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Abstract 
 
Unlike most microorganisms or cell types, the yeast Saccharomyces cerevisiae undergoes 

asymmetrical cytokinesis, resulting in a large mother cell and a smaller daughter cell. The 

mother cells are characterized by a limited replicative potential accompanied by a 

progressive decline in functional capacities, including an increased generation time. 

Accumulation of oxidized proteins, a hallmark of ageing, has been shown to occur also 

during mother cell-specific ageing, starting during the first G1 phase of newborn cells. It 

has been shown that such oxidatively damaged proteins are inherited asymmetrically 

during yeast cytokinesis such that most damage is retained in the mother cell. 

To investigate the potential benefits of asymmetrical cytokines, we created a 

mathematical model to simulate the robustness and fitness of dividing systems displaying 

different degrees of damage segregation and size asymmetries.  

 

The model suggests that systems dividing asymmetrically (size-wise) or displaying 

damage segregation are more robust than fully symmetrical systems, i.e. can withstand 

higher degrees of damage before entering clonal senescence. Both size and damage 

asymmetries resulted in a separation of the population into a rejuvenating and an aging 

lineage. When considering population fitness, a system producing different-sized 

progeny, like budding yeast, is predicted to benefit from damage retention only at high 

damage propagation rates. In contrast, the fitness of a system of equal-sized progeny is 

enhanced by damage segregation regardless of damage propagation rates suggesting that 

damage partitioning may provide an evolutionary advantage also in systems dividing by 

binary fission. Using S. pombe as a model, we demonstrate experimentally that damaged, 

oxidized, proteins are unevenly partitioned during cytokinesis and that the damage-

enriched sibling suffers from a prolonged generation time and an accelerated aging.  

 

We demonstrate that the damage-enriched cell exhibits a reduced fitness and a shorter 

replicative life span. The model confirms the findings in budding yeast and moreover 

simulations suggest that asymmetrical distribution of damage increases the fitness of the 

cell population as a whole at both low and high damage propagation rates and pushes the 

upper limits for how much damage the system can endure before entering clonal 
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senescence. Thus, we suggest that “sibling-specific” aging in unicellular systems may 

have evolved as a byproduct of the strong selection for damage segregation during 

cytokinesis, and may be more common than previously anticipated.  
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Zusammenfassung  
 

Im Gegensatz zu den meisten anderen Mikroorganismen oder Zelltypen teilt sich die 

Hefe Saccharomyces cerevisiae asymmetrisch in eine Mutter- und eine Tochterzelle. Das 

Potential zur Replikation ist bei den Mutterzellen limitiert und begleitet von einer 

graduellen Abnahme der funktionalen Kapazitäten, inklusive einer erhöhten 

Teilungsdauer. Die Ansammlung von oxidierten Proteinen, eines der Kennzeichen der 

Zellalterung, konnte bereits in früheren Studien in Mutterzellen während der Zellteilung 

nachgewiesen werden. Der Beginn dieses Prozesses liegt in der G1 - Phase des 

Zellzyklusses. In den früheren Arbeiten wurde auch gezeigt, dass die beschädigten 

Proteine während der Zellteilung asymmetrisch auf Mutter- und Tochterzelle aufgeteilt 

werden und der größte Schaden in der Mutterzelle verbleibt. 

 

Im Rahmen dieser Arbeit wurde ein mathematisches Modell erstellt, mit welchem die 

potentiellen Vorteile asymmetrischer Zellteilung untersucht wurden. Der Fokus wurde 

dabei auf die Auswirkungen von unterschiedlicher Verteilung des oxidativen Schadens 

auf Mutter- und Tochterzelle sowie der Größenasymmetrie von Mutter und Tochter auf 

Fitness und Robustheit des Zellsystemes gelegt. 

 

Die Resultate der Simulationen des Modelles deuten darauf hin, dass Zellsysteme mit 

asymmetrischer Teilung oder mit unterschiedlicher Verteilung des oxidativen Schadens 

robuster sind als Systeme mit symmetrischer Teilung. Asymmetrische Systeme 

akkumulieren beispielsweise einen größeren Schaden, bevor die klonale Seneszenz 

erreicht wird. Sowohl Größen- als auch Schadensasymmetrien führen zu einer 

Auftrennung der Population in eine sich verjüngende und eine alternde Zelllinie. Bei der 

Betrachtung der Fitness der Populationen zeigte sich, dass Systeme, die Nachkommen 

mit einer Größe verschiednen von den Elternzellen produzieren, wie das bei S. Cerevisiae 

der Fall ist, nur bei hohen Schadensprogationsraten vom Verbleib des Schadens in der 

Mutterzelle profitieren. Im Gegensatz dazu wird die Fitness von sich symmetrisch 

teilenden Systemen unabhängig von der Schadenspropagationsrate durch Aufteilung des 

Schadens erhöht. Dies deutet darauf hin, dass die Aufteilung des Schadens Systemen mit 

binärer Spaltung einen evolutionären Vorteil verschafft. Im Experiment konnte für S. 
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Pombe als Modelorganismus für ein solches System gezeigt werden, dass der oxidative 

Schaden während der Zellteilung in unterschiedlicher Höhe auf die Geschwisterzellen 

aufgeteilt werden. Die Zelle, bei der der höhere Schaden verbleibt, teilt sich in der Folge 

langsamer und altert schneller. 

 

Es konnte ebenfalls gezeigt werden, dass die Fitness sowie die replikative Lebensspanne 

in Zellen mit höheren oxidativen Schäden reduziert ist. Das Model bestätigt die 

experimentellen Resultate für S. Cerevisiae und legt außerdem nahe, dass die 

asymmetrische Verteilung des Schadens die Fitness einer Zellpopulation sowohl für hohe 

als auch für niedrige Schadenspropagationsraten erhöht. Darüber hinaus wird dadurch die 

obere Schranke für den Schaden, ab welcher klonale Seneszenz erfolgt, weiter nach oben 

verlagert. Dies bedeutet, dass das geschwisterspezifische Altern als evolutionäres 

Nebenprodukt aus dem Selektionsvorteil für Systeme mit asymmetrischer 

Schadensaufteilung entstanden ist und möglicherweise weiter verbreitet ist, als bislang 

angenommen wurde. 
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1.  Systems Biology 
 
 
The term Systems Biology appeared first time in 1966, when Mihajlo Mesarovic 

organized a “Systems Theory and Biology” symposium at Case Institute of Technology 

in Cleveland, Ohio. Even though more then 40 years past since that meeting, we consider 

that field of Systems Biology is still in its infancy. 

 

The rapid progress in molecular biology of accurate, quantitative experimental 

approaches, high-throughput measurements, created a fruitful foundation for a new 

discipline. Yet, the identification of all components of the system doesn’t give us an 

answer how the system works. Systems biology today combines the knowledge from 

various disciplines. Complementing biological reasoning, together with mathematics, 

physics, chemistry and computer science we are trying to resolve the complexity of 

biological systems.  

 

A cell contains a countless numbers of molecules which interact in a very complex, 

sometimes in seemingly random fashion, and yet hold enough information to recreate 

another organism. Putting all the pieces together is like solving gigantic puzzle and 

represents one of the biggest scientific challenges of this century. It is likely that these 

pieces of the puzzle will never be easily understandable without the assistance of 

mathematical modeling. 

 

Use of computational modeling has emerged as a powerful descriptive and predictive tool 

that allows the study of complex systems to investigate biological phenomena and is one 

of the most important techniques used in biology today. The role of mathematical 

modeling and simulations is to generate test hypothesis, design experiments and 

experimental data.  

Hypotheses generated by in silico experiments are then tested by in vivo and in vitro 

studies.  
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1.1 Modeling Biological Systems 

 
 

Biology is one of the most rapidly expanding and diverse areas in sciences. The problems 

encountered in biology are frequently complex and often not totally understood. 

Mathematical models provide means to better understand the processes and unravel some 

of the complexities. 

 

The aim is to construct the model in the simplest possible way, but sill retaining the most 

important features of the system. The good model will be able to agree as closely as 

possible with the real world observations of the phenomenon we are trying to model and 

at the same time be interrogative. 

 

Depending on the process we want to model, the available data and the goal we want to 

achieve, biological processes can be modeled using one of the following methods: 

Boolean Networks, Stochastic models or Ordinary Differential Equations. 

 

 
1.1.1 Boolean Networks 
 
 
The first Boolean networks were proposed by Stuart Kauffman in 1969, as random 

models of genetic regulatory networks. 

The term Boolean networks refer to abstract mathematical models with large number of 

coupled variables. They are often use in understanding phenomena like genetic and 

metabolic networks, immune systems and neural networks.  

In more formal way we can define a Boolean network as a set of nodes G corresponding 

to genes V = {x1, . . . , xn} and a list of Boolean functions F = (f1, . . . , fn). The state of a 

node (gene) is completely determined by the values of other nodes at time t by means of 

the underlying logical Boolean functions. The model is represented in the form of 

directed graph. In this approach each variable has two states:  ON and OFF, more 

specifically, each xi is the expression of a gene, with possible values 1 or 0, which give 
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either expressed or not expressed gene; while F represents the rules of the regulatory 

interactions between genes. In this way the system will deterministically go from one 

state to another.  An advantage of this method is fast computation time, but a draw back 

is that variables are discrete and there is no precise notation of time. Since, the Boolean 

network reaches a steady state from any initial state; this approach is mainly applicable in 

systems where steady state is reached.   

 

 

1.2.1 Stochastic Modeling 
 

Stochastic Modeling represents a very comprehensive modeling approach in which each 

variable represents the number of molecules.  A stochastic model is a tool for estimating 

probability distributions of the system over time by repeating the simulations many times. 

One simulation gives one potential behavior of the studied system. Distributions of 

potential outcomes are derived from a large number of simulations (stochastic 

projections) which reflect the random variation in the input. If the set of possible states is 

continuous then instead of probabilities stochastic process can be described by probability 

densities.  

 

One of the most commonly used algorithm for simulating stochastic processes in 

continues time and discrete state space is the Gillespie algorithm (Gillespie, 1976). Each 

run makes one possible realization; repeating the simulation many times allows us to 

estimate the statistical properties of the process (mean behavior, time correlations, 

probabilities for certain kinds of behavior). 

 

Stochastic modes describe biological processes more accurately then the Ordinary 

Differential Equation approach, but the main drawback is that computation time is very 

intensive. Due to this reason they are often replaced by deterministic calculations.  

 



 18

1.2 ODE models 
 

Since in building the models for biochemical systems, often for a given input, the output 

has to be determine, the equations we use are deterministic (i.e there is a mapping 

function f, such that y=f(x), y being the output, and x is the input values).  

 

One of the mostly used model techniques in modeling biological systems is the 

Differential Equation approach.  If the changes in the system are only time dependent 

then we consider the differential equation of type 1 1
i

i n l
dx

f ( x , ..., x , p , ..., p ,t )
dt

=  and 

refer to it as Ordinary Differential Equation (ODE). The main characteristic of ODEs is 

that we can obtain deterministic time series for the variables under investigation. Linear 

ODE can be solved analytically, while non-linear ODEs are much harder, and in some 

cases it is impossible to find the solution analytically. In this case the approximate 

solution is derived using numerical algorithms for solving differential equations. One of 

the most elementary methods for solving ODEs numerically is Euler’s forward and 

backwards methods (Appendix B.1). 

Since in life the most interesting things are quite complicated, and we are trying to model 

living systems – most of the biochemical pathways are modeled using non-liner ODEs.  

 

Here, we start by introducing the classical biochemical reaction, well – known Michaelis-

Menten equation, which describes enzyme kinetics. 

 1 2

1

k k
k

E S ES E P
−

+ ⎯⎯→ +  (1.1) 

Where:  

1

1

 is the enzyme
 is the substrate, [S] is substrate concentration

 is the enzyme-substrate compex
 is the product
 is association of substrate and enzyme
 is dissociation of unaltered substrate fr-

E
S
ES
P
k
k

2

om the enzyme
 is dissociation of product from the enzymek
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From the scheme (1.1) we can derive system consisting of 4 ordinary differential 

equations: 

 

1 2 1

1 1

1 1 2

2

d [ E ] k [ ES ] k [ ES ] k [ E ][ S ]
dt

d [ S ] k [ ES ] k [ E ][ S ]
dt

d [ ES ] k [ ES ] k [ ES ] k [ E ][ S ]
dt

d [ P ] k [ ES ]
dt

−

−

−

= + −

= −

= + −

=

 (1.2) 

 

With the following assumptions: 

0

[ S ] [ E ]
[ ES ]

dt
=

 

The rate of production of product P is: 

  

 max

m

V [ S ]
V

[ S ] K
=

+
 (1.3) 

 
The equation (1.3) is Michaelis-Menten kintics, where: 

 

2

1 2
 

1

 is maximal velocity of the enzyme and 

is Michaelis constant and 

max max

m m

V V k ( E ES )
k k

K K
k

−

= +

+
=
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Figure 1.1| Michaelis – Menten kinetics  

 

Obtaining the values of Vmax and Km, can be complicated (series of measurements of 

initial rates for different initial concentrations), since the rate is non-linear, the non-linear 

regression method should be used.   

This process can be simplified by transforming Michaelis – Menten equation to obtain a 

linear relation between the variables.  A commonly used method is Lineweaver-Burk (L-

B) regression method (1.4); where Vmax and Km values can be obtained directly form the 

slope of the L-B plot. 

 1 1 m

max max

K
v V V [ S ]
= +  (1.4) 

A plot, 1
v

vs. 1
[ S ]

 yields a slope m

max

K
V

 and an intercept 1

maxV
. 

 
 
It is important to note that the L-B method is very sensitive to data error and it strongly 

biased towards fitting the data in the low concentration range. Other methods in use are 

Eadie-Hofstee, Scatchard (modification of Eadie-Hofstee method) and Hanes-Woolf. 

 

 

Approximation achieved with ODE models, considering very fast computational time, 

makes this approach widely accepted.    
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1.3 Parameter Estimation in ODE models 
 

While building a model, we make many assumptions, since it is often impossible to 

acquire real values for all parameters.  In some cases, parameters are not measurable 

directly, or there is inconsistency between different labs and strains that are used. In those 

cases, we have to estimate ‘unknown’ parameters by fitting the model to experimental 

data.  

While estimating the parameters we are trying to minimize the error function over the 

parameters under investigation. Using the goodness of fit measure we are looking at the 

discrepancy between the observed values and the expected values in the model.   

Most common methods for estimating parameters for the given model are the Least 

Square or the Regression Analysis method described by Gauss in the end of 18th century 

and the Maximum Likelihood Estimation developed by Fisher in the beginning of 20th 

century.   

Note that the Least Square Method is the basic method for parameter estimation. There 

are a number of other algorithms that can be also used.  

 

1.3.1 Least Square Method 

Usually the experimental data we use when creating the model are accompanied by noise. 

Even though all control parameters (independent variables) remain constant, the resultant 

outcomes (dependent variables) vary. Therefore, a process of quantitatively estimating 

the trend of the outcomes, also known as regression or curve fitting, becomes necessary.  

The regression process fits equations of approximating curves to the experimental data. 

Nevertheless, for a given set of data, the fitting curves of a given type are generally not 

unique. Thus, a curve with a minimal deviation from all data points is desired. This best-

fitting curve can be obtained by the method of least squares.  

Consider the data set consisting of n pairs (x1,y1), (x2,y2),…, (xn,yn), where xi is 

independent and yi is the dependent variable. Let f(x) be the fitting curve and di= yi – f(xi) 

the deviation from each data point.  
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Then the curve that would best fit the data would be: 

 2
1

1 1

2[ - )]  minumum
n n

i i
i i

d y f ( x
= =

= =∑ ∑  (1.5) 

 

Observe that function f(x) can have many different forms: 

a) f(x) = ax+b will give The Least Squares Line method with the necessary 

condition of having at least 2 data pairs ( n ≥ 2). 

b) f(x)=a+bx+cx2 will give The Least Squares Parabola method with the necessary 

condition of having at least 3 data pairs ( n ≥ 3). 

c) f(x)=a0+a1x+a2x2+….amxm will give The Least Squares mth Degree Polynomial 

with the necessary condition of having at least m+1  data pairs ( n ≥ m+1). 

 

If we consider the simplest regression – The Least Square Line method, the best fitting 

curve will be: 

 2 2
1

1 1
[ - ]

n n

i i
i i

d y ( a bx )
= =

= +∑ ∑  (1.6) 

 
 
 
 
In order to calculate values for a and b, the first derivative of equation (1.6) needs to be 
equal to zero: 
 

 
2

1
[ - ] 0

'n

i i
i

y ( a bx )
=

⎛ ⎞
⎜ ⎟+ =⎜ ⎟
⎝ ⎠
∑  (1.7) 
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2

1 1 1 1
2

2

1 1

1 1 1
2

2

1 1

Follows:

n n n n

i i i i i
i i i i

n n

i i
i i

n n n

i i i i
i i i

n n

i i
i i

y x x y x

a

n x x

n y x x y

b

n x x

= = = =

= =

= = =

= =

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠=

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠=

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑

∑ ∑ ∑

∑ ∑

                                                               (1.8) 

 

In the similar way we can calculate values for parameters a, b and c in the case of 

Parabolic method or set of parameters, a0,…,am in the mth Degree Polynomial method.  

It is important to note that if the distribution of experimental error is normal then the least 

square estimator is maximum likelihood estimator. 

 

 

1.3.2 Evolutionary Strategy 
 

 

Parameter Estimation in biochemical modeling usually involves more complex 

algorithms then the Least Square Method. Mani problem is the impossibility to 

unambiguously determine all parameters from the considered data set. The question often 

asked is: Can parameters of an ODE model in theory be identified for different sets of 

input/output parameters? Since, minimization in principle is hard optimization problem 

for models of realistic size and complexity (several local minima), it can be solved by 

setting the boundaries for parameters. Avoiding local minima problem of the error 

function can be solved using global methods.  More et al. (2003) tested 7 different global 

optimization methods. The challenge was to find the optimal method for problems 

involving large search space with ODEs that are highly non-linear in the variables and 

parameters. Out of 7 tested methods six were stochastic and only one deterministic. The 
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best result in obtaining the true parameters was accomplished with the SRES method.  

One of the best and most widely used is an Evolutionary Strategies based algorithm, 

namely Evolutionary Strategy using Stochastic Ranking (SRES, Runnarsson et al. 2000).  

Stochastic Ranking is based on a bubble-sort algorithm and is supported by the idea of 

dominance. During the evolutionary search the balance between the objective and penalty 

function is automatically obtained. Problem with this method that it has a worst-case 

complexity O(n2).  
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1.4 Sensitivity Analysis 
 

As shown earlier, designing a mathematical model for biological systems is a circular 

process, where the main focus is on the parameters and the variables that are 

characterizing the chosen process. 

The simplest definition of sensitivity analysis would be that we are observing the effect 

on the system after changing the parameters.  

Together with parameter estimation, systems analysis is one of the most important and at 

the same time the most difficult and laborious steps in modeling procedure.  

 

Performing the sensitivity analysis we can get more information about our model. Some 

of the questions usually asked are: which parameters have the highest influence on 

system behavior or on the other hand which ones do not have any effect on the system, so 

they don't have to be considered further and can be fixed to some arbitrary value. 

 

The main goal of sensitivity analysis is to better understand the dynamic behavior of the 

system. 

 

Due to the difficulties in obtaining the quantitative values of certain parameters or if the 

modeler is not certain when choosing some parameter values, it is necessary to use 

estimates. Sensitivity analysis will ‘show’ the level of accuracy of parameters one should 

use to make a model that is useful and valid. Experimenting with a wide range of values 

will lead us into behavior of a system in extreme situations. Discovering that the system 

behavior greatly changes for a change in a parameter value, we can identify a parameter 

whose specific value can significantly influence the behavior mode of the system. 
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As we already noted, sensitivity usually refers to single parameter changes: how does 

input signal x change output signal y. This can result in 3 levels of sensitivity: 

 

1. High sensitivity 

    x has a strong effect on y (usually implies that is hard to estimate values for x) 

2. Low sensitivity 

    x has a no effect on y   (usually implies that is easy to estimate values for x) 

3. Negative sensitivity 

    x inhibits y 

 

In the second scenario we generally refer to as a robust system (y is robust against the 

changes of x). 

In contrast to single parameter change, it is possible to change several parameters at once. 

Then we have multiple parameter change and the combined effect can simply be 

measured by summing up the single effect. Note that this holds only in case that 

parameter changes are sufficiently small. 

  

1.4.1 Robustness vs. Sensitivity 
 

In some case it is expected that the input parameter doesn’t affect the output greatly, 

which can confirm the behavior of the system and on other hand the system is expected to 

be sensitive to certain parameters. It is wrong to assume that only sensitive parameters are 

‘good’ ones and the ones that can give you the most information about the system. In 

many cases, as practice has proved, the robustness is also necessary in order to validate 

the model.   

 

A large number of sensitivity analysis methodologies are available in the literature. Like 

any method in use, different sensitivity analysis methodologies have their advantages and 

disadvantages. Choosing the right method for performing a sensitivity analysis 

experiment on a model is therefore a very delicate step that depends on a number of 

factors: the properties of the model, the number of input factors involved in the analysis, 

the computational time needed to evaluate the model or the objective of the analysis.  



 27

 

 1.4.2 Overview of common sensitivity measures 

 

Consider the mathematical model: 0F(u,k) = , where k is a set of m parameters and u is a 

vector of n output values (McRae et al. ,1982).  

Then, the following sensitivity measures can be used: 

 

1.    Response from arbitrary parameter variation 

                 u u( k k ) u( k )δ= + −  

2.    Normalized Response 

                  i
i

i

u
D

u ( k )
δ

=  

1. Variance 

          22 2
i i i( k ) u ( k ) u ( k )δ = −  

2. Extrema 

          [ ], [ ]i imax u ( k ) max u ( k )  

These measures are often use when the model is run for a set of sample points (different 

combinations of parameters). 
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1.5 Standardization of biochemical models 
 

 

The rapid development in the field of systems biology led to enormous expansion of 

computational tools that can be used for system analysis. Most of the tools are freely 

available for the scientific community and their use will greatly depend on the user’s 

preferences and expertise (Klipp et al., 2007).  

The vast amount of mathematical models resulted in a need of creating standards for their 

systematic organization. One such standard is MIRIAM - Minimum Information 

Requested in the Annotation of biochemical Models. It is composed of three parts: 

reference correspondence, attribution annotation, and external resource annotation.  

Each of these 3 parts deals with specific requirements which a standardized model has to 

fulfill.  The model has to be encoded in a standardized machine – readable format, where 

all the components have to be defined and annotated appropriately using Uniform 

Resource Identification (URI).  

Standardization of machine-readable format is achieved through Systems Biology 

Markup Language (SBML). It is an XML based language and the main purpose is 

encoding and exchanging quantitative biochemical models in Systems Biology. The 

original specification (Level 1) aimed mainly at continuous deterministic models. 

Whereas, the current specification (Level 2) is perfectly capable of encoding discrete 

stochastic models in an unambiguous way. 

 Models of arbitrary complexity can be represented and each type of components is 

described using specific data types. More information regarding structure, development 

and additional tools is available on the developer’s web site www.sbml.org.  
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Age is an issue of mind over matter. If you don't mind, it doesn't matter.  

Mark Twain 

 

2. Biology behind equations 
 

2.1 Ageing: definitions and history 
 

Aging is the process, which intrigues people since the ancient time. Finding the aging 

formula and a possibility of controlling it represents the incredible challenge and 

motivation. One of the first fictions written - Epic of Gilgamesh - has a main focus on 

immortality. History is full of individuals whose life was driven by the force of finding 

the fountain of youth – a legendary spring that restores the youth.  And where we are 

today?  Are we just modern Gilgamesh, with improved tools, techniques and hopefully 

more knowledge, but with the same goal? Is it true that we want to live indefinitely?  

Laws of physics are pretty simple and sometimes harsh: “over time differences in 

temperature, pressure, and density tend to even out in a physical system that is isolated 

from the outside world”. This is the Second Law of Thermodynamics and in principal 

explains irreversibility in nature. So, immortality, defined as ‘possibility of repair and 

incapability of dying’ is not possible. The other term in use, indefinite lifespan, might be 

more appropriate, since it implies freedom from death by age. 

What is then our goal? To make old people healthier. As simple as that. To have a 

generation that will enjoy in their elderly life, without being burden for society. Already 

today, there is evidence to suggest that not only are we living longer, we are staying 

healthier until an older age - something health experts refer to as 'compression of 

morbidity', meaning that most of us will only suffer severe age-related illnesses in the last 

years of life. 
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Defining ageing is complicated as the ageing process itself is. There is no the definition, 

but rather a series of descriptive observations which together can give us some glimpse 

how we see the ageing phenomena. One of the descriptions commonly used is that 

‘ageing is simply the age or time dependent changes that occur to biological entities’ 

(Medawar, 1952). But, this doesn’t give us an answer how and why changes arise.  
 

 

2.2 Yeast as a model organism 
 

To come closer of solving the mystery of human ageing, we have to start from simpler 

organisms. Yeast in general has been accepted as very powerful model to study various 

biological processes. Advantages are numerous: it is relatively easy to culture them, do 

genetic manipulations, experimental tools to analyze their biochemical and physiological 

functions are established. Of the great importance is the fact that it has its full genome 

annotated, that generation time is fast, and also very important aspect that is relatively 

cheap to use.  

In the course of this work, two yeast species were studied Saccharomyces cerevisiae and 

Schizosaccharomyces pombe. 

 

2.3 Cell division  
  

2.3.1 Asymmetricaly dividng systems - Saccharomyces cerevisie 
 

Saccharomyces cerevisie (baker’s yeast or budding yeast) is one of the simplest 

eukaryotic organisms. In the spring of 1996, the complete genome sequence of the S. 

cerevisiae was obtained, making yeast the first eukaryotic organism to be completely 

sequenced. 

It is a small, single-cell fungus. Like other fungi, it has rigid cell wall and mitochondria 

but not chloroplast. It reproduces almost as fast as bacteria.  Most fundamental cellular 

processes are conserved from S. cerevisiae to humans and have first been discovered in 

yeast. There are many basic biological properties that are shared. About 20 percent of 

human disease genes have counterparts in yeast. This suggests that such diseases result 

from the disruption of very basic cellular processes, such as DNA repair, cell division or 
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the control of gene expression. It also means that we can use yeast to look at functional 

relationships involving these genes, and to test new drugs. 

S.cerevisiae divides in a way that is not very common in nature. Buds (future ‘daughter’ 

cell) may arise at any point on the existing cell surface (referred to as ‘mother). Buds are 

formed when the mother cell has attained a critical size. After cell division a 

characteristic bud scar is left on the surface of the mother cell (Figure2.1).  

 

 

 
Figure 2.1| Accumulation of bud scars. Upper panel is schematic representation of bud 

scars appearance on mother’s cell surface during successive division. Lower panel is 

calcoflour staining of bud scars (graphical representation courtesy of Nika Erjavec). 

 

Since the new born daughter has a smaller size then its mother, it will require longer 

generation time to attain a critical size before it in turn becomes mother itself (Figure2.2). 

However, this unconventional way of division and clear asymmetry between mothers and 

daughters, makes it an excellent model for studying ageing. But this is not the only 

prerequisite for studying ageing.  Bakers yeast has been established as model for cellular 

ageing in 1959 when Mortimer and Johnston discovered that individual yeast cells are 

mortal.  
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Figure2.2| Generation time in S.cerevisiae; P1 - first parent generation; P2 - second 

parent generation; D - daughter generation time; A - division of the parent from the bud 

in 1st parent generation; A’- in 2nd division, A’’- division of daughter from its 1st bud. 

Generation time is the period between the appearance of the first and the second 

consecutive buds on a given cell. Generation time increases with age, especially after 18 

to 20 generations  

 

 
2.3.2 Symmetricaly dividing systems - Schizosaccharomyces pombe 
 
 
In 2001 the Schizosaccharomyces pombe genome was reveled. This achievement showed 

that S.pombe is functionally and structurally more similar to humans then S.cerevisiae. 

This made S.pombe another alternative model organism. Since, the S.pombe genome has 

an evolutionary different origin then that of S.cerevisiae, they can be seen as 

complementary model systems. Processes conserved in both can have mechanisms that 

evolved in similar fashion and can be used for studies in other higher eukaryotes. 

 

 Schizosaccharomyces pombe divides by binary fission. A cell septum, when formed, 

constricts the cell into two equally sized siblings. Growth of S. pombe will first take place 

at the old end and subsequently also at the new end.  The latter growth period is called 

New End Take Off or NETO (Figure2.3). 
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Figure2.3| Growth of Schizosaccharomyces pombe. Schematic representation of 

S.pombe progression through cell cycle. In blue accumulation of bud necks is presented. 

(graphical representation courtesy of Nika Erjavec). 
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2.4 Ageing in Yeast 
 

As previously noted, ageing in S.cerevisiae has been reported 50 years ago. Yeast shows 

the same exponential decline in fitness and fecundity over time, as many other higher 

eukaryotes. The mortality curves follow the Gompertz-Makeham law (see Chapter 3 for 

more details) (Figure2.4).  

 
Figure2.4| Mortality curves. Survival by age, know as mortality curve, for humans and 

yeast.  

 

Yeast lifespan can be measured in two ways:  

 

Replicative lifespan is defined as the number of divisions an individual yeast cell 

undergoes before dying. It is expressed in generations (it is limited) and it is measured by 

growth on agar plates and micromanipulation. (Figure 2.5A) 

 

 Chronological lifespan (survival in stationary phase), is the time a population of yeast 

cells remains viable in a non-dividing state following nutrient deprivation. It is expressed 

as time and measured by growth in liquid. (Figure 2.5B) 
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Figure2.5| Replicative and chronological life span in yeast. 

 

There is no strong correlation between chronological and replicative lifespan. It has been 

shown that the chronological lifespan can be noticeably extended without altering the 

replicative lifespan.  

When studying yeast ageing we are mainly focused on replicative lifespan. 

 
 

 

Figure 2.6| The spiral model of yeast ageing (Adapted from Jazwinski, et al Exp Geront 
24:423-48 (1989)) 
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From the mortality curves we can define mean and maximum lifespan: 

Mean lifespan (average lifespan) corresponds to the age at which the horizontal line for 

50% survival intersects the survival curve.  

Maximum lifespan corresponds to the age at which the survival curves touch the age-

axis (0% survival) - and this represents the age at which the oldest known member of the 

species has died.  

For wild-type (wt) laboratory yeast strain, the mean lifespan is approximately 25 

divisions, while the maximal is around 40 (Figure2.6). Those numbers should not be 

taken too exact, since lifespan can vary due to the numerous reasons: different labs, 

different strains.  

  

A mother cell undergoes many typical changes during her life time, such as: sterility, 

slowing of the cell cycle, appearance of surface wrinkles, blebs and bud scars, dramatic 

increase in cell size, loss of asymmetry, fragmentation of nucleus.  

It has been believed that the accumulation of bud scars can limit the replicative potential 

in yeast. However, buds occupy only 1% of the mother’s surface, and even expanding the 

available surface would not lead to an increased lifespan. Also, there are reports that new 

buds can grow from existing scars.  

One of the most obvious signs of an old yeast cell is the increase in size. Several studies 

showed that the volume of a mother cell increases linear with age. Along with size, cell 

cycle increases exponentially with generation time, as well.  

 

Due to the clear size-symmetry, S.pombe, was not considered as ageing model until 1999 

when it was reported that fission yeast has a finite lifespan.  

It was believed that this organism doesn’t age, since the division is symmetrical, and the 

two produced siblings will be completely identical. The similar arguments were applied 

for bacterium Escherichia coli. Recent work by M. Ackermann (2003) and E. Stewart 

(2005) purposed that Caulobacter crescentus and E.coli display replicative senescence 

e.g. one sibling stops dividing after accomplishing certain number of division, while the 

other continuers to divide normally.  
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“Tomorrow you may be younger.” 

 

2.5 Ageing theories  
 

Since the beginning of ageing research more then 300 theories have been postulated. The 

key requirement for a good ageing theory would be the necessity of having high 

predictive and explanatory power.  At the beginning of ageing research scientist were 

looking for the one and only theory – the theory – the one that would give complete 

understanding of the highly complex ageing process. Even there have been discussion 

could we called it ageing process? Is it a process? By general definition process is “a 

series of actions, changes, or functions bringing about a result” it can also be “a natural 

phenomenon marked by gradual changes that lead toward a particular result”. The 

common thing for all those definitions is that it is something that has a beginning and an 

end. And ageing indeed has a starting point – new cells are created over and over again, 

and an end point is the death of the cell itself. Death as a final result of series of changes 

that cell goes through.   

 

In general, ageing theories can be summarized in two groups: 

 

1. Programmed Theories 

2. Error Theories 

 

The main idea behind Programmed Theories is that cells are designed to age. Ageing is 

due to something inside an organism's control mechanisms that forces elderliness and 

decline. 

The other, more accepted – Error Theory postulates that ageing is caused by 

environmental damage to the cells, which accumulates over time. It can be damage due to 

radiation, chemical toxins, metal ions, free-radicals, hydrolysis, disulfide-bond cross-

linking, etc. Such damage can affect genes, proteins, cell membranes, enzyme function 

and blood vessels.  
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One of the first Error Theories was Orgel’s Error Catastrophe (1963). The theory 

suggests that copying errors in DNA and the incorrect placement of amino acids in 

protein synthesis could aggregate over the lifetime of an organism and eventually cause a 

catastrophic breakdown in the form of obvious aging. This theory has been dismissed 

since the experimental verification always gave negative results.  

 

Other error theories include wear and tear theory – cells and tissues simply wear out over 

time, rates of living – the oxygen usage is faster in some organisms, therefore they live 

shorter. 

 

In this chapter will give brief overview of some of the most studied and further developed 

theories.  

 

 

2.5.1 Free Radical theory 
 

Following the idea of R. Gerschman that free radicals are toxic agents, D. Harman 

purposed in 1954 the Free Radical Theory of Ageing. In general, this theory presumes 

that there is an accumulation of free radicals over time.  Under the name free radicals we 

often assume reactive oxygen species (ROS). ROS molecules are highly reactive and as 

such can damage all sorts of cellular components. The ability to cope with ROS decreases 

with age. One form of this theory – accumulation of damaged proteins is discussed in 

section 2.6. 

 

2.5.2 Disposable soma theory 
 

Based on the fact that both somatic maintenance and reproduction require energy, the 

disposable soma theory postulates that there is a negative correlation between 

reproduction and repair. This theory predicts that aging is due to the accumulation of un-

repaired somatic defects and the primary genetic control of longevity operates through 

selection to increase or decrease the investment in the basic cellular maintenance systems 

in relation to the level of environment hazard. Also, a high level of accuracy is 
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maintained in immortal germ line cells, or alternatively, any defective germ cells are 

eliminated. 

 
 
2.5.3 ERCs  

 

In 1997, Sinclair and Guarente proposed that yeast ages due to gradual accumulation of 

extrachromosomal ribosomal DNA circles (ERCs). In S.cerevisiae ERCs are located on 

the XII chromosome. Unsilenced rDNA have an increased frequency of recombination 

events and homologous recombination in this region can lead to the formation of 

extrachromosomal rDNA circles (ERCs). Since ERCs contain an origin of replication, 

they can self-replicate (Figure 2.7). Interestingly, ERCs are asymmetrically inherited by 

the mother cell at the time of cytokinesis. Furthermore, overexpression of ERCs shortens 

lifespan (Sinclair and Guarente, 1997). Therefore, ERCs have been proposed to be a 

senescence factor. 

 

Deletion of ribosomal DNA (rDNA) repeats results in the formation of ERCs. Since 

ERCs are able to replicate independently during S-phase, they can accumulate much 

faster then chromosomal DNA. During the budding process ERCs are retained in the 

mother cell, leaving the daughters ERC-free, which in turn give an immortal yeast 

population. When a mother cell gets close to its replicative life, the mechanism for ERC 

segregation starts malfunctioning which results in daughters that inherit small amounts of 

ERCs. Because, the level of ERCs is still too low, this prematurely old daughters are 

capable of producing healthy daughters.  
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Figure2.7| Formation of extrachromosomal ribosomal DNA circles (ERCs). In 

budding yeast ERCs are accumulated over mother cell life span and are segregated 

asymmetrically between progeny and progenitor. 

 

The reason why this theory is not widely accepted is the fact that ERCs accumulation is 

only observed in S.cerevisiae and it is believed that it can not explain ageing in higher 

eukaryotes.  

 

2.6 Accumulation of damaged proteins 
 

The Free Radical Theory indicates the key role of ROS in the ageing process.  ROS 

damages cellular components and can cause oxidative damage to cellular 

macromolecules (proteins, carbohydrates, lipids and nucleic acids) which in turn become 

cytotoxic. According to Free Radical Theory, ageing is caused by the gradual 

accumulation of un-repaired molecular damage, leading to an increasing fraction of 

damaged cells and, eventually, to functional impairment of tissues and organs. 
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Native proteins can become reversibly and/or irreversible oxidatively damaged. The 

reversible ones are repaired by specific enzymes. The repair mechanism is present in 

cytosolic and mitochondrial compartments.  The rest of the proteins are irreversibly 

damaged and there is no evidence of their repair mechanism. They are eliminated either 

via degradation pathways or become aggregates. The degradation pathways are part of 

the cytosol and mitochondria and are regulated by 20S proteasome, lysosome and Lon 

protease respectively (Figure2.8).    

 

 
Figure2.8| Different modes of protein degradation. 

 

An age - related increase in the level of oxidatively modified proteins disrupts the balance 

between the rate of protein oxidation and the rate of elimination of oxidized proteins. As 

long as the balance is kept the cell is viable.  

Protein carbonylation negatively affects cellular performance in two ways; (i) the 

modification causes structural aberrancies and abrogates the targeted proteins’ catalytic 
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functions and (ii) triggers formation of high molecular, potentially cytotoxic, aggregates 

that, among other things, may impede protease activity. 

 

Inability of the cell to eliminate oxidatively damaged proteins causes the buildup of 

damaged proteins, which becomes a burden for the cells and lead to cell death.  

Increase in oxidatively damaged proteins with age has been shown to occur in a variety of 

species, including mammals, birds, bats, nematodes, flies, budding yeast, and non-

growing bacteria. (Figure2.9) 

 

 
 

Figure2.9| Increase in oxidatively damaged proteins with age. A dramatic increase in 

oxidized protein during the last third of the lifespan can be observed. The data points 

were taken from published reports: ▪ human dermal fibroblasts in tissue culture;  

human lens; □ C. elegans; ♦ rat liver;  fly. (Taken from R. Levin, 2002 with the 

permission from publisher). 

 

 The load of oxidatively damaged proteins will inevitably lead to a reduced replicative 

life span. 
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2.7 Damage retention 
 
 
Accumulation of oxidized proteins has been shown to occur during mother cell-specific 

ageing, starting during the first G1 phase of newborn cells.  

 

It has been shown that oxidatively damaged proteins are inherited asymmetrically during 

yeast cytokinesis such that most damage is retained in the mother cell (H. Aguilaniu, 

2003) (Figure2.10). In other words, proteins that are oxidatively damaged are retained 

within the mother cell, leaving its daughter virtually damage free. The process was shown 

to be dependent on the age determinator SIR2 and on actin polymerization. Deletion of 

SIR2 shortens the replicative lifespan while its overexpression prolongs lifespan. 

 

Oxidatively damaged proteins

Young

Oxidatively damaged proteins

Young

 
 Figure2.10| Schematic representation of asymmetrical accumulation of damage 

proteins during replicative age in S.cerevisiae. Light pink dots represent low level of 

damage, while darker dots show high level of damaged proteins. (graphical representation 

courtesy of Nika Erjavec) 

 

The fact that yeast has a limited replicative lifespan implies that each daughter cell 

produced must have a full replicative potential. Thus, there is a critical asymmetry at the 

time of cell division that ensures the proper segregation of a “senescence factor” (Egilmez 

et al., 1990). The nature of this factor is still under intense scientific scrutiny. 
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Figure2.11| Asymmetric distribution of oxidized proteins during cytokinesis in 

S.cerevisiae. Representative young, 4-5 and 10.12 generations old dividing mother cell. 

Oxidized proteins are detected in situ and here are increasing from red to blue. 

 
In S.cerevisiae age-dependent oxidation targets most proteins and most oxidized proteins 

are accumulated to the same extent in the mother cell. Segregation of oxidized proteins is 

a result of active retention in the mother cell. 

Overall double increase in carbonylation in old mothers and in the daughters of old 

mothers, compared with unsorted culture, implies that asymmetric distribution of 

oxidatively damaged proteins take place between mother and bud in aging yeast cells. 

(Figure 2.11 and Figure 2.12). 

 
 
Figure2.12| Levels of oxidative protein damage as a function of replicative age. 

Average number of birth/bud scars (open bars); Protein carbonyl levels (filled bars). 

Taken from H. Aguilaniu (2003) with the permission from publisher. 
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2.8 Rejuvenation  
 

The verb rejuvenation (re + Latin juvenis – young) means to become/make young or 

youthful again. Rejuvenation, even though opposite from ageing, complements the ageing 

process and is an inevitable aspect of aspiration to have an immortal population.  

 

The altruistic concept of having a system that will for the benefit of the population entrust 

the off-spring that is intact of any sort of damage is one of the most striking biological 

phenomena.    

 

The whole concept of ageing research can then be formulized in one yet obvious, but 

very complex question: “How something old can generate something young?”(Thomas 

Nyström) 

  

In S.cerevisiae, as previously stated, a mother cell produces an off-spring that is born 

damage-free with full replicative potential.  

 

  
 

Figure2.13| Rejuvenation. The old mother cell produces a prematurely old daughter, 

whose replicative potential is equal to the remaining mother’s life span. Remarkably, 

daughters born from these old daughters, display normal replicative life span. 
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As a mother cell becomes older, the newly produced daughters are born prematurely old 

– indicating that asymmetry in protein damage, together with loss of size asymmetry has 

broke down. This suggests that daughters of old mothers have inherited a senescence 

factor. However, the striking thing is that the daughter of prematurely old daughters will 

have full replicative potential and no damaged proteins (Figure2.13) 
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3. Modeling Ageing in Yeast 
 
 
3.1 ERC model 
 
A mathematical model of Extrachromosomal Ribosomal DNA Circles (ERCs) 

accumulation in yeast developed by Colin Gillespie, relays on observations from D. 

Sinclair and L. Guarente that the number of ERCs is unevenly distributed between 

mother and daughter cell during replicative age. 

The biological description of this process is given in Chapter 2. 

Here we give mathematical interpretation based on the Gillespie model. The ERC model 

is stochastic model composed of 3 main parts.  

 
1. ERC generation: 

     The cell can acquire the ERC in 2 different ways: 

a) through excision from the chromosome 

b) through inheritance from its mother  

 

      The first step is known to appear randomly with low frequency. It holds that 

  

 Pfor = min( αi xi, 1), for  i = 0, 1, 2                                                                    (3.1) 

 

Pfor is the probability of generating new ERC in a ERC-free mother cell 

 x    is the number of completed generations 

αi    is a constant 

 

Introducing generation constrains, we can obtain 3 possible cases (Figure3.1): 

 

 i = 0  → means that the probability of generating ERCs is age-independent. 

 i = 1  →  means that the probability of generating ERCs has a linear increase with age 

 i = 2  →  means that the probability of generating ERCs has a quadratic increase with 

age 
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Figure3.1| Formation of ERCs  
 
 

2. ERC replication; occurs during successive generations of mother cells 

 

When an ERC is introduced into a virgin cell, the cell senescence starts after 15 

generations. It is believed that after 15 generations, the cell contains 500 to 1000 ERCs.  

 

The assumption is that replication of ERCs has a constant probability Prep per ERC/cell. 

Such a high number of ERCs would lead to death by overcrowding. 

 

3. ERC distribution; occurs between mother and daughter cell at the division 

 
The asymmetrical distribution of ERC between mother and daughter is the key fact in 

yeast ageing. The mother cell will keep ERCs in almost 80% of all divisions; however it 

is known that towards the end of her replicative life, ERCs will ‘leak’ to her daughters, 

making them prematurely old.  

The model assumes 2 types of ERC segregation: 

 

a) The probability of retaining ERCs is constant and independent of other ERCs. 

If N denotes the number of ERCs in the mother cell and R denotes number of 

ERCs retained in the mother cell after division, then R will have a binomial 

distribution: Bin (Nmax, θ1) 
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b) The number of ERCs can be retained with 2 different probabilities. 

The first Nmax ERCs are retained with probability θ2, and above Nmax with 

probability 0.5 (equal distribution of ERCs between mother and daughter), then  

 
 

1

1 2

maxR N N
R

R R
≤⎧

= ⎨ +⎩

                     ,

       

if 
otherwise,

   (3.2) 

 
 

And, R1 and R2 have two independent binomial distributions:  

Bin(Nmax, θ2), Bin(N - Nmax, 0.5), respectivly. 

 

The results suggest that having a quadratic increase in probability would fit the best to 

experimental studies. (Figure 3.2) 

 

 
Figure 3.2| Agreement with experimental data.  

 

Also, the segregation of ERCs breaks down in older mother cells and the formation of 

ERCs cannot be constant (red curve; gives long lived cells (~120 generations), but rather 

depends on the age of the yeast cell. This suggests that there must be another 

mechanism(s), in addition to ERC accumulation which underlies yeast ageing. 
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This theory can explain the fact that an old mother will give rise to old daughters, and 

that   a daughter of an old daughter will have full replicative potential (e.g. born ERC-

free). 
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3.2 Disposable Soma model for Ageing 
 
The main aspect of the Disposable Soma theory is that there is a balance between somatic 

maintenance, reproduction and growth (Kirkwood, 1977).  In Chapter 2 there is a insight 

to the biological background of the mathematical model developed by Kirkwood and 

Drenos (2004).  

 

The Disposable Soma model is based on Euler- Lotka (1) and Gompertz-Makeham (3) 

equations.  

 

3.2.1 Euler – Lotka equation 
 

Linking the proportional growth rate of a population to the characteristic functions that 

define life history is an old problem, originally solved by Euler (1760), rediscovered in 

the context of modern population genetics by Lotka (1907), and first applied by Fisher 

(1930). Surprisingly, the problem has no algebraic solution, and r must be defined 

implicitly by an integral equation. The parameter r was dubbed by Fisher the Malthusian 

parameter, and the equation from which it is computed is referred to as the Euler-Lotka 

equation: 

1rxe l( x ,s )m( x,s )dx−
=∫  (3.3) 

 
Where:  
 

 is intrinsic rate of natural selection
 is survivorship function (a proportion of population remaining alive at age ),

            depends on maintenance  
 is fertility function (the mea

r
l( x , s ) x

s
m( x,s ) n number of offsprings produced
              per time unit time at age ), depends on maintenance x s

  

 
If we assume that r is known, then we can compare the relative contributions to growth of 

offspring produced at different times: their value declines exponentially with time at the 

prescribed rate r. The r is then, the rate which reduces the total reproductive value of all 

offspring to unity. 
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With computational techniques that have become commonplace, the numerical 

determination of r is fast and straightforward. The algorithm is seeded with a first guess 

for r, which is used to evaluate the integral numerically. The difference between the 

computed result and unity is fed into a Newton-Raphson or equivalent algorithm for 

generating a next-closer value of r, and the procedure is iterated until the desired 

accuracy attains. 

Hamilton (1966) showed that the selection pressures acting on life history are best 

measured by the sensitivity of r to changes in fecundity or instant survival rate. 

Alleles that influence life history such that r is increased spread at a faster rate than other 

alleles and invade the population. Alleles acting late in life experience affect r less 

strongly and thus experience a weaker selective pressure than alleles acting early in life.  

 

This has three evolutionary consequences:  

 

(1) Alleles that increase early survival or fertility at the cost of late survival or fertility 

tend to be favored.  

(2) Deleterious alleles that decrease early survival or fertility will be more strongly 

selected against than alleles that decrease late survival or fertility.  

(3) Beneficial alleles that increase early survival or fertility will be more strongly favored 

than alleles that increase late survival or fertility.  

Consequently, it is expected that the survival or fertility rate will decrease with age (at 

least once sexual maturity is reached). 
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3.2.2 Gompertz – Makeham law of mortality 
 
In 1825 Benjamin Gompertz proposed that death rate exponentially increases with age:  
 

0
Gxm( x ) A e=  (3.4) 

 
Where: 
 

 is mortality rate as a function of time or age 
 is extrapolated constant to birth or maturity (basal vulnerability)

  is exponential Gompertz mortality rate coefficient (acturial ageing rate)
o

m( x )
A
G

  

 
Often, A0 is replaced with A – the initial mortality rate (IMR), and G with the mortality 

rate doubling time (MRDT), equal to ln2/G. In humans MRDT is 8 years, meaning that 

after our sexual peak, chances of dying double every 8 years. 

This version of Gompertz law is used in protected environments, such as laboratory 

conditions, where the probability of external causes of death is low. If, we are looking for 

the mortality rate in natural environment then, a new parameter need to be included in the 

equation – the Makeham parameter M0, which then represents, the age – independent 

component of the Gompertz – Makeham equation (3), in the contrast to the Gompertz 

function which is an age-depended component. 

 

0 0
Gxm( x ) A e M= +  (3.5) 

 

3.2.3 The disposable soma model 
 

Using above mentioned equations, the mathematical model incorporates the main ideas of 

disposable soma theory, such as maintenance, fertility and fitness.  

In general, the model confirms the principles of disposable soma theory, which states that 

‘the organism should not waste resources by extending life span potential beyond what is 

likely to be seen in wild populations subject to external mortality’. Kirkwood and Drenos 

suggest that modeling disposable soma theory, survivorship l(x) can simply be increased 

by increasing investment in maintenance s. While the increase in fecundity m(x), cannot 
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simply be achieved with increase in s and will lead to postponed maturity, diminishment 

of the peak reproductive rate and slowing of the age-related decline.  

The model also predicts that there is a balance between growth and reproduction in one 

hand and maintenance on the other, and that increase in maintenance will lead to decrease 

in growth and reproduction.  
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3.3 Network theory of ageing 
 
 
Another model purposed by Kirkwood and Kowald in 1995 integrates the contribution of 

defective mitochondria, aberrant proteins and free radicals as major players in the ageing 

process. Suggestions that ageing is result of multiple factors that work together formed 

the network theory of ageing. This fact would lead to greater predictive and explanatory 

capabilities then observations derived from a set of individual models. However, this 

approach makes many assumptions and simplifies some of the process in order to 

reconcile mathematical and biological complexity.  

The model is also known as MARS model, which stands for mitochondria, aberrant 

proteins, radicals, scavengers (Figure3.3) 

   
 

 
 
Figure3.3| Schematic representation of components of the MARS model. (adapted 
from Kowald A, Kirkwood TBL (1993)) 
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The role of mitochondria is a central part of the model. Some of the functions modeled 

are mitochondria as ATP source, production of free radicals, mitochondrial replication 

and turnover. The fact that more radicals and less ATP are produced by damaged 

mitochondria is modeled trough different damaged classes. Various parameters describe 

different rates of mitochondrial replication, depending whether it is intact or damaged. 

 

The second component of the MARS models is integrated in one and comprises of free 

radicals, aberrant proteins and antioxidants. A feedback loop controls the rate of synthesis 

of proteins and the assumption is that synthesis is regulated by product inhibition.  Also, 

during protein synthesis, proteins can be damaged or their activity or specificity can be 

affected. Scavengers and antioxidants are regulated by substrate activation and the 

ribosomes by autoinhibition.  

 

The full model consists of 35 differential equations and number of parameters. Such a 

large model generates a huge number of parameter combinations and simulations.  

 

The MARS model explains the following observations and experimental findings: 

 

1. the loss of specific enzyme activity; demonstrated by sharp increase of inactive 

proteins with age. 

2. a decline in enzyme specificity  

3. the significant increase in protein half-life with age 

4. a decrease in mitochondria population with age 

5. an increase of the fraction of mitochondria with age 

6. an increase in the average rate of free radical production per mitochondria with 

age 

7. a decrease in the average level of ATP generation per mitochondria with age  
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This method of in silico study of the extremely complex and important ageing process is 

the first attempt in generating an amalgamated model. It takes account the interactions 

between different processes and levels of function.  

 

It is often a danger having complex models; due to inability to control the parameters or 

even worse validate any given hypothesis. Usually this type of models have a good fit to 

the data (they have many degrees of freedom). This is called the data overfitting and 

characteristic of these models is to have low predictive capabilities. 
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4. Mathematical Model of Accumulations of 
Damaged Proteins  
 
 

To approach the questions, if there is an advantage of asymmetrical cell division – i.e. 

production of cells of different size, different levels of damage, and unequal reproductive 

potential, we developed a mathematical model aimed at elucidating effects of cellular 

asymmetries on fitness, proliferating capacity, and aging.  

 

The mathematical model consists of a system of ordinary differential equations and a set 

of algebraic equations to describe how the accumulation of damaged proteins influences 

ageing in yeast. The model we propose has two main features. First, the set of ODEs 

describes the behavior of intact and damaged proteins through successive cell 

generations. Secondly, we define a set of rules for the distribution of proteins based on 

different modes of division and we introduce a retention coefficient that affects the 

distribution of proteins between progenitor and progeny.  

 

 
4.1 Description of system dynamics in between two cell divisions 
 
 
To simulate the proliferation of a simple entity consisting of two types of molecules (e.g. 

diffusible proteins), intact and damaged ones, we constructed a mathematical model 

based on ordinary differential equations (1). The ODEs describe the accumulation of the 

intact (Pint) and damaged (Pdam) proteins, such as oxidatively carbonylated proteins, 

during the cell cycle and successive cell generations. The sum (P) of intact (Pint) and 

damaged (Pdam) proteins determines the total size of the entity. 
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1
2 3

3 4

1
2 4

int
int int

s int dam

dam
int dam

int dam
s int dam

dP k k P k P
dt k P P

dP k P k P
dt

dP k k P k P
dt k P P

= − −
+ +

= −

= − −
+ +

 (4.1) 

 

  
 

The temporal dynamics of intact proteins, Pint is given by a production term (maximal 

rate k1) dependent on the current amount of total protein in the cell, the half-saturation 

term (rate constant ks), a degradation term (rate constant k2), and a term for the 

conversion of intact proteins into irreversibly damaged ones (rate constant k3). The 

dynamics of damaged proteins Pdam is ruled by the conversion of intact proteins to 

damaged ones (k3) and the degradation of damaged proteins (rate constant k4).  

 
 
Initially, the numbers of intact and damaged molecules increase until production and 

degradation is balanced, such that a steady state is approached (Figure 1A and B). Since 

protein and RNA synthesis in unicellular systems has been shown to increase either 

exponentially or pseudo-linearly during the cell cycle, we tested both types (linear and 

exponential) of cellular growth (Figure 4.1A and B), yielding comparable results when 

fitness, aging, and robustness were determined. Note that in the case of modelling 

exponential growth of the cell we multiplied the extra term Pint to the growth rate of 

intact proteins: 

1
2 3

int int
int int

s int dam

dP k P k P k P
dt k P P

= − −
+ +

 (4.2) 

 

The protein production rate, k1, has been adjusted by hand allowing for a steady state to 

be reached and has been assigned a final value of 107. We choose values of k2 and k4, the 

degradation rates of Pint and Pdam, respectively, so that k2 < k4. Degradation rates are 
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computed using the half-life formula t 1/2 = ln 2/k, where k is the degradation rate; setting 

the half-life of intact proteins to be 1 time unit, k2 = ln 2. Since degradation of damaged 

proteins is faster, k4 needs to be greater than k2 and it has been set to ln 5.  

 

We also assumed all conversion of Pint to Pdam to be irreversible, such that no Pdam could 

be repaired back to Pint. To simulate different rates of conversion, k3 has been given a 

range of values, from 0.1 to 2.3. Parameters were implemented to resemble known values 

describing cell growth, protein synthesis and degradation, accumulation of damage and 

its segregation. 
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Figure4.1| Modeling linear and exponential growth of an entity consisting of intact 

and damaged proteins. Linear (A) and exponential (B) expansion of total (green), intact 

(blue) and damaged (red) proteins in a cell entity without division. The x-axes denote 

time (in arbitrary units), and the y-axes represent the amount of proteins (defined as the 

number of molecules/entity). Parameters values are k1=107, k2=ln2, k3=0.6, k4=ln5.  

 
Note that in the simulation for the dividing entity shown later, most of the entities will 

never come close to this steady state, but remain in the initial phase of increasing protein 

concentrations. 
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4.2 Description of cell division 
 
In the present model, cells initiate division once they have attained a critical cell size, 

defined by Pint reaching a value called Pdiv, arbitrarily assigned to 1500 molecules/cell in 

the present work. The following set of transition equations describes how the proteins are 

distributed between progenitor and progeny when the cells divide, i.e. when Pdiv is 

reached.  

The subsequent equations are derived with following assumptions: 

 

1. Total amount of proteins (P) in the cell would be sum of Pint and Pdam.  

2. Sum of, the amounts of intact proteins in the progenitor and the amounts of intact 

proteins in progenies are constant before and after division. Similarly for damaged 

proteins.  

3. Sum of the amounts of intact and the damaged proteins in the progenitor is constant. 

Similarly for progenies. 

 

 
4.2.1 Without damage segregation 
 
In the case of a protein distribution that is only dependent on size of the newly generated 

cells, the different cell types obtain the following amounts of proteins:  

 
For progenitors: 
 

( ) ( )
( ) ( )

( ) ( ) ( )

1

1

1

int int mother

dam dam mother

int mother dam mother

P g P g s

P g P g s

P g P g s P g s

+ = ⋅

+ = ⋅

+ = ⋅ + ⋅

                                            (4.3) 
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For progenies: 
 

( ) ( )
( ) ( )

( ) ( ) ( )

1

1

1

int int daughter

dam dam daughter

int daughter dam daughter

P g P g s

P g P g s

P g P g s P g s

+ = ⋅

+ = ⋅

+ = ⋅ + ⋅

                                        (4.4) 

 
 
The size of the progenitor, smother, denotes the percentage of protein from the previous 

generation that is kept in that cell, while the size of the progeny, sdaughter, expresses the 

percentage of protein assigned to the new-born cell. P(g+1) denotes the initial amount of 

total protein for the new generation (g+1), while P(g) corresponds to the final protein 

amount before division of the previous generation g (similarly for damint P,P ).  

 
 
 
4.2.2 With damage segregation 
 
We next introduce a retention coefficient (re), describing the amount of Pdam being 

retained by the progenitor. In this case, segregation of Pdam, and consequently Pint, is 

affected by both size and retention, according to the following set of transition equations:  

 
For progenitors: 
 

( ) ( ) ( ) ( )
( ) ( ) ( )( )

( ) ( ) ( )

1 1

1 1

1

int int mother dam mother

dam dam mother mother

int mother dam mother

P g P g s P g re s

P g P g s s re

P g P g s P g s

+ = ⋅ − ⋅ ⋅ −

+ = ⋅ + − ⋅

+ = ⋅ + ⋅

                       (4.5) 
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For progenies: 
 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1

1 1

1

int int daughter dam daughter

dam dam daughter

int daughter dam daughter

P g P g s P g s re

P g P g s re

P g P g s P g s

+ = ⋅ + ⋅ ⋅

+ = ⋅ ⋅ −

+ = ⋅ + ⋅

                             (4.6) 

 
 

When including the retention coefficient in the equations, the distribution of intact will 

depend on levels of damaged proteins, retention and size of the cell, due to the previously 

mentioned assumptions.  

  
The maximum value for retention is 1=re , meaning that the progenitor keeps all 

damaged proteins, while for 0=re  the distribution of damage is proportional to the size 

of each cell, thus corresponding to a case without retention (see equations (4.3) and 

(4.4)). We simulated the model for various values of retention, ranging from 0.125 to 

0.875 with a step increase of 0.125.  

 
 
 
4. 2. 3 Size 
 
 
To this end, we defined two different cell sizes, one for progenitors and one for progeny. 

We call the size of the progenitor smother, denoting the percentage of protein from the 

previous generation that is kept in that cell, also termed the mother cell. The size of the 

progeny is called sdaughter, giving the percentage of protein assigned to the new-born cell, 

now indicated as the daughter cell. 

 

Upon symmetrical division, the size of both progeny and progenitor is equal, thus we 
have 50.== daughtermother ss  after division. After asymmetrical division, cells in the 
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next generation will have different sizes. We consider here the exemplary case that 

750.=mothers  and 250.=daughters . 

 

Here, we give list of parameters used in our model. 

 
 
Parameter Description Values Assumptions 

Pdiv 
cell division threshold, in number of 
intact proteins 1500 size of the (mother) cell that 

triggers division 

k1 
rate maximal protein production  107 adjusted by hand to allow 

steady-state 
k2 rate of degradation of intact proteins ln2 half-life of 1 time unit 
k3 rate of damaging of intact proteins [0.1,2.3]by 0.1  

k4 
rate of degradation of damaged proteins ln5 half-life is shorter than for 

intact proteins, so k4 > k2 
ks half-saturation constant 1  
re retention coefficient [0, 1] by 0.125  

smother size of the progenitor after division 0.5 or 0.75 smother + sdaughter = 1 
sdaughter size of the progeny after division o.5 or 0.25 smother + sdaughter = 1 

Table 4.1|Parameters of the single-cell model, their default values and assumptions 

made 
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4.3 System Analysis  
 
 
To study the potential of the model and understand the intertwined dynamics of cell 

division and protein accumulation through successive generations, we simulated the 

introduced equation systems for different cell sizes representing two types of divisions 

(symmetrical vs. asymmetrical), different damaged rates and different retention 

coefficients. In total we analyzed four different scenarios (Figure4.2 and Figure4.3) in 

detail: 

 

1. Symmetrically dividing cells without retention 

2. Symmetrically dividing cells with retention 

3. Asymmetrically dividing cells without retention 

4. Asymmetrically dividing cells with retention 

 

In each scenario, we followed the fate of the progenitor and the progeny, separately, 

through a number of generations. We could thus draw a “mother lineage” and a “daughter 

lineage”, whereby we would, after every division, follow respectively the next generation 

of mothers only, or the next generations of daughters only.  

 

All numerical simulations to follow individual time courses were carried out using 

Mathematica 5.2, Wolfram Research and SBML plug-in for Mathematica – SBMLMath. 
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Sibling-1 Sibling-2

Sibling-1 Sibling-2

Sibling-1 Sibling-2

Sibling-1 Sibling-2

No damage retention Damage retentionA B

Symmetrical division

 
 
Figure 4.2|Symmetrically dividing system. Schematic representation of a symmetrically 

dividing system, the sibling lineages analyzed, and the distribution of intact (blue) and 

damaged (red) proteins in a system without (A) and with (B) damage segregation. 

 

Sibling-1 Sibling-2 Sibling-1 Sibling-2

Sibling-1 Sibling-2

No damage retention Damage retentionA B

Asymmetrical division

 
 

Figure 4.3|Asymmetrically dividing system. Schematic representation of an 

asymmetrically dividing system, the sibling analyzed, and the distribution of intact (blue) 

and damaged (red) proteins in a system without (A) and with (B) damage segregation. 
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4.4 Carbonilation study 
 
Carbonilation levels in yeast cells can be obtained by a slot-blot procedure (Appendix C, 

section C.1). Protein extracts from cells are applied to the membranes; quantitative results 

from this type of experiment would give us the concentration of oxidatively damaged 

proteins per total.   

To compare results attained from experimental study, with results from in silico study, for 

each cell cycle we calculated the amounts of damaged (Pdam) and total (P) proteins with 

the precision of 10 000 points per cell cycle, then the ratio of damaged to total proteins 

(Pdam/P) for each time point was calculated. The ratios are plotted as a function of time. 

See Appendix A, section A.3 for the complete simulation results, for asymmetric and 

symmetric cytokinesis, with and without segregation, for low, moderated and high 

damage rates. 

 

Daughter’s lineages for both types of division are starting a new generation time with 

lower Pdam/P ratio, then the mothers, and in each generation time the initial value for this 

ratio is the same as in the previous generation. The Pdam/P ratio is linearly increasing for 

each individual generation time, until it reaches the maximum value (point when the cell 

is dividing). In the case without retention, daughters will start with higher level of Pdam/P 

compared to the case when we have retention. 

Mother’s lineages Pdam/P ratio at the beginning of each generation time is higher then in 

the previous generation, showing linear increase. Damaged to total ratio within one 

generation time will decrease for very old mothers, while in the case of young once it will 

remain constant (initial and final value of Pdam/P within one generation time is almost the 

same).  
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4.5 Population study 
 
 
In the previous section, the behavior of “mother lineages”, i.e. the sequence of cells 

obtaining the larger share of volume for asymmetric division and the larger share of 

damaged proteins in case of retention; or “daughter lineages”, consisting of cells always 

getting the smaller share was explored. 

 

Based on the observation that populations consisting of symmetrically dividing cells with 

a low damage rate may live indefinitely, while populations with a higher damage rate will 

be completely extinct (all cell lineages are modeled to have the same fate), we may ask 

for evolutionary strategies that can help to ensure the survival of the population even at 

higher damage rates. 

 

In order to estimate the fitness of the whole population, we calculated the population size 

for each scenario including the mixed lineages. To this end, we first derived the number 

of divisions per unit time, and then we combined the results from each type of lineage 

forming the population to obtain the corresponding size reached in a defined unit of time. 

This way of calculating population is not very realistic, since we assumed that the 

generation times for each entity in the tree will be the same.  

We wanted to get the rough estimated how the populations of cells, derived under 

different conditions, behave and to look at the evolutionary aspects of different strategies 

cell can acquire.  

 

The population size was calculated (using a custom Perl-script (www.perl.org)) for each 

of the four scenarios previously mentioned, using different retention coefficients and 

different damage rates. For each pair (re, k3), the number of cells produced per one time 

unit was calculated for both, mother lineage and daughter lineage. Then the tree 

consisting of those cells was constructed, where lineages would be edges of the tree. 

Afterwards, the mixed population was simply counted and would give estimates of the 

population size for a given pair. The data was plotted as size of the population (in the 

number of cells) vs. different damage rates (k3). 
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Figure 4.14 (section 4.8.2) shows the interdependence of population size, damage rate 

and retention. Appendix A, section A.1 provides a summary of the quantitative results. 

For a detailed analysis and comparison we chose systems without retention and one with 

a retention coefficient of 0.875. All four scenarios are represented as a function of 

increasing damage (k3) and were compared against each other.  
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4.6 Pedigree Analysis  
 
 

The limitations in the simulations carried out with Mathematica didn’t allow us to follow 

the fate of the mixed lineages.  

To overcome the problems encountered with previous approach, we use a hierarchical 

model that allows us to explore any and all branches of the pedigree tree, and precisely 

track mother-daughter relations. We can therefore explore lineage specific properties, 

such as the rejuvenation property studied in this work. 

 
 
4.6.1 BioRica system   
 
BioRica is a high-level modeling framework integrating discrete and continuous multi-

scale dynamics within the same semantic domain. It is in this precise sense of mixing 

different dynamics that BioRica models are hybrid following the classical definitions. 

 

Moreover, BioRica models are built hierarchically. Alur et al. defined two types of 

hierarchy: architectural and behavioral. While Bio-Rica admits both, in the course of this 

work we are only concerned with the former. This type of hierarchy allows for both 

concurrency and parallel composition. 

 

4.6.2 Building a hierarchical model  
 

The hierarchical model we have defined explicitly tracks mother-daughter relations in 

pedigree trees of simulations. This thus allows us to study lineage-specific properties, 

which are properties associated with connected sub-graphs of the pedigree tree. In the 

pedigree tree, a given mother cell generates a series of daughter cells; these siblings are 

ordered in time, and the younger a sibling, the older the mother at the time of division. 

 

  

A three-node hierarchical model was defined by adding a discrete controller above the 

quantitative single-cell model (Figure4.4). The BioRica platform was extended to take 
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account the new requirements for this study (see section 4.6.3, below). Simulation of this 

model generates pedigree trees of arbitrary depth. 

 

 
Figure4.4| Three level hierarchical model. The discrete cell population and cell 

division controllers and the continuous single-cell model. This model generates pedigree 

trees during simulation, instantiating new single-cell models for each cell division. 

Infinite width and depth are represented finitely by relaxing the tree constraints to permits 

loops from the leaves. These fixed points represent immortal cells or immortals lineages. 

 

4.6.3 Adaptation of original algorithm   
 

The original BioRica algorithm developed in the group of Macha Nikolski needed to be 

adapted for the damage segregation study (Appendix A). In particular, alive and update 

predicates had to be redefined in a specific way.  

 

The alive predicate verifies three conditions: 

First, the cell is checked for immortality, which is realized by the fixed point detection.  

Second, we verify if the cell is in the state of clonal senescence: Pint(S’) > Pint(S) .  

Third, the condition on cell size is checked: size < rePdam / (Pint+ rePdam).  
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The update has the role of managing the new cell creation. For the current cell c it 

updates its state variables according to the algebraic equations (4.3 - 4.6) and its statistics 

(fitness, generation time, etc). It creates a new cell node (daughter of c) according to the 

equations (4.3 – 4.6) and inserts it in the population array Pop (Figure4.5). 

 

Algorithm 1 General simulation schema 

Require: current state S, current simulation time t, maximal simulation time tmax 
 
1:  S = S’ 
2:  while alive(S,S’) = 1 and t < tmax do 
3:       S = S’ 
4:       t, S =  advance numerical_integration() 
5:     if e = discrete_events() then 
6:          t = get discrete_event time() 
7:          store_event(e) 
8:          S = update(S, e) 
9:          reset numerical integrator() 
10:     end if 
11:     store_state(S) 
12:  end while 
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Figure 4.5| The algorithm. The numerical integrator advances between t (point 1) and 

the maximal step size (point 2). The guards of events e1, e2 are satisfied. The regions 

where these guards are satisfied are shaded. The firing time of e1 (point 3) is used to reset 

the simulator after the discrete transition A (point 4). 

 

4.6.4 Calibration of the system - simulation to depth 4  
  

To calibrate and validate the system, complete simulations were run to depth 4 in the 

pedigree tree (representing all cells produced in the tree after a mother cell divided 4 

times) for an exhaustive range of parameter values (Table 1 section 4.2.3). Rate constants 

k1, k2, and k4 received fixed values; k3 and re were given a range of values with small step 

sizes, and smother and were given sdaughter two pairs of values representing symmetric and 

asymmetric growth strategies. A total of 625 simulations were run and stored in the 

pipeline database. Back-to-back comparisons with previous results were performed 

(ignoring pedigree) to validate the new simulator.  

 

 

4.6.5 Pedigree exploration - simulation to depth 30  
  

 For each of the four scenarios studied here, a representative simulation was chosen by 

inspecting properties of the initial mother. From the whole parameter space, we selected 

simulations where the mother cell produces a number of daughters that is both finite and 

large enough (20-24 divisions depending on the case, since the average life span of wild 

type budding yeast is 24 divisions). 

For each of these simulations, the pedigree tree was calculated up to depth 30, and for 

each cell in the tree we calculated five values: initial damage and terminal damage levels 

(corresponding respectively to the amounts of damage Pdam at the beginning of cell cycle, 

and at the end of the cycle when division is about to occur), generation time (time 

between two divisions), absolute date of birth (in arbitrary time units, measured from the 

moment when mother starts its first division) and the fitness (defined as number of 

divisions during first time unit). 

 



 75

    
4.7 Rejuvenation Study  
  
 

Using parameter exploration we could identify sets of parameters that exhibit a given 

emerging high-level behavior. Moreover, the analysis of the emerging behavior can be 

done both at the single-cell and whole pedigree tree levels. 

 

The model was analyzed for different initial amount of damaged and intact proteins.  

Thus, we could compute the critical level of terminal damage (Pdam at the point of 

division) to find the set of initial values which would gives us the cells that exhibit death 

(Figure 4.6 - left panel). 
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Figure 4.6| Variation of initial values of Pint and Pdam and their effect on terminal 
damage and generation time. 
 
Similarly, the time until next division can be calculated as a function of initial values of 

intact and damaged proteins (Figure 4.6 - right panel).  

However, here we observe the opposite effect of increased initial values of intact 

proteins, which lead to have long period of time until cell divides, which would 

correspond to long generation time and it is consistent with observations that generation 

time becomes progressively longer as  mother cells become older.   
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We were interested in detecting cells that have a finite but high enough number of 

daughters (this would reflect the wild type cell of S.cerevisia with average life span of 24 

divisions), and looking for parameters giving high rejuvenation value across the whole 

parameter space. 

The hypothesis is that the rejuvenation will take place when the ratio of damaged and 

intact proteins at the point of division is lower then the same ratio at the beginning of the 

cell cycle (equation 4.7). 

 

0
0

dam div dam

int div int

P ( t ) P ( )
P ( t ) P ( )

<  (4.7) 

  

Thus, we could find the rejuvenation line (Figure 7) and cell death line, which would 

give us tree distinct areas: rejuvenation, damage accumulation and cell death area.  

We can conclude that the rejuvenation effect depends on both protein species – intact and 

damaged ones. And that not all levels of intact proteins are prerequisite for rejuvenation.  

At low levels of Pint, damage can increase up to 60% of possible damage and the 

rejuvenation will still occur, beyond this point, if damage continues to increase the cell 

becomes dead. Otherwise, at high levels of intact proteins (more then 60%) the 

accumulation of damage will occur regardless of initial level of damaged proteins.  

 

This would, then lead us to the conclusion that accumulation of damaged proteins would 

conflict with longer period before next division (Figure 4.6 – right panel and Figure 4.7 – 

left panel). 
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Figure 4.7| Theoretical approach to rejuvenation effect. The red lines divide areas of 

rejuvenation from areas where cells accumulate damage, depending on the initial amount 

of Pint and Pdam. The higher k3, the rejuvenation area becomes smaller and cell death area 

larger (right panel) 
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4.8 Results  
  

4.8.1 Effects of asymmetry on clonal senescence  
 
With the equations at hand, we asked whether there is an intrinsic difference between 

symmetrically and asymmetrically dividing systems in their ability to cope with 

increasing rates of damage production. The model was simulated initially for low damage 

rates with an equal inheritance of damaged proteins (Figure 4.8A). Under these 

conditions the system is characterized by constant initial and final concentrations of intact 

and damaged proteins during successive generations and the population is immortal 

(Figure 4.8A). At moderate damage rates, cells still divide indefinitely but display longer 

generation times (Figure 4.8A). In contrast, at high damage rates, the cells go through a 

finite number of divisions characterized by progressively longer generation times and a 

pronounced accumulation of damaged proteins at the expense of intact ones, eventually 

preventing Pdiv from being attained (Figure 4.8A). Since division, in this simulation, is 

perfectly symmetrical and all cells in the population are identical, the outcome is clonal 

senescence. That is, the model predicts that at high damage rates the entire population 

eventually reaches a “dead end”, reminiscent of the Hayflick limit.  

 

We next asked whether a “division of labor”, i.e. the unequal distribution of damaged 

proteins during cytokinesis (Figure 4.2B) among individuals affects the damage rate at 

which clonal senescence is reached. We therefore introduced the retention coefficient into 

the model (see equations (4.6) and (4.7)); such that equal-sized siblings are 

distinguishable by the amount of damaged proteins they inherit. The system now shows 

signs of sibling-specific replicative senescence, with the cells retaining more of the 

damage displaying progressively longer generation times whereas the “low-damage” 

sibling lineage propagates indefinitely (Figure 4.8B). In addition, everything else being 

equal, damage segregation (Figure 4.8B) allows the population to expand at damage 

rates, which cause clonal senescence of a perfectly symmetric system (Figure 4.8A).  
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Figure4.8| Symmetrical division.Time course comparison between symmetrically dividing cells without retention and with retention of 

damaged proteins and with a low, medium and high degree of damaged proteins being generated. We see that all three protein amounts 

P, Pint, Pdam, increase until Pint reaches Pdiv. Then the cells divide and distribute protein amounts according to equations (4.3) and (4.4) in 

case of no segregation or equation (4.5) and (4.6) in case of segregation. Mother and daughter cells, in the case of symmetrical division 

we would refer to them as sibling-1 and sibling-2 behave identically when division is symmetric and retention not applied (Figure2A); 

however, they follow two distinct patterns of protein inheritance, when retention is introduced (Figure 2B).  
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Figure4.9| Asymmetrical division. Time course comparison between asymmetrically dividing cells without retention and with 

retention of damaged proteins and with a low, medium and high degree of damaged proteins being generated. We see that all three 

protein amounts P, Pint, Pdam, increase until Pint reaches Pdiv. Then the cells divide and distribute protein amounts according to equations 

(4.3) and (4.4) in case of no segregation or equation (4.5) and (4.6) in case of segregation. In the case of no segregation, protein 

distribution is only dictated by size and therefore mother cells (corresponding to 75% of the common cell entity before division) will 

reach the trigger faster than daughters and hence produce more divisions/unit time than the latter.  
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This analysis was followed by testing whether a difference in size alone between a large 

progenitor and a smaller offspring (Figure 4.3A) is sufficient to prevent clonal 

senescence. In this context, the inheritance of intact and damaged proteins is proportional 

to the relative size of each cell entity at division. At low to moderate damage, the system 

now shows signs of a sibling-specific replicative senescence, typical of asymmetrical 

dividing systems, such as budding yeast. The larger parent lineage (mother cell) displays 

increasingly longer generation times (Figure 4.9A) until eventually the persistent titration 

of intact proteins by damaged ones prevents it from dividing again. In contrast, at the 

same damage rate, the smaller progeny lineage continues to divide indefinitely (Figure 

4.9A). Also, a system of different-sized progeny can expand ad infinitum even without 

damage segregation at damage rates giving rise to clonal senescence in the perfectly 

symmetrical system (Figure 4.8A and 4.9A). When damage was segregated such that the 

larger mother cells received an even higher load than expected from its size (Figure 

4.9B), the system could withstand even higher levels of damage before clonal senescence 

commenced (Figure 4.9B).  

 

The model also suggests that in order to prevent clonal senescence the degree of damage 

segregation (or size asymmetry) needs to increase as the damage production rate is 

elevated (Figure 4.10A and B). The trade-off for this beneficial effect of damage 

retention or size asymmetry on clonal senescence is sibling-specific aging at 

progressively lower damage rates (Figure 4.10A and B). Interestingly, even very low 

retention coefficients (re=0.125; one sibling effectively retaining 58% of the overall Pdam) 

are sufficient to prevent a symmetrically dividing population from reaching a “dead end” 

at moderate damage rates (Figure 4.10A).  
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Figure 4.10| Damage segregation and size asymmetry causes sibling-specific aging 

but increases the robustness of the system. (A) Effect of damage segregation (y-axis) 

on damage levels (k3; x-axis) triggering clonal senescence and replicative aging. Green 

bars indicate that both siblings produced during cytokinesis are immortal but exhibit 

longer generation times with increasing damage. Red bars indicate that the sibling 

retaining more damage at the time of cytokinesis undergoes replicative senescence, i.e. 

can only perform a finite number of new generations, whereas the other sibling is 

immortal. Empty bars indicate that the system has reached clonal senescence, i.e. a 

damage rate at which both siblings display a finite ability to produce new cells. (B) Effect 

of size asymmetry (y-axis) on damage levels (k3; x-axis) triggering clonal senescence and 

replicative aging. Color-coding is as described in “A”. 
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4.8.1.1 Generation time 
 

The simulations also suggest that the generation time of the damaged-enriched mother 

cell increases exponentially with each cell division in the system displaying damage 

retention whereas a slow linear increase is observed for mother cells without retention of 

damage (Figure4.11A). Again, the experimental data for mother cells of budding yeast 

fits best with the simulations of damage retention (Figure4.11B).  
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Figure4.11| Effect of damage segregation on generation time of the mother-cell 

lineage in an asymmetrically dividing system. (A) Changes in generation time (y-axis) 

are plotted as a function of age of the large mother cell in an asymmetrically dividing 

systems without (red) and with (blue) damage segregation. (B) Experimental data for the 

generation time of yeast mother cells as a function of the replicative age.  

 
 

4.8.1.2 Increase in size 
 

One of the biomarkers for yeast ageing process is increase in size. This is, probably, the 

most obvious feature of a senescent cell. Several studies showed that the volume of the 

yeast cell increases linearly with age and that the senescent cell can be four times as large 

as an exponentially growing cell.  

A system obeying the roles of Pdiv and damage propagation as stipulated in the equations 

requires that the mother cell becomes progressively larger with each division, which is 
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seen experimentally for yeast mother cells.  This is true for simulations of systems both 

with and without damage segregation and the differences are too small to use as a 

predictive factor for experimental results (Figure4.12). However, the simulations suggest 

that a virgin daughter cell of a budding yeast (asymmetrical system) needs to acquire a 

larger size before initiating cytokinesis if damage is not segregated; this is exactly what is 

observed in sir2 mutant daughter cells, which, on average, are 40% larger than wt 

daughter cells at the time of cytokinesis and display a 2-fold higher load of damaged 

proteins.   
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Figure4.12| Effect of damage segregation on size of the mother-cell lineage in an 

asymmetrically dividing system. (A) Changes in size (y-axis) are plotted as a function 

of age of the large mother cell in an asymmetrically dividing systems without (red) and 

with (blue) damage segregation. (B) Experimental data for the volume change of yeast 

mother cells as a function of the replicative age (adapted from Egilmez et al, 1990) 

 

4.8.1.3 Carbonilation levels 
 

The asymmetrically dividing yeast, S. cerevisiae, is known to segregate damage. Using 

the model, we tested how such segregation is predicted to affect the progressive 

accumulation of damage in the aging mother cells. As depicted in Figure 4.13A, damage 

segregation accelerates the accumulation of damage in aging mother cells and results in a 
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differential accumulation of damage during the cell cycle – mother cells that retain 

damage have longer generation times and the number of damaged molecules (per total) is 

somewhat decreasing during the cell cycle (Figure 4.13A).  In contrast, mother cells that 

do not retain damage exhibit more even levels of damage throughout the cell cycle and 

do not display the step-wise increase in damage upon cytokinesis observed in damage-

retaining mother cells (Figure 4.13A). We measured the concentration of oxidatively 

damage proteins (per total) in synchronized yeast mother cells during two successive 

divisions and noted that the damage displays a step-wise increase in the mother cell upon 

completion of cytokinesis (Figure 4.13B).   
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Figure4.13| Effect of damage segregation on damage accumulation of the mother-

cell lineage in an asymmetrically dividing system. (A) The ratio of damaged to total 

number of molecules (y-axes) in the large mother cells during progressive cell cycles in 

an asymmetrically dividing system without (red) and with (blue) damage segregation. In 

the system without retention, the large mother cells accomplish 7 divisions and the 

system with retention 4 divisions during the time shown. (B) Experimental data for the 

ratio of oxidized to total proteins during two successive cell cycles of yeast mother cells: 

an asymmetrical system known to segregate damaged proteins.  
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4.8.2 Effects of asymmetry on population fitness  
 

 
While the model suggests that asymmetrical systems can withstand higher degrees of 

damage before entering into clonal senescence, it does not necessarily mean that 

asymmetrical systems display an increased fitness or evolutionary advantage. If we 

define fitness as the number of entities produced, in total, per time unit, the population 

fitness of the different systems can be calculated at different damage production rates.  

When doing so for a system that divides symmetrically size-wise, damage segregation 

surprisingly improves population fitness at all damage rates analyzed (Figure 4.14A). 

Thus, the model predicts that damage segregation may be favored irrespective of the 

degree of damage in a system dividing by binary fission. A similar conclusion, at one 

fixed damage level, was reached by Ackerman et al. and Watve and al. who described the 

effects of differentiation between an aging parent and rejuvenated offspring in a 

population of unicellular organisms.  
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Figure4.14| Effects of asymmetries on population fitness upon increasing rates of 

damage production. Fitness, defined by the population size produced within one time 

unit (y-axis), is plotted as a function of increasing damage rate (k3; x-axis). The different 

retention coefficients modelled are color-coded and shown in the graph. (A) Fitness of 

symmetrically dividing systems (by size) displaying different degrees of damage 

segregation as indicated. (B) Fitness of an asymmetrically dividing system (by size) 

displaying no retention (green) and retention (red). (C) Fitness of a symmetrically 

dividing system without damage retention (black) compared to an asymmetrically 

dividing system without damage retention (green). (D) Fitness of a symmetrically 

dividing system with damage retention (blue) and an asymmetrically dividing system 

with the same degree of damage retention (red)   

 

 

 

In contrast, in a system with different-sized progeny, damage partitioning, based on the 

model and assumptions made, is only beneficial at high damage propagation rates (Figure 

4.14B). On the other hand, a population dividing asymmetrically will present a 

substantial fitness advantage over one dividing symmetrically at all damage rates (Figure 

4.14C). However, if damage is segregated, an asymmetrical system is favored at low 

damage but looses out at high damage (Figure 4.14D).  This can be explained by the fact 

that larger parent cells will reach the size for division (Pdiv) much faster than their 

symmetrically dividing counterparts (Figure 4.8 and 4.9). The fact that the smaller 

progeny have a longer generation time does not outweigh the parents’ rate as long as the 

proportion of intact constituents is sufficiently high. However, as the damage rate 

increases, the progenitor lineage slows down, making the fitness largely dependent on the 

smaller offspring. At this point, the beneficial effect of retention allows a symmetrically 

dividing population with retention to be equally well off, or overtake, an asymmetrically 

propagating one (Figure 4.14D). 
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4.8.3 Damage segregation in a system dividing by binary fission  
 
Segregation of damage has, so far, only been demonstrated for the asymmetrically 

dividing budding yeast. The fact that our simulations suggest that a system dividing 

symmetrically by size is more robust (withstand more damage before reaching clonal 

senescence) and displays an increased fitness at all damage propagation rates when 

partitioning its damage during cytokinesis raises the possibility that damage segregation 

is more common than previously anticipated and occurs also in cells dividing by binary 

fission. This prompted us to analyze the in situ distribution of carbonylated proteins in 

the fission yeast, Schizosaccharomyces pombe.  

 

While the volume of the two siblings is equal, previous landmarks of division (birth 

scars), will remain confined to one half of the growing cell and be inherited by one “sib” 

only (Figure 4.15). When following birth scars and protein carbonyls during the cell cycle 

in synchronized cells, we found that carbonylated proteins display a discrete and dynamic 

localization within the cell (Figure 4.16). Quantification of carbonyls demonstrated that 

damage is inherited asymmetrically between the two siblings such that the one with the 

previous birth scar always retains the largest load of the damage (Figure 4.16). After 

completion of cytokinesis, the newborn cells display most of their damage at the new end 

(Figure4.16).  
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Next generation

NETO

Calcofluor staining of cell wall  
 

Figure4.15| S.pombe progression through cell cycle. Localization of septum and birth 

scar(s), visualized with calcofluor white, in cells of S. pombe during progression through 

the cell cycle.  
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Figure4.16| Damaged proteins are asymmetrically segregated during binary fission 

of S. pombe. Distribution of carbonylated proteins during the cell cycle. Blue/purple 

denotes the highest concentration of carbonyls followed by red and yellow.  

 

We next investigated whether partitioning of damaged proteins between the two siblings 

correlated with differential fitness or longevity. We followed the replicative potential of 

both sibling lineages, arising from division of a common parent cell, which had already 

completed 9 divisions and thus accumulated damaged proteins (see Figure 4.17A). We 

found that the sibling enriched for birth scars and protein damage (“old” sib) displayed a 

shorter mean life span (12.5 generations) than the “young” sib (15.9 generations)(Figure 

4.17B), Moreover, the generation time of the damage enriched cell was markedly longer 

– 4.5 hours compared to 2.5 hours for the new sib (Figure 4.17C). This result points to a 

“sibling-specific” aging in S. pombe that correlates with the unequal inheritance of 

damaged proteins.  
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Figure4.17| S. pombe display sibling-lineage specific aging. (A) Schematic 

representation of the criteria used in discriminating between “old” (Sib-1) and “new” 

(Sib-2) sibling, derived from a common 9 generations old progenitor (starting cell). 

Vertical bars indicate birth scars, present as bulges on the cell surface, and here 

represented chronologically by different colors. Upon division, the cell with more birth 

scars (= more divisions) and rounder appearance was selected as the “older” sibling. 

These cells coincide with those inheriting more carbonylated proteins, as detected by 

immunofluorescence microscopy and here depicted by orange dots. (B) Replicative life 

span of the “old” sibling (Sibling-1; closed squares; n=75), and “new” sibling (Sibling-2; 

open squares; n=75) derived from a common 9 generations old progenitor cell. (C) 

Generation times for “old” (Sib-1) and “new” (Sib-2) sibling. 
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4.8.4 Pedigree analysis 
 
 
In the pedigree tree, a given mother cell generates a series of daughter cells: these 

siblings are ordered in time and the younger a sibling, the older the mother at the time of 

division. (Figure 4.18) 

 

Daughter number
Pdam inital
Generation time
Pdam terminal

Apsolut time of birth
Generation number

Cell id

#daughters/1time unit

 
 

Figure4.18| Extract of typical pedigree tree. Full tree is in Appendix A, section A.4. 

In the pedigree tree, the root represents the mother cell with following information: 

Daughter number – daughter reproduced by the root cell, Pdam initial – amount of 

damaged proteins at the beginning of the cell cycle for given daughter, Generation time – 

the length of the cell cycle for given daughter, Pdam terminal - amount of damaged 

proteins at the end of the cell cycle for given daughter, Absolute time of birth – 

cumulative time of birth counted from the fist daughter produced, Generation number –

depth of the tree developed for specific mother The second level of the tree represents 

grand daughters of root mother, third level are grand-grand daughters, and so one.  
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Analyzing the pedigree trees obtained from BioRica simulator can be hard since the 

generated trees are usually very large and overwhelmed with all kinds of information, we 

can extract data of interest for specific phenomena and generate simplified trees. 

Example of such a tree, made for capturing the behavior of damaged proteins at the point 

of cell division (end of cell cycle) for a successive daughter cells is shown below (Figure 

4.19). 

 
 

 

Figure 4.19| Simplified pedigree tree. The mother – daughter relationship is presented, 

showing only fitness and terminal damage amount. m- mother, di – ith daughter, mdi - ith 

daughter becoming the mother, ddi – ith daughters daughter, dmdi – ith daughter of mother 

obtained from ith daughter. 
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We observe in simulation results that younger siblings have higher damage, consistent 

with inheritance from an older mother that has accumulated more damaged proteins, and 

these younger siblings are thus born “prematurely old.” This increase in damage 

accumulation is reflected in the decrease of fitness values (Figure 4.19). 

 

 

4.8.5 Rejuvenation 
 

Extending analysis of the pedigree tree, one level further, we can obtain grand-daughters 

cell line (second generation). We observed that daughters born early to the same mother 

have low damage, and their daughters have normal fitness. Daughters born late to the 

same mother have high damage and lower fitness, but remarkably, in asymmetric division 

with or without retention, their own daughters are born with lower damage and higher 

fitness (Figure 4.20 and 4.21) 

 

This increase in fitness in the second generation is a rejuvenation effect, in part 

explaining how populations maintain viability over time despite inheritance of protein 

damage. The testable hypothesis is thus that there exists a mechanism for retention of 

damaged proteins during cell division, that attenuates the accumulation of such proteins 

in descendants, and that a combination of the precise value of the corresponding retention 

coefficient (re) and the asymmetry coefficients (smother and sdaughter) in the model 

determines the scale of the rejuvenation effect. These predictions are consistent with in 

vivo experimental results reported in the literature: Kennedy (1994) reported that 

daughter cells of an old mother cell are born prematurely old, with lower replicative 

potential, but that the daughters of these daughters have normal life spans. It should 

therefore be possible to experimentally estimate the value of the retention coefficient 

through indirect measures of cell lifespan and replicative potential.  

As a control, we also inspected the case of symmetric division without damage 

segregation (Figure 4.22). We would not expect a rejuvenation effect, since inheritance of 

damaged proteins should be proportional in both mother and daughter cells, and indeed 

this is what is observed.  
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Figure 4.20| Asymmetrical division without retention. Mother cell is represented in the 

root of the tree, in the second level all her daughters are given (this particular mother 

produces 25 daughters before dying). In the third level, daughters produced by daughter 1 

and daughter 24 are presented. Fitness is calculated as the number of cells produced per 

time unit. In the second level the fitness decreases as mother’s age increases. The 

rejuvenation effect is seen in the third level of the tree, where the first daughter produced 

from 24th  daughter (in the second level) has increased fitness.  
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Figure 4.21|Asymmetrical division with retention. Mother cell is represented in the 

root of the tree, in the second level all her daughters are given (this particular mother 

produces 20 daughters before dying). In the third level, daughters produced by daughter 1 

and daughter 19 are presented. Fitness is calculated as the number of cells produced per 

time unit. In the second level the fitness decreases as mother’s age increases. The 

rejuvenation effect is seen in the third level of the tree, where the first daughter produced 

from 19th  daughter (in the second level) has increased fitness.  
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Figure4.22| Symmetrical division without retention. Mother cell is represented in the 

root of the tree, in the second level all her daughters are given (this particular mother 

produces 20 daughters before dying). In the third level, daughters produced by daughter 1 

and daughter 18 are presented. Fitness is calculated as the number of cells produced per 

time unit. In the second level the fitness decreases as mother’s age increases. Since the 

division is perfectly symmetrical rejuvenation effect, as expected, is not observed. 
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4.8.6 Sensitivity Analysis 

 

Division threshold (Pdiv) – the amount of intact proteins that cell has to attain before 

division, can in theoretical approach mimic the various cell sizes critical for division. 

This can be used to simulate different mutants whose size is either smaller or larger then 

in the wild-type cells. Keeping all the parameters as before, we can decrease Pdiv as low 

as 1 molecule, and increase it up to 3500 molecules (at this threshold the system will not 

divide – we call this maximum size of the cell). As the level of Pdiv is decreasing, the 

number of divisions per one unit time will exponentially increase for all cells regardless 

of the division type. And, as we increase Pdiv, the number of division per one time unit 

will exponentially decrease. To verify the robustness of the system, the population size 

was obtained for both types of division, without retention and with retention (re=0.875). 

The results are showing the same trend and behavior as for the Pdiv=1500. The only 

difference is that the bigger the Pdiv, the lower damage system can handle (maximum 

damage is k3=1.2).  

 

Increasing the rate of degradation of damaged proteins (k4), such that k2 < k4, we will get 

daughters that will never reach clonal senescence, while their mothers will be able to 

cope with higher damage (k3). Higher rate of degradation for intact proteins (k2 > k4) will 

affect fitness of mothers and daughters and their capability of handling higher damage 

rates. Both, mothers and daughters will reach clonal senescence much earlier (k3=0.7). 

 
Finally, in simulations we observe that fitness and viability are sensitive to precise values 

of k3, the rate by which proteins are damaged. This provides a series of testable 

hypotheses that could be investigated experimentally in different damaging 

environments, such as oxidative damage or radiation damage. 
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5 Discussion 
 
Despite the large number of experimental data, the full understanding of complex ageing 

process is still unknown. The natural way would lead to development of mathematical 

models which would serve as a platform for better understanding of produced data, would 

allow integration of diverse information and postulate untested scenarios. With the 

instruments developed in the field of systems biology, tackling such issues become more 

feasible and realistic. 

  

This work represents the first dynamic ageing model and further more a model applicable 

to different species. Previous models were mainly stochastic (formation of ERCs 

developed by Gillespie, bacterial ageing model developed by Ackermann) or more 

general and very descriptive and not suitable for direct experimental comparison 

(disposable soma model and MARS model, both developed by Tom Kirkwood).  

 
 
In the this work we approached the questions of whether there is an advantage to 

producing daughter cells of different size, different loads of damage, and unequal 

reproductive potential. We investigated the impact of damage accumulation on 

population robustness and fitness and tested different strategies through which the effects 

of damage can be ameliorated. The models predicts that in a growing system adhering to 

the rules and assumptions made, there is a maximum amount of damage the cell system 

can tolerate, beyond which the proportion of intact constituents becomes insufficient for 

the cell to carry out any further division. In a completely homogeneous population, this 

point is marked by the simultaneous death (growth-arrest) of all individuals, i.e. clonal 

senescence (Figure 4.2A). The entities of the population could, of course, avoid such 

clonal senescence by reducing the rate of conversion of intact proteins to damaged ones 

(k3) or increasing the rate of damage protein removal (k4), i.e. by increasing their 

investment in classical maintenance pathways.  However, the simulations suggest that 

there are other means of “rescuing” a cell population having reached clonal senescence, 

mainly by diversifying individuals within the population. This can be achieved either by 
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unequal partitioning of damage during cytokinesis or producing progeny of different size. 

In either case, this diversification of individuals leads to lineage-specific aging. This is in 

line with views of Partridge and Barton (1993) and Kirkwood (1981), who considered 

potential benefits of asymmetry in simple unicellular systems and how this might develop 

into aging.  

 

The uneven distribution of damaged proteins may seem intuitive for organisms 

displaying markedly asymmetrical cytokinesis such as budding yeast; less so when there 

is no apparent distinction between the two sister cells. However, Stewart and colleagues 

demonstrated that Escherichia coli cells enriched with old pole material displayed a 

longer generation time than their new pole enriched siblings, indicating asymmetries also 

in systems dividing by binary fission. Although the measured differences in generation 

times are small in absolute terms, such asymmetry may be of significance for the 

robustness and fitness of the population.  Our model suggests that even very low 

retention coefficients, e.g. a scenario where one cell receives 58% and the other 42% of 

the damage, may have a great impact on the systems ability to escape clonal senescence, 

at least at moderate damage rates (Figure 4.10). As the damage rate increases, the damage 

retention, or size asymmetry, needs to be more pronounced to allow the survival of the 

population.  

 

However, when the total fitness (number of cells produced per time unit) of the systems 

is considered, damage retention may be a mixed blessing; for example, when considering 

a different cell-size organism like budding yeast, damage retention will push the upper 

limits for how much damage the system can endure before entering clonal senescence 

(Figure 4.10) but become a selective disadvantage at low damage production rates 

(Figure 4.14). This raises the question of whether the efficiency of damage segregation 

could be adjusted with changing environmental demands. Interestingly, damage 

segregation in budding yeast becomes more pronounced following increased oxidative 

stress, suggesting that this unicellular organism, indeed, enjoys the capacity to increase 

damage segregation upon conditions elevating such damage. In addition, unusually 

difficult growth conditions elicit a switch from a morphologically symmetrical to a more 
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asymmetrical type of division in fission yeast indicating that also this organism display a 

dynamic ability to break up symmetry upon environmental demands. 

 

One common assumption in reports modeling potential benefits of asymmetry is that the 

establishment of age asymmetry is linked to damage segregation. However, such 

segregation of damage has, as far as we know, only been shown in the asymmetrically 

dividing budding yeast and one of the somewhat surprising predictions of the model 

presented here is that a system dividing symmetrically by size (binary fission) display a 

higher fitness if damage is segregated regardless of the damage accumulation rate. This 

suggests that damage retention may be more common than previously anticipated and 

prompted us to analyze the distribution of oxidatively carbonylated proteins during 

cytokinesis in the fission yeast S. pombe. We show that S.pombe displays an uneven 

distribution of carbonylated proteins between siblings, which correlates with their 

longevity and fitness (Figure 4.15, 4.16 and 4.17). This result can explain why growth in 

the presence of minor stressors results in a higher mortality of the “sibs” with more birth 

scars, i.e. the ones shown here to inherit more damage. Even though partitioning of 

damaged proteins to the “older” sib is not as pronounced as that of the budding yeast, it 

appears to be sufficient to entrust the “younger” sib with a significantly longer replicative 

potential and shorter generation time (Figure 4.17). As stated above, our modeling 

approach predicts exactly this, i.e. that a small bias towards damage asymmetry has 

profound consequences on the population’s fitness and propagation. Our experimental 

results suggest that damage asymmetry is a purely random and stochastic phenomenon. 

In addition, the inheritance of the major load of carbonylated proteins is always 

coincident with the cell displaying more birth scars.  

 

In summary, within the constrains of the equations and the assumptions made, the data 

suggests that both damage and size asymmetries pushes the upper limit for how much 

damage a self-propagating unicellular system can tolerate before entering clonal 

senescence. We believe the data raises the possibility that sibling-specific aging and 

rejuvenation in unicellular systems may have evolved as by-products of a strong selection 

for damage segregation during cytokinesis. A question of interest is whether such 
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division of labor between cells undergoing division is retained also in multicellular 

organisms, for example during the generation of germ line cells or differentiation.  

 

 

This thesis showed that computational modeling poses considerable challenges at both 

theoretical and experimental levels. The model we developed is yet simple, but fully 

predictive, which, as stated at the beginning of this work, is the main feature a model 

should have. As a first step ageing model confirmed the findings of well studied model 

organism – S.cerevisiae (changes in size, generation time and damage load), then showed 

the importance of having damage segregation mechanism to ensure the immortal 

population. Finally, the model predicted the damage segregation on symmetrically 

dividing system – S.pombe, which was not previously anticipated. This led us to 

conclusion that asymmetrical damage distribution is one of the key factors in ageing 

organism and that immortal populations are not specific to size-wise asymmetrically 

dividing systems. 

 

 

 
.  
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Appendix A 
 
A.1 Quantitative results of population study 
a) 

TTyyppee  ooff  ddiivviissiioonn  

AAssyymmmmeettrriiccaallllyy  
ddiivviiddiinngg  ssyysstteemm  

wwiitthhoouutt  rreetteennttiioonn  

  

AAssyymmmmeettrriiccaallllyy  
ddiivviiddiinngg  ssyysstteemm  wwiitthh  

rreetteennttiioonn  00..887755  

  

SSyymmmmeettrriiccaallllyy  
ddiivviiddiinngg  ssyysstteemm  

wwiitthhoouutt  rreetteennttiioonn  

  

SSyymmmmeettrriiccaallllyy  
ddiivviiddiinngg  ssyysstteemm  wwiitthh  

rreetteennttiioonn  00..887755  

  
Population size area 35310.39 13385 1022.9 1450.82 

 
b) 
TTyyppee  ooff  ccoommppaarriissoonn 50-50 re 00..887755 

   vs. 
50-50 no re 

25-75 re 00..887755 
   vs.  
25-75 no re 

25-75 no re  
   vs.  
50-50 no re 

25-75 re 00..887755 
   vs.  
50-50 re 00..887755 

damage 1.8 <1.8 >1.8 All <0.8 >0.8 
Partial winners 1.56* 2.7 1.27 34.52 12.93 1.6 
overall 1.42 2.64 34.52 9.2 

 
 
Table A1| Population summary. a| Total population size area for each division type. 

The areas are calculated using numerical integration of the functions obtained by fitting 

the data points from simulations using least-square method. b| Comparisons between 

different types of division with or without retention are shown.  Overall section gives 

an estimate of how much is one population favorable then the other. It is simply the ratio 

of first and second model we compared (e.g. 1.42=1450.82/1022.9). Partial winners 

section gives the closer insight how favorable one model is to the other under different 

damage rates (e.g. up to the damage rate 1.8 asymmetrically dividing system with 

retention 0.875 is 2.7 better then the same system without retention, while for the 

damages higher then 1.8 system without retention is 1.27 times better). * 1.56 is 

comparison of population sizes (not the areas) for this particular damage rate, since this is 

the only point when symmetrical system without retention will overcomes same system 

with retention.  
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A.2 Quantitative results of damage partitioning   
 
 

Asymmetrical division Symmetrical division          size       
re 25 75 50d 50m 

0 0.25 0.75 0.5 0.5 
0.125 0.21875 0.78125 0.4375 0.5625 
0.25 0.1875 0.8125 0.375 0.625 

0.375 0.15625 0.84375 0.3125 0.6875 
0.5 0.125 0.875 0.25 0.75 

0.625 0.09375 0.90625 0.1875 0.8125 
0.75 0.0625 0.9375 0.125 0.875 

0.875 0.03125 0.96875 0.0625 0.9375 
 
Table A.2| Distribution of damage. Distribution of damage is not only depending of 

retention coefficient, but it depends on the size of the entity as well. In the table different 

retention coefficients and different sizes of the entity and actual distribution of damage 

are presented. 
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A.3 Carbonilation levels – simulation results  

Carbonilation levels during generation time 
Symmetrical without retention Symmetrical with retention Asymmetrical without retention Asymmetrical without retention 
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Figure A3| Carbonilation levels during generation time. Asymmetric and symmetric division, with and without damage segregation, 
for low, moderate and high damage rates. Mother’s lineages are presented in blue, daughters in red.  
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Appendix B 
 
B.1 Derivation of the equation for cell division 
 
When constructing the equations for cell division we assumed that amounts of intact and 
damage proteins within the progenies and progenitors are constant before and after the 
division. 
Also, the amounts of intact (damage) proteins are conserved within the entity (entity is 
defined as a mother and/or as a daughter) before and after the division. 
 
When including the retention coefficient in the equations, the distribution of intact will 
depend on levels of damaged proteins, retention and size of the cell, due to the above 
assumptions. 
 

1. Damaged proteins in the mother cell: 
 

Assumption:
1 1 1                                 (1)

1 1 1

Follows:
1                                        (2)

dam dam

dam dam

dam dam

P ( m ) P ( m )( re )
P m P mX

( m )( re )X
m

P m P ( m ( m )re )

− → − −

→

− − −
⇒ =

→ + −

 

 
2. Intact proteins in the daughter cell: 
 

 
Assumption:

1 1 1
1 1

1

Follows:

1 1 1                              (3)

dam dam
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dam
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dam
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3. Intact proteins in the mother cell: 
 
 
Assumption:
 1                                  

11

Follows:
11                                  (4)

dam dam

int int

dam

int

dam
int int

int

P m P ( m ( m )re )
P m P mZ

P mZ re
P m

P mP m P m( re )
P m

→ + −

→

−
⇒ = −

−
→ −

 

 
Where: 
 

 - mother
1  - daughter

 - retention in the mother
1   - retention in the daughter

m
- m

re
- re

 

 
Finally: 
 
From (1) and (4) follows: 
 

( ) ( ) ( )
( ) ( ) ( )

1 1

1
dam dam daughter

int int daughter dam daughter

P g P g s re

P g P g s P g s re

+ = ⋅ ⋅ −

+ = ⋅ + ⋅ ⋅
                             (5) 

 
And the total amount of proteins in the cell in the next generation (P(g+1)) is simply the 
sum of the equations (5): 
 
( ) ( ) ( )1 int daughter dam daughterP g P g s P g s+ = ⋅ + ⋅  

 
And this is the set of equations describing the cell division for the progenies and 
corresponds to the equations 4.6 given in this thesis. 
Similarly, the equations 4.5 can be derived. 



 119

 
B.2 Euler’s method for solving ODEs 

Theorem (Euler's Method)   

Euler’s Method assume that  f ( t , y )   is continuous and satisfies a Lipschits condition1 
in the variable y , and consider the initial value problem: 
 
      y' f ( t , y )=  with 0y( a ) t α= = ,  over the interval a t b≤ ≤  . 
         
Euler's method uses the formulas: 
 
 1k kt t h+ = + ,  and 1k k k ky y hf ( t , y )+ = +  for 0 1 2 1k , , , ...,m= −  
   
 
as an approximate solution to the differential equation using the discrete set of points     
 

{ } 0
m

k k k( t , y ) =  

 

Error analysis for Euler's Method 

  
When we obtained the formula 1k k k ky y hf ( t , y )+ = +   for Euler's method, the 

neglected term for each step has the form
2

2
2

( )
ky ( c )

h .  If this was the only error at each 

step, then at the end of the interval[ ]a,b , after m steps have been made, the accumulated 
error would be: 

2 2 2 2
2 2 1

1 2 2 2 2

( )m ( ) ( ) ( )
k

k

y ( c ) y ( c ) hmy ( c ) ( b a )y ( c )h m h h h ( h )ο
=

−
= = = =∑  

 
 

1A function f ( x )  satisfies the Lipschitz condition of order β  at 0x =  if 0f ( h ) f ( ) B | h |β− ≤  

for all | h | ε< , where B and β  are independent of 0h,β > ,  and α  is an upper bound for allβ  for 
which a finite B exists.  
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 B.3 BioRica system  
 
System 

 

BioRica is a high-level modeling framework integrating discrete and continuous multi-

scale dynamics with the same semantic domain, offering an easy to use and 

computationally efficient numerical simulator. 

It is in this precise sense of mixing different dynamics that BioRica models are hybrid 

following classical definitions. Moreover, BioRica models are built hierarchically. Alur et 

al. defined two types of hierarchy: architectural and behavioral. While BioRica admits 

both, in this work we are only concerned with the former. This type of hierarchy allows 

for both concurrency and parallel composition. Each cell is encoded by a BioRica node 

that has a 2-level hierarchy: a discrete controller and a continuous system. The former 

detrmines the distribution of proteins at division time using the discrete transition 

assignements (4–6) and (7–9), while the latter determines the evolution of protein 

quantities during one cell cycle and is realized by the equations (1–3). 

More precisely, the discrete controller is encoded by a constraint automaton defining the 

discrete transitions between states. A state of a cell ci is a tuple i i i
int damP , P , D , where 

i
intP  and i

damP are protein quantities as previously defined, and Di is a vector of integers 

representing the indices of every daughter of ci. A transition between states is a tuple 

G ,e , A , where e is an event, G is a guard and A is an assignment. In our case we have: 

for mitosis (event e), if the threshold of the cell size is attained Pint = 1500 (guard G), 

then create a new BioRica node cj for the daughter of the current cell ci, add cj to the 

vector Di, and perform the assignments (see equation 3–6) (assignments A of state 

variables). A second discrete event representing clonal senescence is triggered whenever  

0intP∂ < .  

 

 

The cell population is encoded by a BioRica node using the mechanism of parallel 

composition. This node contains the population array Pop, the root of the lineage tree R 
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and the parameter vector P . Since our model focuses on the division strategy, it considers 

the growth medium as a non limiting factor; and consequently we do not account for cell 

to cell interactions. This absence of interaction is directly modeled by parallel 

composition of independently evolving cell nodes.  

 

Algorithm 
 

We now describe our method for efficient simulation of the cell population model 

described in section 4.6.3, beginning with an overview of the general simulation schema 

(algorithm 1) followed by a concrete specialization for damage segregation. 

The simulation schema for a given BioRica node is given by a hybrid algorithm that deals 

with continuous time and allows for discrete events that roll back the time according to 

these discrete interruptions. The time advances optimally either by the maximal stepsize 

defined by the adaptive integration algorith, or by discrete jumps defined by the minimal 

delay necessary for firing a discrete event. 

 

As shown in algorithm 1 the simulation advances in a while loop. This loop is interrupted 

either if the simulation time is up, or if the test alive indicates that this node has died in 

the current or previous state. The node evolves continuously by calling 

advance_numerical_integration, after which we check whether any guard G of some 

event G,e, A  was satisfied. In such a case a number of updates are performed: the time 

is set to the firing time of e, e is stored in the trace database, the current state S is set 

according to the algebraic equation A, and the numerical integrator is reset to take into the 

account the discontinuity. The correctness of algorithm 1 is assured by the fact that no 

discrete event is missed. As illustrated on figure 4.5, the step size proposed by the 

numerical integrator guarantees that the continuous function is linear between the current 

time t and the maximal step size. In this way the detection of discrete events whose 

guards have been satisfied in this interval is reduced to computing the first intersection. It 

is the event e with the smallest firing time that is retained for the next discrete transition. 

After this transition the numerical integrator has to restart from the point defined by A. 

 



 122

Implementation  

 

The software architecture of the BioRica platform consists of three main parts: the 

compiler, the simulator and the interface. The compiler transforms the textual description 

of the model given in the BioRica modeling language or an SBML file into a set of C++ 

classes, each of them corresponding to a distinct Bio-Rica component. These classes are 

linked at compile time with a static BioRica library that runs the simulation. This library 

provides methods for multithreaded multi-scale hybrid simulation, by using numerical 

integrators of the GSL library that interacts with a discrete event solver. The simulator 

generated in native code accepts command line arguments setting the simulation-specific 

(maximal time, random seed etc.) and model-specific parameters. Simulation results are 

stored in a relational database. In the context of the damage segregation model, the 

requirement is to be able to store lineages trees. This implies a serialization step that 

flattens the tree topology in order to represent it as a vector of couples of cells ids. These 

couples are directly encoded as a database table, in relation with a table storing the 

model-specific parameters. The latter enables fixed point detection, as well as provides 

the possibility to pause and restart batches of simulation at any time and at any node 

during the exploration of the model. A set of python scripts performs simulation trace 

analysis. In particular, generation of graphical output using the graphviz package, 

interactive visualization with the Tulip software, and statistical analysis with R and 

Mathematica. Notice that since we put no restrictions on the guards of the events of a 

node, more than one guard can be satisfied in the same state and at the same time. If the 

system is in one of those non deterministic states, the simulation algorithm needs to 

decide which of those concurrent events will be scheduled. To this end, the discrete 

controller part optionally describes the probability of an event relatively to other 

concurrent events. A more advanced description can even contain probability distribution 

on the events duration, thus enabling stochastic race conditions between concurrent 

events. 
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Appendix C 
 
C.1 Carbonilation assay of yeast proteins using slot blots  
 
Derivatisation of protein samples: 
 
� Dissolve 1 µg protein sample in PEB* for a total volume of 5 µl (if necessary, 

dilute the original sample, as to have a suitable amount of liquid to add). 

� Add: 5 µl SDS 10-12% (w/v) + 10 µl 1x DNPH (hood!) 

� Vortex and spin down. 

� Let reaction proceed for 15 min at RT. 

� Block reaction by adding 7,5 µl of neutralizing solution  (Oxyblot kit, Intergen) 

and mix immediately, so that color turns uniformly from yellow to red. 

� Add sterile water up to a final volume of 80 µl, vortex and spin down (keep 

samples on ice).  

 
Dot blotting: 
 
� Cut out a piece of PVDF membrane and wet it briefly in transfer buffer**. 

� Cut out 3-5 sheets of Watman 3 paper of the same size and wet them briefly in the 

same transfer buffer. 

� Insert the paper in the slot blotter, cover with the membrane and tighten well the 

top lid on the blotter. 

� Attach the blotter to the vacuum pump, check that the transfer buffer is passing 

through. 

� Load duplicates of 35 µl each of the protein samples in the single slots. 

� When blotting is complete, remove the vacuum tube and open the blotter. 

� Wash the membrane in PBS-Tween + Milk powder, to block the proteins, and 

leave it shaking for ~ 40 min (you can also leave the membrane incubating ON at 

4°C. 

� Wash the membrane 2-3 x with a small amount of PBS-Tween, to remove the 

milk. 

� Add a solution of the 1st antibody (50 ml PBS-Tween + 333 µl Rabbit-Anti DNP). 

� Incubate shaking for 1h: 30 min, RT. 
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� Wash the membrane 3x 10 min in PBS-Tween. 

� Add a solution of the 2nd antibody (50 ml PBS-Tween + 166 µl Goat-Rabbit-Anti 

DNP). 

� Incubate shaking for 30 min. 

� Wash 2x 5 min + 3x 10 min in PBS-Tween. 

� Add Horseradish Peroxidase solution  (5 ml Luminogen reagent + 125 µl reagent 

B, ECL-PLUS, Amersham Pharmacia). 

� Incubate 5 min, RT, shaking and then insert between two overheads and visualize. 

 
*PEB (Protein Extraction Buffere) :   - 10% glycerol 
     - 2mM EDTA pH 8 
     - 1mM Pefablock or Phenantroline or PMSF as  
        protease inhibitors; 
 
** Transfer Buffer :    - 100 ml 10X Transfer Buffer 
   - 200 ml MetOH / EtOH 
   - 700 ml dd-water 
 
   10X Transfer Buffer:  
   - 30 g Tris base 
   - 144 g Glycine 
   - 10 g SDS 
   - dd-water to a final vol of 1 l 
 
 
 
C.2 Separation of Mother and Daughter Cells 
 
Old mother cells were obtained by centrifugal elutriation (38) by using a J-20 XP 

centrifuge equipped with a JE 5.0 rotor (Beckman Coulter, Fullerton, CA). To enrich the 

culture for old cells, two successive rounds of elutriation were performed, allowing for 

over night growth in between. Cells were subsequently resuspended in PBS and loaded in 

a 40-ml separation chamber at 32 ml/min and312–385 X g; old cells were elutriated at 90 

ml/min and 35–62 X g. The cells thus obtained were grown again for one generation and 

subjected to a last round of elutriation at the same settings to separate the mothers from 

their daughters. Separation of young mother and daughter cells was achieved by loading 

exponentially growing cultures in a 5-ml separation chamber and by using a cutoff of 10 
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ml/min at 728 X g (daughters) or 20 ml/min at 385 X g (mothers). The efficiency of 

every sorting was confirmed by Calcofluor White (Sigma, St. Louis, MO) staining and 

bud scar counting. 

 

C.3 S.pombe protocol 
 
 Strains 

All strains used in this study were isogenic or derivatives of the 972h- wild type and were 

kindly provided by Per Sunnerhagen at the CMB, Göteborg University. The sir2Δ and 

tea1Δ mutants were derived from strain sp286 (ade6-210 ura4-D18 leu1-32 h+) and had 

the gene of interest replaced by a KanMX4 cassette. 

 

Immunofluorescence 

Cells were grown to OD600=0,7 in YES medium (1% yeast extract, 3% glucose), washed 

and resuspended in 50 ml PBS. They were then synchronized by centrifugal elutriation 

using a JE5 rotor (Beckman-Coulter) so that those with a length of <9 µm were collected 

at 1800 rpm and 45 ml/min. The cells collected were resuspended in YES and allowed to 

grow at 30°C. Aliquots were taken at different times hereafter and stained with calcofluor 

white to determine the septum and birth scar(s) location. In situ preparation and detection 

of carbonyls was carried out as described previously with some modifications. 

Approximately 30-40 cells were analyzed for each sample. 

Treatment with Latrunculin A (Wako) and Benomyl (Fluka) was carried out as 

previously described, and co-staining with DAPI and Fluorescein-Phalloidin (Mol. 

Probes) was performed in accordance with previous protocols. 

 

 

Life span analysis 

 

Wild type cells were placed on a plate and allowed to divide once at which point the 

sibling devoid of birth scars was kept, while its sister was discarded. This “virgin” sib 

was then followed for 9 successive generations, by removing the “scar-free” sister sibs 

generated at every division. At this point both siblings were isolated: the one with the 
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greater number of birth scars and roundest appearance was defined as the “old” sib; 

whereas its more regularly-shaped “scar-free” counterpart was defined as the “new” sib. 

The replicative fates of these two sibs were then followed independently and their 

generation times and number of divisions were recorded. 
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