we shall start from astripped-down version of the full model. We will onsider the pairwise ase, andwe will inlude only the alignment and struture edges. The extension to themultiple ase inluding gap edges is straightforward, but it makes the desriptionmore tedious.First, we de�ne the problem formally. In Setion 4.1.1 we gave the formalde�nition for sequene-struture alignments whih we will extend by stakingsores.De�nition 4.12. Given two strings s1 and s2 and an alignment A onsistingof the two strings ŝ1 and ŝ2. We de�ne a soring funtion υ : Σ4 → R thatassigns a sore to quadruples of haraters representing the bene�t of stakinginterations, i.e., υ(s1

l , s
2
l , s

1
m, s2

m) sores the staking between interation mathes
(s1

l , s
2
l , s

1
m, s2

m) and (s1
l−1, s

2
l−1, s

1
m+1, s

2
m+1).Let σ, τ , υ be funtions for soring sequene, strutural mathes, and stakinginterations. Then, the staking sum-of-pairs sore SSPS(A, σ, τ, υ) of A is de�nedas

|A|
∑
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σ(ŝ1
l , ŝ

2
l ) +

|A|−1
∑

l=1

|A|
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∑
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∑
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1
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m) .

We do not sore inonsistent strutural mathes, that is, every base is part ofat most one strutural math, and we only sore staking ontributions betweenrealized adjaent strutural mathes.Similar to the optimal sequene alignment problem, we onsider the optimalsequene-struture-staking alignment of RNA strutures:De�nition 4.13. Given soring funtions σ, τ , and υ for soring sequene, stru-tural mathes, and staking ontributions, we aim at omputing an alignment A∗of two sequenes s1 and s2 withSSSPS(A∗, σ, τ, υ) = maxA∈A SSSPS(A, σ, τ, υ) ,where A is the set of all possible pairwise alignments for s1 and s2. We all A∗an optimal pairwise sequene-struture-staking alignment of S.We do not have to add new edges to the graph-based model desribed inSet. 4.1.2 to model the staking ontributions, beause they are impliitly repre-sented by the struture edges. In the following, we will adapt the ILP formulationto take staking sores into aount.
4.3.1 Integer Linear Program Inluding Staking SoresFigure 4.13 shows the ILP desribing the pairwise sequene-struture alignmentmodel without onsidering gap edges. Remember that we assoiate an x and y
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max ∑

l∈L

wlxl +
∑

l∈L

∑

m∈L

wlmylm

s. t. ∑

l∈CL

xl ≤ 1 ∀CL ∈ CL

∑

m∈L,(l,m)not rossing ylm ≤ xl ∀ l ∈ L

ylm = yml ∀ l,m ∈ L

x ∈ {0, 1}L y ∈ {0, 1}L×L

Figure 4.13: The ILP that desribes pairwise sequene-struture alignment without gaposts.
variable eah every alignment edge and direted interation math, respetively.We now add variables z that model potential staking between pairs of adja-ent interation mathes. We have zlm|nk = 1 if and only if the staking math
[(l, k), (m,n)] between the adjaent interation mathes (l, k) and (m,n) is real-ized, and zlm|nk = 0 otherwise. If we have zlm|nk = 1, then (l, k) and (m,n) realizea staking interation math.Similar to the splitting of an interation math (l, k) into two direted in-teration mathes (l, k) and (k, l), we also split a staking interation math
[(l, k), (m,n)] into two direted staking interation mathes, assoiated with sep-arate z variables zlm|nk and znk|lm.Figure 4.14 gives the ILP that desribes the model extended by the stakingvariables. Observe that the ILP only enfores zlm|nk ≤ ymn, but we do not haveto expliitly enfore zlm|nk ≤ ylk sine this is automatially satis�ed in the aseof feasible solutions. If we have zlm|nk = 1, then znk|lm = 1 is true as well dueto onstraint (4.22). With znk|lm being set to 1 we have ykl = 1 beause ofonstraint (4.20), and then in turn ylk = 1 due to equality onstraints (4.21).Lemma 4.4. A feasible solution to the ILP (4.17)�(4.23) mathes the de�nitionof a sequene-struture-staking alignment from Def. 4.12.Proof. We �rst prove that a feasible solution (x̂, ŷ, ẑ) of the ILP desribes a validsequene-struture-staking alignment.Observe that onstraints (4.18) and (4.19) guarantee that the subset of align-ment and struture edges (represented by the x̂ and ŷ variables) form a validsequene-struture alignment. There are no rossing edges and every alignmentedge realizes at most one interation edge.Furthermore, onstraint (4.20) ensures that the alignment only inorporatesstaking sores, if the two staking interation mathes are realized. The soreobviously equals the sore of the alignment.
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max ∑

l∈L

wlxl +
∑

l∈L

∑

m∈L

wlmylm +
∑

l,m,n,k∈L

wlm|nkzlm|nk (4.17)
s. t. ∑

l∈CL

xl ≤ 1 ∀CL ∈ CL (4.18)
∑

m∈L,(l,m)not rossing ylm ≤ xl ∀ l ∈ L (4.19)
zlm|nk ≤ ymn ∀ l,m, n, k ∈ L (4.20)
ylm = yml ∀ l,m ∈ L (4.21)
zlm|nk = znk|lm

(l,m) staked,
(n, k) staked (4.22)

x ∈ {0, 1}L y ∈ {0, 1}L×L z ∈ {0, 1}L×L×L×L (4.23)
Figure 4.14: The ILP that inorporates staking energies.

To omplete the proof, we have to show that a valid sequene-struture-staking alignment represents a feasible solution to the ILP. Given (L, I) with
L ⊆ L and I ⊆ I, we set the values of the x̂ and ŷ variables in orrespondeneif the respetive edges are part of L and I. Observe that the values of the zvariables are impliitly given by the y variables.Figure 4.15 shows an illustration of the three di�erent sets of variables.

l m n k

zlm|nk

ymn

znk|lm

ykl

Figure 4.15: Illustration of the ILP inorporating staking energies. The blue and redarrows represent staking variables together with their respetive strutureedges.
Thus, after relaxing onstraints (4.21) and (4.22) and moving them to theobjetive funtion, we get the ILP shown in Fig. 4.16.
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max ∑

l∈L

wlxl +
∑

l∈L

∑

m∈L

(wlm + λlm)ylm +
∑

l,m,n,k∈L

(wlm|nk + λlm|nk)zlm|nk (4.24)
s. t. ∑

l∈CL

xl ≤ 1 ∀CL ∈ CL (4.25)
∑

m∈L,(l,m)not rossing ylm ≤ xl ∀ l ∈ L (4.26)
zlm|nk ≤ ymn ∀ l,m, k ∈ L (4.27)
x ∈ {0, 1}L y ∈ {0, 1}L×L z ∈ {0, 1}L×L×L×L (4.28)

Figure 4.16: The ILP inorporating staking energies relaxed by two lasses of on-straints.
We solve the relaxed problem in a similar way as the ILP without stakingbonuses. Like in the ase of the initial model from Set. 4.1, we again have todistinguish between xm = 0 and xm = 1: if xm = 0, then all yml will be 0 due to(4.26). With yml = 0 for all possible interation mathes, onstraint (4.27) willset all zlm|nk variables to 0.In the ase of xm = 1, however, at most one yml an be set to 1. Then, forthe variable yml = 1 the orresponding staking interation math variable zlm|nkan be set to 1. We have a asading of the x, y, and z variables. The x variablespossibly swith some y variables from 0 to 1, and the y variables in turn set zvariables to 1.The omputation of the maximal pro�t for eah alignment edge has to beadapted ompared to the desription in Set. 4.2.2. Instead of maximizing thesum of the alignment edge sore and the highest soring direted interationmath, we additionally evaluate the maximum pro�t that a staking variableplus the assoiated struture edge an possibly ahieve. For an alignment edge

m, assoiated with an alignment sore wm, we have p̂0 = wmn̂ as the maximumsore of only an interation math assoiated with alignment edge n̂. The value
p̂1 = wmn̄+wlm|n̄k is the maximum sore that an interation math (m, n̄) plus theorresponding staking interation math [(l, k), (m, n̄)] an realize. The pro�t ofalignment edge m is then given by

pm = wm + max{p̂0, p̂1} .Following the desription in Set. 4.2.2, we get a solution for the relaxed ILP byomputing a standard sequene alignment problem with the pro�t values pm asthe mathing sores for eah alignment edge m.We ompute optimal or near-optimal solutions for the dual problem�the ILPonsisting of (4.24)-(4.28)�by again resorting to subgradient optimization. We
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adapt the Lagrangian multipliers the same way as in the model for multiplesequene-struture alignments with arbitrary gap osts.
4.3.2 Computing a Feasible SolutionSolving the relaxed problem (4.24)-(4.28) does not usually yield a solution thatis also valid for the original problem. If this is the ase, then we have found anoptimal solution for the original problem, beause the number of subgradientsis zero. In Set. 4.2.3 we desribed how we generate a feasible solution for theoriginal problem, given the solution of the relaxed problem. We build the inter-ation mathing graph and perform a maximum-weight mathing omputation init. The mathing orresponds to a feasible solution in our original problem, seeFig. 4.11 for an illustration.In priniple, the same algorithm also works in the extended model. We om-pute the mathing of maximum weight and add the sores for staking interationmathes in a postproessing step. The omputational experiments in Set. 5.4.3.1show that the resulting pairwise alignments are ompetitive or better than thealignments without staking energies. There is, however, one problem. The valueof the maximum-weight mathing plus the sores of realized staking sores doesnot neessarily have to be the optimal value.Figure 4.17 gives a toy example where the mathing routine does not omputethe strutural ompletion of maximum weight. The mathing selets the edges
(l, r) and (m, o) as the strutural ompletion of the alignment. Due to the stakingsore of 100 for the staking math [(k, r), (m, o)], the edges (k, r) and (m, o) yielda higher sore.
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Figure 4.17: The mathing selets the edges (l, r) and (m, o) as the strutural omple-tion of the alignment. Due to the staking sore of 100 for the stakinginteration mathes (k, r) and (m, o), the edges (k, r) and (m, o) form theoptimal solution.
Figure 4.18 shows an alternative way for the omputation of a feasible so-lution that inludes the staking ontributions. We redue the problem to theomputation of an independent set of maximum weight. We �rst give a de�nition
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Figure 4.18: We determine the staked strutural ompletion of an alignment A byomputing an independent set of maximum weight. We have an alignment
A (a) and onstrut an auxiliary graph (b) in whih we determine theindependent set of maximum weight.

of what we want to maximize, and afterwards we desribe the ontrution of anauxiliary graph.De�nition 4.14. We are given an alignment L and a set I of interation mathesthat L realizes. Find a subset Î ⊆ I suh that Î forms a valid seondarystruture�the staked strutural ompletion�and that maximizes the intera-tion math sores of Î plus the staking sores that are indued by Î.We formulate this problem as an independent set of maximum weight prob-lem in an auxiliary graph MIS, the independent set graph. The graph MIS =
(VI ∪ VS, E) ontains the sets VI , VS and E that onstitute verties and edges,respetively. For an alignment L ⊂ L we reate a node vi ∈ VI for every possibleinteration math that this alignment realizes. Furthermore, for every possibleombination of staking interation mathes we add another vertex vs ∈ VS tothe graph. Observe that this inludes not only all pairwise staking interationmathes, but also verties for several onseutive staking interation mathes.We insert an edge e ∈ E between every two nodes that are in on�it with eahother, i.e.,

1. if two interation mathes m and n�represented by verties vm and vn�share an endpoint.2. if interation math m is part of staking interation math n, we insert anedge between vm and vn.
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For vi ∈ VI the weight w(vi) of vertex vi is the weight of the orresponding in-teration math. For vs ∈ VS, with vs representing interation mathes y0, . . . , ymand staking interation mathes z0, . . . , zn, the node weight is the sum of theweights of all the (staking) interation mathes, i.e., we have

w(vs) =
m∑

i=0

w(yi) +
n∑

j=0

w(zj) .

Lemma 4.5. An independent set of maximum weight in the independent setgraph MIS orresponds to the best staked strutural ompletion of L.Proof. The equivalene follows diretly from the onstrution of MIS and thede�nition of an independent set.Construting a feasible solution in our augmented model by solving an inde-pendent set problem is the last resort that we have, beause this omputationis NP-omplete [49℄. Determining a feasible solution in the initial, i.e., staklessmodel ould also be redued to MIS, but in this ase we an redue it to max-weight mathing omputations instead. The question is whether this holds alsotrue in the ase of staking sores, i.e., whether there exists an algorithm run-ning in polynomial time that omputes the maximal staking ompletion for analignment L. The other option is to prove that the problem is indeed NP-hard.



Chapter
5 Computational Results

It's been a hard day's night,and I've been working like a dog.The Beatles(A Hard Day's Night)
This hapter desribes the omputational experiments that we performed withour prototypial implementations of the models from Chap. 4. We �rst presenthow we generate the input graph for our model, and subsequently show how wesore the edges of the input graph. Setions 5.3 and 5.4 ontain the omputationalexperiments using the exat and heuristi approah to multiple sequene-struturealignments. Setion 5.5 lists the results for omputing pairwise alignments us-ing the bundle method. Furthermore, we give results on running the Lagrangeapproah within a branh-and-bound framework to verify the optimality of thesolutions. Setions 5.3 and 5.4 are published as parts of [8℄ and [7℄.

5.1 Construting the Input Graph
5.1.1 Generation of Alignment EdgesFor sake of simpliity, we will restrit ourselves to the desription of the pairwisease. The same ideas apply to the multiple ase as well.We use di�erent strategies for the generation of alignment edges. The �rstnatural hoie is to insert all possible alignment edges between the two sequenes,yielding the omplete bipartite graph as shown on the left side of Fig. 5.1. Everynuleotide of the �rst sequene an be mapped onto every nuleotide of the seondsequene.Most of these edges, however, will not be part of any optimal or near-optimalsequene-struture alignment. We therefore follow the strategy that we alreadyemployed in previous work [4; 6; 5; 95℄: we generate a set of reasonable alignmentedges by omputing a onventional sequene alignment with a�ne gap osts andsubsequently insert all alignment edges realized by any suboptimal alignmentsoring better than a �xed threshold s below the optimal sore.Although we annot guarantee that the set of alignment edges always ontainsthe edges forming the real multiple strutural alignment, e.g., a hand-uratedalignment like an Rfam seed alignment, our experiments on the Rfam databaseshow that Rfam referene alignments onsist of alignment edges of small subop-timality. To this end, we randomly extrated 10 sequenes from the seed align-ment of eight random Rfam families (RF00001, RF00005, RF00020, RF00023,
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RF00029, RF00031, RF00059, RF00515) and omputed the alignment edges thatsore at most 40 below the optimal sore for all pairwise projetions. For all butone family we an generate the alignment edges that form the original alignmentat a suboptimality level of 40. For TPP riboswithes (RF00059) this level of sub-optimality does not su�e to over all alignment edges. There are six pairwiseprojetions that miss alignment edges. At a suboptimality level of 90, however,all alignment edges are reated.
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Figure 5.1: Given the two sequenes on the left, we either reate the omplete bipartitegraph (a), or thin out the graph using an available bound or suboptimalmathes (b).Another way to generate alignment edges is to start from the omplete bi-partite graph and subsequently delete alignment edges that annot be part ofthe optimal�with respet to our objetive funtion�alignment. Given two se-quenes s1 and s2, we start from a soring matrix ∆ with ∆(i, j) being the soreof alignment edge a = (s1
i , s

2
j). Then, we ompute the maximum sore S(A) ofan alignment A realizing alignment edge a by summing up the sore of a andthe sum of the pre�x and su�x alignment indued by a. Given a valid sequene-struture alignment Ass of sore S(Ass), we an safely drop alignment edge aif S(A) < S(Ass), beause alignment a annot be part of an optimal sequene-struture alignment. We ompute a valid solution Ass of the sequene-struturealignment problem by running our Lagrange approah with a limited number ofiterations or by simply omputing a traditional sequene alignment and addingthe sores of onserved interation mathes afterwards.In our experiments we resort to the generation of alignment edges using sub-optimal sequene mathes, beause it needs less omputation time while the per-formane is omparable to the seond proedure desribed above.

5.1.2 Generation of Interation EdgesThe generation of interation edges re�ets the knowledge that we have aboutthe strutural properties of the sequenes. If we do not want to onstrain thestruture in any way, then we simply insert an interation edge between anytwo nuleotides that an form hydrogen bonds. If we have, however, struturalinformation for one of the sequenes available, for example from the ComparativeRNA web (CRW) site [19℄, then we insert only those interation edges that formthe seondary struture.The LaRA default setting lies in between: we ompute the partition funtionfor the sequene (see Set. 1.2) and derive base pairing probabilities for eah pair
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of nuleotides using MCaskill's algorithm [105℄. We then insert an interationedge between every pair of nuleotides whose base pairing probability is higherthan a minimum value pmin. A typial value for pmin is 0.003.
5.2 Lagrange-Spei� ParametersIn this setion we desribe the sores that we use throughout our experiments.Additionally, we brie�y speify Lagrange-spei� parameters that have signi�-ant impat on the onvergene of the Lagrange solution proess. We resort tosubgradient optimization for adapting the Lagrangian multipliers.
5.2.1 SoresSequene Sores. We used di�erent shemes for soring the alignment edges.First, in our theoretial ontributions [6; 8℄ we employed ad-ho hosen matries,like soring mathes and mismathes by 4 and 1 or by 2 and 1. Subsequently, weresort to more elaborate soring systems like the RIBOSUM matries [83℄ thatwere derived along the lines of ribosomal gold-standard alignments. The authorsount the number of ourrenes of the respetive mathes and derive log-oddssores by omparing them to a uniformly distributed bakground model.We provide a parameter τ by whih the user is able to sale the original soringmatrix values. If we do not want to put too muh emphasis on the sequene, then
τ will be very small. If sequene is important, like in the ase of riboswithes,then one is able to sale the sores aordingly. By default, the value of τ is 1.In our experiments we use the Ribosum65 matrix as our default soring sheme.
Struture Sores. The soring system for the interation edges is based onbase pair probability matries (BPP soring in short). It transforms the prob-abilities into the additive log-sores in spirit of PMComp [67℄. More preisely,given the probability pij that nuleotides i and j pair, the sore sij reads

sij = lg

(
pij

pmin)

where lg is the natural logarithm and pmin is the smallest probability that weonsider.
Staking Sores. The sore for the staking weights w[i,i+1|j−1,j] are derivedalong the lines of the onditional staking probabilities [15℄. The value pi,i+1|j−1,j =
P [(i+1, j−1)|(i, j)] is the probability that nuleotides (i+1, j−1) form hydrogenbonds given that (i, j) already pair. Then, the weight reads

w[i,i+1|j−1,j] = lg

(
pi,i+1|j−1,j

pmin )

.We set the value of pmin to the same value as for the struture sores.
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5.2.2 Other Program-Spei� ParametersThere are several other parameters that in�uene the performane of the Lagrangesolution proess. First, the number of Lagrange iterations spei�es how often theLagrange multipliers an be adapted: the higher the number of iterations, thebetter the bounds are in general. Seond, we need to speify the parameter
µ whih ats as a regulating fator in the omputation of the step size γ (seeSet. 4.1 for details). Finally, a ommon feature to all implementations of thesubgradient solver is a number n of non-dereasing rounds: if the value of thebest upper bound does not derease within n iterations, we halve the value of
µ. This leads to smaller step sizes γ. In pratie, we observe that the smallerstep sizes support the onvergene of the solution proess if the algorithm gotstuk at a ertain point, i.e., if the upper bound does not derease within severaliterations.
5.3 Results for the Exat Multiple CasemLARA (multiple Lagrangian relaxed alignments) is our prototypial implemen-tation of the formulation for multiple strutural alignments presented in Chap. 4.The algorithm is easy to implement and omprises only a ouple of hundred linesof ode. For the omputation of the lower bound, however, we use the mathingroutines from the LEDA library [91℄.In the following, we shall give a proof-of-onept of our approah by runningexperiments on real data of moderate size, setting all gap osts to zero, andwe assign sores of 4 and 1 to mathes and mismathes, respetively. We setthe saling parameter τ to 1.0. The mLARA software pakage diretly uses thevalues from the dotplot �les�reated by the RNAfold program�as the inputto the log-odds transformation desribed in Set. 5.2.1.From the Rfam database [53℄ we downloaded sequenes that belong to thefamilies of ribosomal L19 leader proteins, tRNAs, and ribosomal 5S RNAs (RfamIDs: RF00556, RF00005, and RF00001).As a �rst example we take L19 leader protein sequenes (aession numbers:AL935256.1, AE014216.1, and AP006627.1) and ompute the optimal multiplealignment given the omplete k-partite graph ontaining 4106 alignment edges.We �nd a provably optimal solution after 19 hours of omputation. There are twointeresting observations: �rst, the optimal solution is found within the �rst 10iterations of the omputation, that is, only 70 seonds after starting the program.mLARA spends the remaining time on proving the optimality of this solution.Seond, although we need the omplete k-partite graph to ensure optimality,many alignment edges are not very likely to be part of the optimal struturalalignment, e.g., edges running from the �rst vertex in the �rst sequene to thelast vertex in the seond sequene. As one an see on the left side of Fig. 5.2, thenumber of alignment edges greatly in�uenes the running time for omputing anexat multiple strutural alignment. We therefore follow the strategy desribed
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Figure 5.2: Typial behavior for the multiple ase. Left: the time to ompute an ex-at multiple sequene alignment inreases non-linearly with the number ofalignment edges. Right: the time to ompute one single iteration for an in-stane ontaining 4106 alignment edges inreases rapidly with the numberof iterations. This is due to the adaption of the Lagrangian multipliers.
in Set. 5.1.1 to thin out the graph.We again take the sequenes from our �rst example and ompute the multiplestrutural alignment based on a redued set of alignment edges. Already a sub-optimality level of 5 su�es to generate all alignment edges that are part of theprovably optimal solution. The redued number of alignment edges�465 insteadof 4106�brings the overall running time down from 19 hours to 43.35 seonds.In our experiments we realized that not only the number of alignment edgesin�uenes the overall omputation time. As desribed in Set. 4 we resort tosubgradient optimization to solve the Lagrangian dual. By iteratively adaptingthe Lagrangian multipliers and omputing the multiple sequene alignment af-terwards, we observe an unpreditable inrease in the running time per iterationover the ourse of all iterations. The right side of Fig. 5.2 shows the developmentfor an instane of three L19 leader protein sequenes.As a seond experiment, we assess the improvement of the objetive funtionvalue between heuristially inferred multiple strutural alignments [7℄ and prov-ably optimal or near-optimal solutions of the exat multiple sequene-struturemodel. Note that at this stage we are espeially interested to what extent heuris-tial multiple sequene-struture alignments approximate the objetive funtionvalues of the exat sequene-struture framework.To this end, we randomly drew 20 instanes ontaining three input sequenesof either tRNA or ribosomal 5S RNA sequenes (Rfam IDs: RF00001 andRF00005), resulting in 40 instanes in total. Using our tool LaRA, whih yields
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the best results on the BRAliBase benhmark set [7℄, we ompute all pairwisealignments of a given instane and feed them to the T-Coffee software [109℄to heuristially infer a onsisteny-based multiple strutural alignment. Giventhis alignment, we again evaluate it under the sum-of-pair objetive funtion ofmLARA.Then, we take mLARA and ompute the multiple strutural alignments. Weallow a maximal omputation time of three hours per instane. If mLARA doesnot terminate within three hours, we stop the omputation and report the bestsolution found so far. We want to stress the fat that we use exatly the samesettings for both programs, i.e., we use the same soring sheme and generate thesame alignment edges suh that the results are omparable.Table 5.1 shows the objetive funtion values of the alignments generated byLaRA and mLARA for these 40 instanes. Note that we provide two di�erentevaluations for LaRA alignments: the �rst olumn LaRA sub5 gives the objetivefuntion value at a suboptimality of 5, i.e., exatly the set of alignment edges thatwe used for the omputation of the sequene-struture alignments. T-Coffee,however, additionally inserts potential alignment edges when it heuristially in-fers the multiple alignment. To take the augmented set of alignment edges intoaount we again evaluate the LaRA alignment with a suboptimality value of
20, suh that all alignment edges are onsidered. As one an see in Tab. 5.1 thedi�erene between the two objetive funtion values is signi�ant in many ases.Generally, mLARA reahes higher objetive funtion values than those om-puted by LaRA. There are, however, 12 instanes where the heuristially inferredalignments yield better objetive funtion values than mLARA. A loser inspe-tion of those instanes reveals three main reasons:1. The omputation time limit is too tight. Hene, mLARA performs only asmall number of iterations, and is therefore not able to adapt the Lagrangianmultipliers aordingly.In many instanes the time spent on one single iteration is not preditable.The left side of Fig. 5.3 shows the omputation time per iteration of tRNAinstanes #1 and #15 (1174 and 1178 alignment edges, represented by theirles andred squares, respetively) from Tab. 5.1. Although the numberof alignment edges di�ers only by four, the omputation time per itera-tions varies dramatially. Consequently, mLARA performs 259 and only

59 iterations for instanes #1 and #15.2. The right side of Fig. 5.3 shows the solution proess for 5S instane #13 fromTab. 5.1. After 110 iterations mLARA gets stuk between two solutionsand osillates between these two (represented by the two parallel lines fromiterations 110-165). From this point on, the algorithm is not able to furtheronverge to the global optimal solution.3. The T-Coffee software potentially augments the set of alignment edgeswhen it heuristially builds a multiple strutural alignment based on all
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Instane LaRA sub5 LaRA sub20 mLARAtRNA #0 1050.88 1051.88 1193.34 (0.94)#1 1091.6 1137.9 1194.33 (0.94)#2 1402.11 1453.81 1453.06 (0.99)#3 1468.2 1468.2 1469.63 (0.98)#4 797.29 907.628 1014.61 (0.83)#5 1153.69 1172.08 1184.89 (0.88)#6 1174.83 1285.38 1299.14 (0.97)#7 1229.24 1267.6 1304.31 (0.98)#8 1710.11 1711.11 1772.04 (1.00)#9 1184.9 1213.68 1193.55 (0.92)#10 1084.26 1148.6 1134.20 0.90)#11 1103.91 1125.58 1043.95 (0.80)#12 1099.66 1119.71 1113.45 (0.91)#13 1329.08 1329.08 1323.94 (0.97)#14 1108.17 1177.21 1254.51 (0.96)#15 1089.84 1293.95 1077.07 (0.88)#16 878.656 955.553 1019.92 (0.88)#17 971.056 1086.05 1133.84 (0.85)#18 1238.3 1238.3 1320.11 (0.99)#19 1254.7 1280.46 1366.26 (0.99)5S #0 1845.66 1888.1 1922.20 (0.96)#1 1809.14 1810.34 2097.22 (0.99)#2 2199.47 2221.18 2259.01 (1.00)#3 2015.68 2034.04 2049.05 (0.98)#4 1641.18 1669 1735.34 (0.92)#5 1718.62 1721.6 1696.58 (0.88)#6 1589.02 1616.35 1682.68 (0.93)#7 1609.94 1695.44 1740.73 (0.90)#8 2052.95 2194.9 1956.62 (0.89)#9 1957.43 2028.3 2107.10 (1.00)#10 1949.51 2048.08 1946.53 (0.93)#11 1547.51 1873.47 1715.54 (0.92)#12 1932.32 1933.32 2023.18 (0.99)#13 2113.55 2197.52 1996.10 (0.86)#14 2218.78 2229.18 2267.25 (0.99)#15 1956.95 1987.45 2064.64 (0.97)#16 2084.55 2086.55 2116.64 (0.99)#17 1716.94 1818.26 1884.92 (0.94)#18 2090.59 2091.59 2171.81 (0.99)#19 2134.05 2183.33 2407.99 (0.99)Table 5.1: The omparison between the objetive funtion values of LaRA andmLARA on 40 randomly generated tRNA and 5S RNA instanes. ColumnLaRA sub5 gives the mLARA objetive funtion values at a suboptimal-ity level of 5, whereas LaRA sub20 gives the evaluation at a suboptimalityvalue of 20, i.e., we make sure that all alignment edges that are indued byT-Coffee are onsidered. The numbers in brakets in olumn mLARA givethe level of optimality of the solution. Note that in some ases the heuristialgorithm produes better results whih is possible due to the time limit andthe fat that T-Coffee adds more alignment edges to the graph.
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Figure 5.3: Left: the omputation time per iterations osillates dramatially even be-tween instanes having almost the same number of alignment edges. Thered squares and irles represent the iterations of tRNA instane #15 (1178edges) and #1 (1174 edges) from Tab. 5.1, respetively. Right: the solu-tion proess may get stuk between two solutions and jumps bak and forthbetween these two, and therefore does not �nd the global optimal solution.The plot shows the solution proess of the 5S instane #13 from Tab. 5.1.
pairwise alignments. This happens, for example, in the ase of 5S instane#11: mLARA yields a value of 1715.54 with an upper bound of 1868.31.The LaRA alignment, on the other hand, has a value of 1873.47 whihis only possible, beause the set of alignment edges is augmented whileheuristially inferring the multiple alignment.

5.4 Results for the Heuristi Multiple CaseThe experiments in Set. 5.3 show that exat multiple sequene-struture align-ments are omputationally very expensive. Our aim is, however, to evaluate theapproah on a large data set. The appliation of mLARA is too expensive for alarge-sale omparison of various sequene-struture alignment programs. Hene,we resort to the implementation of the pairwise model whih is alled LaRA.Building upon the onsisteny-based approah that we desribed in Set. 3.2.2we infer multiple sequene-struture alignments based on the pairwise alignmentinformation. We also give the results for the progressive alignment version of ourapproah whih is alled pLaRA (short for progressive LaRA). Additionally, wereport on the performane of the extended model that we desribe in Set. 4.3.The onsisteny-based and progressive variant of the model are alled sLaRA(staked LaRA) and psLaRA (progressive staked LaRA).



73
5.4.1 BRAliBase 2.1The BRAliBase data set1 [149; 150℄, was reated with the objetive to providereferene alignments for the fair omparison of di�erent sequene and sequene-struture alignment programs. We ompare our implementations to other urrentprograms on this data set.BRAliBase 2.1 referene alignments are based on the manually urated seedalignments of the Rfam 7.0 database [53℄. Out of the pool of all nRNA familiesthat have more than 50 sequenes in their seed alignment, test instanes of theBRAliBase were onstruted the following way: all pairwise projetions that arewithin a ertain average pairwise sequene identity (APSI) range form the poolof pairwise andidate alignments. Then, single sequenes are randomly deletedfrom the sequene pool and added to a andidate alignment, until the andidatealignment holds the desired number of sequenes. If the alignment satis�es thesequene and struture onservation onstraints, i.e., the APSI of the generatedinstanes has to be within a prede�ned range and the strutural onservationhas to be higher than a given threshold, the instane is aepted. Otherwise,the algorithm restores the sequene pool and starts over again. If we look at theproblem through a graph-theoreti lens, we represent eah sequene from the seedalignment by a vertex, and we onnet two verties by an edge if the APSI valueof these two sequenes is within a ertain range. Creating input instanes of size
k orresponds to �nding liques of size k in that graph.TheBRAliBase data set is divided into alignment instanes ontaining either
2, 3, 5, 7, 10 or 15 sequenes. In the following, we stik to the BRAliBasenaming onvention and refer to the sets of instanes by k2, k3, k5, k7, k10,and k15, depending on the number of sequenes per instane. BRAliBase 2.1ontains 36 di�erent RNA families, ranging from approximately 26 nuleotideslong Histone 3'UTR stem-loop motifs to about 300 nuleotides long eukaryotiSRP RNAs. The interested reader is referred to [150℄ for a detailed listing of allinstanes.Unfortunately, the way the input instanes are reated leads to an over repre-sentation of ertain RNA families within BRAliBase. The data set ontains ahigher number of instanes from families that have more sequenes in their seedalignments. Consequently, a few nRNA families represent the major instanesof all BRAliBase instanes: tRNA instanes, for example, onstitute 56% of allpairwise instanes. This perentage rises to 66%, 73%, 75%, 74%, and 80% for
k3, k5, k7, k10, and k15 instanes, respetively.The primary reason to perform our experiments on the BRAliBase data setis to evaluate the performane on an independent benhmark set that we did notompile ourselves. There are various reent papers, for example [81; 132℄, wherethe authors laim to desribe the best available sequene-struture alignmentprogram. They ompile their own data sets, whih are all based on data from theRfam database, and on these data sets their programs perform best. We doubt1 Available at http://www.biophys.uni-duesseldorf.de/bralibase/.
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that this is the right way to go. There should be a standard benhmark databasefor RNA strutural alignments in the spirit of BAliBase or Prefab for aminoaids, where various alignment programs an be benhmarked against eah otherin a sound manner. In our opinion the BRAliBase is a �rst step in the rightdiretion.
5.4.2 Assessment SoresThe quality assessment of a strutural alignment is a non-trivial task. If reliable�gold-standard� alignments are available, the omparison on the sequene andstruture level is su�ient for a sound omparison. In the following, we desribeassessment sores that we use in our omparison.
Sequene assessment. In [135℄ the authors introdued the sum-of-pairs sore,or SPS in short, to de�ne the similarity between a test and referene alignmenton the sequene level. The main idea is to ount the number of aligned residuesof the test alignment that are identially aligned as the referene. More formally,given an alignment A = ŝ0, . . . , ŝn−1 of n sequenes with |A| = m, then we havean indiator variable pkrs with pkrs = 1 if the residue ŝk

r and ŝk
s are aligned as inthe referene alignment, and 0 otherwise. Then, we de�ne sSPS as

sSPS =

∑m−1
k=0

∑n−2
r=0

∑n−1
s=r+1 pkrs

∑m−1
i=0

(
n

2

)A value of 0 indiates that not a single olumn is orretly aligned with respetto the referene alignment, whereas a value of 1 indiates perfet agreement withthe referene alignment.The program ompalign developed by Sean Eddy, that is part of the SQUIDlibrary [42℄, represents an advanement by onsidering not only the aligned residues,but also what residues are aligned to a gap harater. ompalign builds thefoundation for the program ompalignp that is being used in the BRAliBasebenhmark set. We use ompalign in the following to benhmark the sequeneauray.
Struture assessment. For some nRNA families manually urated multiplealignments exist that are annotated with published strutures. Prominent exam-ples are tRNA, ribosomal 5S RNA, or the TPP riboswithes. If referene stru-tures are available, then one ompares predited paired nuleotides to the anno-tation of the referene alignment. The Matthew's orrelation oe�ient (MCC)assesses the strutural similarity. We de�ne the MCC sore sMCC as

sMCC =
TP · FN− FN · FP

√

(TN + FN)(TP+ FN)(TN + FP)(TP+ FP)with TP, FN, FP, and TN being the number of true positives, false negatives,false positives, and true negatives, respetively.
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The value of sMCC is bounded by −1 and 1, with a sMCC = 1 being thebest result: every pairing that is predited is a orret interation, and no falsepairing is predited. On the other hand, a value of −1 indiates that not asingle interation was orretly predited, and the number of wrongly preditedinterations is maximal.In reality, however, the number of reliably annotated gold-standard alignmentsis limited. This holds also true for the Rfam database, where for parts of thenRNA families the strutural annotation was reated using onsensus foldingalgorithms like RNAalifold [68℄ or Pfold [84℄. Therefore, the reators of theBRAliBase benhmark set hose the sore strutural onservation index [143℄,or SCI in short, to assess the strutural quality of an alignment.The SCI gives the degree of onservation of a onsensus struture induedby a multiple alignment of n sequenes in relation to the minimum free energystrutures of the n single sequenes. Let Ec be the energy value of the onsensusstruture indued by the alignment, and let E0, . . . , En−1 be the minimum freeenergy values of the n aligned sequenes with Ē being the arithmeti mean of the

n values. Then, we de�ne the SCI as
SCI =

Ec

Ē
.A SCI value of ≈ 1 indiates high strutural onservation, whereas a valuearound 0 indiates no strutural onservation at all. Note that the SCI sore anbe greater than 1, sine ovariane information is additionally rewarded duringthe omputation of the onsensus struture. Furthermore, the omputation ofthe onsensus struture is done via the RNAalifold program whih is susep-tible to hanges in the alignment. This espeially means that a higher Com-palign value does not neessarily imply a higher SCI sore, e.g., running LaRAwith default parameter settings for two SECIS instanes from BRAliBase(SECIS.apsi-45.si-68.no-1.raw.fa and SECIS.apsi-45.si-79.no-1.raw.fa) we getCompalign sores of 0.45 and 0.44. The orresponding SCI sores are 0.26 and

0.58, respetively. Setting the LaRA parameters to optimized values, the Com-palign sores inrease to 0.60 and 0.48. The orresponding SCI values, however,drop to 0.14 and 0.00.In the following experiments we use the program sif from the BRAliBasewebsite to assess the SCI of the omputed alignments.
5.4.3 ResultsParameter Training. There are three important LaRA parameters: gap openand extension penalties γo and γe, and the parameter τ that represents the salingfator for the sequene sores. In [5; 7℄ we used rather ad-ho values that tried tomimi the parameter settings within the PMComp software pakage. This leadsto initial values of −6, −2, and 0.05 for γo, γe, and τ .
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For the �nal evaluation in this thesis, however, we took the data set that theauthors of [96℄ assembled and experimentally evaluated di�erent parameter sets.The parameter setting that yielded the highest MCC sores were hosen as the�nal ones. Aordingly, we set the gap open and extension penalty, and τ to −12,

−5, and 1.0 for the following evaluations.sLaRA and psLaRA, the implementations that inorporate staking ener-gies, have two additional parameters: the struture and staking saling fators
σs and σss. During the initial test phase it turned out that�similar to the se-quene saling fator τ�we have to sale the struture and staking ontributionto balane these two sores. The �nal parameter set onsists of −10,−5,1.0,0.6,and 0.9 for γo,γe,τ ,σs, and σss, making the staking ontributions more importantthan the struture sores.It has to be remarked, however, that several di�erent parameter sets yieldalmost the same performane on the data set from [96℄, and the values of theparameters di�er signi�antly. The values for the gap penalties, for instane, varybetween −10 and −20. Therefore, it is likely that the performane of sLaRAand psLaRA an be further improved by examining the various parameter setson di�erent data sets in an automated manner.Finally, we set the number of overall iterations to 500 for all implementations.If the upper bound does not improve within 50 iterations, we halve the value ofparameter µ. Table 5.2 gives an overview of the parameters that we use for theomputation of the alignments throughout the rest of the thesis.

Paramter LaRa sLaRAsuboptimality for alignment edge generation 40 40gap open penalty γo −12.0 −10.0gap extend penalty γe −5.0 −4.0sequene ontribution τ 1.0 1.0sequene soring matrix RIBOSUM65 RIBOSUM65struture ontribution σs 1.0 0.6staking ontribution σss � 0.9struture soring system bpp bppminimal probability onsidered 0.003 0.003Lagrange iterations 500 500subgradient parameter µ 1.0 1.0halve µ after n non-dereasing iterations 50 50T-Coffee version 4.70 4.70

Table 5.2: A summary of the parameters that we use for our program runs. We appliedthe same parameters from LaRA for pLaRA, and the parameter set ofsLaRA for psLaRA. The struture soring system bpp refers to struturesoring based on base pair probabilities.
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Figure 5.4: All 2251 BRAliBase k2 (left side) or 123 BRAliBase k15 (right side)instanes of low pairwise sequene identity where eah blak irle or redsquare orresponds to one instane. The x-axis gives the SCI sore, whereasthe y-axis odes the struture-normalized sore. The red squares mark theoutlier instanes.
Sore vs. Strutural Conservation. We were interested in to what extentthe auray of our alignments orrelates with the objetive funtion value of ourmodel, i.e., the sum of sequene ontributions plus the struture sores based onthe base pair probabilities. Sine the sore depends on the length of the inputsequenes, we normalized the sore with respet to the number of paired basesin the minimum free energy struture. Note that we did not use the struture,but only the number of base pairs in the struture to get a rough estimate of howmany pairings we expet in the struture. Then, let p̂ and n be the LaRA soreand the number of base pairs in the MFE struture, then the normalized sore isgiven by p̂

n
.The sores of onserved strutural interations build the lion's share of the�nal LaRA sore, i.e., the higher the normalized sore is, the better is the stru-tural onservation. Consequently, there should be a orrelation between the nor-malized sore and the SCI sore, beause the more strutural similarities thealignment aptures, the better should the onsensus folding perform during theomputation of the SCI sore. Figure 5.4 shows the results for all k2 (left side)and k15 (right side) instanes.Most of the k2 instanes behave as expeted: the higher the normalized soreis, the better is the SCI value. There is, however, a group of eight outliers thathave a high SCI sore, but a very low normalized sore. A loser inspetionrevealed that the input sequenes di�er tremendously in length, for example oneIntron_gpII instane ontains sequenes of length 78 and 142. Although the SCI
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sore is relatively good, the normalized sore is dereased by the high number of(neessary) gaps.In the ase of the k15 instanes, we are faing a di�erent situation. Again,most of the input instanes behave as expeted, but now we have a group ofinstanes that show a relatively low SCI sore together with a high normalizedsore. It turns out that all these instanes are either SRP RNAs or SECIS el-ements. In [7℄ we already showed that soring both the sequene and strutureusing RIBOSUM matries yields better results for SRP RNAs and SECIS ele-ments.
5.4.3.1 Comparison to Other ProgramsTable 5.3 lists the programs that we ompare in this setion, together with theirrespetive program alls and the program version we used in our experiments.Program Model Complexity CiteLaRA graph-based O(n2) [7; 8℄sLaRA graph-based O(n2) Set. 4.3pLaRA graph-based O(n2) Set. 3.2.1psLaRA graph-based O(n2) Set. 3.2.1FoldalignM Sanko� O(n4) [137℄MURLET Sanko� O(n4) [81℄MARNA edit-distane O(n4) [127℄MXSCARNA annotated sequene O(n2) [133℄Stral annotated sequene O(n2) [30℄Mafft sequene-based O(n2) [78℄

Program Program Call VersionLaRA lara -i <input_file> 1.3.2sLaRA slara -i <input_file> 1.0pLaRA plara -i <input_file> 1.0psLaRA pslara -i <input_file> 1.0FoldalignM java FoldalignM_MCaskill <input_file> 1.0.1MURLET murlet <input_file> 1.0MARNA marna.pl -g 2 -n 3 <input_file> 1.0MXSCARNA sarna -lustalw <input_file> 1.3Stral stral -i <input_file> 0.5.4Mafft mafft <input_file> 5.861

Table 5.3: The upper table lists the programs that we used in our omputational ex-periments. We give the atual program alls in the lower table.
In the following, we give a short desription of eah program, Chap. 3 providesa more detailed overview.
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There are two reent implementations of the original PMComp software: Lo-ARNA [148℄ and FoldalignM [137℄. Both take base pair probability matriesas their input, and using the reursions from [124; 3℄ they ompute the nestedsubstruture that maximizes the sum of the probabilities plus a sequene sore.Sine LoARNA �lters the base pair probability matries to inrease its e�-ieny, we only onsidered FoldalignM, beause it onsiders all probabilitiesand relies on the same reursions like LoARNA.FoldalignM performs an alignment and lustering of the input sequenesat the same time. In some instanes, FoldalignM splits the input sequenesinto two lusters. Sine the sores that we use depend on the number of inputsequenes, we dropped those FoldalignM alignments that did not ontain allsequenes in the �nal alignment. This leads to 29, 30, 11, 15, 9, and 6 instanesthat we did not onsider in the ase of k2, k3, k5, k7, k10, and k15 instanes.MURLET is another tool that builds upon the Sanko� reursions. It addi-tionally applies heuristis to redue the DP searh, namely the strip and the skipapproximations. The strip approximation limits possible alignment positions to aband of length δ around an initial alignment. The initial alignment is omputedusing pairwise HMMs whih is similar in spirit to previous pairwise approahes[38℄. The skip approximation limits the number of possible branhing pointswithin the Sanko� reursions.MARNA is an implementation of the general edit model for RNA struturesproposed by Jiang [74℄. There are operations either on the sequene level (basemath, base mismath, and base deletion) or on the struture level (ar math,ar mismath, ar breaking, ar altering, and ar removing), eah assoiated witha ertain weight. MARNA aims for the alignment that transforms one strutureinto the other, minimizing the overall osts for the edit operations. The interestedreader is referred to [74℄ or to Chap. 3 for details.MXSCARNA uses the base pairing matries to ompute stem fragments,i.e., ungapped parts of helies, of sequenes A and B. It then disards the entiresequene information and aligns the stem fragments in a onsistent manner. Thealignment is onsistent if we align two staking stem fragments from sequene Ato staking fragments in sequene B. Subsequently, the aligned stem fragmentsserve as anhors in a traditional sequene alignment.Stral builds upon an idea by Bonhoe�er et al. [16℄ to inorporate the highestup- and downstream probabilities for eah pair of aligned residues and inorporatethese sores into the omputation of a traditional sequene alignment.Finally, we want to ompare the performane of the sequene-struture align-ment programs to a pure sequene-based program. Therefore, we hose Mafft,beause it performs very well on the established BAliBase [136℄ and PREFAB[11℄ benhmark sets. In Figs. 5.5 to 5.10 we show the results of our experimentsbroken down to the di�erent input lasses (either k2, k3, k5, k7, k10, or k15)using the Compalign and SCI sores as the quality measure. These graphis havethe average pairwise sequene identity as their x-axis. The upper part of eah�gure shows the Compalign performane, whereas the lower part gives the re-



80
sults with respet to the SCI sore. We use Lowess regression that we desribedin Set. 2.4 for the omputation of the lines.
5.4.3.2 Comments on the ResultsIn the pairwise ase sLaRA is ranked �rst both in terms of the Compalign andthe SCI sore. The di�erene between sLaRA and LaRA and FoldalignM,that are ranked seond with respet to the Compalign and SCI sore, are, how-ever, not signi�ant. Taking a look at Fig. 5.5 we reognize that the urves arealmost the same. The SCI performane of sLaRA is better than the perfor-mane of LaRA: obviously, the inorporation of staking probabilities enhanesthe strutural quality of the alignment. On the data sets with an inreasing num-ber of input sequenes, the better pairwise alignment quality does not pay o�.The Compalign performane remains almost the same ompared to LaRA. In thease of the k10 and k15 instanes LaRA performs slightly better than sLaRA,but again the di�erene is not signi�ant in this ase.One has to observe the omposition of the k15 input data set: 99 of all 123instanes are tRNA instanes. Furthermore, on the left side of Fig. 5.11 we showthe density plot for all pairwise sequene identities of these 99 tRNA instanes.The surprising thing is that about a quarter of all pairwise projetions formingthe k15 instanes have a pairwise sequene identity higher than 0.50, the averagepairwise sequene identities of the instanes, however, are smaller than 0.50.Remember that in the pairwise ase sLaRA is superior to LaRA with respet toboth the Compalign and the SCI sore. We are therefore interested whether thisholds true for k2 tRNA instanes with a sequene identity above 0.50. The rightside of Fig. 5.11 shows the Lowess plot for these 780 tRNA instanes. In theseases, LaRA performs better than sLaRA and the SCI performane is almostidential (plot not shown). Sine a quarter of the pairwise k15 alignments areinput instanes with an identity higher than 0.50, this ontributes to the slightlyworse performane of sLaRA ompared as to LaRA.In the pairwise ase, i.e., the k2 instanes, up to a sequene identity of ≈ 42%LaRA and sLaRA show a similar Compalign performane, with their respe-tive urves shifted by about 0.1 to the top ompared to the Sanko� variantFoldalignM. For the range of ≈ 42 − 50% all programs (even the sequene-based Mafft) have omparable performane (exept for MARNA). With aninreasing number of input sequenes per instane, espeially for the k10 and k15sequenes, the results hange tremendously. LaRA outperforms the other pro-grams, yielding average Compalign sores of ≈ 0.9, whereas the other struture-based alignment programs have average sores around ≈ 0.55−0.75. This is quiteremarkable, espeially onsidering that FoldalignM, LaRA, and sLaRA showa similar performane in the pairwise ase. FoldalignM, however, omputesmultiple alignments in a progressive fashion, whereas LaRA and sLaRA om-pute all pairwise alignments and leave it to T-Coffee to ompute an alignmentthat is highly onsistent with all pairwise alignments. With an inreasing number
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Figure 5.5: Results on all low homology BRAliBase instanes ontaining 2 input se-quenes. The x- and y-axis give the average pairwise sequene identity(APSI) and the Compalign sore (upper plot) or the SCI sore (lower plot).The legend of the upper plot also applies to the lower one.
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Figure 5.6: Results on all low homology BRAliBase instanes ontaining 3 input se-quenes. The x- and y-axis give the average pairwise sequene identity(APSI) and the Compalign sore (upper plot) or the SCI sore (lower plot).The legend of the upper plot also applies to the lower one.
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Figure 5.7: Results on all low homology BRAliBase instanes ontaining 5 input se-quenes. The x- and y-axis give the average pairwise sequene identity(APSI) and the Compalign sore (upper plot) or the SCI sore (lower plot).The legend of the upper plot also applies to the lower one.
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Figure 5.8: Results on all low homology BRAliBase instanes ontaining 7 input se-quenes. The x- and y-axis give the average pairwise sequene identity(APSI) and the Compalign sore (upper plot) or the SCI sore (lower plot).The legend of the upper plot also applies to the lower one.



85

38 40 42 44 46 48

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

APSI

C
O

M
P

A
LI

G
N

stral
murlet
marna
scarna
foldalign
mafft
lara
stacked_lara
plara
pslara
reference

38 40 42 44 46 48

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

APSI

S
C

I

Figure 5.9: Results on all low homology BRAliBase instanes ontaining 10 inputsequenes. The x- and y-axis give the average pairwise sequene identity(APSI) and the Compalign sore (upper plot) or the SCI sore (lower plot).The legend of the upper plot also applies to the lower one.
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Figure 5.10: Results on all low homology BRAliBase instanes ontaining 15 inputsequenes. The x- and y-axis give the average pairwise sequene identity(APSI) and the Compalign sore (upper plot) or the SCI sore (lower plot).The legend of the upper plot also applies to the lower one.
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Figure 5.11: Left side: the distribution of pairwise sequene identity values of all k15tRNA instanes having an APSI value smaller than 0.50. Right side: om-parison between LaRA and sLaRA on all 780 k2 tRNA instanes thatshow a pairwise sequene identity greater than 0.50.
of input sequenes, the onsisteny-based approah generates better alignmentsthan the progressive methods (at least in our experimental setup). This holdsalso true for the progressive variants of our models, pLaRA and psLaRA. Theirperformane�relative to LaRA and sLaRA�beomes worse with an inreasingnumber of input sequenes.Another astonishing observation is the performane of Mafft, a sequene-based program. The k2 and k3 instanes show a omparable performane toall the other sequene-struture alignment programs for instanes above ≈ 42%,whih is already surprising. With a growing number of input instanes, theperformane of Mafft beomes even better. In the ase of 15 input instanes,the program yields�on average�the seond best results (behind the variousLaRA implementations), outperforming even FoldalignM and Stral whihinorporate strutural information. The orresponding SCI plots, however, showthat the strutural features of these instanes are not onserved at all, leading tolow SCI sores. In the ase of FoldalignM, the situation is exatly vie versa:the Compalign sores are low, whereas the SCI sores are relatively high whihmeans that the helial regions�in ontrast to the loop regions�are orretlyaligned.The omparison between FoldalignM and pLaRA shows that pLaRA per-forms onsistently better than FoldalignM on the various input data sets. Thetwo programs optimize the same objetive funtion by maximizing the sequeneand struture sore and ompute multiple alignments in a progressive fashion.There are, however, two important di�erenes: pLaRA and FoldalignM usedi�erent parameter sets, and as the authors of [9℄ show, the onstrution of the
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guide tree is of great importane for the overall result. In the urrent implementa-tion of pLaRA and psLaRA we build the guide tree by omputing pure sequene-based alignments using the RIBOSUM sequene sores. We performed varioustests with alternative approahes, e.g., omputing sequene-struture alignmentswith a low number of iterations, but surprisingly it turns out that the quality ofthe alignments does not inrease if one spends more time on the onstrution ofthe guide tree.Taking a look at the result plots one immediately reognizes the bad per-formane of the MARNA software. For the �nal evaluations in this thesis, wedouble-heked that we did not hange any parameters to run the software onthe BRAliBase data set with the original settings. In [30℄ the authors per-form a omparison of sequene-struture alignments on the original BRAliBaseompilation from [48℄. They show that the performane of MARNA is ompa-rable to the one of lustalW even if the APSI is smaller than 0.50. There aretwo possible reasons: �rst, MARNA builds upon the general edit-operations forRNA strutures and uses �xed strutural information (either a �xed struture orthe shape of the sequene) whih ultimately means that the alignment qualitygreatly depends on single MFE strutures. If these strutures are wrong, thenthe algorithm is mislead. Seond, the ommand to exeute T-Coffee with theMARNA ompiled library reads
system("t_offee -in=Loffee.lib,Mlustalw_pair");whih means that, in addition to the library �le offee.lib that MARNA re-ates, T-Coffee uses a seond library based on lustalW alignments. This isunfortunate, however, sine the lustalW information seems to blur the stru-tural information of MARNA. Moreover, a loser look into the MARNA library�le shows that almost all weights in the library are in the range between 95 and
100. This does not allow a disrimination between staked and unstaked regions,introduing additional di�ulties for T-Coffee to assemble a proper alignment.Hene, parameter training on a reent Rfam data set, like the data set ompiledfor theMASTR paper, dropping the lustalW information, and setting properlibrary weights might enhane the overall quality of the MARNA alignments.During our omputational experiments we evaluated two di�erent modes forthe generation of libraries. We either write the entire alignment into the library�le, i.e., both the loop and the staked regions, or the staked regions alone.The reasoning for supplying only staked regions is that these should serve asanhor regions, and T-Coffee should perform its onsisteny-based ansatz onthe nuleotide level. If the sequene onservation in the loop regions is highenough, this works well as we ould, for example, observe with sequenes fromthe ITS2 database [153℄. Libraries speifying only the staked regions produedbetter alignments in the ase of ITS2 sequenes. In general, however, due to thelow sequene onservation of the input sequenes T-Coffee introdues too manygaps into the loop regions whih lowers the overall alignment quality.
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Seond, we observe signi�ant di�erenes in the performane of various T-Coffee releases. For our omputational experiments in Chap. 5 we use theversion 4.70 that we originally used for our omputational study in [7℄. Sine therelease of 4.70 in November 2006, there have been several new program versions,but these releases show inferior performane ompared to release 4.70.

5.4.3.3 Friedman TestsIn Chap. 2.4 we desribed the Friedman testing proedure whih ompares multi-ple samples without assuming anything about the distribution of the input data.In our ase we have the results of various programs and want to ompare theirperformane on the BRAliBase input sets. The null hypothesis of the Friedmantest is that there is no signi�ant di�erene between the various programs. In thease the null hypothesis is rejeted, i.e., there are signi�ant di�erenes betweenvarious groups, one has to perform pairwise Wiloxon signed-rank tests to de-tet signi�ant di�erenes between the programs. To limit the hassle of multipletesting, we perform the Wiloxon test only between the program that is ranked�rst and the remaining programs. We perform all the tests with a signi�anelevel of 0.05, and we orret for the multiple Wiloxon tests using the Bonferroniorretion, i.e., we set the p-value to 0.05
k

with k being the number of the testedprograms.Table 5.4 lists the results of the testing proedure for both the Compalign andthe SCI sores on all six data sets of the BRAliBase.
5.4.3.4 Comparison of the Running TimesWe ompared the programs tested on the same omputing server with an IntelXeon CPU running at 3.2 GHz, 3.5 GB RAM, and Linux kernel version 2.6.16.It turned out that memory requirement was not an issue, but the omputationtime instead. Espeially MARNA sales in O(n4), whih makes the alignment oflonger sequenes (for example the SRP instanes of BRAliBase) rather time-onsuming. This, however, is not the ase with LaRA and Foldalign, sinethese two programs have running times in O(n2). To evaluate the time on-sumption within reasonable time, we therefore set a time limit of 20 minutes perinstane. If the omputation was not �nished within 20 minutes, the proesswas killed and we took 20 minutes as the running time. In Table 5.5 we list thenumber of instanes that the programs were not able to align within 20 minutes.We were espeially interested in how the running times of the programs thatuse struture information saled with respet to the number of the input se-quenes. Foldalign, as a progressive approah, omputes (n − 1) pairwisealignments given n input sequenes. MARNA and LaRA, however, ompute all
n(n−1)

2
pairwise alignments. Table 5.6 shows the exeution time of all programson all k2, k3, k5, k7, k10, and k15 instanes. As one an see, with an inreasingnumber of input sequenes, a progressive alignment strategy pays o� omparedto the omputation of all pairwise alignments.
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k2 k3 k5Program SPS SCI SPS SCI SPS SCILaRA 2 3 1

(3−10) 4 1
(3−10) 2sLaRA 1

(3−8)
1

(3−8) 2 2 2 1
(4−10)pLaRA − − 3 3 5 3psLaRA − − 6 1

(6−10) 7 4FoldalignM 4 2 9 5 9 5MURLET 5 6 5 7 4 7MARNA 8 8 10 10 10 10MXSCARNA 3 4 4 6 3 6Stral 7 5 8 8 8 9Mafft 6 7 7 9 6 8

k7 k10 k15Program SPS SCI SPS SCI SPS SCILaRA 1
(3−10)

1
(3−10)

1
(3−10)

1
(3−10)

1
(3−10)

1
(3−10)sLaRA 2 2 2 2 2 2pLaRA 5 3 6 3 6 3psLaRA 7 4 7 5 7 4FoldalignM 9 5 9 4 9 5MURLET 3 7 3 6 3 8MARNA 10 10 10 10 10 10MXSCARNA 4 6 4 7 4 7Stral 8 9 8 9 8 9Mafft 6 8 5 8 5 6

Table 5.4: Results of the Friedman test for the Compalign and SCI sores. The p-valuefor the test is 0.05. For the programs with the highest rank-sum, i.e., theprograms that are ranked �rst, we perform pairwise Wiloxon signed-ranktests: the supersript numbers denote the ranks of the programs to whihsigni�ant di�erenes exist.
Table 5.6 shows that the running time of MURLET is very high. This is quitein ontrast to what the authors of the orresponding paper [81℄ laim, namelythe development of a fast and pratial variant of the Sanko� algorithm. Takinga loser look at the paper, one reognizes that they performed their test on aself-assembled data set from the reent release of the Rfam data base omprisingalignment instanes above an average pairwise sequene identity of 0.45. Figure 5of their paper shows the redution of memory and time onsumption over theAPSI value for the Hammerhead_3 ribozyme family. The striking aspet is thatthe redution sharply drops for the APSI range between 0.55 and 0.60, and thereare no data given for instanes below an APSI of 0.45. Given the shape of theurve, we speulate that the urve steeply goes up for instanes below APSI valuesof 0.50 whih would explain the high omputation time of MURLET.
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Program k2 k3 k5 k7 k10 k15LaRA 0 0 0 0 0 0sLaRA 0 0 0 0 0 0pLaRA 0 0 0 0 0 0psLaRA 0 0 0 0 0 0FoldalignM 0 0 0 0 0 0MURLET 1 25 32 55 28 16MARNA 0 49 23 17 12 6MXSCARNA 0 0 0 0 0 0Stral 0 0 0 0 0 0Mafft 0 0 0 0 0 0

Table 5.5: Number of unsolved instanes for all input instanes within a time limit of
20 minutes.

Program k2 k3 k5 k7 k10 k15(2251) (1048) (512) (323) (189) (123)LaRA 3157.74 4400.22 6397.29 17632.74 11399.62 16261.14sLaRA 5234.15 7405.09 11014.26 30818.55 20099.32 28513.16pLaRA − 2844.08 2628.53 5262.44 2410.37 2318.04psLaRA − 5202.97 4934.24 9834.59 4594.13 4265.50FoldalignM 10360.44 14208.05 10995.36 10095.93 9977.03 7871.85MURLET 9575.54 88355.02 76051.10 126883.04 51836.57 43345.91MARNA 56434.11 25230.23 30463.49 38143.15 42146.56 55457.50MXSCARNA 478.74 380.42 307.61 616.23 313.21 271.00Stral 18.72 25.21 19.24 42.57 24.13 28.96Mafft 53.14 30.83 17.18 25.12 7.72 7.20

Table 5.6: The overall runtime (in seonds) of the programs. If a program did notompute the alignment within 20 minutes, we killed the proess and took 20minutes as the running time. The number in brakets give the number ofinstanes per input lass.
5.4.4 Computing the Upper Bound via the BundleMethodSetion 2.3.2 desribes the bundle method whih is an alternative approah foromputing solutions for the Lagrangian dual. Instead of adapting the Lagrangianmultipliers aording to one single subgradient, the bundle method aumulates abundle of subgradients and �ts a quadrati funtion to them. Then, the quadratifuntion is used to ompute the new values of the Lagrangian multipliers. Se-tion 2.3.2 gives details about the bundle method. The Conibundle library
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Figure 5.12: The distribution of the di�erenes (bundle bound − subgradient bound)between the values of the upper bounds omputed via the subgradient andthe bundle method. A positive value means that the bundle bound is higherthan the orresponding subgradient value. Left side: the distribution ofthe di�erenes after maximal 500 iterations. Right side: the distributionof the di�erene allowing a maximal omputation time of �ve minutes.
[62℄ ontains generi ode for using the bundle method, and we implemented aninterfae to the library within the LiSA library. We set the parameters aord-ing to [61℄, i.e., we restrited the bundle size to 2 and added at most one newsubgradient to the bundle.Our test set are all k2 instanes below an APSI value of 50%, yielding 2251test instanes. We are interested in omparing the quality of the upper boundsusing the subgradient and the bundle method. We performed two di�erent testsettings: �rst, we stopped the subgradient and the bundle ode after a maximumof 500 iterations whih orresponds to the default setting in the LaRA software.Seond, we allowed a maximal running time of �ve minutes and stopped theomputation afterwards. This should larify whether the bounds would improvesigni�antly over a longer omputation time.The left side of Fig. 5.12 shows that in 69% of all instanes (1563 out of 2251)the upper bound produed by the subgradient proedure is as good or better thanthe bound omputed via the bundle proedure if we allow a maximal number of
500 iterations for both algorithms. If the bundle proedure does better, thenthe improvement is typially small. The mean and standard deviation of theseinstanes are −0.82 and 2.23.On the other hand, the di�erene between the bounds are a bit higher ifthe bundle method performs worse: the mean and standard deviation for thesevalues are 2.44 and 3.7. The essene of these experiments is the following: if
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Figure 5.13: Typial behavior of the subgradient (blak) and the bundle proedure(red). Left side: within a ouple of hundred instanes, the subgradientproedure typially produes ompetitive or better bounds ompared tothe bundle method. Right side: allowing more omputation time (in thisase 300 seonds), the bundle method yields slightly better bounds.
bundle performs well, then it does better, but only by a small amount. Theperformane of subgradient optimization is generally as good or better than thebundle method.If we allow a maximal omputation time of �ve hours, the piture hanges.The bundle method produes better bounds in general, only in 23% of all in-stanes (531 out of 2251) the subgradient method performs better. The meanand standard deviation of the di�erene between bundle and subgradient boundis small: −0.85 and 0.81. Figure 5.13 shows the typial development of the upperbound both for the subgradient and the bundle method. As one an see, thebundle method produes a urve that is more smoothly, whereas the subgradientmethod shows more a stairase-shaped urve.In [94℄ Lemaréhal states that the subgradient proedure is basially �onlyused by amateurs�. While it is true that subgradient optimization is oneptuallymuh easier than bundle methods, we have to state that his opinion does not holdtrue in general. In our problem setting subgradient optimization is appropriate,beause our primary goal is to ompute good bounds as quikly as possible.The omparison of the two proedures shows that the subgradient method worksbetter.We are aware of the fat that by resorting to subgradient optimization wesari�e the advantages of the bundle method, e.g., expliitly estimating thedi�erene of the urrent solution and the optimal value of the Lagrangian dual,or retrieving primary information. This information,however, is not important
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to the user of sequene-struture alignment algorithms. The user typially wantsto have good solutions for the alignment problem as fast as possible, and this iswhat the subgradient proedure provides in our setting.
5.5 Computing Provably Optimal SolutionsEvery iteration in the Lagrange solution proess yields an upper and lower boundon the optimal solution value. Unless the upper and lower bound do oinide,one annot be sure whether the best solution found is the optimal one. Wetherefore implemented a branh-and-bound algorithm that exhaustively searhesthe solution spae given the best lower bound found during the subgradient phase.Branh-and-bound uses a divide-and-onquer strategy to divide the originalproblem into smaller ones. This yields an enumeration tree of subproblems, wherethe root node orresponds to the original problem. The nodes of the tree representonstrained subproblems where variables are either set to 1 or 0. Eah inner nodehas two subnodes where a new variable is set to 1 and 0. To avoid the exhaustivesearh of the entire tree, at eah node we ompute a loal upper bound on thesubproblem, and ompare this upper bound to a global lower bound. If the loalupper bound is smaller than the global lower bound, we an safely baktrak,beause we annot do better if we step down further that subtree. Otherwisewe might ahieve a better solution value in the subtree, we hoose a variable xvand reate two new subproblems by adding the onstraints xv = 1 and xv = 0.Figure 5.14 summarizes the steps of the generi branh-and-bound algorithm.There are only two main omponents in every branh-and-bound algorithm:the omputation of the loal upper bound and strategy of hoosing the nextbranhing variable. In Set. 5.5.2 and Set. 5.5.3 we shall elaborate on theseissues. Additionally, in our ase we employ a preproessing phase to lower thenumber of branhing variables whih we shall desribe in the following setion.
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5.5.1 Preproessing the InputSimilar to [21℄ we an preproess the input and eliminate alignment edges vari-ables that annot be part of the optimal solution. To this end, for eah alignmentedge e we ompute the sore se of the best alignment that inludes e. If se issmaller than the value of a feasible solution to the sequene-struture alignmentproblem, we an safely drop xe from the pool of branhing variables, beause ewill never be part of the optimal alignment.To be more spei�: given two sequenes s0 and s1, we have a soring matrix
∆ where ∆(i, j) holds the maximum pro�t that alignment edge e = (i, j) anpossibly ahieve. Then, the value se, i.e., the sore of the best alignment A with
si being alignment to sj, is

se = align(s0[0, . . . , i − 1], s1[0, . . . j − 1]) +

∆(i, j) +align(s0[i + 1, . . . , (|s0| − 1)], s1[j + 1, . . . , (|s1| − 1)])The matrix align(s0[i0, . . . , i1], s1[j0, . . . , j1]) holds the value of the optimal se-quene alignment between subsequenes s0[i0, . . . , i1] and s1[j0, . . . , j1]. If se issmaller than some global lower bound l, then we drop e from the list of branh-ing variables. In our experiments we start from the omplete bipartite graphand we observe that the redution of branhing variables typially ranges from
75 − 95%. If the redutions amounts to 95% of all variables, then the upper andlower bound obtained after the subgradient optimization proedure are alreadyalmost the same.
5.5.2 Computation of the Upper BoundThe omputation of a loal upper bound on a subproblem requires the solutionof a onstraint alignment problem. The set C ontains the positions that have tobe aligned, whereas N omprises the set of positions that must not be aligned.We solve this onstrained alignment problem in a straightforward manner:for alignment edges c = (i, j) ∈ C we set their sore to some high value M ,i.e., ∆(i, j) = M . This fores the optimal alignment path to run through thesepositions. For alignment edges n = (k, l) ∈ N we have ∆(k, l) = −M whihmeans that these mathes will never be realized. Given the resulting sore matrix
∆ we solve the sequene alignment problem whih yields the optimal sequenealignment value of Ω. We get the alignment sore Ω̂ by substrating the bonuses
M , i.e., Ω̂ = Ω − |C| · M . The value of Ω̂ then gives the loal upper bound onthe problem.
5.5.3 Choosing the Branhing VariablesSolving the Lagrange relaxed problem using subgradient optimization�in on-trast to bundle methods� does not diretly yield information on the value of the
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primal variables. We therefore ompute reasonable values of primal variables thefollowing way: let k be the number of overall iterations during the subgradientphase, then for every alignment edge e the value c(e) denotes how often align-ment edge e was part of the solution set from the relaxed problem. Then, we take
p(e) = c(e)

k
as an approximation for the primal value of eah alignment edge.The literature provides various shemes for the seletion of the next branhingvariable based on the primal information. The most ommonly used strategiesselet values either lose to 0, 1, or to 0.5. In our experiments we ould notobserve big performane di�erenes between various branhing shemes, so in thefollowing we report on our results for hoosing the variables that are losest to 0.

5.5.4 ResultsAs we desribe in Set. 5.3, the algorithm to ompute an exat multiple sequenealignment shows an unpreditable runtime behavior in pratie. We thereforeonstrain ourselves to the pairwise ase, sine we ompute optimal solutions ofthe relaxed problem in O(n2).Table 5.7 shows the results for the branh-and-bound algorithm on the pair-wise BRAliBase instanes. We allowed a maximal runtime of two hours. Ifthe branh-and-bound algorithm did not stop within the time limit, we killed theproess. Note that there are two Cobalamin instanes where the implementationquits due to a memory over�ow. In these two instanes there are still 27828 and
27795 variables left after the variable redution phase. A large gap between theupper and lower bound deprives us from the average redution of 75− 95% of allvariables, but only 58% and 61% for these two instanes. This, in turn, is dueto the extreme length di�erenes of the input sequenes. The sequenes are 178and 268, and 177 and 256 nuleotides long, respetively.The authors of [21℄ develop a branh-and-bound algorithm for the solutionof quadrati knapsak problems whih is similar to the omputation of RNAsequene-struture alignments. During our experiments we ould on�rm theirobservations. In [21℄ they state thatOne an observe that the upper and lower bounds are generallyvery tight, making it possible to redue a majority of the variables,on average more than 75%. (. . . ) Despite this e�etive preproessing,the �nal branh-and-bound phase demands some hours and a hugenumber of nodes for the largest instanes, as many variables haveto be �xed by branhing before losing the gap, despite the latter istypially very small already at the root node.We observe exatly the same behavior in our experiments. The values for theupper and lower bound in Tab. 5.7 (olumns ub and lb) show that we are onlyable to solve instanes to provable optimality where the gap between the upperand lower bound is already fairly small after the subgradient proedure. A smallgap between upper and lower bounds leads to a small number of variables after
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APSI # ⊘ len # vars lb ub opt ratio timetRNA 22 1 71 838 162.58 163.13 162.58 (1.00) 165.99

23 2 72 844 166.19 170.96 168.13 (0.99) 3856.02
24 3 71 658 127.04 127.93 127.04 (1.00) 274.45
25 1 70 819 106.17 106.37 106.17 (1.00) 163.91
26 2 73 855 128.94 129.47 128.94 (1.00) 390.90
27 2 71 704 159.04 162.32 159.04 (1.00) 1081.04
28 6 71 613 166.79 168.41 167.09 (1.00) 317.67
30 4 71 578 145.26 146.60 145.86 (1.00) 119.09
31 5 72 821 159.30 160.62 159.30 (1.00) 306.68
32 8 72 689 160.93 161.70 160.93 (1.00) 652.90
33 9 74 773 154.87 156.85 155.09 (1.00) 1872.71
34 16 73 695 168.53 170.92 168.75 (1.00) 1198.23
35 3 73 679 181.93 185.18 182.24 (1.00) 1907.45
36 4 72 421 191.49 193.87 191.71 (1.00) 198.56
37 3 69 535 149.54 150.30 149.80 (1.00) 360.81
38 11 73 666 164.44 165.83 164.45 (1.00) 871.19
39 7 75 869 157.62 161.39 158.61 (0.99) 2022.37
40 14 74 707 175.98 177.94 175.98 (1.00) 1071.43
41 5 73 647 190.95 194.16 192.20 (0.99) 1713.44
42 10 73 721 170.10 171.74 170.13 (1.00) 712.24
43 12 74 873 163.88 165.40 163.93 (1.00) 1782.08
44 16 73 668 191.51 193.83 191.95 (1.00) 907.14
45 8 73 821 162.56 165.44 163.01 (1.00) 1681.94
46 18 73 579 189.49 190.76 189.52 (1.00) 405.01
47 14 74 781 182.72 184.92 183.05 (1.00) 1661.17
48 17 71 688 179.61 181.43 179.96 (1.00) 1427.49
49 23 74 798 179.54 181.50 179.94 (1.00) 959.375S 41 2 119 1701 307.52 307.62 307.52 (1.00) 2910.48
42 2 118 1757 233.00 233.88 233.00 (1.00) 3895.03
44 2 116 863 262.86 263.72 262.86 (1.00) 1915.21
45 4 119 1487 239.88 240.07 239.90 (1.00) 2375.55
46 1 120 871 326.24 326.71 326.24 (1.00) 1339.70
47 5 117 1584 240.86 241.61 240.86 (1.00) 4568.20
48 1 120 559 369.06 369.42 369.06 (1.00) 439.11
49 1 119 2446 250.03 250.03 250.03 (1.00) 1983.03Coba- 47 1 192 1754 404.55 404.55 404.55 (1.00) 3758.07lamin

Table 5.7: All instanes solved by the branh-and-bound algorithm. We report the av-erage values grouped aording to the pairwise sequene identity of the inputsequenes. The seond and third olumn give the number of solved instanesand the average length of the input sequene, respetively. Column # varsgives the number of variables after the preproessing phase. Columns lb andub represent the lower and upper bound at the root node. Furthermore,olumns opt and ratio give the value of the optimal solution and the degreeof optimality of the lower bound found at the root node. Finally, the lastolumn reports the runtime in seonds.
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the preproessing step and provides sharp bounds during the bounding phase ofthe branh-and-bound algorithm. We therefore did not even try to solve instanesto optimality whose ratio between lower and upper bound is smaller than 0.95.Seond, we are also faing the fat that we have to set a high number ofvariables to 1 or 0, before we lose the gap between the upper and lower bound.In many ases, we have to onstrain the entire alignment, until we are able toprune the subtree. For a typial tRNA instane this means that we are setting
50 − 60 variables to 1, before the upper bound �nally beomes smaller than theglobal lower bound.Furthermore, the lower bounds omputed during the subgradient phase areoptimal in almost all ases. Table 5.7 lists only three bins in whih the optimalsolution deviates from the value of the best lower bound found during the subgra-dient phase. This observation is, however, not surprising given the fat that thegap between the lower and upper bound is typially very small in the instanesthat we takle with our branh-and-bound ode. Table 5.8 gives an overview overall 1624 pairwise instanes that we takled using the branh-and-bound algorithm.Lagrange Gap Solved UnsolvedGroup solved too big by BB by BBtRNA 476 466 224 925S 67 122 18 42Cobalamin 0 110 1 6

Table 5.8: Summary over all instanes proessed by the branh-and-bound framework.Lagrange solved, Gap too big, Solved by BB, and Unsolved by BB givethe numbers of instanes that are solved to optimality after the subgradientphase, whose gap after the subgradient phase is too big, that are solvedto optimality by the branh-and-bound algorithm, and that exeeded thebranh-and-bound time limit of two hours, respetively.
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6 Conlusion and FutureWork

I glaub i geh jetzt,weil i was genau,wenn i noh länger bleib,geht ma der Shmäh aus,und des wü i net. Wolfgang Ambros(I glaub i geh jetzt)
In this thesis we presented a framework for omputing sequene-struturealignments of RNA strutures based on tehniques from ombinatorial optimiza-tion. The omparison of our implementations with several other state-of-the-artprograms shows that we performed very well on the established BRAliBasebenhmark set. Both the onsisteny-based LaRA and sLaRA, and the pro-gressive versions pLaRA and psLaRA are top-ranked for all input lasses.We refrain, however, from laiming that our tools are the best alignmentprograms for eah input lass. Eah of the tested programs has its strengthsand weaknesses: FoldalignM, for example, generally performs better on SRPinstanes ompared to our programs, whereas LaRA and sLaRA outperformFoldalignM on tRNA sequenes. Therefore, one annot speak of one singlebest sequene-struture alignment program for all input lasses as other authors[81; 132℄ did, beause tests on self-ompiled data sets usually show that theirprogram works best on their data. Consequently, we hose the BRAliBasebenhmark to evaluate our programs, beause this way we avoid putting a dataset together and afterwards laim that we performed best on it. We believe thatthe ommunity should work and agree on a benhmark set BRAliBase next gen-eration that allows a fair omparison of di�erent struture alignment programs.This benhmark should eliminate the de�ienies of the urrent BRAliBaserelease:(a) update the sequenes to the latest version of the Rfam database,(b) remove the bias of input instanes towards some RNA families that have alarge number of sequenes in their seed alignments,() inorporate published strutures into the alignment, and subsequently usethe MCC instead of the SCI as the strutural assessment sore,(d) inorporate 3D information�if available�to enhane the alignment quality.We are aware that reating a large benhmark set satisfying these onstraints isa non-trivial task, espeially sine for most of the RNA families in the Rfam thesequene data base is sparse.
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During the evaluation of our programs it beame very lear that the per-formane of a program does not only depend on the model or formulation it isusing, sine a great deal of improvement or deline in performane aounts forthe setting of the parameters. For most programs, parameter settings are eitherdetermined by systematially trying out various parameter settings [96℄, or val-ues are hosen that seem to work well in pratie [67℄. LaRA has three mainparameters: the sequene ontribution, and the gap open and extension penalty.We used the MASTR data set as our training set and examined various param-eter possibilities, until the values worked well on the MASTR data. In the aseof sLaRA, the situation beomes even more involved, beause apart from thesequene saling we have to balane the struture and staking ontribution thusyielding an expanded parameter searh spae. We tested seven di�erent valuesfor both the struture and staking ontribution yielding 49 times more possi-bilities to explore. There are various distint parameter sets that yield almostthe same performane as the sets that we �nally hose for our evaluation. Itis very likely that a ombination of these parameter sets yields omparable oreven better results. Hene, a proper parameter training method is of utmostimportane. In the ase of pure sequene-based alignments Keeioglu and Kim[80℄ propose an approah based on linear programming: given an alignment, theinverse alignment problem alls for determining the (user-spei�ed) parameterssuh that the optimal sequene alignment�using these parameters�yields theinput alignment. In priniple, their approah is appliable to sequene-struturealignments as well. For a multiple alignment annotated with the onserved inter-ations, it is possible to determine the optimal parameter set. Input alignmentsould be taken, for instane, from the Rfam or the European rRNA database.One has to take are not to over�t the parameters to ertain input groups; hene,the input alignments should be distributed among various lasses of nonodingRNAs.Besides the gap and saling parameters, the soring system greatly in�uenesthe performane of our implementations. We use sores based on the base pairingprobability matries. The pairing probabilities in turn are derived from the par-tition funtion whih takes all possible nested seondary strutures into aount.Our model allows for all possible pseudoknots, beause the only onstraint isthat a nuleotide might pair with at most one other residue. In our experimentswe observe that the strutural ompletion omputed via the maximum-weightmathing omputation often ontains pseudoknots that do not violate the de�ni-tion of a seondary struture, but that will not be observed in Nature. Figure 6.1gives an example of suh a typial ase. Therefore, for the omputation of aseondary struture we resort to RNAlifold that omputes a nested onsensusstruture given an alignment. sLaRA generally inserts fewer arbitrary pseudo-knots, beause it favours the onseutive staking of base pairs.One of the main advantages of our formulation is its ability to deal withpseudoknots. In ontrast to most of the DP based approahes and all the tree-based models, we an align strutures that ontain pseudoknots. Right now,
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Figure 6.1: The solid lines represent the interations that are onserved via the align-ment. The red interation math denotes the pseudoknot that is inserted,sine we do not reward staking of base pairs in our initial model. If we takethe dotted instead of the solid alignment edge, the alignment onserves theinteration math denoted by blue dotted lines, yielding a more resonablestruture.
however, we are not able to take advantage of it, beause algorithms preditingseondary strutures or base pair probabilities inluding pseudoknots su�er fromtwo main drawbaks. First, all these approahes are omputationally expensive(their time omplexity sales at least in O(n4)), whih makes them appliableonly to short sequenes. Seond, there are no sound energy parameters availablefor pseudoknotted strutures. This is even more signi�ant, beause it meansthat even if we have the algorithms and models to inorporate pseudoknots, weare optimizing an objetive funtion that is misleading. Hene, the only senariowhere LaRA ould make use of its pseudoknot alignment abilities is the alignmentof experimentally veri�ed strutures that ontain pseudoknots.At the time this thesis is being written, new approahes have been proposedthat aim at avoiding the high omputational osts of the Sanko� variants. Mafft6, the latest version of theMafft [78℄ alignment program, introdues the oneptof four-way onsisteny whih extends the onsisteny-based sequene alignmentdesribed in Set. 3.2 to inorporate strutural information. Preliminary tests ofthe beta version on the BRAliBase show an improved performane omparedto the previous Mafft versions, while the running time inreased only slightly.
Future Work. The work presented in this thesis provides several lines of fu-ture researh. Our graph-based model an be modi�ed to takle other align-ment problems suh as loal sequene-struture alignments. We already imple-mented a prototype that searhes loal sequene-struture motifs in the spirit ofRNAForester, i.e., subsequenes of the input sequenes that share a ommonstrutural motif. Running our prototype on the same data as RNAForester,we are not only able to �nd the loal motifs that RNAForester �nds, butalso other elements that are published in the literature. Bakofen and Will [2℄desribe a di�erent version of loal sequene-struture alignment. Instead of only
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onsidering entire subsequenes, the authors also allow sequene-struture motifswhere parts of the sequene are omitted. This is the ase, for instane, if we havea helix in the �rst sequene that does not exist in the seond input sequene.The only onstraint is, however, that the motif has to be onneted either in thesequene or struture. In priniple, the graph-based model is also able to apturesuh motifs, but the handling of omitted subsequenes is an unsolved issue at thismoment.The original MXSCARNA approah [133℄ inspired the model that inorpo-rates staking sores. Naturally, the halfstems of stem fragments orrespond tonodes in the graph, and we have an interation edge between nodes that forma stem. Remember that MXSCARNA �rst aligns the stem fragments and usesthese as anhors in a subsequent sequene alignment. We implemented a proto-type that goes beyond the model of [133℄ by aligning stem fragments and loopregions at the same time. The reursions for the extended model beome in-triate and the prototype did not yield satisfatory results. By going bak onestep, however, and applying the graph-based model only on the stem fragments,we redue the size of the problems, beause a node now orresponds to a stemfragment and not to a single nuleotide anymore. In the end, this would lead todereased running times of our approah.A theoretial problem that needs further researh is the omputation of afeasible solution�given the solution of the relaxed problem�inluding stakingenergies. In Set. 4.3.2 we show how we an ompute an exat solution by solv-ing a max-weight independent set problem. This redution is, however, of littlepratial interest, sine the omputation of an independent set is NP-omplete.Hene, the problem onsists in either proving the NP-hardness of the problem,or giving a polynomial time algorithm that omputes an exat solution.



Appendix
A DeutsheZusammenfassung

Puh,das war harter Sto�. Die Ärzte(Zusammenfassung)
Wissenshaftlihe Entdekungen der letzten Jahre haben die Molekulargene-tik revolutioniert: bis dahin ging man von einem linearen Informations�uss aus,in dem DNA zu RNA, und RNA in Proteine übersetzt wird. RNA nahm dabei dieRolle eines Hilfsmoleküls ein, das selbst�bis auf wenige Ausnahmen�keinerleikatalytishe Eigenshaften hat. In den letzten Jahren zeigte sih jedoh, dass manvon einer viel komplexeren Organisation der zellulären Prozesse ausgehen muss:Nihtkodierende RNA-Sequenzen, d.h. RNA-Sequenzen die keine Proteine kodie-ren, spielen dabei eine wesentlihe Rolle. Bei der Analyse von RNA-Sequenzenist es wihtig, Strukturinformation zu beahten, da die sogenannte Sekundär-struktur, und niht so sehr die eigentlihe Sequenzinformation erhalten bleibt.Alignmentprogramme von divergenten RNA-Sequenzen müssen deshalb Struktu-rinformation miteinbeziehen, um zuverlässige Alignments zu erstellen.In dieser Arbeit stellen wir ein neues Modell für das Berehnen von mul-tiplen Sequenz-Struktur-Alignments von RNA-Sequenzen vor. Wir beshreibenStruktur-Alignments als graphentheoretishes Problem und zeigen danah, wieman dieses Modell als ganzzahliges lineares Programm (ILP) formulieren kann.Wir relaxieren das ILP im Folgenden in einer Lagrangeshen Weise, d.h. wir ver-shieben eine Klasse von Bedingungen�versehen mit einem Strafterm-Vektor�indie Zielfunktion und lösen das resultierende ILP. Zusätzlih beshreiben wir eineErweiterung des ILPs, bei der sogenannte Stakingenergien in die Berehnung desSequenz-Struktur-Alignments ein�ieÿen.Im Rahmen einer umfangreihen Auswertung vergleihen wir die Implementie-rungen unserer Modelle mit zahlreihen anderen aktuellen Programmen. UnsereProgramme liefern auf einem kürzlih publizierten Benhmark-Datensatz die bes-ten Ergebnisse für alle Klassen von Eingabedaten. Zusätzlih geben wir einen Ver-gleih zwishen dem Subgradienten-Verfahren und der Bündel-Methode zum Lö-sen des dualen Problems. Wir können zeigen, dass für Standard-Eingabeinstanzendas Subgradienten-Verfahren normalerweise bessere Ergebnisse liefert. Den Ab-shluss der praktishen Auswertung bildet die Beshreibung eines Branh-und-Bound-Verfahrens, das�gegeben die Shranken aus dem Subgradienten-Verfahren�beweisbar optimale Lösungen berehnet. Wir zeigen, dass der Anwendungsrah-men dieses Ansatzes in etwa dem entspriht, was für das verwandte Problem desquadratishen Ruksakproblems publiziert wurde.
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