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Short Abstract

Until a couple of years ago the scientific mainstream held that genetic informa-
tion, stored as DNA strands, is transcribed to RNA, and RNA sequences are
in turn translated to proteins, the actual functional units in the cell. RNA was
generally believed to be a helper molecule in the cell until the beginning of the
new millennium. This view changed. We see the potential of RNA as one of the
key cellular players.

In this thesis we present a novel framework for computing sequence-structure
alignments of RNA sequences. Our contribution is twofold: first, we give a graph-
theoretic model for the computation of multiple sequence-structure alignments.
We phrase the model as an integer linear program (ILP) and show how we can
relax the ILP such that we are able to compute optimal or near-optimal solutions
for the original problem. In a subsequent step, we augment the initial model
with stacking energies. Stacking base pairs greatly contribute to the energetic
stability of the overall structure and should therefore be additionally rewarded.
We extend the original ILP such that stacking energies are incorporated.

Second, we give extensive computational results on real data from the RFAM
database. We compare the performance of truly multiple sum-of-pairs sequence-
structure alignments to heuristic sequence-structure alignments. We show that
the objective function value of the sum-of-pairs model is generally higher com-
pared to the heuristically inferred alignments. At the same time, we sketch the
computational limits for the sum-of-pairs multiple sequence-structure model.

The computational costs for computing exact multiple sequence-structure
alignments are generally very high. To validate our approach on a larger test
set, we run two implementations that take two sequences as their input. LARA
and SLARA-—based on the initial and the stack model-—compute all pairwise
sequence-structure alignments and use the external program T-COFFEE to in-
fer a consistency-based multiple sequence-structure alignment. Additionally, we
run the progressive versions PLARA and PSLARA on the same input data set.
Our experiments on the BRALIBASE benchmark set show that our tools are top-
ranked for all input classes. Furthermore, our implementations need less running
time compared to similar approaches.

Subsequently, we compare two different algorithms for computing the optimal
value of the Lagrangian dual and show that in our test setting the conceptually
easier subgradient method is superior to the bundle method. Finally, we incor-
porate our Lagrangian relaxation approach into a branch-and-bound framework.
We show for which instances we are able to compute provably optimal solutions
and compare our results with previously published results of a branch-and-bound
approach for the related quadratic knapsack problem.
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CHAPTER

1

Introduction

Kumm her und huach zua,
i erz&hl Dir a Gschicht.

Wolfgang Ambros
(Das Leben, die Liebe und der Tod)

1.1 The Past and Future of Genetics

3,080,419, 480" characters encode who we are: the color of our hair, the shape of
our body, and the risk for certain diseases. The joint publication of the sequence of
the human genome by the Human Genome Project [26] and the private company
Celera |140] marked a milestone in human history. Since then, it is possible to
read the book of life: but the more we read and the more we begin to understand,
the more complicated it gets.

The history of genetics started by rediscovering the work of Gregor Johann
Mendel in the early 20th century. In 1865, Mendel performed studies about
inheritance patterns in plants and realized that inheritance was not a random
process. It took several decades to finally illuminate the molecular basis and
main processes of genetics. Hugo de Vries introduced the terms pangenesis and
pangen for the smallest particle responsible for inheritance, a term that was later
abbreviated to gene by Wilhelm Johannsen. In 1910, Thomas Hunt Morgan
showed that genes are located on chromosomes and proposed a linear arrangement
of genes on the chromosomes. His student Alfred Sturtevant determined the
linear order of genes on the chromosomes, however, it was still unclear what the
actual molecular basis of inheritance is. The two possibilities were either DNA
or proteins. DNA is a biopolymer, a chain of four different nucleotides: either
adenine (A), cytosine (C), guanine (G), or thymine (T); proteins are compositions
of 20 different amino acids that were first described by Berzelius in 1838.

In 1944, Oswald Avery, Colin McLeod, and Maclyn McCarty discovered that
it was DNA and not proteins that harbor the genes. Building upon work by
Frederick Griffith they worked with two different strains of the same bacterium,
and then removed either proteins or DNA from the bacteria and showed that by
removing DNA the first strain could not transform into the second strain. They
did not observe this effect by removing proteins. Hence, they had conclusive evi-
dence that DNA is the carrier of genes. In subsequent work, Hershey and Chase

1 We calculated this number by simply summing up the length of all 24 chromosomes of the
human genome from GenBank. We are aware of the fact that giving an exact number is not
possible.



discovered DNA as the genetic foundation of viruses. Finally, in 1953 Francis
Crick and James Watson revealed the double helix as the structure of DNA and
they constructed a physical model for the duplication and reconstruction of part-
ner strands. In subsequent years, massive research efforts, aimed at unravelling
the mechanism that governs the processes of transforming DNA into proteins,
were conducted until finally transcription of DNA into RNA, and the translation
of RNA into proteins became apparent. RNA is similar to DNA, i.e., it is a chain
of nucleotides, but there are some important differences: RNA is single-stranded,
in contrast to the double-helical structure of DNA, and the nucleotide uracil (U)
replaces thymine. By folding back onto itself RNA builds hydrogen bonds and
forms the secondary structure (see Fig. 1.2 (b) for an example).

In 1958, Francis Crick postulated the central dogma of molecular biology
[28; 29|, which essentially described the processing of genetic information as a
linear flow: DNA is copied into messenger RNA (mRNA in short), and mRNA
in turn serves as the template to synthesize the functional units in the cell, the
proteins. In the original formulation, RNA solely acts as the working copy of
DNA, and proteins alone are able to trigger or inhibit functions in the cell. In
the years to come, new technologies were developed that revolutionized molecular
genetics. Sanger [123] developed the first sequencing method that allows the
determination of a DNA sequence. Weber and Myers [145] introduced whole-
genome shotgun sequencing: this technique was used by the private company
Celera to determine the genomic sequence of the human, the fly, and the mouse.
The standard sequencing method nowadays is pyrosequencing [119] which sharply
reduces the costs for (re-)sequencing of genomes.

Together with the growing amount of available sequence data, techniques like
microarrays allow the measurement of genes that are expressed. Gene regulation
deals with the mechanisms that control the expression of proteins, and several
key players were identified: promoters and transcription factors that control the
transcription of DNA to RNA, or enhancers, for instance, that regulate the tran-
scription of certain DNA sequences. Still, the main workflow was still assumed
to be valid to a large extend.

There were, however, already divergent opinions from the beginning. Carl
Woese |152| postulated the possibility that RNA was not a helper medium from
the start, but that RNA sequences—having catalytic properties—built the basis
of the origin of life. Altman [54] and Cech [156] finally provided evidence that
RNA sequences are indeed able to perform catalytic actions. Walter Gilbert
expressed the possibility of an RNA world [50] as the origin of life in his comment
on the discovery of catalytic RNAs.

In the 1990s, scientific findings finally changed the prevalent understanding of
the molecular mechanisms behind genetics. Lee et al. [93| describe small RNAs
that regulate proteins. Their paper marks the discovery of a new class of catalytic
RNAs, the so called microRNAs. Their full importance was not realized until
2001 when a series of papers [92; 90; 88| describes them as an abundant class
of RNAs. In 2002, Science Magazine announced RNA as the breakthrough of



the year [27]. Since then, the interest in noncoding RNAs, i.e., functional RNA
sequences not coding for proteins, has risen tremendously: examples comprise
microRNAs, snoRNAs, siRNAs, or piRNAs.

First scans of several genomes [143; 144| point—despite a high false positive
rate—to a large number of possible functional elements. At the time this thesis
is being written, recent studies |25; 128; 76; 24; 23; 146] even challenge our
perception of three layers that are separated, since they provide evidence that
the entire transcriptome is in fact a puzzle of overlapping transcripts from both
strands of the helix and that almost the entire genome is transcribed at some
point. What all these studies have in common is that they substantiate the
role of RNA as one of the major players in driving cellular processes. For most
noncoding-RNA families, however, the actual function is mostly unknown. One
major exception is the above mentioned class of microRNAs: these 22 nucleotide
long RNAs are known to be involved in a wide range of mechanisms, ranging
from cancer genesis and classification [100; 98; 111, silencing of genes [120], the
diversity of anti-bodies [85], or to the division of stem cells [57].

In biology, sequences of high similarity usually share the same structure or
function. Therefore, one of the main tasks in bioinformatics is the comparison of
different sequences to search for conserved patterns, i.e., subsequences that occur
in all sequences. Alignments are a way to compare different sequences. We write
the sequences on top of each other such that characters that are evolutionary
related are in the same column. We model genetic variability by inserting gap
characters into the sequences. Figure 1.1 gives a small example of a multiple
sequence alignment,.

DO831020. 1 cgggaaaggaacocattgoaaccaagtogaagtgatagecacactg-———
Bx640422. 1| actgaagggoaag-——-———-———-— aatcaggagttotgectgacogecttoa
CEQOO077.1| aggoaaa-————————————————————— atggtgtoctttaccetatgacy
D7 TE05E4. 1 gatggoaggoaaa-————————— agagaaatggttatoattacattt----
DQ8IL020.11 aaggatgggaggaaaatetgootg-——————————————-—-
Bx64d40422. 1| tgtogggeagaageotggtecgggegtgectgtocgacgag——————-———
CEROOO0TT. 1| acaatggtaagacaggtagaggagoetgtaago-———————-———————————
Do7780564.11 00 ———————- aagagoggegaaacatttoaggtogaagtocogggcagtcaa
Dgd91020. 1 —-—gagocagatgotooo——-—agaatoaagasaattgtacagasaaaatt
Bxpd0422. 1 —-—ggacacgagoacgacacgtggttogacaccatgottggotttgocat
CEQOO0TT. 1| --—gagaaagatgetccaaaagaattattagacatgttagecaagageaga
DO778054. 1 catatagactoccagaaaasagecattgaaaggatgaaggacacattaag

Figure 1.1: An example of a multiple sequence alignment of four input sequences. Char-
acters that are evolutionary related are written in the same column of the
alignment. Insertion and deletions are modelled by the insertion of gap
characters.

Alignments provide the basis for various subsequent tasks: phylogenetic anal-
ysis, the study of evolutionary processes, or searching for homologous sequences.
The alignment of DNA sequences based on sequence information works well, be-
cause the sequence remains evolutionary conserved, i.e., by considering only the
characters of the sequence it is possible to build reliable alignments. In the case



of RNA the situation is different. Although two RNA sequences can be divergent
on the sequence level, they might still share a common structure. This is due to
compensatory mutations, a central feature in RNA evolution: compensatory mu-
tations of bases that form hydrogen bonds do change the sequence, but they do not
alter the secondary structure. As an example, recent studies [48; 138; 139; 148§]
have shown that the structural similarity is a dominant factor and has to be taken
into account in the alignment step of RNA sequences. Instead of computing pure
sequence-based alignments we then compute sequence-structure alignment, i.e.,
alignments that consider both the sequence and structure information. Due to
the recent findings about the importance of noncoding-RNAs, the development
of new approaches for the alignment of RNA sequences that take the secondary
structure into account is a worthwile endavour.

In the following, we will present constraints that a valid secondary structure
must satisfy. Additionally, we show different representations of RNA structures
and sketch the algorithms that compute secondary structures given only the RNA
sequence.

1.2 RNA Structures and Structure Prediction

RNA sequences can be represented as strings over the four letter alphabet Xgna =
{A,G,C,U}, and—in contrast to DNA sequences—an RNA sequence folds back
onto itself and builds hydrogen bonds between complementary nucleotides. We
distinguish between the set of canonical base pairs G-C and A-U, and the wobble
base pair G-U. A set P of pairings forms the secondary structure of a sequence
s. The elements of the secondary structure form noncovalent bindings that give
rise to the 3D structure of an RNA molecule. Figure 1.2 gives the primary,
secondary, and tertiary structure of a tRNA sequence. We call the determination
of the secondary and tertiary structure of a sequence s the structure prediction
problem.

The Holy Grail of RNA structure prediction research is the determination of
the tertiary structure of a given sequence, and not only of the secondary structure
elements. Unfortunately, the knowledge about the tertiary folding process is far
from being complete, similar to the problem of determining the 3D structure of
a protein given only its amino acid sequence. Functional RNA molecules usu-
ally have a distinctive tertiary structure that is important for their function, and
additionally their secondary structure remains evolutionary conserved. There-
fore, most of the structure prediction research focuses on the easier problem of
predicting the secondary structure of an RNA molecule, since a characteristic sec-
ondary structure forms a scaffold for the tertiary structure. This led to efficient
algorithms—based on dynamic programming—for a variety of structure predic-
tion problems. We want to stress, however, that the ultimate goal in structure
prediction is still the determination of the 3D structure, and not only predicting
the secondary structure.



GCCCCCAUAGCUUAACCCACAAAGCAUGGCACUGAAGAUGCCAAGAUGGUACCUACUAUACCUGUGGGCA

(a) Primary sequence

(b) Secondary structure (¢) Tertiary structure

Figure 1.2: Primary, secondary, and tertiary structure of a tRNA sequence. The sec-
ondary structure (b) was created using RNAFOLD from the Vienna RNA
package |66]. We downloaded the tertiary structure (c) from the PDB
database.

In the following, Sect. 1.2.1 gives a formal description of RNA secondary
structures, along with typical representations for these structures. Finally, Sec-
tion 1.2.2 describes the energy model that builds the basis for most of the struc-
ture prediction algorithms.

1.2.1 RNA Structures

Formally, the secondary structure P of a sequence s € X}y, 1s a list of base pairs
(1, 7) such that the following constraints are satisfied:

(a) for each position i € 1,...,|s| there is at most one element (k,1) € P such
that ¢ = k or ¢« = [, i.e., every nucleotide takes part in at most one base
pairing.

(b) for every base pair we have |i — j| > 3, i.e., the minimal distance between
two paired nucleotides has to be greater than 3 due to physical reasons.

(c) paired bases have to be nested, i.e., ¥(i,7), (k,l) € P we have k € [i,j] < [ €
[i, ).

Constraint (a) ensures that a valid secondary structure does not include base

triplets or quartets. Such motifs do occur, but only in tertiary structures and they



are excluded for secondary structures. The backbone of an RNA sequence cannot
bend too sharply; hence, constraint (b) sets the minimal number of residues be-
tween any paired bases to three. Finally, constraint (c¢) marks the major difference
between secondary and tertiary structures: the nested character of a valid sec-
ondary structure allows the decomposition of the overall structure into smaller
independent subproblems. Most RNA related research makes use of this de-
composability property and devises algorithms based on dynamic programming.
Constraints (a)-(c) give rise to a hierarchy of possible structures, namely:

(a) PLAIN: there are no base pairs at all, i.e., only the sequence information is
available.

(b) CHAIN: every nucleotide is incident to at most one base pair, and there are
no nested base pairs, i.e., ¥(i, ), (k,l) € P we have either j < k or [ < i.

(c) NESTED: every nucleotide is incident to at most one base pair, and we only
have nested base pairs.

(d) CROSSING: every nucleotide is incident to at most one base pair, and we
have crossing base pairs.

(e) UNLIMITED: there are no restrictions at all.

A base pair that violates constraint (c) is said to form a pseudoknot. Pseudo-
knots are a first step from secondary structures towards tertiary structures, and
they exert important biological functions [131]. Like for the complete tertiary
structure prediction problem, however, we have an incomplete understanding of
folding kinetics and properties of pseudoknots.

There are various representations for secondary structures. Beside the 2D-
plot from Fig. 1.2, Fig. 1.3 shows five major representation forms for secondary
structures. Due to the nested structure of the pairings we are able to draw a valid
secondary structure as an outer planar graph with the residues being aligned on a
circle and base pairs forming chords of the graph. Another representation frames
secondary structures as trees: the parent/child relationship of the nodes is given
by the nesting of the paired bases. The sequential order of the sequence defines the
order of sibling nodes. There are different resolutions for the labeling of the nodes:
internal nodes correspond to paired bases, whereas the leaves of the tree represent
unpaired bases, or nodes might correspond to stacked regions of the secondary
structure. See Fig. 1.3 (c) for an illustration where the nodes correspond to paired
and unpaired bases. The mountain plot encodes for each residue i the number
of pairings that enclose ¢. Each mountain corresponds to a stacked region in
the secondary structure. The dotplot contains more information than just a
single structure: the matrix is divided into two triangles, with the lower triangle
containing one single structure of the sequence indicated by black squares. The
upper triangle of the dotplot contains the probability for each pair of nucleotides
to pair. The bigger the square is, the higher is the probability to form a base pair.
Finally, a more technical description of RNA secondary structure is the Vienna
notation: brackets and dots denote paired and unpaired bases, respectively. Since



we do not allow pseudoknots, there is a unique correspondence between paired
nucleotides and pairs of opening and closing brackets.

(a) Graph representation (b) Tree representation

0000000000000000000000000000000000000000000000000
1 10 20

(c) Mountain representation (d) Dotplot
AUAGCAUGGC AUACGCA AUAA| AUGCCUAGCAUA
G o). )LD

1 10 20 30 40

(e) Vienna notation

Figure 1.3: Various representations for RNA structures. We have the graph represen-
tation (a), RNA structures as a tree (b), the mountain plot (c), the dotplot
(d), and the Vienna string notation (e).

So far, we have only discussed the properties that a valid secondary structure
must satisfy, and we presented various representations of secondary structures.
We did not, however, sketch the algorithms to compute the secondary structure
given only the nucleotide sequence. We will make extensive use of these algo-
rithms in our computational experiments, because our default scoring system
relies on them. Therefore, this will be the topic of the following section which is
mainly based on the exposition of Hofacker and Stadler [69].



1.2.2 RNA Structure Prediction

The first attempts to compute the secondary structure of an RNA sequence s aim
at maximizing the number of paired base pairs, i.e., we want to find a set P over
all possible structures P such that we have

P| = maxpep|P| .

Nussinov et al. [110] give recursions for computing P. The recursion handles
the two basic cases of a nucleotide ¢, i.e., whether it is paired or unpaired. Let
Eli,...,j] be the maximal number of base pairs for substring s[i,...,j]. Then,
the recursion reads

Eli+1,....5]

Eli, ..., 7| = max , ,
[ ] {maxk7(i7k)pair(E[z+1,...,/€—1],E[/<:+1,...,j])—|—1

Figure 1.4 gives an illustration.

L]
1 J 11+ 1 J

i k—1kk—+13j

Figure 1.4: The Nussinov algorithm computes the maximal number of paired base pairs
of a sequence s. The recursions distinguish two basic cases: either a nu-
cleotide 7 is paired or unpaired.

Due to its simple objective function the experimental performance of the
Nussinov algorithm is not satisfactory. Hence, more sophisticated algorithms
have been developed that incorporate more knowledge about secondary struc-
tures. Nested secondary structure allow the decomposition of the total structure
into different loops: given an element (i,5) € P, we call nucleotide h accessible
from (i, j) if there is no other element (k,l) € P such that i < k < h <1 < j.
A base pair (k,l) € P is accessible from (i,7) if both k and [ are. We call the
k — 1 elements of P and k' unpaired bases that are accessible from the paired
nucleotides (i, 7) the k-loop closed by (i,j). We now distinguish different types
of loops according to the number of base pairs accessible from (i, j):

1. A 1-loop is called a hairpin loop.

2. If only one single base pair (7', j') is accessible from (i, j), then we call this
2-loop a

(a) stacked pair if we have i —i =1 and j — 5/ = 1.
(b) bulge loop if either i —i¢ > 1or j —j > 1.
(c) interior loop if both ' —i > 1 and j — j' > 1.



Figure 1.5: The are five main elements in RNA structures: stacked base pairs (A),
multiloops (B), interior loops (C), bulges (D), and hairpin loops (E). The
black circles and grey lines denote residues and hydrogen bonds between
complementary residues.

3. We call a k-loop with k > 3 a multiloop.

Figure 1.5 gives an illustration for the different loop types.

The k-loop decomposition builds the foundation of the standard energy model
to predict the secondary structure. Each loop [ has an energy contribution e(l),
and the total free energy of a structure P is given by >, e(l). Hence, we switch
our objective function for structure prediction from the number of paired bases to
the free energy of the ensemble. In particular, we are interested in the structure
that has the minimum free energy among all possible structures.

Note that the dominant terms for the energy calculation are stacked base
pairs, hydrogen bonds, and loop energies. The energy contributions depend on
the type and the size of the loop. Furthermore, the overall structure is stabilized
by consecutive stacking of paired bases: we call consecutive stacked base pairs
a stacked region or a stem. Zuker and Stiegler [161] first proposed recursions
for the computation of the minimum free energy, and the main concepts remain
valid since then. The time and space complexity of the algorithms is in O(n?)
and O(n?), respectively. There are two main implementations of the folding
recursions, MFOLD [160] and RNAFOLD [66]. Recently, Wexler et al. [147] gave
a reduction of the running time to O(n?).

The recursions use four DP tables—F', C', M, and M;—for storing interme-
diate results:

(a) Fli,...,j] gives the optimal energy value for subsequence s|i, ..., j].

(b) CIi,...,j] gives the optimal energy value for subsequence sli,...,j| given
that (4, j) forms a base pair. This case covers hairpin and interior loops.

(c) Mli,...,j] gives the optimal energy value for subsequence sli,...,j| such
that s[i, ..., j] is part of a multiloop with at least one outgoing stem.
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(d) M[i,...,J] gives the optimal energy value for subsequence s[i, ..., j| such
that s[i,..., ] is part of a multiloop with exactly one outgoing stem and we
have a closing base pair (i, h) with some h satisfying i < h < j.

Figure 1.6 shows how the computation of the entire optimal secondary structure
decomposes into the different cases. For the actual recursions the reader is referred
to [69].

~
|
5

o @

iid+l uwautlj—1j

=
<

j—13

S

. . - -
<. [ [ . <. | <.

~
5
g

+
—

<.
.

u u—+ 1

<.
S

S

Figure 1.6: A visualization of the recursions energy model for the ab initio prediction
of RNA secondary structures using the loop-base energy model: all possible
RNA structures can be decomposed into these subcases. The illustration is
taken from [69].

The energetic contribution of a multiloop is given by Ey;p = a+0b-degree+c-
size. Therefore, table M, is necessary to keep track of the size and the degree of
multiloops. The recursions model a multiloop as the concatenation of a substruc-
ture that contains at least one stem, and another substructure that is enclosed

by a base pair and contains exactly one outgoing stem. Observe that F[1,...,|s|]
only gives the minimum free energy value of the optimal structure. One has to
backtrack starting from F'[1,...,|s||] to compute the structure.

We now have a model that is much more developed compared to Nussinov’s
algorithm. The problem is, however, that the minimum free energy structure
needs not match the secondary structure that an RNA molecule exhibits. An-
other way to describe the structural features of an RNA sequence s are base pair
probabilities. Instead of giving one single structure that we compute using the
energy model, McCaskill [105] proposed a way to compute the partition function
of s, and subsequently derive base pair probabilities for every pair (i, j) of s.

The partition function is an important term from statistical mechanics and
links macroscopic phenomena, like the free energy or the entropy of a system, to
the microscopic world of molecules or particles. Assume we are given a system
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of different states and energy levels E;, then the probability p; to find the system
in the ith state follows the Boltzmann distribution, i.e.,

pi=e B

with 0 = ﬁ: T and k are the temperature in Kelvin and the Boltzmann constant,
respectively. All p; have to sum up to 1, because the system has to be in some
state. Hence, we have to compute a scaling constant ¢ for the energy values such
that > . p; = 1. Then, we have the following terms:

1 = Zce‘Eiﬁ
c = 1 with Z:Ze_Elﬂ
Z - '
Z is called partition function (observe that Z originates from the German word

“Zustandssumme” which captures the meaning of the partition function). Now,
we can give the probability for state i as

e~ Eif

A
We can use Z to compute the probability p;; that (i,7) forms a base pair. The
main idea is to compute the partition function Z;; for structures outside of subse-

quence s[i, ..., j]. Then, we need to compute the partition function for structures
that include the base pair (7, j). The probability reads

pi =

. —B;f8
Dij = ZijZip1j-1€” 7

with E;; being the energy contribution of base pair (7, 7). We will make extensive

use of base pair probabilities as structure scores in Chap. 5.

As stated in Sect. 1.2.1 the ultimate goal of RNA structure prediction is
the prediction of the entire tertiary structure of an RNA sequence s. Both the
Nussinov et al. and the Zuker/Stiegler algorithm, however, consider only nested
structures and discard all possible pseudoknots. There are some approaches
[118; 114; 115; 34; 35; 151] that aim at predicting secondary structures includ-
ing pseudoknots, but all these approaches suffer from two main problems: first,
the algorithms are restricted to special classes of pseudoknots, because the gen-
eral problem of predicting arbitrary pseudoknotted structures was shown to be
NP-complete [99]. Even on these restricted cases, the algorithms remain compu-
tationally expensive which limits their applicability to short sequences. Second,
we lack a set of sound energy parameters for pseudoknotted structures. The
energy parameters [102; 155; 104| for nested secondary structures are empiri-
cally derived from optical melting experiments. These experiments, however, do
not work anymore in the case of pseudoknotted structures, leading to other ap-
proaches like learning the parameters from a positive and negative set [34]. Due
to the importance of pseudoknots [131], this is an area of active research.
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1.3 Overview

This thesis introduces a novel model for the computation of multiple sequence-
structure alignments which is based on mathematical optimization. Chapter 2
provides all mathematical tools that we will use throughout the rest of the thesis.
This includes basic definitions from graph theory in Sect. 2.1, and from linear
programs and integer linear programs in Sect. 2.2. Subsequently, Sect. 2.3 gives
a description of Lagrangian relaxation and how the associated dual problem can
be solved. Finally, Sect. 2.4 briefly covers concepts from statistics of which we
will make use during the evaluation of our computational results. Chapter 3
describes the main algorithms and concepts for sequence-structure alignments
that were presented in the past.

Chapter 4 describes our formulation for the computation of exact multiple
sequence-structure alignments. We start by formally defining sequence-structure
alignments and show how we can phrase the problem definition in graph-theoretical
terms. We prove that the formulation matches the problem that we gave before.
Section 4.2 presents the transformation of the graph-based model into an integer
linear program. We identify a suitable class of constraints that we are able to re-
lax in a Lagrangian fashion. We solve the relaxed problem to provable optimality.
We give the computation of a feasible solution to the original problem afterwards:
we describe a reduction to the computation of maximum weight matchings.

We present an important extension to our initial model in Sect. 4.3: the
scoring of consecutive stacked base pairs. Again, we start by formally defining
the problem. We then give an integer linear program that matches the problem
definition, and this time we drop two classes of constraints and move them to the
objective function afterwards.

Chapter 5 starts by describing the input and the parameters that significantly
influence the solution process of the models described in Chapt. 4. Thereafter,
we give results on exact multiple sequence-structure alignments in Sect. 5.3. In
the following section, we present the computational results on the BRALIBASE
benchmark set. Based on the pairwise case of our multiple model we heuristically
compute multiple alignments by either using the external software package T-
COFFEE or by progressively aligning all input sequences. We compare our results
to several state-of-the-art programs both in terms of the quality of the solutions
and the running time. Thereafter, we compare the performance of the subgradient
to the bundle method. Finally, we implemented our approach within a branch-
and-bound framework to obtain provably optimal solutions even if the bounds do
not coincide. We report on the applicability and the limits of this method. We
conclude the thesis by discussing the major findings and sketching possible lines
of future research.



CHAPTER

2 Mathematical

Preliminaries

Well, your faith was strong,
but you needed proof.
Leonard Cohen
(Hallelujah)

This chapter introduces concepts that we will use throughout the thesis. First,
Sect. 2.1 outlines elementary graph theory, whereas Sect. 2.2 and 2.3 describe the
basics of (integer) linear programs and how to derive solutions using Lagrangian
relaxation. Finally, Sect. 2.4 presents some statistical methods of which we will
make use in Sect. 5.

The following exposition is based on various textbooks, for details the inter-
ested reader is referred to [33; 10; 107; 116]. Several sources [55; 46; 45; 94]
provide additional information especially on Lagrangian relaxation.

First, we introduce some notation from linear algebra: R/R,, Z, and Z, de-
note the sets of real, nonnegative real, integer, and nonnegative integer numbers,
respectively. Given an ordered finite set F = {ej,es,...,¢e,} and a field X, we
denote by XZ the set of vectors in which we index the components of each vector
by the elements in E. In the case of E' = {1,...,n} we write X™. We consider
vectors as column vectors and denote row vectors as transposed column vectors
yT. Given a set of vectors X¥ = {x1,..., 2}, we call z a convex combination of
Ti,. .. 1 if = Zle Aix;, with A; > 0 and Zle A = 1.

2.1 Graph Theory

A graph is a pair G = (V, E) where the sets V' and E denote the vertices and
edges of the graph. An edge e = (u,v) € E denotes a pair of nodes u and v.
Both u and v are said to be incident to edge e. Two nodes v and v are adjacent
if there exists an edge e = (u,v) € E. We denote the number of nodes and edges
by |V] and |E|.

We call G’ = (V',E') a subgraph of G if V! C V and E' C E. If G’ is a
subgraph of G, then we call G the supergraph of G'.

We call an alternating sequence of vertices and edges (v, €9, U1, - - -, €n—1, Un_1)
with e; = (v;,v;41),0 < i < n — 1 where all nodes and edges are distinct a path
of length n. If the path is closed, i.e., vo = v,_1, we call the path a cycle.

If we are able to partition the vertex set V' of G into k disjoint sets V{/, ..., V/_,
such that no two vertices within the same set are adjacent, we call G a k-partite
graph. A clique in a graph G = (V| E) is a subgraph of G’ with V/ C V and
E’ C E such that every pair of nodes in V' is adjacent.
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A directed graph, or digraph in short, is a pair D = (V, A) with V and A being
the sets of vertices and directed arcs. An arc a = (u,v) C V x V is an ordered
pair of elements of V', and we call a incident from u and incident to v. Two nodes
u and v are adjacent if there exists an arc a = (u,v) € A. For a = (u,v), we call
u and v the source and target node of a. The two functions s(a) and #(a) return
the source and target node for an arc a.

A mixed graph G = (V, E, A) consists of a vertex set V, the edge set E, and
a set of directed arcs A. A path p = (vg, €0, v1,...,€n-1,0,_1) in a mixed graph
is an alternating series of vertices and edges or arcs such that e; = (v;,v;41) € E
or e; = (v;,v41) € A with 0 < i <n — 1. All vertices and edges of the path are
distinct. If at least one edge e; € F and one arc e; € A are part of path p, then
we call p a mixed path. We call p a mixed cycle if vy = v,,_1.

The transitive closure of a graph G = (V, F) is defined as the graph G' =
(V, E') such that E' contains an edge e = (u,v) if there exists a path from u to v
in GG. The transitive closure of a digraph G is identically defined as for undirected
graphs.

An independent set of a graph G = (V, E) is defined as a set I’ C V such that
there are no two vertices i, € I’ that are adjacent. The maximal independent
set is the subset I’ with the maximal number of vertices. The computation of a
maximal independent set is NP-complete [49].

A matching in a graph G = (V, F) is an edge set M C E such that no two
edges €g,e1 € M share the same vertex. If |M| = % holds true, we call M a
perfect matching. For a graph where each edge e; € E is associated with an edge
weight w;, the matching of maximum weight is the edge set M such that M is a

. M|—1 . .
matching and ZL:(‘) w; is maximal.

2.2 Linear Programming

Intuitively speaking, a linear programming problem calls for the computation of
an optimal solution with respect to a linear objective function, satisfying a set of
linear constraints. The following exposition assumes that we want to maximize
the value of the objective function, but we can easily transform the definitions to
the case of minimization problems.

Let A € R™ ™ be a matrix and let b € R™ and ¢ € R" two vectors. A linear
programming problem is a system of Ax < b of linear inequalities and a linear
objective function ¢’z. We call a vector Z € R™ such that A7 < b a feasible
solution of the problem. If there does not exist such a vector z, we call the linear
program infeasible. The linear programming problem, or LP in short, addresses
the computation of an optimal feasible solution x* with respect to the objective
function ¢z, i.e.,

" = max{c'z | Ax < b}
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A different notation is

max c (p)

subject to Ax <b .

An important concept in linear programming is duality theory. Every linear
program (P) has its dual problem which is defined as

min  y7b (D)
subject to ATy =c¢
y=>0

We call (P) the primal problem and (D) its associated dual. Observe that the dual
of (D) is again (P). One deep result of duality theory describes the relationship
between the primal and the dual problem.

Theorem 2.1 (Strong duality theorem of linear programming). Let (P) and (D)
be linear programs which are dual to each other.

(a) If (P) and (D) have feasible solutions, then they have optimal solutions and
the optimal objective function values are the same.

(b) If (p) is infeasible, (D) is either infeasible or unbounded.
(c) If (P) is unbounded, (D) is infeasible.

The simplex method, developed by George Dantzig in 1947, computes an
optimal solution of a linear program. Although the algorithm has exponential
worst-case complexity, it has proven to work well in practice. Recently, Spielman
and Teng [130] gave an explanation for the excellent average-case performance of
the simplex algorithm. Karmarkar [77| introduced the interior point method to
solve linear problems in polynomial time in the worst case.

Linear programs formulating real-world problems often add integrality con-
straints on the set of feasible solutions. We call such a linear program a general
integer linear program, or ILP in short, which has the general form

max ¢’z (2.1)
subject to Az <b (2.1.1)
=y (2.1.2)

If we substitute constraints (2.1.2) by = € {0,1}, we get a (0/1)-integer linear
program. Computing optimal solutions for an ILP is NP-complete [49]. Popu-
lar methods that aim at solving ILPs, for example branch-and-cut algorithms,
use the LP-relaxation of an integer linear program: by dropping the integrality
constraints of an ILP, we get the corresponding LP-relaxation. Another popular
method to tackle ILP is Lagrange relaxation which we will present in the following
sections.
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2.3 Lagrange Relaxation

Consider the following ILP with A € R**" and C' € R>*™:

max ¢’z (1p)
subject to Az <b
Cx <d
re€Zy

Suppose that the constraints Az < b are difficult constraints, whereas optimizing
over constraints C'r < d alone is easy. The main idea is to drop the complicating
constraints which yields an ILP that is easier to solve than the original one. Then,
consider the following ILP with A € R:

max ¢z + A\ (b— Ax) (LR)
subject to Cx <d
r €Ll

We call LR(\) the Lagrangian relaxation of the original problem (1P), and the
vector A\ the Lagrangian multipliers. Lagrangian multipliers act as penalty terms
that become active as soon as constraints Ax < b are violated. The following
lemma states that LR(\) provides a bound on the optimal value z;, of (1p).

Lemma 2.1. LR()) is a relaxation of (1p) for all A > 0.

A consequence of Lemma 2.1 is that z;, < LR(\) for all A > 0. Defining a set
Qas Q ={r €Z | Cx <d}, we can see LR(\) from a different viewpoint, i.e.,

max,,co ¢ x; + A (b— Az (2.2)

Now, LR(\) is the maximum of a finite set of linear functions in A, and therefore
it is convex and piecewise linear. We are interested in the tightest bound, i.e., we
want to find the value of A that minimizes LR(\):

minyso max ¢’ x+ (b — Az) (LD)
subject to Cx <d
x €Ly

We call problem (LD) the Lagrangian dual of (1P) with respect to Az < b. 24
denotes the optimal value of the Lagrangian dual. It is important to state that
the strong duality theorem from Sect. 2.2 does not hold true anymore for the

Lagrangian dual. Instead, we have weak duality in the case of the Lagrangian
dual.

Lemma 2.2. We have zj, < 2q.
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Formulation 2.2 provides another description about the relationship between
the optimal value zj, and z4: computing the optimal value of the Lagrangian
dual is equivalent to the search for a convex combination z* of elements in () that
satisfies the dropped constraints Az < b as well. Then, we have ¢'z* = z4. The
main observation now is that computing =* € conv(Q) with Az* < b is dual to
the Lagrangian dual. In this case strong duality of linear programming applies.
It is important to state that this also implies that computing the optimal value
of the Lagrangian dual does not necessarily yield a solution that is also valid for
(1P).

An obvious question is the relationship between z,, 24, and 2.

Lemma 2.3. For zj, 24, and z, we have zi, < zq < zp. Additionally, the
following holds true:

(a) We have z, = zq for all cost vectors c if and only if

conv(Q N{x | Az < b}) = conv(Q) N{x | Az < b} .

(b) We have z, = 24 for all cost vectors c if and only if

conv(Q) = {z | Cx < d} .

This means that zj, and 24 coincide if the polyhedron that is spanned by
the complicating constraints Az < b, ie., the set P = {x € R} | Az < b},
has integer extreme points. Furthermore, if the LP-relaxation on Cz < d has
integral extreme points, then 24 equals 2, i.e., the value of the LP-relaxation of
the original ILP. Figure 2.1 shows a small polyhedron together with z,, 214, and
Zlp-

A special case of relaxing an ILP in a Lagrangian fashion is Lagrangian de-
composition [56; 129] which is also known as variable splitting [106] or variable
layering [51]. The main idea is to copy or rename variables in some of the con-
straints and treat them as independent variables afterwards. We must, however,
enforce that the decoupled variables have the same values, i.e., we have to add
equality constraints to the ILP. In a subsequent step, we drop the equality con-
straints and move them to the objective function associated with Lagrangian
multipliers. Consider the following ILP:

max clx
subject to Ax <b
Cr<d

r €L
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Figure 2.1: The thick lines span the polyhedron given by conv(Q), i.e., the integer points
of the polyhedron induced by the easy constraints Cx < d. The shaded area
gives the intersection of conv(Q) with the area satisfying the complicated
constraints Az < b. For the cost vector cy we have zj, < zig < z1p. Observe
that we can construct cost vectors ¢ such that zj, = 219 = 2, holds true.

The ILP is clearly equivalent to

max ¢ x
subject to Ax <b
Cy<d
r=1yY
x,y € 2

Dualizing the equality constraint z = y yields
max c'z+ M (y —2)
subject to Ax <b

Cy<d

T,y €Ll
which can be decomposed into

max,{(c" — ANz | Az < b,z € Z1} + max,{\"y | Cy < d,y € Z"} .

Again, we are interested in the sharpest possible bound, i.e.,
2y = miny[max, {(¢" = A\")a | Az < b,z € Z%} + max,{\"y | Cy < d,y € Z"}] .

Guignard and Kim [56] proved that zy, i.e., the bound obtained by dualizing
the equality constraints, can dominate the bounds that we get by dualizing either
set of constraints.

So far, we only considered how to relax an ILP in a Lagrangian fashion, but
we did not explain how we can compute the optimal value of the Lagrangian
dual. In the following two sections, we will address this issue by describing two
algorithms that aim at computing optimal values of the dual problem.
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2.3.1 Subgradient Method

The subgradient method is a general method to minimize any nondifferentiable
convex function. As we described in Sect. 2.3, the Lagrangian dual can be seen
as a finite collection of linear functions, and therefore it is convex and nondiffer-
entiable. The subgradient method is similar to gradient methods that are used in
differentiable optimization problems. There are, however, some important differ-
ences: subgradient methods, for instance, are not descent methods, meaning that
the function values are not strictly decreasing during the optimization process.

Let 6 : R — R be a convex function. We call a vector g a subgradient of
at position z if 8(y) > 0(z) + g* (y — x) holds true for all values of y. We call the
set of all subgradients of # at position = the subdifferential of  at x and denote
it by 06(x). If 0 is differentiable at x, then we have 06(x) = {V0(x)}, i.e., the
subdifferential consists only of the gradient of # at x. The following lemma gives
a necessary and sufficient condition for the minimum of a convex function.

Lemma 2.4. Let 0 : R* — R be a convex function. A vector x* minimizes 6
over R™ if and only if 0 € 96(z*).

Algorithm 2.1 describes the main stages of the iterative subgradient method.
The basic principle is to start at some initial point xy and move along a subgra-
dient s; for a certain stepsize v; through the search space. As long as we haven’t
found the provably optimal solution, i.e., 0 € 96(x;), or we have not reached a
predefined number of iterations, we move on.

Algorithm 2.1: Main steps of the subgradient method.

1 Start from an initial point xg, set ¢t = 0;

2 while stopping criterion not met do

3 Given x, choose a subgradient s; € 90(x;);

4 if s; == 0 then

5 L stop;

6 Compute stepsize 7y;

7 Set Ty1 = T + VS // update the current point

Since the subgradient method is not a descent method, we have to keep track
of the best solution value found so far, i.e., Opesy = min{é(zo),...,0(z;)}. There
are various approaches for the computation of stepsize v;, a fundamental result
due to Poljak [113] states that for stepsize adaption schemes that satisfy

k—o0

lim v, =0 and ka = 00
k=0

the series of 0(z;) converges to the optimal value z*. Setting v, = % satisfies
both conditions, but the practical convergence rate is poor. Held and Karp [60]
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propose a different way to adapt the stepsize:

0(z) — 0(2)

Yt+1 = M ’St‘

with p being a user-specific parameter and (%) being an estimate of the optimal
value 6(z*). Estimates for 6(z*) could, for instance, be computed by heuristically
inferring solutions that are feasible in the primal problem given the current point
().

In practice, the stopping criterion in Algorithm 2.1 is rarely met. Typically,
the optimization process is stopped after a fixed number of iterations. In our
computational experiments from Chap. 5, for example, we set the number of
iterations to 500, since we usually did not observe any dramatic improvement of
the value of the Lagrangian dual after that.

It is possible to use the single x; to infer solutions p(x;) that are feasible in
the primal problem. Given p(z;) after n iterations, then we can stop if

Opest = max {p(z;)} 0<t<n .

Figure 2.2 shows two typical runs of the subgradient method: either the con-
vergence process gets stuck, leaving a gap between the Lagrangian dual and a
heuristically inferred primal solution, or we obtain a provably optimal solution
for the Lagrangian dual if the upper and lower bound coincide.
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Figure 2.2: Two typical convergence scenarios using the subgradient method. The black
line gives the values of the Lagrangian dual, whereas the red line denotes
the scores of heuristically inferred primal solutions. Left side: after some
hundred iterations the convergence process gets stuck, leaving a gap between
the upper bound and primal solution. Right side: there is no gap left
between the upper and the lower bound, yielding a provably optimal solution
for the Lagrangian dual.
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2.3.2 Bundle Method

The basic idea of the subgradient method is to evaluate the convex function 6 at
some point x and use a subgradient s to obtain the direction towards the next
point. We do not, however, keep track of where we came from, i.e., we discard
all information about previous points and subgradients that we evaluated.

The bundle method removes this limitation. The main idea is to keep a
bundle B of k subgradients and use the set B to fit a quadratic function to the
subgradients. We are keeping a stability center  which acts as the point from
which we build our models. The minimum of the quadratic model yields the next
potential point z;1. We do, however, check whether the decrease of the objective
function value, 0(zy1) — 6(2), is big enough. If this is the case, we perform a
descent step and move the stability center to xy, ;. Otherwise, we perform a null
step and simply add xp,;—together with an associated subgradient gi.;—to the
bundle and construct an updated quadratic model. Algorithm 2.2 lists the main
stages of the generic bundle method. Observe that we assume to have access to
a function oracle that evaluates the function value 0(zx41) for a point zj,; and
that returns a subgradient gx,;. The function 6 defines the set of piecewise linear
functions as given by the bundle and returns the maximal value at position xy;
see the left side of Fig. 2.3 for an illustration.

Algorithm 2.2: Main steps of the bundle method.

Input : choose a bundle size k£ and an initial stability center &
1 while stopping criterion not met do
2 Solve the quadratic program

; SLTPATE
mln(mm)eRnJrl r o T T

r > 0(x;) + gt (v — x;) VO<i<k

Set xp 1 = x;
Get 0(zpy1) and ggy; using the function oracle;
Determine the regularized gradient § = (& — x41)/t;
Compute § = 0(&) — 0(zps1);
if O(xp1) <O(xg) — k-0 then
L T = Tpi1;; // perform a descent step

o N OO ook ®w

9 if |6] < €5 and ||g]| < €, then
10 L stop;

1 | Add (k41, grr1) to the bundle;

Line 2 contains the parameter ¢ that is crucial for the performance of the bun-
dle method, because t specifies the impact of the quadratic term on the objective
function value. If ¢ is large, then the impact is small leading to new points x4
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that are far away from the current stability center . Small values of ¢, on the
other side, constrain the next point xy,; to be in the vicinity of . The right side
of Fig. 2.3 gives an illustration of the models with different two different settings
for t.

0(z) 1 0(x) |

|
957 |

&

:'ck Sz T T1 T2

Figure 2.3: Left side: the function 6 evaluates the bundle and returns the maximum
value at zp. Right side: we get different models for different values of the
spring strength t. If the value t is small, we get models that look like ¢; and
that are closer to the stability center z. If we have a large value for ¢, we
get models that look like ¢5.

Line 7 gives the criterion for updating the stability center: x € [0, 1] denotes a
user-specific parameter, and we are testing the decrease of the objective function
compared to §. If the difference is big enough, we perform a descent step.

Line 9 contains the stopping criteria for the bundle method. If the expected
decrease is smaller than a user-specific threshold €5 and the regularized gradient,
ie., the difference between the current and the new stability center, is small
enough, then we stop the method, because we found the minimum of the convex
function #. In Chap. 5.4.4 we compare the performance of the subgradient to the
bundle method within the sequence-structure alignment scenario. For a detailed
description of the bundle method, the reader is referred to [94; 108|.

2.4 Statistics

This section briefly covers the statistical algorithms that we will use in Chap. 5.
We use Lowess curves and rank tests to visualize the results and compare the
performance of «««< .mine different programs. A more detailed description of
Sect. 2.4.2 can be found in any introductory textbook for statistics. =======
different programs. The two tests described in Sect. 2.4.2 can be found in any
statistical textbook. »»» > .r2179
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2.4.1 Lowess Curves

Lowess is also known as locally weighted polynomial regression, and it was de-
scribed by Cleveland [22] for the first time. Lowess regression is used to fit a
smoothed curve to a data set to illustrate a trend within the data. The main idea
is to fit a low-degree polynomial to a subset of the input data at each data point
x. We compute the coefficients of the polynomial by the weighted least-squares
method, i.e., we assign a higher weight to points that are close to the current
point x. Typical implementations of the Lowess algorithm use polynomials of
first or second order to avoid local overfitting of the data.

More formally, the set X = {xq,..., 7,1} denotes n data points with their
associated function values f(z;). We have a weight function wy(z;) that assigns
weights to each point z; while evaluating the current point x;. Then, for each data
point z;,0 < 7 < n, we compute estimates Bj (x;),0 < j < d, of the coefficients
in the polynomial regression of degree d, i.e., we want to compute Bj (x;) that
minimize :

Z wi (i) (f(vx) — Bo — Prwg — -+ — ﬂdmZ)Q

k=0

The smoothed function value f (x;) is given by the value of the fitted regression.
The subset of points z; that are used for fitting the polynomial, i.e., points sat-
isfying wy(x;) > 0 greatly influences the smoothness of the curve. One usually
has to set a parameter s that specifies the fraction of all data points used for the
computation of the polynomial. With s = 0.0 we do not consider any points in
the vicinity of x;, yielding a zig-zagged line. The other extreme is setting s = 1.0
which yields the smoothest curve possible, because at each point x; we take all
other points into account. Figure 2.4 shows a scatterplot with Lowess curves that
have different values for s.

2.4.2 Friedman Rank Sum Test and Wilcoxon
Signed-Rank Test

The nonparametric Friedman Rank Sum Test detects differences between test
results across ¢ test attempts (or samples). To be more specific, it checks whether
the ¢ different sample groups are having the same median.

Given n observations, each consisting of ¢ test values, we then replace the
data by their ranks within each of the observation. The smallest one gets rank 1,
and we assign rank c to the largest value in the row. If two values are equal, their
rank is the average of the ranks that they would have been assigned otherwise.
Then, we build a matrix R € R"*¢ with the matrix entry R(i,7) being the rank
of the jth test attempt in the ith observation.

The null hypothesis Hy assumes that there are no significant differences among
the ¢ test attempts, i.e., each ranking within an observation is equally likely.
Accepting Hy means that there will be no difference among the average ranks
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Figure 2.4: The crucial parameter for the shape of the Lowess curve is the parameter
s that specifies how many of the data points in the neighborhood should
be taken into account. The blue line shows the curve for s = 0.0, i.e., no
neighboring points are considered. The red and orange lines represent the
Lowess curve for s = 0.2 and s = 1.0. One can clearly see that the curve
becomes smoother with an increasing value of s.

for each test attempt. Otherwise, we know that there are significant differences
among the c test attempts and we have to perform pairwise comparisons to detect
significant differences between two test attempts.

The Wilcoxon Signed-Rank Test performs such a pairwise comparison. It
is a nonparametric test to check whether the median of n paired data differs
significantly. The main idea is to rank the differences between the paired data by
their absolute value, and assign 1 to the smallest and n to the largest difference.
Then we sum up the ranks of the positive and the negative differences. The test
statistic is the smaller one of the two values. If the null hypothesis Hy is true,
i.e., the median of the two observed samples is the same, then we expect the rank
sum of the positive and the negative ranks to be the same. In this case, we accept
Hy, and we reject it otherwise.

If we perform multiple Wilcoxon tests, then we have to correct the p-value
for multiple testing. In our experiments we used the conservative Bonferroni
correction to adapt the p-values. Using a significance value p for k tests, we have
to set the significance level for each test to 7.



CHAPTER

3

Previous Work

Frither war alles besser,
frither war alles gut.
Die Toten Hosen
(Wort zum Sonntag)

This chapter summarizes the main concepts of previous approaches for the
problem of computing sequence-structure alignments. Section 3.1 reviews various
sequence-structure alignment scenarios, together with a brief description of the
four main sequence-structure alignment models. Thereafter, we present each
model in detail.

Section 3.2 gives two general paradigms for the computation of multiple align-
ments. Both progressive and consistency-based alignment algorithms originate
from pure sequence-based alignment algorithms, but can be extended to incorpo-
rate structural information.

3.1 Sequence-Structure Alignments

3.1.1 Introduction

Depending on the available knowledge about the (putative) structures that we
want to align, there are three different alignment scenarios for two RNA struc-
tures, which readily extend to the multiple case.

1. Structure-to-structure alignment algorithms align two known secondary
structures, typically the minimum free energy structures. This scenario
applies if one searches for common structural motifs that are shared by
both structures and there is reason to believe that the secondary structures
are correct.

2. Structure-to-unknown alignment algorithms align a given structure to a
sequence with unknown structure. Applications are finding homologous
sequences by inferring a consensus structure to a sequence. This has been
done, for example, in case of the ITS2 database [153].

RNA filtering software, like FASTR[159] or PFASTR [158], employ a two-
stage strategy to find homologous structures for a given RNA structure.
First, they search for regions in the database that show similar sequence or
structural properties using fast searching strategies like indices, allowing for
a higher number of false positives. Thereafter, a verification phase follows
that separates the true from the false positives. The verification phase in
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the FASTR and PFASTR packages are performed as sequence-to-unknown
alignments. Searching homologous structures of noncoding-RNAs in large
genomic sequences has recently sparked considerable interest in the research
community, see |47| for a survey.

3. In the unknown-to-unknown alignment problem, no previous structural in-
formation is given. It applies when two RNA sequences are suspected to
share a common, but still unknown, structure. We constrain the space of
possible structures by the entire set of possible Watson-Crick and wobble
pairs. A reduction of the size of this space is possible, for instance, by
computing the partition function to obtain the base pair probabilities [105].
Then, one only considers those interactions whose probabilities are above a
certain threshold.

Figure 3.1 gives cartoon illustrations of the three scenarios.

I@I%%

GCGGAUAACCCC  GCGGAUAACCCC GCGGAUAACCCC
GGAUACCAUC ~ GGAUACCAUC  GGAUACCAUC
=3 e—3 w

(a) (b) ()

Figure 3.1: Different input alignment scenarios of RNA sequences (pairwise case): (a)
the alignment of two known structures, (b) of one known and one unknown
structure, and (c¢) of two unknown structures. The angled and round edges
represent fixed and unknown structures, respectively.

There are four major alignment models for RNA structures that tackle the
previous described alignment scenarios: annotated sequences, tree models, prob-
abilistic models, and graph-based models. We give small examples for each model
in Fig. 3.2. Table 3.1 classifies previous work in the area of structural RNA align-
ment according to the different models and scenarios. In the following sections
we will describe previous approaches for each model.

3.1.2 Annotated Sequences

We call a sequence augmented by structural information an annotated sequence.
In the unknown-to-unknown scenario we want to perform a simultaneous com-
putation of the alignment and consensus structure. The computational problem
of simultaneously considering sequence and structure of an RNA molecule was
initially addressed by Sankoff in [124], where the author proposed a DP algorithm
to align and fold a set of RNA sequences at the same time. The CPU and mem-
ory requirements of the original algorithm are O(n**) and O(n?*), with k and
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Figure 3.2: Different models representing RNA structures: (a) annotated sequences, (b)
graph-based, (c) probabilistic, and (d) tree-based models.

tree-based annotated sequences
structure-to-structure [134; 157; 75| |3; 44; 74]
structure-to-unknown — [3; 43; 12]
unknown-to-unknown — [124; 103; 101; 59; 58; 67;

137; 148; 81; 16; 133; 132]

probabilistic graph-based
structure-to-structure  [41; 122] |95; 4; 6; 89; 20; 18; 31|
structure-to-unknown  [41; 125; 121| [95; 4; 6; 89; 20; 18; 31]
unknown-to-unknown [72; 70; 71; 38| [95; 4; 6; 89; 20; 18; 31]

Table 3.1: Classification of previous work.

n being the number of sequences and their maximal length, respectively. The
O(n?) and O(n?) terms for time and space consumption follow from the recur-
sions for RNA folding: the improvements from [147|, where the authors present
an algorithm that runs in O(n?), brings the running time down to O(n?*). Em-
ploying the original Sankoff algorithm restricts the length of the input sequences
to 100 — 200 nucleotides. Therefore, various approaches have been proposed to
heuristically prune parts of the solution space. Current implementations modify
Sankoft’s algorithm by imposing limits on the size or shape of substructures, e.g.,
DYNALIGN [103; 101], or FOLDALIGN [58] that combine a sliding window and
banded alignment approach. These approaches, however, still apply a loop-based
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Figure 3.3: Nussinov-style recursions for computing a sequence-structure alignment of
two RNA sequences. The fourth case leads to a running time of O(nf)
in the unconstrained case. The matrix S; ;.x; holds the optimal value
of the sequence-structure alignment between subsequences Afi, ..., j] and
Blk,...,l]. The values S%;k,l give the optimal value for the alignment be-
tween subsequences Ali,...,j] and Blk,... ] given that (i,j) and (k,I)
form base pairs.

energy model making the computational requirements very expensive. The latest
version of FOLDALIGN [59] additionally applies a dynamic pruning algorithm that
discards parts of the DP matrix that does not score above a length-dependent
threshold.

Hofacker, Bernhart, and Stadler [67] follow a different track: instead of incor-
porating the complete loop-based folding model they mimic an energy model by
computing the base pair probability matrices, as given by the partition function
[105]. Afterwards, they align the matrices using recursions that are essentially
the same as the ones described in |124; 3|. Intuitively, their approach relates to
the loop-based Sankoff algorithm like the original Nussinov folding algorithm to
the Zuker energy model.

Figure 3.3 gives the recursions to compute a sequence-structure alignment
with linear gap costs of two RNA sequences. One recognizes the similarity to
the Nussinov recursions presented in Sect. 1.2.2: ~ represents the gap penalty,
o(A;, By) assigns a sequence score to the sequence alignment of ith character
of sequence A to the kth character of sequence B. The variable p;‘;‘B gives the
pairing probability for pair (7,7) in sequence A or B. Finally, 7(A;, A;; Bi, B))
denotes the sequence score for matching base pair (7, j) in sequence A with (k, 1)
in sequence B. In the unconstrained case, the recursions have a time and space
complexity of O(n%) and O(n'). By banding the range of possible alignment
positions, i.e., by restricting the range of variables h and ¢ for the fourth recursion
case in Fig. 3.3, the time and space complexity drops to O(n*) and O(n?). For the
multiple case, they align consensus base pair probability matrices in a progressive
fashion. Their original program package PMCOMP is written in PERL which
influences the running time and memory consumption. Therefore, there are two
reimplementations of the PMCoMmP ansatz, FOLDALIGNM [137] and LOCARNA
[148| written in JAVA and C++, respectively.
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FOLDALIGNM restricts the maximal length difference of the alignment of two
subsequences to a parameter ¢, which yields a reduced running time of O(n?§?).
Secondly, a two-stage procedure fills the DP matrix: the authors identify possible
branching points in the first place, dividing the sequences into unbranched sub-
sequences. These unbranched parts are then used to align the entire sequences.
On the other hand, LOCARNA makes use of the sparse nature of base pair prob-
ability matrices, i.e., there is only a constant number of significant entries per
row. By considering only the significant positions in the DP filling stage, the
authors reduce the overall time and space consumption to O(n?(n? + m?)) and
O(n? + m?), respectively.

Kiryu et al. [81] describe a recent reimplementation of the Sankoff recursions,
where they employ two strategies—the strip and the skip approximation con-
straints—for keeping the running time low. The strip approximation limits the
set of possible alignment positions to a band of width ¢ around an initial pair
hidden Markov model alignment, i.e., this first alignment is based on sequence
information alone. Secondly, the skip approximation constrains the set of possi-
ble bifurcation points to positions that are within the band computed during the
strip approximation stage. The set size of putative branching points is addition-
ally controlled via a user-specific parameter.

Bonhoeffer [16] suggested the following idea to align sequences of unknown
structures using the base pair probability matrices: one takes the highest up-
and downstream probability and uses these values as the scores for a traditional
sequence alignment. Given a sequence A, let p ; and pii be the highest up- and
downstream base pair probabilities of sequence A at position 7. Then, the score
s(i,7) for a match between positions ¢ and j reads

s5(i,7) = \/pl/fx,i “Pp,; T \/pflél,i 'de,j

for two sequences A and B. Given a matrix A with A(7,j) = s(i,j) we com-
pute a traditional sequence alignment using A as the scoring matrix. A recent
implementation of this idea is the STRAL tool [30].

Tabei et al. [133; 132| describe a different approach based on base pair prob-
ability matrices. They use the matrices to extract ungapped stem fragments of
length . Given a base pair probability matrix p#, a putative stem-fragment is
a set F' of continuous nested base pairs such that for each (i,j) € F we have
pg‘} > «: « defines the threshold for a probability to be considered. The authors
align these stem fragments in a consistent fashion, i.e., if we have overlapping
stem fragments in sequence A, then the aligned stem fragments in B have to
be overlapping as well. Note that the aligned stem fragments define the align-
ment of the helical parts of the sequence, i.e., loops are not aligned at this point.
Therefore, in a second step the loop regions are aligned by using the aligned stem
fragments as anchor points in a sequence alignment.

In the restricted structure-to-structure scenario, one can resort to more sophis-
ticated edit-models (EDIT in short) like the one proposed by Jiang et al. in |74]
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Figure 3.4: The operations in the edit model by Jiang et al.: we have both operations
on the structure and the sequence level, each one associated with a certain
cost. Given two annotated sequences A and B, we aim at finding the series
of edit operations of minimum cost such that we transform A into B.

where the authors specify operations—each associated with a specific cost—both
on the sequence and the structure level: the operations are arc match, arc mis-
match, arc altering, arc breaking, and arc removing modifying the structures, and
base match, base mismatch, and base deletion on the sequence level. Figure 3.4
gives a cartoon illustration for the single operations.

Similar to the notion of the edit-distance on the level of nucleotide sequences,
the authors devise algorithms to compute the edit distance between two annotated
sequences. As stated above, each edit operation e; is associated with a certain
cost d(e;). Given a series of edit operations I' = {eg, e, -+ ,e,} the overall cost
is given by 7, d(e;). We now want to find the series I' = {&p, &y, -+ ,&,} such
that Y 1 ;d(&;) is minimal and ' transforms the first into the second annotated
sequence. Jiang et al. give a dynamic programming algorithm that runs in O(n?)
to infer a known structure onto a second sequence, making the computation rather
tedious for longer sequences.

Evans [44; 43| started a new line of research by introducing the longest arc-
preserving common subsequence problem (or LAPCS in short). The LAPCS is
defined as follows: we are given two annotated input sequences (S, P;) and
(Sa, Py), with S; and Sy being sequences from some alphabet Y. P, and P, are
annotations, possibly containing crossing interactions, and we have a target length
[. The output is true if there exists a mapping M C {1,...,[S1|} x {1,...,]S2|}
such that |M| = [, and false otherwise. Furthermore, the following constraints
have to be satisfied:

1. M has to be a proper alignment, i.e., the order of the subsequences has to
be preserved.

2. arcs induced by the mapping have to be preserved, i.e., V(i1, j1), (2, j2) € M
if (i1,42) € Py iff (j1,j2) € Pa.

3. the subsequence induced by M is a common subsequence, i.e., V(iy,j1) € M
we have S}[i;] = Sa[j1]-
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Especially the second constraint distinguishes this model from the other align-
ment models for annotated sequences, because we have to enforce that arcs from
P, are conserved in P, via M. As we will see in Sect. 3.1.6, computing the LAPCS
is already NP-complete if both input annotations are nested structures. Blin et
al. |12] extend the original model by Evans and introduce the maximum arc-
preserving common subsequence (or MAPCS in short). The MAPCS introduces
two scoring functions f, : ¥* — N* and f;, : ¥? — N* that assign scores to the
mapping of nucleotides (f,) and the conservation of arcs (f,). Then, we aim at
finding a mapping (M, @), with M being the common subsequence of S; and Ss,
and @ being the conserved arcs of P; and P, such that

Z fo(Sild], Sa[5]) + Z Ja(S11i], S1j], S2[k], Sa[l])

(i,5)eM (4,3,k,1)€Q

is maximized. The original constraints for the LAPCS problem remain valid for
the computation of the MAPCS.

3.1.3 Tree-Based Models

As we have seen in Sect. 1.2, nested RNA secondary structures may be viewed as
trees. Hence, algorithms that compare trees can be applied to RNA structures.
A first model was introduced by Tai [134] and generalizes the edit problem on
strings [142] to tree structures which is known as the tree-edit problem. Informally
speaking, we have a set of operations 2 = {eq,...,e,}, each associated with a
certain cost d(e;), Ve; € 2. We are given trees 77 and T, whose nodes have labels
from some alphabet 3, and n = |T}| and m = |T| with n > m. Let ¥ = S U ),
with A being the null symbol. We are searching for the series S of edit operations
of minimum cost such that S transforms 77 into 7. For sake of simplicity we
assume in the following that the nodes and their labels are identical. The tree-edit
model provides three distinct operations:

(a) node relabeling (X — Y): the label of node X in 77 is changed to Y.

(b) node deletion (X — \): we delete node X from 77, all children of X
become children of the parent node of X, preserving the sibling relation of
the parent node. If X is the root node of 77, the deletion of X yields the
forest of the children nodes of X.

(c) node insertion (A — X): we insert a new node X into 77.

Figure 3.5 shows a small example of transforming tree 77 into another tree T5.
Given a series of edit operations I' = {eg,eq, -+ ,e,} the overall cost is given
by >7 ,0(e;). We now aim at finding a series [ = {ey,e1,...,&,} such that
S, 6(&;) is minimal and T' transforms 7; into Th. Tai’s original algorithm runs
in O(n - m - leaves(T})? - leaves(T3)?), which Zhang and Shasha [157] improve to
O(n-m-min(leaves(T7), depth(7}))-min(leaves(73), depth(73))). There are several

recent papers that report on variations on the original Zhang-Shasha algorithm,
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Figure 3.5: We transform 7} into 75 by relabeling node A to R (A — R), deleting node
X (X — \), and by finally inserting node E (A — E).

T Ty

Figure 3.6: Given two trees Ty and 75 we aim at finding a common supertree 7' whose
pairwise projections 7(7'|1) and 7(7|2) yield the two original input trees.

the interested reader is, for example, referred to [126; 39; 82|. Finally, Demaine
et al. [32] show that the worst case time complexity for the tree edit problem is
in O(n?).

An alternative way to compare trees is tree alignment which was introduced
Jiang et al. in [75]. Instead of transforming one tree into another one by a series
of edit operations, we are now searching for a common supertree 7" whose nodes
hold labels from ¥ x ¥, and the pairwise projections 7(T|1) and 7 (7T'|2) yield
the two input trees 77 and T,. A pairwise projection 7(7'|1) or w(7'|2) is defined
as the tree that we get by taking the first (or second) symbols of the nodes of
the common supertree 7', and by deleting all nodes that have the null symbol A
afterwards. Given a cost function 6 : ¥ x 3 — R that scores the nodes of the
supertree, we want to find the supertree T such that > (apyev(r) 9(a, ) is minimal.
Figure 3.6 shows a small example of a tree alignment of two input trees. Tree
alignment algorithms have complexities that are on average only slightly worse
than conventional sequence alignment. More precisely, their running time is in
O(n?- A?), where A denotes the maximum number of branches of a multiloop in
the input structures.
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A tool that builds upon the tree alignment paradigm is RNAFORESTER [64;
65]. It computes multiple structure-to-structure alignments of RNA sequences by
performing tree alignment in a progressive fashion.

3.1.4 Probabilistic Models

The use of hidden Markov models (HMMs) and profile hidden Markov models has
proven to be a very useful concept in the context of genomic sequence analysis.
Applying these algorithms directly to RNA related problems is not straightfor-
ward, because HMMSs are not able to account for the structural information of
RNA sequences.

Therefore, Eddy and Durbin [41] (and simultaneously Sakakibara and cowork-
ers |122]) describe stochastic context free grammars (SCFGs) for measuring the
secondary structure and primary sequence consensus of RNA sequence families.
A grammar contains a set of rules to generate strings, starting from some start
symbol. The main components of a grammar are a set N of nonterminal sym-
bols, a set T' of terminal symbols, and a set P of production rules. In the case of
stochastic grammars each production rule is associated with a probability. The
language of a grammar are all strings that, starting from the start symbol, can
be generated by successively applying the production rules.

SCFGs are grammars that model the tree-like structure of RNAs. A simple
SCFG that captures ungapped RNA structures is the following grammar, with
N={W,P,L,R,B,S,E} and T = {¢, A,C,G,U}. The nonterminal W denotes
any of the six other nonterminals (P,L,R,B,S,E), and a,b € T :

aWb  (pairwise emission)
aW  (leftwise emission)

Wa  (rightwise emission)
SS (bifurcation)

W (start production rule)
€ (end)

o= T

L A

Then, the RNA secondary structure from Fig. 3.7 yields the corresponding parse
tree.

The simple SCFG from above does not incorporate the presence of gaps,
and hence has to be extended by insertion and deletion states. The resulting
grammars—called covariance models—are quite complex, and there are three
main algorithms used in the context of covariance models: the inside, the inside-
outside, and the Cocke-Younger-Kasami (CYK) algorithm. These algorithms
compute the likelihood of an observed sequence x of length n, the expected num-
ber that each production rule is used, and the maximum likelihood parse of
sequence z, respectively. The runtime of these algorithms scales in O(n?). For a
detailed description the reader is referred to [40].

The SCFGs described so far are not suited to compute a sequence-structure
alignment of two sequences, because they are emitting at most one single symbol
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stem A stem B
R Sy — b5 Su — Lis
Ly, — abBs Py —  gPsc Lig — alyy
Bs —  S,51 Py  — clqg Lz — wulg
L —  aly Lig — aly
P —  algu Lig — gPy
Ly — clqg Py — aPynu
Ly — wuly Py —  gPye
Ly — gL Py —  glLas
Ly, — uki3 Lys — aLy
Eiz — € Loy —  algs
Los  —  ulog
Lys — uby
E27 — €

Figure 3.7: A toy example of an RNA secondary structure with the corresponding parse

tree of the SCFG.

on either side. The idea of pair HMMs that works for nucleotide sequences can be
extended to SCFGs: a pair SCFG captures the structural interaction of the input
sequences and emits two symbols on either side. The computational complexity
to compute structural alignments using a pair SCFG matches the one of the
unconstrained Sankoff algorithm, i.e., the space and time requirements scale in
O(n*m?) and O(n®*m?), respectively. This makes the unconstrained usage of
pair SCFGs practical only for short sequences. Hence, there are several papers
[72; 70; 71; 38| that propose heuristical constraints to improve the runtime.

In |72] Holmes and Rubin introduced the notion of a fold envelope. Instead of
iterating over all possible substrings like in the unconstrained case, the authors
only consider substrings of the input sequences that are consistent with precom-
puted secondary structures. Along these lines, Holmes |70; 71| generalizes the
concept of fold envelopes to alignment envelopes. Alignment envelopes specify a
set of positions between the two sequences that have to be aligned. By employing
alignment and fold envelopes the author is able to significantly reduce the overall
running time. Dowell and Eddy [38] also resort to the concept of alignment en-
velopes. They call an alignment envelope a pin and use pins as anchors in their
alignment: a pin is a fixed position in the alignment and they compute a set of
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pins via the posterior probability for each possible pair of aligned residues using
pair HMMs. Subsequently, these pins serve as constraints in their pair SCFG
formulation.

Sakakibara [121] combines pair HMMs with the tree alignment algorithm by
Jiang et al. and performs sequence-structure alignments of a known to an un-
known structure using pair HMMs on tree structures. In subsequent work [125],
Sato and Sakakibara build upon the recursions from [121], but they employ con-
ditional random fields (CRFs) [87] to learn the parameters for their model. CRFs
represent an undirected graphical model that generalizes standard HMMs in the
sense that CRFs are able to model overlapping and non-independent features
of the output. Furthermore, arbitrary functions replace the constant transition
probabilities of HMMs, and the feature functions—which map current observa-
tions at a certain node in the graphical model—may depend on the entire observed
sequence.

3.1.5 Graph-Based Models

Kececioglu [79] has introduced a graph-theoretical model for the classical pri-
mary sequence alignment problem. Lenhof, Reinert and Vingron [95] incorpo-
rate structural information and frame the sequence-structure alignment problem
as an integer linear program. Their objective function maximizes the sum of
aligned sequence scores plus the scores of interactions that are conserved by the
alignment. They propose a branch-and-cut algorithm and perform structure-to-
unknown alignments on data from the Furopean Ribosomal Database |154| and
compare the performance of their algorithm to sequence and manually curated
alignments. With an increasing number of variables, however, the computational
requirements become prohibitive.

Based on the formulation from [95], Lancia and coworkers |89] give an ILP
formulation for the related problem of computing the maximal contact map over-
lap of two proteins. The contact map of a protein A is a graph G = (V, F)
with V' and E being the sets of vertices and edges. For each amino acid of the
protein we have a vertex v; € V, and we insert an edge e; = (v;,v;) € E iff the
two corresponding amino acids ¢ and j are spatially close enough, i.e., 7 and j
are in contact with each other. The maximal contact map overlap problem of
two contact maps aims at computing a non-crossing mapping of residues from
the first onto the second protein such that the number of conserved contacts is
maximal. A contact from the first protein is conserved if its mapped endpoints
in the second protein are also in contact with each other.

The algorithm in [89] is based on the branch-and-cut principle, and the au-
thors are able to compute the optimal contact map overlap of small- and medium-
sized proteins. Following earlier work [21] on the quadratic knapsack problem,
the authors switch from branch-and-cut to Lagrangian relaxation in their subse-
quent paper [20]. Using Lagrangian relaxation they are able to solve instances
to provable optimality that are an order of magnitude bigger compared to the
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Figure 3.8: Given two proteins, the maximal contact map overlap problem calls for
the maximal number of contacts that are conserved through a mapping of
amino acids from the first onto the second protein. The mapping shown here
preserves three contacts, i.e., the contact map overlap is three. Since there
is no mapping with a higher number of conserved contacts, the maximal
contact map overlap is 3.

branch-and-cut algorithm. We adapted the formulation of Lancia and Caprara
[20] for the computation of RNA sequence-structure alignments in previous work
[4]. Compared to the first formulation of Lenhof et al. [95] we are able to solve
instances with a much higher number of variables in less computation time.

Davydov and Batzoglou [31] present a graph-theoretical model for the align-
ment of multiple RNA structures based on the notion of a nested linear graph
(we call this model MLG in short). A graph is a linear graph if we can place
its vertices on some line. Nucleotide sequences naturally give rise to such linear
graphs if we take the single nucleotides as the vertices of the graph. We add edges
between complementary base pairs. Then, given m linear graphs Gy, ..., G,, the
authors aim at finding the largest common nested linear subgraph (MAX-NLS)
among all m graphs. The MAX-NLS is defined as the largest nested graph G¢
such that G¢ is a subgraph of G; with 1 < ¢ < m. The authors show that finding
the MAX-NLS is NP-complete, but they give polynomial time approximation al-
gorithms with an approximation ratio of O(log® S) with S being the size of the
optimal solution.

Note that the graph-based model naturally deals with all three alignment
scenarios. In addition, unlike other algorithmic approaches, the graph-based al-
gorithms do not restrict the input in any way and hence can handle arbitrary
pseudoknots. They have been shown to play important roles in a variety of
biological processes, see [131] for a recent review. Most DP-based algorithms
assume nested secondary structures to compute subproblems efficiently. Few ex-
ceptions exist, for example [37], but these algorithms are always restricted to
certain classes of pseudoknots (like H-type pseudoknots) and do not handle the
general case. Brinkmeier [18] presents an algorithm to align various classes of
pseudoknots, but the recursion scale in O(n'*) and O(n®) for time and space,
making the algorithm inapplicable even for short sequences.
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3.1.6 Computational Complexity

The complexity of pairwise sequence-structure alignments of RNA sequences is
an intricate topic. The complexity does not only depend on the complexity of
the input structure, i.e., we do allow pseudoknots or not, but also on the model
that we are using and in some cases also on the scoring system.

The complexity of tree-based and probabilistic sequence-structure alignment
models is settled, as we have polynomial time algorithms that perform sequence-
structure alignments. Furthermore, the Sankoff algorithm and all its variants run
in polynomial time as well. The computation of a LAPCS, a sequence-structure
alignment using the edit model and graph-based models is more involved.

In Sect. 1.2 we described the four classes of possible input structures for RNA
structures, namely CHAIN, NESTED, CROSSING, and UNLIMITED. Table 3.2
which is taken from [12] gives an overview of the computational complexity in
the Lapcs, EpiT, and MLG model (remember that LApcs, EpiT, and MLG
denote the longest arc-preserving common subsequence, the edit-model by Jiang
et al., and the maximum linear subgraph, respectively).

AxB CHAIN NESTED CROSSING UNLIMITED
CHAIN CHAIN NEsT CHalN | Nest |  Cros CualN | Nest | Cros | UNriM
Ebir O(nm) O(nm?) NPC MAX-SNP hard
|43] 73] |13] |74]
O(nm) O(nm3) NPC
Lapos [43] [73] [43; 73]
M O(nm) O(n?m) O(n?m?) O(n*log®n) NPC O(n*log® n) NPC
LG
[63] [97] [97] [86] [17; 141] [86] [17; 141]

Table 3.2: The computational complexity of computing sequence-structure alignments
in different models under different input structures.

Blin and Touzet [14] further refine the computational complexity considera-
tions by restricting the allowed operations in the EDIT model. They introduce
three submodels of Jiang’s general model, such that we allow all substitution op-
erations, base-deletions and arc-removings (model I), additionally arc-alterings
(model IT), or arc-alterings and arc-breakings (model IT). Furthermore, one of the
main results of the paper is the proof that the LAPCS model can be reduced to
a special case of the EDIT model. In Sect. 3.1.2 we describe the MAPCS as a
variant of the original LAPCS problem. Blin et al. [12| prove that computing the
MaApPcs is NP-complete already in the case of two nested input structures.

Of particular interest for this thesis is the table entry for computing the MLG
if both input structures are crossing. This problem corresponds exactly to the
computation of RNA sequence-structure alignments in our graph-based model.
Goldman et al. show in [52| that computing the maximal contact map overlap
is NP-hard in the pairwise case. They also state that the computation of the
maximal contact map overlap, if every node has a maximum degree of 1, is
already NP-hard. This problem corresponds exactly to the sequence-structure
alignment of RNA structures in our model. Unfortunately, they omit the proof
and there is no full version of the paper available |112].
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Vialette [141] introduces the 2-interval pattern problem that corresponds ex-
actly to the sequence-structure alignment of RNA sequence with crossing input
structures. We score each conserved interaction with 1 and discard sequence-
specific information. Then, computing the maximal set of conserved 2-interval
patterns corresponds to the sequence-structure alignment problem in our model.
The authors give an explicit reduction from 3SAT to the 2-interval pattern prob-
lem and therefore prove that the problem is NP-complete.

3.2 Multiple Alignments

This section covers two general paradigms for computing multiple alignments that
were originally developed for the computation of pure sequence-based alignments.
They can, however, be extended to incorporate structural information.

3.2.1 Building Progressive Alignments

The main idea behind progressive alignment is to build a multiple alignment from
a series of pairwise alignments. In the beginning, we align two sequences and take
the resulting alignment as fixed. Successively, we choose a third sequence and
align it to the fixed alignment. This is repeated until no more sequences are
available.

Typically, the order in which the sequences are aligned is given by a guide
tree. We construct the guide tree using standard phylogenetic algorithms, e.g.,
weighted average linkage (WPGMA) or average linkage (UPGMA). Starting from
the leaves of the tree we align the sequences in a bottom-up fashion. The main
stages of a progressive alignment of k£ input sequences are the following:

1. compute the distance matrix A for the k sequences, i.e., entry A(i,j) de-
notes the distance between sequences ¢ and j.

2. compute the guide tree using a phylogenetic tree construction algorithm
like UPGMA.

3. perform the progressive alignment along the guide tree.

Figure 3.9 shows a toy example by aligning four input sequences in progressive
fashion. The figure also exhibits the main weakness of progressive alignments;
mistakes that are made in the lower part of the tree cannot be corrected later
on, which is summarized by the once a gap, always a gap paradigm. Figure 3.9
exemplifies the weakness of progressive alignments: seqA and seqB are the first
pair to be aligned, and fast cat of seqB is aligned to last fat of seqA. Taking
a look at the entire alignment, one realizes that aligning fast cat to fat cat
would improve the overall multiple alignment.

The progressive approach can be extended to incorporate structural informa-
tion. Previous work, like [65; 67|, perform pairwise sequence-structure alignments
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() D) (©)

A
SeqA 1011520
SeqA GARFIELD THE LAST FAT CAT SeqB 13130
SeqB GARFIELD THE FAST CAT
SeqC GARFIELD THE VERY FAST CAT SeqC 40
SeqD THE FAT CAT SeqD SeqA SeqB SeqC SeqD

SeqA GARFIELD THE LAST FA-T CAT
SeqB GARFIELD THE FAST CA-T ---
SeqC GARFIELD THE VERY FAST CAT
SeqD -------- THE ---- FA-T CAT

SeqA GARFIELD THE LAST FA-T CAT
SeqB GARFIELD THE FAST CA-T ---
SeqC GARFIELD THE VERY FAST CAT

SeqA GARFIELD THE LAST FAT CAT
SeqB GARFIELD THE FAST CAT ---

SeqA SeqB SeqC SeqD

Figure 3.9: The main stages of progressive alignments: (a) The input sequences. (b)
Compute the matrix A containing all pairwise distances between the input
sequences, and construct the guide tree using A (c). The actual alignment is
computed by pairwise alignments along the guide tree (d). The illustration
is taken from [109].

along a precomputed guide tree and compute consensus structures at the inner
nodes of the tree. A straightforward way to compute a consensus score between
positions (7, 7) is to take the average values of the structure scores between po-
sitions ¢ and j and compute the arithmetic mean of them. Figure 3.10 shows
an example of a sequence-structure alignment of five tRNA sequences using the
PMCowMmP software package [67]. As one can observe, the consensus structure
thins out along the guide tree.

3.2.2 Building Consistency-Based Alignments

As a remedy for the pure progressive alignment method, the authors of [109] pro-
pose consistency-based alignments. Although their algorithm is also progressive
in nature, they introduce a preprocessing stage that reduces the probability of
making a mistake early in the alignment phase.

The main idea behind consistency-based alignments is to perform all pair-
wise alignments, and then check for each aligned pair of residues how consistent
this pair is with the remaining pairwise alignments. Figure 3.11 shows the main
concepts by aligning the four input sequences from Fig. 3.9. Given the input
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Figure 3.10: Progressive sequence-structure alignment of five tRNA sequences. The
figure was generated using the PMCoMP software package [67].

sequences (a), we compute all pairwise alignments and assign their pairwise se-
quence identity as their weights (b). Then, we check for each pair of aligned
positions how well the aligned pair is represented by the remaining pairwise
alignments. As an example, we take the G in seqA and seqB denoted by Ga
and Gg. We then examine the alignment of seqA and seqB through seqC. We
observe that G4 is also aligned to Gp via Go. Hence, we add the smaller of the
two weight values Wy, = W(Gy4, Ge) and Wy = W (Ge, Gg). In our case this sums
up to 88+ min(77,100) = 165, with 88 being the weight of the alignment between
sequences seqA and seqB. We call the process of checking aligned positions via
the alignment of other sequences library extension. The weights computed during
the library extension computation are used as scores in the progressive alignment
phase.

The first implementation of consistency-based alignments is the T-COFFEE
software package [109]. Subsequently, several other programs resort to the same
idea, like MAFFT [78] or PROBCONS [36]. T-COFFEE is, however, the only
program that offers the possibility to incorporate alignment information from ex-
ternal sources. MARNA was the first program that uses this feature to compute
multiple sequence-structure alignment heuristically. In |5] we presented a first
version of our multiple alignment tool based on the pairwise information from
the model presented in Chapt. 4. This eventually led to the first version of the
LARA software package.
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Figure 3.11: Given the input sequences (a), we perform all pairwise sequence alignments
and associate the pairwise sequence identity as the weight to the alignments
(b). For every aligned position we perform the library extension (c), and
get new weights (d) for a standard progressive alignment strategy (e). The
illustration is taken from [109].






CHAPTER

A A Model for the Multiple

Sequence Case

Sie ist ein Modell,
und sie sieht gut aus.
Kraftwerk
(Das Modell)

In this chapter we present a model for the problem of computing multiple
sum-of-pairs sequence-structure alignments. The formulation unifies the models
from [4] and [1]. Section 4.3 describes an extension to the initial model that
takes the effects of stacking of adjacent base pairs into account. Main parts of
this chapter are published as [8]. Mind that for the moment we restrict ourselves
to the description of the formulation, we give extensive computational results in
Chap. 5.3.

4.1 An Exact Framework for the Multiple
Sequence-Structure Alignment Problem

Section 4.1.1 starts with mathematical definitions of alignments, gaps, and appro-
priate scoring functions. We then give a graph-based view of these definitions in
Sect. 4.1.2. Subsequently, Sect. 4.2 shows how we can transform the graph-based
model into an integer linear program (ILP), relax it and solve the relaxed ILP
efficiently.

4.1.1 Basic Definitions

Definition 4.1. Let X be some alphabet excluding the gap character “-”, and let
> = X U{-}. Given aset S of k strings s',...,s" over &, we call A = (3',...,§")
a multiple alignment of the sequences in S if and only if the following conditions
are satisfied:

1. the sequences §°, 1 < i < k, are over the alphabet 3.
2. all sequences &' have the same length |A|.
3. sequence §° without “-” corresponds to s?, for 1 < i < k.

4. there is no index j such that §; =" 1<4i <k By 3§ we refer to the
jth character in sequence s'. We define M;(j) as the mapping of s§ to its
position in the alignment, and refer by M, '(j) to the mapping from the



44

AAAAAA AAAAAA AAAAAA
AAA A-A-A- AAA--—-

(a) (b) (c)

Figure 4.1: Given the sequences from (a), a linear gap function would assign the same
gap score to the alignment of (b) and (c). The beginning of a gap, however,
should be penalized higher compared to subsequent gap characters, and
therefore the alignment of (c) is biologically more accurate.

position in the alignment to the actual position in the sequence. If §§ £
al wn . ; : :
and 8; # -7, 1 < j < |A], then we say that 33\/[;1(],) is aligned to S\-1G)

and to a gap otherwise.

Alphabets commonly used in computational biology are the four letter alpha-
bet ¥ = {A,G,C, T} or ¥ = {A,G,C,U} in the case of DNA or RNA sequences,
respectively. We define a scoring function o : 3 x 3 — R that represents the ben-
efit of aligning the two characters. Usually, pairs of identical characters receive
a high score, whereas different characters get a low score. We extend the score
definition to alignments:

Definition 4.2. Given a set S of k strings s!,...,s*, an alignment A consisting

of strings ', ..., 8% and a scoring function o, the sum-of-pairs (SPS) score of A

is defined by
k=1 k|4

SPS(A,0) => Y > o(5.4)

i=1 j=i+1 I=1

Intuitively speaking, the sum-of-pairs score adds up all scores of pairs of
aligned characters in the alignment A. Usually, we are interested to find an
optimal multiple sequence alignment under the scoring function o.

Definition 4.3. Given a scoring function ¢ and a set S of sequences, we aim at
computing an alignment A* with

SPS(A*,0) = maxaec4 SPS(A4,0) ,

where A is the set of all possible multiple alignments for S. We call A* an optimal
multiple sequence alignment of S under the scoring function o.

This score model does not explicitly model gaps; they are inherently present by
the alignment of a gap character to a non-gap character. Hence, it is not possible
to penalize different numbers of consecutive gaps differently. For example a gap
of length three—aligning three ‘A’s to three gaps—achieves the same score as
three separate individual gaps, see Fig. 4.1 (b) and (c).

Biological findings motivate a more complicated gap model: the beginning of
a gap should be penalized higher compared to subsequent gap characters. This
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leads to affine gap costs that score a gap of length = by a+ (x — 1)b, where a > b
are the gap open and gap extension penalties. Using this model clearly favors the
single gap, see Fig. 4.1 (c), over the three individual gaps, see Fig. 4.1 (b).

We therefore introduce the following score which models gaps explicitly and
hence can assign affine gaps costs (or any other gap cost) to the gaps in an
alignment. We denote a gap of length ¢ in sequence i at position j by a triple
(1,7,¢) and assign it a penalty score ¥(i, j, () € R<o.

Definition 4.4. Given a set S of k strings s, ..., s*, an alignment A consisting
of strings 5!, ..., 3%, a sequence scoring function o, and a gap penalty function +.

We denote the gaps in A with
G(A) :={(4,4,¢) | sequence i has a gap of length ¢ at position j in A} .

The gapped sum-of-pairs (GSPS) score of A is defined by

GSPS(A,0,7) Z DN o)+ D 60

i=1 j=it1 =1 (i.,3.£)€G(A)

Note that v assigns negative scores to gaps in the alignments.

As described in Sect. 1, sequence alignments are in general not sufficient to
build reliable RNA alignments. Therefore, in addition to the gaps, we propose
to incorporate structural information. This leads to the notion of annotated
sequernces.

Definition 4.5. Let s = s1,...,s, be a sequence of length n over the alphabet
Y ={A, C,G,U}. Apair (s;,s;) is called an interaction if i < j and nucleotide i
interacts with j. In most cases, these pairs will be (G, (), (C,G), (4,U), (U, A),
(G,U), or (U,G). The set p of interactions is called the annotation of sequence s.
Two interactions (s., s¢) and (s4, s,) are said to be inconsistent if they share one
base; they form a pseudoknot if they cross each other, that isife < g < f < h
or g <e<h< f. A pair (s,p) is called an annotated sequence. Note that a
structure where no pair of interactions is inconsistent with each other forms a
valid secondary structure of an RNA sequence, possibly with pseudoknots.

Definition 4.6. Given a sequence alignment A = (3',... 8%) of k sequences,

consider two annotated sequences (s, p') and (s7,p’ ) We call two interactions
(s,8%) € p’ and (s5 ,s7) € p’ a structural match if s is aligned with s/ and sf

is aligned with s7. TWO structural matches (se,sf) (87, sf) and (5, sh) (87, §)
are inconsistent if either e = g, f = g, e = h, or f = h. We deﬁne a scoring
function 7 : ¥* — R that assigns a score to quadruples of characters representing
the benefit of matching the two interactions.

In other words, in the case of a structural match of two interactions, their “left”
and “right” endpoints are aligned by A. Two structural matches are inconsistent
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| ———= 11|

3t -GCGGAUAACCCC

| ——= 1|

52 [GG-AUA-CCA-UC
| I |

Il— I

8 I--GIC -CCU-CC

Figure 4.2: Realized structural matches are highlighted with grey edges. The structural
match = = [(82,52), (53, 82)] (the red dotted edges) is inconsistent with the

structural match y = [(32, §2,), (83, 33,)], that is we either score x or y.

if they share an aligned column. In the case of RNA sequences, we allow each
nucleotide to be paired with at most one other nucleotide, inconsistent matches
represent pairings with two or more nucleotides which we do not allow for RNA
sequences. This leads to the definition of sequence-structure alignments of RNA
structures.

Definition 4.7. Given a set S of k strings s', ..., s* and an alignment A consist-
ing of strings 3',..., 8% Let G(A) be the set of all gaps of A, and let o, 7, v be
functions for scoring sequence, structural matches, and gaps. Then, the gapped
structural sum-of-pairs score of A is defined by GSSPS(A, 0, 7,7) =

k-1 k A Al-1  |A] o
Z Z Z (S;,§g Z Z Sl’Sl’ A:TNSJ ) + Z 7(27]76) )
i=1 j=i+1 \ I=1 I=1 m=I+1 (i,j,0)EG(A)

which does not score inconsistent structural matches, that is, every base is part
of at most one structural match.

Figure 4.2 gives an illustration for the definitions from above. In analogy to the
optimal sequence alignment problem, we consider the optimal sequence-structure
alignment of RNA structures:

Definition 4.8. Given scoring functions o, 7, and v for scoring sequence, struc-

tural matches and gaps. Let S be a set of k sequences s',...,s*. We aim at

computing an alignment A* with
GSSPS(A*,0,7,7) = maxaea GSSPS(A,0,7,7) ,

where A is the set of all possible multiple alignments for S. We call A* an optimal
multiple sequence-structure alignment of .S.

4.1.2 Graph-Based Model for Structural RNA Alignment

Basic Model We are given a set of k annotated sequences {(s*,p!), ..., (s*,p%)}
and model the input as a mixed graph (V, LUF U DUG). The set V denotes the
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Figure 4.3: Basic graph model of three annotated sequences containing lines (grey solid
lines) and interaction edges (blue dotted edges). For sake of clarity we do
not show all alignment edges, only the ones incident to v},

vertices of the graph, in this case the bases of the sequences, and we write U;- for
the jth base of the ith sequence. The set L contains undirected alignment edges
between vertices of two different input sequences—for sake of better distinction
called lines. A line [ € L with [ = (v}, v}),i # j represents the alignment of the
kth character in sequence ¢ with the /th character in sequence j. The set L%
represents all lines between sequences ¢ and j. We address the source node and
target node of line [ by s(I) and t(l). For I = (vi,v]) we have s(I) = v} and
t(l) = vlj . The set LZ-C is the subset of L¥ containing only alignment edges whose
source node is vi. Observe that the graph (V| L) is k-partite.

The edge set F' models the annotation of the input sequences in our graph.
Consequently, we have interaction edges between vertices of the same sequence,
i.e., edges (vi,v}) representing the interaction between vertices vi and v}. Fig-
ure 4.3 illustrates these definitions.

Consecutivity and Gap Arcs In addition to the undirected alignment and
interaction edges we augment the graph by the set D of directed arcs representing
consecutivity of characters within the same string. We have an arc that runs from
every vertex to its “right” neighbor, i.e., D = {(v}, v}, ) |1 <i <k, 1 <j <|s'|}.

At this point, gaps are not represented in our graph model. Hence, we intro-
duce the edge set G: for each pair of sequences (7, j) we have an edge a?} from v’
to v} representing the fact that no character of the substring Se...8%1s aligned to
any character of the sequence j, whereas s,_; (if e > 1) and %, (if f+1 < [s/])
are aligned with some characters in sequence j. We say that v, ..., v} are spanned
by the gap arc ai]]'c. The entire set G is partitioned into distinct subsets G¥ with
i,j=1,....k i#j,and G¥ = {a € G|1<1<m <|s}. Intuitively, for
each sequence 7 we have k — 1 arcs between each pair of nodes (v, v}) in order to
represent gaps between the sequence and the remaining £ — 1 sequences.

Two gap arcs agf, a¥ € G wlo.g e < m, are in conflict with each other
it {e,....f+1}n{m,...,n} # @, that is, we do not allow overlapping or even
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Figure 4.4: A longer gap cannot be split into two shorter gaps: the two dashed gap
edges are in conflict with each other and are replaced by the solid gap edge
spanning the two shorter gap edges.

)

st G A~ A—~G—C

(b)

Figure 4.5: (a) Basic graph model augmented by gap edges (interaction edges are not
displayed). The colour of the gap edges indicates to what other input se-
quence the gap edges refer to. The right side (b) shows an instance of a
mixed cycle.
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w N
—~
&
~—~—

touching gap arcs. This is intuitively clear, because we do not want to split a
longer gap into two separate gaps; as a result there has to be at least one aligned
character between two realized gap arcs. We define a set C containing all maximal

sets of pairwise conflicting gap arcs. Finally, we define GZHM as the set of gap
e Vs

arcs that span the nodes v¢ . .. v}. See Fig. 4.4 for an illustration.

Mixed Cycles A pathin (V, LU D) is an alternating sequence vy, e, v9, €9, . . .
of vertices v; € V and lines or arcs e; € L U D. It is a mixed path if it contains
at least one arc in D and one line in L. A mixed path is called a mixed cycle
if the start and end vertex are the same. A mixed cycle represents an ordering
conflict of the letters in the sequences. In the two-sequence case a mixed cycle
corresponds to lines that cross each other. The set of all mixed cycles is denoted
by M. A subset £ C L corresponds to an alignment of the sequences s',...s*
if £U D does not contain a mixed cycle [79; 117]. In this case, we use the term
alignment for L.
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Interaction Match Two interaction edges r = (vi,v) € p’ and s = (v) ,vl) €
p’ form an interaction match if two lines e = (v, v ) and f = (v}, v?) exist such
that e and f do not cross each other. A subset £ C L realizes the interaction
match (e, f) if e, f € L. Observe that the definition of an interaction match is
a graph-based reformulation of a structural match as defined in Sect. 4.1.1. The

set I contains all possible interaction matches of L.

Gapped Structural Trace A triple (£,Z,G) with LC L, Z C I, and G C G
denotes a valid gapped structural trace if and only if the following constraints
are satisfied:

1. Fori,j=1,...,k, i # j we define LY = L N L. Then, for [ = 1,...,]|s|
the vertex v} is incident to exactly one alignment edge e € £¥ or spanned
by a gap arc g € GY.

2. An alignment edge [ can realize at most one single interaction match (1, m).

3. There is no mixed cycle M € M such that M N L = M.

4. There are no two gaps arcs a,a € G such that @}, is in conflict with
aid

mn’

5. Given L, we denote by H(L) the transitive closure of £. Then
H(L)=L

must hold true. This makes sure that alignment £ also realizes all transitive
edges induced by L. See Fig. 4.6(a) for an illustration.

Fig. 4.6(b) shows a valid gapped structural trace and the corresponding align-
ment.

Observation 4.1. There is a one-to-one mapping between alignments realizing
structural matches and gapped structural traces.

Proof. The correspondence follows the observation in [1|. In our case, however,
we have to additionally map structural matches to realized interaction matches in
the gapped structural trace. Due to the one-to-one mapping between structural
matches and interaction matches, this is straightforward. m

We assign positive weights w; and w;; to each line [ and each interaction
match (i,7), respectively, representing the benefit of realizing the line or the
match. Although we can set each weight independently, line weights are usually
set by empirically derived mutation score matrices where o(st, s{ ) gives a high
value for identical (or similar) characters. In Sect. 5.4.2 we will further elaborate
on commonly used scoring schemes.

Note that since each interaction edge occurs in two interaction matches (m, ()
and (I, m) we divide the weight of these edges by two. Finally, we assign nega-
tive weights to gap edges az representing the gap penalty for aligning substring
st ...st with gap characters in sequence j.
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Figure 4.6: (a) Transitive edges must be realized: if k and [ are part of the alignment,
then m has to be realized as well. (b) Example of a valid gapped structural
trace of three annotated sequences. Three interaction matches are conserved
by the alignment.

4.2 Integer Linear Program and Lagrangian
Relaxation

This section starts by describing our integer linear programming formulation for
the multiple sequence-structure alignment problem, which is based on the model
from the previous section. We then show how to compute solutions to this integer
linear program (ILP) using the Lagrangian relaxation method.

4.2.1 Integer Linear Program

We associate binary variables with each line, interaction match, and gap edge, and
model the constraints of a valid gapped structural trace by suitable inequalities
in the ILP.

The handling of lines and gap edges is straightforward. We associate an = and
a z variable to each line and gap edge having the following interpretation: we set
x; =1 if and only if line [ € L is part of the alignment £, and z, = 1 if and only
if gap edge a € G is realized.

Interaction matches, however, are treated slightly differently. Instead of as-
signing an ILP variable to each interaction match, we split an interaction match
(I,m) into two separate directed interaction matches (I,m) and (m,[) that are
detached from each other. A directed interaction match (I,m) is realized by the
alignment £ if [ € £. We then have y;,,, = 1 if and only if the directed interac-
tion match (I, m) is realized (note again that v, and y,, are distinct variables).
Figure 4.7 gives an illustration of the variable splitting. This does not change the
underlying model, it just makes the ILP formulation more convenient for further
processing as we shall see in the sections to come.

Splitting interaction matches has first been proposed by Caprara and Lancia
in the context of contact map overlap [20]. The general concept of variable
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Figure 4.7: One interaction match is split into two directed interaction matches.

splitting, or Lagrangian decomposition, is, however, a well-known technique in
mathematical programming |56|.

max Z wyxr; + Z Wg2g + Z Z WimYim (4'1)

leL geqG leL meL
st Y m<[LnM|[-1 YMeM (4.2)
leLNM
g —x, <1 V(,km)elL, (x,x z,) forming a cycle  (4.3)
Yz <1 VCeC (4.4)
aeC
Yoowmt+ ) =1 1<i,j<ki#jVmelL’ (4.5)
leLf(m) aeG;J(l)Hs(l)
> ym<m VieL (4.6)

meL,(l,m)
not crossing

Yim = Ymi Vl,m €L (47)
€ {0,1}* ye{o, 1}
z€{0,1}¢

Figure 4.8: Master ILP

Definition 4.9. We call the ILP (4.1)-(4.9) of Fig. 4.8 the master ILP.

Note that we set the weights w;, wy, and wy, for [, € L and g € G as
described in Sect. 4.1.2, and therefore we have w, < 0 for g € G.

Lemma 4.1. A feasible solution to the ILP (4.1)—(4.9) corresponds to a valid
gapped structural trace and vice versa.

Proof. We first prove that a feasible solution (z, 9, 2) of the ILP describes a valid
multiple gapped structural trace.
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Let £ = {l € L | # = 1}. Observe that constraints (4.2) guarantee that L
does not contain mixed cycles. If £ generated a mixed cycle M, then LN M| =
|M|. But this would contradict (4.2) that ),y 71 < |LNM|—1. Furthermore,

there cannot be lines k, I € £ such that there exists a line m ¢ £ that is induced
by k and [, i.e., m is the transitive edge induced by k and [. If this was the case,
we have a sum of 2, contradicting constraints (4.3).

Constraints (4.4) guarantee that there are no mutually crossing gap edges:
assume there exist two gap edges ag and a% that cross each other. Consequently,
they are in the same set C' € C of conflicting gap edges contradicting that the
sum of (4.4) is constrained by 1.

Equality (4.5) guarantees that every node is incident to exactly one alignment
edge or spanned by exactly one gap edge. If a node was not incident to any line
or gap edge, we had a sum of 0. There cannot be any node incident to a line and
spanned by a gap edge, because this implies a sum of 2.

Finally, a line cannot realize more than one directed interaction match, oth-
erwise this violates constraints (4.6).

To complete the proof, we have to show that a valid gapped structural trace
represents a feasible solution to the ILP. Given (£,Z,G) with £L C L, Z C I, and
G C G that form a valid multiple gapped structural trace. Set the values of the
Z, y, and 2 variables in correspondence if the respective edges are part of £, 7, or

g. n

Definition 4.10. We call the relaxed ILP consisting of (4.1)-(4.9) without (4.7)
the slave ILP.

Lemma 4.2. The slave ILP is equivalent to the multiple sequence alignment
problem with arbitrary gap costs.

Proof. The key observation is that after the removal of constraints (4.7), variables
Yim appear only in constraints (4.6); thus, each variable x; is associated with a
set of y;,,, the set of outgoing interaction matches that [ can realize.

Hence, we have to distinguish two cases, depending on whether a line [ is part
of an alignment or not. First, assume z; = 0. In this case, as a consequence
of (4.6), all y;,,, must be zero as well. If, however, a line | = (v,i,v{) is part of
an alignment, its maximal contribution to the score is given by solving the ILP
shown in Fig. 4.9. Inequality (4.11) states that we can choose only one single
interaction match from the set of outgoing interaction matches that alignment
edge [ can possibly realize. According to the objective function (4.10) it is clear
that this will be the one with the largest weight wy,,. Furthermore, there cannot
be a gap arc that spans vertex v or Ulj , since otherwise constraints (4.12) would
be violated. This ILP (for each line 1) is easily solvable by just selecting the most
profitable outgoing interaction match (I, m) such that [ and 7 are not in conflict,
which can be done in linear time. Therefore, the profit a line can possibly achieve
is solely computed by considering the weights of line [ and of the best directed
interaction match (I,7) that line [ can realize, i.e., p; = w; + Wy,
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P i=max  w; + E WimYim + E WaZq (4.10)
mel a€{Gy LY Gy}

s. t. Z Y < 1 (4.11)

meL,(l,m)
not crossing

> =0 (4.12)

i

“e{G?{z)Hs(z)UG{(z)Ht(l)}

L LXxL
re{0,1}* ye{0,1} (4.13)
2 e {0,1}¢ (4.14)

Figure 4.9: Constraints that have to satisfied if an alignment edge [ is part of the align-
ment, i.e., if r; = 1.

In the second step, we compute the optimal score by solving the ILP consisting
of the remaining constraints, which is listed in Fig. 4.10.

max Zpl:vl + Z WyZg

leL 9eG
st Y m<|[LnM|[-1 VM e M

leLAM

Ty — T, <1 V(l,k,m) € L, (x, xk, x,) forming a cycle

Yz <1 vCecC

acC

dwmt > =1 1<i,j<ki#jVmeLi

leLi{m) aeGi{l)Hsm

z € {0,1}*F

z€{0,1}¢

Figure 4.10: Computing the solution for the relaxed problem. Observe that the ILP only
contains x and z variables, because the values of the y variables depend
on the x variables.

The remaining ILP only considers x and z variables, because due to the case
distinction described above the values of the y variables depend on the value of
the corresponding x variables. Then, the remaining constraints correspond to the
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multiple sequence alignment formulation given in [1].

Let (x*, z*) be the solution to this problem. We claim that an optimal solution
of the relaxed problem is given by (z*, y*, 2*) by setting v}, = 2% Y15 (remember
that vy, is the highest scoring directed interaction match that [ can realize), and
by setting the x and z variables according to the solution of the multiple sequence
alignment problem. First, it is easy to see that (z*,y*, 2*) is indeed a feasible
solution of the relaxed problem, since (z*,z*) represent a valid alignment (with
arbitrary gap costs) and our choice of y* does not violate the restrictions given
n (4.6). To see that (z*,y*, z*) is optimal, observe that its value is determined

by

Zplﬁ + Z Wyzg = Z(wl + Wi )T} + Z wyz,

leL gelG leL geqG
lEL geG leL meL
~
optimal sol. for MSA optimal sol. for y;,;, due to (4.10)7(4.14)

We now proof that (z*,y*, 2*) is indeed the optimal solution. Assume that
there exists a valid solution (z*, %, 2*) that has a higher objective function value
than (z*,y*, 2*). Clearly, (z*, z*) and (z*, z*) differ in at least one position, and
both form valid alignments (we have to consider only z and z variables, because
the values of y follow from the choice of z). If, however, (z*,z*) forms a valid
sequence alignment, we would have found it in the first place, because we are
computing optimal multiple sequence alignments.

4.2.2 Lagrangian Relaxation

Obviously we have not yet solved the master ILP, since we dropped equali-
ties (4.7). Instead of just dropping them, we relax the master ILP in a Lagrangian
fashion. We move the dropped constraints into the objective function and assign
a penalty term—the Lagrangian multiplier—to each dropped constraint. The
multipliers represent a penalty to the objective function in the case the dropped
constraint is not satisfied. Moving constraints (4.7) into the objective function
yields the Lagrangian dual, which is the slave ILP with the objective function

max Zwlxl + ngzg + Z Z WimnYim + Z Z )\lm(ylm - yml) : (415>
leL geG leL meL leL meL

Exploiting the fact that A\, = —A,;, which we ensure below, (4.15) can be
reformulated to

max Z wyxy + Z Wyzg + Z Z(wlm + X)) Y - (4.16)

leL geG leL meL
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Note that, according to Lemma 4.2, we can solve instances of the Lagrangian
problem by solving a multiple sequence alignment problem with arbitrary gap
costs where the profits of the interaction matches are coded in the weights of the
lines.

We want to determine the Lagrangian multipliers that provide the best bound
to the original problem. In practice, iterative subgradient optimization, that we
described in Sect. 2.3.1, is widely used. This method determines the multipliers
of the current by adapting the values from the previous iteration.

More formally, we set A} = 0,Vm,l € L and

Lt =0
)\;;;1 = gm — i if ng =1
N+ it =-—1

; Uy — UL
K2 _ * * _
where Stm = Yim — Ymi and Yi = H Z ( i )2 :
Sim
Il,mel

Here, p is a common adaption parameter and vy and vy, denote the best upper
and lower bounds, respectively.

In each iteration of the subgradient optimization procedure we get a value for
the Lagrangian dual. Given this series (v',v?, ..., v") we can set vy to min{v’ |
1 <i < n}, the lowest objective function value of the Lagrangian dual solved so
far. The computation of a lower bound is more involved and we show in Sect. 4.2.3
how to use the solution of the relaxed problem to deduce a good feasible solution.

In our computational experiments we also tried more advanced methods to
solve the Lagrangian dual, for example bundle methods [94]. However, currently
the described subgradient optimization exhibits better convergence properties
than bundle methods as the results from Sect. 5.4.4 show.

Note that unless the lower and the upper bound v; and vy coincide, we
cannot guarantee optimality. Even if we had already found the optimal value
v* of the Lagrangian dual, the solution corresponding to v* is not necessarily a
valid solution in the primal problem. Our experiments, however, show that in the
case of instances that share medium or high structural similarity, the lower and
upper bound often coincide yielding provably optimal solutions for our original
problem. If however, the two bounds do not match, an incorporation of the
Lagrange bounds into a branch-and-bound framework is straightforward. We
report the results of the branch-and-bound implementation in Sect. 5.5.4.

Solving the relaxed problem in the pairwise case. The solution of the re-
laxed problem in the multiple case amounts to the computation of an exact mul-
tiple sequence alignment. If we consider the special case of two input sequences
st and s?, with n = |s'| and m = |s*| and n > m, then we can use standard
dynamic programming algorithms to solve the relaxed problem in O(n?).
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For the total running time of k iterations we have to additionally consider
other factors. We have O(n?) possible alignment edges, and if we allow inter-
actions between every pair of nucleotides, then every alignment edge has O(n)
possible partner edges. We store the partner edges in a priority queue leading to a
complexity of O(nlgn) for building and updating each one of the O(n?) priority
queues. This yields a complexity of O(n?lgn) for a fixed number of iterations.
Priority queues are necessary, because we adapt the Lagrangian multipliers in
each iterations, and we want to access the highest scoring interaction match in
constant time.

For an RNA sequence the number of potential interactions is, however, typi-
cally constant, leading to a constant number of possible partner edges in the case
of sequences. Therefore, the O(nlgn) term is in fact constant, yielding a total
running time of O(n?).

4.2.3 Computing a Feasible Solution

A solution (z*,y*, z*) of the Lagrangian dual yields a multiple alignment £ (rep-
resented by z*) plus some information about interaction matches coded by the
y*-values; see Fig. 4.11 (a). If for all lines | and m the equation y;,, = vy, holds,
then the solution is a feasible multiple structural alignment, and we have found
an optimal solution to the original problem. Otherwise, some pairs y;,, and v,
contradict each other. For a valid secondary structure, however, we have to ensure
that y;,, =y, for all pairs of I,m € L.

The set of lines and gap edges that constitute the alignment is fixed: the
problem is to find a subset I of interaction edges of maximum weight such that
the structural information for each sequence is valid, that is, each base is paired
with at most one other base. Figure 4.11 (a) illustrates the problem: the align-
ment £ = (I, k,m, n, o) provides different possibilities to augment £ by structural
matches. We can for example either realize the structural match (I, m) or (I,n),
but not both. Realizing both interaction matches would result in an invalid sec-
ondary structure. We therefore define the problem of finding the best structural
completion of an alignment L.

Definition 4.11. Given an alignment £ and a set Z of interaction matches that £
realizes. Find a subset Z C 7 such that Z forms a valid secondary structure—the
structural completion—of maximal weight on L.

We can formulate this problem as a general weighted matching problem in
an auxiliary graph Mg, the interaction matching graph: we have Mg = (V, E)
where the set V' and E constitute vertices and edges, respectively. We have
V = (vq,... ,@‘q) where ©; corresponds to the ¢th element of £. We insert an
edge e; = (0;,0;) if and only there exists a pair of interaction edges (v, v}) and
(vl vl) whose endpoints are adjacent to a pair (0,p) € L x L (see Fig. 4.11 (b)).
The weight of edge e; is given by the weight of the two interaction edges (vi,v})
and (vl ,v?).

m?n
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Figure 4.11: Given the alignment £ = (I, k, m,n,0) , we have different possibilities to
augment the alignment with structural matches. Creating an interaction
matching graph (b) and calculating a general matching of maximum weight
yields the best structural completion of £ (c).

Lemma 4.3. A matching of maximum weight in the interaction matching graph
Mg corresponds to the best structural completion of L.

Proof. The equivalence follows directly from the construction of Mg and the
definition of a matching. n

4.3 Incorporating Stacking Energies Into the
Model

Section 1.2 describes the loop-energy model that builds the basis for the com-
putational prediction of RNA structures. The stacking energies of paired bases
build the prevalent contribution to the overall stability of an RNA structure. The
model that we described in Sect. 4.1.2 does not account for stacking energies, be-
cause it treats every interaction separately. There is no additional benefit for
realizing adjacent paired bases.

We call two interaction matches (I, k) and (m,n) with s(I) = s(m)—1, s(k) =
s(n) + 1, t(l) = t(m) — 1, and t(k) = t(n) + 1 the stacking interaction match
(L, k), (m,n)]. Figure 4.12 shows the stacking interaction match [(I, k), (m,n)].

, 5:'
4
)7/‘ (ﬁ,\/\'

Figure 4.12: The two interaction matches (I, k) and (m,n) form the stacking interaction
match [(1, k), (m,n)].
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In the following, we will extend the model from Sect. 4.1.2 by incorporat-
ing stacking interaction matches. For sake of simplicity, we shall start from a
stripped-down version of the full model. We will consider the pairwise case, and
we will include only the alignment and structure edges. The extension to the
multiple case including gap edges is straightforward, but it makes the description
more tedious.

First, we define the problem formally. In Section 4.1.1 we gave the formal
definition for sequence-structure alignments which we will extend by stacking
scores.

Definition 4.12. Given two strings s! and s* and an alignment A consisting
of the two strings &' and §*. We define a scoring function v : ¥* — R that
assigns a score to quadruples of characters representing the benefit of stacking

1

interactions, i.e., v(s}, s?, sm, sm) scores the stacking between interaction matches
2 1 2

(Sll’ S5 Smos Sm) and (Sl 1 Sl 1 m+1’ %7,—&-1)

Let o, 7, v be functions for scoring sequence, structural matches, and stacking
interactions. Then, the stacking sum-of-pairs score SSPS(A, o, 7, v) of A is defined
as

|A] \Al LA IA\ 2 |A]-1
8[751 Sl7517 m7 m Sl7Sl7 m’sm) .
=1 =1 m=Il+1 =2 m=Il+1

We do not score inconsistent structural matches, that is, every base is part of
at most one structural match, and we only score stacking contributions between
realized adjacent structural matches.

Similar to the optimal sequence alignment problem, we consider the optimal
sequence-structure-stacking alignment of RNA structures:

Definition 4.13. Given scoring functions o, 7, and v for scoring sequence, struc-
tural matches, and stacking contributions, we aim at computing an alignment A*
of two sequences s' and s? with

SSSPS(A*, 0, 7,v) = maxac 4 SSSPS(A, 0,7, v) ,

where A is the set of all possible pairwise alignments for s' and s%. We call A*
an optimal pairwise sequence-structure-stacking alignment of S.

We do not have to add new edges to the graph-based model described in
Sect. 4.1.2 to model the stacking contributions, because they are implicitly repre-
sented by the structure edges. In the following, we will adapt the ILP formulation
to take stacking scores into account.

4.3.1 Integer Linear Program Including Stacking Scores

Figure 4.13 shows the ILP describing the pairwise sequence-structure alignment
model without considering gap edges. Remember that we associate an x and y
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max Z wyT; + Z Z WimYim

leL leL meL
s. t. legl VO (g
leCy,
Z Yim < Xy VielL
meL,(l,m)
not crossing
Yim = Yml Vi,me L

e {0, 1} ye {0, 1}k

Figure 4.13: The ILP that describes pairwise sequence-structure alignment without gap
costs.

variable each every alignment edge and directed interaction match, respectively.
We now add variables z that model potential stacking between pairs of adja-
cent interaction matches. We have zp, ., = 1 if and only if the stacking match
(I, k), (m,n)] between the adjacent interaction matches (I, k) and (m,n) is real-
ized, and zjppn, = 0 otherwise. If we have 2,),x = 1, then (I, k) and (m, n) realize
a stacking interaction match.

Similar to the splitting of an interaction match (/,%) into two directed in-
teraction matches (I,k) and (k,l), we also split a stacking interaction match
(I, k), (m,n)] into two directed stacking interaction matches, associated with sep-
arate z variables 2y, and zpk(im-

Figure 4.14 gives the ILP that describes the model extended by the stacking
variables. Observe that the ILP only enforces zp,jnx < Yimn, but we do not have
to explicitly enforce z,me < yu since this is automatically satisfied in the case
of feasible solutions. If we have 2y, = 1, then 2,4, = 1 is true as well due
to constraint (4.22). With z,xu, being set to 1 we have yi; = 1 because of
constraint (4.20), and then in turn y; = 1 due to equality constraints (4.21).

Lemma 4.4. A feasible solution to the ILP (4.17)—(4.23) matches the definition
of a sequence-structure-stacking alignment from Def. 4.12.

Proof. We first prove that a feasible solution (z, 9, 2) of the ILP describes a valid
sequence-structure-stacking alignment.

Observe that constraints (4.18) and (4.19) guarantee that the subset of align-
ment and structure edges (represented by the & and gy variables) form a valid
sequence-structure alignment. There are no crossing edges and every alignment
edge realizes at most one interaction edge.

Furthermore, constraint (4.20) ensures that the alignment only incorporates
stacking scores, if the two stacking interaction matches are realized. The score
obviously equals the score of the alignment.
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max Z wyx; + Z Z WimYim + Z Wim|nk<lm|nk (4-17)

s. t.

leL leL meL Iy;mmn,keLl
Z <1 \V/CL S CL (418)
leCy,

Z Ym < 1y Vie L (4.19)

meL,(l,m)
not crossing

Zlm|nk < Ymn Vl,m, n, kel (420)

Yim = Yml Vi,me L (4.21)
(I,m) stacked,

Comink = Snkl (n,k) stacked (422)

z e {0,1}F ye {0, 1} 2 e {0, 1}Fxbxixk (4.23)

Figure 4.14: The ILP that incorporates stacking energies.

To complete the proof, we have to show that a valid sequence-structure-
stacking alignment represents a feasible solution to the ILP. Given (£,7) with
L C LandZ C I, we set the values of the & and ¢ variables in correspondence
if the respective edges are part of £ and Z. Observe that the values of the z
variables are implicitly given by the y variables. m

Figure 4.15 shows an illustration of the three different sets of variables.

Figure 4.15: Illustration of the ILP incorporating stacking energies. The blue and red

arrows represent stacking variables together with their respective structure
edges.

Thus, after relaxing constraints (4.21) and (4.22) and moving them to the
objective function, we get the ILP shown in Fig. 4.16.



61

max Z Wy + Z Z(wlm + X)) Yim + Z (Wimjnk + Nimjnk) Zimjne - (4.24)

leL leL meL I,mmn,kel
s. t. Z <1 \V/CL S CL (425)
leCy,
Z Ym < Vie L (4.26)
mEL,(l,'r.n)
not crossing
r {0, 1} ye {0, 1} e {0, 1}rlxixk (4.28)

Figure 4.16: The ILP incorporating stacking energies relaxed by two classes of con-
straints.

We solve the relaxed problem in a similar way as the ILP without stacking
bonuses. Like in the case of the initial model from Sect. 4.1, we again have to
distinguish between z,, = 0 and z,, = 1: if x,,, = 0, then all y,,; will be 0 due to
(4.26). With y,,; = 0 for all possible interaction matches, constraint (4.27) will
set all zyp,i variables to 0.

In the case of x,, = 1, however, at most one v, can be set to 1. Then, for
the variable y,,; = 1 the corresponding stacking interaction match variable zy,;,nk
can be set to 1. We have a cascading of the z, y, and z variables. The x variables
possibly switch some y variables from 0 to 1, and the y variables in turn set z
variables to 1.

The computation of the maximal profit for each alignment edge has to be
adapted compared to the description in Sect. 4.2.2. Instead of maximizing the
sum of the alignment edge score and the highest scoring directed interaction
match, we additionally evaluate the maximum profit that a stacking variable
plus the associated structure edge can possibly achieve. For an alignment edge
m, associated with an alignment score w,,, we have py = w,,5; as the maximum
score of only an interaction match associated with alignment edge n. The value
D1 = Wina+ Wik 1s the maximum score that an interaction match (m, n) plus the
corresponding stacking interaction match [(1, k), (m, )] can realize. The profit of
alignment edge m is then given by

Pm = Wiy + maX{ﬁOaﬁl} .

Following the description in Sect. 4.2.2, we get a solution for the relaxed ILP by
computing a standard sequence alignment problem with the profit values p,, as
the matching scores for each alignment edge m.

We compute optimal or near-optimal solutions for the dual problem—the ILP
consisting of (4.24)-(4.28)—by again resorting to subgradient optimization. We
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adapt the Lagrangian multipliers the same way as in the model for multiple
sequence-structure alignments with arbitrary gap costs.

4.3.2 Computing a Feasible Solution

Solving the relaxed problem (4.24)-(4.28) does not usually yield a solution that
is also valid for the original problem. If this is the case, then we have found an
optimal solution for the original problem, because the number of subgradients
is zero. In Sect. 4.2.3 we described how we generate a feasible solution for the
original problem, given the solution of the relaxed problem. We build the inter-
action matching graph and perform a maximum-weight matching computation in
it. The matching corresponds to a feasible solution in our original problem, see
Fig. 4.11 for an illustration.

In principle, the same algorithm also works in the extended model. We com-
pute the matching of maximum weight and add the scores for stacking interaction
matches in a postprocessing step. The computational experiments in Sect. 5.4.3.1
show that the resulting pairwise alignments are competitive or better than the
alignments without stacking energies. There is, however, one problem. The value
of the maximum-weight matching plus the scores of realized stacking scores does
not necessarily have to be the optimal value.

Figure 4.17 gives a toy example where the matching routine does not compute
the structural completion of maximum weight. The matching selects the edges
(I,7) and (m, 0) as the structural completion of the alignment. Due to the stacking
score of 100 for the stacking match [(k, ), (m, 0)], the edges (k,r) and (m, o) yield
a higher score.

/’ 9% -~ 20 1
M A
- \ 100
/10\
/K n o\ T ®
© @
N\
\\ \\\ \\~_’// /;,
N S~ os_ -7 10

Figure 4.17: The matching selects the edges (I,7) and (m, o) as the structural comple-
tion of the alignment. Due to the stacking score of 100 for the stacking
interaction matches (k,r) and (m, o), the edges (k,r) and (m, o) form the
optimal solution.

Figure 4.18 shows an alternative way for the computation of a feasible so-
lution that includes the stacking contributions. We reduce the problem to the
computation of an independent set of maximum weight. We first give a definition
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Figure 4.18: We determine the stacked structural completion of an alignment A by
computing an independent set of maximum weight. We have an alignment
A (a) and construct an auxiliary graph (b) in which we determine the
independent set of maximum weight.

of what we want to maximize, and afterwards we describe the contruction of an
auxiliary graph.

Definition 4.14. We are given an alignment £ and a set Z of interaction matches
that £ realizes. Find a subset Z C 7 such that 7 forms a valid secondary
structure—the stacked structural completion—and that maximizes the interac-
tion match scores of Z plus the stacking scores that are induced by 7.

We formulate this problem as an independent set of maximum weight prob-
lem in an auxiliary graph Mg, the independent set graph. The graph M =
(V1 U Vs, E) contains the sets V7, Vg and E that constitute vertices and edges,
respectively. For an alignment £ C L we create a node v; € V; for every possible
interaction match that this alignment realizes. Furthermore, for every possible
combination of stacking interaction matches we add another vertex vy € Vg to
the graph. Observe that this includes not only all pairwise stacking interaction
matches, but also vertices for several consecutive stacking interaction matches.
We insert an edge e € F between every two nodes that are in conflict with each
other, i.e.,

1. if two interaction matches m and n—represented by vertices v, and v,—
share an endpoint.

2. if interaction match m is part of stacking interaction match n, we insert an
edge between v,, and v,.
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For v; € V the weight w(v;) of vertex v; is the weight of the corresponding in-
teraction match. For v; € Vi, with v, representing interaction matches yq, . .., ym
and stacking interaction matches z, ..., z,, the node weight is the sum of the
weights of all the (stacking) interaction matches, i.e., we have

n

w(v,) = Y wy) + Y w(z)

1=0

Lemma 4.5. An independent set of maximum weight in the independent set
graph Mg corresponds to the best stacked structural completion of L.

Proof. The equivalence follows directly from the construction of Mg and the
definition of an independent set. n

Constructing a feasible solution in our augmented model by solving an inde-
pendent set problem is the last resort that we have, because this computation
is NP-complete [49]. Determining a feasible solution in the initial, i.e., stackless
model could also be reduced to MIS, but in this case we can reduce it to max-
weight matching computations instead. The question is whether this holds also
true in the case of stacking scores, i.e., whether there exists an algorithm run-
ning in polynomial time that computes the maximal stacking completion for an
alignment £. The other option is to prove that the problem is indeed NP-hard.
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D

Computational Results

It’s been a hard day’s night,
and I’ve been working like a dog.
The Beatles
(A Hard Day’s Night)

This chapter describes the computational experiments that we performed with
our prototypical implementations of the models from Chap. 4. We first present
how we generate the input graph for our model, and subsequently show how we
score the edges of the input graph. Sections 5.3 and 5.4 contain the computational
experiments using the exact and heuristic approach to multiple sequence-structure
alignments. Section 5.5 lists the results for computing pairwise alignments us-
ing the bundle method. Furthermore, we give results on running the Lagrange
approach within a branch-and-bound framework to verify the optimality of the
solutions. Sections 5.3 and 5.4 are published as parts of [8] and [7].

5.1 Constructing the Input Graph

5.1.1 Generation of Alignment Edges

For sake of simplicity, we will restrict ourselves to the description of the pairwise
case. The same ideas apply to the multiple case as well.

We use different strategies for the generation of alignment edges. The first
natural choice is to insert all possible alignment edges between the two sequences,
yielding the complete bipartite graph as shown on the left side of Fig. 5.1. Every
nucleotide of the first sequence can be mapped onto every nucleotide of the second
sequence.

Most of these edges, however, will not be part of any optimal or near-optimal
sequence-structure alignment. We therefore follow the strategy that we already
employed in previous work [4; 6; 5; 95]: we generate a set of reasonable alignment
edges by computing a conventional sequence alignment with affine gap costs and
subsequently insert all alignment edges realized by any suboptimal alignment
scoring better than a fixed threshold s below the optimal score.

Although we cannot guarantee that the set of alignment edges always contains
the edges forming the real multiple structural alignment, e.g., a hand-curated
alignment like an RFAM seed alignment, our experiments on the RFAM database
show that RFAM reference alignments consist of alignment edges of small subop-
timality. To this end, we randomly extracted 10 sequences from the seed align-
ment of eight random RFAM families (RF00001, RF00005, RF00020, RF00023,
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RF00029, RF00031, RF00059, RF00515) and computed the alignment edges that
score at most 40 below the optimal score for all pairwise projections. For all but
one family we can generate the alignment edges that form the original alignment
at a suboptimality level of 40. For TPP riboswitches (RF00059) this level of sub-
optimality does not suffice to cover all alignment edges. There are six pairwise
projections that miss alignment edges. At a suboptimality level of 90, however,
all alignment edges are created.

ACGTCGCG @0 e®00O0O0

GACCG

Figure 5.1: Given the two sequences on the left, we either create the complete bipartite
graph (a), or thin out the graph using an available bound or suboptimal
matches (b).

Another way to generate alignment edges is to start from the complete bi-
partite graph and subsequently delete alignment edges that cannot be part of
the optimal-—with respect to our objective function—alignment. Given two se-
quences s' and s?, we start from a scoring matrix A with A(i, j) being the score
of alignment edge a = (s;,s7). Then, we compute the maximum score S(A) of
an alignment A realizing alignment edge a by summing up the score of a and
the sum of the prefix and suffix alignment induced by a. Given a valid sequence-
structure alignment A, of score S(As,), we can safely drop alignment edge a
if S(A) < S(Ass), because alignment a cannot be part of an optimal sequence-
structure alignment. We compute a valid solution Ay, of the sequence-structure
alignment problem by running our Lagrange approach with a limited number of
iterations or by simply computing a traditional sequence alignment and adding
the scores of conserved interaction matches afterwards.

In our experiments we resort to the generation of alignment edges using sub-
optimal sequence matches, because it needs less computation time while the per-
formance is comparable to the second procedure described above.

5.1.2 Generation of Interaction Edges

The generation of interaction edges reflects the knowledge that we have about
the structural properties of the sequences. If we do not want to constrain the
structure in any way, then we simply insert an interaction edge between any
two nucleotides that can form hydrogen bonds. If we have, however, structural
information for one of the sequences available, for example from the Comparative
RNA web (CRW) site [19], then we insert only those interaction edges that form
the secondary structure.

The LARA default setting lies in between: we compute the partition function
for the sequence (see Sect. 1.2) and derive base pairing probabilities for each pair
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of nucleotides using McCaskill’s algorithm [105]. We then insert an interaction
edge between every pair of nucleotides whose base pairing probability is higher
than a minimum value p,;,. A typical value for p,,;, is 0.003.

5.2 Lagrange-Specific Parameters

In this section we describe the scores that we use throughout our experiments.
Additionally, we briefly specify Lagrange-specific parameters that have signifi-
cant impact on the convergence of the Lagrange solution process. We resort to
subgradient optimization for adapting the Lagrangian multipliers.

5.2.1 Scores

Sequence Scores. We used different schemes for scoring the alignment edges.
First, in our theoretical contributions [6; 8] we employed ad-hoc chosen matrices,
like scoring matches and mismatches by 4 and 1 or by 2 and 1. Subsequently, we
resort to more elaborate scoring systems like the RIBOSUM matrices [83] that
were derived along the lines of ribosomal gold-standard alignments. The authors
count the number of occurrences of the respective matches and derive log-odds
scores by comparing them to a uniformly distributed background model.

We provide a parameter 7 by which the user is able to scale the original scoring
matrix values. If we do not want to put too much emphasis on the sequence, then
7 will be very small. If sequence is important, like in the case of riboswitches,
then one is able to scale the scores accordingly. By default, the value of 7 is 1.
In our experiments we use the RIBOSUM65 matrix as our default scoring scheme.

Structure Scores. The scoring system for the interaction edges is based on
base pair probability matrices (BPP scoring in short). It transforms the prob-
abilities into the additive log-scores in spirit of PMCoMmP [67]. More precisely,
given the probability p;; that nucleotides ¢ and j pair, the score s;; reads

Sij = 1g (ppi)

where lg is the natural logarithm and p,;, is the smallest probability that we
consider.

Stacking Scores. The score for the stacking weights wj; ;11,5 are derived
along the lines of the conditional stacking probabilities [15]. The value p; ;411 =
Pl(i+1,7—1)|(i, )] is the probability that nucleotides (i+1, j—1) form hydrogen
bonds given that (i, j) already pair. Then, the weight reads

Piit+1lj—1,5
Wiiitr1)j-1,4) = 18 (#)

We set the value of p;, to the same value as for the structure scores.
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5.2.2 Other Program-Specific Parameters

There are several other parameters that influence the performance of the Lagrange
solution process. First, the number of Lagrange iterations specifies how often the
Lagrange multipliers can be adapted: the higher the number of iterations, the
better the bounds are in general. Second, we need to specify the parameter
w which acts as a regulating factor in the computation of the step size v (see
Sect. 4.1 for details). Finally, a common feature to all implementations of the
subgradient solver is a number n of non-decreasing rounds: if the value of the
best upper bound does not decrease within n iterations, we halve the value of
. This leads to smaller step sizes 7. In practice, we observe that the smaller
step sizes support the convergence of the solution process if the algorithm got
stuck at a certain point, i.e., if the upper bound does not decrease within several
iterations.

5.3 Results for the Exact Multiple Case

MLARA (multiple Lagrangian relaxed alignments) is our prototypical implemen-
tation of the formulation for multiple structural alignments presented in Chap. 4.
The algorithm is easy to implement and comprises only a couple of hundred lines
of code. For the computation of the lower bound, however, we use the matching
routines from the LEDA library [91].

In the following, we shall give a proof-of-concept of our approach by running
experiments on real data of moderate size, setting all gap costs to zero, and
we assign scores of 4 and 1 to matches and mismatches, respectively. We set
the scaling parameter 7 to 1.0. The MLARA software package directly uses the
values from the dotplot files—created by the RNAFOLD program—as the input
to the log-odds transformation described in Sect. 5.2.1.

From the RFAM database [53] we downloaded sequences that belong to the
families of ribosomal 1.19 leader proteins, tRNAs, and ribosomal 5S RNAs (RFAM
IDs: RF00556, RF00005, and RF00001).

As a first example we take L19 leader protein sequences (accession numbers:
AL935256.1, AE014216.1, and AP006627.1) and compute the optimal multiple
alignment given the complete k-partite graph containing 4106 alignment edges.
We find a provably optimal solution after 19 hours of computation. There are two
interesting observations: first, the optimal solution is found within the first 10
iterations of the computation, that is, only 70 seconds after starting the program.
MLARA spends the remaining time on proving the optimality of this solution.
Second, although we need the complete k-partite graph to ensure optimality,
many alignment edges are not very likely to be part of the optimal structural
alignment, e.g., edges running from the first vertex in the first sequence to the
last vertex in the second sequence. As one can see on the left side of Fig. 5.2, the
number of alignment edges greatly influences the running time for computing an
exact multiple structural alignment. We therefore follow the strategy described
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Figure 5.2: Typical behavior for the multiple case. Left: the time to compute an ex-
act multiple sequence alignment increases non-linearly with the number of
alignment edges. Right: the time to compute one single iteration for an in-
stance containing 4106 alignment edges increases rapidly with the number
of iterations. This is due to the adaption of the Lagrangian multipliers.

in Sect. 5.1.1 to thin out the graph.

We again take the sequences from our first example and compute the multiple
structural alignment based on a reduced set of alignment edges. Already a sub-
optimality level of 5 suffices to generate all alignment edges that are part of the
provably optimal solution. The reduced number of alignment edges—465 instead
of 4106—brings the overall running time down from 19 hours to 43.35 seconds.

In our experiments we realized that not only the number of alignment edges
influences the overall computation time. As described in Sect. 4 we resort to
subgradient optimization to solve the Lagrangian dual. By iteratively adapting
the Lagrangian multipliers and computing the multiple sequence alignment af-
terwards, we observe an unpredictable increase in the running time per iteration
over the course of all iterations. The right side of Fig. 5.2 shows the development
for an instance of three L19 leader protein sequences.

As a second experiment, we assess the improvement of the objective function
value between heuristically inferred multiple structural alignments |7| and prov-
ably optimal or near-optimal solutions of the exact multiple sequence-structure
model. Note that at this stage we are especially interested to what extent heuris-
tical multiple sequence-structure alignments approximate the objective function
values of the exact sequence-structure framework.

To this end, we randomly drew 20 instances containing three input sequences
of either tRNA or ribosomal 5S RNA sequences (RraM IDs: RF00001 and
RF00005), resulting in 40 instances in total. Using our tool LARA, which yields
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the best results on the BRALIBASE benchmark set [7], we compute all pairwise
alignments of a given instance and feed them to the T-COFFEE software [109]
to heuristically infer a consistency-based multiple structural alignment. Given
this alignment, we again evaluate it under the sum-of-pair objective function of
MLARA.

Then, we take MLARA and compute the multiple structural alignments. We
allow a maximal computation time of three hours per instance. If MLARA does
not terminate within three hours, we stop the computation and report the best
solution found so far. We want to stress the fact that we use exactly the same
settings for both programs, i.e., we use the same scoring scheme and generate the
same alignment edges such that the results are comparable.

Table 5.1 shows the objective function values of the alignments generated by
LARA and MLARA for these 40 instances. Note that we provide two different
evaluations for LARA alignments: the first column LARA subs gives the objective
function value at a suboptimality of 5, i.e., exactly the set of alignment edges that
we used for the computation of the sequence-structure alignments. T-COFFEE,
however, additionally inserts potential alignment edges when it heuristically in-
fers the multiple alignment. To take the augmented set of alignment edges into
account we again evaluate the LARA alignment with a suboptimality value of
20, such that all alignment edges are considered. As one can see in Tab. 5.1 the
difference between the two objective function values is significant in many cases.

Generally, MLARA reaches higher objective function values than those com-
puted by LARA. There are, however, 12 instances where the heuristically inferred
alignments yield better objective function values than MLARA. A closer inspec-
tion of those instances reveals three main reasons:

1. The computation time limit is too tight. Hence, MLARA performs only a
small number of iterations, and is therefore not able to adapt the Lagrangian
multipliers accordingly.

In many instances the time spent on one single iteration is not predictable.
The left side of Fig. 5.3 shows the computation time per iteration of tRNA
instances #1 and #15 (1174 and 1178 alignment edges, represented by the
circles andred squares, respectively) from Tab. 5.1. Although the number
of alignment edges differs only by four, the computation time per itera-
tions varies dramatically. Consequently, MLARA performs 259 and only
59 iterations for instances #1 and #15.

2. Theright side of Fig. 5.3 shows the solution process for 5S instance #13 from
Tab. 5.1. After 110 iterations MLARA gets stuck between two solutions
and oscillates between these two (represented by the two parallel lines from
iterations 110-165). From this point on, the algorithm is not able to further
converge to the global optimal solution.

3. The T-COFFEE software potentially augments the set of alignment edges
when it heuristically builds a multiple structural alignment based on all



Instance LARA sub;s; LARA suby MLARA
tRNA #0 1050.88 1051.88 1193.34 (0.94)
#1 1091.6 1137.9 1194.33 (0.94)
#2 1402.11 1453.81 1453.06 (0.99)
#3 1468.2 1468.2 1469.63 (0.98)
#4 797.29 907.628 1014.61 (0.83)
#5 1153.69 1172.08 1184.89 (0.88)
#6 1174.83 1285.38 1299.14 (0.97)
#7 1229.24 1267.6 1304.31 (0.98)
#8 1710.11 1711.11 1772.04 (1.00)
#9 1184.9 1213.68 1193.55 (0.92)
#10 1084.26 1148.6 1134.20 0.90)
#11 1103.91 1125.58 1043.95 (0.80)
#12 1099.66 1119.71 1113.45 (0.91)
#13 1329.08 1329.08 1323.94 (0.97)
#14 1108.17 1177.21 1254.51 (0.96)
#15 1089.84 1293.95 1077.07 (0.88)
#16 878.656 955.553 1019.92 (0.88)
H#17 971.056 1086.05 1133.84 (0.85)
#18 1238.3 1238.3 1320.11 (0.99)
#19 1254.7 1280.46 1366.26 (0.99)
58
#0 1845.66 1888.1 1922.20 (0.96)
#1 1809.14 1810.34 2097.22 (0.99)
#2 2199.47 2221.18 2259.01 (1.00)
#3 2015.68 2034.04 2049.05 (0.98)
#4 1641.18 1669 1735.34 (0.92)
#5 1718.62 1721.6 1696.58 (0.88)
#6 1589.02 1616.35 1682.68 (0.93)
H#7 1609.94 1695.44 1740.73 (0.90)
#8 2052.95 2194.9 1956.62 (0.89)
#9 1957.43 2028.3 2107.10 (1.00)
#10 1949.51 2048.08 1946.53 (0.93)
#11 1547.51 1873.47 1715.54 (0.92)
#12 1932.32 1933.32 2023.18 (0.99)
#13 2113.55 2197.52 1996.10 (0.86)
#14 2218.78 2229.18 2267.25 (0.99)
#15 1956.95 1987.45 2064.64 (0.97)
#16 2084.55 2086.55 2116.64 (0.99)
#17 1716.94 1818.26 1884.92 (0.94)
#18 2090.59 2091.59 2171.81 (0.99)
#19 2134.05 2183.33 2407.99 (0.99)

Table 5.1: The comparison between the objective function values of LARA and
MLARA on 40 randomly generated tRNA and 5S RNA instances. Column
LARA subj gives the MLARA objective function values at a suboptimal-
ity level of 5, whereas LARA subgg gives the evaluation at a suboptimality
value of 20, i.e., we make sure that all alignment edges that are induced by
T-CoOFFEE are considered. The numbers in brackets in column MLARA give
the level of optimality of the solution. Note that in some cases the heuristic
algorithm produces better results which is possible due to the time limit and

the fact that T-COFFEE adds more alignment edges to the graph.
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Figure 5.3: Left: the computation time per iterations oscillates dramatically even be-
tween instances having almost the same number of alignment edges. The
red squares and circles represent the iterations of tRNA instance #15 (1178
edges) and #1 (1174 edges) from Tab. 5.1, respectively. Right: the solu-
tion process may get stuck between two solutions and jumps back and forth
between these two, and therefore does not find the global optimal solution.
The plot shows the solution process of the 5S instance #13 from Tab. 5.1.

pairwise alignments. This happens, for example, in the case of 5S instance
#11: MLARA yields a value of 1715.54 with an upper bound of 1868.31.
The LARA alignment, on the other hand, has a value of 1873.47 which
is only possible, because the set of alignment edges is augmented while
heuristically inferring the multiple alignment.

5.4 Results for the Heuristic Multiple Case

The experiments in Sect. 5.3 show that exact multiple sequence-structure align-
ments are computationally very expensive. Our aim is, however, to evaluate the
approach on a large data set. The application of MLARA is too expensive for a
large-scale comparison of various sequence-structure alignment programs. Hence,
we resort to the implementation of the pairwise model which is called LARA.
Building upon the consistency-based approach that we described in Sect. 3.2.2
we infer multiple sequence-structure alignments based on the pairwise alignment
information. We also give the results for the progressive alignment version of our
approach which is called PLARA (short for progressive LARA). Additionally, we
report on the performance of the extended model that we describe in Sect. 4.3.
The counsistency-based and progressive variant of the model are called SLARA
(stacked LARA) and PSLARA (progressive stacked LARA).
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5.4.1 BRAIliBase 2.1

The BRALIBASE data set! [149; 150], was created with the objective to provide
reference alignments for the fair comparison of different sequence and sequence-
structure alignment programs. We compare our implementations to other current
programs on this data set.

BRALIBASE 2.1 reference alignments are based on the manually curated seed
alignments of the Rfam 7.0 database [53]. Out of the pool of all ncRNA families
that have more than 50 sequences in their seed alignment, test instances of the
BRALIBASE were constructed the following way: all pairwise projections that are
within a certain average pairwise sequence identity (APSI) range form the pool
of pairwise candidate alignments. Then, single sequences are randomly deleted
from the sequence pool and added to a candidate alignment, until the candidate
alignment holds the desired number of sequences. If the alignment satisfies the
sequence and structure conservation constraints, i.e., the APSI of the generated
instances has to be within a predefined range and the structural conservation
has to be higher than a given threshold, the instance is accepted. Otherwise,
the algorithm restores the sequence pool and starts over again. If we look at the
problem through a graph-theoretic lens, we represent each sequence from the seed
alignment by a vertex, and we connect two vertices by an edge if the APSI value
of these two sequences is within a certain range. Creating input instances of size
k corresponds to finding cliques of size k in that graph.

The BRALIBASE data set is divided into alignment instances containing either
2, 3,5, 7, 10 or 15 sequences. In the following, we stick to the BRALIBASE
naming convention and refer to the sets of instances by k2, k3, kb, k7, k10,
and k15, depending on the number of sequences per instance. BRALIBASE 2.1
contains 36 different RNA families, ranging from approximately 26 nucleotides
long Histone 3’'UTR stem-loop motifs to about 300 nucleotides long eukaryotic
SRP RNAs. The interested reader is referred to |[150] for a detailed listing of all
instances.

Unfortunately, the way the input instances are created leads to an over repre-
sentation of certain RNA families within BRALIBASE. The data set contains a
higher number of instances from families that have more sequences in their seed
alignments. Consequently, a few ncRNA families represent the major instances
of all BRALIBASE instances: tRNA instances, for example, constitute 56% of all
pairwise instances. This percentage rises to 66%, 73%, 75%, 74%, and 80% for
k3, k5, k7, k10, and k15 instances, respectively.

The primary reason to perform our experiments on the BRALIBASE data set
is to evaluate the performance on an independent benchmark set that we did not
compile ourselves. There are various recent papers, for example [81; 132], where
the authors claim to describe the best available sequence-structure alignment
program. They compile their own data sets, which are all based on data from the
RFAM database, and on these data sets their programs perform best. We doubt

! Available at http://www.biophys.uni-duesseldorf.de/bralibase/.
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that this is the right way to go. There should be a standard benchmark database
for RNA structural alignments in the spirit of BALIBASE or PREFAB for amino
acids, where various alignment programs can be benchmarked against each other
in a sound manner. In our opinion the BRALIBASE is a first step in the right
direction.

5.4.2 Assessment Scores

The quality assessment of a structural alignment is a non-trivial task. If reliable
“gold-standard” alignments are available, the comparison on the sequence and
structure level is sufficient for a sound comparison. In the following, we describe
assessment scores that we use in our comparison.

Sequence assessment. In [135] the authors introduced the sum-of-pairs score,
or SPS in short, to define the similarity between a test and reference alignment
on the sequence level. The main idea is to count the number of aligned residues
of the test alignment that are identically aligned as the reference. More formally,
given an alignment A = S, ..., 8,1 of n sequences with |A| = m, then we have
an indicator variable py,, with pg.s = 1 if the residue §'j and §'§ are aligned as in
the reference alignment, and 0 otherwise. Then, we define sgpg as

Seps = ;cn:ol Z::(?_ : Z:rlﬂpkrs
> (5)

A value of 0 indicates that not a single column is correctly aligned with respect
to the reference alignment, whereas a value of 1 indicates perfect agreement with
the reference alignment.

The program COMPALIGN developed by Sean Eddy, that is part of the SQUID
library [42], represents an advancement by considering not only the aligned residues,
but also what residues are aligned to a gap character. COMPALIGN builds the
foundation for the program COMPALIGNP that is being used in the BRALIBASE
benchmark set. We use COMPALIGN in the following to benchmark the sequence
accuracy.

Structure assessment. For some ncRNA families manually curated multiple
alignments exist that are annotated with published structures. Prominent exam-
ples are tRNA, ribosomal 5S RNA, or the TPP riboswitches. If reference struc-
tures are available, then one compares predicted paired nucleotides to the anno-
tation of the reference alignment. The Matthew’s correlation coefficient (MCC)
assesses the structural similarity. We define the MCC score syicc as

TP -FN - FN.FP
SMCC =
V/(IN + FN)(TP + FN)(TN + FP)(TP + FP)

with TP, FN, FP, and TN being the number of true positives, false negatives,
false positives, and true negatives, respectively.
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The value of sycc is bounded by —1 and 1, with a syicc = 1 being the
best result: every pairing that is predicted is a correct interaction, and no false
pairing is predicted. On the other hand, a value of —1 indicates that not a
single interaction was correctly predicted, and the number of wrongly predicted
interactions is maximal.

In reality, however, the number of reliably annotated gold-standard alignments
is limited. This holds also true for the RFAM database, where for parts of the
ncRNA families the structural annotation was created using consensus folding
algorithms like RNAALIFOLD [68| or PFOLD [84]. Therefore, the creators of the
BRALIBASE benchmark set chose the score structural conservation index [143],
or SCI in short, to assess the structural quality of an alignment.

The SCI gives the degree of conservation of a consensus structure induced
by a multiple alignment of n sequences in relation to the minimum free energy
structures of the n single sequences. Let E. be the energy value of the consensus
structure induced by the alignment, and let FEy,..., E,_; be the minimum free
energy values of the n aligned sequences with E being the arithmetic mean of the
n values. Then, we define the SCI as

sor = Le
B

A SCI value of ~ 1 indicates high structural conservation, whereas a value
around 0 indicates no structural conservation at all. Note that the SCI score can
be greater than 1, since covariance information is additionally rewarded during
the computation of the consensus structure. Furthermore, the computation of
the consensus structure is done via the RNAALIFOLD program which is suscep-
tible to changes in the alignment. This especially means that a higher Com-
palign value does not necessarily imply a higher SCI score, e.g., running LARA
with default parameter settings for two SECIS instances from BRALIBASE
(SECIS.apsi-45.sci-68.no-1.raw.fa and SECIS.apsi-45.sci-79.no-1.raw.fa) we get
Compalign scores of 0.45 and 0.44. The corresponding SCI scores are 0.26 and
0.58, respectively. Setting the LARA parameters to optimized values, the Com-
palign scores increase to 0.60 and 0.48. The corresponding SCI values, however,
drop to 0.14 and 0.00.

In the following experiments we use the program SCIF from the BRALIBASE
website to assess the SCI of the computed alignments.

5.4.3 Results

Parameter Training. There are three important LARA parameters: gap open
and extension penalties 7, and 7., and the parameter 7 that represents the scaling
factor for the sequence scores. In [5; 7] we used rather ad-hoc values that tried to
mimic the parameter settings within the PMCowmp software package. This leads
to initial values of —6, —2, and 0.05 for ~,, 7., and 7.
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For the final evaluation in this thesis, however, we took the data set that the
authors of [96] assembled and experimentally evaluated different parameter sets.
The parameter setting that yielded the highest MCC scores were chosen as the
final ones. Accordingly, we set the gap open and extension penalty, and 7 to —12,
—5, and 1.0 for the following evaluations.

SLARA and PSLARA, the implementations that incorporate stacking ener-
gies, have two additional parameters: the structure and stacking scaling factors
os and o4. During the initial test phase it turned out that—similar to the se-
quence scaling factor 7—we have to scale the structure and stacking contribution
to balance these two scores. The final parameter set consists of —10,—5,1.0,0.6,
and 0.9 for ~,,7.,7,05, and o4, making the stacking contributions more important
than the structure scores.

It has to be remarked, however, that several different parameter sets yield
almost the same performance on the data set from [96], and the values of the
parameters differ significantly. The values for the gap penalties, for instance, vary
between —10 and —20. Therefore, it is likely that the performance of SLARA
and PSLARA can be further improved by examining the various parameter sets
on different data sets in an automated manner.

Finally, we set the number of overall iterations to 500 for all implementations.
If the upper bound does not improve within 50 iterations, we halve the value of
parameter . Table 5.2 gives an overview of the parameters that we use for the
computation of the alignments throughout the rest of the thesis.

Paramter LARA sLARA
suboptimality for alignment edge generation 40 40
gap open penalty 7, —-12.0 —10.0
gap extend penalty e —5.0 —4.0
sequence contribution 7 1.0 1.0
sequence scoring matrix RIBOSUMG65 RIBOSUMG65
structure contribution o 1.0 0.6
stacking contribution o — 0.9
structure scoring system bpp bpp
minimal probability considered 0.003 0.003
Lagrange iterations 500 500
subgradient parameter p 1.0 1.0
halve p after n non-decreasing iterations 50 50
T-COFFEE version 4.70 4.70

Table 5.2: A summary of the parameters that we use for our program runs. We applied
the same parameters from LARA for PLARA, and the parameter set of
SLARA for PSLARA. The structure scoring system bpp refers to structure
scoring based on base pair probabilities.
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Figure 5.4: All 2251 BRALIBASE k2 (left side) or 123 BRALIBASE k15 (right side)
instances of low pairwise sequence identity where each black circle or red
square corresponds to one instance. The x-axis gives the SCI score, whereas
the y-axis codes the structure-normalized score. The red squares mark the
outlier instances.

Score vs. Structural Conservation. We were interested in to what extent
the accuracy of our alignments correlates with the objective function value of our
model, i.e., the sum of sequence contributions plus the structure scores based on
the base pair probabilities. Since the score depends on the length of the input
sequences, we normalized the score with respect to the number of paired bases
in the minimum free energy structure. Note that we did not use the structure,
but only the number of base pairs in the structure to get a rough estimate of how
many pairings we expect in the structure. Then, let p and n be the LARA score
and the number of base pairs in the MFE structure, then the normalized score is
given by %

The scores of conserved structural interactions build the lion’s share of the
final LARA score, i.e., the higher the normalized score is, the better is the struc-
tural conservation. Consequently, there should be a correlation between the nor-
malized score and the SCI score, because the more structural similarities the
alignment captures, the better should the consensus folding perform during the
computation of the SCI score. Figure 5.4 shows the results for all £2 (left side)
and k15 (right side) instances.

Most of the k2 instances behave as expected: the higher the normalized score
is, the better is the SCI value. There is, however, a group of eight outliers that
have a high SCI score, but a very low normalized score. A closer inspection
revealed that the input sequences differ tremendously in length, for example one
Intron__gpll instance contains sequences of length 78 and 142. Although the SCI
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score is relatively good, the normalized score is decreased by the high number of
(necessary) gaps.

In the case of the k15 instances, we are facing a different situation. Again,
most of the input instances behave as expected, but now we have a group of
instances that show a relatively low SCI score together with a high normalized
score. It turns out that all these instances are either SRP RNAs or SECIS el-
ements. In [7] we already showed that scoring both the sequence and structure
using RIBOSUM matrices yields better results for SRP RNAs and SECIS ele-
ments.

5.4.3.1 Comparison to Other Programs

Table 5.3 lists the programs that we compare in this section, together with their
respective program calls and the program version we used in our experiments.

Program Model Complexity Cite
LARA graph-based O(n?) [7; 8]
sLARA graph-based O(n?) Sect. 4.3
PLARA graph-based O(n?)  Sect. 3.2.1
pSLARA graph-based O(n?)  Sect. 3.2.1
FOLDALIGNM Sankoff O(n?) [137]
MURLET Sankoff O(n?) [81]
MARNA edit-distance O(n?) [127]
MXSCARNA annotated sequence O(n?) [133]
STRAL annotated sequence O(n?) [30]
MAFFT sequence-based O(n?) [78]
Program Program Call Version
LARA lara -i <input_file> 1.3.2
sLARA slara -i <input_file> 1.0
PLARA plara -i <input_file> 1.0
PSLARA pslara -i <input_file> 1.0
FOLDALIGNM  java FoldalignM_McCaskill <input_file> 1.0.1
MURLET murlet <input_file> 1.0
MARNA marna.pl -g 2 -n 3 <input_file> 1.0
MXSCARNA scarna -clustalw <input_file> 1.3
STRAL stral -i <input_file> 0.5.4
MAFFT mafft <input_file> 5.861

Table 5.3: The upper table lists the programs that we used in our computational ex-
periments. We give the actual program calls in the lower table.

In the following, we give a short description of each program, Chap. 3 provides
a more detailed overview.
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There are two recent implementations of the original PMCoOMP software: LO-
CARNA [148] and FOLDALIGNM [137]. Both take base pair probability matrices
as their input, and using the recursions from [124; 3| they compute the nested
substructure that maximizes the sum of the probabilities plus a sequence score.
Since LOCARNA filters the base pair probability matrices to increase its effi-
ciency, we only considered FOLDALIGNM, because it considers all probabilities
and relies on the same recursions like LOCARNA.

FOLDALIGNM performs an alignment and clustering of the input sequences
at the same time. In some instances, FOLDALIGNM splits the input sequences
into two clusters. Since the scores that we use depend on the number of input
sequences, we dropped those FOLDALIGNM alignments that did not contain all
sequences in the final alignment. This leads to 29, 30, 11, 15, 9, and 6 instances
that we did not consider in the case of k2, k3, k5, k7, k10, and k15 instances.

MURLET is another tool that builds upon the Sankoff recursions. It addi-
tionally applies heuristics to reduce the DP search, namely the strip and the skip
approximations. The strip approximation limits possible alignment positions to a
band of length ¢ around an initial alignment. The initial alignment is computed
using pairwise HMMs which is similar in spirit to previous pairwise approaches
[38]. The skip approximation limits the number of possible branching points
within the Sankoff recursions.

MARNA is an implementation of the general edit model for RNA structures
proposed by Jiang [74]|. There are operations either on the sequence level (base
match, base mismatch, and base deletion) or on the structure level (arc match,
arc mismatch, arc breaking, arc altering, and arc removing), each associated with
a certain weight. MARNA aims for the alignment that transforms one structure
into the other, minimizing the overall costs for the edit operations. The interested
reader is referred to |74] or to Chap. 3 for details.

MXSCARNA uses the base pairing matrices to compute stem fragments,
i.e., ungapped parts of helices, of sequences A and B. It then discards the entire
sequence information and aligns the stem fragments in a consistent manner. The
alignment is consistent if we align two stacking stem fragments from sequence A
to stacking fragments in sequence B. Subsequently, the aligned stem fragments
serve as anchors in a traditional sequence alignment.

STRAL builds upon an idea by Bonhoeffer et al. |16] to incorporate the highest
up- and downstream probabilities for each pair of aligned residues and incorporate
these scores into the computation of a traditional sequence alignment.

Finally, we want to compare the performance of the sequence-structure align-
ment programs to a pure sequence-based program. Therefore, we chose MAFFT,
because it performs very well on the established BAliBase [136] and PREFAB
[11] benchmark sets. In Figs. 5.5 to 5.10 we show the results of our experiments
broken down to the different input classes (either k2, k3, k5, k7, k10, or k15)
using the Compalign and SCI scores as the quality measure. These graphics have
the average pairwise sequence identity as their xz-axis. The upper part of each
figure shows the Compalign performance, whereas the lower part gives the re-
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sults with respect to the SCI score. We use Lowess regression that we described
in Sect. 2.4 for the computation of the lines.

5.4.3.2 Comments on the Results

In the pairwise case SLARA is ranked first both in terms of the Compalign and
the SCI score. The difference between SLARA and LARA and FOLDALIGNM,
that are ranked second with respect to the Compalign and SCI score, are, how-
ever, not significant. Taking a look at Fig. 5.5 we recognize that the curves are
almost the same. The SCI performance of SLARA is better than the perfor-
mance of LARA: obviously, the incorporation of stacking probabilities enhances
the structural quality of the alignment. On the data sets with an increasing num-
ber of input sequences, the better pairwise alignment quality does not pay off.
The Compalign performance remains almost the same compared to LARA. In the
case of the k10 and k15 instances LARA performs slightly better than SLARA,
but again the difference is not significant in this case.

One has to observe the composition of the £15 input data set: 99 of all 123
instances are tRNA instances. Furthermore, on the left side of Fig. 5.11 we show
the density plot for all pairwise sequence identities of these 99 tRNA instances.
The surprising thing is that about a quarter of all pairwise projections forming
the k15 instances have a pairwise sequence identity higher than 0.50, the average
pairwise sequence identities of the instances, however, are smaller than 0.50.
Remember that in the pairwise case SLARA is superior to LARA with respect to
both the Compalign and the SCI score. We are therefore interested whether this
holds true for £2 tRNA instances with a sequence identity above 0.50. The right
side of Fig. 5.11 shows the Lowess plot for these 780 tRNA instances. In these
cases, LARA performs better than SLARA and the SCI performance is almost
identical (plot not shown). Since a quarter of the pairwise k15 alignments are
input instances with an identity higher than 0.50, this contributes to the slightly
worse performance of SLARA compared as to LARA.

In the pairwise case, i.e., the k2 instances, up to a sequence identity of ~ 42%
LARA and SLARA show a similar Compalign performance, with their respec-
tive curves shifted by about 0.1 to the top compared to the Sankoff variant
FOLDALIGNM. For the range of ~ 42 — 50% all programs (even the sequence-
based MAFFT) have comparable performance (except for MARNA). With an
increasing number of input sequences per instance, especially for the £10 and k15
sequences, the results change tremendously. LARA outperforms the other pro-
grams, yielding average Compalign scores of ~ 0.9, whereas the other structure-
based alignment programs have average scores around =~ 0.55—0.75. This is quite
remarkable, especially considering that FOLDALIGNM, LARA, and SLARA show
a similar performance in the pairwise case. FOLDALIGNM, however, computes
multiple alignments in a progressive fashion, whereas LARA and SLARA com-
pute all pairwise alignments and leave it to T-COFFEE to compute an alignment
that is highly consistent with all pairwise alignments. With an increasing number
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Figure 5.5: Results on all low homology BRALIBASE instances containing 2 input se-
quences. The z- and y-axis give the average pairwise sequence identity
(APSI) and the Compalign score (upper plot) or the SCI score (lower plot).
The legend of the upper plot also applies to the lower one.
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tRNA instances having an APSI value smaller than 0.50. Right side: com-
parison between LARA and sLARA on all 780 k2 tRNA instances that
show a pairwise sequence identity greater than 0.50.

of input sequences, the consistency-based approach generates better alignments
than the progressive methods (at least in our experimental setup). This holds
also true for the progressive variants of our models, PLARA and PSLARA. Their
performance—relative to LARA and SLARA—becomes worse with an increasing
number of input sequences.

Another astonishing observation is the performance of MAFFT, a sequence-
based program. The k2 and k3 instances show a comparable performance to
all the other sequence-structure alignment programs for instances above =~ 42%,
which is already surprising. With a growing number of input instances, the
performance of MAFFT becomes even better. In the case of 15 input instances,
the program yields—on average—the second best results (behind the various
LARA implementations), outperforming even FOLDALIGNM and STRAL which
incorporate structural information. The corresponding SCI plots, however, show
that the structural features of these instances are not conserved at all, leading to
low SCI scores. In the case of FOLDALIGNM, the situation is exactly vice versa:
the Compalign scores are low, whereas the SCI scores are relatively high which
means that the helical regions—in contrast to the loop regions—are correctly
aligned.

The comparison between FOLDALIGNM and PLARA shows that PLARA per-
forms consistently better than FOLDALIGNM on the various input data sets. The
two programs optimize the same objective function by maximizing the sequence
and structure score and compute multiple alignments in a progressive fashion.
There are, however, two important differences: PLARA and FOLDALIGNM use
different parameter sets, and as the authors of |9| show, the construction of the
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guide tree is of great importance for the overall result. In the current implementa-
tion of PLARA and PSLARA we build the guide tree by computing pure sequence-
based alignments using the RIBOSUM sequence scores. We performed various
tests with alternative approaches, e.g., computing sequence-structure alignments
with a low number of iterations, but surprisingly it turns out that the quality of
the alignments does not increase if one spends more time on the construction of
the guide tree.

Taking a look at the result plots one immediately recognizes the bad per-
formance of the MARNA software. For the final evaluations in this thesis, we
double-checked that we did not change any parameters to run the software on
the BRALIBASE data set with the original settings. In [30] the authors per-
form a comparison of sequence-structure alignments on the original BRALIBASE
compilation from [48|. They show that the performance of MARNA is compa-
rable to the one of CLUSTALW even if the APSI is smaller than 0.50. There are
two possible reasons: first, MARNA builds upon the general edit-operations for
RNA structures and uses fixed structural information (either a fixed structure or
the shape of the sequence) which ultimately means that the alignment quality
greatly depends on single MFE structures. If these structures are wrong, then
the algorithm is mislead. Second, the command to execute T-COFFEE with the
MARNA compiled library reads

system("t_coffee -in=Lcoffee.lib,Mclustalw_pair");

which means that, in addition to the library file coffee.1ib that MARNA cre-
ates, T-COFFEE uses a second library based on CLUSTALW alignments. This is
unfortunate, however, since the CLUSTALW information seems to blur the struc-
tural information of MARNA. Moreover, a closer look into the MARNA library
file shows that almost all weights in the library are in the range between 95 and
100. This does not allow a discrimination between stacked and unstacked regions,
introducing additional difficulties for T-COFFEE to assemble a proper alignment.
Hence, parameter training on a recent RFAM data set, like the data set compiled
for the MASTR paper, dropping the CLUSTALW information, and setting proper
library weights might enhance the overall quality of the MARNA alignments.

During our computational experiments we evaluated two different modes for
the generation of libraries. We either write the entire alignment into the library
file, i.e., both the loop and the stacked regions, or the stacked regions alone.
The reasoning for supplying only stacked regions is that these should serve as
anchor regions, and T-COFFEE should perform its consistency-based ansatz on
the nucleotide level. If the sequence conservation in the loop regions is high
enough, this works well as we could, for example, observe with sequences from
the ITS2 database [153]. Libraries specifying only the stacked regions produced
better alignments in the case of ITS2 sequences. In general, however, due to the
low sequence conservation of the input sequences T-COFFEE introduces too many
gaps into the loop regions which lowers the overall alignment quality.
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Second, we observe significant differences in the performance of various T-
COFFEE releases. For our computational experiments in Chap. 5 we use the
version 4.70 that we originally used for our computational study in [7]. Since the
release of 4.70 in November 2006, there have been several new program versions,
but these releases show inferior performance compared to release 4.70.

5.4.3.3 Friedman Tests

In Chap. 2.4 we described the Friedman testing procedure which compares multi-
ple samples without assuming anything about the distribution of the input data.
In our case we have the results of various programs and want to compare their
performance on the BRALIBASE input sets. The null hypothesis of the Friedman
test is that there is no significant difference between the various programs. In the
case the null hypothesis is rejected, i.e., there are significant differences between
various groups, one has to perform pairwise Wilcoxon signed-rank tests to de-
tect significant differences between the programs. To limit the hassle of multiple
testing, we perform the Wilcoxon test only between the program that is ranked
first and the remaining programs. We perform all the tests with a significance
level of 0.05, and we correct for the multiple Wilcoxon tests using the Bonferroni
correction, i.e., we set the p-value to % with £ being the number of the tested
programs.

Table 5.4 lists the results of the testing procedure for both the Compalign and
the SCI scores on all six data sets of the BRALIBASE.

5.4.3.4 Comparison of the Running Times

We compared the programs tested on the same computing server with an Intel
Xeon CPU running at 3.2 GHz, 3.5 GB RAM, and Linux kernel version 2.6.16.
It turned out that memory requirement was not an issue, but the computation
time instead. Especially MARNA scales in O(n?), which makes the alignment of
longer sequences (for example the SRP instances of BRALIBASE) rather time-
consuming. This, however, is not the case with LARA and FOLDALIGN, since
these two programs have running times in O(n?). To evaluate the time con-
sumption within reasonable time, we therefore set a time limit of 20 minutes per
instance. If the computation was not finished within 20 minutes, the process
was killed and we took 20 minutes as the running time. In Table 5.5 we list the
number of instances that the programs were not able to align within 20 minutes.

We were especially interested in how the running times of the programs that
use structure information scaled with respect to the number of the input se-
quences. FOLDALIGN, as a progressive approach, computes (n — 1) pairwise
alignments given n input sequences. MARNA and LARA, however, compute all
@ pairwise alignments. Table 5.6 shows the execution time of all programs
on all k2, k3, k5, k7, k10, and k15 instances. As one can see, with an increasing
number of input sequences, a progressive alignment strategy pays off compared
to the computation of all pairwise alignments.
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k2 k3 k5
Program SPS SCI SPS SCI SPS SCI
LARA 2 3 1(3-10) 4 1(3-10) 2
SLARA 168-8)  1(3-8) 2 2 2 1(4-10)
PLARA — — 3 3 5 3
pSLARA — — 6 1(6-10) 7 4
FoLDALIGNM 4 2 9 ) 9 )
MURLET 5} 6 D 7 4 7
MARNA 8 8 10 10 10 10
MXSCARNA 3 4 4 6 3 6
STRAL 7 5 8 8 8 9
MAFFT 6 7 7 9 6 8
k7 k10 k15
Program SPS SCI SPS SCI SPS SCI
LARA 1(8-10) 1(8-10) 1(3-10) 1(3-10) 1(3-10) 1(3-10)
SLARA 2 2 2 2 2 2
PLARA 5 3 6 3 6 3
pSLARA 7 4 7 5 7 4
FoOLDALIGNM 9 5 9 4 9 5
MURLET 3 7 3 6 3 8
MARNA 10 10 10 10 10 10
MXSCARNA 4 6 4 7 4 7
STRAL 8 9 8 9 8 9
MAFFT 6 8 ) 8 5 6

Table 5.4: Results of the Friedman test for the Compalign and SCI scores. The p-value
for the test is 0.05. For the programs with the highest rank-sum, i.e.; the
programs that are ranked first, we perform pairwise Wilcoxon signed-rank
tests: the superscript numbers denote the ranks of the programs to which
significant differences exist.

Table 5.6 shows that the running time of MURLET is very high. This is quite
in contrast to what the authors of the corresponding paper [81] claim, namely
the development of a fast and practical variant of the Sankoff algorithm. Taking
a closer look at the paper, one recognizes that they performed their test on a
self-assembled data set from the recent release of the RFAM data base comprising
alignment instances above an average pairwise sequence identity of 0.45. Figure 5
of their paper shows the reduction of memory and time consumption over the
APSI value for the Hammerhead 3 ribozyme family. The striking aspect is that
the reduction sharply drops for the APSI range between 0.55 and 0.60, and there
are no data given for instances below an APSI of 0.45. Given the shape of the
curve, we speculate that the curve steeply goes up for instances below APSI values
of 0.50 which would explain the high computation time of MURLET.
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Program k2 k3 k5 k7 k10 k15
LARA 0 0 0 0 0 0
sLARA 0 0 0 0 0 0
PLARA 0 0 0 0 0 0
PSLARA 0 0 0 0 0 0
FoLDALIGNM 0 0 0 0 0 0
MURLET 1 25 32 55 28 16
MARNA 0 49 23 17 12 6
MXSCARNA 0 0 0 0 0 0
STRAL 0 0 0 0 0 0
MAFFT 0 0 0 0 0 0

Table 5.5: Number of unsolved instances for all input instances within a time limit of

20 minutes.

Program k2 k3 k5 k7 k10 k15

(2251) (1048) (512) (323) (189) (123)
LARA 3157.74  4400.22  6397.29  17632.74 11399.62 16261.14
SLARA 5234.15  7405.09 11014.26  30818.55 20099.32 28513.16
PLARA —  2844.08  2628.53 5262.44  2410.37  2318.04
PsLARA — 5202.97 4934.24 9834.59  4594.13  4265.50
FoLpALIGNM  10360.44 14208.05 10995.36  10095.93  9977.03  7871.85
MURLET 9575.54 88355.02 76051.10 126883.04 51836.57 43345.91
MARNA 56434.11 25230.23 30463.49  38143.15 42146.56 55457.50
MXSCARNA 478.74 380.42 307.61 616.23 313.21 271.00
STRAL 18.72 25.21 19.24 42.57 24.13 28.96
MAFFT 53.14 30.83 17.18 25.12 7.72 7.20

Table 5.6: The overall runtime (in seconds) of the programs. If a program did not
compute the alignment within 20 minutes, we killed the process and took 20
minutes as the running time. The number in brackets give the number of
instances per input class.

5.4.4 Computing the Upper Bound via the Bundle
Method

Section 2.3.2 describes the bundle method which is an alternative approach for
computing solutions for the Lagrangian dual. Instead of adapting the Lagrangian
multipliers according to one single subgradient, the bundle method accumulates a
bundle of subgradients and fits a quadratic function to them. Then, the quadratic
function is used to compute the new values of the Lagrangian multipliers. Sec-
tion 2.3.2 gives details about the bundle method. The CONICBUNDLE library
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Figure 5.12: The distribution of the differences (bundle bound — subgradient bound)
between the values of the upper bounds computed via the subgradient and
the bundle method. A positive value means that the bundle bound is higher
than the corresponding subgradient value. Left side: the distribution of
the differences after maximal 500 iterations. Right side: the distribution
of the difference allowing a maximal computation time of five minutes.

[62] contains generic code for using the bundle method, and we implemented an
interface to the library within the LISA library. We set the parameters accord-
ing to |61], i.e., we restricted the bundle size to 2 and added at most one new
subgradient to the bundle.

Our test set are all k2 instances below an APSI value of 50%, yielding 2251
test instances. We are interested in comparing the quality of the upper bounds
using the subgradient and the bundle method. We performed two different test
settings: first, we stopped the subgradient and the bundle code after a maximum
of 500 iterations which corresponds to the default setting in the LARA software.
Second, we allowed a maximal running time of five minutes and stopped the
computation afterwards. This should clarify whether the bounds would improve
significantly over a longer computation time.

The left side of Fig. 5.12 shows that in 69% of all instances (1563 out of 2251)
the upper bound produced by the subgradient procedure is as good or better than
the bound computed via the bundle procedure if we allow a maximal number of
500 iterations for both algorithms. If the bundle procedure does better, then
the improvement is typically small. The mean and standard deviation of these
instances are —0.82 and 2.23.

On the other hand, the difference between the bounds are a bit higher if
the bundle method performs worse: the mean and standard deviation for these
values are 2.44 and 3.7. The essence of these experiments is the following: if
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Figure 5.13: Typical behavior of the subgradient (black) and the bundle procedure
(red). Left side: within a couple of hundred instances, the subgradient
procedure typically produces competitive or better bounds compared to
the bundle method. Right side: allowing more computation time (in this
case 300 seconds), the bundle method yields slightly better bounds.

bundle performs well, then it does better, but only by a small amount. The
performance of subgradient optimization is generally as good or better than the
bundle method.

If we allow a maximal computation time of five hours, the picture changes.
The bundle method produces better bounds in general, only in 23% of all in-
stances (531 out of 2251) the subgradient method performs better. The mean
and standard deviation of the difference between bundle and subgradient bound
is small: —0.85 and 0.81. Figure 5.13 shows the typical development of the upper
bound both for the subgradient and the bundle method. As one can see, the
bundle method produces a curve that is more smoothly, whereas the subgradient
method shows more a staircase-shaped curve.

In [94] Lemaréchal states that the subgradient procedure is basically “only
used by amateurs”. While it is true that subgradient optimization is conceptually
much easier than bundle methods, we have to state that his opinion does not hold
true in general. In our problem setting subgradient optimization is appropriate,
because our primary goal is to compute good bounds as quickly as possible.
The comparison of the two procedures shows that the subgradient method works
better.

We are aware of the fact that by resorting to subgradient optimization we
sacrifice the advantages of the bundle method, e.g., explicitly estimating the
difference of the current solution and the optimal value of the Lagrangian dual,
or retrieving primary information. This information, however, is not important
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Figure 5.14: Generic concept of branch-and-bound.

to the user of sequence-structure alignment algorithms. The user typically wants
to have good solutions for the alignment problem as fast as possible, and this is
what the subgradient procedure provides in our setting.

5.5 Computing Provably Optimal Solutions

Every iteration in the Lagrange solution process yields an upper and lower bound
on the optimal solution value. Unless the upper and lower bound do coincide,
one cannot be sure whether the best solution found is the optimal one. We
therefore implemented a branch-and-bound algorithm that exhaustively searches
the solution space given the best lower bound found during the subgradient phase.
Branch-and-bound uses a divide-and-conquer strategy to divide the original
problem into smaller ones. This yields an enumeration tree of subproblems, where
the root node corresponds to the original problem. The nodes of the tree represent
constrained subproblems where variables are either set to 1 or 0. Each inner node
has two subnodes where a new variable is set to 1 and 0. To avoid the exhaustive
search of the entire tree, at each node we compute a local upper bound on the
subproblem, and compare this upper bound to a global lower bound. If the local
upper bound is smaller than the global lower bound, we can safely backtrack,
because we cannot do better if we step down further that subtree. Otherwise
we might achieve a better solution value in the subtree, we choose a variable x,
and create two new subproblems by adding the constraints z, = 1 and z, = 0.
Figure 5.14 summarizes the steps of the generic branch-and-bound algorithm.
There are only two main components in every branch-and-bound algorithm:
the computation of the local upper bound and strategy of choosing the next
branching variable. In Sect. 5.5.2 and Sect. 5.5.3 we shall elaborate on these
issues. Additionally, in our case we employ a preprocessing phase to lower the
number of branching variables which we shall describe in the following section.



95

5.5.1 Preprocessing the Input

Similar to [21] we can preprocess the input and eliminate alignment edges vari-
ables that cannot be part of the optimal solution. To this end, for each alignment
edge e we compute the score s, of the best alignment that includes e. If s, is
smaller than the value of a feasible solution to the sequence-structure alignment
problem, we can safely drop x. from the pool of branching variables, because e
will never be part of the optimal alignment.

To be more specific: given two sequences sy and sy, we have a scoring matrix
A where A(i,7) holds the maximum profit that alignment edge e = (i,7) can
possibly achieve. Then, the value s., i.e., the score of the best alignment .4 with
s; being alignment to s;, is

se = align(sol0,...,i—1],510,...7 —1]) +
A(i, ) +
align(so[i +1,..., (Iso] = D], s1[d +1,..., (|s:] = 1)])

The matrix align(sglio, - . . ,41], $1[Jo, - - -, 71]) holds the value of the optimal se-
quence alignment between subsequences sglig, ..., 7] and si[jo,...,J1]. If se is
smaller than some global lower bound [/, then we drop e from the list of branch-
ing variables. In our experiments we start from the complete bipartite graph
and we observe that the reduction of branching variables typically ranges from
75 — 95%. If the reductions amounts to 95% of all variables, then the upper and
lower bound obtained after the subgradient optimization procedure are already
almost the same.

5.5.2 Computation of the Upper Bound

The computation of a local upper bound on a subproblem requires the solution
of a constraint alignment problem. The set C' contains the positions that have to
be aligned, whereas N comprises the set of positions that must not be aligned.

We solve this constrained alignment problem in a straightforward manner:
for alignment edges ¢ = (i,7) € C we set their score to some high value M,
i.e., A(i,j) = M. This forces the optimal alignment path to run through these
positions. For alignment edges n = (k,l) € N we have A(k,l) = —M which
means that these matches will never be realized. Given the resulting score matrix
A we solve the sequence alignment problem which yields the optimal sequence
alignment value of 2. We get the alignment score Q by substracting the bonuses
M, ie, Q=0Q-— |C| - M. The value of () then gives the local upper bound on
the problem.

5.5.3 Choosing the Branching Variables

Solving the Lagrange relaxed problem using subgradient optimization—in con-
trast to bundle methods— does not directly yield information on the value of the
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primal variables. We therefore compute reasonable values of primal variables the
following way: let k£ be the number of overall iterations during the subgradient
phase, then for every alignment edge e the value c(e) denotes how often align-
ment edge e was part of the solution set from the relaxed problem. Then, we take
ple) = %e) as an approximation for the primal value of each alignment edge.
The literature provides various schemes for the selection of the next branching
variable based on the primal information. The most commonly used strategies
select values either close to 0, 1, or to 0.5. In our experiments we could not
observe big performance differences between various branching schemes, so in the

following we report on our results for choosing the variables that are closest to 0.

5.5.4 Results

As we describe in Sect. 5.3, the algorithm to compute an exact multiple sequence
alignment shows an unpredictable runtime behavior in practice. We therefore
constrain ourselves to the pairwise case, since we compute optimal solutions of
the relaxed problem in O(n?).

Table 5.7 shows the results for the branch-and-bound algorithm on the pair-
wise BRALIBASE instances. We allowed a maximal runtime of two hours. If
the branch-and-bound algorithm did not stop within the time limit, we killed the
process. Note that there are two Cobalamin instances where the implementation
quits due to a memory overflow. In these two instances there are still 27828 and
27795 variables left after the variable reduction phase. A large gap between the
upper and lower bound deprives us from the average reduction of 75 — 95% of all
variables, but only 58% and 61% for these two instances. This, in turn, is due
to the extreme length differences of the input sequences. The sequences are 178
and 268, and 177 and 256 nucleotides long, respectively.

The authors of [21] develop a branch-and-bound algorithm for the solution
of quadratic knapsack problems which is similar to the computation of RNA
sequence-structure alignments. During our experiments we could confirm their
observations. In [21] they state that

One can observe that the upper and lower bounds are generally
very tight, making it possible to reduce a majority of the variables,
on average more than 75%. (...) Despite this effective preprocessing,
the final branch-and-bound phase demands some hours and a huge
number of nodes for the largest instances, as many variables have
to be fixed by branching before closing the gap, despite the latter is
typically very small already at the root node.

We observe exactly the same behavior in our experiments. The values for the
upper and lower bound in Tab. 5.7 (columns ub and Ib) show that we are only
able to solve instances to provable optimality where the gap between the upper
and lower bound is already fairly small after the subgradient procedure. A small
gap between upper and lower bounds leads to a small number of variables after
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APSI # © len 4 vars Ib ub opt ratio time
tRNA 22 1 71 838 162.58 163.13 162.58 (1.00)  165.99
23 2 72 844 166.19 170.96 168.13 (0.99) 3856.02

24 3 71 658 127.04 127.93 127.04 (1.00) 274.45

25 1 70 819 106.17 106.37 106.17 (1.00)  163.91

26 2 73 855 128.94 129.47 128.94 (1.00)  390.90

27 2 71 704 159.04 162.32 159.04 (1.00) 1081.04

28 6 71 613 166.79 168.41 167.09 (1.00) 317.67

30 4 71 578 145.26 146.60 145.86 (1.00)  119.09

31 5 72 821 159.30 160.62 159.30 (1.00)  306.68

32 8 72 689 160.93 161.70 160.93 (1.00)  652.90

33 9 74 773 154.87 156.85 155.09 (1.00) 1872.71

34 16 73 695 168.53 170.92 168.75 (1.00) 1198.23

35 3 73 679 181.93 185.18 182.24 (1.00) 1907.45

36 4 72 421 19149 193.87 191.71 (1.00)  198.56

37 3 69 535 149.54 150.30 149.80 (1.00)  360.81

38 11 73 666 164.44 165.83 164.45 (1.00) 871.19

39 7 75 869 157.62 161.39 158.61 (0.99) 2022.37

40 14 74 707 17598 177.94 175.98 (1.00) 1071.43

41 5 73 647 190.95 194.16 192.20 (0.99) 1713.44

42 10 73 721 170.10 171.74 170.13 (1.00) 712.24

43 12 74 873 163.88 165.40 163.93 (1.00) 1782.08

44 16 73 668 191.51 193.83 191.95 (1.00) 907.14

45 8 73 821 162.56 165.44 163.01 (1.00) 1681.94

46 18 73 579 189.49 190.76 189.52 (1.00)  405.01

47 14 74 781 182.72 184.92 183.05 (1.00) 1661.17

48 17 71 688 179.61 181.43 179.96 (1.00) 1427.49

49 23 74 798 179.54 181.50 179.94 (1.00)  959.37

5S 41 2 119 1701 307.52 307.62 307.52 (1.00) 2910.48
42 2 118 1757 233.00 233.88 233.00 (1.00) 3895.03

44 2 116 863 262.86 263.72 262.86 (1.00) 1915.21

45 4 119 1487 239.88 240.07 239.90 (1.00) 2375.55

46 1 120 871 326.24 326.71 326.24 (1.00) 1339.70

47 5 117 1584 240.86 241.61 240.86 (1.00) 4568.20

48 1 120 559 369.06 369.42 369.06 (1.00) 439.11

49 1 119 2446 250.03 250.03 250.03 (1.00) 1983.03
Coba- 47 1 192 1754 404.55 404.55 404.55 (1.00) 3758.07

lamin

Table 5.7: All instances solved by the branch-and-bound algorithm. We report the av-
erage values grouped according to the pairwise sequence identity of the input
sequences. The second and third column give the number of solved instances
and the average length of the input sequence, respectively. Column # vars
gives the number of variables after the preprocessing phase. Columns 1b and
ub represent the lower and upper bound at the root node. Furthermore,
columns opt and ratio give the value of the optimal solution and the degree
of optimality of the lower bound found at the root node. Finally, the last
column reports the runtime in seconds.
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the preprocessing step and provides sharp bounds during the bounding phase of
the branch-and-bound algorithm. We therefore did not even try to solve instances
to optimality whose ratio between lower and upper bound is smaller than 0.95.

Second, we are also facing the fact that we have to set a high number of
variables to 1 or 0, before we close the gap between the upper and lower bound.
In many cases, we have to constrain the entire alignment, until we are able to
prune the subtree. For a typical tRNA instance this means that we are setting
50 — 60 variables to 1, before the upper bound finally becomes smaller than the
global lower bound.

Furthermore, the lower bounds computed during the subgradient phase are
optimal in almost all cases. Table 5.7 lists only three bins in which the optimal
solution deviates from the value of the best lower bound found during the subgra-
dient phase. This observation is, however, not surprising given the fact that the
gap between the lower and upper bound is typically very small in the instances
that we tackle with our branch-and-bound code. Table 5.8 gives an overview over
all 1624 pairwise instances that we tackled using the branch-and-bound algorithm.

Lagrange Gap Solved Unsolved

Group solved too big by BB by BB
tRNA 476 466 224 92
55 67 122 18 42
Cobalamin 0 110 1 6

Table 5.8: Summary over all instances processed by the branch-and-bound framework.
Lagrange solved, Gap too big, Solved by BB, and Unsolved by BB give
the numbers of instances that are solved to optimality after the subgradient
phase, whose gap after the subgradient phase is too big, that are solved
to optimality by the branch-and-bound algorithm, and that exceeded the
branch-and-bound time limit of two hours, respectively.
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Conclusion and Future

0 Work

I glaub i geh jetzt,
weil i was genau,
wenn i noch ldnger bleib,
geht ma der Schméih aus,
und des wii i net.
Wolfgang Ambros
(I glaub i geh jetzt)

In this thesis we presented a framework for computing sequence-structure
alignments of RNA structures based on techniques from combinatorial optimiza-
tion. The comparison of our implementations with several other state-of-the-art
programs shows that we performed very well on the established BRALIBASE
benchmark set. Both the consistency-based LARA and SLARA, and the pro-
gressive versions PLARA and PSLARA are top-ranked for all input classes.

We refrain, however, from claiming that our tools are the best alignment
programs for each input class. Each of the tested programs has its strengths
and weaknesses: FOLDALIGNM, for example, generally performs better on SRP
instances compared to our programs, whereas LARA and SLARA outperform
FoLDALIGNM on tRNA sequences. Therefore, one cannot speak of one single
best sequence-structure alignment program for all input classes as other authors
[81; 132] did, because tests on self-compiled data sets usually show that their
program works best on their data. Consequently, we chose the BRALIBASE
benchmark to evaluate our programs, because this way we avoid putting a data
set together and afterwards claim that we performed best on it. We believe that
the community should work and agree on a benchmark set BRALIBASE next gen-
eration that allows a fair comparison of different structure alignment programs.
This benchmark should eliminate the deficiencies of the current BRALIBASE
release:

(a) update the sequences to the latest version of the RFAM database,

(b) remove the bias of input instances towards some RNA families that have a
large number of sequences in their seed alignments,

(c) incorporate published structures into the alignment, and subsequently use
the MCC instead of the SCI as the structural assessment score,

(d) incorporate 3D information—if available—to enhance the alignment quality.
We are aware that creating a large benchmark set satisfying these constraints is

a non-trivial task, especially since for most of the RNA families in the RFAM the
sequence data base is sparse.
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During the evaluation of our programs it became very clear that the per-
formance of a program does not only depend on the model or formulation it is
using, since a great deal of improvement or decline in performance accounts for
the setting of the parameters. For most programs, parameter settings are either
determined by systematically trying out various parameter settings [96], or val-
ues are chosen that seem to work well in practice [67]. LARA has three main
parameters: the sequence contribution, and the gap open and extension penalty.
We used the MASTR data set as our training set and examined various param-
eter possibilities, until the values worked well on the MASTR data. In the case
of SLARA, the situation becomes even more involved, because apart from the
sequence scaling we have to balance the structure and stacking contribution thus
yielding an expanded parameter search space. We tested seven different values
for both the structure and stacking contribution yielding 49 times more possi-
bilities to explore. There are various distinct parameter sets that yield almost
the same performance as the sets that we finally chose for our evaluation. It
is very likely that a combination of these parameter sets yields comparable or
even better results. Hence, a proper parameter training method is of utmost
importance. In the case of pure sequence-based alignments Kececioglu and Kim
[80] propose an approach based on linear programming: given an alignment, the
inverse alignment problem calls for determining the (user-specified) parameters
such that the optimal sequence alignment—using these parameters—yields the
input alignment. In principle, their approach is applicable to sequence-structure
alignments as well. For a multiple alignment annotated with the conserved inter-
actions, it is possible to determine the optimal parameter set. Input alignments
could be taken, for instance, from the RFAM or the European rRNA database.
One has to take care not to overfit the parameters to certain input groups; hence,

the input alignments should be distributed among various classes of noncoding
RNAs.

Besides the gap and scaling parameters, the scoring system greatly influences
the performance of our implementations. We use scores based on the base pairing
probability matrices. The pairing probabilities in turn are derived from the par-
tition function which takes all possible nested secondary structures into account.
Our model allows for all possible pseudoknots, because the only constraint is
that a nucleotide might pair with at most one other residue. In our experiments
we observe that the structural completion computed via the maximum-weight
matching computation often contains pseudoknots that do not violate the defini-
tion of a secondary structure, but that will not be observed in Nature. Figure 6.1
gives an example of such a typical case. Therefore, for the computation of a
secondary structure we resort to RNALIFOLD that computes a nested consensus
structure given an alignment. SLARA generally inserts fewer arbitrary pseudo-
knots, because it favours the consecutive stacking of base pairs.

One of the main advantages of our formulation is its ability to deal with
pseudoknots. In contrast to most of the DP based approaches and all the tree-
based models, we can align structures that contain pseudoknots. Right now,
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Figure 6.1: The solid lines represent the interactions that are conserved via the align-
ment. The red interaction match denotes the pseudoknot that is inserted,
since we do not reward stacking of base pairs in our initial model. If we take
the dotted instead of the solid alignment edge, the alignment conserves the
interaction match denoted by blue dotted lines, yielding a more resonable
structure.

however, we are not able to take advantage of it, because algorithms predicting
secondary structures or base pair probabilities including pseudoknots suffer from
two main drawbacks. First, all these approaches are computationally expensive
(their time complexity scales at least in O(n?)), which makes them applicable
only to short sequences. Second, there are no sound energy parameters available
for pseudoknotted structures. This is even more significant, because it means
that even if we have the algorithms and models to incorporate pseudoknots, we
are optimizing an objective function that is misleading. Hence, the only scenario
where LARA could make use of its pseudoknot alignment abilities is the alignment
of experimentally verified structures that contain pseudoknots.

At the time this thesis is being written, new approaches have been proposed
that aim at avoiding the high computational costs of the Sankoft variants. MAFFT
6, the latest version of the MAFFT |78] alignment program, introduces the concept
of four-way consistency which extends the consistency-based sequence alignment
described in Sect. 3.2 to incorporate structural information. Preliminary tests of
the beta version on the BRALIBASE show an improved performance compared
to the previous MAFFT versions, while the running time increased only slightly.

Future Work. The work presented in this thesis provides several lines of fu-
ture research. Our graph-based model can be modified to tackle other align-
ment problems such as local sequence-structure alignments. We already imple-
mented a prototype that searches local sequence-structure motifs in the spirit of
RNAFORESTER, i.e., subsequences of the input sequences that share a common
structural motif. Running our prototype on the same data as RNAFORESTER,
we are not only able to find the local motifs that RNAFORESTER finds, but
also other elements that are published in the literature. Backofen and Will [2]
describe a different version of local sequence-structure alignment. Instead of only
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considering entire subsequences, the authors also allow sequence-structure motifs
where parts of the sequence are omitted. This is the case, for instance, if we have
a helix in the first sequence that does not exist in the second input sequence.
The only constraint is, however, that the motif has to be connected either in the
sequence or structure. In principle, the graph-based model is also able to capture
such motifs, but the handling of omitted subsequences is an unsolved issue at this
moment.

The original MXSCARNA approach [133] inspired the model that incorpo-
rates stacking scores. Naturally, the halfstems of stem fragments correspond to
nodes in the graph, and we have an interaction edge between nodes that form
a stem. Remember that MXSCARNA first aligns the stem fragments and uses
these as anchors in a subsequent sequence alignment. We implemented a proto-
type that goes beyond the model of [133] by aligning stem fragments and loop
regions at the same time. The recursions for the extended model become in-
tricate and the prototype did not yield satisfactory results. By going back one
step, however, and applying the graph-based model only on the stem fragments,
we reduce the size of the problems, because a node now corresponds to a stem
fragment and not to a single nucleotide anymore. In the end, this would lead to
decreased running times of our approach.

A theoretical problem that needs further research is the computation of a
feasible solution—given the solution of the relaxed problem—including stacking
energies. In Sect. 4.3.2 we show how we can compute an exact solution by solv-
ing a max-weight independent set problem. This reduction is, however, of little
practical interest, since the computation of an independent set is NP-complete.
Hence, the problem consists in either proving the NP-hardness of the problem,
or giving a polynomial time algorithm that computes an exact solution.



APPENDIX

A

Deutsche
Zusammenfassung

Puh,
das war harter Stoff.
Die Arzte
(Zusammenfassung)

Wissenschaftliche Entdeckungen der letzten Jahre haben die Molekulargene-
tik revolutioniert: bis dahin ging man von einem linearen Informationsfluss aus,
in dem DNA zu RNA, und RNA in Proteine iibersetzt wird. RNA nahm dabei die
Rolle eines Hilfsmolekiils ein, das selbst—bis auf wenige Ausnahmen—keinerlei
katalytische Eigenschaften hat. In den letzten Jahren zeigte sich jedoch, dass man
von einer viel komplexeren Organisation der zelluldren Prozesse ausgehen muss:
Nichtkodierende RNA-Sequenzen, d.h. RNA-Sequenzen die keine Proteine kodie-
ren, spielen dabei eine wesentliche Rolle. Bei der Analyse von RNA-Sequenzen
ist es wichtig, Strukturinformation zu beachten, da die sogenannte Sekundér-
struktur, und nicht so sehr die eigentliche Sequenzinformation erhalten bleibt.
Alignmentprogramme von divergenten RNA-Sequenzen miissen deshalb Struktu-
rinformation miteinbeziehen, um zuverlédssige Alignments zu erstellen.

In dieser Arbeit stellen wir ein neues Modell fiir das Berechnen von mul-
tiplen Sequenz-Struktur-Alignments von RNA-Sequenzen vor. Wir beschreiben
Struktur-Alignments als graphentheoretisches Problem und zeigen danach, wie
man dieses Modell als ganzzahliges lineares Programm (ILP) formulieren kann.
Wir relaxieren das ILP im Folgenden in einer Lagrangeschen Weise, d.h. wir ver-
schieben eine Klasse von Bedingungen—versehen mit einem Strafterm-Vektor—in
die Zielfunktion und losen das resultierende ILP. Zusétzlich beschreiben wir eine
Erweiterung des ILPs, bei der sogenannte Stackingenergien in die Berechnung des
Sequenz-Struktur-Alignments einfliefsen.

Im Rahmen einer umfangreichen Auswertung vergleichen wir die Implementie-
rungen unserer Modelle mit zahlreichen anderen aktuellen Programmen. Unsere
Programme liefern auf einem kiirzlich publizierten Benchmark-Datensatz die bes-
ten Ergebnisse fiir alle Klassen von Eingabedaten. Zusétzlich geben wir einen Ver-
gleich zwischen dem Subgradienten-Verfahren und der Biindel-Methode zum Lo6-
sen des dualen Problems. Wir kénnen zeigen, dass fiir Standard-Eingabeinstanzen
das Subgradienten-Verfahren normalerweise bessere Ergebnisse liefert. Den Ab-
schluss der praktischen Auswertung bildet die Beschreibung eines Branch-und-
Bound-Verfahrens, das—gegeben die Schranken aus dem Subgradienten-Verfahren—
beweisbar optimale Losungen berechnet. Wir zeigen, dass der Anwendungsrah-
men dieses Ansatzes in etwa dem entspricht, was fiir das verwandte Problem des
quadratischen Rucksackproblems publiziert wurde.
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