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Short Abstra
tUntil a 
ouple of years ago the s
ienti�
 mainstream held that geneti
 informa-tion, stored as DNA strands, is trans
ribed to RNA, and RNA sequen
es arein turn translated to proteins, the a
tual fun
tional units in the 
ell. RNA wasgenerally believed to be a helper mole
ule in the 
ell until the beginning of thenew millennium. This view 
hanged. We see the potential of RNA as one of thekey 
ellular players.In this thesis we present a novel framework for 
omputing sequen
e-stru
turealignments of RNA sequen
es. Our 
ontribution is twofold: �rst, we give a graph-theoreti
 model for the 
omputation of multiple sequen
e-stru
ture alignments.We phrase the model as an integer linear program (ILP) and show how we 
anrelax the ILP su
h that we are able to 
ompute optimal or near-optimal solutionsfor the original problem. In a subsequent step, we augment the initial modelwith sta
king energies. Sta
king base pairs greatly 
ontribute to the energeti
stability of the overall stru
ture and should therefore be additionally rewarded.We extend the original ILP su
h that sta
king energies are in
orporated.Se
ond, we give extensive 
omputational results on real data from the Rfamdatabase. We 
ompare the performan
e of truly multiple sum-of-pairs sequen
e-stru
ture alignments to heuristi
 sequen
e-stru
ture alignments. We show thatthe obje
tive fun
tion value of the sum-of-pairs model is generally higher 
om-pared to the heuristi
ally inferred alignments. At the same time, we sket
h the
omputational limits for the sum-of-pairs multiple sequen
e-stru
ture model.The 
omputational 
osts for 
omputing exa
t multiple sequen
e-stru
turealignments are generally very high. To validate our approa
h on a larger testset, we run two implementations that take two sequen
es as their input. LaRAand sLaRA�based on the initial and the sta
k model�
ompute all pairwisesequen
e-stru
ture alignments and use the external program T-Coffee to in-fer a 
onsisten
y-based multiple sequen
e-stru
ture alignment. Additionally, werun the progressive versions pLaRA and psLaRA on the same input data set.Our experiments on the BRAliBase ben
hmark set show that our tools are top-ranked for all input 
lasses. Furthermore, our implementations need less runningtime 
ompared to similar approa
hes.Subsequently, we 
ompare two di�erent algorithms for 
omputing the optimalvalue of the Lagrangian dual and show that in our test setting the 
on
eptuallyeasier subgradient method is superior to the bundle method. Finally, we in
or-porate our Lagrangian relaxation approa
h into a bran
h-and-bound framework.We show for whi
h instan
es we are able to 
ompute provably optimal solutionsand 
ompare our results with previously published results of a bran
h-and-boundapproa
h for the related quadrati
 knapsa
k problem.
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Chapter
1 Introdu
tion

Kumm her und hua
h zua,i erzähl Dir a Gs
hi
ht.Wolfgang Ambros(Das Leben, die Liebe und der Tod)
1.1 The Past and Future of Geneti
s
3, 080, 419, 4801 
hara
ters en
ode who we are: the 
olor of our hair, the shape ofour body, and the risk for 
ertain diseases. The joint publi
ation of the sequen
e ofthe human genome by the Human Genome Proje
t [26℄ and the private 
ompanyCelera [140℄ marked a milestone in human history. Sin
e then, it is possible toread the book of life: but the more we read and the more we begin to understand,the more 
ompli
ated it gets.The history of geneti
s started by redis
overing the work of Gregor JohannMendel in the early 20th 
entury. In 1865, Mendel performed studies aboutinheritan
e patterns in plants and realized that inheritan
e was not a randompro
ess. It took several de
ades to �nally illuminate the mole
ular basis andmain pro
esses of geneti
s. Hugo de Vries introdu
ed the terms pangenesis andpangen for the smallest parti
le responsible for inheritan
e, a term that was laterabbreviated to gene by Wilhelm Johannsen. In 1910, Thomas Hunt Morganshowed that genes are lo
ated on 
hromosomes and proposed a linear arrangementof genes on the 
hromosomes. His student Alfred Sturtevant determined thelinear order of genes on the 
hromosomes, however, it was still un
lear what thea
tual mole
ular basis of inheritan
e is. The two possibilities were either DNAor proteins. DNA is a biopolymer, a 
hain of four di�erent nu
leotides: eitheradenine (A), 
ytosine (C), guanine (G), or thymine (T); proteins are 
ompositionsof 20 di�erent amino a
ids that were �rst des
ribed by Berzelius in 1838.In 1944, Oswald Avery, Colin M
Leod, and Ma
lyn M
Carty dis
overed thatit was DNA and not proteins that harbor the genes. Building upon work byFrederi
k Gri�th they worked with two di�erent strains of the same ba
terium,and then removed either proteins or DNA from the ba
teria and showed that byremoving DNA the �rst strain 
ould not transform into the se
ond strain. Theydid not observe this e�e
t by removing proteins. Hen
e, they had 
on
lusive evi-den
e that DNA is the 
arrier of genes. In subsequent work, Hershey and Chase1 We 
al
ulated this number by simply summing up the length of all 24 
hromosomes of thehuman genome from GenBank. We are aware of the fa
t that giving an exa
t number is notpossible.
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dis
overed DNA as the geneti
 foundation of viruses. Finally, in 1953 Fran
isCri
k and James Watson revealed the double helix as the stru
ture of DNA andthey 
onstru
ted a physi
al model for the dupli
ation and re
onstru
tion of part-ner strands. In subsequent years, massive resear
h e�orts, aimed at unravellingthe me
hanism that governs the pro
esses of transforming DNA into proteins,were 
ondu
ted until �nally trans
ription of DNA into RNA, and the translationof RNA into proteins be
ame apparent. RNA is similar to DNA, i.e., it is a 
hainof nu
leotides, but there are some important di�eren
es: RNA is single-stranded,in 
ontrast to the double-heli
al stru
ture of DNA, and the nu
leotide ura
il (U)repla
es thymine. By folding ba
k onto itself RNA builds hydrogen bonds andforms the se
ondary stru
ture (see Fig. 1.2 (b) for an example).In 1958, Fran
is Cri
k postulated the 
entral dogma of mole
ular biology[28; 29℄, whi
h essentially des
ribed the pro
essing of geneti
 information as alinear �ow: DNA is 
opied into messenger RNA (mRNA in short), and mRNAin turn serves as the template to synthesize the fun
tional units in the 
ell, theproteins. In the original formulation, RNA solely a
ts as the working 
opy ofDNA, and proteins alone are able to trigger or inhibit fun
tions in the 
ell. Inthe years to 
ome, new te
hnologies were developed that revolutionized mole
ulargeneti
s. Sanger [123℄ developed the �rst sequen
ing method that allows thedetermination of a DNA sequen
e. Weber and Myers [145℄ introdu
ed whole-genome shotgun sequen
ing : this te
hnique was used by the private 
ompanyCelera to determine the genomi
 sequen
e of the human, the �y, and the mouse.The standard sequen
ing method nowadays is pyrosequen
ing [119℄ whi
h sharplyredu
es the 
osts for (re-)sequen
ing of genomes.Together with the growing amount of available sequen
e data, te
hniques likemi
roarrays allow the measurement of genes that are expressed. Gene regulationdeals with the me
hanisms that 
ontrol the expression of proteins, and severalkey players were identi�ed: promoters and trans
ription fa
tors that 
ontrol thetrans
ription of DNA to RNA, or enhan
ers, for instan
e, that regulate the tran-s
ription of 
ertain DNA sequen
es. Still, the main work�ow was still assumedto be valid to a large extend.There were, however, already divergent opinions from the beginning. CarlWoese [152℄ postulated the possibility that RNA was not a helper medium fromthe start, but that RNA sequen
es�having 
atalyti
 properties�built the basisof the origin of life. Altman [54℄ and Ce
h [156℄ �nally provided eviden
e thatRNA sequen
es are indeed able to perform 
atalyti
 a
tions. Walter Gilbertexpressed the possibility of an RNA world [50℄ as the origin of life in his 
ommenton the dis
overy of 
atalyti
 RNAs.In the 1990s, s
ienti�
 �ndings �nally 
hanged the prevalent understanding ofthe mole
ular me
hanisms behind geneti
s. Lee et al. [93℄ des
ribe small RNAsthat regulate proteins. Their paper marks the dis
overy of a new 
lass of 
atalyti
RNAs, the so 
alled mi
roRNAs. Their full importan
e was not realized until2001 when a series of papers [92; 90; 88℄ des
ribes them as an abundant 
lassof RNAs. In 2002, S
ien
e Magazine announ
ed RNA as the breakthrough of
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the year [27℄. Sin
e then, the interest in non
oding RNAs, i.e., fun
tional RNAsequen
es not 
oding for proteins, has risen tremendously: examples 
omprisemi
roRNAs, snoRNAs, siRNAs, or piRNAs.First s
ans of several genomes [143; 144℄ point�despite a high false positiverate�to a large number of possible fun
tional elements. At the time this thesisis being written, re
ent studies [25; 128; 76; 24; 23; 146℄ even 
hallenge ourper
eption of three layers that are separated, sin
e they provide eviden
e thatthe entire trans
riptome is in fa
t a puzzle of overlapping trans
ripts from bothstrands of the helix and that almost the entire genome is trans
ribed at somepoint. What all these studies have in 
ommon is that they substantiate therole of RNA as one of the major players in driving 
ellular pro
esses. For mostnon
oding-RNA families, however, the a
tual fun
tion is mostly unknown. Onemajor ex
eption is the above mentioned 
lass of mi
roRNAs: these 22 nu
leotidelong RNAs are known to be involved in a wide range of me
hanisms, rangingfrom 
an
er genesis and 
lassi�
ation [100; 98; 111℄, silen
ing of genes [120℄, thediversity of anti-bodies [85℄, or to the division of stem 
ells [57℄.In biology, sequen
es of high similarity usually share the same stru
ture orfun
tion. Therefore, one of the main tasks in bioinformati
s is the 
omparison ofdi�erent sequen
es to sear
h for 
onserved patterns, i.e., subsequen
es that o

urin all sequen
es. Alignments are a way to 
ompare di�erent sequen
es. We writethe sequen
es on top of ea
h other su
h that 
hara
ters that are evolutionaryrelated are in the same 
olumn. We model geneti
 variability by inserting gap
hara
ters into the sequen
es. Figure 1.1 gives a small example of a multiplesequen
e alignment.

Figure 1.1: An example of a multiple sequen
e alignment of four input sequen
es. Char-a
ters that are evolutionary related are written in the same 
olumn of thealignment. Insertion and deletions are modelled by the insertion of gap
hara
ters.Alignments provide the basis for various subsequent tasks: phylogeneti
 anal-ysis, the study of evolutionary pro
esses, or sear
hing for homologous sequen
es.The alignment of DNA sequen
es based on sequen
e information works well, be-
ause the sequen
e remains evolutionary 
onserved, i.e., by 
onsidering only the
hara
ters of the sequen
e it is possible to build reliable alignments. In the 
ase
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of RNA the situation is di�erent. Although two RNA sequen
es 
an be divergenton the sequen
e level, they might still share a 
ommon stru
ture. This is due to
ompensatory mutations, a 
entral feature in RNA evolution: 
ompensatory mu-tations of bases that form hydrogen bonds do 
hange the sequen
e, but they do notalter the se
ondary stru
ture. As an example, re
ent studies [48; 138; 139; 148℄have shown that the stru
tural similarity is a dominant fa
tor and has to be takeninto a

ount in the alignment step of RNA sequen
es. Instead of 
omputing puresequen
e-based alignments we then 
ompute sequen
e-stru
ture alignment, i.e.,alignments that 
onsider both the sequen
e and stru
ture information. Due tothe re
ent �ndings about the importan
e of non
oding-RNAs, the developmentof new approa
hes for the alignment of RNA sequen
es that take the se
ondarystru
ture into a

ount is a worthwile endavour.In the following, we will present 
onstraints that a valid se
ondary stru
turemust satisfy. Additionally, we show di�erent representations of RNA stru
turesand sket
h the algorithms that 
ompute se
ondary stru
tures given only the RNAsequen
e.
1.2 RNA Stru
tures and Stru
ture Predi
tionRNA sequen
es 
an be represented as strings over the four letter alphabet ΣRNA =
{A,G,C, U}, and�in 
ontrast to DNA sequen
es�an RNA sequen
e folds ba
konto itself and builds hydrogen bonds between 
omplementary nu
leotides. Wedistinguish between the set of 
anoni
al base pairs G-C and A-U, and the wobblebase pair G-U. A set P of pairings forms the se
ondary stru
ture of a sequen
e
s. The elements of the se
ondary stru
ture form non
ovalent bindings that giverise to the 3D stru
ture of an RNA mole
ule. Figure 1.2 gives the primary,se
ondary, and tertiary stru
ture of a tRNA sequen
e. We 
all the determinationof the se
ondary and tertiary stru
ture of a sequen
e s the stru
ture predi
tionproblem.The Holy Grail of RNA stru
ture predi
tion resear
h is the determination ofthe tertiary stru
ture of a given sequen
e, and not only of the se
ondary stru
tureelements. Unfortunately, the knowledge about the tertiary folding pro
ess is farfrom being 
omplete, similar to the problem of determining the 3D stru
ture ofa protein given only its amino a
id sequen
e. Fun
tional RNA mole
ules usu-ally have a distin
tive tertiary stru
ture that is important for their fun
tion, andadditionally their se
ondary stru
ture remains evolutionary 
onserved. There-fore, most of the stru
ture predi
tion resear
h fo
uses on the easier problem ofpredi
ting the se
ondary stru
ture of an RNA mole
ule, sin
e a 
hara
teristi
 se
-ondary stru
ture forms a s
a�old for the tertiary stru
ture. This led to e�
ientalgorithms�based on dynami
 programming�for a variety of stru
ture predi
-tion problems. We want to stress, however, that the ultimate goal in stru
turepredi
tion is still the determination of the 3D stru
ture, and not only predi
tingthe se
ondary stru
ture.
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GCCCCCAUAGCUUAACCCACAAAGCAUGGCACUGAAGAUGCCAAGAUGGUACCUACUAUACCUGUGGGCA(a) Primary sequen
e

G
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G
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A C
C

UACUAU
A

CCU
G

U
G
G
G
C
A

(b) Se
ondary stru
ture (
) Tertiary stru
ture
Figure 1.2: Primary, se
ondary, and tertiary stru
ture of a tRNA sequen
e. The se
-ondary stru
ture (b) was 
reated using RNAfold from the Vienna RNApa
kage [66℄. We downloaded the tertiary stru
ture (
) from the PDBdatabase.

In the following, Se
t. 1.2.1 gives a formal des
ription of RNA se
ondarystru
tures, along with typi
al representations for these stru
tures. Finally, Se
-tion 1.2.2 des
ribes the energy model that builds the basis for most of the stru
-ture predi
tion algorithms.
1.2.1 RNA Stru
turesFormally, the se
ondary stru
ture P of a sequen
e s ∈ Σ∗RNA is a list of base pairs
(i, j) su
h that the following 
onstraints are satis�ed:(a) for ea
h position i ∈ 1, . . . , |s| there is at most one element (k, l) ∈ P su
hthat i = k or i = l, i.e., every nu
leotide takes part in at most one basepairing.(b) for every base pair we have |i − j| > 3, i.e., the minimal distan
e betweentwo paired nu
leotides has to be greater than 3 due to physi
al reasons.(
) paired bases have to be nested, i.e., ∀(i, j), (k, l) ∈ P we have k ∈ [i, j] ↔ l ∈

[i, j].Constraint (a) ensures that a valid se
ondary stru
ture does not in
lude basetriplets or quartets. Su
h motifs do o

ur, but only in tertiary stru
tures and they
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are ex
luded for se
ondary stru
tures. The ba
kbone of an RNA sequen
e 
annotbend too sharply; hen
e, 
onstraint (b) sets the minimal number of residues be-tween any paired bases to three. Finally, 
onstraint (
) marks the major di�eren
ebetween se
ondary and tertiary stru
tures: the nested 
hara
ter of a valid se
-ondary stru
ture allows the de
omposition of the overall stru
ture into smallerindependent subproblems. Most RNA related resear
h makes use of this de-
omposability property and devises algorithms based on dynami
 programming.Constraints (a)-(
) give rise to a hierar
hy of possible stru
tures, namely:(a) Plain: there are no base pairs at all, i.e., only the sequen
e information isavailable.(b) Chain: every nu
leotide is in
ident to at most one base pair, and there areno nested base pairs, i.e., ∀(i, j), (k, l) ∈ P we have either j < k or l < i.(
) Nested: every nu
leotide is in
ident to at most one base pair, and we onlyhave nested base pairs.(d) Crossing: every nu
leotide is in
ident to at most one base pair, and wehave 
rossing base pairs.(e) Unlimited: there are no restri
tions at all.A base pair that violates 
onstraint (
) is said to form a pseudoknot. Pseudo-knots are a �rst step from se
ondary stru
tures towards tertiary stru
tures, andthey exert important biologi
al fun
tions [131℄. Like for the 
omplete tertiarystru
ture predi
tion problem, however, we have an in
omplete understanding offolding kineti
s and properties of pseudoknots.There are various representations for se
ondary stru
tures. Beside the 2D-plot from Fig. 1.2, Fig. 1.3 shows �ve major representation forms for se
ondarystru
tures. Due to the nested stru
ture of the pairings we are able to draw a validse
ondary stru
ture as an outer planar graph with the residues being aligned on a
ir
le and base pairs forming 
hords of the graph. Another representation framesse
ondary stru
tures as trees: the parent/
hild relationship of the nodes is givenby the nesting of the paired bases. The sequential order of the sequen
e de�nes theorder of sibling nodes. There are di�erent resolutions for the labeling of the nodes:internal nodes 
orrespond to paired bases, whereas the leaves of the tree representunpaired bases, or nodes might 
orrespond to sta
ked regions of the se
ondarystru
ture. See Fig. 1.3 (
) for an illustration where the nodes 
orrespond to pairedand unpaired bases. The mountain plot en
odes for ea
h residue i the numberof pairings that en
lose i. Ea
h mountain 
orresponds to a sta
ked region inthe se
ondary stru
ture. The dotplot 
ontains more information than just asingle stru
ture: the matrix is divided into two triangles, with the lower triangle
ontaining one single stru
ture of the sequen
e indi
ated by bla
k squares. Theupper triangle of the dotplot 
ontains the probability for ea
h pair of nu
leotidesto pair. The bigger the square is, the higher is the probability to form a base pair.Finally, a more te
hni
al des
ription of RNA se
ondary stru
ture is the Viennanotation: bra
kets and dots denote paired and unpaired bases, respe
tively. Sin
e
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we do not allow pseudoknots, there is a unique 
orresponden
e between pairednu
leotides and pairs of opening and 
losing bra
kets.
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Figure 1.3: Various representations for RNA stru
tures. We have the graph represen-tation (a), RNA stru
tures as a tree (b), the mountain plot (
), the dotplot(d), and the Vienna string notation (e).

So far, we have only dis
ussed the properties that a valid se
ondary stru
turemust satisfy, and we presented various representations of se
ondary stru
tures.We did not, however, sket
h the algorithms to 
ompute the se
ondary stru
turegiven only the nu
leotide sequen
e. We will make extensive use of these algo-rithms in our 
omputational experiments, be
ause our default s
oring systemrelies on them. Therefore, this will be the topi
 of the following se
tion whi
h ismainly based on the exposition of Hofa
ker and Stadler [69℄.
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1.2.2 RNA Stru
ture Predi
tionThe �rst attempts to 
ompute the se
ondary stru
ture of an RNA sequen
e s aimat maximizing the number of paired base pairs, i.e., we want to �nd a set P overall possible stru
tures P su
h that we have

|P| = maxP̄∈P |P̄ | .Nussinov et al. [110℄ give re
ursions for 
omputing P . The re
ursion handlesthe two basi
 
ases of a nu
leotide i, i.e., whether it is paired or unpaired. Let
E[i, . . . , j] be the maximal number of base pairs for substring s[i, . . . , j]. Then,the re
ursion reads

E[i, . . . , j] = max{

E[i + 1, . . . , j]maxk,(i,k)pair (E[i + 1, . . . , k − 1], E[k + 1, . . . , j]) + 1
.

Figure 1.4 gives an illustration.
=

i j i j i jki + 1 k − 1 k + 1

Figure 1.4: The Nussinov algorithm 
omputes the maximal number of paired base pairsof a sequen
e s. The re
ursions distinguish two basi
 
ases: either a nu-
leotide i is paired or unpaired.
Due to its simple obje
tive fun
tion the experimental performan
e of theNussinov algorithm is not satisfa
tory. Hen
e, more sophisti
ated algorithmshave been developed that in
orporate more knowledge about se
ondary stru
-tures. Nested se
ondary stru
ture allow the de
omposition of the total stru
tureinto di�erent loops: given an element (i, j) ∈ P , we 
all nu
leotide h a

essiblefrom (i, j) if there is no other element (k, l) ∈ P su
h that i < k < h < l < j.A base pair (k, l) ∈ P is a

essible from (i, j) if both k and l are. We 
all the

k − 1 elements of P and k′ unpaired bases that are a

essible from the pairednu
leotides (i, j) the k-loop 
losed by (i, j). We now distinguish di�erent typesof loops a

ording to the number of base pairs a

essible from (i, j):1. A 1-loop is 
alled a hairpin loop.2. If only one single base pair (i′, j′) is a

essible from (i, j), then we 
all this
2-loop a(a) sta
ked pair if we have i′ − i = 1 and j − j′ = 1.(b) bulge loop if either i′ − i > 1 or j − j′ > 1.(
) interior loop if both i′ − i > 1 and j − j′ > 1.
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C

E D B

A

Figure 1.5: The are �ve main elements in RNA stru
tures: sta
ked base pairs (A),multiloops (B), interior loops (C), bulges (D), and hairpin loops (E). Thebla
k 
ir
les and grey lines denote residues and hydrogen bonds between
omplementary residues.
3. We 
all a k-loop with k ≥ 3 a multiloop.Figure 1.5 gives an illustration for the di�erent loop types.The k-loop de
omposition builds the foundation of the standard energy modelto predi
t the se
ondary stru
ture. Ea
h loop l has an energy 
ontribution e(l),and the total free energy of a stru
ture P is given by ∑

l∈P e(l). Hen
e, we swit
hour obje
tive fun
tion for stru
ture predi
tion from the number of paired bases tothe free energy of the ensemble. In parti
ular, we are interested in the stru
turethat has the minimum free energy among all possible stru
tures.Note that the dominant terms for the energy 
al
ulation are sta
ked basepairs, hydrogen bonds, and loop energies. The energy 
ontributions depend onthe type and the size of the loop. Furthermore, the overall stru
ture is stabilizedby 
onse
utive sta
king of paired bases: we 
all 
onse
utive sta
ked base pairsa sta
ked region or a stem. Zuker and Stiegler [161℄ �rst proposed re
ursionsfor the 
omputation of the minimum free energy, and the main 
on
epts remainvalid sin
e then. The time and spa
e 
omplexity of the algorithms is in O(n3)and O(n2), respe
tively. There are two main implementations of the foldingre
ursions, mfold [160℄ and RNAfold [66℄. Re
ently, Wexler et al. [147℄ gavea redu
tion of the running time to O(n2).The re
ursions use four DP tables�F , C, M , and M1�for storing interme-diate results:(a) F [i, . . . , j] gives the optimal energy value for subsequen
e s[i, . . . , j].(b) C[i, . . . , j] gives the optimal energy value for subsequen
e s[i, . . . , j] giventhat (i, j) forms a base pair. This 
ase 
overs hairpin and interior loops.(
) M [i, . . . , j] gives the optimal energy value for subsequen
e s[i, . . . , j] su
hthat s[i, . . . , j] is part of a multiloop with at least one outgoing stem.
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(d) M1[i, . . . , j] gives the optimal energy value for subsequen
e s[i, . . . , j] su
hthat s[i, . . . , j] is part of a multiloop with exa
tly one outgoing stem and wehave a 
losing base pair (i, h) with some h satisfying i < h ≤ j.Figure 1.6 shows how the 
omputation of the entire optimal se
ondary stru
turede
omposes into the di�erent 
ases. For the a
tual re
ursions the reader is referredto [69℄.

=

=

=

=

i j

i j

i j

i j

i j

i j

i j

i j

i j

i j

i j

i j

i j
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i + 1 k k + 1

k l i + 1 u u + 1 j − 1

j − 1u u + 1

j − 1

u u + 1

F F FC

C C M
M1

M1

M MM

M1

C C

C

hairpin
interior

Figure 1.6: A visualization of the re
ursions energy model for the ab initio predi
tionof RNA se
ondary stru
tures using the loop-base energy model: all possibleRNA stru
tures 
an be de
omposed into these sub
ases. The illustration istaken from [69℄.
The energeti
 
ontribution of a multiloop is given by EML = a+ b ·degree+ c ·size. Therefore, table M1 is ne
essary to keep tra
k of the size and the degree ofmultiloops. The re
ursions model a multiloop as the 
on
atenation of a substru
-ture that 
ontains at least one stem, and another substru
ture that is en
losedby a base pair and 
ontains exa
tly one outgoing stem. Observe that F [1, . . . , |s|]only gives the minimum free energy value of the optimal stru
ture. One has toba
ktra
k starting from F [1, . . . , |s|] to 
ompute the stru
ture.We now have a model that is mu
h more developed 
ompared to Nussinov'salgorithm. The problem is, however, that the minimum free energy stru
tureneeds not mat
h the se
ondary stru
ture that an RNA mole
ule exhibits. An-other way to des
ribe the stru
tural features of an RNA sequen
e s are base pairprobabilities. Instead of giving one single stru
ture that we 
ompute using theenergy model, M
Caskill [105℄ proposed a way to 
ompute the partition fun
tionof s, and subsequently derive base pair probabilities for every pair (i, j) of s.The partition fun
tion is an important term from statisti
al me
hani
s andlinks ma
ros
opi
 phenomena, like the free energy or the entropy of a system, tothe mi
ros
opi
 world of mole
ules or parti
les. Assume we are given a system
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of di�erent states and energy levels Ei, then the probability pi to �nd the systemin the ith state follows the Boltzmann distribution, i.e.,

pi = e−Eiβwith β = 1
kT
: T and k are the temperature in Kelvin and the Boltzmann 
onstant,respe
tively. All pi have to sum up to 1, be
ause the system has to be in somestate. Hen
e, we have to 
ompute a s
aling 
onstant c for the energy values su
hthat ∑

i pi = 1. Then, we have the following terms:
1 =

∑

i

ce−Eiβ

c =
1

Z
with Z =

∑

i

e−Eiβ .

Z is 
alled partition fun
tion (observe that Z originates from the German word�Zustandssumme� whi
h 
aptures the meaning of the partition fun
tion). Now,we 
an give the probability for state i as
pi =

e−Eiβ

Z
.We 
an use Z to 
ompute the probability pij that (i, j) forms a base pair. Themain idea is to 
ompute the partition fun
tion Ẑij for stru
tures outside of subse-quen
e s[i, . . . , j]. Then, we need to 
ompute the partition fun
tion for stru
turesthat in
lude the base pair (i, j). The probability reads

pij = ẐijZi+1,j−1e
−Eijβ

Zwith Eij being the energy 
ontribution of base pair (i, j). We will make extensiveuse of base pair probabilities as stru
ture s
ores in Chap. 5.As stated in Se
t. 1.2.1 the ultimate goal of RNA stru
ture predi
tion isthe predi
tion of the entire tertiary stru
ture of an RNA sequen
e s. Both theNussinov et al. and the Zuker/Stiegler algorithm, however, 
onsider only nestedstru
tures and dis
ard all possible pseudoknots. There are some approa
hes[118; 114; 115; 34; 35; 151℄ that aim at predi
ting se
ondary stru
tures in
lud-ing pseudoknots, but all these approa
hes su�er from two main problems: �rst,the algorithms are restri
ted to spe
ial 
lasses of pseudoknots, be
ause the gen-eral problem of predi
ting arbitrary pseudoknotted stru
tures was shown to beNP-
omplete [99℄. Even on these restri
ted 
ases, the algorithms remain 
ompu-tationally expensive whi
h limits their appli
ability to short sequen
es. Se
ond,we la
k a set of sound energy parameters for pseudoknotted stru
tures. Theenergy parameters [102; 155; 104℄ for nested se
ondary stru
tures are empiri-
ally derived from opti
al melting experiments. These experiments, however, donot work anymore in the 
ase of pseudoknotted stru
tures, leading to other ap-proa
hes like learning the parameters from a positive and negative set [34℄. Dueto the importan
e of pseudoknots [131℄, this is an area of a
tive resear
h.
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1.3 OverviewThis thesis introdu
es a novel model for the 
omputation of multiple sequen
e-stru
ture alignments whi
h is based on mathemati
al optimization. Chapter 2provides all mathemati
al tools that we will use throughout the rest of the thesis.This in
ludes basi
 de�nitions from graph theory in Se
t. 2.1, and from linearprograms and integer linear programs in Se
t. 2.2. Subsequently, Se
t. 2.3 givesa des
ription of Lagrangian relaxation and how the asso
iated dual problem 
anbe solved. Finally, Se
t. 2.4 brie�y 
overs 
on
epts from statisti
s of whi
h wewill make use during the evaluation of our 
omputational results. Chapter 3des
ribes the main algorithms and 
on
epts for sequen
e-stru
ture alignmentsthat were presented in the past.Chapter 4 des
ribes our formulation for the 
omputation of exa
t multiplesequen
e-stru
ture alignments. We start by formally de�ning sequen
e-stru
turealignments and show how we 
an phrase the problem de�nition in graph-theoreti
alterms. We prove that the formulation mat
hes the problem that we gave before.Se
tion 4.2 presents the transformation of the graph-based model into an integerlinear program. We identify a suitable 
lass of 
onstraints that we are able to re-lax in a Lagrangian fashion. We solve the relaxed problem to provable optimality.We give the 
omputation of a feasible solution to the original problem afterwards:we des
ribe a redu
tion to the 
omputation of maximum weight mat
hings.We present an important extension to our initial model in Se
t. 4.3: thes
oring of 
onse
utive sta
ked base pairs. Again, we start by formally de�ningthe problem. We then give an integer linear program that mat
hes the problemde�nition, and this time we drop two 
lasses of 
onstraints and move them to theobje
tive fun
tion afterwards.Chapter 5 starts by des
ribing the input and the parameters that signi�
antlyin�uen
e the solution pro
ess of the models des
ribed in Chapt. 4. Thereafter,we give results on exa
t multiple sequen
e-stru
ture alignments in Se
t. 5.3. Inthe following se
tion, we present the 
omputational results on the BRAliBaseben
hmark set. Based on the pairwise 
ase of our multiple model we heuristi
ally
ompute multiple alignments by either using the external software pa
kage T-Coffee or by progressively aligning all input sequen
es. We 
ompare our resultsto several state-of-the-art programs both in terms of the quality of the solutionsand the running time. Thereafter, we 
ompare the performan
e of the subgradientto the bundle method. Finally, we implemented our approa
h within a bran
h-and-bound framework to obtain provably optimal solutions even if the bounds donot 
oin
ide. We report on the appli
ability and the limits of this method. We
on
lude the thesis by dis
ussing the major �ndings and sket
hing possible linesof future resear
h.



Chapter
2 Mathemati
alPreliminaries

Well, your faith was strong,but you needed proof.Leonard Cohen(Hallelujah)
This 
hapter introdu
es 
on
epts that we will use throughout the thesis. First,Se
t. 2.1 outlines elementary graph theory, whereas Se
t. 2.2 and 2.3 des
ribe thebasi
s of (integer) linear programs and how to derive solutions using Lagrangianrelaxation. Finally, Se
t. 2.4 presents some statisti
al methods of whi
h we willmake use in Se
t. 5.The following exposition is based on various textbooks, for details the inter-ested reader is referred to [33; 10; 107; 116℄. Several sour
es [55; 46; 45; 94℄provide additional information espe
ially on Lagrangian relaxation.First, we introdu
e some notation from linear algebra: R,R+, Z, and Z+ de-note the sets of real, nonnegative real, integer, and nonnegative integer numbers,respe
tively. Given an ordered �nite set E = {e1, e2, . . . , en} and a �eld X, wedenote by XE the set of ve
tors in whi
h we index the 
omponents of ea
h ve
torby the elements in E. In the 
ase of E = {1, . . . , n} we write Xn. We 
onsiderve
tors as 
olumn ve
tors and denote row ve
tors as transposed 
olumn ve
tors

yT . Given a set of ve
tors XE = {x1, . . . , xk}, we 
all x a 
onvex 
ombination of
x1, . . . , xk if x =

∑k

i=1 λixi, with λi ≥ 0 and ∑k

i=1 λi = 1.
2.1 Graph TheoryA graph is a pair G = (V,E) where the sets V and E denote the verti
es andedges of the graph. An edge e = (u, v) ∈ E denotes a pair of nodes u and v.Both u and v are said to be in
ident to edge e. Two nodes u and v are adja
entif there exists an edge e = (u, v) ∈ E. We denote the number of nodes and edgesby |V | and |E|.We 
all G′ = (V ′, E ′) a subgraph of G if V ′ ⊆ V and E ′ ⊆ E. If G′ is asubgraph of G, then we 
all G the supergraph of G′.We 
all an alternating sequen
e of verti
es and edges (v0, e0, v1, . . . , en−1, vn−1)with ei = (vi, vi+1), 0 < i < n − 1 where all nodes and edges are distin
t a pathof length n. If the path is 
losed, i.e., v0 = vn−1, we 
all the path a 
y
le.If we are able to partition the vertex set V of G into k disjoint sets V ′

0 , . . . , V
′
k−1su
h that no two verti
es within the same set are adja
ent, we 
all G a k-partitegraph. A 
lique in a graph G = (V,E) is a subgraph of G′ with V ′ ⊆ V and

E ′ ⊆ E su
h that every pair of nodes in V ′ is adja
ent.
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A dire
ted graph, or digraph in short, is a pair D = (V,A) with V and A beingthe sets of verti
es and dire
ted ar
s. An ar
 a = (u, v) ⊆ V × V is an orderedpair of elements of V , and we 
all a in
ident from u and in
ident to v. Two nodes

u and v are adja
ent if there exists an ar
 a = (u, v) ∈ A. For a = (u, v), we 
all
u and v the sour
e and target node of a. The two fun
tions s(a) and t(a) returnthe sour
e and target node for an ar
 a.A mixed graph G = (V,E,A) 
onsists of a vertex set V , the edge set E, anda set of dire
ted ar
s A. A path p = (v0, e0, v1, . . . , en−1, vn−1) in a mixed graphis an alternating series of verti
es and edges or ar
s su
h that ei = (vi, vi+1) ∈ Eor ei = (vi, vi+1) ∈ A with 0 < i < n − 1. All verti
es and edges of the path aredistin
t. If at least one edge ei ∈ E and one ar
 ei ∈ A are part of path p, thenwe 
all p a mixed path. We 
all p a mixed 
y
le if v0 = vn−1.The transitive 
losure of a graph G = (V,E) is de�ned as the graph G′ =
(V,E ′) su
h that E ′ 
ontains an edge e = (u, v) if there exists a path from u to vin G. The transitive 
losure of a digraph G is identi
ally de�ned as for undire
tedgraphs.An independent set of a graph G = (V,E) is de�ned as a set I ′ ⊆ V su
h thatthere are no two verti
es i, j ∈ I ′ that are adja
ent. The maximal independentset is the subset I ′ with the maximal number of verti
es. The 
omputation of amaximal independent set is NP-
omplete [49℄.A mat
hing in a graph G = (V,E) is an edge set M ⊆ E su
h that no twoedges e0, e1 ∈ M share the same vertex. If |M | = |V |

2
holds true, we 
all M aperfe
t mat
hing. For a graph where ea
h edge ei ∈ E is asso
iated with an edgeweight wi, the mat
hing of maximum weight is the edge set M su
h that M is amat
hing and ∑|M |−1

i=0 wi is maximal.
2.2 Linear Programming
Intuitively speaking, a linear programming problem 
alls for the 
omputation ofan optimal solution with respe
t to a linear obje
tive fun
tion, satisfying a set oflinear 
onstraints. The following exposition assumes that we want to maximizethe value of the obje
tive fun
tion, but we 
an easily transform the de�nitions tothe 
ase of minimization problems.Let A ∈ R

m×n be a matrix and let b ∈ R
m and c ∈ R

n two ve
tors. A linearprogramming problem is a system of Ax ≤ b of linear inequalities and a linearobje
tive fun
tion cT x. We 
all a ve
tor x̄ ∈ R
n su
h that Ax̄ ≤ b a feasiblesolution of the problem. If there does not exist su
h a ve
tor x̄, we 
all the linearprogram infeasible. The linear programming problem, or LP in short, addressesthe 
omputation of an optimal feasible solution x∗ with respe
t to the obje
tivefun
tion cT x, i.e.,

cT x∗ = max{cT x | Ax ≤ b}
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A di�erent notation is max cT x (p)subje
t to Ax ≤ b .An important 
on
ept in linear programming is duality theory. Every linearprogram (p) has its dual problem whi
h is de�ned asmin yT b (d)subje
t to AT y = c

y ≥ 0We 
all (p) the primal problem and (d) its asso
iated dual. Observe that the dualof (d) is again (p). One deep result of duality theory des
ribes the relationshipbetween the primal and the dual problem.Theorem 2.1 (Strong duality theorem of linear programming). Let (p) and (d)be linear programs whi
h are dual to ea
h other.(a) If (p) and (d) have feasible solutions, then they have optimal solutions andthe optimal obje
tive fun
tion values are the same.(b) If (p) is infeasible, (d) is either infeasible or unbounded.(
) If (p) is unbounded, (d) is infeasible.The simplex method, developed by George Dantzig in 1947, 
omputes anoptimal solution of a linear program. Although the algorithm has exponentialworst-
ase 
omplexity, it has proven to work well in pra
ti
e. Re
ently, Spielmanand Teng [130℄ gave an explanation for the ex
ellent average-
ase performan
e ofthe simplex algorithm. Karmarkar [77℄ introdu
ed the interior point method tosolve linear problems in polynomial time in the worst 
ase.Linear programs formulating real-world problems often add integrality 
on-straints on the set of feasible solutions. We 
all su
h a linear program a generalinteger linear program, or ILP in short, whi
h has the general formmax cT x (2.1)subje
t to Ax ≤ b (2.1.1)
x ∈ Z (2.1.2)If we substitute 
onstraints (2.1.2) by x ∈ {0, 1}, we get a (0/1)-integer linearprogram. Computing optimal solutions for an ILP is NP-
omplete [49℄. Popu-lar methods that aim at solving ILPs, for example bran
h-and-
ut algorithms,use the LP-relaxation of an integer linear program: by dropping the integrality
onstraints of an ILP, we get the 
orresponding LP-relaxation. Another popularmethod to ta
kle ILP is Lagrange relaxation whi
h we will present in the followingse
tions.
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2.3 Lagrange RelaxationConsider the following ILP with A ∈ R

k×n and C ∈ R
l×n:max cT x (ip)subje
t to Ax ≤ b

Cx ≤ d

x ∈ Z
n
+Suppose that the 
onstraints Ax ≤ b are di�
ult 
onstraints, whereas optimizingover 
onstraints Cx ≤ d alone is easy. The main idea is to drop the 
ompli
ating
onstraints whi
h yields an ILP that is easier to solve than the original one. Then,
onsider the following ILP with λ ∈ R

k
+:max cT x + λT (b − Ax) (lr)subje
t to Cx ≤ d

x ∈ Z
n
+We 
all LR(λ) the Lagrangian relaxation of the original problem (ip), and theve
tor λ the Lagrangian multipliers. Lagrangian multipliers a
t as penalty termsthat be
ome a
tive as soon as 
onstraints Ax ≤ b are violated. The followinglemma states that LR(λ) provides a bound on the optimal value zip of (ip).Lemma 2.1. LR(λ) is a relaxation of ( ip) for all λ ≥ 0.A 
onsequen
e of Lemma 2.1 is that zip ≤ LR(λ) for all λ ≥ 0. De�ning a set

Q as Q = {x ∈ Z
n
+ | Cx ≤ d}, we 
an see LR(λ) from a di�erent viewpoint, i.e.,maxxi∈Q cT xi + λT (b − Axi) (2.2)Now, LR(λ) is the maximum of a �nite set of linear fun
tions in λ, and thereforeit is 
onvex and pie
ewise linear. We are interested in the tightest bound, i.e., wewant to �nd the value of λ that minimizes LR(λ):minλ≥0 max cT x + λT (b − Ax) (ld)subje
t to Cx ≤ d

x ∈ Z
n
+We 
all problem (ld) the Lagrangian dual of (ip) with respe
t to Ax ≤ b. zlddenotes the optimal value of the Lagrangian dual. It is important to state thatthe strong duality theorem from Se
t. 2.2 does not hold true anymore for theLagrangian dual. Instead, we have weak duality in the 
ase of the Lagrangiandual.Lemma 2.2. We have zip ≤ zld.
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Formulation 2.2 provides another des
ription about the relationship betweenthe optimal value zip and zld: 
omputing the optimal value of the Lagrangiandual is equivalent to the sear
h for a 
onvex 
ombination x∗ of elements in Q thatsatis�es the dropped 
onstraints Ax ≤ b as well. Then, we have cT x∗ = zld. Themain observation now is that 
omputing x∗ ∈ 
onv(Q) with Ax∗ ≤ b is dual tothe Lagrangian dual. In this 
ase strong duality of linear programming applies.It is important to state that this also implies that 
omputing the optimal valueof the Lagrangian dual does not ne
essarily yield a solution that is also valid for(ip).An obvious question is the relationship between zip, zld, and zlp.Lemma 2.3. For zip, zld, and zlp we have zip ≤ zld ≤ zlp. Additionally, thefollowing holds true:

(a) We have zip = zld for all 
ost ve
tors c if and only if

onv(Q ∩ {x | Ax ≤ b}) = 
onv(Q) ∩ {x | Ax ≤ b} .

(b) We have zlp = zld for all 
ost ve
tors c if and only if

onv(Q) = {x | Cx ≤ d} .

This means that zip and zld 
oin
ide if the polyhedron that is spanned bythe 
ompli
ating 
onstraints Ax ≤ b, i.e., the set P = {x ∈ R
n
+ | Ax ≤ b},has integer extreme points. Furthermore, if the LP-relaxation on Cx ≤ d hasintegral extreme points, then zld equals zlp, i.e., the value of the LP-relaxation ofthe original ILP. Figure 2.1 shows a small polyhedron together with zip, zld, and

zlp. A spe
ial 
ase of relaxing an ILP in a Lagrangian fashion is Lagrangian de-
omposition [56; 129℄ whi
h is also known as variable splitting [106℄ or variablelayering [51℄. The main idea is to 
opy or rename variables in some of the 
on-straints and treat them as independent variables afterwards. We must, however,enfor
e that the de
oupled variables have the same values, i.e., we have to addequality 
onstraints to the ILP. In a subsequent step, we drop the equality 
on-straints and move them to the obje
tive fun
tion asso
iated with Lagrangianmultipliers. Consider the following ILP:
max cT xsubje
t to Ax ≤ b

Cx ≤ d

x ∈ Z
n
+
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Figure 2.1: The thi
k lines span the polyhedron given by 
onv(Q), i.e., the integer pointsof the polyhedron indu
ed by the easy 
onstraints Cx ≤ d. The shaded areagives the interse
tion of 
onv(Q) with the area satisfying the 
ompli
ated
onstraints Ax ≤ b. For the 
ost ve
tor c0 we have zip < zld < zlp. Observethat we 
an 
onstru
t 
ost ve
tors c su
h that zip = zld = zlp holds true.
The ILP is 
learly equivalent to max cT xsubje
t to Ax ≤ b

Cy ≤ d

x = y

x, y ∈ Z
n
+Dualizing the equality 
onstraint x = y yieldsmax cT x + λT (y − x)subje
t to Ax ≤ b

Cy ≤ d

x, y ∈ Z
n
+whi
h 
an be de
omposed intomaxx{(c

T − λT )x | Ax ≤ b, x ∈ Z
n
+} + maxy{λ

Ty | Cy ≤ d, y ∈ Z
n
+} .Again, we are interested in the sharpest possible bound, i.e.,

zl̂d = minλ[maxx{(c
T − λT )x | Ax ≤ b, x ∈ Z

n
+}+maxy{λ

T y | Cy ≤ d, y ∈ Z
n
+}] .Guignard and Kim [56℄ proved that zl̂d, i.e., the bound obtained by dualizingthe equality 
onstraints, 
an dominate the bounds that we get by dualizing eitherset of 
onstraints.So far, we only 
onsidered how to relax an ILP in a Lagrangian fashion, butwe did not explain how we 
an 
ompute the optimal value of the Lagrangiandual. In the following two se
tions, we will address this issue by des
ribing twoalgorithms that aim at 
omputing optimal values of the dual problem.
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2.3.1 Subgradient MethodThe subgradient method is a general method to minimize any nondi�erentiable
onvex fun
tion. As we des
ribed in Se
t. 2.3, the Lagrangian dual 
an be seenas a �nite 
olle
tion of linear fun
tions, and therefore it is 
onvex and nondi�er-entiable. The subgradient method is similar to gradient methods that are used indi�erentiable optimization problems. There are, however, some important di�er-en
es: subgradient methods, for instan
e, are not des
ent methods, meaning thatthe fun
tion values are not stri
tly de
reasing during the optimization pro
ess.Let θ : R

n → R be a 
onvex fun
tion. We 
all a ve
tor g a subgradient of θat position x if θ(y) ≥ θ(x) + gT (y − x) holds true for all values of y. We 
all theset of all subgradients of θ at position x the subdi�erential of θ at x and denoteit by ∂θ(x). If θ is di�erentiable at x, then we have ∂θ(x) = {∇θ(x)}, i.e., thesubdi�erential 
onsists only of the gradient of θ at x. The following lemma givesa ne
essary and su�
ient 
ondition for the minimum of a 
onvex fun
tion.Lemma 2.4. Let θ : R
n → R be a 
onvex fun
tion. A ve
tor x∗ minimizes θover R

n if and only if 0 ∈ ∂θ(x∗).Algorithm 2.1 des
ribes the main stages of the iterative subgradient method.The basi
 prin
iple is to start at some initial point x0 and move along a subgra-dient st for a 
ertain stepsize γt through the sear
h spa
e. As long as we haven'tfound the provably optimal solution, i.e., 0 ∈ ∂θ(xt), or we have not rea
hed aprede�ned number of iterations, we move on.
Algorithm 2.1: Main steps of the subgradient method.Start from an initial point x0, set t = 0;1 while stopping 
riterion not met do2 Given xt, 
hoose a subgradient st ∈ ∂θ(xt);3 if st == 0 then4 stop;5 Compute stepsize γt;6 Set xt+1 = xt + γtst;; // update the 
urrent point7
Sin
e the subgradient method is not a des
ent method, we have to keep tra
kof the best solution value found so far, i.e., θbest = min{θ(x0), . . . , θ(xt)}. Thereare various approa
hes for the 
omputation of stepsize γt, a fundamental resultdue to Poljak [113℄ states that for stepsize adaption s
hemes that satisfy

lim
k→∞

γk = 0 and ∞∑

k=0

γk = ∞

the series of θ(xt) 
onverges to the optimal value x∗. Setting γk = 1
k
satis�esboth 
onditions, but the pra
ti
al 
onvergen
e rate is poor. Held and Karp [60℄
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propose a di�erent way to adapt the stepsize:

γt+1 = µ
θ(xt) − θ(x̂)

|st|with µ being a user-spe
i�
 parameter and θ(x̂) being an estimate of the optimalvalue θ(x∗). Estimates for θ(x∗) 
ould, for instan
e, be 
omputed by heuristi
allyinferring solutions that are feasible in the primal problem given the 
urrent point
(xt).In pra
ti
e, the stopping 
riterion in Algorithm 2.1 is rarely met. Typi
ally,the optimization pro
ess is stopped after a �xed number of iterations. In our
omputational experiments from Chap. 5, for example, we set the number ofiterations to 500, sin
e we usually did not observe any dramati
 improvement ofthe value of the Lagrangian dual after that.It is possible to use the single xt to infer solutions p(xt) that are feasible inthe primal problem. Given p(xt) after n iterations, then we 
an stop if

θbest = max {p(xt)} 0 ≤ t < n .Figure 2.2 shows two typi
al runs of the subgradient method: either the 
on-vergen
e pro
ess gets stu
k, leaving a gap between the Lagrangian dual and aheuristi
ally inferred primal solution, or we obtain a provably optimal solutionfor the Lagrangian dual if the upper and lower bound 
oin
ide.
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Figure 2.2: Two typi
al 
onvergen
e s
enarios using the subgradient method. The bla
kline gives the values of the Lagrangian dual, whereas the red line denotesthe s
ores of heuristi
ally inferred primal solutions. Left side: after somehundred iterations the 
onvergen
e pro
ess gets stu
k, leaving a gap betweenthe upper bound and primal solution. Right side: there is no gap leftbetween the upper and the lower bound, yielding a provably optimal solutionfor the Lagrangian dual.
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2.3.2 Bundle MethodThe basi
 idea of the subgradient method is to evaluate the 
onvex fun
tion θ atsome point x and use a subgradient s to obtain the dire
tion towards the nextpoint. We do not, however, keep tra
k of where we 
ame from, i.e., we dis
ardall information about previous points and subgradients that we evaluated.The bundle method removes this limitation. The main idea is to keep abundle B of k subgradients and use the set B to �t a quadrati
 fun
tion to thesubgradients. We are keeping a stability 
enter x̂ whi
h a
ts as the point fromwhi
h we build our models. The minimum of the quadrati
 model yields the nextpotential point xk+1. We do, however, 
he
k whether the de
rease of the obje
tivefun
tion value, θ(xk+1) − θ(x̂), is big enough. If this is the 
ase, we perform ades
ent step and move the stability 
enter to xk+1. Otherwise, we perform a nullstep and simply add xk+1�together with an asso
iated subgradient gk+1�to thebundle and 
onstru
t an updated quadrati
 model. Algorithm 2.2 lists the mainstages of the generi
 bundle method. Observe that we assume to have a

ess toa fun
tion ora
le that evaluates the fun
tion value θ(xk+1) for a point xk+1 andthat returns a subgradient gk+1. The fun
tion θ̂ de�nes the set of pie
ewise linearfun
tions as given by the bundle and returns the maximal value at position xk;see the left side of Fig. 2.3 for an illustration.
Algorithm 2.2: Main steps of the bundle method.Input : 
hoose a bundle size k and an initial stability 
enter x̂while stopping 
riterion not met do1 Solve the quadrati
 program2

min(x,r)∈Rn+1 r +
1

2t
||x − x̂||2

r ≥ θ(xi) + gT
i (x − xi) ∀0 ≤ i < kSet xk+1 = x;3 Get θ(xk+1) and gk+1 using the fun
tion ora
le;4 Determine the regularized gradient ĝ = (x̂ − xk+1)/t;5 Compute δ = θ(x̂) − θ̂(xk+1);6 if θ(xk+1) ≤ θ(xk) − κ · δ then7

x̂ = xk+1; ; // perform a des
ent step8 if |δ| < ǫδ and ||ĝ|| < ǫg then9 stop;10 Add (xk+1, gk+1) to the bundle;11
Line 2 
ontains the parameter t that is 
ru
ial for the performan
e of the bun-dle method, be
ause t spe
i�es the impa
t of the quadrati
 term on the obje
tivefun
tion value. If t is large, then the impa
t is small leading to new points xk+1
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that are far away from the 
urrent stability 
enter x̂. Small values of t, on theother side, 
onstrain the next point xk+1 to be in the vi
inity of x̂. The right sideof Fig. 2.3 gives an illustration of the models with di�erent two di�erent settingsfor t.

x

θ̂(x)

g1

g2

g3

xk
x

θ(x)

x̂ x1 x2

t1
t2

g1

g2

g3

Figure 2.3: Left side: the fun
tion θ̂ evaluates the bundle and returns the maximumvalue at xk. Right side: we get di�erent models for di�erent values of thespring strength t. If the value t is small, we get models that look like t1 andthat are 
loser to the stability 
enter x̂. If we have a large value for t, weget models that look like t2.
Line 7 gives the 
riterion for updating the stability 
enter: κ ∈ [0, 1] denotes auser-spe
i�
 parameter, and we are testing the de
rease of the obje
tive fun
tion
ompared to δ. If the di�eren
e is big enough, we perform a des
ent step.Line 9 
ontains the stopping 
riteria for the bundle method. If the expe
tedde
rease is smaller than a user-spe
i�
 threshold ǫδ and the regularized gradient,i.e., the di�eren
e between the 
urrent and the new stability 
enter, is smallenough, then we stop the method, be
ause we found the minimum of the 
onvexfun
tion θ. In Chap. 5.4.4 we 
ompare the performan
e of the subgradient to thebundle method within the sequen
e-stru
ture alignment s
enario. For a detaileddes
ription of the bundle method, the reader is referred to [94; 108℄.

2.4 Statisti
sThis se
tion brie�y 
overs the statisti
al algorithms that we will use in Chap. 5.We use Lowess 
urves and rank tests to visualize the results and 
ompare theperforman
e of ���< .mine di�erent programs. A more detailed des
ription ofSe
t. 2.4.2 
an be found in any introdu
tory textbook for statisti
s. =======di�erent programs. The two tests des
ribed in Se
t. 2.4.2 
an be found in anystatisti
al textbook. ���> .r2179
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2.4.1 Lowess CurvesLowess is also known as lo
ally weighted polynomial regression, and it was de-s
ribed by Cleveland [22℄ for the �rst time. Lowess regression is used to �t asmoothed 
urve to a data set to illustrate a trend within the data. The main ideais to �t a low-degree polynomial to a subset of the input data at ea
h data point
x. We 
ompute the 
oe�
ients of the polynomial by the weighted least-squaresmethod, i.e., we assign a higher weight to points that are 
lose to the 
urrentpoint x. Typi
al implementations of the Lowess algorithm use polynomials of�rst or se
ond order to avoid lo
al over�tting of the data.More formally, the set X = {x0, . . . , xn−1} denotes n data points with theirasso
iated fun
tion values f(xi). We have a weight fun
tion wk(xi) that assignsweights to ea
h point xk while evaluating the 
urrent point xi. Then, for ea
h datapoint xi, 0 ≤ i < n, we 
ompute estimates β̂j(xi), 0 ≤ j ≤ d, of the 
oe�
ientsin the polynomial regression of degree d, i.e., we want to 
ompute β̂j(xi) thatminimize

n−1∑

k=0

wk(xi)(f(xk) − β0 − β1xk − · · · − βdx
d
k)

2

The smoothed fun
tion value f̂(xi) is given by the value of the �tted regression.The subset of points xi that are used for �tting the polynomial, i.e., points sat-isfying wk(xi) > 0 greatly in�uen
es the smoothness of the 
urve. One usuallyhas to set a parameter s that spe
i�es the fra
tion of all data points used for the
omputation of the polynomial. With s = 0.0 we do not 
onsider any points inthe vi
inity of xi, yielding a zig-zagged line. The other extreme is setting s = 1.0whi
h yields the smoothest 
urve possible, be
ause at ea
h point xi we take allother points into a

ount. Figure 2.4 shows a s
atterplot with Lowess 
urves thathave di�erent values for s.
2.4.2 Friedman Rank Sum Test and Wil
oxonSigned-Rank TestThe nonparametri
 Friedman Rank Sum Test dete
ts di�eren
es between testresults a
ross c test attempts (or samples). To be more spe
i�
, it 
he
ks whetherthe c di�erent sample groups are having the same median.Given n observations, ea
h 
onsisting of c test values, we then repla
e thedata by their ranks within ea
h of the observation. The smallest one gets rank 1,and we assign rank c to the largest value in the row. If two values are equal, theirrank is the average of the ranks that they would have been assigned otherwise.Then, we build a matrix R ∈ R

n×c with the matrix entry R(i, j) being the rankof the jth test attempt in the ith observation.The null hypothesis H0 assumes that there are no signi�
ant di�eren
es amongthe c test attempts, i.e., ea
h ranking within an observation is equally likely.A

epting H0 means that there will be no di�eren
e among the average ranks
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Figure 2.4: The 
ru
ial parameter for the shape of the Lowess 
urve is the parameter
s that spe
i�es how many of the data points in the neighborhood shouldbe taken into a

ount. The blue line shows the 
urve for s = 0.0, i.e., noneighboring points are 
onsidered. The red and orange lines represent theLowess 
urve for s = 0.2 and s = 1.0. One 
an 
learly see that the 
urvebe
omes smoother with an in
reasing value of s.

for ea
h test attempt. Otherwise, we know that there are signi�
ant di�eren
esamong the c test attempts and we have to perform pairwise 
omparisons to dete
tsigni�
ant di�eren
es between two test attempts.The Wil
oxon Signed-Rank Test performs su
h a pairwise 
omparison. Itis a nonparametri
 test to 
he
k whether the median of n paired data di�erssigni�
antly. The main idea is to rank the di�eren
es between the paired data bytheir absolute value, and assign 1 to the smallest and n to the largest di�eren
e.Then we sum up the ranks of the positive and the negative di�eren
es. The teststatisti
 is the smaller one of the two values. If the null hypothesis H0 is true,i.e., the median of the two observed samples is the same, then we expe
t the ranksum of the positive and the negative ranks to be the same. In this 
ase, we a

ept
H0, and we reje
t it otherwise.If we perform multiple Wil
oxon tests, then we have to 
orre
t the p-valuefor multiple testing. In our experiments we used the 
onservative Bonferroni
orre
tion to adapt the p-values. Using a signi�
an
e value p for k tests, we haveto set the signi�
an
e level for ea
h test to p

k
.



Chapter
3 Previous Work

Früher war alles besser,früher war alles gut.Die Toten Hosen(Wort zum Sonntag)
This 
hapter summarizes the main 
on
epts of previous approa
hes for theproblem of 
omputing sequen
e-stru
ture alignments. Se
tion 3.1 reviews varioussequen
e-stru
ture alignment s
enarios, together with a brief des
ription of thefour main sequen
e-stru
ture alignment models. Thereafter, we present ea
hmodel in detail.Se
tion 3.2 gives two general paradigms for the 
omputation of multiple align-ments. Both progressive and 
onsisten
y-based alignment algorithms originatefrom pure sequen
e-based alignment algorithms, but 
an be extended to in
orpo-rate stru
tural information.

3.1 Sequen
e-Stru
ture Alignments3.1.1 Introdu
tionDepending on the available knowledge about the (putative) stru
tures that wewant to align, there are three di�erent alignment s
enarios for two RNA stru
-tures, whi
h readily extend to the multiple 
ase.1. Stru
ture-to-stru
ture alignment algorithms align two known se
ondarystru
tures, typi
ally the minimum free energy stru
tures. This s
enarioapplies if one sear
hes for 
ommon stru
tural motifs that are shared byboth stru
tures and there is reason to believe that the se
ondary stru
turesare 
orre
t.2. Stru
ture-to-unknown alignment algorithms align a given stru
ture to asequen
e with unknown stru
ture. Appli
ations are �nding homologoussequen
es by inferring a 
onsensus stru
ture to a sequen
e. This has beendone, for example, in 
ase of the ITS2 database [153℄.RNA �ltering software, like FastR[159℄ or PFastR [158℄, employ a two-stage strategy to �nd homologous stru
tures for a given RNA stru
ture.First, they sear
h for regions in the database that show similar sequen
e orstru
tural properties using fast sear
hing strategies like indi
es, allowing fora higher number of false positives. Thereafter, a veri�
ation phase followsthat separates the true from the false positives. The veri�
ation phase in
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the FastR and PFastR pa
kages are performed as sequen
e-to-unknownalignments. Sear
hing homologous stru
tures of non
oding-RNAs in largegenomi
 sequen
es has re
ently sparked 
onsiderable interest in the resear
h
ommunity, see [47℄ for a survey.3. In the unknown-to-unknown alignment problem, no previous stru
tural in-formation is given. It applies when two RNA sequen
es are suspe
ted toshare a 
ommon, but still unknown, stru
ture. We 
onstrain the spa
e ofpossible stru
tures by the entire set of possible Watson-Cri
k and wobblepairs. A redu
tion of the size of this spa
e is possible, for instan
e, by
omputing the partition fun
tion to obtain the base pair probabilities [105℄.Then, one only 
onsiders those intera
tions whose probabilities are above a
ertain threshold.Figure 3.1 gives 
artoon illustrations of the three s
enarios.
GCGGAUAACCCC

GGAUACCAUC

GCGGAUAACCCC

GGAUACCAUC

GCGGAUAACCCC

GGAUACCAUC

(a) (b) (c)Figure 3.1: Di�erent input alignment s
enarios of RNA sequen
es (pairwise 
ase): (a)the alignment of two known stru
tures, (b) of one known and one unknownstru
ture, and (
) of two unknown stru
tures. The angled and round edgesrepresent �xed and unknown stru
tures, respe
tively.There are four major alignment models for RNA stru
tures that ta
kle theprevious des
ribed alignment s
enarios: annotated sequen
es, tree models, prob-abilisti
 models, and graph-based models. We give small examples for ea
h modelin Fig. 3.2. Table 3.1 
lassi�es previous work in the area of stru
tural RNA align-ment a

ording to the di�erent models and s
enarios. In the following se
tionswe will des
ribe previous approa
hes for ea
h model.
3.1.2 Annotated Sequen
esWe 
all a sequen
e augmented by stru
tural information an annotated sequen
e.In the unknown-to-unknown s
enario we want to perform a simultaneous 
om-putation of the alignment and 
onsensus stru
ture. The 
omputational problemof simultaneously 
onsidering sequen
e and stru
ture of an RNA mole
ule wasinitially addressed by Sanko� in [124℄, where the author proposed a DP algorithmto align and fold a set of RNA sequen
es at the same time. The CPU and mem-ory requirements of the original algorithm are O(n3k) and O(n2k), with k and
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Figure 3.2: Di�erent models representing RNA stru
tures: (a) annotated sequen
es, (b)graph-based, (
) probabilisti
, and (d) tree-based models.tree-based annotated sequen
esstru
ture-to-stru
ture [134; 157; 75℄ [3; 44; 74℄stru
ture-to-unknown � [3; 43; 12℄unknown-to-unknown � [124; 103; 101; 59; 58; 67;137; 148; 81; 16; 133; 132℄
probabilisti
 graph-basedstru
ture-to-stru
ture [41; 122℄ [95; 4; 6; 89; 20; 18; 31℄stru
ture-to-unknown [41; 125; 121℄ [95; 4; 6; 89; 20; 18; 31℄unknown-to-unknown [72; 70; 71; 38℄ [95; 4; 6; 89; 20; 18; 31℄

Table 3.1: Classi�
ation of previous work.
n being the number of sequen
es and their maximal length, respe
tively. The
O(n3) and O(n2) terms for time and spa
e 
onsumption follow from the re
ur-sions for RNA folding: the improvements from [147℄, where the authors presentan algorithm that runs in O(n2), brings the running time down to O(n2k). Em-ploying the original Sanko� algorithm restri
ts the length of the input sequen
esto 100 − 200 nu
leotides. Therefore, various approa
hes have been proposed toheuristi
ally prune parts of the solution spa
e. Current implementations modifySanko�'s algorithm by imposing limits on the size or shape of substru
tures, e.g.,Dynalign [103; 101℄, or Foldalign [58℄ that 
ombine a sliding window andbanded alignment approa
h. These approa
hes, however, still apply a loop-based
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Si,j;k,l = max







Si+1;j;k,l + γ

Si;j;k+1,l + γ

Si+1,j;k+1,l + σ(Ai, Bk)maxh≤j,q≤l

(
SM

i,h;k,q + Sh+1,j;q+1,l

)

SM
i,j;k,l = Si+1,j−1;k−1,l−1 + pA

ij + pB
kl + τ(Ai, Aj;Bk, Bl)

Figure 3.3: Nussinov-style re
ursions for 
omputing a sequen
e-stru
ture alignment oftwo RNA sequen
es. The fourth 
ase leads to a running time of O(n6)in the un
onstrained 
ase. The matrix Si,j;k,l holds the optimal valueof the sequen
e-stru
ture alignment between subsequen
es A[i, . . . , j] and
B[k, . . . , l]. The values SM

i,j;k,l give the optimal value for the alignment be-tween subsequen
es A[i, . . . , j] and B[k, . . . , l] given that (i, j) and (k, l)form base pairs.
energy model making the 
omputational requirements very expensive. The latestversion of Foldalign [59℄ additionally applies a dynami
 pruning algorithm thatdis
ards parts of the DP matrix that does not s
ore above a length-dependentthreshold.Hofa
ker, Bernhart, and Stadler [67℄ follow a di�erent tra
k: instead of in
or-porating the 
omplete loop-based folding model they mimi
 an energy model by
omputing the base pair probability matri
es, as given by the partition fun
tion[105℄. Afterwards, they align the matri
es using re
ursions that are essentiallythe same as the ones des
ribed in [124; 3℄. Intuitively, their approa
h relates tothe loop-based Sanko� algorithm like the original Nussinov folding algorithm tothe Zuker energy model.Figure 3.3 gives the re
ursions to 
ompute a sequen
e-stru
ture alignmentwith linear gap 
osts of two RNA sequen
es. One re
ognizes the similarity tothe Nussinov re
ursions presented in Se
t. 1.2.2: γ represents the gap penalty,
σ(Ai, Bk) assigns a sequen
e s
ore to the sequen
e alignment of ith 
hara
terof sequen
e A to the kth 
hara
ter of sequen
e B. The variable p

A|B
ij gives thepairing probability for pair (i, j) in sequen
e A or B. Finally, τ(Ai, Aj;Bk, Bl)denotes the sequen
e s
ore for mat
hing base pair (i, j) in sequen
e A with (k, l)in sequen
e B. In the un
onstrained 
ase, the re
ursions have a time and spa
e
omplexity of O(n6) and O(n4). By banding the range of possible alignmentpositions, i.e., by restri
ting the range of variables h and q for the fourth re
ursion
ase in Fig. 3.3, the time and spa
e 
omplexity drops to O(n4) and O(n3). For themultiple 
ase, they align 
onsensus base pair probability matri
es in a progressivefashion. Their original program pa
kage PMComp is written in Perl whi
hin�uen
es the running time and memory 
onsumption. Therefore, there are tworeimplementations of the PMComp ansatz, FoldalignM [137℄ and Lo
ARNA[148℄ written in Java and C++, respe
tively.
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FoldalignM restri
ts the maximal length di�eren
e of the alignment of twosubsequen
es to a parameter δ, whi
h yields a redu
ed running time of O(n2δ2).Se
ondly, a two-stage pro
edure �lls the DP matrix: the authors identify possiblebran
hing points in the �rst pla
e, dividing the sequen
es into unbran
hed sub-sequen
es. These unbran
hed parts are then used to align the entire sequen
es.On the other hand, Lo
ARNA makes use of the sparse nature of base pair prob-ability matri
es, i.e., there is only a 
onstant number of signi�
ant entries perrow. By 
onsidering only the signi�
ant positions in the DP �lling stage, theauthors redu
e the overall time and spa
e 
onsumption to O(n2(n2 + m2)) and

O(n2 + m2), respe
tively.Kiryu et al. [81℄ des
ribe a re
ent reimplementation of the Sanko� re
ursions,where they employ two strategies�the strip and the skip approximation 
on-straints�for keeping the running time low. The strip approximation limits theset of possible alignment positions to a band of width δ around an initial pairhidden Markov model alignment, i.e., this �rst alignment is based on sequen
einformation alone. Se
ondly, the skip approximation 
onstrains the set of possi-ble bifur
ation points to positions that are within the band 
omputed during thestrip approximation stage. The set size of putative bran
hing points is addition-ally 
ontrolled via a user-spe
i�
 parameter.Bonhoe�er [16℄ suggested the following idea to align sequen
es of unknownstru
tures using the base pair probability matri
es: one takes the highest up-and downstream probability and uses these values as the s
ores for a traditionalsequen
e alignment. Given a sequen
e A, let puA,i and pdA,i be the highest up- anddownstream base pair probabilities of sequen
e A at position i. Then, the s
ore
s(i, j) for a mat
h between positions i and j reads

s(i, j) =
√

pu
A,i · p

u
B,j +

√

pd
A,i · p

d
B,jfor two sequen
es A and B. Given a matrix ∆ with ∆(i, j) = s(i, j) we 
om-pute a traditional sequen
e alignment using ∆ as the s
oring matrix. A re
entimplementation of this idea is the Stral tool [30℄.Tabei et al. [133; 132℄ des
ribe a di�erent approa
h based on base pair prob-ability matri
es. They use the matri
es to extra
t ungapped stem fragments oflength l. Given a base pair probability matrix pA, a putative stem-fragment isa set F of 
ontinuous nested base pairs su
h that for ea
h (i, j) ∈ F we have

pA
ij > α: α de�nes the threshold for a probability to be 
onsidered. The authorsalign these stem fragments in a 
onsistent fashion, i.e., if we have overlappingstem fragments in sequen
e A, then the aligned stem fragments in B have tobe overlapping as well. Note that the aligned stem fragments de�ne the align-ment of the heli
al parts of the sequen
e, i.e., loops are not aligned at this point.Therefore, in a se
ond step the loop regions are aligned by using the aligned stemfragments as an
hor points in a sequen
e alignment.In the restri
ted stru
ture-to-stru
ture s
enario, one 
an resort to more sophis-ti
ated edit-models (Edit in short) like the one proposed by Jiang et al. in [74℄
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Figure 3.4: The operations in the edit model by Jiang et al.: we have both operationson the stru
ture and the sequen
e level, ea
h one asso
iated with a 
ertain
ost. Given two annotated sequen
es A and B, we aim at �nding the seriesof edit operations of minimum 
ost su
h that we transform A into B.
where the authors spe
ify operations�ea
h asso
iated with a spe
i�
 
ost�bothon the sequen
e and the stru
ture level: the operations are ar
 mat
h, ar
 mis-mat
h, ar
 altering, ar
 breaking, and ar
 removing modifying the stru
tures, andbase mat
h, base mismat
h, and base deletion on the sequen
e level. Figure 3.4gives a 
artoon illustration for the single operations.Similar to the notion of the edit-distan
e on the level of nu
leotide sequen
es,the authors devise algorithms to 
ompute the edit distan
e between two annotatedsequen
es. As stated above, ea
h edit operation ei is asso
iated with a 
ertain
ost δ(ei). Given a series of edit operations Γ = {e0, e1, · · · , en} the overall 
ostis given by ∑n

i=0 δ(ei). We now want to �nd the series Γ̄ = {ē0, ē1, · · · , ēn} su
hthat ∑n

i=0 δ(ēi) is minimal and Γ̄ transforms the �rst into the se
ond annotatedsequen
e. Jiang et al. give a dynami
 programming algorithm that runs in O(n4)to infer a known stru
ture onto a se
ond sequen
e, making the 
omputation rathertedious for longer sequen
es.Evans [44; 43℄ started a new line of resear
h by introdu
ing the longest ar
-preserving 
ommon subsequen
e problem (or Lap
s in short). The Lap
s isde�ned as follows: we are given two annotated input sequen
es (S1, P1) and
(S2, P2), with S1 and S2 being sequen
es from some alphabet Σ. P1 and P2 areannotations, possibly 
ontaining 
rossing intera
tions, and we have a target length
l. The output is true if there exists a mapping M ⊆ {1, . . . , |S1|} × {1, . . . , |S2|}su
h that |M | = l, and false otherwise. Furthermore, the following 
onstraintshave to be satis�ed:1. M has to be a proper alignment, i.e., the order of the subsequen
es has tobe preserved.2. ar
s indu
ed by the mapping have to be preserved, i.e., ∀(i1, j1), (i2, j2) ∈ Mif (i1, i2) ∈ P1 i� (j1, j2) ∈ P2.3. the subsequen
e indu
ed by M is a 
ommon subsequen
e, i.e., ∀(i1, j1) ∈ Mwe have S1[i1] = S2[j1].
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Espe
ially the se
ond 
onstraint distinguishes this model from the other align-ment models for annotated sequen
es, be
ause we have to enfor
e that ar
s from

P1 are 
onserved in P2 via M . As we will see in Se
t. 3.1.6, 
omputing the Lap
sis already NP-
omplete if both input annotations are nested stru
tures. Blin etal. [12℄ extend the original model by Evans and introdu
e the maximum ar
-preserving 
ommon subsequen
e (or Map
s in short). The Map
s introdu
estwo s
oring fun
tions fa : Σ4 → N
∗ and fb : Σ2 → N

∗ that assign s
ores to themapping of nu
leotides (fb) and the 
onservation of ar
s (fa). Then, we aim at�nding a mapping (M,Q), with M being the 
ommon subsequen
e of S1 and S2,and Q being the 
onserved ar
s of P1 and P2, su
h that
∑

(i,j)∈M

fb(S1[i], S2[j]) +
∑

(i,j,k,l)∈Q

fa(S1[i], S1[j], S2[k], S2[l])

is maximized. The original 
onstraints for the Lap
s problem remain valid forthe 
omputation of the Map
s.
3.1.3 Tree-Based ModelsAs we have seen in Se
t. 1.2, nested RNA se
ondary stru
tures may be viewed astrees. Hen
e, algorithms that 
ompare trees 
an be applied to RNA stru
tures.A �rst model was introdu
ed by Tai [134℄ and generalizes the edit problem onstrings [142℄ to tree stru
tures whi
h is known as the tree-edit problem. Informallyspeaking, we have a set of operations Ω = {e0, . . . , en}, ea
h asso
iated with a
ertain 
ost δ(ei),∀ei ∈ Ω. We are given trees T1 and T2 whose nodes have labelsfrom some alphabet Σ, and n = |T1| and m = |T2| with n ≥ m. Let Σ̄ = Σ ∪ λ,with λ being the null symbol. We are sear
hing for the series S of edit operationsof minimum 
ost su
h that S transforms T1 into T2. For sake of simpli
ity weassume in the following that the nodes and their labels are identi
al. The tree-editmodel provides three distin
t operations:(a) node relabeling (X → Y ): the label of node X in T1 is 
hanged to Y .(b) node deletion (X → λ): we delete node X from T1, all 
hildren of Xbe
ome 
hildren of the parent node of X, preserving the sibling relation ofthe parent node. If X is the root node of T1, the deletion of X yields theforest of the 
hildren nodes of X.(
) node insertion (λ → X): we insert a new node X into T1.Figure 3.5 shows a small example of transforming tree T1 into another tree T2.Given a series of edit operations Γ = {e0, e1, · · · , en} the overall 
ost is givenby ∑n

i=0 δ(ei). We now aim at �nding a series Γ̄ = {ē0, ē1, . . . , ēn} su
h that
∑n

i=0 δ(ēi) is minimal and Γ̄ transforms T1 into T2. Tai's original algorithm runsin O(n · m · leaves(T1)
2 · leaves(T2)

2), whi
h Zhang and Shasha [157℄ improve to
O(n·m·min(leaves(T1), depth(T1))·min(leaves(T2), depth(T2))). There are severalre
ent papers that report on variations on the original Zhang-Shasha algorithm,
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Figure 3.5: We transform T1 into T2 by relabeling node A to R (A → R), deleting node
X (X → λ), and by �nally inserting node E (λ → E).

A

B X

C D

A

B D

A F

A

C

D

B A

CCCC DC DC DA F

T1 T2

(A,-)

(B,-)

(D,-)

C DD B

(B,-)

(D,D)

(-,B) (-,A)

(A,A) (F,F)

π(T̄ |1) π(T̄ |2)

T̄

Figure 3.6: Given two trees T1 and T2 we aim at �nding a 
ommon supertree T̄ whosepairwise proje
tions π(T̄ |1) and π(T̄ |2) yield the two original input trees.
the interested reader is, for example, referred to [126; 39; 82℄. Finally, Demaineet al. [32℄ show that the worst 
ase time 
omplexity for the tree edit problem isin O(n3).An alternative way to 
ompare trees is tree alignment whi
h was introdu
edJiang et al. in [75℄. Instead of transforming one tree into another one by a seriesof edit operations, we are now sear
hing for a 
ommon supertree T whose nodeshold labels from Σ̄ × Σ̄, and the pairwise proje
tions π(T |1) and π(T |2) yieldthe two input trees T1 and T2. A pairwise proje
tion π(T |1) or π(T |2) is de�nedas the tree that we get by taking the �rst (or se
ond) symbols of the nodes ofthe 
ommon supertree T , and by deleting all nodes that have the null symbol λafterwards. Given a 
ost fun
tion δ : Σ̄ × Σ̄ → R that s
ores the nodes of thesupertree, we want to �nd the supertree T̄ su
h that ∑

(a,b)∈V (T ) δ(a, b) is minimal.Figure 3.6 shows a small example of a tree alignment of two input trees. Treealignment algorithms have 
omplexities that are on average only slightly worsethan 
onventional sequen
e alignment. More pre
isely, their running time is in
O(n2 ·∆2), where ∆ denotes the maximum number of bran
hes of a multiloop inthe input stru
tures.
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A tool that builds upon the tree alignment paradigm is RNAForester [64;65℄. It 
omputes multiple stru
ture-to-stru
ture alignments of RNA sequen
es byperforming tree alignment in a progressive fashion.

3.1.4 Probabilisti
 ModelsThe use of hidden Markov models (HMMs) and pro�le hidden Markov models hasproven to be a very useful 
on
ept in the 
ontext of genomi
 sequen
e analysis.Applying these algorithms dire
tly to RNA related problems is not straightfor-ward, be
ause HMMs are not able to a

ount for the stru
tural information ofRNA sequen
es.Therefore, Eddy and Durbin [41℄ (and simultaneously Sakakibara and 
owork-ers [122℄) des
ribe sto
hasti
 
ontext free grammars (SCFGs) for measuring these
ondary stru
ture and primary sequen
e 
onsensus of RNA sequen
e families.A grammar 
ontains a set of rules to generate strings, starting from some startsymbol. The main 
omponents of a grammar are a set N of nonterminal sym-bols, a set T of terminal symbols, and a set P of produ
tion rules. In the 
ase ofsto
hasti
 grammars ea
h produ
tion rule is asso
iated with a probability. Thelanguage of a grammar are all strings that, starting from the start symbol, 
anbe generated by su

essively applying the produ
tion rules.SCFGs are grammars that model the tree-like stru
ture of RNAs. A simpleSCFG that 
aptures ungapped RNA stru
tures is the following grammar, with
N = {W,P,L,R,B, S,E} and T = {ǫ, A,C,G, U}. The nonterminal W denotesany of the six other nonterminals (P ,L,R,B,S,E), and a, b ∈ T :P → aWb (pairwise emission)L → aW (leftwise emission)R → Wa (rightwise emission)B → SS (bifur
ation)S → W (start produ
tion rule)E → ǫ (end)Then, the RNA se
ondary stru
ture from Fig. 3.7 yields the 
orresponding parsetree.The simple SCFG from above does not in
orporate the presen
e of gaps,and hen
e has to be extended by insertion and deletion states. The resultinggrammars�
alled 
ovarian
e models�are quite 
omplex, and there are threemain algorithms used in the 
ontext of 
ovarian
e models: the inside, the inside-outside, and the Co
ke-Younger-Kasami (CYK) algorithm. These algorithms
ompute the likelihood of an observed sequen
e x of length n, the expe
ted num-ber that ea
h produ
tion rule is used, and the maximum likelihood parse ofsequen
e x, respe
tively. The runtime of these algorithms s
ales in O(n3). For adetailed des
ription the reader is referred to [40℄.The SCFGs des
ribed so far are not suited to 
ompute a sequen
e-stru
turealignment of two sequen
es, be
ause they are emitting at most one single symbol
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Figure 3.7: A toy example of an RNA se
ondary stru
ture with the 
orresponding parsetree of the SCFG.
on either side. The idea of pair HMMs that works for nu
leotide sequen
es 
an beextended to SCFGs: a pair SCFG 
aptures the stru
tural intera
tion of the inputsequen
es and emits two symbols on either side. The 
omputational 
omplexityto 
ompute stru
tural alignments using a pair SCFG mat
hes the one of theun
onstrained Sanko� algorithm, i.e., the spa
e and time requirements s
ale in
O(n2m2) and O(n3m3), respe
tively. This makes the un
onstrained usage ofpair SCFGs pra
ti
al only for short sequen
es. Hen
e, there are several papers[72; 70; 71; 38℄ that propose heuristi
al 
onstraints to improve the runtime.In [72℄ Holmes and Rubin introdu
ed the notion of a fold envelope. Instead ofiterating over all possible substrings like in the un
onstrained 
ase, the authorsonly 
onsider substrings of the input sequen
es that are 
onsistent with pre
om-puted se
ondary stru
tures. Along these lines, Holmes [70; 71℄ generalizes the
on
ept of fold envelopes to alignment envelopes. Alignment envelopes spe
ify aset of positions between the two sequen
es that have to be aligned. By employingalignment and fold envelopes the author is able to signi�
antly redu
e the overallrunning time. Dowell and Eddy [38℄ also resort to the 
on
ept of alignment en-velopes. They 
all an alignment envelope a pin and use pins as an
hors in theiralignment: a pin is a �xed position in the alignment and they 
ompute a set of
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pins via the posterior probability for ea
h possible pair of aligned residues usingpair HMMs. Subsequently, these pins serve as 
onstraints in their pair SCFGformulation.Sakakibara [121℄ 
ombines pair HMMs with the tree alignment algorithm byJiang et al. and performs sequen
e-stru
ture alignments of a known to an un-known stru
ture using pair HMMs on tree stru
tures. In subsequent work [125℄,Sato and Sakakibara build upon the re
ursions from [121℄, but they employ 
on-ditional random �elds (CRFs) [87℄ to learn the parameters for their model. CRFsrepresent an undire
ted graphi
al model that generalizes standard HMMs in thesense that CRFs are able to model overlapping and non-independent featuresof the output. Furthermore, arbitrary fun
tions repla
e the 
onstant transitionprobabilities of HMMs, and the feature fun
tions�whi
h map 
urrent observa-tions at a 
ertain node in the graphi
al model�may depend on the entire observedsequen
e.
3.1.5 Graph-Based ModelsKe
e
ioglu [79℄ has introdu
ed a graph-theoreti
al model for the 
lassi
al pri-mary sequen
e alignment problem. Lenhof, Reinert and Vingron [95℄ in
orpo-rate stru
tural information and frame the sequen
e-stru
ture alignment problemas an integer linear program. Their obje
tive fun
tion maximizes the sum ofaligned sequen
e s
ores plus the s
ores of intera
tions that are 
onserved by thealignment. They propose a bran
h-and-
ut algorithm and perform stru
ture-to-unknown alignments on data from the European Ribosomal Database [154℄ and
ompare the performan
e of their algorithm to sequen
e and manually 
uratedalignments. With an in
reasing number of variables, however, the 
omputationalrequirements be
ome prohibitive.Based on the formulation from [95℄, Lan
ia and 
oworkers [89℄ give an ILPformulation for the related problem of 
omputing the maximal 
onta
t map over-lap of two proteins. The 
onta
t map of a protein A is a graph G = (V,E)with V and E being the sets of verti
es and edges. For ea
h amino a
id of theprotein we have a vertex vi ∈ V , and we insert an edge ei = (vi, vj) ∈ E i� thetwo 
orresponding amino a
ids i and j are spatially 
lose enough, i.e., i and jare in 
onta
t with ea
h other. The maximal 
onta
t map overlap problem oftwo 
onta
t maps aims at 
omputing a non-
rossing mapping of residues fromthe �rst onto the se
ond protein su
h that the number of 
onserved 
onta
ts ismaximal. A 
onta
t from the �rst protein is 
onserved if its mapped endpointsin the se
ond protein are also in 
onta
t with ea
h other.The algorithm in [89℄ is based on the bran
h-and-
ut prin
iple, and the au-thors are able to 
ompute the optimal 
onta
t map overlap of small- and medium-sized proteins. Following earlier work [21℄ on the quadrati
 knapsa
k problem,the authors swit
h from bran
h-and-
ut to Lagrangian relaxation in their subse-quent paper [20℄. Using Lagrangian relaxation they are able to solve instan
esto provable optimality that are an order of magnitude bigger 
ompared to the
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Figure 3.8: Given two proteins, the maximal 
onta
t map overlap problem 
alls forthe maximal number of 
onta
ts that are 
onserved through a mapping ofamino a
ids from the �rst onto the se
ond protein. The mapping shown herepreserves three 
onta
ts, i.e., the 
onta
t map overlap is three. Sin
e thereis no mapping with a higher number of 
onserved 
onta
ts, the maximal
onta
t map overlap is 3.
bran
h-and-
ut algorithm. We adapted the formulation of Lan
ia and Caprara[20℄ for the 
omputation of RNA sequen
e-stru
ture alignments in previous work[4℄. Compared to the �rst formulation of Lenhof et al. [95℄ we are able to solveinstan
es with a mu
h higher number of variables in less 
omputation time.Davydov and Batzoglou [31℄ present a graph-theoreti
al model for the align-ment of multiple RNA stru
tures based on the notion of a nested linear graph(we 
all this model Mlg in short). A graph is a linear graph if we 
an pla
eits verti
es on some line. Nu
leotide sequen
es naturally give rise to su
h lineargraphs if we take the single nu
leotides as the verti
es of the graph. We add edgesbetween 
omplementary base pairs. Then, given m linear graphs G1, . . . , Gm theauthors aim at �nding the largest 
ommon nested linear subgraph (MAX-NLS)among all m graphs. The MAX-NLS is de�ned as the largest nested graph GCsu
h that GC is a subgraph of Gi with 1 ≤ i ≤ m. The authors show that �ndingthe MAX-NLS is NP-
omplete, but they give polynomial time approximation al-gorithms with an approximation ratio of O(log2 S) with S being the size of theoptimal solution.Note that the graph-based model naturally deals with all three alignments
enarios. In addition, unlike other algorithmi
 approa
hes, the graph-based al-gorithms do not restri
t the input in any way and hen
e 
an handle arbitrarypseudoknots. They have been shown to play important roles in a variety ofbiologi
al pro
esses, see [131℄ for a re
ent review. Most DP-based algorithmsassume nested se
ondary stru
tures to 
ompute subproblems e�
iently. Few ex-
eptions exist, for example [37℄, but these algorithms are always restri
ted to
ertain 
lasses of pseudoknots (like H-type pseudoknots) and do not handle thegeneral 
ase. Brinkmeier [18℄ presents an algorithm to align various 
lasses ofpseudoknots, but the re
ursion s
ale in O(n14) and O(n8) for time and spa
e,making the algorithm inappli
able even for short sequen
es.
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3.1.6 Computational ComplexityThe 
omplexity of pairwise sequen
e-stru
ture alignments of RNA sequen
es isan intri
ate topi
. The 
omplexity does not only depend on the 
omplexity ofthe input stru
ture, i.e., we do allow pseudoknots or not, but also on the modelthat we are using and in some 
ases also on the s
oring system.The 
omplexity of tree-based and probabilisti
 sequen
e-stru
ture alignmentmodels is settled, as we have polynomial time algorithms that perform sequen
e-stru
ture alignments. Furthermore, the Sanko� algorithm and all its variants runin polynomial time as well. The 
omputation of a Lap
s, a sequen
e-stru
turealignment using the edit model and graph-based models is more involved.In Se
t. 1.2 we des
ribed the four 
lasses of possible input stru
tures for RNAstru
tures, namely Chain, Nested, Crossing, and Unlimited. Table 3.2whi
h is taken from [12℄ gives an overview of the 
omputational 
omplexity inthe Lap
s, Edit, and Mlg model (remember that Lap
s, Edit, and Mlgdenote the longest ar
-preserving 
ommon subsequen
e, the edit-model by Jianget al., and the maximum linear subgraph, respe
tively).

A × B
Chain Nested Crossing UnlimitedChain Chain Nest Chain Nest Cros Chain Nest Cros UnlimEdit O(nm) O(nm3) NPC MAX-SNP hard[43℄ [73℄ [13℄ [74℄Lap
s O(nm) O(nm3) NPC[43℄ [73℄ [43; 73℄Mlg O(nm) O(n2m) O(n2m2) O(n4 log3 n) NPC O(n4 log3 n) NPC[63℄ [97℄ [97℄ [86℄ [17; 141℄ [86℄ [17; 141℄

Table 3.2: The 
omputational 
omplexity of 
omputing sequen
e-stru
ture alignmentsin di�erent models under di�erent input stru
tures.
Blin and Touzet [14℄ further re�ne the 
omputational 
omplexity 
onsidera-tions by restri
ting the allowed operations in the Edit model. They introdu
ethree submodels of Jiang's general model, su
h that we allow all substitution op-erations, base-deletions and ar
-removings (model I), additionally ar
-alterings(model II), or ar
-alterings and ar
-breakings (model II). Furthermore, one of themain results of the paper is the proof that the Lap
s model 
an be redu
ed toa spe
ial 
ase of the Edit model. In Se
t. 3.1.2 we des
ribe the Map
s as avariant of the original Lap
s problem. Blin et al. [12℄ prove that 
omputing theMap
s is NP-
omplete already in the 
ase of two nested input stru
tures.Of parti
ular interest for this thesis is the table entry for 
omputing the Mlgif both input stru
tures are 
rossing. This problem 
orresponds exa
tly to the
omputation of RNA sequen
e-stru
ture alignments in our graph-based model.Goldman et al. show in [52℄ that 
omputing the maximal 
onta
t map overlapis NP-hard in the pairwise 
ase. They also state that the 
omputation of themaximal 
onta
t map overlap, if every node has a maximum degree of 1, isalready NP-hard. This problem 
orresponds exa
tly to the sequen
e-stru
turealignment of RNA stru
tures in our model. Unfortunately, they omit the proofand there is no full version of the paper available [112℄.
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Vialette [141℄ introdu
es the 2-interval pattern problem that 
orresponds ex-a
tly to the sequen
e-stru
ture alignment of RNA sequen
e with 
rossing inputstru
tures. We s
ore ea
h 
onserved intera
tion with 1 and dis
ard sequen
e-spe
i�
 information. Then, 
omputing the maximal set of 
onserved 2-intervalpatterns 
orresponds to the sequen
e-stru
ture alignment problem in our model.The authors give an expli
it redu
tion from 3SAT to the 2-interval pattern prob-lem and therefore prove that the problem is NP-
omplete.

3.2 Multiple AlignmentsThis se
tion 
overs two general paradigms for 
omputing multiple alignments thatwere originally developed for the 
omputation of pure sequen
e-based alignments.They 
an, however, be extended to in
orporate stru
tural information.
3.2.1 Building Progressive AlignmentsThe main idea behind progressive alignment is to build a multiple alignment froma series of pairwise alignments. In the beginning, we align two sequen
es and takethe resulting alignment as �xed. Su

essively, we 
hoose a third sequen
e andalign it to the �xed alignment. This is repeated until no more sequen
es areavailable.Typi
ally, the order in whi
h the sequen
es are aligned is given by a guidetree. We 
onstru
t the guide tree using standard phylogeneti
 algorithms, e.g.,weighted average linkage (WPGMA) or average linkage (UPGMA). Starting fromthe leaves of the tree we align the sequen
es in a bottom-up fashion. The mainstages of a progressive alignment of k input sequen
es are the following:1. 
ompute the distan
e matrix ∆ for the k sequen
es, i.e., entry ∆(i, j) de-notes the distan
e between sequen
es i and j.2. 
ompute the guide tree using a phylogeneti
 tree 
onstru
tion algorithmlike UPGMA.3. perform the progressive alignment along the guide tree.Figure 3.9 shows a toy example by aligning four input sequen
es in progressivefashion. The �gure also exhibits the main weakness of progressive alignments;mistakes that are made in the lower part of the tree 
annot be 
orre
ted lateron, whi
h is summarized by the on
e a gap, always a gap paradigm. Figure 3.9exempli�es the weakness of progressive alignments: seqA and seqB are the �rstpair to be aligned, and fast 
at of seqB is aligned to last fat of seqA. Takinga look at the entire alignment, one realizes that aligning fast 
at to fat 
atwould improve the overall multiple alignment.The progressive approa
h 
an be extended to in
orporate stru
tural informa-tion. Previous work, like [65; 67℄, perform pairwise sequen
e-stru
ture alignments
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Figure 3.9: The main stages of progressive alignments: (a) The input sequen
es. (b)Compute the matrix ∆ 
ontaining all pairwise distan
es between the inputsequen
es, and 
onstru
t the guide tree using ∆ (
). The a
tual alignment is
omputed by pairwise alignments along the guide tree (d). The illustrationis taken from [109℄.
along a pre
omputed guide tree and 
ompute 
onsensus stru
tures at the innernodes of the tree. A straightforward way to 
ompute a 
onsensus s
ore betweenpositions (i, j) is to take the average values of the stru
ture s
ores between po-sitions i and j and 
ompute the arithmeti
 mean of them. Figure 3.10 showsan example of a sequen
e-stru
ture alignment of �ve tRNA sequen
es using thePMComp software pa
kage [67℄. As one 
an observe, the 
onsensus stru
turethins out along the guide tree.
3.2.2 Building Consisten
y-Based AlignmentsAs a remedy for the pure progressive alignment method, the authors of [109℄ pro-pose 
onsisten
y-based alignments. Although their algorithm is also progressivein nature, they introdu
e a prepro
essing stage that redu
es the probability ofmaking a mistake early in the alignment phase.The main idea behind 
onsisten
y-based alignments is to perform all pair-wise alignments, and then 
he
k for ea
h aligned pair of residues how 
onsistentthis pair is with the remaining pairwise alignments. Figure 3.11 shows the main
on
epts by aligning the four input sequen
es from Fig. 3.9. Given the input
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Figure 3.10: Progressive sequen
e-stru
ture alignment of �ve tRNA sequen
es. The�gure was generated using the PMComp software pa
kage [67℄.
sequen
es (a), we 
ompute all pairwise alignments and assign their pairwise se-quen
e identity as their weights (b). Then, we 
he
k for ea
h pair of alignedpositions how well the aligned pair is represented by the remaining pairwisealignments. As an example, we take the G in seqA and seqB denoted by GAand GB. We then examine the alignment of seqA and seqB through seqC. Weobserve that GA is also aligned to GB via GC . Hen
e, we add the smaller of thetwo weight values W1 = W (GA, GC) and W2 = W (GC , GB). In our 
ase this sumsup to 88+min(77, 100) = 165, with 88 being the weight of the alignment betweensequen
es seqA and seqB. We 
all the pro
ess of 
he
king aligned positions viathe alignment of other sequen
es library extension. The weights 
omputed duringthe library extension 
omputation are used as s
ores in the progressive alignmentphase.The �rst implementation of 
onsisten
y-based alignments is the T-Coffeesoftware pa
kage [109℄. Subsequently, several other programs resort to the sameidea, like Mafft [78℄ or ProbCons [36℄. T-Coffee is, however, the onlyprogram that o�ers the possibility to in
orporate alignment information from ex-ternal sour
es. MARNA was the �rst program that uses this feature to 
omputemultiple sequen
e-stru
ture alignment heuristi
ally. In [5℄ we presented a �rstversion of our multiple alignment tool based on the pairwise information fromthe model presented in Chapt. 4. This eventually led to the �rst version of theLaRA software pa
kage.
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Figure 3.11: Given the input sequen
es (a), we perform all pairwise sequen
e alignmentsand asso
iate the pairwise sequen
e identity as the weight to the alignments(b). For every aligned position we perform the library extension (
), andget new weights (d) for a standard progressive alignment strategy (e). Theillustration is taken from [109℄.





Chapter
4 A Model for the MultipleSequen
e Case

Sie ist ein Modell,und sie sieht gut aus. Kraftwerk(Das Modell)
In this 
hapter we present a model for the problem of 
omputing multiplesum-of-pairs sequen
e-stru
ture alignments. The formulation uni�es the modelsfrom [4℄ and [1℄. Se
tion 4.3 des
ribes an extension to the initial model thattakes the e�e
ts of sta
king of adja
ent base pairs into a

ount. Main parts ofthis 
hapter are published as [8℄. Mind that for the moment we restri
t ourselvesto the des
ription of the formulation, we give extensive 
omputational results inChap. 5.3.

4.1 An Exa
t Framework for the MultipleSequen
e-Stru
ture Alignment ProblemSe
tion 4.1.1 starts with mathemati
al de�nitions of alignments, gaps, and appro-priate s
oring fun
tions. We then give a graph-based view of these de�nitions inSe
t. 4.1.2. Subsequently, Se
t. 4.2 shows how we 
an transform the graph-basedmodel into an integer linear program (ILP), relax it and solve the relaxed ILPe�
iently.
4.1.1 Basi
 De�nitionsDe�nition 4.1. Let Σ be some alphabet ex
luding the gap 
hara
ter �-�, and let
Σ̂ = Σ∪{-}. Given a set S of k strings s1, . . . , sk over Σ, we 
all A = (ŝ1, . . . , ŝk)a multiple alignment of the sequen
es in S if and only if the following 
onditionsare satis�ed:1. the sequen
es ŝi, 1 ≤ i ≤ k, are over the alphabet Σ̂.2. all sequen
es ŝi have the same length |A|.3. sequen
e ŝi without �-� 
orresponds to si, for 1 ≤ i ≤ k.4. there is no index j su
h that ŝi

j = �-�, 1 ≤ i ≤ k. By si
j we refer to the

jth 
hara
ter in sequen
e si. We de�ne Mi(j) as the mapping of si
j to itsposition in the alignment, and refer by M−1

i (j) to the mapping from the
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AAAAAA

AAA

(a)

AAAAAA

A-A-A-

(b)

AAAAAA

AAA---

(c)

Figure 4.1: Given the sequen
es from (a), a linear gap fun
tion would assign the samegap s
ore to the alignment of (b) and (
). The beginning of a gap, however,should be penalized higher 
ompared to subsequent gap 
hara
ters, andtherefore the alignment of (
) is biologi
ally more a

urate.
position in the alignment to the a
tual position in the sequen
e. If ŝi

j 6= �-�and ŝl
j 6= �-�, 1 ≤ j ≤ |A|, then we say that si

M−1
i (j)

is aligned to sl

M−1
l

(j)
,and to a gap otherwise.Alphabets 
ommonly used in 
omputational biology are the four letter alpha-bet Σ = {A,G,C, T} or Σ = {A,G,C, U} in the 
ase of DNA or RNA sequen
es,respe
tively. We de�ne a s
oring fun
tion σ : Σ̂× Σ̂ → R that represents the ben-e�t of aligning the two 
hara
ters. Usually, pairs of identi
al 
hara
ters re
eivea high s
ore, whereas di�erent 
hara
ters get a low s
ore. We extend the s
orede�nition to alignments:De�nition 4.2. Given a set S of k strings s1, . . . , sk, an alignment A 
onsistingof strings ŝ1, . . . , ŝk, and a s
oring fun
tion σ, the sum-of-pairs (SPS) s
ore of Ais de�ned by SPS(A, σ) =

k−1∑

i=1

k∑

j=i+1

|A|
∑

l=1

σ(ŝi
l, ŝ

j
l ) .

Intuitively speaking, the sum-of-pairs s
ore adds up all s
ores of pairs ofaligned 
hara
ters in the alignment A. Usually, we are interested to �nd anoptimal multiple sequen
e alignment under the s
oring fun
tion σ.De�nition 4.3. Given a s
oring fun
tion σ and a set S of sequen
es, we aim at
omputing an alignment A∗ withSPS(A∗, σ) = maxA∈A SPS(A, σ) ,where A is the set of all possible multiple alignments for S. We 
all A∗ an optimalmultiple sequen
e alignment of S under the s
oring fun
tion σ.This s
ore model does not expli
itly model gaps; they are inherently present bythe alignment of a gap 
hara
ter to a non-gap 
hara
ter. Hen
e, it is not possibleto penalize di�erent numbers of 
onse
utive gaps di�erently. For example a gapof length three�aligning three `A's to three gaps�a
hieves the same s
ore asthree separate individual gaps, see Fig. 4.1 (b) and (
).Biologi
al �ndings motivate a more 
ompli
ated gap model: the beginning ofa gap should be penalized higher 
ompared to subsequent gap 
hara
ters. This
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leads to a�ne gap 
osts that s
ore a gap of length x by a + (x− 1)b, where a > bare the gap open and gap extension penalties. Using this model 
learly favors thesingle gap, see Fig. 4.1 (
), over the three individual gaps, see Fig. 4.1 (b).We therefore introdu
e the following s
ore whi
h models gaps expli
itly andhen
e 
an assign a�ne gaps 
osts (or any other gap 
ost) to the gaps in analignment. We denote a gap of length ℓ in sequen
e i at position j by a triple
(i, j, ℓ) and assign it a penalty s
ore γ(i, j, ℓ) ∈ R≤0.De�nition 4.4. Given a set S of k strings s1, . . . , sk, an alignment A 
onsistingof strings ŝ1, . . . , ŝk, a sequen
e s
oring fun
tion σ, and a gap penalty fun
tion γ.We denote the gaps in A with

G(A) := {(i, j, ℓ) | sequen
e i has a gap of length ℓ at position j in A} .The gapped sum-of-pairs (GSPS) s
ore of A is de�ned by
GSPS(A, σ, γ) =

k−1∑

i=1

k∑

j=i+1

|A|
∑

l=1

σ(ŝi
l, ŝ

j
l ) +

∑

(i,j,ℓ)∈G(A)

γ(i, j, ℓ) .

Note that γ assigns negative s
ores to gaps in the alignments.As des
ribed in Se
t. 1, sequen
e alignments are in general not su�
ient tobuild reliable RNA alignments. Therefore, in addition to the gaps, we proposeto in
orporate stru
tural information. This leads to the notion of annotatedsequen
es.De�nition 4.5. Let s = s1, . . . , sn be a sequen
e of length n over the alphabet
Σ = {A, C, G, U}. A pair (si, sj) is 
alled an intera
tion if i < j and nu
leotide iintera
ts with j. In most 
ases, these pairs will be (G,C), (C,G), (A,U), (U,A),
(G,U), or (U,G). The set p of intera
tions is 
alled the annotation of sequen
e s.Two intera
tions (se, sf ) and (sg, sh) are said to be in
onsistent if they share onebase; they form a pseudoknot if they 
ross ea
h other, that is if e < g < f < hor g < e < h < f . A pair (s, p) is 
alled an annotated sequen
e. Note that astru
ture where no pair of intera
tions is in
onsistent with ea
h other forms avalid se
ondary stru
ture of an RNA sequen
e, possibly with pseudoknots.De�nition 4.6. Given a sequen
e alignment A = (ŝ1, . . . , ŝk) of k sequen
es,
onsider two annotated sequen
es (si, pi) and (sj, pj). We 
all two intera
tions
(si

e, s
i
f ) ∈ pi and (sj

g, s
j
h) ∈ pj a stru
tural mat
h if si

e is aligned with sj
g and si

fis aligned with sj
h. Two stru
tural mat
hes (ŝi

e, ŝ
i
f ), (ŝj

e, ŝ
j
f ) and (ŝi

g, ŝ
i
h), (ŝj

g, ŝ
j
h)are in
onsistent if either e = g, f = g, e = h, or f = h. We de�ne a s
oringfun
tion τ : Σ4 → R that assigns a s
ore to quadruples of 
hara
ters representingthe bene�t of mat
hing the two intera
tions.In other words, in the 
ase of a stru
tural mat
h of two intera
tions, their �left�and �right� endpoints are aligned by A. Two stru
tural mat
hes are in
onsistent
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-GCGGAUAACCCC

GG-AUA-CCA-UC

U--GAC-CCU-CC

ŝ
1

ŝ
2

ŝ
3

Figure 4.2: Realized stru
tural mat
hes are highlighted with grey edges. The stru
turalmat
h x = [(ŝ2
1, ŝ

2
5), (ŝ3

1, ŝ
3
5)] (the red dotted edges) is in
onsistent with thestru
tural mat
h y = [(ŝ2

5, ŝ
2
10), (ŝ3

5, ŝ
3
10)], that is we either s
ore x or y.

if they share an aligned 
olumn. In the 
ase of RNA sequen
es, we allow ea
hnu
leotide to be paired with at most one other nu
leotide, in
onsistent mat
hesrepresent pairings with two or more nu
leotides whi
h we do not allow for RNAsequen
es. This leads to the de�nition of sequen
e-stru
ture alignments of RNAstru
tures.De�nition 4.7. Given a set S of k strings s1, . . . , sk and an alignment A 
onsist-ing of strings ŝ1, . . . , ŝk. Let G(A) be the set of all gaps of A, and let σ, τ , γ befun
tions for s
oring sequen
e, stru
tural mat
hes, and gaps. Then, the gappedstru
tural sum-of-pairs s
ore of A is de�ned by GSSPS(A, σ, τ, γ) =

k−1∑

i=1

k∑

j=i+1





|A|
∑

l=1

σ(ŝi
l, ŝ

j
l ) +

|A|−1
∑

l=1

|A|
∑

m=l+1

τ(ŝi
l, ŝ

j
l , ŝ

i
m, ŝj

m)



 +
∑

(i,j,ℓ)∈G(A)

γ(i, j, ℓ) ,

whi
h does not s
ore in
onsistent stru
tural mat
hes, that is, every base is partof at most one stru
tural mat
h.Figure 4.2 gives an illustration for the de�nitions from above. In analogy to theoptimal sequen
e alignment problem, we 
onsider the optimal sequen
e-stru
turealignment of RNA stru
tures:De�nition 4.8. Given s
oring fun
tions σ, τ , and γ for s
oring sequen
e, stru
-tural mat
hes and gaps. Let S be a set of k sequen
es s1, . . . , sk. We aim at
omputing an alignment A∗ withGSSPS(A∗, σ, τ, γ) = maxA∈AGSSPS(A, σ, τ, γ) ,where A is the set of all possible multiple alignments for S. We 
all A∗ an optimalmultiple sequen
e-stru
ture alignment of S.
4.1.2 Graph-Based Model for Stru
tural RNA AlignmentBasi
 Model We are given a set of k annotated sequen
es {(s1, p1), . . . , (sk, pk)}and model the input as a mixed graph (V, L∪F ∪D∪G). The set V denotes the
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 graph model of three annotated sequen
es 
ontaining lines (grey solidlines) and intera
tion edges (blue dotted edges). For sake of 
larity we donot show all alignment edges, only the ones in
ident to v1

1.
verti
es of the graph, in this 
ase the bases of the sequen
es, and we write vi

j forthe jth base of the ith sequen
e. The set L 
ontains undire
ted alignment edgesbetween verti
es of two di�erent input sequen
es�for sake of better distin
tion
alled lines. A line l ∈ L with l = (vi
k, v

j
l ), i 6= j represents the alignment of the

kth 
hara
ter in sequen
e i with the lth 
hara
ter in sequen
e j. The set Lijrepresents all lines between sequen
es i and j. We address the sour
e node andtarget node of line l by s(l) and t(l). For l = (vi
k, v

j
l ) we have s(l) = vi

k and
t(l) = vj

l . The set Lij

vi
k

is the subset of Lij 
ontaining only alignment edges whosesour
e node is vi
k. Observe that the graph (V, L) is k-partite.The edge set F models the annotation of the input sequen
es in our graph.Consequently, we have intera
tion edges between verti
es of the same sequen
e,i.e., edges (vi

k, v
i
l) representing the intera
tion between verti
es vi

k and vi
l . Fig-ure 4.3 illustrates these de�nitions.

Conse
utivity and Gap Ar
s In addition to the undire
ted alignment andintera
tion edges we augment the graph by the set D of dire
ted ar
s representing
onse
utivity of 
hara
ters within the same string. We have an ar
 that runs fromevery vertex to its �right� neighbor, i.e., D = {(vi
j, v

i
j+1) | 1 ≤ i ≤ k, 1 ≤ j < |si|}.At this point, gaps are not represented in our graph model. Hen
e, we intro-du
e the edge set G: for ea
h pair of sequen
es (i, j) we have an edge aij

ef from vi
eto vi

f representing the fa
t that no 
hara
ter of the substring si
e . . . si

f is aligned toany 
hara
ter of the sequen
e j, whereas si
e−1 (if e > 1) and si

f+1 (if f + 1 ≤ |sj |)are aligned with some 
hara
ters in sequen
e j. We say that vi
e, . . . , v

i
f are spannedby the gap ar
 aij

ef . The entire set G is partitioned into distin
t subsets Gij with
i, j = 1, . . . , k, i 6= j, and Gij = {aij

lm ∈ G | 1 ≤ l ≤ m ≤ |si|}. Intuitively, forea
h sequen
e i we have k− 1 ar
s between ea
h pair of nodes (vi
e, v

i
f ) in order torepresent gaps between the sequen
e and the remaining k − 1 sequen
es.Two gap ar
s aij

ef , aij
mn ∈ Gij,w.l.o.g. e < m, are in 
on�i
t with ea
h otherif {e, . . . , f + 1} ∩ {m, . . . , n} 6= ∅, that is, we do not allow overlapping or even
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Figure 4.4: A longer gap 
annot be split into two shorter gaps: the two dashed gapedges are in 
on�i
t with ea
h other and are repla
ed by the solid gap edgespanning the two shorter gap edges.
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G A A G C

G A G C G
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(b)Figure 4.5: (a) Basi
 graph model augmented by gap edges (intera
tion edges are notdisplayed). The 
olour of the gap edges indi
ates to what other input se-quen
e the gap edges refer to. The right side (b) shows an instan
e of amixed 
y
le.
tou
hing gap ar
s. This is intuitively 
lear, be
ause we do not want to split alonger gap into two separate gaps; as a result there has to be at least one aligned
hara
ter between two realized gap ar
s. We de�ne a set C 
ontaining all maximalsets of pairwise 
on�i
ting gap ar
s. Finally, we de�ne Gij

vi
e↔vi

f

as the set of gapar
s that span the nodes vi
e . . . vi

f . See Fig. 4.4 for an illustration.
Mixed Cy
les A path in (V, L∪D) is an alternating sequen
e v1, e1, v2, e2, . . .of verti
es vi ∈ V and lines or ar
s ei ∈ L ∪ D. It is a mixed path if it 
ontainsat least one ar
 in D and one line in L. A mixed path is 
alled a mixed 
y
leif the start and end vertex are the same. A mixed 
y
le represents an ordering
on�i
t of the letters in the sequen
es. In the two-sequen
e 
ase a mixed 
y
le
orresponds to lines that 
ross ea
h other. The set of all mixed 
y
les is denotedby M. A subset L ⊆ L 
orresponds to an alignment of the sequen
es s1, . . . skif L ∪ D does not 
ontain a mixed 
y
le [79; 117℄. In this 
ase, we use the termalignment for L.
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Intera
tion Mat
h Two intera
tion edges r = (vi

k, v
i
l) ∈ pi and s = (vj

m, vj
n) ∈

pj form an intera
tion mat
h if two lines e = (vi
k, v

j
m) and f = (vi

l , v
j
n) exist su
hthat e and f do not 
ross ea
h other. A subset L ⊂ L realizes the intera
tionmat
h (e, f) if e, f ∈ L. Observe that the de�nition of an intera
tion mat
h isa graph-based reformulation of a stru
tural mat
h as de�ned in Se
t. 4.1.1. Theset I 
ontains all possible intera
tion mat
hes of L.

Gapped Stru
tural Tra
e A triple (L, I,G) with L ⊆ L, I ⊆ I, and G ⊆ Gdenotes a valid gapped stru
tural tra
e if and only if the following 
onstraintsare satis�ed:1. For i, j = 1, . . . , k, i 6= j we de�ne Lij = Lij ∩ L. Then, for l = 1, . . . , |si|the vertex vi
l is in
ident to exa
tly one alignment edge e ∈ Lij or spannedby a gap ar
 g ∈ Gij.2. An alignment edge l 
an realize at most one single intera
tion mat
h (l,m).3. There is no mixed 
y
le M ∈ M su
h that M ∩ L = M .4. There are no two gaps ar
s aij

kl, a
ij
mn ∈ G su
h that aij

kl is in 
on�i
t with
aij

mn.5. Given L, we denote by H(L) the transitive 
losure of L. Then
H(L) = Lmust hold true. This makes sure that alignment L also realizes all transitiveedges indu
ed by L. See Fig. 4.6(a) for an illustration.Fig. 4.6(b) shows a valid gapped stru
tural tra
e and the 
orresponding align-ment.Observation 4.1. There is a one-to-one mapping between alignments realizingstru
tural mat
hes and gapped stru
tural tra
es.Proof. The 
orresponden
e follows the observation in [1℄. In our 
ase, however,we have to additionally map stru
tural mat
hes to realized intera
tion mat
hes inthe gapped stru
tural tra
e. Due to the one-to-one mapping between stru
turalmat
hes and intera
tion mat
hes, this is straightforward.We assign positive weights wl and wij to ea
h line l and ea
h intera
tionmat
h (i, j), respe
tively, representing the bene�t of realizing the line or themat
h. Although we 
an set ea
h weight independently, line weights are usuallyset by empiri
ally derived mutation s
ore matri
es where σ(si

k, s
j
l ) gives a highvalue for identi
al (or similar) 
hara
ters. In Se
t. 5.4.2 we will further elaborateon 
ommonly used s
oring s
hemes.Note that sin
e ea
h intera
tion edge o

urs in two intera
tion mat
hes (m, l)and (l,m) we divide the weight of these edges by two. Finally, we assign nega-tive weights to gap edges aij

kl representing the gap penalty for aligning substring
si

k . . . si
l with gap 
hara
ters in sequen
e j.
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GA-GCGU

(b)Figure 4.6: (a) Transitive edges must be realized: if k and l are part of the alignment,then m has to be realized as well. (b) Example of a valid gapped stru
turaltra
e of three annotated sequen
es. Three intera
tion mat
hes are 
onservedby the alignment.
4.2 Integer Linear Program and LagrangianRelaxationThis se
tion starts by des
ribing our integer linear programming formulation forthe multiple sequen
e-stru
ture alignment problem, whi
h is based on the modelfrom the previous se
tion. We then show how to 
ompute solutions to this integerlinear program (ILP) using the Lagrangian relaxation method.
4.2.1 Integer Linear ProgramWe asso
iate binary variables with ea
h line, intera
tion mat
h, and gap edge, andmodel the 
onstraints of a valid gapped stru
tural tra
e by suitable inequalitiesin the ILP.The handling of lines and gap edges is straightforward. We asso
iate an x anda z variable to ea
h line and gap edge having the following interpretation: we set
xl = 1 if and only if line l ∈ L is part of the alignment L, and za = 1 if and onlyif gap edge a ∈ G is realized.Intera
tion mat
hes, however, are treated slightly di�erently. Instead of as-signing an ILP variable to ea
h intera
tion mat
h, we split an intera
tion mat
h
(l,m) into two separate dire
ted intera
tion mat
hes (l,m) and (m, l) that aredeta
hed from ea
h other. A dire
ted intera
tion mat
h (l,m) is realized by thealignment L if l ∈ L. We then have ylm = 1 if and only if the dire
ted intera
-tion mat
h (l,m) is realized (note again that ylm and yml are distin
t variables).Figure 4.7 gives an illustration of the variable splitting. This does not 
hange theunderlying model, it just makes the ILP formulation more 
onvenient for furtherpro
essing as we shall see in the se
tions to 
ome.Splitting intera
tion mat
hes has �rst been proposed by Caprara and Lan
iain the 
ontext of 
onta
t map overlap [20℄. The general 
on
ept of variable
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l m

G A U C

G A U CG

G A U C

G A U CG

Figure 4.7: One intera
tion mat
h is split into two dire
ted intera
tion mat
hes.
splitting, or Lagrangian de
omposition, is, however, a well-known te
hnique inmathemati
al programming [56℄.

max ∑

l∈L

wlxl +
∑

g∈G

wgzg +
∑

l∈L

∑

m∈L

wlmylm (4.1)
s. t. ∑

l∈L∩M

xl ≤ |L ∩ M | − 1 ∀M ∈ M (4.2)
xl + xk − xm ≤ 1 ∀ (l, k,m) ∈ L, (xl, xk, xm) forming a 
y
le (4.3)
∑

a∈C

za ≤ 1 ∀C ∈ C (4.4)
∑

l∈L
ij

s(m)

xl +
∑

a∈G
ij

s(l)↔s(l)

za = 1 1 ≤ i, j ≤ k, i 6= j,∀m ∈ Lij (4.5)
∑

m∈L,(l,m)not 
rossing ylm ≤ xl ∀ l ∈ L (4.6)
ylm = yml ∀ l,m ∈ L (4.7)
x ∈ {0, 1}L y ∈ {0, 1}L×L (4.8)
z ∈ {0, 1}G (4.9)

Figure 4.8: Master ILP
De�nition 4.9. We 
all the ILP (4.1)�(4.9) of Fig. 4.8 the master ILP.Note that we set the weights wl, wg, and wlm for l,m ∈ L and g ∈ G asdes
ribed in Se
t. 4.1.2, and therefore we have wg < 0 for g ∈ G.Lemma 4.1. A feasible solution to the ILP (4.1)�(4.9) 
orresponds to a validgapped stru
tural tra
e and vi
e versa.Proof. We �rst prove that a feasible solution (x̂, ŷ, ẑ) of the ILP des
ribes a validmultiple gapped stru
tural tra
e.
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Let L̂ = {l ∈ L | x̂l = 1}. Observe that 
onstraints (4.2) guarantee that L̂does not 
ontain mixed 
y
les. If L̂ generated a mixed 
y
le M , then |L̂ ∩ M | =

|M |. But this would 
ontradi
t (4.2) that ∑

l∈L̂∩M xl ≤ |L̂∩M |−1. Furthermore,there 
annot be lines k, l ∈ L̂ su
h that there exists a line m 6∈ L̂ that is indu
edby k and l, i.e., m is the transitive edge indu
ed by k and l. If this was the 
ase,we have a sum of 2, 
ontradi
ting 
onstraints (4.3).Constraints (4.4) guarantee that there are no mutually 
rossing gap edges:assume there exist two gap edges aij
kl and aij

mn that 
ross ea
h other. Consequently,they are in the same set C ∈ C of 
on�i
ting gap edges 
ontradi
ting that thesum of (4.4) is 
onstrained by 1.Equality (4.5) guarantees that every node is in
ident to exa
tly one alignmentedge or spanned by exa
tly one gap edge. If a node was not in
ident to any lineor gap edge, we had a sum of 0. There 
annot be any node in
ident to a line andspanned by a gap edge, be
ause this implies a sum of 2.Finally, a line 
annot realize more than one dire
ted intera
tion mat
h, oth-erwise this violates 
onstraints (4.6).To 
omplete the proof, we have to show that a valid gapped stru
tural tra
erepresents a feasible solution to the ILP. Given (L, I,G) with L ⊆ L, I ⊆ I, and
G ⊆ G that form a valid multiple gapped stru
tural tra
e. Set the values of the
x̂, ŷ, and ẑ variables in 
orresponden
e if the respe
tive edges are part of L, I, or
G.De�nition 4.10. We 
all the relaxed ILP 
onsisting of (4.1)�(4.9) without (4.7)the slave ILP.Lemma 4.2. The slave ILP is equivalent to the multiple sequen
e alignmentproblem with arbitrary gap 
osts.Proof. The key observation is that after the removal of 
onstraints (4.7), variables
ylm appear only in 
onstraints (4.6); thus, ea
h variable xl is asso
iated with aset of ylm, the set of outgoing intera
tion mat
hes that l 
an realize.Hen
e, we have to distinguish two 
ases, depending on whether a line l is partof an alignment or not. First, assume xl = 0. In this 
ase, as a 
onsequen
eof (4.6), all ylm must be zero as well. If, however, a line l = (vi

k, v
j
l ) is part ofan alignment, its maximal 
ontribution to the s
ore is given by solving the ILPshown in Fig. 4.9. Inequality (4.11) states that we 
an 
hoose only one singleintera
tion mat
h from the set of outgoing intera
tion mat
hes that alignmentedge l 
an possibly realize. A

ording to the obje
tive fun
tion (4.10) it is 
learthat this will be the one with the largest weight wlm. Furthermore, there 
annotbe a gap ar
 that spans vertex vi

k or vj
l , sin
e otherwise 
onstraints (4.12) wouldbe violated. This ILP (for ea
h line l) is easily solvable by just sele
ting the mostpro�table outgoing intera
tion mat
h (l, m̂) su
h that l and m̂ are not in 
on�i
t,whi
h 
an be done in linear time. Therefore, the pro�t a line 
an possibly a
hieveis solely 
omputed by 
onsidering the weights of line l and of the best dire
tedintera
tion mat
h (l, m̂) that line l 
an realize, i.e., pl = wl + wlm̂.



53
pl := max wl +

∑

m∈L

wlmylm +
∑

a∈{Gij

s(l)↔s(l)
∪G

ji

t(l)↔t(l)
}

waza (4.10)
s. t. ∑

m∈L,(l,m)not 
rossing ylm ≤ 1 (4.11)
∑

a∈{Gij

s(l)↔s(l)
∪G

ji

t(l)↔t(l)
}

za = 0 (4.12)
x ∈ {0, 1}L y ∈ {0, 1}L×L (4.13)
z ∈ {0, 1}G (4.14)

Figure 4.9: Constraints that have to satis�ed if an alignment edge l is part of the align-ment, i.e., if xl = 1.
In the se
ond step, we 
ompute the optimal s
ore by solving the ILP 
onsistingof the remaining 
onstraints, whi
h is listed in Fig. 4.10.
max ∑

l∈L

plxl +
∑

g∈G

wgzg

s. t. ∑

l∈L∩M

xl ≤ |L ∩ M | − 1 ∀M ∈ M

xl + xk − xm ≤ 1 ∀ (l, k,m) ∈ L, (xl, xk, xm) forming a 
y
le
∑

a∈C

za ≤ 1 ∀C ∈ C

∑

l∈L
ij

s(m)

xl +
∑

a∈G
ij

s(l)↔s(l)

za = 1 1 ≤ i, j ≤ k, i 6= j,∀m ∈ Lij

x ∈ {0, 1}L

z ∈ {0, 1}G

Figure 4.10: Computing the solution for the relaxed problem. Observe that the ILP only
ontains x and z variables, be
ause the values of the y variables dependon the x variables.
The remaining ILP only 
onsiders x and z variables, be
ause due to the 
asedistin
tion des
ribed above the values of the y variables depend on the value ofthe 
orresponding x variables. Then, the remaining 
onstraints 
orrespond to the
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multiple sequen
e alignment formulation given in [1℄.Let (x∗, z∗) be the solution to this problem. We 
laim that an optimal solutionof the relaxed problem is given by (x∗, y∗, z∗) by setting y∗

lm = x∗
mylm̂ (rememberthat ylm̂ is the highest s
oring dire
ted intera
tion mat
h that l 
an realize), andby setting the x and z variables a

ording to the solution of the multiple sequen
ealignment problem. First, it is easy to see that (x∗, y∗, z∗) is indeed a feasiblesolution of the relaxed problem, sin
e (x∗, z∗) represent a valid alignment (witharbitrary gap 
osts) and our 
hoi
e of y∗ does not violate the restri
tions givenin (4.6). To see that (x∗, y∗, z∗) is optimal, observe that its value is determinedby

∑

l∈L

plx
∗
l +

∑

g∈G

wgz
∗
g =

∑

l∈L

(wl + wlm̂)x∗
l +

∑

g∈G

wgz
∗
g

=
∑

l∈L

wlx
∗
l +

∑

g∈G

wgz
∗
g

︸ ︷︷ ︸optimal sol. for MSA
+

∑

l∈L

∑

m∈L

wlmy∗
lm

︸ ︷︷ ︸optimal sol. for ylm̂ due to (4.10)�(4.14)
We now proof that (x∗, y∗, z∗) is indeed the optimal solution. Assume thatthere exists a valid solution (x̄∗, ȳ∗, z̄∗) that has a higher obje
tive fun
tion valuethan (x∗, y∗, z∗). Clearly, (x∗, z∗) and (x̄∗, z̄∗) di�er in at least one position, andboth form valid alignments (we have to 
onsider only x and z variables, be
ausethe values of y follow from the 
hoi
e of x). If, however, (x̄∗, z̄∗) forms a validsequen
e alignment, we would have found it in the �rst pla
e, be
ause we are
omputing optimal multiple sequen
e alignments.

4.2.2 Lagrangian RelaxationObviously we have not yet solved the master ILP, sin
e we dropped equali-ties (4.7). Instead of just dropping them, we relax the master ILP in a Lagrangianfashion. We move the dropped 
onstraints into the obje
tive fun
tion and assigna penalty term�the Lagrangian multiplier�to ea
h dropped 
onstraint. Themultipliers represent a penalty to the obje
tive fun
tion in the 
ase the dropped
onstraint is not satis�ed. Moving 
onstraints (4.7) into the obje
tive fun
tionyields the Lagrangian dual, whi
h is the slave ILP with the obje
tive fun
tionmax ∑

l∈L

wlxl +
∑

g∈G

wgzg +
∑

l∈L

∑

m∈L

wlmylm +
∑

l∈L

∑

m∈L

λlm(ylm − yml) . (4.15)
Exploiting the fa
t that λlm = −λml, whi
h we ensure below, (4.15) 
an bereformulated tomax ∑

l∈L

wlxl +
∑

g∈G

wgzg +
∑

l∈L

∑

m∈L

(wlm + λlm)ylm . (4.16)
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Note that, a

ording to Lemma 4.2, we 
an solve instan
es of the Lagrangianproblem by solving a multiple sequen
e alignment problem with arbitrary gap
osts where the pro�ts of the intera
tion mat
hes are 
oded in the weights of thelines.We want to determine the Lagrangian multipliers that provide the best boundto the original problem. In pra
ti
e, iterative subgradient optimization, that wedes
ribed in Se
t. 2.3.1, is widely used. This method determines the multipliersof the 
urrent by adapting the values from the previous iteration.More formally, we set λ1

lm = 0,∀m, l ∈ L and
λi+1

lm =







λi
lm if si

lm = 0

λi
lm − γi if si

lm = 1

λi
lm + γi if si

lm = −1

where si
lm = y∗

lm − y∗
ml and γi = µ

vU − vL
∑

l,m∈L

(si
lm)2

.

Here, µ is a 
ommon adaption parameter and vU and vL denote the best upperand lower bounds, respe
tively.In ea
h iteration of the subgradient optimization pro
edure we get a value forthe Lagrangian dual. Given this series (v1, v2, . . . , vn) we 
an set vU to min{vi |
1 ≤ i ≤ n}, the lowest obje
tive fun
tion value of the Lagrangian dual solved sofar. The 
omputation of a lower bound is more involved and we show in Se
t. 4.2.3how to use the solution of the relaxed problem to dedu
e a good feasible solution.In our 
omputational experiments we also tried more advan
ed methods tosolve the Lagrangian dual, for example bundle methods [94℄. However, 
urrentlythe des
ribed subgradient optimization exhibits better 
onvergen
e propertiesthan bundle methods as the results from Se
t. 5.4.4 show.Note that unless the lower and the upper bound vL and vU 
oin
ide, we
annot guarantee optimality. Even if we had already found the optimal value
v∗ of the Lagrangian dual, the solution 
orresponding to v∗ is not ne
essarily avalid solution in the primal problem. Our experiments, however, show that in the
ase of instan
es that share medium or high stru
tural similarity, the lower andupper bound often 
oin
ide yielding provably optimal solutions for our originalproblem. If, however, the two bounds do not mat
h, an in
orporation of theLagrange bounds into a bran
h-and-bound framework is straightforward. Wereport the results of the bran
h-and-bound implementation in Se
t. 5.5.4.
Solving the relaxed problem in the pairwise 
ase. The solution of the re-laxed problem in the multiple 
ase amounts to the 
omputation of an exa
t mul-tiple sequen
e alignment. If we 
onsider the spe
ial 
ase of two input sequen
es
s1 and s2, with n = |s1| and m = |s2| and n > m, then we 
an use standarddynami
 programming algorithms to solve the relaxed problem in O(n2).
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For the total running time of k iterations we have to additionally 
onsiderother fa
tors. We have O(n2) possible alignment edges, and if we allow inter-a
tions between every pair of nu
leotides, then every alignment edge has O(n)possible partner edges. We store the partner edges in a priority queue leading to a
omplexity of O(n lg n) for building and updating ea
h one of the O(n2) priorityqueues. This yields a 
omplexity of O(n3 lg n) for a �xed number of iterations.Priority queues are ne
essary, be
ause we adapt the Lagrangian multipliers inea
h iterations, and we want to a

ess the highest s
oring intera
tion mat
h in
onstant time.For an RNA sequen
e the number of potential intera
tions is, however, typi-
ally 
onstant, leading to a 
onstant number of possible partner edges in the 
aseof sequen
es. Therefore, the O(n lg n) term is in fa
t 
onstant, yielding a totalrunning time of O(n2).

4.2.3 Computing a Feasible SolutionA solution (x∗, y∗, z∗) of the Lagrangian dual yields a multiple alignment L (rep-resented by x∗) plus some information about intera
tion mat
hes 
oded by the
y∗-values; see Fig. 4.11 (a). If for all lines l and m the equation y∗

lm = y∗
ml holds,then the solution is a feasible multiple stru
tural alignment, and we have foundan optimal solution to the original problem. Otherwise, some pairs y∗

lm and y∗
ml
ontradi
t ea
h other. For a valid se
ondary stru
ture, however, we have to ensurethat y∗

lm = y∗
ml for all pairs of l,m ∈ L.The set of lines and gap edges that 
onstitute the alignment is �xed: theproblem is to �nd a subset Î of intera
tion edges of maximum weight su
h thatthe stru
tural information for ea
h sequen
e is valid, that is, ea
h base is pairedwith at most one other base. Figure 4.11 (a) illustrates the problem: the align-ment L = (l, k,m, n, o) provides di�erent possibilities to augment L by stru
turalmat
hes. We 
an for example either realize the stru
tural mat
h (l,m) or (l, n),but not both. Realizing both intera
tion mat
hes would result in an invalid se
-ondary stru
ture. We therefore de�ne the problem of �nding the best stru
tural
ompletion of an alignment L.De�nition 4.11. Given an alignment L and a set I of intera
tion mat
hes that Lrealizes. Find a subset Î ⊆ I su
h that Î forms a valid se
ondary stru
ture�thestru
tural 
ompletion�of maximal weight on L.We 
an formulate this problem as a general weighted mat
hing problem inan auxiliary graph MS, the intera
tion mat
hing graph: we have MS = (V,E)where the set V and E 
onstitute verti
es and edges, respe
tively. We have

V = (v̂1, . . . , v̂|L|) where v̂i 
orresponds to the ith element of L. We insert anedge ei = (v̂i, v̂j) if and only there exists a pair of intera
tion edges (vi
k, v

i
l) and

(vj
m, vj

n) whose endpoints are adja
ent to a pair (o, p) ∈ L×L (see Fig. 4.11 (b)).The weight of edge ei is given by the weight of the two intera
tion edges (vi
k, v

i
l)and (vj

m, vj
n).
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G G U C U A

A G C U A G G

l k m n ol k m n o

(a) (b)

G G U C U A

A G C U A G G

l k m n o

(c)Figure 4.11: Given the alignment L = (l, k, m, n, o) , we have di�erent possibilities toaugment the alignment with stru
tural mat
hes. Creating an intera
tionmat
hing graph (b) and 
al
ulating a general mat
hing of maximum weightyields the best stru
tural 
ompletion of L (
).
Lemma 4.3. A mat
hing of maximum weight in the intera
tion mat
hing graph
MS 
orresponds to the best stru
tural 
ompletion of L.Proof. The equivalen
e follows dire
tly from the 
onstru
tion of MS and thede�nition of a mat
hing.
4.3 In
orporating Sta
king Energies Into theModelSe
tion 1.2 des
ribes the loop-energy model that builds the basis for the 
om-putational predi
tion of RNA stru
tures. The sta
king energies of paired basesbuild the prevalent 
ontribution to the overall stability of an RNA stru
ture. Themodel that we des
ribed in Se
t. 4.1.2 does not a

ount for sta
king energies, be-
ause it treats every intera
tion separately. There is no additional bene�t forrealizing adja
ent paired bases.We 
all two intera
tion mat
hes (l, k) and (m,n) with s(l) = s(m)−1, s(k) =
s(n) + 1, t(l) = t(m) − 1, and t(k) = t(n) + 1 the sta
king intera
tion mat
h
[(l, k), (m,n)]. Figure 4.12 shows the sta
king intera
tion mat
h [(l, k), (m,n)].

l m n k

Figure 4.12: The two intera
tion mat
hes (l, k) and (m, n) form the sta
king intera
tionmat
h [(l, k), (m, n)].
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In the following, we will extend the model from Se
t. 4.1.2 by in
orporat-ing sta
king intera
tion mat
hes. For sake of simpli
ity, we shall start from astripped-down version of the full model. We will 
onsider the pairwise 
ase, andwe will in
lude only the alignment and stru
ture edges. The extension to themultiple 
ase in
luding gap edges is straightforward, but it makes the des
riptionmore tedious.First, we de�ne the problem formally. In Se
tion 4.1.1 we gave the formalde�nition for sequen
e-stru
ture alignments whi
h we will extend by sta
kings
ores.De�nition 4.12. Given two strings s1 and s2 and an alignment A 
onsistingof the two strings ŝ1 and ŝ2. We de�ne a s
oring fun
tion υ : Σ4 → R thatassigns a s
ore to quadruples of 
hara
ters representing the bene�t of sta
kingintera
tions, i.e., υ(s1

l , s
2
l , s

1
m, s2

m) s
ores the sta
king between intera
tion mat
hes
(s1

l , s
2
l , s

1
m, s2

m) and (s1
l−1, s

2
l−1, s

1
m+1, s

2
m+1).Let σ, τ , υ be fun
tions for s
oring sequen
e, stru
tural mat
hes, and sta
kingintera
tions. Then, the sta
king sum-of-pairs s
ore SSPS(A, σ, τ, υ) of A is de�nedas

|A|
∑

l=1

σ(ŝ1
l , ŝ

2
l ) +

|A|−1
∑

l=1

|A|
∑

m=l+1

τ(ŝ1
l , ŝ

2
l , ŝ

1
m, ŝ2

m) +

|A|−2
∑

l=2

|A|−1
∑

m=l+1

υ(ŝ1
l , ŝ

2
l , ŝ

1
m, ŝ2

m) .

We do not s
ore in
onsistent stru
tural mat
hes, that is, every base is part ofat most one stru
tural mat
h, and we only s
ore sta
king 
ontributions betweenrealized adja
ent stru
tural mat
hes.Similar to the optimal sequen
e alignment problem, we 
onsider the optimalsequen
e-stru
ture-sta
king alignment of RNA stru
tures:De�nition 4.13. Given s
oring fun
tions σ, τ , and υ for s
oring sequen
e, stru
-tural mat
hes, and sta
king 
ontributions, we aim at 
omputing an alignment A∗of two sequen
es s1 and s2 withSSSPS(A∗, σ, τ, υ) = maxA∈A SSSPS(A, σ, τ, υ) ,where A is the set of all possible pairwise alignments for s1 and s2. We 
all A∗an optimal pairwise sequen
e-stru
ture-sta
king alignment of S.We do not have to add new edges to the graph-based model des
ribed inSe
t. 4.1.2 to model the sta
king 
ontributions, be
ause they are impli
itly repre-sented by the stru
ture edges. In the following, we will adapt the ILP formulationto take sta
king s
ores into a

ount.
4.3.1 Integer Linear Program In
luding Sta
king S
oresFigure 4.13 shows the ILP des
ribing the pairwise sequen
e-stru
ture alignmentmodel without 
onsidering gap edges. Remember that we asso
iate an x and y
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max ∑

l∈L

wlxl +
∑

l∈L

∑

m∈L

wlmylm

s. t. ∑

l∈CL

xl ≤ 1 ∀CL ∈ CL

∑

m∈L,(l,m)not 
rossing ylm ≤ xl ∀ l ∈ L

ylm = yml ∀ l,m ∈ L

x ∈ {0, 1}L y ∈ {0, 1}L×L

Figure 4.13: The ILP that des
ribes pairwise sequen
e-stru
ture alignment without gap
osts.
variable ea
h every alignment edge and dire
ted intera
tion mat
h, respe
tively.We now add variables z that model potential sta
king between pairs of adja-
ent intera
tion mat
hes. We have zlm|nk = 1 if and only if the sta
king mat
h
[(l, k), (m,n)] between the adja
ent intera
tion mat
hes (l, k) and (m,n) is real-ized, and zlm|nk = 0 otherwise. If we have zlm|nk = 1, then (l, k) and (m,n) realizea sta
king intera
tion mat
h.Similar to the splitting of an intera
tion mat
h (l, k) into two dire
ted in-tera
tion mat
hes (l, k) and (k, l), we also split a sta
king intera
tion mat
h
[(l, k), (m,n)] into two dire
ted sta
king intera
tion mat
hes, asso
iated with sep-arate z variables zlm|nk and znk|lm.Figure 4.14 gives the ILP that des
ribes the model extended by the sta
kingvariables. Observe that the ILP only enfor
es zlm|nk ≤ ymn, but we do not haveto expli
itly enfor
e zlm|nk ≤ ylk sin
e this is automati
ally satis�ed in the 
aseof feasible solutions. If we have zlm|nk = 1, then znk|lm = 1 is true as well dueto 
onstraint (4.22). With znk|lm being set to 1 we have ykl = 1 be
ause of
onstraint (4.20), and then in turn ylk = 1 due to equality 
onstraints (4.21).Lemma 4.4. A feasible solution to the ILP (4.17)�(4.23) mat
hes the de�nitionof a sequen
e-stru
ture-sta
king alignment from Def. 4.12.Proof. We �rst prove that a feasible solution (x̂, ŷ, ẑ) of the ILP des
ribes a validsequen
e-stru
ture-sta
king alignment.Observe that 
onstraints (4.18) and (4.19) guarantee that the subset of align-ment and stru
ture edges (represented by the x̂ and ŷ variables) form a validsequen
e-stru
ture alignment. There are no 
rossing edges and every alignmentedge realizes at most one intera
tion edge.Furthermore, 
onstraint (4.20) ensures that the alignment only in
orporatessta
king s
ores, if the two sta
king intera
tion mat
hes are realized. The s
oreobviously equals the s
ore of the alignment.



60
max ∑

l∈L

wlxl +
∑

l∈L

∑

m∈L

wlmylm +
∑

l,m,n,k∈L

wlm|nkzlm|nk (4.17)
s. t. ∑

l∈CL

xl ≤ 1 ∀CL ∈ CL (4.18)
∑

m∈L,(l,m)not 
rossing ylm ≤ xl ∀ l ∈ L (4.19)
zlm|nk ≤ ymn ∀ l,m, n, k ∈ L (4.20)
ylm = yml ∀ l,m ∈ L (4.21)
zlm|nk = znk|lm

(l,m) sta
ked,
(n, k) sta
ked (4.22)

x ∈ {0, 1}L y ∈ {0, 1}L×L z ∈ {0, 1}L×L×L×L (4.23)
Figure 4.14: The ILP that in
orporates sta
king energies.

To 
omplete the proof, we have to show that a valid sequen
e-stru
ture-sta
king alignment represents a feasible solution to the ILP. Given (L, I) with
L ⊆ L and I ⊆ I, we set the values of the x̂ and ŷ variables in 
orresponden
eif the respe
tive edges are part of L and I. Observe that the values of the zvariables are impli
itly given by the y variables.Figure 4.15 shows an illustration of the three di�erent sets of variables.

l m n k

zlm|nk

ymn

znk|lm

ykl

Figure 4.15: Illustration of the ILP in
orporating sta
king energies. The blue and redarrows represent sta
king variables together with their respe
tive stru
tureedges.
Thus, after relaxing 
onstraints (4.21) and (4.22) and moving them to theobje
tive fun
tion, we get the ILP shown in Fig. 4.16.
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max ∑

l∈L

wlxl +
∑

l∈L

∑

m∈L

(wlm + λlm)ylm +
∑

l,m,n,k∈L

(wlm|nk + λlm|nk)zlm|nk (4.24)
s. t. ∑

l∈CL

xl ≤ 1 ∀CL ∈ CL (4.25)
∑

m∈L,(l,m)not 
rossing ylm ≤ xl ∀ l ∈ L (4.26)
zlm|nk ≤ ymn ∀ l,m, k ∈ L (4.27)
x ∈ {0, 1}L y ∈ {0, 1}L×L z ∈ {0, 1}L×L×L×L (4.28)

Figure 4.16: The ILP in
orporating sta
king energies relaxed by two 
lasses of 
on-straints.
We solve the relaxed problem in a similar way as the ILP without sta
kingbonuses. Like in the 
ase of the initial model from Se
t. 4.1, we again have todistinguish between xm = 0 and xm = 1: if xm = 0, then all yml will be 0 due to(4.26). With yml = 0 for all possible intera
tion mat
hes, 
onstraint (4.27) willset all zlm|nk variables to 0.In the 
ase of xm = 1, however, at most one yml 
an be set to 1. Then, forthe variable yml = 1 the 
orresponding sta
king intera
tion mat
h variable zlm|nk
an be set to 1. We have a 
as
ading of the x, y, and z variables. The x variablespossibly swit
h some y variables from 0 to 1, and the y variables in turn set zvariables to 1.The 
omputation of the maximal pro�t for ea
h alignment edge has to beadapted 
ompared to the des
ription in Se
t. 4.2.2. Instead of maximizing thesum of the alignment edge s
ore and the highest s
oring dire
ted intera
tionmat
h, we additionally evaluate the maximum pro�t that a sta
king variableplus the asso
iated stru
ture edge 
an possibly a
hieve. For an alignment edge

m, asso
iated with an alignment s
ore wm, we have p̂0 = wmn̂ as the maximums
ore of only an intera
tion mat
h asso
iated with alignment edge n̂. The value
p̂1 = wmn̄+wlm|n̄k is the maximum s
ore that an intera
tion mat
h (m, n̄) plus the
orresponding sta
king intera
tion mat
h [(l, k), (m, n̄)] 
an realize. The pro�t ofalignment edge m is then given by

pm = wm + max{p̂0, p̂1} .Following the des
ription in Se
t. 4.2.2, we get a solution for the relaxed ILP by
omputing a standard sequen
e alignment problem with the pro�t values pm asthe mat
hing s
ores for ea
h alignment edge m.We 
ompute optimal or near-optimal solutions for the dual problem�the ILP
onsisting of (4.24)-(4.28)�by again resorting to subgradient optimization. We
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adapt the Lagrangian multipliers the same way as in the model for multiplesequen
e-stru
ture alignments with arbitrary gap 
osts.
4.3.2 Computing a Feasible SolutionSolving the relaxed problem (4.24)-(4.28) does not usually yield a solution thatis also valid for the original problem. If this is the 
ase, then we have found anoptimal solution for the original problem, be
ause the number of subgradientsis zero. In Se
t. 4.2.3 we des
ribed how we generate a feasible solution for theoriginal problem, given the solution of the relaxed problem. We build the inter-a
tion mat
hing graph and perform a maximum-weight mat
hing 
omputation init. The mat
hing 
orresponds to a feasible solution in our original problem, seeFig. 4.11 for an illustration.In prin
iple, the same algorithm also works in the extended model. We 
om-pute the mat
hing of maximum weight and add the s
ores for sta
king intera
tionmat
hes in a postpro
essing step. The 
omputational experiments in Se
t. 5.4.3.1show that the resulting pairwise alignments are 
ompetitive or better than thealignments without sta
king energies. There is, however, one problem. The valueof the maximum-weight mat
hing plus the s
ores of realized sta
king s
ores doesnot ne
essarily have to be the optimal value.Figure 4.17 gives a toy example where the mat
hing routine does not 
omputethe stru
tural 
ompletion of maximum weight. The mat
hing sele
ts the edges
(l, r) and (m, o) as the stru
tural 
ompletion of the alignment. Due to the sta
kings
ore of 100 for the sta
king mat
h [(k, r), (m, o)], the edges (k, r) and (m, o) yielda higher s
ore.
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A G C U A G G
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Figure 4.17: The mat
hing sele
ts the edges (l, r) and (m, o) as the stru
tural 
omple-tion of the alignment. Due to the sta
king s
ore of 100 for the sta
kingintera
tion mat
hes (k, r) and (m, o), the edges (k, r) and (m, o) form theoptimal solution.
Figure 4.18 shows an alternative way for the 
omputation of a feasible so-lution that in
ludes the sta
king 
ontributions. We redu
e the problem to the
omputation of an independent set of maximum weight. We �rst give a de�nition
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Figure 4.18: We determine the sta
ked stru
tural 
ompletion of an alignment A by
omputing an independent set of maximum weight. We have an alignment
A (a) and 
onstru
t an auxiliary graph (b) in whi
h we determine theindependent set of maximum weight.

of what we want to maximize, and afterwards we des
ribe the 
ontru
tion of anauxiliary graph.De�nition 4.14. We are given an alignment L and a set I of intera
tion mat
hesthat L realizes. Find a subset Î ⊆ I su
h that Î forms a valid se
ondarystru
ture�the sta
ked stru
tural 
ompletion�and that maximizes the intera
-tion mat
h s
ores of Î plus the sta
king s
ores that are indu
ed by Î.We formulate this problem as an independent set of maximum weight prob-lem in an auxiliary graph MIS, the independent set graph. The graph MIS =
(VI ∪ VS, E) 
ontains the sets VI , VS and E that 
onstitute verti
es and edges,respe
tively. For an alignment L ⊂ L we 
reate a node vi ∈ VI for every possibleintera
tion mat
h that this alignment realizes. Furthermore, for every possible
ombination of sta
king intera
tion mat
hes we add another vertex vs ∈ VS tothe graph. Observe that this in
ludes not only all pairwise sta
king intera
tionmat
hes, but also verti
es for several 
onse
utive sta
king intera
tion mat
hes.We insert an edge e ∈ E between every two nodes that are in 
on�i
t with ea
hother, i.e.,

1. if two intera
tion mat
hes m and n�represented by verti
es vm and vn�share an endpoint.2. if intera
tion mat
h m is part of sta
king intera
tion mat
h n, we insert anedge between vm and vn.
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For vi ∈ VI the weight w(vi) of vertex vi is the weight of the 
orresponding in-tera
tion mat
h. For vs ∈ VS, with vs representing intera
tion mat
hes y0, . . . , ymand sta
king intera
tion mat
hes z0, . . . , zn, the node weight is the sum of theweights of all the (sta
king) intera
tion mat
hes, i.e., we have

w(vs) =
m∑

i=0

w(yi) +
n∑

j=0

w(zj) .

Lemma 4.5. An independent set of maximum weight in the independent setgraph MIS 
orresponds to the best sta
ked stru
tural 
ompletion of L.Proof. The equivalen
e follows dire
tly from the 
onstru
tion of MIS and thede�nition of an independent set.Constru
ting a feasible solution in our augmented model by solving an inde-pendent set problem is the last resort that we have, be
ause this 
omputationis NP-
omplete [49℄. Determining a feasible solution in the initial, i.e., sta
klessmodel 
ould also be redu
ed to MIS, but in this 
ase we 
an redu
e it to max-weight mat
hing 
omputations instead. The question is whether this holds alsotrue in the 
ase of sta
king s
ores, i.e., whether there exists an algorithm run-ning in polynomial time that 
omputes the maximal sta
king 
ompletion for analignment L. The other option is to prove that the problem is indeed NP-hard.



Chapter
5 Computational Results

It's been a hard day's night,and I've been working like a dog.The Beatles(A Hard Day's Night)
This 
hapter des
ribes the 
omputational experiments that we performed withour prototypi
al implementations of the models from Chap. 4. We �rst presenthow we generate the input graph for our model, and subsequently show how wes
ore the edges of the input graph. Se
tions 5.3 and 5.4 
ontain the 
omputationalexperiments using the exa
t and heuristi
 approa
h to multiple sequen
e-stru
turealignments. Se
tion 5.5 lists the results for 
omputing pairwise alignments us-ing the bundle method. Furthermore, we give results on running the Lagrangeapproa
h within a bran
h-and-bound framework to verify the optimality of thesolutions. Se
tions 5.3 and 5.4 are published as parts of [8℄ and [7℄.

5.1 Constru
ting the Input Graph
5.1.1 Generation of Alignment EdgesFor sake of simpli
ity, we will restri
t ourselves to the des
ription of the pairwise
ase. The same ideas apply to the multiple 
ase as well.We use di�erent strategies for the generation of alignment edges. The �rstnatural 
hoi
e is to insert all possible alignment edges between the two sequen
es,yielding the 
omplete bipartite graph as shown on the left side of Fig. 5.1. Everynu
leotide of the �rst sequen
e 
an be mapped onto every nu
leotide of the se
ondsequen
e.Most of these edges, however, will not be part of any optimal or near-optimalsequen
e-stru
ture alignment. We therefore follow the strategy that we alreadyemployed in previous work [4; 6; 5; 95℄: we generate a set of reasonable alignmentedges by 
omputing a 
onventional sequen
e alignment with a�ne gap 
osts andsubsequently insert all alignment edges realized by any suboptimal alignments
oring better than a �xed threshold s below the optimal s
ore.Although we 
annot guarantee that the set of alignment edges always 
ontainsthe edges forming the real multiple stru
tural alignment, e.g., a hand-
uratedalignment like an Rfam seed alignment, our experiments on the Rfam databaseshow that Rfam referen
e alignments 
onsist of alignment edges of small subop-timality. To this end, we randomly extra
ted 10 sequen
es from the seed align-ment of eight random Rfam families (RF00001, RF00005, RF00020, RF00023,
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RF00029, RF00031, RF00059, RF00515) and 
omputed the alignment edges thats
ore at most 40 below the optimal s
ore for all pairwise proje
tions. For all butone family we 
an generate the alignment edges that form the original alignmentat a suboptimality level of 40. For TPP riboswit
hes (RF00059) this level of sub-optimality does not su�
e to 
over all alignment edges. There are six pairwiseproje
tions that miss alignment edges. At a suboptimality level of 90, however,all alignment edges are 
reated.

A C G T CACGTCGCG

GACCG

G C G

G A C C G

A C G T C G C G

G A C C G

A C G T C G C G

G A C C G

A C G T C G C G

G A C C G

(a) (b)

Figure 5.1: Given the two sequen
es on the left, we either 
reate the 
omplete bipartitegraph (a), or thin out the graph using an available bound or suboptimalmat
hes (b).Another way to generate alignment edges is to start from the 
omplete bi-partite graph and subsequently delete alignment edges that 
annot be part ofthe optimal�with respe
t to our obje
tive fun
tion�alignment. Given two se-quen
es s1 and s2, we start from a s
oring matrix ∆ with ∆(i, j) being the s
oreof alignment edge a = (s1
i , s

2
j). Then, we 
ompute the maximum s
ore S(A) ofan alignment A realizing alignment edge a by summing up the s
ore of a andthe sum of the pre�x and su�x alignment indu
ed by a. Given a valid sequen
e-stru
ture alignment Ass of s
ore S(Ass), we 
an safely drop alignment edge aif S(A) < S(Ass), be
ause alignment a 
annot be part of an optimal sequen
e-stru
ture alignment. We 
ompute a valid solution Ass of the sequen
e-stru
turealignment problem by running our Lagrange approa
h with a limited number ofiterations or by simply 
omputing a traditional sequen
e alignment and addingthe s
ores of 
onserved intera
tion mat
hes afterwards.In our experiments we resort to the generation of alignment edges using sub-optimal sequen
e mat
hes, be
ause it needs less 
omputation time while the per-forman
e is 
omparable to the se
ond pro
edure des
ribed above.

5.1.2 Generation of Intera
tion EdgesThe generation of intera
tion edges re�e
ts the knowledge that we have aboutthe stru
tural properties of the sequen
es. If we do not want to 
onstrain thestru
ture in any way, then we simply insert an intera
tion edge between anytwo nu
leotides that 
an form hydrogen bonds. If we have, however, stru
turalinformation for one of the sequen
es available, for example from the ComparativeRNA web (CRW) site [19℄, then we insert only those intera
tion edges that formthe se
ondary stru
ture.The LaRA default setting lies in between: we 
ompute the partition fun
tionfor the sequen
e (see Se
t. 1.2) and derive base pairing probabilities for ea
h pair
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of nu
leotides using M
Caskill's algorithm [105℄. We then insert an intera
tionedge between every pair of nu
leotides whose base pairing probability is higherthan a minimum value pmin. A typi
al value for pmin is 0.003.
5.2 Lagrange-Spe
i�
 ParametersIn this se
tion we des
ribe the s
ores that we use throughout our experiments.Additionally, we brie�y spe
ify Lagrange-spe
i�
 parameters that have signi�-
ant impa
t on the 
onvergen
e of the Lagrange solution pro
ess. We resort tosubgradient optimization for adapting the Lagrangian multipliers.
5.2.1 S
oresSequen
e S
ores. We used di�erent s
hemes for s
oring the alignment edges.First, in our theoreti
al 
ontributions [6; 8℄ we employed ad-ho
 
hosen matri
es,like s
oring mat
hes and mismat
hes by 4 and 1 or by 2 and 1. Subsequently, weresort to more elaborate s
oring systems like the RIBOSUM matri
es [83℄ thatwere derived along the lines of ribosomal gold-standard alignments. The authors
ount the number of o

urren
es of the respe
tive mat
hes and derive log-oddss
ores by 
omparing them to a uniformly distributed ba
kground model.We provide a parameter τ by whi
h the user is able to s
ale the original s
oringmatrix values. If we do not want to put too mu
h emphasis on the sequen
e, then
τ will be very small. If sequen
e is important, like in the 
ase of riboswit
hes,then one is able to s
ale the s
ores a

ordingly. By default, the value of τ is 1.In our experiments we use the Ribosum65 matrix as our default s
oring s
heme.
Stru
ture S
ores. The s
oring system for the intera
tion edges is based onbase pair probability matri
es (BPP s
oring in short). It transforms the prob-abilities into the additive log-s
ores in spirit of PMComp [67℄. More pre
isely,given the probability pij that nu
leotides i and j pair, the s
ore sij reads

sij = lg

(
pij

pmin)

where lg is the natural logarithm and pmin is the smallest probability that we
onsider.
Sta
king S
ores. The s
ore for the sta
king weights w[i,i+1|j−1,j] are derivedalong the lines of the 
onditional sta
king probabilities [15℄. The value pi,i+1|j−1,j =
P [(i+1, j−1)|(i, j)] is the probability that nu
leotides (i+1, j−1) form hydrogenbonds given that (i, j) already pair. Then, the weight reads

w[i,i+1|j−1,j] = lg

(
pi,i+1|j−1,j

pmin )

.We set the value of pmin to the same value as for the stru
ture s
ores.
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5.2.2 Other Program-Spe
i�
 ParametersThere are several other parameters that in�uen
e the performan
e of the Lagrangesolution pro
ess. First, the number of Lagrange iterations spe
i�es how often theLagrange multipliers 
an be adapted: the higher the number of iterations, thebetter the bounds are in general. Se
ond, we need to spe
ify the parameter
µ whi
h a
ts as a regulating fa
tor in the 
omputation of the step size γ (seeSe
t. 4.1 for details). Finally, a 
ommon feature to all implementations of thesubgradient solver is a number n of non-de
reasing rounds: if the value of thebest upper bound does not de
rease within n iterations, we halve the value of
µ. This leads to smaller step sizes γ. In pra
ti
e, we observe that the smallerstep sizes support the 
onvergen
e of the solution pro
ess if the algorithm gotstu
k at a 
ertain point, i.e., if the upper bound does not de
rease within severaliterations.
5.3 Results for the Exa
t Multiple CasemLARA (multiple Lagrangian relaxed alignments) is our prototypi
al implemen-tation of the formulation for multiple stru
tural alignments presented in Chap. 4.The algorithm is easy to implement and 
omprises only a 
ouple of hundred linesof 
ode. For the 
omputation of the lower bound, however, we use the mat
hingroutines from the LEDA library [91℄.In the following, we shall give a proof-of-
on
ept of our approa
h by runningexperiments on real data of moderate size, setting all gap 
osts to zero, andwe assign s
ores of 4 and 1 to mat
hes and mismat
hes, respe
tively. We setthe s
aling parameter τ to 1.0. The mLARA software pa
kage dire
tly uses thevalues from the dotplot �les�
reated by the RNAfold program�as the inputto the log-odds transformation des
ribed in Se
t. 5.2.1.From the Rfam database [53℄ we downloaded sequen
es that belong to thefamilies of ribosomal L19 leader proteins, tRNAs, and ribosomal 5S RNAs (RfamIDs: RF00556, RF00005, and RF00001).As a �rst example we take L19 leader protein sequen
es (a

ession numbers:AL935256.1, AE014216.1, and AP006627.1) and 
ompute the optimal multiplealignment given the 
omplete k-partite graph 
ontaining 4106 alignment edges.We �nd a provably optimal solution after 19 hours of 
omputation. There are twointeresting observations: �rst, the optimal solution is found within the �rst 10iterations of the 
omputation, that is, only 70 se
onds after starting the program.mLARA spends the remaining time on proving the optimality of this solution.Se
ond, although we need the 
omplete k-partite graph to ensure optimality,many alignment edges are not very likely to be part of the optimal stru
turalalignment, e.g., edges running from the �rst vertex in the �rst sequen
e to thelast vertex in the se
ond sequen
e. As one 
an see on the left side of Fig. 5.2, thenumber of alignment edges greatly in�uen
es the running time for 
omputing anexa
t multiple stru
tural alignment. We therefore follow the strategy des
ribed



69

0 2000 4000 6000 8000

0
50

10
0

15
0

20
0

25
0

# of alignment edges

ru
nn

in
g 

tim
e 

(s
ec

s)

0 100 200 300

50
10

0
15

0
20

0

iterations

ru
nn

in
g 

tim
e 

(s
ec

s)

Figure 5.2: Typi
al behavior for the multiple 
ase. Left: the time to 
ompute an ex-a
t multiple sequen
e alignment in
reases non-linearly with the number ofalignment edges. Right: the time to 
ompute one single iteration for an in-stan
e 
ontaining 4106 alignment edges in
reases rapidly with the numberof iterations. This is due to the adaption of the Lagrangian multipliers.
in Se
t. 5.1.1 to thin out the graph.We again take the sequen
es from our �rst example and 
ompute the multiplestru
tural alignment based on a redu
ed set of alignment edges. Already a sub-optimality level of 5 su�
es to generate all alignment edges that are part of theprovably optimal solution. The redu
ed number of alignment edges�465 insteadof 4106�brings the overall running time down from 19 hours to 43.35 se
onds.In our experiments we realized that not only the number of alignment edgesin�uen
es the overall 
omputation time. As des
ribed in Se
t. 4 we resort tosubgradient optimization to solve the Lagrangian dual. By iteratively adaptingthe Lagrangian multipliers and 
omputing the multiple sequen
e alignment af-terwards, we observe an unpredi
table in
rease in the running time per iterationover the 
ourse of all iterations. The right side of Fig. 5.2 shows the developmentfor an instan
e of three L19 leader protein sequen
es.As a se
ond experiment, we assess the improvement of the obje
tive fun
tionvalue between heuristi
ally inferred multiple stru
tural alignments [7℄ and prov-ably optimal or near-optimal solutions of the exa
t multiple sequen
e-stru
turemodel. Note that at this stage we are espe
ially interested to what extent heuris-ti
al multiple sequen
e-stru
ture alignments approximate the obje
tive fun
tionvalues of the exa
t sequen
e-stru
ture framework.To this end, we randomly drew 20 instan
es 
ontaining three input sequen
esof either tRNA or ribosomal 5S RNA sequen
es (Rfam IDs: RF00001 andRF00005), resulting in 40 instan
es in total. Using our tool LaRA, whi
h yields
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the best results on the BRAliBase ben
hmark set [7℄, we 
ompute all pairwisealignments of a given instan
e and feed them to the T-Coffee software [109℄to heuristi
ally infer a 
onsisten
y-based multiple stru
tural alignment. Giventhis alignment, we again evaluate it under the sum-of-pair obje
tive fun
tion ofmLARA.Then, we take mLARA and 
ompute the multiple stru
tural alignments. Weallow a maximal 
omputation time of three hours per instan
e. If mLARA doesnot terminate within three hours, we stop the 
omputation and report the bestsolution found so far. We want to stress the fa
t that we use exa
tly the samesettings for both programs, i.e., we use the same s
oring s
heme and generate thesame alignment edges su
h that the results are 
omparable.Table 5.1 shows the obje
tive fun
tion values of the alignments generated byLaRA and mLARA for these 40 instan
es. Note that we provide two di�erentevaluations for LaRA alignments: the �rst 
olumn LaRA sub5 gives the obje
tivefun
tion value at a suboptimality of 5, i.e., exa
tly the set of alignment edges thatwe used for the 
omputation of the sequen
e-stru
ture alignments. T-Coffee,however, additionally inserts potential alignment edges when it heuristi
ally in-fers the multiple alignment. To take the augmented set of alignment edges intoa

ount we again evaluate the LaRA alignment with a suboptimality value of
20, su
h that all alignment edges are 
onsidered. As one 
an see in Tab. 5.1 thedi�eren
e between the two obje
tive fun
tion values is signi�
ant in many 
ases.Generally, mLARA rea
hes higher obje
tive fun
tion values than those 
om-puted by LaRA. There are, however, 12 instan
es where the heuristi
ally inferredalignments yield better obje
tive fun
tion values than mLARA. A 
loser inspe
-tion of those instan
es reveals three main reasons:1. The 
omputation time limit is too tight. Hen
e, mLARA performs only asmall number of iterations, and is therefore not able to adapt the Lagrangianmultipliers a

ordingly.In many instan
es the time spent on one single iteration is not predi
table.The left side of Fig. 5.3 shows the 
omputation time per iteration of tRNAinstan
es #1 and #15 (1174 and 1178 alignment edges, represented by the
ir
les andred squares, respe
tively) from Tab. 5.1. Although the numberof alignment edges di�ers only by four, the 
omputation time per itera-tions varies dramati
ally. Consequently, mLARA performs 259 and only

59 iterations for instan
es #1 and #15.2. The right side of Fig. 5.3 shows the solution pro
ess for 5S instan
e #13 fromTab. 5.1. After 110 iterations mLARA gets stu
k between two solutionsand os
illates between these two (represented by the two parallel lines fromiterations 110-165). From this point on, the algorithm is not able to further
onverge to the global optimal solution.3. The T-Coffee software potentially augments the set of alignment edgeswhen it heuristi
ally builds a multiple stru
tural alignment based on all
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Instan
e LaRA sub5 LaRA sub20 mLARAtRNA #0 1050.88 1051.88 1193.34 (0.94)#1 1091.6 1137.9 1194.33 (0.94)#2 1402.11 1453.81 1453.06 (0.99)#3 1468.2 1468.2 1469.63 (0.98)#4 797.29 907.628 1014.61 (0.83)#5 1153.69 1172.08 1184.89 (0.88)#6 1174.83 1285.38 1299.14 (0.97)#7 1229.24 1267.6 1304.31 (0.98)#8 1710.11 1711.11 1772.04 (1.00)#9 1184.9 1213.68 1193.55 (0.92)#10 1084.26 1148.6 1134.20 0.90)#11 1103.91 1125.58 1043.95 (0.80)#12 1099.66 1119.71 1113.45 (0.91)#13 1329.08 1329.08 1323.94 (0.97)#14 1108.17 1177.21 1254.51 (0.96)#15 1089.84 1293.95 1077.07 (0.88)#16 878.656 955.553 1019.92 (0.88)#17 971.056 1086.05 1133.84 (0.85)#18 1238.3 1238.3 1320.11 (0.99)#19 1254.7 1280.46 1366.26 (0.99)5S #0 1845.66 1888.1 1922.20 (0.96)#1 1809.14 1810.34 2097.22 (0.99)#2 2199.47 2221.18 2259.01 (1.00)#3 2015.68 2034.04 2049.05 (0.98)#4 1641.18 1669 1735.34 (0.92)#5 1718.62 1721.6 1696.58 (0.88)#6 1589.02 1616.35 1682.68 (0.93)#7 1609.94 1695.44 1740.73 (0.90)#8 2052.95 2194.9 1956.62 (0.89)#9 1957.43 2028.3 2107.10 (1.00)#10 1949.51 2048.08 1946.53 (0.93)#11 1547.51 1873.47 1715.54 (0.92)#12 1932.32 1933.32 2023.18 (0.99)#13 2113.55 2197.52 1996.10 (0.86)#14 2218.78 2229.18 2267.25 (0.99)#15 1956.95 1987.45 2064.64 (0.97)#16 2084.55 2086.55 2116.64 (0.99)#17 1716.94 1818.26 1884.92 (0.94)#18 2090.59 2091.59 2171.81 (0.99)#19 2134.05 2183.33 2407.99 (0.99)Table 5.1: The 
omparison between the obje
tive fun
tion values of LaRA andmLARA on 40 randomly generated tRNA and 5S RNA instan
es. ColumnLaRA sub5 gives the mLARA obje
tive fun
tion values at a suboptimal-ity level of 5, whereas LaRA sub20 gives the evaluation at a suboptimalityvalue of 20, i.e., we make sure that all alignment edges that are indu
ed byT-Coffee are 
onsidered. The numbers in bra
kets in 
olumn mLARA givethe level of optimality of the solution. Note that in some 
ases the heuristi
algorithm produ
es better results whi
h is possible due to the time limit andthe fa
t that T-Coffee adds more alignment edges to the graph.
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Figure 5.3: Left: the 
omputation time per iterations os
illates dramati
ally even be-tween instan
es having almost the same number of alignment edges. Thered squares and 
ir
les represent the iterations of tRNA instan
e #15 (1178edges) and #1 (1174 edges) from Tab. 5.1, respe
tively. Right: the solu-tion pro
ess may get stu
k between two solutions and jumps ba
k and forthbetween these two, and therefore does not �nd the global optimal solution.The plot shows the solution pro
ess of the 5S instan
e #13 from Tab. 5.1.
pairwise alignments. This happens, for example, in the 
ase of 5S instan
e#11: mLARA yields a value of 1715.54 with an upper bound of 1868.31.The LaRA alignment, on the other hand, has a value of 1873.47 whi
his only possible, be
ause the set of alignment edges is augmented whileheuristi
ally inferring the multiple alignment.

5.4 Results for the Heuristi
 Multiple CaseThe experiments in Se
t. 5.3 show that exa
t multiple sequen
e-stru
ture align-ments are 
omputationally very expensive. Our aim is, however, to evaluate theapproa
h on a large data set. The appli
ation of mLARA is too expensive for alarge-s
ale 
omparison of various sequen
e-stru
ture alignment programs. Hen
e,we resort to the implementation of the pairwise model whi
h is 
alled LaRA.Building upon the 
onsisten
y-based approa
h that we des
ribed in Se
t. 3.2.2we infer multiple sequen
e-stru
ture alignments based on the pairwise alignmentinformation. We also give the results for the progressive alignment version of ourapproa
h whi
h is 
alled pLaRA (short for progressive LaRA). Additionally, wereport on the performan
e of the extended model that we des
ribe in Se
t. 4.3.The 
onsisten
y-based and progressive variant of the model are 
alled sLaRA(sta
ked LaRA) and psLaRA (progressive sta
ked LaRA).
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5.4.1 BRAliBase 2.1The BRAliBase data set1 [149; 150℄, was 
reated with the obje
tive to providereferen
e alignments for the fair 
omparison of di�erent sequen
e and sequen
e-stru
ture alignment programs. We 
ompare our implementations to other 
urrentprograms on this data set.BRAliBase 2.1 referen
e alignments are based on the manually 
urated seedalignments of the Rfam 7.0 database [53℄. Out of the pool of all n
RNA familiesthat have more than 50 sequen
es in their seed alignment, test instan
es of theBRAliBase were 
onstru
ted the following way: all pairwise proje
tions that arewithin a 
ertain average pairwise sequen
e identity (APSI) range form the poolof pairwise 
andidate alignments. Then, single sequen
es are randomly deletedfrom the sequen
e pool and added to a 
andidate alignment, until the 
andidatealignment holds the desired number of sequen
es. If the alignment satis�es thesequen
e and stru
ture 
onservation 
onstraints, i.e., the APSI of the generatedinstan
es has to be within a prede�ned range and the stru
tural 
onservationhas to be higher than a given threshold, the instan
e is a

epted. Otherwise,the algorithm restores the sequen
e pool and starts over again. If we look at theproblem through a graph-theoreti
 lens, we represent ea
h sequen
e from the seedalignment by a vertex, and we 
onne
t two verti
es by an edge if the APSI valueof these two sequen
es is within a 
ertain range. Creating input instan
es of size
k 
orresponds to �nding 
liques of size k in that graph.TheBRAliBase data set is divided into alignment instan
es 
ontaining either
2, 3, 5, 7, 10 or 15 sequen
es. In the following, we sti
k to the BRAliBasenaming 
onvention and refer to the sets of instan
es by k2, k3, k5, k7, k10,and k15, depending on the number of sequen
es per instan
e. BRAliBase 2.1
ontains 36 di�erent RNA families, ranging from approximately 26 nu
leotideslong Histone 3'UTR stem-loop motifs to about 300 nu
leotides long eukaryoti
SRP RNAs. The interested reader is referred to [150℄ for a detailed listing of allinstan
es.Unfortunately, the way the input instan
es are 
reated leads to an over repre-sentation of 
ertain RNA families within BRAliBase. The data set 
ontains ahigher number of instan
es from families that have more sequen
es in their seedalignments. Consequently, a few n
RNA families represent the major instan
esof all BRAliBase instan
es: tRNA instan
es, for example, 
onstitute 56% of allpairwise instan
es. This per
entage rises to 66%, 73%, 75%, 74%, and 80% for
k3, k5, k7, k10, and k15 instan
es, respe
tively.The primary reason to perform our experiments on the BRAliBase data setis to evaluate the performan
e on an independent ben
hmark set that we did not
ompile ourselves. There are various re
ent papers, for example [81; 132℄, wherethe authors 
laim to des
ribe the best available sequen
e-stru
ture alignmentprogram. They 
ompile their own data sets, whi
h are all based on data from theRfam database, and on these data sets their programs perform best. We doubt1 Available at http://www.biophys.uni-duesseldorf.de/bralibase/.
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that this is the right way to go. There should be a standard ben
hmark databasefor RNA stru
tural alignments in the spirit of BAliBase or Prefab for aminoa
ids, where various alignment programs 
an be ben
hmarked against ea
h otherin a sound manner. In our opinion the BRAliBase is a �rst step in the rightdire
tion.
5.4.2 Assessment S
oresThe quality assessment of a stru
tural alignment is a non-trivial task. If reliable�gold-standard� alignments are available, the 
omparison on the sequen
e andstru
ture level is su�
ient for a sound 
omparison. In the following, we des
ribeassessment s
ores that we use in our 
omparison.
Sequen
e assessment. In [135℄ the authors introdu
ed the sum-of-pairs s
ore,or SPS in short, to de�ne the similarity between a test and referen
e alignmenton the sequen
e level. The main idea is to 
ount the number of aligned residuesof the test alignment that are identi
ally aligned as the referen
e. More formally,given an alignment A = ŝ0, . . . , ŝn−1 of n sequen
es with |A| = m, then we havean indi
ator variable pkrs with pkrs = 1 if the residue ŝk

r and ŝk
s are aligned as inthe referen
e alignment, and 0 otherwise. Then, we de�ne sSPS as

sSPS =

∑m−1
k=0

∑n−2
r=0

∑n−1
s=r+1 pkrs

∑m−1
i=0

(
n

2

)A value of 0 indi
ates that not a single 
olumn is 
orre
tly aligned with respe
tto the referen
e alignment, whereas a value of 1 indi
ates perfe
t agreement withthe referen
e alignment.The program 
ompalign developed by Sean Eddy, that is part of the SQUIDlibrary [42℄, represents an advan
ement by 
onsidering not only the aligned residues,but also what residues are aligned to a gap 
hara
ter. 
ompalign builds thefoundation for the program 
ompalignp that is being used in the BRAliBaseben
hmark set. We use 
ompalign in the following to ben
hmark the sequen
ea

ura
y.
Stru
ture assessment. For some n
RNA families manually 
urated multiplealignments exist that are annotated with published stru
tures. Prominent exam-ples are tRNA, ribosomal 5S RNA, or the TPP riboswit
hes. If referen
e stru
-tures are available, then one 
ompares predi
ted paired nu
leotides to the anno-tation of the referen
e alignment. The Matthew's 
orrelation 
oe�
ient (MCC)assesses the stru
tural similarity. We de�ne the MCC s
ore sMCC as

sMCC =
TP · FN− FN · FP

√

(TN + FN)(TP+ FN)(TN + FP)(TP+ FP)with TP, FN, FP, and TN being the number of true positives, false negatives,false positives, and true negatives, respe
tively.
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The value of sMCC is bounded by −1 and 1, with a sMCC = 1 being thebest result: every pairing that is predi
ted is a 
orre
t intera
tion, and no falsepairing is predi
ted. On the other hand, a value of −1 indi
ates that not asingle intera
tion was 
orre
tly predi
ted, and the number of wrongly predi
tedintera
tions is maximal.In reality, however, the number of reliably annotated gold-standard alignmentsis limited. This holds also true for the Rfam database, where for parts of then
RNA families the stru
tural annotation was 
reated using 
onsensus foldingalgorithms like RNAalifold [68℄ or Pfold [84℄. Therefore, the 
reators of theBRAliBase ben
hmark set 
hose the s
ore stru
tural 
onservation index [143℄,or SCI in short, to assess the stru
tural quality of an alignment.The SCI gives the degree of 
onservation of a 
onsensus stru
ture indu
edby a multiple alignment of n sequen
es in relation to the minimum free energystru
tures of the n single sequen
es. Let Ec be the energy value of the 
onsensusstru
ture indu
ed by the alignment, and let E0, . . . , En−1 be the minimum freeenergy values of the n aligned sequen
es with Ē being the arithmeti
 mean of the

n values. Then, we de�ne the SCI as
SCI =

Ec

Ē
.A SCI value of ≈ 1 indi
ates high stru
tural 
onservation, whereas a valuearound 0 indi
ates no stru
tural 
onservation at all. Note that the SCI s
ore 
anbe greater than 1, sin
e 
ovarian
e information is additionally rewarded duringthe 
omputation of the 
onsensus stru
ture. Furthermore, the 
omputation ofthe 
onsensus stru
ture is done via the RNAalifold program whi
h is sus
ep-tible to 
hanges in the alignment. This espe
ially means that a higher Com-palign value does not ne
essarily imply a higher SCI s
ore, e.g., running LaRAwith default parameter settings for two SECIS instan
es from BRAliBase(SECIS.apsi-45.s
i-68.no-1.raw.fa and SECIS.apsi-45.s
i-79.no-1.raw.fa) we getCompalign s
ores of 0.45 and 0.44. The 
orresponding SCI s
ores are 0.26 and

0.58, respe
tively. Setting the LaRA parameters to optimized values, the Com-palign s
ores in
rease to 0.60 and 0.48. The 
orresponding SCI values, however,drop to 0.14 and 0.00.In the following experiments we use the program s
if from the BRAliBasewebsite to assess the SCI of the 
omputed alignments.
5.4.3 ResultsParameter Training. There are three important LaRA parameters: gap openand extension penalties γo and γe, and the parameter τ that represents the s
alingfa
tor for the sequen
e s
ores. In [5; 7℄ we used rather ad-ho
 values that tried tomimi
 the parameter settings within the PMComp software pa
kage. This leadsto initial values of −6, −2, and 0.05 for γo, γe, and τ .
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For the �nal evaluation in this thesis, however, we took the data set that theauthors of [96℄ assembled and experimentally evaluated di�erent parameter sets.The parameter setting that yielded the highest MCC s
ores were 
hosen as the�nal ones. A

ordingly, we set the gap open and extension penalty, and τ to −12,

−5, and 1.0 for the following evaluations.sLaRA and psLaRA, the implementations that in
orporate sta
king ener-gies, have two additional parameters: the stru
ture and sta
king s
aling fa
tors
σs and σss. During the initial test phase it turned out that�similar to the se-quen
e s
aling fa
tor τ�we have to s
ale the stru
ture and sta
king 
ontributionto balan
e these two s
ores. The �nal parameter set 
onsists of −10,−5,1.0,0.6,and 0.9 for γo,γe,τ ,σs, and σss, making the sta
king 
ontributions more importantthan the stru
ture s
ores.It has to be remarked, however, that several di�erent parameter sets yieldalmost the same performan
e on the data set from [96℄, and the values of theparameters di�er signi�
antly. The values for the gap penalties, for instan
e, varybetween −10 and −20. Therefore, it is likely that the performan
e of sLaRAand psLaRA 
an be further improved by examining the various parameter setson di�erent data sets in an automated manner.Finally, we set the number of overall iterations to 500 for all implementations.If the upper bound does not improve within 50 iterations, we halve the value ofparameter µ. Table 5.2 gives an overview of the parameters that we use for the
omputation of the alignments throughout the rest of the thesis.

Paramter LaRa sLaRAsuboptimality for alignment edge generation 40 40gap open penalty γo −12.0 −10.0gap extend penalty γe −5.0 −4.0sequen
e 
ontribution τ 1.0 1.0sequen
e s
oring matrix RIBOSUM65 RIBOSUM65stru
ture 
ontribution σs 1.0 0.6sta
king 
ontribution σss � 0.9stru
ture s
oring system bpp bppminimal probability 
onsidered 0.003 0.003Lagrange iterations 500 500subgradient parameter µ 1.0 1.0halve µ after n non-de
reasing iterations 50 50T-Coffee version 4.70 4.70

Table 5.2: A summary of the parameters that we use for our program runs. We appliedthe same parameters from LaRA for pLaRA, and the parameter set ofsLaRA for psLaRA. The stru
ture s
oring system bpp refers to stru
tures
oring based on base pair probabilities.
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Figure 5.4: All 2251 BRAliBase k2 (left side) or 123 BRAliBase k15 (right side)instan
es of low pairwise sequen
e identity where ea
h bla
k 
ir
le or redsquare 
orresponds to one instan
e. The x-axis gives the SCI s
ore, whereasthe y-axis 
odes the stru
ture-normalized s
ore. The red squares mark theoutlier instan
es.
S
ore vs. Stru
tural Conservation. We were interested in to what extentthe a

ura
y of our alignments 
orrelates with the obje
tive fun
tion value of ourmodel, i.e., the sum of sequen
e 
ontributions plus the stru
ture s
ores based onthe base pair probabilities. Sin
e the s
ore depends on the length of the inputsequen
es, we normalized the s
ore with respe
t to the number of paired basesin the minimum free energy stru
ture. Note that we did not use the stru
ture,but only the number of base pairs in the stru
ture to get a rough estimate of howmany pairings we expe
t in the stru
ture. Then, let p̂ and n be the LaRA s
oreand the number of base pairs in the MFE stru
ture, then the normalized s
ore isgiven by p̂

n
.The s
ores of 
onserved stru
tural intera
tions build the lion's share of the�nal LaRA s
ore, i.e., the higher the normalized s
ore is, the better is the stru
-tural 
onservation. Consequently, there should be a 
orrelation between the nor-malized s
ore and the SCI s
ore, be
ause the more stru
tural similarities thealignment 
aptures, the better should the 
onsensus folding perform during the
omputation of the SCI s
ore. Figure 5.4 shows the results for all k2 (left side)and k15 (right side) instan
es.Most of the k2 instan
es behave as expe
ted: the higher the normalized s
oreis, the better is the SCI value. There is, however, a group of eight outliers thathave a high SCI s
ore, but a very low normalized s
ore. A 
loser inspe
tionrevealed that the input sequen
es di�er tremendously in length, for example oneIntron_gpII instan
e 
ontains sequen
es of length 78 and 142. Although the SCI
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s
ore is relatively good, the normalized s
ore is de
reased by the high number of(ne
essary) gaps.In the 
ase of the k15 instan
es, we are fa
ing a di�erent situation. Again,most of the input instan
es behave as expe
ted, but now we have a group ofinstan
es that show a relatively low SCI s
ore together with a high normalizeds
ore. It turns out that all these instan
es are either SRP RNAs or SECIS el-ements. In [7℄ we already showed that s
oring both the sequen
e and stru
tureusing RIBOSUM matri
es yields better results for SRP RNAs and SECIS ele-ments.
5.4.3.1 Comparison to Other ProgramsTable 5.3 lists the programs that we 
ompare in this se
tion, together with theirrespe
tive program 
alls and the program version we used in our experiments.Program Model Complexity CiteLaRA graph-based O(n2) [7; 8℄sLaRA graph-based O(n2) Se
t. 4.3pLaRA graph-based O(n2) Se
t. 3.2.1psLaRA graph-based O(n2) Se
t. 3.2.1FoldalignM Sanko� O(n4) [137℄MURLET Sanko� O(n4) [81℄MARNA edit-distan
e O(n4) [127℄MXSCARNA annotated sequen
e O(n2) [133℄Stral annotated sequen
e O(n2) [30℄Mafft sequen
e-based O(n2) [78℄

Program Program Call VersionLaRA lara -i <input_file> 1.3.2sLaRA slara -i <input_file> 1.0pLaRA plara -i <input_file> 1.0psLaRA pslara -i <input_file> 1.0FoldalignM java FoldalignM_M
Caskill <input_file> 1.0.1MURLET murlet <input_file> 1.0MARNA marna.pl -g 2 -n 3 <input_file> 1.0MXSCARNA s
arna -
lustalw <input_file> 1.3Stral stral -i <input_file> 0.5.4Mafft mafft <input_file> 5.861

Table 5.3: The upper table lists the programs that we used in our 
omputational ex-periments. We give the a
tual program 
alls in the lower table.
In the following, we give a short des
ription of ea
h program, Chap. 3 providesa more detailed overview.
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There are two re
ent implementations of the original PMComp software: Lo-
ARNA [148℄ and FoldalignM [137℄. Both take base pair probability matri
esas their input, and using the re
ursions from [124; 3℄ they 
ompute the nestedsubstru
ture that maximizes the sum of the probabilities plus a sequen
e s
ore.Sin
e Lo
ARNA �lters the base pair probability matri
es to in
rease its e�-
ien
y, we only 
onsidered FoldalignM, be
ause it 
onsiders all probabilitiesand relies on the same re
ursions like Lo
ARNA.FoldalignM performs an alignment and 
lustering of the input sequen
esat the same time. In some instan
es, FoldalignM splits the input sequen
esinto two 
lusters. Sin
e the s
ores that we use depend on the number of inputsequen
es, we dropped those FoldalignM alignments that did not 
ontain allsequen
es in the �nal alignment. This leads to 29, 30, 11, 15, 9, and 6 instan
esthat we did not 
onsider in the 
ase of k2, k3, k5, k7, k10, and k15 instan
es.MURLET is another tool that builds upon the Sanko� re
ursions. It addi-tionally applies heuristi
s to redu
e the DP sear
h, namely the strip and the skipapproximations. The strip approximation limits possible alignment positions to aband of length δ around an initial alignment. The initial alignment is 
omputedusing pairwise HMMs whi
h is similar in spirit to previous pairwise approa
hes[38℄. The skip approximation limits the number of possible bran
hing pointswithin the Sanko� re
ursions.MARNA is an implementation of the general edit model for RNA stru
turesproposed by Jiang [74℄. There are operations either on the sequen
e level (basemat
h, base mismat
h, and base deletion) or on the stru
ture level (ar
 mat
h,ar
 mismat
h, ar
 breaking, ar
 altering, and ar
 removing), ea
h asso
iated witha 
ertain weight. MARNA aims for the alignment that transforms one stru
tureinto the other, minimizing the overall 
osts for the edit operations. The interestedreader is referred to [74℄ or to Chap. 3 for details.MXSCARNA uses the base pairing matri
es to 
ompute stem fragments,i.e., ungapped parts of heli
es, of sequen
es A and B. It then dis
ards the entiresequen
e information and aligns the stem fragments in a 
onsistent manner. Thealignment is 
onsistent if we align two sta
king stem fragments from sequen
e Ato sta
king fragments in sequen
e B. Subsequently, the aligned stem fragmentsserve as an
hors in a traditional sequen
e alignment.Stral builds upon an idea by Bonhoe�er et al. [16℄ to in
orporate the highestup- and downstream probabilities for ea
h pair of aligned residues and in
orporatethese s
ores into the 
omputation of a traditional sequen
e alignment.Finally, we want to 
ompare the performan
e of the sequen
e-stru
ture align-ment programs to a pure sequen
e-based program. Therefore, we 
hose Mafft,be
ause it performs very well on the established BAliBase [136℄ and PREFAB[11℄ ben
hmark sets. In Figs. 5.5 to 5.10 we show the results of our experimentsbroken down to the di�erent input 
lasses (either k2, k3, k5, k7, k10, or k15)using the Compalign and SCI s
ores as the quality measure. These graphi
s havethe average pairwise sequen
e identity as their x-axis. The upper part of ea
h�gure shows the Compalign performan
e, whereas the lower part gives the re-
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sults with respe
t to the SCI s
ore. We use Lowess regression that we des
ribedin Se
t. 2.4 for the 
omputation of the lines.
5.4.3.2 Comments on the ResultsIn the pairwise 
ase sLaRA is ranked �rst both in terms of the Compalign andthe SCI s
ore. The di�eren
e between sLaRA and LaRA and FoldalignM,that are ranked se
ond with respe
t to the Compalign and SCI s
ore, are, how-ever, not signi�
ant. Taking a look at Fig. 5.5 we re
ognize that the 
urves arealmost the same. The SCI performan
e of sLaRA is better than the perfor-man
e of LaRA: obviously, the in
orporation of sta
king probabilities enhan
esthe stru
tural quality of the alignment. On the data sets with an in
reasing num-ber of input sequen
es, the better pairwise alignment quality does not pay o�.The Compalign performan
e remains almost the same 
ompared to LaRA. In the
ase of the k10 and k15 instan
es LaRA performs slightly better than sLaRA,but again the di�eren
e is not signi�
ant in this 
ase.One has to observe the 
omposition of the k15 input data set: 99 of all 123instan
es are tRNA instan
es. Furthermore, on the left side of Fig. 5.11 we showthe density plot for all pairwise sequen
e identities of these 99 tRNA instan
es.The surprising thing is that about a quarter of all pairwise proje
tions formingthe k15 instan
es have a pairwise sequen
e identity higher than 0.50, the averagepairwise sequen
e identities of the instan
es, however, are smaller than 0.50.Remember that in the pairwise 
ase sLaRA is superior to LaRA with respe
t toboth the Compalign and the SCI s
ore. We are therefore interested whether thisholds true for k2 tRNA instan
es with a sequen
e identity above 0.50. The rightside of Fig. 5.11 shows the Lowess plot for these 780 tRNA instan
es. In these
ases, LaRA performs better than sLaRA and the SCI performan
e is almostidenti
al (plot not shown). Sin
e a quarter of the pairwise k15 alignments areinput instan
es with an identity higher than 0.50, this 
ontributes to the slightlyworse performan
e of sLaRA 
ompared as to LaRA.In the pairwise 
ase, i.e., the k2 instan
es, up to a sequen
e identity of ≈ 42%LaRA and sLaRA show a similar Compalign performan
e, with their respe
-tive 
urves shifted by about 0.1 to the top 
ompared to the Sanko� variantFoldalignM. For the range of ≈ 42 − 50% all programs (even the sequen
e-based Mafft) have 
omparable performan
e (ex
ept for MARNA). With anin
reasing number of input sequen
es per instan
e, espe
ially for the k10 and k15sequen
es, the results 
hange tremendously. LaRA outperforms the other pro-grams, yielding average Compalign s
ores of ≈ 0.9, whereas the other stru
ture-based alignment programs have average s
ores around ≈ 0.55−0.75. This is quiteremarkable, espe
ially 
onsidering that FoldalignM, LaRA, and sLaRA showa similar performan
e in the pairwise 
ase. FoldalignM, however, 
omputesmultiple alignments in a progressive fashion, whereas LaRA and sLaRA 
om-pute all pairwise alignments and leave it to T-Coffee to 
ompute an alignmentthat is highly 
onsistent with all pairwise alignments. With an in
reasing number
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Figure 5.5: Results on all low homology BRAliBase instan
es 
ontaining 2 input se-quen
es. The x- and y-axis give the average pairwise sequen
e identity(APSI) and the Compalign s
ore (upper plot) or the SCI s
ore (lower plot).The legend of the upper plot also applies to the lower one.
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Figure 5.6: Results on all low homology BRAliBase instan
es 
ontaining 3 input se-quen
es. The x- and y-axis give the average pairwise sequen
e identity(APSI) and the Compalign s
ore (upper plot) or the SCI s
ore (lower plot).The legend of the upper plot also applies to the lower one.
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Figure 5.7: Results on all low homology BRAliBase instan
es 
ontaining 5 input se-quen
es. The x- and y-axis give the average pairwise sequen
e identity(APSI) and the Compalign s
ore (upper plot) or the SCI s
ore (lower plot).The legend of the upper plot also applies to the lower one.
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Figure 5.8: Results on all low homology BRAliBase instan
es 
ontaining 7 input se-quen
es. The x- and y-axis give the average pairwise sequen
e identity(APSI) and the Compalign s
ore (upper plot) or the SCI s
ore (lower plot).The legend of the upper plot also applies to the lower one.
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Figure 5.9: Results on all low homology BRAliBase instan
es 
ontaining 10 inputsequen
es. The x- and y-axis give the average pairwise sequen
e identity(APSI) and the Compalign s
ore (upper plot) or the SCI s
ore (lower plot).The legend of the upper plot also applies to the lower one.
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Figure 5.10: Results on all low homology BRAliBase instan
es 
ontaining 15 inputsequen
es. The x- and y-axis give the average pairwise sequen
e identity(APSI) and the Compalign s
ore (upper plot) or the SCI s
ore (lower plot).The legend of the upper plot also applies to the lower one.
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Figure 5.11: Left side: the distribution of pairwise sequen
e identity values of all k15tRNA instan
es having an APSI value smaller than 0.50. Right side: 
om-parison between LaRA and sLaRA on all 780 k2 tRNA instan
es thatshow a pairwise sequen
e identity greater than 0.50.
of input sequen
es, the 
onsisten
y-based approa
h generates better alignmentsthan the progressive methods (at least in our experimental setup). This holdsalso true for the progressive variants of our models, pLaRA and psLaRA. Theirperforman
e�relative to LaRA and sLaRA�be
omes worse with an in
reasingnumber of input sequen
es.Another astonishing observation is the performan
e of Mafft, a sequen
e-based program. The k2 and k3 instan
es show a 
omparable performan
e toall the other sequen
e-stru
ture alignment programs for instan
es above ≈ 42%,whi
h is already surprising. With a growing number of input instan
es, theperforman
e of Mafft be
omes even better. In the 
ase of 15 input instan
es,the program yields�on average�the se
ond best results (behind the variousLaRA implementations), outperforming even FoldalignM and Stral whi
hin
orporate stru
tural information. The 
orresponding SCI plots, however, showthat the stru
tural features of these instan
es are not 
onserved at all, leading tolow SCI s
ores. In the 
ase of FoldalignM, the situation is exa
tly vi
e versa:the Compalign s
ores are low, whereas the SCI s
ores are relatively high whi
hmeans that the heli
al regions�in 
ontrast to the loop regions�are 
orre
tlyaligned.The 
omparison between FoldalignM and pLaRA shows that pLaRA per-forms 
onsistently better than FoldalignM on the various input data sets. Thetwo programs optimize the same obje
tive fun
tion by maximizing the sequen
eand stru
ture s
ore and 
ompute multiple alignments in a progressive fashion.There are, however, two important di�eren
es: pLaRA and FoldalignM usedi�erent parameter sets, and as the authors of [9℄ show, the 
onstru
tion of the
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guide tree is of great importan
e for the overall result. In the 
urrent implementa-tion of pLaRA and psLaRA we build the guide tree by 
omputing pure sequen
e-based alignments using the RIBOSUM sequen
e s
ores. We performed varioustests with alternative approa
hes, e.g., 
omputing sequen
e-stru
ture alignmentswith a low number of iterations, but surprisingly it turns out that the quality ofthe alignments does not in
rease if one spends more time on the 
onstru
tion ofthe guide tree.Taking a look at the result plots one immediately re
ognizes the bad per-forman
e of the MARNA software. For the �nal evaluations in this thesis, wedouble-
he
ked that we did not 
hange any parameters to run the software onthe BRAliBase data set with the original settings. In [30℄ the authors per-form a 
omparison of sequen
e-stru
ture alignments on the original BRAliBase
ompilation from [48℄. They show that the performan
e of MARNA is 
ompa-rable to the one of 
lustalW even if the APSI is smaller than 0.50. There aretwo possible reasons: �rst, MARNA builds upon the general edit-operations forRNA stru
tures and uses �xed stru
tural information (either a �xed stru
ture orthe shape of the sequen
e) whi
h ultimately means that the alignment qualitygreatly depends on single MFE stru
tures. If these stru
tures are wrong, thenthe algorithm is mislead. Se
ond, the 
ommand to exe
ute T-Coffee with theMARNA 
ompiled library reads
system("t_
offee -in=L
offee.lib,M
lustalw_pair");whi
h means that, in addition to the library �le 
offee.lib that MARNA 
re-ates, T-Coffee uses a se
ond library based on 
lustalW alignments. This isunfortunate, however, sin
e the 
lustalW information seems to blur the stru
-tural information of MARNA. Moreover, a 
loser look into the MARNA library�le shows that almost all weights in the library are in the range between 95 and
100. This does not allow a dis
rimination between sta
ked and unsta
ked regions,introdu
ing additional di�
ulties for T-Coffee to assemble a proper alignment.Hen
e, parameter training on a re
ent Rfam data set, like the data set 
ompiledfor theMASTR paper, dropping the 
lustalW information, and setting properlibrary weights might enhan
e the overall quality of the MARNA alignments.During our 
omputational experiments we evaluated two di�erent modes forthe generation of libraries. We either write the entire alignment into the library�le, i.e., both the loop and the sta
ked regions, or the sta
ked regions alone.The reasoning for supplying only sta
ked regions is that these should serve asan
hor regions, and T-Coffee should perform its 
onsisten
y-based ansatz onthe nu
leotide level. If the sequen
e 
onservation in the loop regions is highenough, this works well as we 
ould, for example, observe with sequen
es fromthe ITS2 database [153℄. Libraries spe
ifying only the sta
ked regions produ
edbetter alignments in the 
ase of ITS2 sequen
es. In general, however, due to thelow sequen
e 
onservation of the input sequen
es T-Coffee introdu
es too manygaps into the loop regions whi
h lowers the overall alignment quality.
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Se
ond, we observe signi�
ant di�eren
es in the performan
e of various T-Coffee releases. For our 
omputational experiments in Chap. 5 we use theversion 4.70 that we originally used for our 
omputational study in [7℄. Sin
e therelease of 4.70 in November 2006, there have been several new program versions,but these releases show inferior performan
e 
ompared to release 4.70.

5.4.3.3 Friedman TestsIn Chap. 2.4 we des
ribed the Friedman testing pro
edure whi
h 
ompares multi-ple samples without assuming anything about the distribution of the input data.In our 
ase we have the results of various programs and want to 
ompare theirperforman
e on the BRAliBase input sets. The null hypothesis of the Friedmantest is that there is no signi�
ant di�eren
e between the various programs. In the
ase the null hypothesis is reje
ted, i.e., there are signi�
ant di�eren
es betweenvarious groups, one has to perform pairwise Wil
oxon signed-rank tests to de-te
t signi�
ant di�eren
es between the programs. To limit the hassle of multipletesting, we perform the Wil
oxon test only between the program that is ranked�rst and the remaining programs. We perform all the tests with a signi�
an
elevel of 0.05, and we 
orre
t for the multiple Wil
oxon tests using the Bonferroni
orre
tion, i.e., we set the p-value to 0.05
k

with k being the number of the testedprograms.Table 5.4 lists the results of the testing pro
edure for both the Compalign andthe SCI s
ores on all six data sets of the BRAliBase.
5.4.3.4 Comparison of the Running TimesWe 
ompared the programs tested on the same 
omputing server with an IntelXeon CPU running at 3.2 GHz, 3.5 GB RAM, and Linux kernel version 2.6.16.It turned out that memory requirement was not an issue, but the 
omputationtime instead. Espe
ially MARNA s
ales in O(n4), whi
h makes the alignment oflonger sequen
es (for example the SRP instan
es of BRAliBase) rather time-
onsuming. This, however, is not the 
ase with LaRA and Foldalign, sin
ethese two programs have running times in O(n2). To evaluate the time 
on-sumption within reasonable time, we therefore set a time limit of 20 minutes perinstan
e. If the 
omputation was not �nished within 20 minutes, the pro
esswas killed and we took 20 minutes as the running time. In Table 5.5 we list thenumber of instan
es that the programs were not able to align within 20 minutes.We were espe
ially interested in how the running times of the programs thatuse stru
ture information s
aled with respe
t to the number of the input se-quen
es. Foldalign, as a progressive approa
h, 
omputes (n − 1) pairwisealignments given n input sequen
es. MARNA and LaRA, however, 
ompute all
n(n−1)

2
pairwise alignments. Table 5.6 shows the exe
ution time of all programson all k2, k3, k5, k7, k10, and k15 instan
es. As one 
an see, with an in
reasingnumber of input sequen
es, a progressive alignment strategy pays o� 
omparedto the 
omputation of all pairwise alignments.
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k2 k3 k5Program SPS SCI SPS SCI SPS SCILaRA 2 3 1

(3−10) 4 1
(3−10) 2sLaRA 1

(3−8)
1

(3−8) 2 2 2 1
(4−10)pLaRA − − 3 3 5 3psLaRA − − 6 1

(6−10) 7 4FoldalignM 4 2 9 5 9 5MURLET 5 6 5 7 4 7MARNA 8 8 10 10 10 10MXSCARNA 3 4 4 6 3 6Stral 7 5 8 8 8 9Mafft 6 7 7 9 6 8

k7 k10 k15Program SPS SCI SPS SCI SPS SCILaRA 1
(3−10)

1
(3−10)

1
(3−10)

1
(3−10)

1
(3−10)

1
(3−10)sLaRA 2 2 2 2 2 2pLaRA 5 3 6 3 6 3psLaRA 7 4 7 5 7 4FoldalignM 9 5 9 4 9 5MURLET 3 7 3 6 3 8MARNA 10 10 10 10 10 10MXSCARNA 4 6 4 7 4 7Stral 8 9 8 9 8 9Mafft 6 8 5 8 5 6

Table 5.4: Results of the Friedman test for the Compalign and SCI s
ores. The p-valuefor the test is 0.05. For the programs with the highest rank-sum, i.e., theprograms that are ranked �rst, we perform pairwise Wil
oxon signed-ranktests: the supers
ript numbers denote the ranks of the programs to whi
hsigni�
ant di�eren
es exist.
Table 5.6 shows that the running time of MURLET is very high. This is quitein 
ontrast to what the authors of the 
orresponding paper [81℄ 
laim, namelythe development of a fast and pra
ti
al variant of the Sanko� algorithm. Takinga 
loser look at the paper, one re
ognizes that they performed their test on aself-assembled data set from the re
ent release of the Rfam data base 
omprisingalignment instan
es above an average pairwise sequen
e identity of 0.45. Figure 5of their paper shows the redu
tion of memory and time 
onsumption over theAPSI value for the Hammerhead_3 ribozyme family. The striking aspe
t is thatthe redu
tion sharply drops for the APSI range between 0.55 and 0.60, and thereare no data given for instan
es below an APSI of 0.45. Given the shape of the
urve, we spe
ulate that the 
urve steeply goes up for instan
es below APSI valuesof 0.50 whi
h would explain the high 
omputation time of MURLET.
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Program k2 k3 k5 k7 k10 k15LaRA 0 0 0 0 0 0sLaRA 0 0 0 0 0 0pLaRA 0 0 0 0 0 0psLaRA 0 0 0 0 0 0FoldalignM 0 0 0 0 0 0MURLET 1 25 32 55 28 16MARNA 0 49 23 17 12 6MXSCARNA 0 0 0 0 0 0Stral 0 0 0 0 0 0Mafft 0 0 0 0 0 0

Table 5.5: Number of unsolved instan
es for all input instan
es within a time limit of
20 minutes.

Program k2 k3 k5 k7 k10 k15(2251) (1048) (512) (323) (189) (123)LaRA 3157.74 4400.22 6397.29 17632.74 11399.62 16261.14sLaRA 5234.15 7405.09 11014.26 30818.55 20099.32 28513.16pLaRA − 2844.08 2628.53 5262.44 2410.37 2318.04psLaRA − 5202.97 4934.24 9834.59 4594.13 4265.50FoldalignM 10360.44 14208.05 10995.36 10095.93 9977.03 7871.85MURLET 9575.54 88355.02 76051.10 126883.04 51836.57 43345.91MARNA 56434.11 25230.23 30463.49 38143.15 42146.56 55457.50MXSCARNA 478.74 380.42 307.61 616.23 313.21 271.00Stral 18.72 25.21 19.24 42.57 24.13 28.96Mafft 53.14 30.83 17.18 25.12 7.72 7.20

Table 5.6: The overall runtime (in se
onds) of the programs. If a program did not
ompute the alignment within 20 minutes, we killed the pro
ess and took 20minutes as the running time. The number in bra
kets give the number ofinstan
es per input 
lass.
5.4.4 Computing the Upper Bound via the BundleMethodSe
tion 2.3.2 des
ribes the bundle method whi
h is an alternative approa
h for
omputing solutions for the Lagrangian dual. Instead of adapting the Lagrangianmultipliers a

ording to one single subgradient, the bundle method a

umulates abundle of subgradients and �ts a quadrati
 fun
tion to them. Then, the quadrati
fun
tion is used to 
ompute the new values of the Lagrangian multipliers. Se
-tion 2.3.2 gives details about the bundle method. The Coni
bundle library
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Figure 5.12: The distribution of the di�eren
es (bundle bound − subgradient bound)between the values of the upper bounds 
omputed via the subgradient andthe bundle method. A positive value means that the bundle bound is higherthan the 
orresponding subgradient value. Left side: the distribution ofthe di�eren
es after maximal 500 iterations. Right side: the distributionof the di�eren
e allowing a maximal 
omputation time of �ve minutes.
[62℄ 
ontains generi
 
ode for using the bundle method, and we implemented aninterfa
e to the library within the LiSA library. We set the parameters a

ord-ing to [61℄, i.e., we restri
ted the bundle size to 2 and added at most one newsubgradient to the bundle.Our test set are all k2 instan
es below an APSI value of 50%, yielding 2251test instan
es. We are interested in 
omparing the quality of the upper boundsusing the subgradient and the bundle method. We performed two di�erent testsettings: �rst, we stopped the subgradient and the bundle 
ode after a maximumof 500 iterations whi
h 
orresponds to the default setting in the LaRA software.Se
ond, we allowed a maximal running time of �ve minutes and stopped the
omputation afterwards. This should 
larify whether the bounds would improvesigni�
antly over a longer 
omputation time.The left side of Fig. 5.12 shows that in 69% of all instan
es (1563 out of 2251)the upper bound produ
ed by the subgradient pro
edure is as good or better thanthe bound 
omputed via the bundle pro
edure if we allow a maximal number of
500 iterations for both algorithms. If the bundle pro
edure does better, thenthe improvement is typi
ally small. The mean and standard deviation of theseinstan
es are −0.82 and 2.23.On the other hand, the di�eren
e between the bounds are a bit higher ifthe bundle method performs worse: the mean and standard deviation for thesevalues are 2.44 and 3.7. The essen
e of these experiments is the following: if
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Figure 5.13: Typi
al behavior of the subgradient (bla
k) and the bundle pro
edure(red). Left side: within a 
ouple of hundred instan
es, the subgradientpro
edure typi
ally produ
es 
ompetitive or better bounds 
ompared tothe bundle method. Right side: allowing more 
omputation time (in this
ase 300 se
onds), the bundle method yields slightly better bounds.
bundle performs well, then it does better, but only by a small amount. Theperforman
e of subgradient optimization is generally as good or better than thebundle method.If we allow a maximal 
omputation time of �ve hours, the pi
ture 
hanges.The bundle method produ
es better bounds in general, only in 23% of all in-stan
es (531 out of 2251) the subgradient method performs better. The meanand standard deviation of the di�eren
e between bundle and subgradient boundis small: −0.85 and 0.81. Figure 5.13 shows the typi
al development of the upperbound both for the subgradient and the bundle method. As one 
an see, thebundle method produ
es a 
urve that is more smoothly, whereas the subgradientmethod shows more a stair
ase-shaped 
urve.In [94℄ Lemaré
hal states that the subgradient pro
edure is basi
ally �onlyused by amateurs�. While it is true that subgradient optimization is 
on
eptuallymu
h easier than bundle methods, we have to state that his opinion does not holdtrue in general. In our problem setting subgradient optimization is appropriate,be
ause our primary goal is to 
ompute good bounds as qui
kly as possible.The 
omparison of the two pro
edures shows that the subgradient method worksbetter.We are aware of the fa
t that by resorting to subgradient optimization wesa
ri�
e the advantages of the bundle method, e.g., expli
itly estimating thedi�eren
e of the 
urrent solution and the optimal value of the Lagrangian dual,or retrieving primary information. This information,however, is not important
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to the user of sequen
e-stru
ture alignment algorithms. The user typi
ally wantsto have good solutions for the alignment problem as fast as possible, and this iswhat the subgradient pro
edure provides in our setting.
5.5 Computing Provably Optimal SolutionsEvery iteration in the Lagrange solution pro
ess yields an upper and lower boundon the optimal solution value. Unless the upper and lower bound do 
oin
ide,one 
annot be sure whether the best solution found is the optimal one. Wetherefore implemented a bran
h-and-bound algorithm that exhaustively sear
hesthe solution spa
e given the best lower bound found during the subgradient phase.Bran
h-and-bound uses a divide-and-
onquer strategy to divide the originalproblem into smaller ones. This yields an enumeration tree of subproblems, wherethe root node 
orresponds to the original problem. The nodes of the tree represent
onstrained subproblems where variables are either set to 1 or 0. Ea
h inner nodehas two subnodes where a new variable is set to 1 and 0. To avoid the exhaustivesear
h of the entire tree, at ea
h node we 
ompute a lo
al upper bound on thesubproblem, and 
ompare this upper bound to a global lower bound. If the lo
alupper bound is smaller than the global lower bound, we 
an safely ba
ktra
k,be
ause we 
annot do better if we step down further that subtree. Otherwisewe might a
hieve a better solution value in the subtree, we 
hoose a variable xvand 
reate two new subproblems by adding the 
onstraints xv = 1 and xv = 0.Figure 5.14 summarizes the steps of the generi
 bran
h-and-bound algorithm.There are only two main 
omponents in every bran
h-and-bound algorithm:the 
omputation of the lo
al upper bound and strategy of 
hoosing the nextbran
hing variable. In Se
t. 5.5.2 and Se
t. 5.5.3 we shall elaborate on theseissues. Additionally, in our 
ase we employ a prepro
essing phase to lower thenumber of bran
hing variables whi
h we shall des
ribe in the following se
tion.
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5.5.1 Prepro
essing the InputSimilar to [21℄ we 
an prepro
ess the input and eliminate alignment edges vari-ables that 
annot be part of the optimal solution. To this end, for ea
h alignmentedge e we 
ompute the s
ore se of the best alignment that in
ludes e. If se issmaller than the value of a feasible solution to the sequen
e-stru
ture alignmentproblem, we 
an safely drop xe from the pool of bran
hing variables, be
ause ewill never be part of the optimal alignment.To be more spe
i�
: given two sequen
es s0 and s1, we have a s
oring matrix
∆ where ∆(i, j) holds the maximum pro�t that alignment edge e = (i, j) 
anpossibly a
hieve. Then, the value se, i.e., the s
ore of the best alignment A with
si being alignment to sj, is

se = align(s0[0, . . . , i − 1], s1[0, . . . j − 1]) +

∆(i, j) +align(s0[i + 1, . . . , (|s0| − 1)], s1[j + 1, . . . , (|s1| − 1)])The matrix align(s0[i0, . . . , i1], s1[j0, . . . , j1]) holds the value of the optimal se-quen
e alignment between subsequen
es s0[i0, . . . , i1] and s1[j0, . . . , j1]. If se issmaller than some global lower bound l, then we drop e from the list of bran
h-ing variables. In our experiments we start from the 
omplete bipartite graphand we observe that the redu
tion of bran
hing variables typi
ally ranges from
75 − 95%. If the redu
tions amounts to 95% of all variables, then the upper andlower bound obtained after the subgradient optimization pro
edure are alreadyalmost the same.
5.5.2 Computation of the Upper BoundThe 
omputation of a lo
al upper bound on a subproblem requires the solutionof a 
onstraint alignment problem. The set C 
ontains the positions that have tobe aligned, whereas N 
omprises the set of positions that must not be aligned.We solve this 
onstrained alignment problem in a straightforward manner:for alignment edges c = (i, j) ∈ C we set their s
ore to some high value M ,i.e., ∆(i, j) = M . This for
es the optimal alignment path to run through thesepositions. For alignment edges n = (k, l) ∈ N we have ∆(k, l) = −M whi
hmeans that these mat
hes will never be realized. Given the resulting s
ore matrix
∆ we solve the sequen
e alignment problem whi
h yields the optimal sequen
ealignment value of Ω. We get the alignment s
ore Ω̂ by substra
ting the bonuses
M , i.e., Ω̂ = Ω − |C| · M . The value of Ω̂ then gives the lo
al upper bound onthe problem.
5.5.3 Choosing the Bran
hing VariablesSolving the Lagrange relaxed problem using subgradient optimization�in 
on-trast to bundle methods� does not dire
tly yield information on the value of the
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primal variables. We therefore 
ompute reasonable values of primal variables thefollowing way: let k be the number of overall iterations during the subgradientphase, then for every alignment edge e the value c(e) denotes how often align-ment edge e was part of the solution set from the relaxed problem. Then, we take
p(e) = c(e)

k
as an approximation for the primal value of ea
h alignment edge.The literature provides various s
hemes for the sele
tion of the next bran
hingvariable based on the primal information. The most 
ommonly used strategiessele
t values either 
lose to 0, 1, or to 0.5. In our experiments we 
ould notobserve big performan
e di�eren
es between various bran
hing s
hemes, so in thefollowing we report on our results for 
hoosing the variables that are 
losest to 0.

5.5.4 ResultsAs we des
ribe in Se
t. 5.3, the algorithm to 
ompute an exa
t multiple sequen
ealignment shows an unpredi
table runtime behavior in pra
ti
e. We therefore
onstrain ourselves to the pairwise 
ase, sin
e we 
ompute optimal solutions ofthe relaxed problem in O(n2).Table 5.7 shows the results for the bran
h-and-bound algorithm on the pair-wise BRAliBase instan
es. We allowed a maximal runtime of two hours. Ifthe bran
h-and-bound algorithm did not stop within the time limit, we killed thepro
ess. Note that there are two Cobalamin instan
es where the implementationquits due to a memory over�ow. In these two instan
es there are still 27828 and
27795 variables left after the variable redu
tion phase. A large gap between theupper and lower bound deprives us from the average redu
tion of 75− 95% of allvariables, but only 58% and 61% for these two instan
es. This, in turn, is dueto the extreme length di�eren
es of the input sequen
es. The sequen
es are 178and 268, and 177 and 256 nu
leotides long, respe
tively.The authors of [21℄ develop a bran
h-and-bound algorithm for the solutionof quadrati
 knapsa
k problems whi
h is similar to the 
omputation of RNAsequen
e-stru
ture alignments. During our experiments we 
ould 
on�rm theirobservations. In [21℄ they state thatOne 
an observe that the upper and lower bounds are generallyvery tight, making it possible to redu
e a majority of the variables,on average more than 75%. (. . . ) Despite this e�e
tive prepro
essing,the �nal bran
h-and-bound phase demands some hours and a hugenumber of nodes for the largest instan
es, as many variables haveto be �xed by bran
hing before 
losing the gap, despite the latter istypi
ally very small already at the root node.We observe exa
tly the same behavior in our experiments. The values for theupper and lower bound in Tab. 5.7 (
olumns ub and lb) show that we are onlyable to solve instan
es to provable optimality where the gap between the upperand lower bound is already fairly small after the subgradient pro
edure. A smallgap between upper and lower bounds leads to a small number of variables after
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APSI # ⊘ len # vars lb ub opt ratio timetRNA 22 1 71 838 162.58 163.13 162.58 (1.00) 165.99

23 2 72 844 166.19 170.96 168.13 (0.99) 3856.02
24 3 71 658 127.04 127.93 127.04 (1.00) 274.45
25 1 70 819 106.17 106.37 106.17 (1.00) 163.91
26 2 73 855 128.94 129.47 128.94 (1.00) 390.90
27 2 71 704 159.04 162.32 159.04 (1.00) 1081.04
28 6 71 613 166.79 168.41 167.09 (1.00) 317.67
30 4 71 578 145.26 146.60 145.86 (1.00) 119.09
31 5 72 821 159.30 160.62 159.30 (1.00) 306.68
32 8 72 689 160.93 161.70 160.93 (1.00) 652.90
33 9 74 773 154.87 156.85 155.09 (1.00) 1872.71
34 16 73 695 168.53 170.92 168.75 (1.00) 1198.23
35 3 73 679 181.93 185.18 182.24 (1.00) 1907.45
36 4 72 421 191.49 193.87 191.71 (1.00) 198.56
37 3 69 535 149.54 150.30 149.80 (1.00) 360.81
38 11 73 666 164.44 165.83 164.45 (1.00) 871.19
39 7 75 869 157.62 161.39 158.61 (0.99) 2022.37
40 14 74 707 175.98 177.94 175.98 (1.00) 1071.43
41 5 73 647 190.95 194.16 192.20 (0.99) 1713.44
42 10 73 721 170.10 171.74 170.13 (1.00) 712.24
43 12 74 873 163.88 165.40 163.93 (1.00) 1782.08
44 16 73 668 191.51 193.83 191.95 (1.00) 907.14
45 8 73 821 162.56 165.44 163.01 (1.00) 1681.94
46 18 73 579 189.49 190.76 189.52 (1.00) 405.01
47 14 74 781 182.72 184.92 183.05 (1.00) 1661.17
48 17 71 688 179.61 181.43 179.96 (1.00) 1427.49
49 23 74 798 179.54 181.50 179.94 (1.00) 959.375S 41 2 119 1701 307.52 307.62 307.52 (1.00) 2910.48
42 2 118 1757 233.00 233.88 233.00 (1.00) 3895.03
44 2 116 863 262.86 263.72 262.86 (1.00) 1915.21
45 4 119 1487 239.88 240.07 239.90 (1.00) 2375.55
46 1 120 871 326.24 326.71 326.24 (1.00) 1339.70
47 5 117 1584 240.86 241.61 240.86 (1.00) 4568.20
48 1 120 559 369.06 369.42 369.06 (1.00) 439.11
49 1 119 2446 250.03 250.03 250.03 (1.00) 1983.03Coba- 47 1 192 1754 404.55 404.55 404.55 (1.00) 3758.07lamin

Table 5.7: All instan
es solved by the bran
h-and-bound algorithm. We report the av-erage values grouped a

ording to the pairwise sequen
e identity of the inputsequen
es. The se
ond and third 
olumn give the number of solved instan
esand the average length of the input sequen
e, respe
tively. Column # varsgives the number of variables after the prepro
essing phase. Columns lb andub represent the lower and upper bound at the root node. Furthermore,
olumns opt and ratio give the value of the optimal solution and the degreeof optimality of the lower bound found at the root node. Finally, the last
olumn reports the runtime in se
onds.
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the prepro
essing step and provides sharp bounds during the bounding phase ofthe bran
h-and-bound algorithm. We therefore did not even try to solve instan
esto optimality whose ratio between lower and upper bound is smaller than 0.95.Se
ond, we are also fa
ing the fa
t that we have to set a high number ofvariables to 1 or 0, before we 
lose the gap between the upper and lower bound.In many 
ases, we have to 
onstrain the entire alignment, until we are able toprune the subtree. For a typi
al tRNA instan
e this means that we are setting
50 − 60 variables to 1, before the upper bound �nally be
omes smaller than theglobal lower bound.Furthermore, the lower bounds 
omputed during the subgradient phase areoptimal in almost all 
ases. Table 5.7 lists only three bins in whi
h the optimalsolution deviates from the value of the best lower bound found during the subgra-dient phase. This observation is, however, not surprising given the fa
t that thegap between the lower and upper bound is typi
ally very small in the instan
esthat we ta
kle with our bran
h-and-bound 
ode. Table 5.8 gives an overview overall 1624 pairwise instan
es that we ta
kled using the bran
h-and-bound algorithm.Lagrange Gap Solved UnsolvedGroup solved too big by BB by BBtRNA 476 466 224 925S 67 122 18 42Cobalamin 0 110 1 6

Table 5.8: Summary over all instan
es pro
essed by the bran
h-and-bound framework.Lagrange solved, Gap too big, Solved by BB, and Unsolved by BB givethe numbers of instan
es that are solved to optimality after the subgradientphase, whose gap after the subgradient phase is too big, that are solvedto optimality by the bran
h-and-bound algorithm, and that ex
eeded thebran
h-and-bound time limit of two hours, respe
tively.



Chapter
6 Con
lusion and FutureWork

I glaub i geh jetzt,weil i was genau,wenn i no
h länger bleib,geht ma der S
hmäh aus,und des wü i net. Wolfgang Ambros(I glaub i geh jetzt)
In this thesis we presented a framework for 
omputing sequen
e-stru
turealignments of RNA stru
tures based on te
hniques from 
ombinatorial optimiza-tion. The 
omparison of our implementations with several other state-of-the-artprograms shows that we performed very well on the established BRAliBaseben
hmark set. Both the 
onsisten
y-based LaRA and sLaRA, and the pro-gressive versions pLaRA and psLaRA are top-ranked for all input 
lasses.We refrain, however, from 
laiming that our tools are the best alignmentprograms for ea
h input 
lass. Ea
h of the tested programs has its strengthsand weaknesses: FoldalignM, for example, generally performs better on SRPinstan
es 
ompared to our programs, whereas LaRA and sLaRA outperformFoldalignM on tRNA sequen
es. Therefore, one 
annot speak of one singlebest sequen
e-stru
ture alignment program for all input 
lasses as other authors[81; 132℄ did, be
ause tests on self-
ompiled data sets usually show that theirprogram works best on their data. Consequently, we 
hose the BRAliBaseben
hmark to evaluate our programs, be
ause this way we avoid putting a dataset together and afterwards 
laim that we performed best on it. We believe thatthe 
ommunity should work and agree on a ben
hmark set BRAliBase next gen-eration that allows a fair 
omparison of di�erent stru
ture alignment programs.This ben
hmark should eliminate the de�
ien
ies of the 
urrent BRAliBaserelease:(a) update the sequen
es to the latest version of the Rfam database,(b) remove the bias of input instan
es towards some RNA families that have alarge number of sequen
es in their seed alignments,(
) in
orporate published stru
tures into the alignment, and subsequently usethe MCC instead of the SCI as the stru
tural assessment s
ore,(d) in
orporate 3D information�if available�to enhan
e the alignment quality.We are aware that 
reating a large ben
hmark set satisfying these 
onstraints isa non-trivial task, espe
ially sin
e for most of the RNA families in the Rfam thesequen
e data base is sparse.
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During the evaluation of our programs it be
ame very 
lear that the per-forman
e of a program does not only depend on the model or formulation it isusing, sin
e a great deal of improvement or de
line in performan
e a

ounts forthe setting of the parameters. For most programs, parameter settings are eitherdetermined by systemati
ally trying out various parameter settings [96℄, or val-ues are 
hosen that seem to work well in pra
ti
e [67℄. LaRA has three mainparameters: the sequen
e 
ontribution, and the gap open and extension penalty.We used the MASTR data set as our training set and examined various param-eter possibilities, until the values worked well on the MASTR data. In the 
aseof sLaRA, the situation be
omes even more involved, be
ause apart from thesequen
e s
aling we have to balan
e the stru
ture and sta
king 
ontribution thusyielding an expanded parameter sear
h spa
e. We tested seven di�erent valuesfor both the stru
ture and sta
king 
ontribution yielding 49 times more possi-bilities to explore. There are various distin
t parameter sets that yield almostthe same performan
e as the sets that we �nally 
hose for our evaluation. Itis very likely that a 
ombination of these parameter sets yields 
omparable oreven better results. Hen
e, a proper parameter training method is of utmostimportan
e. In the 
ase of pure sequen
e-based alignments Ke
e
ioglu and Kim[80℄ propose an approa
h based on linear programming: given an alignment, theinverse alignment problem 
alls for determining the (user-spe
i�ed) parameterssu
h that the optimal sequen
e alignment�using these parameters�yields theinput alignment. In prin
iple, their approa
h is appli
able to sequen
e-stru
turealignments as well. For a multiple alignment annotated with the 
onserved inter-a
tions, it is possible to determine the optimal parameter set. Input alignments
ould be taken, for instan
e, from the Rfam or the European rRNA database.One has to take 
are not to over�t the parameters to 
ertain input groups; hen
e,the input alignments should be distributed among various 
lasses of non
odingRNAs.Besides the gap and s
aling parameters, the s
oring system greatly in�uen
esthe performan
e of our implementations. We use s
ores based on the base pairingprobability matri
es. The pairing probabilities in turn are derived from the par-tition fun
tion whi
h takes all possible nested se
ondary stru
tures into a

ount.Our model allows for all possible pseudoknots, be
ause the only 
onstraint isthat a nu
leotide might pair with at most one other residue. In our experimentswe observe that the stru
tural 
ompletion 
omputed via the maximum-weightmat
hing 
omputation often 
ontains pseudoknots that do not violate the de�ni-tion of a se
ondary stru
ture, but that will not be observed in Nature. Figure 6.1gives an example of su
h a typi
al 
ase. Therefore, for the 
omputation of ase
ondary stru
ture we resort to RNAlifold that 
omputes a nested 
onsensusstru
ture given an alignment. sLaRA generally inserts fewer arbitrary pseudo-knots, be
ause it favours the 
onse
utive sta
king of base pairs.One of the main advantages of our formulation is its ability to deal withpseudoknots. In 
ontrast to most of the DP based approa
hes and all the tree-based models, we 
an align stru
tures that 
ontain pseudoknots. Right now,
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Figure 6.1: The solid lines represent the intera
tions that are 
onserved via the align-ment. The red intera
tion mat
h denotes the pseudoknot that is inserted,sin
e we do not reward sta
king of base pairs in our initial model. If we takethe dotted instead of the solid alignment edge, the alignment 
onserves theintera
tion mat
h denoted by blue dotted lines, yielding a more resonablestru
ture.
however, we are not able to take advantage of it, be
ause algorithms predi
tingse
ondary stru
tures or base pair probabilities in
luding pseudoknots su�er fromtwo main drawba
ks. First, all these approa
hes are 
omputationally expensive(their time 
omplexity s
ales at least in O(n4)), whi
h makes them appli
ableonly to short sequen
es. Se
ond, there are no sound energy parameters availablefor pseudoknotted stru
tures. This is even more signi�
ant, be
ause it meansthat even if we have the algorithms and models to in
orporate pseudoknots, weare optimizing an obje
tive fun
tion that is misleading. Hen
e, the only s
enariowhere LaRA 
ould make use of its pseudoknot alignment abilities is the alignmentof experimentally veri�ed stru
tures that 
ontain pseudoknots.At the time this thesis is being written, new approa
hes have been proposedthat aim at avoiding the high 
omputational 
osts of the Sanko� variants. Mafft6, the latest version of theMafft [78℄ alignment program, introdu
es the 
on
eptof four-way 
onsisten
y whi
h extends the 
onsisten
y-based sequen
e alignmentdes
ribed in Se
t. 3.2 to in
orporate stru
tural information. Preliminary tests ofthe beta version on the BRAliBase show an improved performan
e 
omparedto the previous Mafft versions, while the running time in
reased only slightly.
Future Work. The work presented in this thesis provides several lines of fu-ture resear
h. Our graph-based model 
an be modi�ed to ta
kle other align-ment problems su
h as lo
al sequen
e-stru
ture alignments. We already imple-mented a prototype that sear
hes lo
al sequen
e-stru
ture motifs in the spirit ofRNAForester, i.e., subsequen
es of the input sequen
es that share a 
ommonstru
tural motif. Running our prototype on the same data as RNAForester,we are not only able to �nd the lo
al motifs that RNAForester �nds, butalso other elements that are published in the literature. Ba
kofen and Will [2℄des
ribe a di�erent version of lo
al sequen
e-stru
ture alignment. Instead of only
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onsidering entire subsequen
es, the authors also allow sequen
e-stru
ture motifswhere parts of the sequen
e are omitted. This is the 
ase, for instan
e, if we havea helix in the �rst sequen
e that does not exist in the se
ond input sequen
e.The only 
onstraint is, however, that the motif has to be 
onne
ted either in thesequen
e or stru
ture. In prin
iple, the graph-based model is also able to 
apturesu
h motifs, but the handling of omitted subsequen
es is an unsolved issue at thismoment.The original MXSCARNA approa
h [133℄ inspired the model that in
orpo-rates sta
king s
ores. Naturally, the halfstems of stem fragments 
orrespond tonodes in the graph, and we have an intera
tion edge between nodes that forma stem. Remember that MXSCARNA �rst aligns the stem fragments and usesthese as an
hors in a subsequent sequen
e alignment. We implemented a proto-type that goes beyond the model of [133℄ by aligning stem fragments and loopregions at the same time. The re
ursions for the extended model be
ome in-tri
ate and the prototype did not yield satisfa
tory results. By going ba
k onestep, however, and applying the graph-based model only on the stem fragments,we redu
e the size of the problems, be
ause a node now 
orresponds to a stemfragment and not to a single nu
leotide anymore. In the end, this would lead tode
reased running times of our approa
h.A theoreti
al problem that needs further resear
h is the 
omputation of afeasible solution�given the solution of the relaxed problem�in
luding sta
kingenergies. In Se
t. 4.3.2 we show how we 
an 
ompute an exa
t solution by solv-ing a max-weight independent set problem. This redu
tion is, however, of littlepra
ti
al interest, sin
e the 
omputation of an independent set is NP-
omplete.Hen
e, the problem 
onsists in either proving the NP-hardness of the problem,or giving a polynomial time algorithm that 
omputes an exa
t solution.



Appendix
A Deuts
heZusammenfassung

Puh,das war harter Sto�. Die Ärzte(Zusammenfassung)
Wissens
haftli
he Entde
kungen der letzten Jahre haben die Molekulargene-tik revolutioniert: bis dahin ging man von einem linearen Informations�uss aus,in dem DNA zu RNA, und RNA in Proteine übersetzt wird. RNA nahm dabei dieRolle eines Hilfsmoleküls ein, das selbst�bis auf wenige Ausnahmen�keinerleikatalytis
he Eigens
haften hat. In den letzten Jahren zeigte si
h jedo
h, dass manvon einer viel komplexeren Organisation der zellulären Prozesse ausgehen muss:Ni
htkodierende RNA-Sequenzen, d.h. RNA-Sequenzen die keine Proteine kodie-ren, spielen dabei eine wesentli
he Rolle. Bei der Analyse von RNA-Sequenzenist es wi
htig, Strukturinformation zu bea
hten, da die sogenannte Sekundär-struktur, und ni
ht so sehr die eigentli
he Sequenzinformation erhalten bleibt.Alignmentprogramme von divergenten RNA-Sequenzen müssen deshalb Struktu-rinformation miteinbeziehen, um zuverlässige Alignments zu erstellen.In dieser Arbeit stellen wir ein neues Modell für das Bere
hnen von mul-tiplen Sequenz-Struktur-Alignments von RNA-Sequenzen vor. Wir bes
hreibenStruktur-Alignments als graphentheoretis
hes Problem und zeigen dana
h, wieman dieses Modell als ganzzahliges lineares Programm (ILP) formulieren kann.Wir relaxieren das ILP im Folgenden in einer Lagranges
hen Weise, d.h. wir ver-s
hieben eine Klasse von Bedingungen�versehen mit einem Strafterm-Vektor�indie Zielfunktion und lösen das resultierende ILP. Zusätzli
h bes
hreiben wir eineErweiterung des ILPs, bei der sogenannte Sta
kingenergien in die Bere
hnung desSequenz-Struktur-Alignments ein�ieÿen.Im Rahmen einer umfangrei
hen Auswertung verglei
hen wir die Implementie-rungen unserer Modelle mit zahlrei
hen anderen aktuellen Programmen. UnsereProgramme liefern auf einem kürzli
h publizierten Ben
hmark-Datensatz die bes-ten Ergebnisse für alle Klassen von Eingabedaten. Zusätzli
h geben wir einen Ver-glei
h zwis
hen dem Subgradienten-Verfahren und der Bündel-Methode zum Lö-sen des dualen Problems. Wir können zeigen, dass für Standard-Eingabeinstanzendas Subgradienten-Verfahren normalerweise bessere Ergebnisse liefert. Den Ab-s
hluss der praktis
hen Auswertung bildet die Bes
hreibung eines Bran
h-und-Bound-Verfahrens, das�gegeben die S
hranken aus dem Subgradienten-Verfahren�beweisbar optimale Lösungen bere
hnet. Wir zeigen, dass der Anwendungsrah-men dieses Ansatzes in etwa dem entspri
ht, was für das verwandte Problem desquadratis
hen Ru
ksa
kproblems publiziert wurde.
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