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Abstract

We study two fundamental processing steps in mass spectrometric dataisafiays a
theoretical and practical point of view.

For the detection and extraction of mass spectral peaks we developefficeante peak
picking algorithm that is independent of the underlying machine or ionizatidhadeand is
able to resolve highly convoluted and asymmetric signals. The method uses theatiltis
nature of spectrometric data by first detecting the mass peaks in the wasakdistmed signal
before a given asymmetric peak function is fitted to the raw data. In two opstages, highly
overlapping peaks can be separated or all peak parameters canthmr forproved using
techniques from nonlinear optimization. In contrast to currently establigloddiques, our al-
gorithm is able to separate overlapping peaks of multiply charged peptidesESL-G/S data
of low resolution. Furthermore, applied to high-quality MALDI-TOF spedtngelds a high
degree of accuracy and precision and compares very favorably vethlgiorithms supplied
by the vendor of the mass spectrometers. On the high-resolution MALDBtrapes well as on
the low-resolution LC-MS data set, our algorithm achieves a fast runtimelpbdew seconds.

Another important processing step that can be found in every typicabquibfor label-
free quantification is the combination of results from multiple LC-MS experimentapoove
confidence in the obtained measurements or to compare results fromrdiffaraples. To
do so, a multiple alignment of the LC-MS maps needs to be estimated. The alignazent h
to correct for variations in mass and elution time which are present in all ppastrametry
experiments. For the first time we formally define the multiple LC-MS raw and ffeatu
map alignment problem using our own distance function for LC-MS maps.thé&umore,
we present a solution to this problem. Our novel algorithm aligns LC-MS sangoie
matches corresponding ion species across samples. In a first steps ihusadapted pose
clustering approach to efficiently superimpose raw maps as well as feafype This is done
in a star-wise manner, where the elements of all maps are transformed ordootiuénate
system of a reference map. To detect and combine correspondingeeatumultiple feature
maps into a so-called consensus map, we developed an additional stdpbasehniques
from computational geometry. We show that our alignment approach isafastreliable
as compared to five other alignment approaches. Furthermore, we isawbustness in
the presence of noise and its ability to accurately align samples with only few corano
species.
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Chapter 1

Guide to the thesis

This thesis is divided into three parts. In this first part, we will elaborate @sepectrometry
in general and the OpenMS framework for the analysis of mass spectrodet. The second
and the third part each present one major line of research. They Wloth the same structure:
we shall start with an overview of some basic theoretical concepts (CGtapie 11), then give
an introduction to the peak picking problem (Chapter 6) and LC-MS map alighmespec-

tively (Chapter 12). After a description of the state of the art and related im Chapter 7 and
13, Chapter 8 and 14 are devoted to our own contribution. In Chapted @3rexperimental
results are presented; results are discussed and conclusionsvemerd€zhapter 10 and 16.

An overview of the notational conventions is given in the next section.\W¢pecific terms are
first defined, they are put italics and their abbreviation, which may be used later on, is given
in parentheses. Some useful terms are also described in the glossary.

1.1 Notations

N Positive integers including 0

N* | Positive integers excluding 0

Real numbers

Complex numbers

Complex conjugate af € C

LP | Space of functions such th#t: | f (t)|P dt < +oo with p e N*

hxs | Convolution of two continuous signass € L': hxs= [7"h(u)s(t — u) du
id Identity transformation

N O B







Chapter 2

Motivation and own contribution

A fundamental discovery of the last century was that of the structurdrapdrtance of the
genome. Over the past decades, the full genetic information could berssgifor a variety
of organisms. As of December 2007, the NCBI Genome database lists 2¢detik genomes,
most notably the human genome that was fully sequenced only in EO_O_S__CQLEHQE_OJ.%]
after a draft sequence had been published two years eﬁmer_[LendEQO_Q [Jemgr_e_t_bl.,

]. Despite the availability of the sequence information, many important lialogues-
tions remain unsolved. The approximately 21,000 human gén_e_s_ﬂma.uiih‘m@] can be
expressed into more than a million human prot@@, 2004] by comigleaciions such
as alternative splicing and single nucleotide polymorphisms (SNPs), whietptake during
the transcription and translation process, as well as a plethora of pogsiil¢ranslational
modifications (PTMs) (see Figure 2.1). To understand living cells, thexse gnd products are
at least as important as the genetic “blueprint” itself.

The termproteomewas initially proposed 1994 at the first congress “From Genome to Pro-
teome” in Siena; it referred to the description of f@teins described by a geme at a
particular time in a given cell, tissue, species, etc. Hence, a single genomerigamism cor-
responds to a multitude of proteomes, because the protein composition vahehanging
conditions. | Tyers and Mahlh_[;d03] expanded the t@muteomics the analysis of the pro-
teome, to almost everything “post-genomics” related to proteins. Todaygmmics research

is no longer limited to the study of all proteins, but includes the characterizafiati pro-

tein isoforms and modifications, the interactions between them, the structsalpdien of
proteins, and their higher-order complexes.

The analysis of proteins has not just become interesting within the lasteeacadearch has
been actively pursued in this field for almost a century. However, at the &inmadyzing tech-
niques were limited and many researchers spent their whole careergtmsioteins, though
the consensus already was that individual proteins are not able yootartomplex biological
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Figure 2.1: The different subsequent steps on the way from a genetic ¥gience to a final protein
end product in eukaryotes. The protein synthesis starts thé transcription of the DNA sequence
into pre-RNA. Alternative splicing and SNPs modify the pr&RNA and result in mRNA. The nucleic
MRNA sequence is afterward translated into the amino-agiglence of the resulting protein. The
protein is often chemically modified in a subsequent sted£Buch as glycosylation or phosphoryla-
tion, are typically performed to achieve specific functiomigiectives or may be the result of metabolic
changes caused by disease states.

functions and always need to interact with other proteins.

The development of a multitude of sophisticated analytical techniques within 8te la
decadeSLLI:LQn@'_el_aJ.l_ZQ_d4] as well as the huge increment in the entries in protein anducle
acid databases now allows for the solution of a lot of interesting cell biolaggtipns. Today,
the main approaches of proteomics research are: the analysis of pré¢eaciions, the anal-
ysis of protein PTMs, the analysis of protein structure, and protein ppfifmotein profiling
deals with the sketching of complex networks and pathways of proteins argetteration of
protein-protein linkage maps. Another task is the detection of quantitativegelbdn protein
abundance that can be used, e.g., to determine the cellular function dhprdtarthermore,
protein profiling aims at the annotation and correction of genomic sequefi¢es Human
Proteome InitiativeL[D;D_QnmLan_elHL_ZdOI] has already annotate#7A%human sequences
in the UniProtKB/Swiss-Prot database (December 2007, release 54&3e Fequences were
derived from about 1, B0O6 human genes. The ¥b9 additional sequences correspond to alter-
natively spliced isoforms. The UniProtKB/Swiss-Prot database (Deae20d, release 54.6)
furthermore contains 5201 experimental or predicted PTMs of human proteins an@4&Y
polymorphisms (many of which are linked with disease states).

Expression profiling can not only be done for a whole cell, but also dulaecompartments
and organelles and their time-resolved dynamics. Thus, proteomics dateaésa huge influ-

6



Chapter 2. Motivation and own contribution

ence on clinical diagnosiLs_[BelﬂC_oiLe_{ EL_2|002] and the detection of bi@rsgar-urthermore,
it is essential for systems biology, which aims to combine different genomatgrmeomics
results obtained from the same biological sistem to gain a better undergtaridiomplex

biological processels_[gs_e_te_a.nd_tlb 2001].

These questions require not only an abundance of genetic informatibpaaverful experi-
mental techniques, but also sophisticated analytical methods to procgsstaodether all the
resulting data.Computational proteomicaims at the automated analysis of proteomics data,
which is clearly necessary due to the high complexity and the sheer amoutataof

In this thesis, we shall concentrate on two important steps in typical analgtioegédures for
proteomics data, and present efficient algorithms to analyze mass spddgoneasurements
of complex protein samples. Nowadays, mass spectrometers have beconmkherse for
high-throughput protein identification and quantification; in the following,wi therefore
briefly describe these two mass spectrometry applications.

The analysis of proteomic samples requires a very sensitive tool sincerlicerdrations of
the proteins in a proteome can vary extremely. This so-called “dynamic'raagebe up to
12 orders of magnitude in body fluids and 7 orders of magnitude in E_elli{mraﬂJ_IB_QIS]

Mass spectrometry (MSjs highly sensitive, but to obtain stable molecular ions from
large biomolecules such as proteins is difficult. Only the development of tvte so
ionization techniques in the late 1980'dMlatrix-Assisted Laser Desorption/lonization
(MALDI) [ 88] ahtkctrospray lonization

Karas and Hillenkamp, 1988; Tanaka et
(ESI) [Alexandrov et dl), 1984; Fenn ef al., 1989; Yamashita and,FE984] allowed for the

routine use of mass spectrometry as a sensitive analytical tool for compleopmic samples.

Mass spectrometers comprise of an ion source ionizing the analyte contpoaenass ana-
lyzer separating the ions according to the@ss-to-charge ratio (m/zand a detector measur-
ing theamount of ion®r intensityat each m/z value unit. The one-dimensional signal resulting
from a mass spectrometric measurement is calle@ss spectrum

The accuracy of a measured protein mass itself does not allow for assfidddentification of
a protein’s amino-acid sequence. However, the masses of the peptidbsandproduced by a
digestion of the protein with an enzyme of known cleavage can be used tdydba protein.

In 1993 five different groups_[Henzel et'al., 1993; Mann étlal., 198&ppin et dl.| 1993;
Llamﬂs_el_élll._lﬁbji._ial&s_el é.L._;IJ993] developed algorithms that usettbm g peptide

masses determined by MS together with the knowledge about the cleavaifecitp@f the

enzyme, and a protein database to uniquely identify proteins in MS data. Tihédea is to
find the matching protein by correlation of the measured peptide mass patterth@adtitical
peptide mass patterns, resulting from the in silico digest of the proteins in thieaga. This
approach is callegeptide mass fingerprinting (PMIy peptide mass mapping




The development dandem mass spectrometersViS/MSallowed for another protein identifi-
cation techniqué_[ﬂm_e_LHl_..ﬁSG] more specific than PMF. These institsihave more than
one analyzer and the idea is to isolate specific ions in the gas phase withirtthmigst. These
so-called precursor ions are fragmented by collision-induced dissotigdiD) Ms,
] and allow the recording ®flS/MSor tandem spectrm, 2]. Since peptide
ions fragment in a sequence-dependent manner, the MS/MS spectaupeptide, in princi-
ple, represents its amino acid sequence. Hence, given the fragmempaitblS/MS spectra
along with the m/z values of the precursor ions the proteins in a sample canriiiede

directly 'MQ etal.) 2003; Daiik et al., 1999| Zhang, 2004; Taylor and Johﬂlsbﬂ‘_bOOl] or by
means of the sequences in a protéil[lib_bjeh_ﬂ iO_OLﬂeMJSJ_e_t@ISL&Ig_md_Be_&\}IS
|;0_0_4{l;|_G_e_er_e_t_$I|._.LQb4] or EST databeis_e_mmad etal) 200ddfdrence to the shotgun

genomics sequence approach in which DNA is broken into smaller piecesgpsequencing
and reassembling in silico, the identification of complex protein mixtures bas#tkaliges-
tion of proteins into peptides and sequencing them using tandem mass spoirs called
shotgun proteomics

Peptide mixtures of very high complexity often require an additional separstiip to physi-
cally separate parts of the sample prior to the injection into the mass spectro®meeecom-
monly used approach is LC-MS (or LC-MS/MS), which is the coupling of MENIS/MS)

to liquid chromatography (LC)In LC the analyte solvent mixture, the so-called mobile phase,
is forced through a chromatographic column, the so-called stationarg pAasilyte compo-
nents are separated according to their interaction with the stationary pichffeesefore elute

at specific time points, so-calledtention times (RT)The eluting analyte solvent mixture is
introduced into a mass spectrometer for a determination of the mass to chiavg# tize elut-

ing analytes. The resulting signal consists of a sequence of MS speath.of these spectra,
called ascan represents a snapshot of the peptides eluting from the column duriregldifixe
interval. We call the collection of all unprocessed scans originating frorhaGMS run an
LC-MS raw map Each element of an LC-MS map represents the ion count that is measured
at a certain RT and m/z value. Figurel2.2 shows a part of an LC-MS raw nththa mass
spectrum measured after 588 s.

Mass spectrometry allows not only for protein identification, but also fotgin quantification.
Even though the relationship between the amount of analyte present in esardghe mea-
sured signal intensity is complex and incompletely understood, MS is a ptegbnique for
relative and absolute quantification experimehls_[Qng_a.nd_Ma.nﬂJ 200tedefore, the mea-
sured ion counts are used to derive a relationship between the peptidtitigaaf interest.
Absolute quantification uses isotope-labeled homologs of specific protepbpiides from
the target proteiH_[Q_eLb_er_eﬂéh_..lb@;@f_et_ﬂ., ZQQIS|; Mayr et $I|_‘Lbe Kirkpatrick eﬂ al.,
]. However, relative quantification can be achieved either by deldloe by a label-free
approach. Labeled quantification uses isotope or mass tag labeling ofgse@itd the two
samples of interest are covalently modified by isotopically different aneftiedistinguish-
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Figure 2.2: Left: Three-dimensional plot of an LC-MS raw map. The map padses a collection of
mass spectra measured at subsequent retention times: Riaga spectrum obtained %658 88s.

able chemical reagends_[Zhg_u_el E.L_deZ._Qng_andMa.anJ 2005]. Ajththese techniques

bypass problems due to ion-suppressive effects of co-eluting peptigsare often expen-
sive and require the comparisons of only two to four samples, which pree&ospective
comparisons and complicate large studies with multiple samples. The label-&etfigation
approach is a promising alternative and allows for the quantitative comparisoultiple sam-
ples. Several studies have demonstrated that mass spectral peak istefgiptide ions cor-
relate well with protein abundances in complex samﬂ)l_e_s_[&OQd_ﬂen_kb@_@ ;wag_el_dl.,

2003 Schulz-Trieglaff et al.. 2007; Old et al., 2005].

A successful protein identification and quantification requires the aecaral precise deter-
mination of the m/z and intensity values corresponding to all peptides in a prppieally, an
analysis pipeline that extracts the information of interest from the LC-MSiga@mposed of
the following operations (steps of particular relevance to this thesis artegiimbold)

e signal filtering and baseline removal: remove noise and baseline artifacts,

e peak picking: find and extract the accurate positions, heights, t@l ion counts, and
FWHM values of all mass spectral peaks,

e identification algorithm: identify the proteins in a sample given the mass speet&l p
information,

e feature detection and quantification: detect and extract patterns of trestlcorrespond
to the same charge variant of a peptide,

e intensity normalization: normalize the ion counts,



e multiple map alignment: correct the distortion of the RT and m/z dimenson of mul-
tiple raw or feature maps; in case of feature maps, assign corregmding features
afterward,

e classification algorithms and biomarker discovery: find differentially esged peak or
feature patterns that can be used to classify samples, e.g., from diffefestates.

Depending on the underlying type of mass spectrometer, a raw LC-MS mealpava a size
of several hundred megabytes up to several gigabytes, whereaa enigll fraction of data
contains the signal of interest. This accentuates the need for fastfantivef algorithms for
each of the analysis steps mentioned above to allow for high throughpebprizs approaches.

Two essential steps for the analysis of MS-based proteomics data &nipidag and multiple
LC-MS map alignment. In the following, we will introduce both problems and outline
novel approaches to solve them.

Peak picking in mass spectra

The detection and extraction of mass spectral peaks plays an importaint ealeh identifica-
tion and quantification analysis pipeline. Whereas a reliable protein or pegédafication

mainly depends on the accurate and precise determination of the m/z values peptide
ions, quantification needs exactly determined ion counts corresponding faefitides in a
sample. A general approach, which extracts all the mentioned characsapigthe interesting
signal, even of low abundant peaks, without any loss of information]dvagilitate not only

protein identification and quantification, but also biomarker discovery.

Each peak picking algorithm is confronted with a number of problems due toatee of

mass spectrometric data. An ideal mass analyzer would be able to distingussievien
with slightly different m/z values, but as in all physical experiments, a masstgmn is

afflicted with uncertainties resulting from random fluctuations in measurerfenthermore,
chemical noise and baseline artifacts might also perturb results. A typicalgpastrometric
measurement is shown in Figlirel2.2. Since the measurement of the same ip@gtittees not
result in a single impulse at a certain m/z value, but in an asymmetric peakestegponse,
the detection of the correct m/z value is hampered. Due to limitations of massti@selnd

high charge states, mass spectral peaks might overlap strongly.

Each peak picking technique should overcome the mentioned difficultie® abal extract
the information of interest of all mass spectral peaks. Almost all statees&tthalgorithms
are custom-tailored for either identification, quantification, or biomarkeodey. However,
we developed the first generic peak picking that yields all relevantrirdton in one step.
Even in the presence of noise and baseline artifacts, it computes abctiaten/z position,

10
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the maximum intensity, the total ion count, and the full-width-at-half-maximum df ex&ss
spectral peak (see FigureR.3) not only for well-resolved, but alsovierlapping peaks.

A
I Y

intensity
8

Figure 2.3: Important features of a mass spectral peak: positioheight (maximum intensity, full
width at50% height FWHM), and the total ion coura.

Our algorithm furthermore extracts information about the peak shapehwfiight facilitate

further analysis steps. The method uses the multiscale nature of spectrataédrioy first
detecting the mass peaks in the wavelet-transformed signal before aagiysmmetric peak
function is fitted to the raw data. In two optional stages, the resulting fit cafurteer

improved and strongly overlapping peaks can be separated using teesrilgm nonlinear
optimization. The algorithm does not make assumptions about the underlyingnaamr

ionization method, which makes the algorithm robust for different expetaherttings, and
achieves real-time performance.

Multiple LC-MS map alignment

Application scenarios for the quantitative information in LC-MS maps rangm fadditive
series in analytical chemistry over analysis of time series in expressioniraegogs to appli-
cations in clinical diagnostics. A common requirement is that the same peptidétenert
measurements have to be related to each other; in other words, multiple LC-ptShianze to
be aligned. Such an alignment can either be computed on raw, unprddg39dS maps at
the beginning of a comparative proteomics data analysis pipeline or it casniguted on ex-
tracted features at the end of the pipeline. Due to experimental uncertainégsoblem stays
the same in both cases: distorted retention time and m/z positions of the element<ol®
map. To overcome this problem and to allow for the assignment of corrdsmppeptides in
different maps, these distortions have to be corrected (see Eiglire 2.4).

We developed the first formal definition of the multiple LC-MS raw and featump alignment
problem using a new distance function for LC-MS maps, which takes trerelift grade of dis-
tortion of the two dimensions into account. Transforming the estimation of a suitet@ping

into a well-known problem of computational geometry, the partial approximatdint pattern

11
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Figure 2.4: Left: Two feature maps are shown that sh8886 of common elements, but the strong
distortion of the RT dimension masks the correspondenaghtRA proper correction of the distortion
of feature map 2 (dewarping) superposes the corresponetgres of the two maps.

matching problem, we developed a fast and effective solution based podbeclustering ap-
proach. This so-called superposition algorithm is generic and might ltetasaap LC-MS
raw maps onto each other and thereby to solve the multiple raw map alignmelerprdtur-
thermore, it enables the superposition of multiple feature maps. For the sabfitibe mul-
tiple feature map alignment problem, a subsequent processing step isargcddence, we
developed a sophisticated grouping algorithm based on a nearestarsigeharch that assigns
corresponding features in multiple feature maps and computes a so-calkghsas map.

The algorithms for peak picking as well as for LC-MS map alignment are iatedrinto
OpenMS$[Sturm et QH 2008], an open-source framework for the analysis of spectromet-
ric data. Furthermore, they are available as a command line tool in the Operd#®mics

pipelineTOPRF [Kohlbacher et dl] 29£|)7].
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Chapter 3

Mass spectrometry in proteomics

The following sections will introduce the reader to the field of mass spectrgribased pro-
teomics. We will shortly summarize the principles of mass spectrometry anchptesddeas
of tandem mass spectrometry as well as LC-MS, which is a combination of biftrmance
liquid chromatography and mass spectrometry. For a deeper insight ineottpess we refer

the reader to the literature, eb_._Leh_rrIaM[in_s_L_Stnlmh_ﬂzd_o_s_meﬁ l;0_0$];
Aebersold and Mann [2003]; @as et al. [2006].

In the last two sections we introduce MS-based protein identification andification, which
are the most important applications of mass spectrometry in the field of proteomics

3.1 Principles of mass spectrometry

Nowadays, mass spectrometers are well-established instruments for lygsaofproteomic
samples. They produce ions of the analytical compounds and sepassgedhs according to
their mass-to-charge ratios (m/zZJhe measurement is carried out by the three components of
a mass spectrometer: @&@n source amass analyzerand adetector In Figure[3.1 the most
popular MS components are listed.

lon source. In the ion source the analyte components are ionized. The two main
soft-ionization technologies that produce stable molecular ions from laocgeokecules are

Electrospray lonizatiofESI) iAlﬁxandLOALel_dlL_l%h._Eenﬂ_eﬂ &L..lbb.&.lama.&hﬂa_a.nd] Fenn,
] and Matrix-Assisted Laser Desorption/lonizatiqiviALDI) [Ikaras and HiIIenkamb,

1988 Tanaka et al., 1988].

During the ESI process, the liquid analyte solution containing the peptidefpaeple is
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Figure 3.1: Main components of a mass spectrometer (figure taken [frofiaet al.| [2006]). Sam-

ple introduction device, ionization source for ion geniergtmass analyzer for ion separation, and ion
detector to transform analogue signals into digital sigraid record a mass spectrum. Common ion-
ization sources for proteomic research are ESI and MALDHé&8pread mass analyzers are ion traps
(a) linear, and (b) three-dimensional; (c) triple quaditapp(d) Fourier transform cyclotrons; (e) and (f)
time-of-flight (TOF). Usually ion trap and quadrupole arrays are coupled to ESl ion sources, whereas
TOF analyzers are usually combined with MALDI ion sources.

forced through a narrow-bore spray capillary, to which a high potenéiglbeen applied. The
high potential causes the emerging solution to disperse into a fine spraprgechdroplets.
These micro-drops evaporate very quickly until the number of chargebeir surface be-
comes very high and surpasses the Rayleigh limit, at which point they exgodaf smaller
micro-drops. This process continues until the analyte ion escapes thletdrhich is called
ion desorption. The ESI process generates ions in multiple charge states.

Because ESI produces ions directly from solution, it is easily coupled to wdiiq
chromatography (see Sectibn 311.2) or capillary electrophoresis systainoh separates the
protein mixture over time.

14



Chapter 3. Mass spectrometry in proteomics

The ionization during the MALDI process is based upon the ultraviolet light)(absorption
capability of a matrix compound. In a first step, the matrix and the peptide/predenple
are mixed in an appropriate solvent and spotted onto a MALDI plate. Afteexhporation
of the solvent, co-crystallized analyte molecules embedded in matrix crysealsbéained.
When a laser is fired at the crystals in the MALDI spot the energy is abddrip the matrix,
which is partially vaporized and which carries intact analyte molecules intcathpliase. Dur-
ing the expansion of the MALDI plume, protons are exchanged betwesdgtas and matrix
molecules, resulting in the formation of positively and negatively chargaly#nmolecules.

Mass analyzer. The mass analyzer separates the ions according tontiasis-to-charge ratio
(m/z) This is achieved by the generation of electric or magnetic fields inside tharmestt.

These fields separate the ions influencing their spatial trajectories, velmrcdirection. The
four basic types of mass analyzers used in proteomics research ara tregpioFourier trans-
form ion cyclotron (FT-MS), time-of-flight (TOF), and quadrupole Baars. They differ in

design and performance, each with its own strength and weakness.

lon trap analyzers capture or “trap” ions for a certain time interval andvaids the mass
analysis of the trapped ions by the variation of the amplitude of an impressedraoglency
storage field. These instruments are robust, sensitive and relativepeimgixe, but they have
a relatively low mass accuracy. The linear or two-dimensional ion trap is s@rsitive and
has higher resolution and mass accuracy than traditional, three-dimdrisiotraps.

The FT-MS instruments are also trapping mass analyzers, although thayectiye ions under
high vacuum in a high magnetic field. Their strengths are high sensitivity, acssacy,
resolution, and dynamic range. But in spite of the enormous potential, te@sxpoperational
complexity, and low peptide-fragmentation efficiency of FT-MS instrumente himited their
routine use in proteomics research.

TOF analyzers are the simplest mass analyzers. They essentially céadigglat tube in high
vacuum. The square root of the flight time of an ion along the tube is propaltio its mass,
and lighter ions arrive at the detector more quickly than those of higher ni&gspathway
for the ions in a TOF is reversed and enlarged using an electrostatic minrefléot ions at
the end of the field-free region. The electrostatic mirror might compensatafall kinetic
energy differences of ions by allowing a deeper penetration of fastetr itn a TOF-TOF
instrument two TOF sections are separated by a collision cell. The collisioalloslis for the
selection of ions of a particular m/z value in a first TOF mass analyzer and taguneenent
of a mass spectrum of the fragmented ions in the second TOF analyzein3i@nents have
high sensitivity, resolution, and mass accuracy.

Quadrupole analyzers separate ions by time-varying electric fields befaeerods, which
permit a stable trajectory only for ions of a particular desired m/z. Despite tjiderupole
systems having a limited mass range, they are useful in the highly selectigeaoning mode
that is optimized for monitoring precursor ions with particular features oféster
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Detector. The detector registers the relative abundance of ions at each m/z vakieesiult-
ing measurement calledass spectruroonsists of a plot of ion abundance versus its m/z ratio
(see Figurg€ 2]2).

The different set-ups of the MS components account for the diffenaists spectrometry plat-
forms. MALDI is usually coupled to TOF analyzers that measure the massaat ipeptides,
whereas ESI has typically been coupled to ion traps and triple quadrupsttenents. But
within the last years new configurations of ion sources and mass arsahgaer found wide ap-
plication in protein analysis. To allow the fragmentation of MALDI-generatestprsor ions,
MALDI ion sources have recently been coupled to quadrupole ion-trags sgectrometers and
TOF instruments.

In the following section we will briefly introduce tandem mass spectrometrigiwdilows for
the fragmentation of selected precursor ions.

3.1.1 Tandem mass spectrometer (MS/MS)

Tandem mass spectromeisya specialized MS technique that allow for peptide “sequencing”.
Tandem mass spectrometers comprise at least two mass analyzers (e.gpletlypidrupole

in Figure[3.1) and therefore this technique is also calE8IMS Peptide ions of interest are
first selected in a precursor ion scan. Typically, the computer controlliagathdem mass
spectrometer automatically selects those ions with a high abundance. Tresdled@recursor

or parent ions are electromagnetically isolated and subjected to enerdisior® in order to
induce peptide fragmentation. Thellision induced dissociation (CID)f peptides results in a
range of structurally significant product ions. In most cases, the geptidd is being cleaved
between the carbonyl-carbon and the amide-nitrogen. If the chargénseorathe N-terminal
fragment the ion is callet-ion and if the C-terminal fragment retains the charge it is called
y-ion.

Given the m/z values and intensities of the b- and y-ions along with the m/z valtiee of
precursor ion, the peptide sequence can be determined automaticalle(sesS.2).

3.1.2 Liquid chromatography-mass spectrometry (LC-MS)

For the analysis of peptide mixtures of high complexity, mass spectrometesftemeoupled
to liquid chromatography (LC) to gain a second physical separation ofrthlytacal com-
pounds. The LC step spreads out the parts of the sample solution over tithe basis of
some property of the molecules, such as hydrophobicity. Thereforantdgte is solved in a
liquid, which is calledmobile phasgand then forced through a column of the so-cabat
tionary phasewith high pressure. Reverse-phase high performance liquid chroraatogifor
example, uses a tubular column packed with some material made up of hybioptalecules.
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Depending on the specific chemical or physical interactions of the andlgticgponents with
the stationary phase, they are retarded in the column for a certain time. Thettivhéch a

specific analyte elutes from the column, is called ibtention time (RT) In LC-MS the lig-

uid that elutes from the column is directly introduced into a mass spectrometat ardain

points in time a mass spectral measurement of eluting droplets is obtained. Jiits re a

collection of consecutively determined mass spectra, whereby each pea$sum is labeled
with a unique retention time.

The LC step in LC-MS experiments might avoid two undesired effects of MSt¥; peptides
with the same m/z values might have different RT values and are not andlyzéhgé mass
spectrometer at the same time, such that the ambiguity in the MS signal is re@eoeadly,
the number of ions being simultaneously analyzed by the mass spectrometmessdel. Ef-
fects such as ion suppression, where one ion’s signal suppresssgithal of another ion, are

diminished [Annesley, 2003].

Liquid chromatography carried out with mobile phases of fixed compositiefuent strength,
so-called isocratic elution, generally does not work well for proteomic sesnfphe time peri-
odst that are needed until all molecules of a certain protein/peptide are elutedryestrongly
and a single mobile phase does not provide adequate separation. fRoriaehe retention of
protein/peptide molecules can be extremely sensitive to small changes in maskqdmpo-
sition, which results in varyingvalues for the same compound in two different measurements.
Other undesired effects caused by the application of isocratic sepai@tanixture of macro-
molecules are that, usually, some sample components elute immediately (with retisepar
whereas other components elute so slowly that it appear as if they nevetheacolumn.

The application ofgradient elutionshould avoid the mentioned drawbacks of isocratic elu-
tion. In gradient elution the mobile phase is continuously changed duriragetem, such that
the retention of later peaks is continually reduced; that is, the mobile phasebe steadily
stronger as the separation proceeds.

The gradient separates the analyte mixtures as a function of the affinitg ahtiyte for the
current mobile phase composition relative to the stationary phase.

Most gradient separations use linear gradients, where the affinity afigte for the mobile
phase composition relative to the stationary phase is linearly increasetinoge©Other popu-
lar gradients are: gradient delay, and step gradh_enLLS_n;Ld_eLa.nd,dZﬂai’].

With gradient elution, there is a much smaller problem with irreproducible retetitiees for
large molecules; nevertheless, the variation of retention times of the same wutnpaiffer-
ent measurements is quite strong and has to be corrected before differ&s measurements
can be compared.
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3.2. Protein identification

3.2 Protein identification

In this section we introduce two popular protein/peptide identification appesac

Peptide mass fingerprint Although the accurate mass measurement of a protein does not
allow for the unique identification of the protein, its cleavage products casdeto determine
the protein identity. Digesting the protein using an enzyme of known cleavageccurate
determined masses of the resulting peptides can be usepeggtide mass fingerprint (PMF)
of the protein.

Typically, the PMF strategy starts with an initial separation of proteins in a salpyp&DS-
PAGE. Separated proteins are afterward visualized (by staining with silvate) and usually
digested in-gel with specific enzymes (e.g., trypsin). For the subsedi®@rdnalysis, the
resulting proteolytic peptides are extracted from the gel piece. To achigidy accurate
mass measurements, TOF analyzers are typically used in combination with M&IEBI ion
sources. The peptide mass fingerprint is determined by the extraction séttloé measured
peptide masses. With this method proteins in mixtures of low complexity can be idéntifie
good high throughput compatibilit{/ Pappin et M993] and a high seitgiéven below the
femtomole range [Schuerenberg ét al., 2000].

In 1993 five different groupSLLI:l&nzeJ_eﬂ M@MtMWLM3;
James et il., lgbb_;lﬂw_e_{ mg%] developed algorithms that use#re@ntal mass pro-

file and match it against the theoretical masses obtained from the in-silicdidigasthe same
enzyme cleavage sites of all protein amino acid sequences in the databageoteins in the
database are then ranked according to the number of peptide masses gniditeinisequence
within a given mass error tolerance.

Peptide fragmentation data The identification of proteins from tandem mass spectra of their
proteolytic peptidesJ.LI:IunLeLbL_lQBG] represents a more specific isdatittih method than
peptide mass fingerprinting and even allows for the analysis of comple>opnate mixtures.
This approach, just like the PMF method, requires the digestion of the psatem sample
with an enzyme of known cleavage. Based on the shotgun genomics secpgproach in
which DNA is broken into smaller pieces prior to sequencing and reasseniblgilico, the
identification of complex protein mixtures based on the digestion of proteins éptiides and
sequencing them using tandem mass spectrometry is cditgdun proteomics

As mentioned in Sectidn 3.1.1, the collision-induced dissociation of peptideisresa range
of structurally significant b and y product ions. These ions of oventeppequence fragments
allow for the determination of the full amino acid sequence by the calculationeoimidiss
difference between fragment ions differing by one amino acid. The tditedvation of the
peptide sequence from the tandem spectrum is cd@dovosequencing@l@%;
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Dartik et all,[ 1999} Zhard. 2004: Taylor and Johhdon, P001]. A majorraga of this ap-

proach is that it does not require any protein database and even atlowsefidentification
of unknown proteins. However, it requires the correct determinatidthefion types and is
confounded by factors such as noise, missing peaks, and additi@kal. pe

Other protein identification approaches use the protein sequences |®$HMI
2001;| Perkins et all, 1999; Craig and Beavis, 2004; Geet et al. 200d{cleotide data, as
the incomplete nucleotide sequences contained in the diverse EST da@mﬂ&Ml.,
]. Given the m/z value of a precursor ion, a database of predicsmBlspectra is created
for all matching peptides using the rules of peptide fragmentation. Theimgreal MS/MS
spectrum is compared to all predicted spectra and the best matching pepédistermined
using a predefined scoring system.

3.3 Protein quantification

Many proteomic studies require the relative or absolute amounts of the grpteisent in a bi-
ological sample: the spectrum ranges from additive series in analytiealistry IGboI etal.,
], over analysis of time series in expression experimbﬁs_[&isﬁ @Q&Mﬂwﬂ
], to applications in clinical diagnosti&s [Vissers EH_QLJZOO?], in whiehvant to find sta-
tistically significant markers describing certain disease states. Despitddtienship between
the amount of analyte present in a sample and the measured signal inteigjiyco@plex
and incompletely understood, it could be shown that mass spectral peakitie® of pep-
tide ions correlate well with protein abundances in complex sa 2;
M[ang_el_aj LZD_di_S_Qhulzluﬁglaﬁ_eﬂ d)l._QId_étLa.lJZOOSQi, vt the comparison of
signals from the same peptide under different conditions can give & matgnate of relative
protein abundance between multiple proteo , 2005].
Mass spectrometry allows for the determination of two different quantitateeep of infor-
mation. Absolute quantification experiments estimate the amount of the substauesiion,
whereas in relative quantification experiments the amount of substancénsddm relation
to another measure of the same substance. In the following two sections waduigrtwo
approaches to determine the quantitative information of interest.

3.3.1 Label-free quantification

Label-free quantification [Bondarenko et al., 2002; Wang et al.,|2688ulz-Trieglaff et al.,

,|_Qld_e1_a|l |._29_¢5] is a promising method for relative quantification. $Sigtensities of
the same peptide in different LC-MS maps are compared directly. Not oely tthis approach
require the accurate determination of the signal intensities belonging to angeztaide, but
it also needs the correct assignment of corresponding peptide signads different measure-
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3.3. Protein quantification

ments.

3.3.2 Labeled quantification

Labeled quantification uses the stable isotope labeling of proteins or pejotidietermine their
absolute or relative quantities. This approach is mainly designed to quarttgomes of only
two to four different states. To this end, the proteins/peptides of one samgplabeled and af-
terward combined with the unlabeled sample. Depending on the labeling methsathilegro-
teins/peptides show a specific mass difference in the mass spectrometricenessu Several
methods have been developed, which are mainly distinguished by the waghlteisotope la-
bels are introduced into the protein or pept nn/ 2005]ngpikan isotopically

labeled analogL[Q_e_b_e_e_t] L. d&.c@te_t_aj | Mayr et &IL_QbJ Kirkpatrick et al.,
@] incorporation through an enzyme during protein dlges{lgn_[la(ﬂéED_QJlLZD_d?;]

introducing a chemical, isotopically labeled tag onto peptides or pro%lh&&b,
I.|._20d)4], or having cells that incorporate the label metaboli 9;

| 20d2].
Although these techniques bypass problems due to ion-suppressetsaif co-eluting pep-
tides, which can affect label-free quantification experiments, they ayecestly and prevent
retrospective comparisons and complicate large studies with multiple samples.
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Chapter 4

OpenMS—An open-source framework
for mass spectrometry

The high complexity and the sheer amount of MS-based proteomics dateersgphisticated
analytical methods. The information extraction from LC-MS data can beifiéabsto a series
of smaller analysis steps

¢ signal filtering and baseline removal: remove noise and baseline artifacts,

e peak picking: find and extract the accurate positions, heights, total iontgoand
FWHM values of all mass spectral peaks,

¢ identification algorithm: identify the proteins in a sample given the mass speet&l p
information,

e feature detection and quantification: detect and extract patterns of tresticorrespond
to the same charge variant of a peptide,

¢ intensity normalization: normalize the ion counts,

e multiple map alignment: correct the distortion of the RT and m/z dimension of multiple
raw or feature maps; in case of feature maps, assign correspondingefeafterward,

e classification algorithms and biomarker discovery: find differentially esg#d peak or
feature patterns that can be used to classify samples, e.g., from difefestates.

A label-free quantification protocol might consist of a process involvigga filtering and
baseline removal, peak picking, quantification, normalization, multiple map alignraed
marker finding. On the other hand, an identification pipeline might be compafssignal



4.1. The map concept

filtering and baseline removal, a peak picking step, and an identificationitalgor Small
algorithmic components for each analytical step allow for the developmenbisf fior both
analytical aims and might be readily combined into more complex workflows or. tools

In 2003, the Algorithmic Bioinformatics group at the Freie UnivérsiBerlin and the De-
partment for Simulation of Biological Systems ofifiingen University initiated an aca-
demic project for proteomic data analysis that realizes the modular idea bleprcsolv-
ing. OpenMS—a framework for mass spectrom@MLm_e_t_a'.l_ZD_dS] is flexible and serves
as a framework for developing mass spectrometry data analysis toolsdipgoevery-
thing from basic data structures over file input/output (1/0O) and visualizatosophisti-
cated algorithms for the analysis steps mentioned above. Thus, OpenMS dkeelopers
to focus on new algorithmic approaches instead of implementing infrastruciihre. high
flexibility of OpenMS stands out against other existing academic tools fdeg@muc data

analysis, e.g., MapQuar{t_[LQpLo_s_ek MOOG], MASPECTﬁAS |Han;|gt|é;0_Qi7], msin-
spect [[ﬁeﬂemj_dl.[_zoj)G], MZMine_[Katajamaa et MOOG], SpecA(E‘et aI], ],
Trans-Proteomic Pipeline (TPP|) [Keller Qi ell., 2|005], Vipler |MQnrQe_|.lad@_0_‘}’], Super-
hirn [Mueller et aHLO_d?], and XCMSL [Smith et MOG]. These tools apecly mono-
lithic and hard to adapt to new experiments. Furthermore, they often doatean only one
step of the analysis, e.g., quantification, peptide identification, or map alignoneatnbine a
few steps into a pipeline.

4.1 The map concept

The data that is produced by the combination of multi-dimensional LC and guéseMS

can be viewed as a set of multidimensional discrete points. In LC-MS suelaapdint is
described by retention time, m/z, and intensity. The collection of all these ditis [rocalled

an LC-MS raw map The analysis of this raw data is done through several steps, which in
our view correspond to a series of map transformations. Flgule 4.1 shewsap types and
transformation steps.

Signal filtering and baseline removal steps are performed on raw LC-MiS.nde output of
these transformations is again an preprocessed LC-MS raw map. Degpendhe underlying
type of mass spectrometer, a raw LC-MS map can have a size of sevedaétumegabytes up

to several gigabytes, whereas only a small fraction of data contains tia sfgnterest. Thus,
data reduction is a central concept of OpenMS. It comprises two tranafimn steps, which

are peak picking and feature detection and quantification. During thegiglakg process, the
mass spectral peaks are detected and important information, such astheata positions,
heights, total ion counts, and FWHM values, is extracted. We call the regdiita of a peak
picking step a.C-MS peak mapThe subsequent feature detection and quantification step is
again a data reduction step, at which the two-dimensional signals creatsm®ychemical
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Figure 4.1: Top: An LC-MS raw map and its mass spectrum at RT=558.88 sdMidrhe correspond-
ing LC-MS peak map and the extracted mass spectral peaks-588188 s. Bottom: The corresponding
feature map. The red arrows indicate the possible transiiioms.

entities (e.g., peptides) are grouped together into a so-calleS feature mapA feature
is characterized by its isotopic pattern in mass-to-charge dimension and éltiom profile
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in retention time dimension. Features have summary coordinates, such addcestgntion
time, average monoisotopic peak position, or summed intensities. The featectiateand
guantification step can either be performed on a peak LC-MS map or a raM3I@ap.
A transformation, such as intensity normalization, can be performed on efthepeak, or
feature maps, whereas the output type of this operation is the same as thigpepu

4.2 Design and implementation

OpenMS is intended to offer a rich functionality while keeping in mind the desigisgf ease-
of-use, robustness, extensibility, and portability. We will now briefly dbscthe techniques
used to achieve these goals. The subsequent sections describerttieanekitecture and the
features of OpenMS.

4.2.1 Design goals

Ease-of-use. The object-oriented programming paradigm aims at mapping real-world entities
to comprehensible data structures and interfaces. Combining it with a caogieghait enforces
consistent names of classes, methods, and member variables leads to insabiéay of a
software library. For these reasons we adapted this paradigm foeXsecond important
feature of a software framework is documentation. We decided to usegém@%;*h] to
generate the class documentation from the source code, which ensusedtency of code and
documentation. The documentation is generated in HTML format making it easgpdowith
a web browser. OpenMS also provides a tutorial that introduces the mosttanpconcepts
and classes using example applications.

Robustness. Although robustness is not crucial when developing new algorithms, it-is es
sential if a new method will be applied routinely to large scale datasets. Typittzhe is a
trade-off between performance and robustness. OpenMS tries tesadaoth issues equally.
In general, we try to tolerate recoverable errors, e.g., files that dontioglg fulfill the for-

mat specifications. On the other hand, exceptions are used to handlerfatal To check
for correctness, unit tests are implemented for each method of a classe fHsés check the
behavior for both valid and invalid use. Additionally, preprocessor ngare used to enable
additional consistency checks in debug mode, which are then disableddagbive mode for
performance reasons.

Extensibility. Since OpenMS is based on several external libraries, it is designeatidor
integration of external code. All classes are encapsulated i@gemMSnamespace to avoid
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__________________________________________________________________________________________________
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Figure 4.2: The overall design of OpenMS (figure taken from [Sturm e!24108].

symbol clashes with other libraries. Through the use of template code, ratmgtdictures are
adaptable to specific problems. For example, it is possible to replace tleseamtion of the
mass-spectrometric peak or to replace the container in which a spectrestbimpeaks. Also,
OpenMS supports standard formats and is itself open-source softWheeuse of standard
formats ensures that applications developed with OpenMS can be easihatatkinto existing

analysis pipelines. OpenMS source code is located on Source=orge¢Eorge], a repository
for open-source software. This allows users to participate in the pinjeldio contribute to the
code base.

Portability.  Currently, OpenMS can be compiled on most Unix-like platforms (e.g., MacOS,
Solaris, Linux) and has been thoroughly tested on several Linux digtnisu Through the use
of ANSI C++, porting it to other platforms poses no major problem.

The second emphasis of OpenMS, besides the design goals, is rich fiafittioThe frame-
work offers data structures to handle MS data and metadata. It supjsuédization of the
data, file /0, and database I/O. This more basic functionality is complemenizddiyety of
algorithms for data analysis. All key analysis steps such as signal giogeguantification,
and peptide identification are addressed. The overall architectureoamel selected features
are illustrated in the following sections.
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4.2.2 Overall architecture and features

The overall design of OpenMS is shown in Figlrel 4.2. From a bird’svése, the OpenMS
concept is quite simple. Applications can be implemented using OpenMS, whicimireties
on several external Iibrarie provides visualization, da&lsagpport, and a plat-
form abstraction layer. XercES] allows XML file parsing. IibS]
is used for machine learning tasks. The Computational Geometry Algorithmsaryibr
(CGAL) [bALeLma.LELlQ_dd;_EatheﬂaL_lfb%] provides data strustarel algorithms for ge-

ometric computations. The GNU Scientific Library (G t al.] isldeedifferent
mathematical and statistical tasks.

OpenMS can itself be subdivided into several layers. At the very bottenthe foundation
classes, which implement low-level concepts and data structures. Thiegerzasic concepts
(e.q., factory pattern, exception handling), basic data structures (arny, points, ranges) and
system-specific classes (e.g., file system, time). The kernel classes, capitie the actual
MS data and metadata, are built upon the foundation classes. Finally, tadeyé of higher-
level functionality that relies on the kernel classes. This layer contaiadbase /O, file I/O
supporting several file formats, data reduction functionality, and all @tha&lysis algorithms.

4.3 Example algorithms and features

In the following we will present some algorithms for different analysis steps

4.3.1 Standardized file formats

Standardized data exchange formats are especially important becaysealithe the
easy integration of different software tools into a single analysis pipelinéherefore,
OpenMS supports most non-proprietary file formats, e.g., mzbala{Qhenmi.,QO_dG] and
szML[b_e_dr_ioLej_ai.];O_Qh]. As there are no standard file formats fangification and pep-
tide identification data, we created our own formats for these tasks (f&ilurand idXML).
Eventually, these formats will be replaced by standard formats releastdte i UPO-PSI.
Currently, we are actively contributing to the development of the upcomimglatds mzML
and analysisXML. mzML is intended to replace both the mzData and the mzXMhafor
analysisXML captures the results of peptide and protein search engines.
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4.3.2 Database support

Most tools developed so far operate on files. Because of the constantting data volume
created by LC-MS experiments, database systems will become more and mor&imjfor
data management. Therefore, we developed a database adapter thatsistently store the
kernel data structures in an SQL database. Through the use of Qasattapters as an addi-
tional layer of abstraction, the implementation is able to employ most SQL compliatibrel
database management systems (including MySQL, PostgreSQL, ORAGH B ELR).

4.3.3 Visualization

A very useful tool for data analysis is visual inspection. It can instaetreal properties of the
data that would go unnoticed using command line tools. Errors during $epana polymeric
contamination of the sample can, for example, be easily noticed during visjedtion of
an LC-MS map. OpenMS provides widgets that display a single spectrunpealamap. A
single spectrum is displayed by a standard plot of raw or peak data. K\pap is displayed
either in a 2D view from a bird's-eye perspective with color-coded iritiessor in a 3D view.
Figure§ Z.P and 411 show examples of the 3D map and the spectrum view.

4.3.4 Signal processing

OpenMS offers several filters to reduce chemical and random noiselbas baseline trends
in MS measurements. Raw spectra may either be de-noised by a SavitzkyfBelaor a
peak-area-preserving Gaussian low-pass filter. Both smoothing fileeexmonly used and
recommended for spectrometric deha_[_s_awlzk;La_nﬂ_Chbla;d i%A..EL&ELiAlQb]

For the baseline in MS experiments, no universally accepted analyticabssxpn exists.
Hence, we decided to implement a non-linear filter, known in morphology a®phkat op-
erator ,8]. This filter does not depend on the underlyinglipasshape and its
applicability to MS measurements has already been shOVlM[ﬁe_ehLel_d], 200

4.3.5 Peak picking

For the extraction of the accurate information about the mass spectrad peakraw spec-
trum we developed an efficient peak picking algoritlhm_LLa.ng_eJdl_aLJ]Zhﬂﬁuses the multi-
scale nature of spectrometric data. First, the peak positions are determitiedvirmvelet-
transformed signal. Afterward, important peak parameters (centrad, height, full-width-
at-half-maximum, signal-to-noise ratio, asymmetric peak shape) are extiactiiting an
asymmetric peak function to the raw data. In two optional steps overlappiks man be
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separated, or the resulting fit can be further improved by using tectsfgqu@ nonlinear op-
timization. In contrast to currently established techniques, our algorithmsyéeldurate peak
positions even for noisy data with low resolution and is able to separate ppintppeaks of
multiply charged peptides.

Our peak picking algorithm is described in more detail in Chdgter 8.

4.3.6 Feature detection and quantification

Feature detection is a central concept in OpenMS. As noted beforatadds a signal in
an LC-MS map, which is, e.g., caused by a peptide ion. Each feature sctbidzed by its
mass-to-charge ratio, the centroid of its elution curve, and the signal area

OpenMS includes several algorithms for the detection of peptidic feature€-NS data,
tailored for datasets of different mass resolutions and measured onwvangirument types.
Our approaches are based on a two-dimensional model. We use thetcohea average
amino acid (also calledveraging to approximate the amino acid composition for a peptide
of a given mass. From this we can estimate its atomic composition and derive ifgeisoto
distribution in a mass spectrurﬁ[ﬂomi MOOO]. Similarly, we approximateltiteon
curve by a Gaussian or exponentially modified Gaussian distribuiti ' i,

]. In addition, our isotope pattern model takes different mass teswunto account by
incorporating a parameter for the width of the isotopic peaks in a feature.

Fitting the two-dimensional model is a relatively expensive computational taBkere-

fore, it is important to select the candidate regions carefully. We designeavel algo-
rithm ﬂS_Qhulzﬂiﬁgla.ﬁ_e_t_dl.LZDﬂﬂ] that uses a hand-tailored isotopelst L.,
@] to filter the mass spectra for isotopic patterns for a given charge stde isotope
wavelet explicitly models the isotope distribution of a peptide. This pre-filter@sglts in a
lower number of potential peptide candidates that need to be refined usingpttel fit.

4.3.7 LC-MS map alignment

An important step in a typical LC-MS analysis workflow is the combination ofiltedrom
multiple experiments, e.g., to improve confidence in the obtained measuremente®odare
results from different samples. In order to do so, a suitable mappiatighmentbetween the
datasets needs to be established. The alignment has to correct fenfrand systematic) vari-
ations in the observed elution time and mass-to-charge ratio that are inevitakjgeiimental
datasets.

OpenMS offers algorithms to align multiple experiments and to match the coridisgaon
species across many sampi&s_LLangﬁ_bh_alJZOOﬂ . A novel and galgaiithm was devel-
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oped to correct for the variation of retention time and mass-to-charge dionsrizetween two

maps. It uses an adapted pose clustering apprwm,mmw_dl.l_l%ﬂ to

efficiently superimpose raw maps as well as feature maps.

To detect and combine corresponding features in multiple feature maps intoaledcon-
sensus magpwe developed an algorithm based on techniques from computational ggome
The superimposition algorithm and the algorithm for the determination of a seasenap are
combined to a star-wise approach for the alignment of multiple raw or featype.n@verall,
the methods are fast, reliable, and robust, even in the presence of msawgigmals and large
random fluctuations of retention time.

Our alignment approach is described in more detail in Chéapier 14.

4.3.8 Retention time prediction

A major problem with existing tandem mass spectrometry identification routines ties §ig-
nificant number of false positive and false negative annotations. Untjlstandard algorithms
for protein identification have not used the information gained from s&parprocesses usu-
ally involved in peptide analysis, such as retention time information, which addyevailable
from chromatographic separation of the sample. Identification can thus bevietpby com-
paring measured to predicted retention times. Current prediction modelsrareddfrom a set
of measured test analytes but they usually require large amounts of trdating

OpenMS offers a new kernel function, tpaired oligo-border kernel (POBK)which can be
applied in combination with support vector machines to a wide range of commahpoo-
teomics problems. This enables the user to predict peptide adsorption/eletiamidx in
strong anion-exchange solid-phase extraction (SAX-SPE) and iomey&rsed-phase high-
performance liquid chromatography (IP-RP-LC). Using the retention tiradigtiions for fil-
tering significantly improves the fraction of correctly identified peptide masstsgp. OpenMS
offers a wrapper class to the Iibsv Lin] for support véesoning. OuiPOBK s
well-suited for the prediction of chromatographic separation in computat@otomics and
requires only a limited amount of training data. Usually 40 peptides or lesufiident. A
more detailed description of the methods for retention time prediction, as wek apfiica-
tion of the retention time prediction to improve tandem MS identification results, e&ound

in [Pfeifer et al.| 2007].

4.4 TOPP—The OpenMS Proteomics Pipeline

OpenMS has been successfully used for the implementatiofO8fP—The OpenMS Pro-
teomics Pipeline[IKQtha.QhﬂLel_dl.l_ZD_(b7]. TOPP is a set of computational tools that can

29



4.4. TOPP—The OpenMS Proteomics Pipeline

be chained together to tailor problem-specific analysis pipelines for LC-88&. dIt trans-
forms most of the OpenMS functionality into small command line tools that are the-build
ing blocks for more complex analysis pipelines. Each tool handles a wetledifunction-
ality in the area of proteomics data analysis. The functionality of the tools sainge data
preprocessing (e.g., file format conversion, baseline reduction, redsetion, peak picking,
map alignment) over quantification (labeled and label-free) to identificaticapfvar tools for
Mascot LP_eJ‘_KLns_el_eiilL_lﬂb9], Sequel;i&abb;éd.al&OOl], IrTBF[tmnn&Lel_dl.l_ZQQS] and
OMSSA |Geer et élL&‘M}). The individual applications range fremyrivial to rather com-
plex tasks, but their combined value arises from the fact that they stamm@mon interface,
common formats, and common configuration files. They can thus be combineduiikie
ing blocks to perform more complex analysis tasks, an idea already usedilar $oolboxes
in bioinformatics, e.g., in EMBOS@Q@OZ]. Chaining is achieved titranakefiles,
simple shell scripts, or as components of complex workflow systems in disttiont&RID
environments, e.g., by workflow systems such as TavJ:ma.[Qim |el_adi].26(brder to make
the TOPP components easy to combine, we only use standard file formatssueiData and
analysisXML. This also facilitates the integration of external tools suppostengdard formats.
A pipeline-specific control file provides parameters to all components isectsithe data flow
between them. In the control file, a set of parameters for each indivitk@dation of a tool
can be provided. For tasks that cannot be done with TOPP, wrappgrocents are provided
to integrate commonly used applications. Furthermore, manual analyseg theidevelop-
ment of a pipeline are supported through a system of log files allowing tleastaction of
every processing step. The debugging output can be turned ofbasasahe pipeline works
as intended.

One of the design goals is user-friendliness. Hence, all TOPP comisostgere a common
base interface and provide a detailed description for all parameterstiokadly, a full docu-
mentation of all components and examples is available on our web site.
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Chapter 5

Mathematical preliminaries

The following sections should provide the reader with some mathematical doacid for
our peak picking algorithm proposed in Chagfer 8. We introduce some $tasistical terms
and summarize the mathematical background of the continuous wavelet tewsll as the
Levenberg-Marquardt algorithm.

5.1 Uncertainties in measurements

The following overview of uncertainties in measurements is basé_d_Qn_B_enjagIDRlens_dn

]. In all physical experiments errors and uncertainties resart fandom fluctuationgn
measurement anslystematic errors That means if we make a measuremenbf a quantity
X, We expect our observation to approximate the quantity, but we do not expect that the
measured and the true value are equal. Let us first considesrtdem errorand neglect the
systematic error. AN-fold repetition of the experiment would distribute the observed values
X1,...,Xn around the correct value If we could make an infinite number of measurements
then we could describe exactly the distribution of the data points and untkitsta process
that generates the data points. In practice, however, we can only legohhe existence
of such a distribution that determines the probability of getting any particulseraation in
a single measurement. This distribution is called plaeent distribution Similarly, we can
hypothesize that the acquired data points are samples from the parebutmic They form
the so-calledsample distribution In the limit the sample distribution becomes the parent dis-
tribution.
Themeanx of an experimental distribution is the sum of all measuremgrdivided byN
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and the meam of the parent population is defined as the limit

1 N—-1
= li = i |-
p=lm S i; X;
The mean is equivalent to tleentroidor average valuef the quantityx.

A measure of how far the samples fluctuate from the mean istémelard deviatiorw. It is the
square root of thearianceo?, which represents the power of the fluctuation

2 | 1 N=1 | A 1 N-1 5 ,

o° = lim {5 go(m—u) =Jim 15 i;m — e
The standard deviation defines the width of the distribution and for this measets as an
indicator for the repeatability of a measurement. Without the knowledge dftarg/ value it
is a measure for thgrecisionof a measurement.
A measure of how close the result of an experiment comes to the “true” imblefined by
the termaccuracy It defines the deviation of the mearfrom the “true” valuex and results
from systematic errors. These are errors that may result from fadiltyatzon of equipment or
from bias on the part of the observer. They become repeated in exaetathe manner each
time the measurement is conducted. These errors are not easy to ddtact aasily studied
by statistical analysis and must be determined from an analysis of experim@mdéions and
techniques.
For any experiment precision and accuracy must be considered sinouisiyehigh precision
measurements that are highly inaccurate as well as accurate measureitielts wrecision
are both useless.

5.2 Introduction to wavelet theory

The analysis of signals (e.g., a recorded speech signal, or a massispaeiuires the deter-
mination of a suitable representation of the signal. A representation of thal sigma series
of coefficients, based on an analysis function, facilitates the analysieguee. This can be
achieved by a transformation, or decomposition of the signal on a sesisf fo@ctions prior
to processing in the transform domain. One example of a signal transfomigtibe trans-
formation from the time domain to the frequency domain. The oldest method for tthie is
Fourier transform developed in 1807 by Joseph Fourier. In 1980rdmch seismologist Jean
Morlet initiated the formalism of Wavelet theory, which is another very péuéransforma-
tion method. In contrast to the Fourier transform the Wavelet transfoterrdaes not only
information about the frequencies in a signal, but it also preservesnatan about the local-
ization of the different frequencies in the signal in a near-optimal manner.

Wavelet theory can be divided into the following main categories:
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1. Continuous wavelet transforms (CWT).

2. Discrete wavelet transforms (DWT): (a) orthonormal bases of wts/and (b) redundant
discrete systems (frames).

In the following two sections, we will introduce the reader into the classicatieotransform
and the windowed Fourier transform as well as the limitations of these metfbdgsshould
facilitate the idea and theory of the CWT described in Se¢fion]5.2.3. Thesenseare based
on iMaIIa]; and Hwaﬂm LMMMMMIMMMIL@?]
and on the lecture “Digital signal processing I” held by Til Aach at thevgrsity of Lilbeck.
Readers who are also interested in the DWT and wavelet applications, e.g.gesulltiion
analﬁsis, are referred to literature with more extensive wavelet theoerage t@&

[199)).

5.2.1 Classical Fourier transform

The standardrourier transformor theFourier integral Sof a signals € L! is defined as:

S(f) = /+ S(t) exp(— j27tft) dt with j = v/—1, (5.1)
whereSmeasures “how much” of oscillations at the frequefdpere is ins. A useful way of
understanding the Fourier transform is to say that the sighat been projected onto a set of
basis functionse := exp(j2mft) = cog2mft) + jsin(2mtft). The basis functions in this case
are the cosine and sine functions represented by complex exponentitibfis. Ifs € L! this
integral does converge and

+00

s [

The Fourier transform is thus a bounded function and it is continuowsulkec

Is(t)] dt < +o. (5.2)

o0

400

S -SQ)1< [ Istt)] | exs(~ j2mtt) —exp(~ j2mgt)| de< £ ~¢] [ st dt. (53)

0

If sis also integrable, thimverse Fourier transfornis given by

s(t) = /:mS(f)exp(jZHft) df. (5.4)

The inversion formula Equatidn 3.4 decompos@s a sum of sinusoidal waves of amplitude
S(f). By using this formula, as in Equatién .3 we can show that the hypotBesis® im-
plies thats must be continuous. The reconstruction Equafioh 5.4 is therefore negcpfor
discontinuous functions. This motivates an extension of the Fourier trangb the space?
of functionss with a finite energy/ > |s(t)|? dt < +o0. By working in theHilbert space E of
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functions, we also have access to all facilities provided by the existenae iofner product.
The inner product ocross correlatiorof s € L? andg € L? is given by

s9= [ sgwat

—00

whereg* denotes the complex conjugategfThe resulting norm in? is

Is|2 = (s,9) :/+ Is(t)2 dt.

The inner product and norms irf are conserved by the Fourier transform up to a factorrof 2
and it holds the&Parseval formula

- * d——1 +°oS(]‘G*f df
./_oo Sg'(t) dt 21 ) - )& ()
and thePlancherel formulavith

[ swpdi=o [ Tismpdr

—00

In the following, we will introduce two important properties of the Fourier sfanm that are
used later.

Theorem 5.2.1: ScalingLetsc L' anda € R. The Fourier transform o(at) is given by
1 _/f
—S|(=].
a \a

That means a compression in time is equivalent to stretching the Fourierspestd scaling
all frequency components up by a factoraf

The most important property of the Fourier transform for signal pisingsapplications is
the convolution theorem It is another way to express the fact that sinusoidal wayeare
eigenvalues of convolution operators’*

Theorem 5.2.2: Convolution Letse L1 andh € L!. The function

+00
g:=hxs= h(u)s(t —u) du

given by the convolution of the signalith his in L and
G(f)=H(f)S(f).
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A convolution is an integral that expresses the amount of overlap ofumetién as it is shifted
over another function. Theordm 5.2.2 states that the convolution in the timerdemaals a
multiplication in the frequency domain.

The responsg := s+ h of a linear time-invariant system can be calculated from its Fourier
transformG( f) = S(f)H(f) with the inverse Fourier formula

+00

gt) = G(f)exp(j2mft)df,

which yields

+00
gt) = H(f)S(f)exp(j2mrft) df.

Each frequency compone8tf ) is amplified or attenuated by (f). Such a convolution is thus

calledfrequency filteringandH ( ) is thetransfer functiorof the filter.

The big disadvantage of a Fourier transform is that it has only frequesolution and no time
resolution. Although all frequencies present in a signal can be deteatminfermation about

their locations in the signal is not provided. In the past decades saadions have been
developed to overcome this problem. They are based on a represenfatiensiggnal in the

time and frequency domain at the same time. To achieve a joint time-frequgregeatation

the signal of interest is cut into several parts and the parts are analggathtely. Although this
approach of signal analysis will give more information about the whenndrate of different

frequency components, it is not clear how to cut the signal. The wind&wader transform,

introduced in the following section, represents a feasible solution to thisgmnob

5.2.2 Windowed Fourier transform

In 1946, Dennis Gabor found a solution to the problem of missing time resolntthe Fourier
transform. He introducedindowed Fourier atom® measure localized frequency components
of sounds. The idea is to use a window of finite length and move it along thal sigiuestion.
For each sliding step an FT on that local region in time is calculated. Gabdraussal and
symmetric windowg(t) = —g(t) that is translated bl and modulated at the frequengy

Ob,¢ () = exp(j2mdt)g(t — b).

It is normalized so thatg, ;|| = 1 for any(b,{) € R2. The resultingvindowed Fourier trans-
form STFTb,{) of s€ L?is

STFT(B,0) = (S.0pz) = 1 T s(t)g(t — b) exp(— j2nZt) dit.

This transform is also called tishort time Fourier transform (STFBecause the multiplication
by g(t — b) localizes the Fourier integral in the neighborhood efb.
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The signal is decomposed into a set of basis functions that are wind@s&dns of the original
sine and cosine functions. Accordingly, the results from an STFT aralgs be understood
as a projection onto each of these basis functions located in time and frgquenc

In the STFT we have to fix the length of the window as well as to select the fyysendow
function. Both will be affecting to the resolution, either in the time or frequethasnain.
Resolution can be intuitively understood as the degree of detail that isishasach domain.
A short window length will have a good time resolution, i.e., we can see detdiadges
happening in time. Suppose that we want to know exactly all the frequemsganents present
at a certain moment in time. Cutting out only this very short time window using a Dirac
pulse and transforming it to the frequency domain would fail because tidepn here is that
cutting the signal corresponds to a convolution between the signal andittiregovindow.
Since multiplication in the time domain is identical to convolution in the frequency domain
(see Theorerh 5.2.2) and since the Fourier transform of a Dirac puigeins all possible
frequencies, the frequency components of the signal will be smeatadl ouer the frequency
axis (see Theoreimn 5.2.1). A large window will have opposite propertiesr gsolution in
the time domain and good resolution in the frequency domain. It is usefuthéreagine the
window as a box containing sinusoidal waves. Since the box has a finitih Jehgre must be
a lower limit to the frequencies of the waves it can contain. If the wavelengtieovave is
too large it cannot fit into the box. If we start out with a large window, theitebe a lower
limit in the transform to the resolving power along the frequency directio. dgper limit to
the frequency resolution corresponds to the sampling frequency ofdtretd signal at hand.
If a new STFT is performed with a shorter window size, there will be a neveldimit to
the frequency resolution. If we have a signal containing spikes, th#éireevproblems with
localizing in time those spikes with a large window (blurring). The resolution irirdggiency
domain, however is very good. Decreasing the window size will reduckltineng along the
time direction but increase it in the frequency direction. One of the puspa#id using the
wavelet transform is to improve on the resolution problem. This will, in this caseespond
to selecting different sizes of the sliding window according to the frequesnoge we wish to
investigate.

5.2.3 Continuous wavelet transform (CWT)

The wavelet transform or wavelet analysis is probably the most reckrtis to overcome the
shortcomings of the Fourier transform and determines information abdlutdoonains at the
same time. The FT assumes that the frequency content of the signal istahstaghout the
entire signal and thus that it is effectively periodic. Thereby, a FT thewhole time domain
does not allow to focus on local frequency distribution variations.

In wavelet analysis, the usage of so-caleeletsthat are fully scalable modulated functions
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solves the signal-cutting problem. The wavelet is shifted along the signébaedery position
the spectrum is calculated. This process is repeated with varying wavdtet(acale), which
results in a collection of time-scale representations of the signal, all with efiffeesolutions.
On the large scale global properties can be seen, whereas the smallsdualethe details.
Thus, going from large scale to small scale is, in this context, equal to zooming

A function ¢ € L? with zero average:

00
Y(t)dt=0 (5.5)
is called amother wavelet It is normalized,||@|| = 1, and centered in the neighborhood of
t = 0. Thewaveletsare generated from this single basic wavelet by scaliiy by a and

translating it byb:
1 t—b
t)=—¢y|— |, 5.6
anlt) = 20 () 56)
whereby all wavelets remain normalized witlp, || = 1. Thecontinuous wavelet transforma-
tion or the wavelet integral of € L? atb and scala is defined as

wi(ab) = (s.ya) = 7= [ souss (150 ) ot 5)
' va) -« : a
Equatiorf5.J7 can also be rewritten as a convolution
1 [t
Wi(ab)= [ sty di=s-g, (5.8)

with
Lyt
w- v (3)
Using the Theorei 5.2.1, the Fourier transformygfis given by
W(f) = vaw(f) (af) (5.9)

wherebyW(f) is the Fourier transform af(t). SinceW(f)(0) = [72(t) dt = 0 it appears
thatW is the transfer function of a bandpass filter. The convolution in Equitidndgutes
the wavelet transform with dilated bandpass filters.

The most important properties of wavelets aredbenissibilityand theregularity conditions
The admissibility condition

e |Y(f)2
C"‘:/o | (f)’ df < +oo

guarantees the reconstruction of square integrable funafiens? without loss of information.
To ensure that this integral is fini®(0) = 0 must hold, which explains why we imposed
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that wavelets must have zero average. If furtherm(é) is continuously differentiable the
admissibility condition is satisfied.

Regularity is a quite complex concept and we will give only an idea about iidyg the
concept of vanishing moments. If we expand the wavelet transformtie into a Taylor
seriesy(a,b) att = 0 until ordern (let b = 0 for simplicity) we get ({f_l_Q_bG]:

+ooi

V(,0) = \ja [_is(i)(O)/_m %W(%) dt+0(n+1)

Here,s'") stands for thé-th derivative ofsandO(n -+ 1) means the rest of the expansion. If we
define the moments of the wavelet by

M; = /+wtiw(t) dt

. (5.10)

then we can rewrite Equatién 5]10 into the finite development

$9(0), 2, 200 $"(0)

s(0)Moa+ T > M2a3+...+TMna”+1+O(a”+2)

1
y(a,0) = %

(5.11)
Resulting from the admissibility condition it holdi4 = O for the zeroth momemlp and there-
fore the first term in the right-hand side of Equation 5.11 is zero. If we mamage to make
the other moments up td, zero as well, then the wavelet transform coefficigr(is b) will
decay as fast a&'*2 for a smooth signad(t). In the literature these are known as the vanishing
moments of a wavelet. If a wavelet hidssanishing moments, then the approximation order of
the wavelet transform is ald9d. Hence, with a wavelet of ordét any polynomial signal up
to orderN — 1 can be represented completely in scaling space. Accordingly, morénianis
moments means that the scaling function can represent more complex signadely.

5.3 The Levenberg-Marquardt method for non-linear least
squares fitting

The following introduction into non-linear least squares fitting and the deon of the
Levenberg-Marquardt algorithris based upoh_Mads_en_ej é.L_L2b04].
Thenon-linear least squares probleisidefined as follows:

Definition 5.3.1:; Given a vector functionf : R" — R™ with m > n. We want to minimize
| f(a)||, or equivalently to find
a"=argmin{F(a)} (5.12)
a
where

Fa) = 5 3 (@) = 3l @I = 5@ (@) (513
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An important source of non-linear least squares problems is data fittirepewbe are given a
set of data point§(x1,¥1), ..., (Xn,Yn)} and a modeM(a, x;) that depends on the parameters
a=(a,.. .,an)T. We assume that there exists a parameteasedo thaty, = M(a*,x) + &
where the{g } are measurement errors on the data ordinates, assumed to behaveddm ran
noise. For a least squares fit we might determine the mininaizby computing the residuals
fi(X) =yi —M(a,x) (i=1,...,m) for any choice ofa and take the parameters which result in
the minimal sum of squared residuals. The global minimizer is very hard to figeneral,
and in the following we will concentrate on solving the simpler problem of findirigcal
minimizer forF.

Thelocal minimization problenis given by

Definition 5.3.2: GivenF : R" — R. Finda* such thaf (a*) < F(a) for |la—a*|| < d.

We will now define some conditions oflacal minimizer & that might be used to solve the
local minimization problem. Assume that the so-calbedt function Fs differentiable and so
smooth that the following Taylor expansion is valid,

F(a+h) = F(a) + g+ " A+ O], (5.14)
whereg is thegradient
9F
dag
g=F'(x)(a):=| : (5.15)
OF
dan

andH is theHessian matrix

9%F 0%F
dayda; ' Odaidap
H=F"(x)(a) = : : : (5.16)
9%F 9°F
danda, """ Odapdap

If a* is a local minimizer and h|| is sufficiently small, then we cannot find a poaft+ h with
a smaller=-value. Combining this observation with Equation $.14 we get

Theorem 5.3.1: Necessary condition for a local minimizerlf a* is a local minimizer, then
g-=F'(a*)=0.

We call a parameter sat that satisfies the necessary conditiostaionary poinfor F. Thus,
a local minimizer is also a stationary point, but so is a local maximizer. A statior@ny p
that is neither a local maximizer nor a local minimizer is calleskddle point In order to
determine whether a given stationary point is a local minimizer or not, we neéedltmle the
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second order term in the Taylor series Equafion]5.14. Inseatinge see that
1
F(as+h) :F(as)+§hTHsh+O(||hH3) (5.17)

with Hs = F”(as). From the Definitio 5.76 of the Hessian it follows that &hys a symmetric
matrix. Furthermore, if we request thidg is positive definite, then its eigenvalues are greater
than some numba¥ > 0, andh™ Hsh > &|/h||2. This shows that fofih|| sufficiently small the
third term on the right-hand side of Equatlon§.17 will vanish. Si%ittEHsh is positive we get

a sufficient condition for a local minimizer:

Theorem 5.3.2: Sufficient condition for a local minimizer. Assume thakgs is a stationary
point and thaF" (ag) is positive definite. Thens is a local minimizer.

If Hs is negative definite, thengs is a local maximizer. IfHs is indefinite (i.e., it has both
positive and negative eigenvalues), tlagins a saddle point.

All methods for non-linear optimization search iteratively for the local minim&er From

a starting pointay the method produces a series of vectarsa,, ..., which is assumed to
converge toa*, a local minimizer for the given function, see Theorem 5.3.2. Most methods
have measures that enforce the descending condition

F(aki1) < F(a). (5.18)

This condition should avoid the convergence to a maximizer or a saddle point.

The so-calledsteepest descent methadggradient methodswhich are introduced in the next
section, satisfy the descending condition Equdiion]5.18 in each step of tit@iterOne step
from the current iteratey consists in: 1. Find a descent directian and 2. Find a step length
giving a good decrease in titevalue. Therefore the variation of thevalue along the half
line starting at and with directiorh is considered. From the Taylor expansion Equdfion]5.14
we see that

F(at+ah) = F(a)+ah'F'(a)+0(a?)
~ F(a)+ah"F'(a) for a sufficiently small

We say thah is adescent directiofif F(a+ ah) is a decreasing function af at a = 0. This
leads to the following definition.

Definition 5.3.3: ForF ata, his a descent direction ' F'(a) < 0.

If no suchh exists, therF’(a) = 0, showing that in this casais stationary. Otherwise, we
have to choose, i.e., how far we should go fromin the direction given by, so that we get
a decrease in the value of the objective function.
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5.3.1 The Steepest Descent method

From Definitior[5.3.B we see that when we perform a sthpvith positivea, then the relative
gain in function value satisfies

. F(a—F(a+ah) TE e
clxlino aHhH - HhHh () HF (a)HCOS(Q)

where6 is the angle between the vectérandF’(a). This shows that we get the greatest gain
rate if @ = m, i.e., if we use the steepest descent directigrgiven by

heg = —F'(a). (5.19)

In Section5.3.8 we will describe a powerful non-linear optimization techniatdoes not
need the implementation of second derivatives and combines the steegmesitdaethod with
the Gauss-Newton methdbat is presented in the next section.

In the remainder of this section we introduce some formulas of derivatieéswhich we will
need in the following.

Provided thatf has continuous second partial derivatives, we can write its Taylonsiqraas
f(a+h) = f(a)+J(@h+O(||h|%) (5.20)

whereJ € R™" s the Jacobian matrix. This is a matrix containing the first partial derivatives
of the function components,

jay Lo
J(a) == T (5.21)
Im@) ... Jin(a)

As regard$- : R" — R, it follows from the first formulation in Equatidn 5.113 that
0 fI

Zf (5.22)

Thus, the gradient Equati@lS is
F'(a)=J(a)" f(a). (5.23)

We shall also need the HessianFof From Equatiol 5.22 we see that the element in position
(J,k) is

92F ot of, 02
resa® =3 (Ga @@+ @ (@)
showing that

F’(a)=J(a)"J(a)+ i fi(a)f/(a). (5.24)
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5.3. The Levenberg-Marquardt method for non-linear least sqtittieg

5.3.2 Gauss-Newton algorithm

The Gauss-Newton algorithm uses the first derivatives of the commokthe vector function
f to determine the minimizea®. It is based on a linear approximation to the components of
in the neighborhood dd. For small||h|| we see from the Taylor expansion Equafion 5.20 that

f(a+h)~I(a) = f(a)+JI(a)h. (5.25)
Inserting this in the definition Equatién 5]13®fwe see that

F(a+h)~L(h) = %I(h)TI(h)

= %fo +hTaTf 4 %hTJTJh
= F(a)+h'JTf +%hTJTJh (5.26)
(with f = f(a) andJ = J(a)). The Gauss-Newton stép, minimizesL (h),
hgn = arghmin{L(h)}.
It follows that the gradient and the HessianLddire, respectively,
L'(hy=J3Tf4+J3"Jh  L"(h)=J7J. (5.27)

Comparison to Equatidn 5.23 shows thai0) = F’(a). Further, we see that the mattiX(h)
is independent oh. It is symmetric and if]J has full rank, i.e., if the columns are linearly
independent, thel’ (h) is also positive definite. This implies thath) has a unique minimizer,
which can be found by solving

(IT)hgn = —J" . (5.28)

This is a descent direction fér since

hgnF’ (@) = hgn(3T f) = —hgy(ITI)hgn < 0.

5.3.3 Levenberg-Marquardt algorithm

Levenberg LLLesLeab_drd,_lQM] and later MarquabLLMamLélﬂﬁi] suggested to use a

damped Gauss-Newton methdala damped method, the stbg, is determined as

h=hgm= argmin{L(h)+i2LuhTh}, (5.29)
h

with thedamping parameten > 0. The term%u||h||2 is introduced to penalize large steps.
The stephy, is defined by the following modification to Equation 3.28,
(3T + ul)hm = —gwithg=J"f andu > 0. (5.30)

Here,d =J(a) andf = f(a). The damping parameterhas several effects
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e For all u > 0 the coefficient matrix is positive definite, and this ensures lihais a
descent direction, since

himF'(8) = hin(3" f) = —hip (3T I)him < 0.

e If the current iterate is far away from the solution gmds large and we get a short step
in the steepest descent direction
1 1

= —F'(x).
197 (X)

hlm ~

e If the current iterate is close to the solution gnds very small, thern, ~ hgn.

Thus, the damping parameter influences both the direction and the size tdghe s
The stopping criteria for the algorithm should incorporate that at a globahmzier we have
F'(a*) =g(a*) =0, so we can use

19]lee < €1 (5.31)

whereg; is a small, positive number, chosen by the user. Another relevant critsrtorstop
if the change irais small,

[anew—al| < &2([al] + &2)- (5.32)

This expression gives a gradual change from relative stegsi@ben||al| is large to absolute
step size€22 if ais close to 0. As in all iterative processes, we also need a safeguandteaya
infinite loop,

K < Kmax (5.33)

Both, &, andknaxare chosen by the user.
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Chapter 6

Introduction to peak picking

Over the last decade mass spectrometry has become a prominent techninedi@id of
proteomic research. It allows for the large-scale characterizationraireds to thousands of
proteins in complex biological samples by the resolution of proteins or peptitlesespect
to their m/z values. Regardless of the MS-based experimental proceduege interested in
those m/z values that correspond to measurements of proteins or peptidessticases, only
small parts of a full mass spectrum represent the interesting signal. Teedeche amount of
data and allow for further analysis steps, we need methods that extractdhmation we are
interested in from the mass spectrum.

Subiject to the MS-based experimental procedure, different asddtts signal can be of in-
terest. MALDI-TOF instruments are often used for the identification of pmefevhereby the
record of m/z values of the detected peptides in the mass spectrum seevgepisde mass
fingerprint. This pattern is usually distinctive and characteristic for thésesgorotein and
used to identify the protein from a sequence data base. The more adberatéz values in
the pattern are, the lower is the number of possible protein candidates amditheeliable is
the identification result. The identification of proteins using tandem mass spegity is also
subject to the determination of accurate m/z values for the parent ion assnbg ragment
ions in the tandem spectra. However, mass spectrometric experimentsrtireochanges
of perturbations in the proteomes of distinct samples depend on the acguaatiification of
the proteins in the measurement. Therefore, the total ion counts of the dgtegtides in the
mass spectra have to be determined precisely.

Another important application of MS is the field of clinical proteomics. To disc@oten-
tial biomarkers, differentially expressed proteins in different SELDIFTmass spectra are
detected. Especially low abundant proteins may play an important role ametbyhieir m/z
values and ion counts should be carefully extracted.

A general approach, which extracts all the mentioned characteristice oftdresting signal,



6.1. Nature of mass spectrometric measurements

e.g., accurate m/z positions along with the respective ion count, without aspfigsforma-
tion, would facilitate any of the proposed analytical aims.

The following section briefly introduces the reader into the nature of masstremetric
data and the aspect of the interesting signal in proteomics MS measuremestannha-
rizes expertise from [Henderson and Mclndoe, 2005; de Hoffmaah, 2001 Smith, 2005;

Jurisica and WigH;O_bt; Hilario et aJI., 2d)06] as well as from lecturesrgby Knut Reinert

and Clemens Gipl in 2006 at the Freie Universit Berlin.

6.1 Nature of mass spectrometric measurements

As described in Sectidn 3.1, a mass spectrum is produced by the threeremtgpof an MS
system. The ion source that produces the protein or peptide ions nefsrteefirst component.
The mass analyzer constitutes the second component separating the iorespattt to some
unique properties, which result from the imposition of an electric or magnelit fThe values
of the instrument variables imply certain m/z values. The ion detector, whigdrd®dthe

ion currently generated by the ions emanating from the mass analyzezseefs the third
component of an MS system.

An ideal mass analyzer would be able to distinguish ions even with slightly eliffen/z values,
but as in all physical experiments, a mass spectrum is afflicted with undersai@sulting from
random fluctuations in measurement. lons that have the same m/z value deceesarily
strike the detector at the same precise instant, because ions having the sarakienfave a
small range of initial energies as they leave the ion source and thus aegpestted to reach
the analyzer and detector at exactly the same time.

Another reason for the blur of an m/z measurement is the imprecision of theamalszer.
The instrument variables of a mass analyzer might not always expresgzhalue of an ion
precisely and therefore, not all ions will pass off the analyzer, wherdlue of the appropriate
instrument variable corresponds to the correct m/z v@ 2005].

The measurement of several ions with identical m/z values yields a peak shépe mass
spectrum that is centered around the real m/z value of the ions. This pattalled a mass
spectral peak:

Definition 6.1.1: A mass spectral peak a localized maximum signal produced by the detec-
tor, which represents the ions of some chemical entity.

Figure[6.1 shows the mass spectra of the i@3#ls04]",[CsH1003] " and [CoHz2] ™ resulting
from mass analyzers with different m/z separation capabilities. A commonty tesen for
the separation capability resolution A low resolution analyzer (e.g., quadrupole/ion trap in
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Chapter 6. Introduction to peak picking

low resolution mode or linear TOF) cannot discriminate the three ions and gisgke peak

is observed in the mass spectrum. At slightly higher resolution (e.g., quadfgm trap in
maximum resolution mode) the higher m/z ion is differentiated, but the remaining tvgo io
appear just as a single peak at an m/z value intermediate between the twalueal Vi hree
peaks can be clearly observed at a resolution of 5000 (e.qg., refldsdie)) and the signals are
baseline resolved at 10000 resolution (e.g., high performance refield@b, FTICR).

N I
N |
\

\

VA
129.8 130.0 1302 1304 1298 130.0 130.2 130.4
miz miz
f\ /ﬂl /\ 5000 f ’4 ﬂ 10000
.

UL |

129.8 130.0 130.2 1304 129.8 130.0 130.2 130.4
mlz mlz

Figure 6.1: Effect of increasing resolution in differentiating the ®|CsHgO4]",[CsH1003]T and
[CoH22| ™. The monoisotopic masses drg0.0266 1300630 1401722 m/z respectively (figure taken

from|Henderson and Mglndde_@%]).

Figure[6.1 shows that the correspondence between peaks in the spaatiithe ions formed
by the component is only one to one if the mass spectrometer is able to resoleaghef
different components. The higher the resolution, the narrower thespaakl the better they
are separated in the mass spectrum. One common definition of resolution,isvhlsb used
in Figure[6.1, is defined with respect to the full width of the peak at the halfmax intensity
(FWHM):

Definition 6.1.2: The resolutiorRgywHm is defined by

m

Rewhm = 7 -

wherebym s the maximum m/z position of the mass spectral peakandis FWHM value.

49



6.1. Nature of mass spectrometric measurements

Figure[6.2 illustrates the FWHM of a mass spectral peak.

FWHM,
full width
at half

maximum
—Am |

Figure 6.2: FWHM of a mass spectral peak.

With a sufficient resolution the ions presenting proteins or peptide compoimeatsample

are not only represented by one peak in a mass spectrum, but insteaduoybar of so-
calledisotopic peaksThe proteinogenic amino acids consist of a combination of five elements:
C,H,S O, andN. For all of them there exist different isotopes. Isotopes are atoms shthe
element that differ in mass as they have different numbers of neutroits edmtaining the
same number of protons and electrons. In addition to the isdt@hearbon also has theC
isotope, hydrogen occurs in the isotopeisand?H, and nitrogen it*N and'°N, respectively.
Oxygen has three isotop&0, 170,170 and sulfur even four3?S, 335, 345, 355 365,

The monoisotopic massf typical organic compounds is the sum of the masses of the atoms
in a molecule using the lightest isotope mass of each atom. The existence oéspooiding
monoisotopic peak in the spectrum depends again on the resolution of theskégs

Figure[6.3 illustrates how the aspect of an isotopic envelope varies withasingeresolu-
tion. The figure shows the theoretical, isotopic pattern of doubly chargedbésin ions. This
peptide is composed of 14 amino acids and has a monoisotopic mass d383Th. Accord-
ingly, the monoisotopic mass of a doubly charged peptide ion iA209 Th. An instrument
resolution of 1000 (which corresponds to an FWHM of the mass spe@gdispof approxi-
mately 08 Th) does not provide the differentiation of individual isotopic peakswelver, a
mass spectrometer with a resolution of 2500 is able to separate the isotopsc(p¥éKM

~ 0.33 Th) and allows for an estimate of the monoisotopic mass with respect to thésmono
topic peak. But the isotopic peaks in this spectrum still slightly overlap. la ofa resolution
of 5000 the isotopic peaks (FWHK 0.16 Th) in the mass spectrum are baseline-resolved,
that is to say ions of the individual isotopes are clearly discriminated amdt ieghree non-
overlapping mass spectral peaks. The precise separation capabilityasaspectrometer with
resolution 10000 produces three narrow baseline-resolved peaksNF~ 0.08 Th).
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Figure 6.3: Effect of increasing resolution in differentiating the tigpic peaks obombesin(amino
acid sequence: GIn-GIn-Arg-Leu-Gly-Asn-GIn-Trp-AlaftM@ly-His-Leu-Met-NH,;  UniProt entry
P84214). The theoretical monoisotopic mass of the douldyged peptide 8194201 Th. The isotopic
envelope is simulated using the tésbtopicajde Cossio et al., 2004].

Horn et al. [2000] observed that the distance between isotopic ped§3% Th measuring
peptide ions with charge. We call the uniform spacing of isotopic peaks theptide mass
rule.

A monoisotopic mass spectrum is defined as a list of the monoisotopic m/z valuasteos

from the original raw mass spectrum. The mass spectral peak reprgse@imonoisotopic
mass is not always the most abundant isotopic peak in a spectrum despit¢aiinag the

most abundant isotope for each atom. This is due to the fact that as the mofnalbems in a

molecule increases the probability that the entire molecule contains at ledst@aneisotope
increases as well. For example, if there are 100 carbon atoms in a molechkreas each of
them has an approximately 1% chance of being a heavy isotope—then theemblecule is

most likely to contain at least one heavy isotope.

As we have exemplarily seen on the basis of bombesin in Figure 6.3, degendihe resolu-
tion of the mass analyzer the mass spectral peaks either represent thieemesd of multiple
isotopic ions of a peptide, or the measurement of the individual isotopic Amtrdingly, the
apex of a peak either belongs to a more or less precise measurement of thedua/of the
isotope ions, or to an estimate of the average isotopic mass. However, thgeagtomic mass
of an element is defined as the weighted average of the masses of all i@llgatacurring
stable isotopes. In Figuke 6.3 the apex of the peak resulting from a resdRgtjgy = 1000
corresponds approximately to the average mass 0981Bh, whereby the apex positions of
the peaks measured with resolutigayyym = 10000 are quite good estimates of the theoretical
isotopic m/z values and they precisely follow the peptide mass rule.
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6.1. Nature of mass spectrometric measurements

As we have seen, the interesting signal in a mass spectrum is represgntexsd spectral
peaks. Unfortunately only a small fraction of all maxima in a mass spectrumdmeto mea-
surements of peptide or protein ions, all others are caused by noise. sk1gpactrometric
measurements we have to distinguish two types of noise, chemical and raodan

Chemical or colored noisis a significant source of background interference in ESI mass spec-
tra. This chemical noise is a fixed pattern noise, which manifests itself afispefz ratios.

It results from the mass analysis of charged species other than the ar@iypeund. Inter-
ferences are either ions or salt adducts in the electrospray solutiamesgenerated electro-
chemically, or neutral species present in the atmosphere around thpragtisat are charged

in the gas phase by proton transfer. If ESl is coupled by means of liquish@tography (LC),
chemical noise can be very abundant at the beginning and at the enel elutron process.

In MALDI-MS, chemical noise is mainly produced by clusters of matrix molesdleat are
abundant in the sample mixture.

Random, electronic, or white noisgany source of undesired interference whose time of oc-
currence is not correlated with the signal and reveals some sort ajtoacid noise at virtually
every m/z value. It is assumed that it arises primarily from electronic noisesidetector of
the MS instrument.

Both types of noise may mask or mimic the interesting signal, where the chemiocalrapig-
sents the harder problem, because it has a pattern in the m/z domain similar fdahikatignal.
In most cases mass spectra are not only disturbed by noise, but alse s1y ¢hllecbaseline
In MALDI spectra, chemical noise can be very abundant in the lower maagge causing a
strong upward drift in the baseline of the mass spectra, which falls afflyawith increasing
mass. In ESI spectra, chemical noise can form a bump in the baseline in timedadiate mass
range. Figuré 614 illustrates the additive composition of a mass spectrum lsyspestral
peaks, baseline, and noise.

interesting signal baseline noise mass spectrum

intensity,

/\/\V /\V /\/\/\,\/\A
MR /7

m/z

Figure 6.4: Mass spectral peaks of the interesting chemical entitiesifflicted by baseline and noise
signal.
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6.2 Peak picking problem

The previous section describes the nature of mass spectrometric measgsranwe have
seen that the mass spectral peaks represent the interesting informaittentlfication exper-
iments using PMF or tandem MS, their m/z positions can be used to identify thengrote
peptides in a sample. In clinical proteomic experiments the m/z positions of thénppeteks
can be used to assign corresponding peaks in multiple spectra and ® agmigteomic fin-
gerprint of multiple samples. However, quantitative LC-MS-based applitatise either the
peak area (summed over the elution time of the component) or the maximum pebkiheig
ion counts|[Bondarenko etlel.. 2002; Wang et al., 2003; Schulz-Tfeglall, 2007 Old et &l.,
@] to yield relative or absolute estimates of the peptide or protein coatiens in a sam-
ple.

Accordingly, an algorithm that facilitates all the different analysis goatgishdetermine the
accurate peak positionsheirmaximum intensitiesas well as theéotal ion countsepresented
by the peaks. Furthermore, it should estimateRWWHM valuesf the peaks that are associated
with the resolution of the mass analyzer. Figuré 6.5 illustrates the four impéetmres of a
mass spectral peak.

We call an algorithm that determines the peak features of intepestlapicking algorithnand
define the peak picking problem as

Peak Picking Problem:
Givenk raw mass spectiac N,
Find the accurate positions, heights, total ion counts, and FWHM values
of all mass spectral peaks in the presence of noise and baseline artifacts

intensity
8

Figure 6.5: Important features of a mass spectral peak: positiopheight (maximum intensity, full
width at50% height FWHM), and the total ion coura.

As mentioned in the previous section, the signal may be masked or mimicked étainties
in the measurement (see Figlrel 6.4).
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The two sources of interference, baseline and noise, disturb the tirigremss spectral peak
features in different ways and any peak picking algorithm should omeecthese difficulties.
Random noise, which is not correlated with the signal, reveals some dwmsitkfiround noise
at virtually every m/z value. It is represented by narrow bumps in the massram, which
can be easily distinguished from real mass spectrometric peaks. Sineesuperimposes on
the mass spectrometric peaks, it may shift the “true” peak positions and noatgaiper with
the peak heights. Only the total ion count should remain more or less uteaffdrecause
the mean of white noise is zero. Isotopic peaks are hard to distinguish fremical noise,
because it has a pattern in the m/z domain similar to that of the signal. Coloredpeaise
that are not removed from the spectrum can lead to false positive aativeeiglentifications.
In mass spectrometry, as in all physical experiments, errors and untiegaesult not only
from random fluctuations in measurement, but also from systematic eBgssematic errors
in mass spectrometry are caused by a poor calibration and result in a hégbflascuracy.
Particularly MS-based identification experiments using TOF analyzersxdepethe proper
correction of these calibration errors. Calibration algorithms are cousradeparate research
area, which is not subject of this thesis and are handled elseV\thﬂLe_[_Slmlmd.,LZQ_d&

Gobom et al., 2002; Tan and Brown, 2002; Wolski ét al., 2005].

Besides noise and baseline, a peak picking algorithm is faced with two mdslem® The
first problem is given by theverlap of mass spectral peakBeaks may be convoluted due to
two reasons: 1) a poor resolution of the mass analyzer, or 2) highlgetharotein or peptide
ions. An example of a poor resolution is shown in Fiduré 6.6. The isotopkspefahe doubly
charged bombesin ions strongly overlap with a resolutioRggfym ~ 2300 around m/z 810
(LC-ESl-ion trap mass spectrometry).
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Figure 6.6: Raw mass spectrum of doubly charged bombesin ions (p-GiuABj-Leu-Gly-Asn-GIn-
Trp-Ala-Val-Gly-His-Leu-Met-NF). The raw data points (circles) are linearly interpolatéte poor
resolution of the ion trap analyzer yields in a strong oyedathe four isotopic peaks.
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The capability of a peak picking algorithm to separate overlapping isotopierpa is very
important for LC-MS quantification experiments. In a quantification pipeling#ak picking
algorithm is directly followed by the so-callddature findingprocess collecting all isotopic
peaks of a peptide and combining them to a feature. To enable a relialde gnadiction with
respect to the isotopic pattern, the isotopic peaks have to be discriminatéideamplositions
have to be accurately determined.

Besides the decrease in resolution, an increase in charge state will sugoimeconvolved
isotopic patterns, because the higher the charge state, the smaller theedigtnioetween the
isotopic peaks according to the peptide mass rule.

100007

intensity

50007

Ot ‘ ‘ ‘ ‘
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Figure 6.7: Asymmetric peak in a mass spectrum measured with an MALDIFIrGtrument. The raw
data points (circles) are linearly interpolated.

The second difficulty a peak picking algorithm has to overcome is a coasildesymmetry

of mass spectral peak$mperfections in the mass analyzer often add up to a peak skewness.
For example, in quadrupole mass spectrometers asymmetry results frorbdiiger circular
section electrodes and may be increased by manufacturing imperfectiissadso affected by
fringe fields at the ion entrance and exit positions. Features of the iocesmay also affect the
peak shapé;[QLb_s_OLaﬂd_Ta)L'lbL;bd_S_]AempLa_lsLaLﬂZ004] statéhthgeometrical position
where the ions are produced in the ion source, as well as the initial velddite @ons, will

affect their flight time and hence, the shapes of peaks in the resulting pestsas Figuré 617
shows an isotopic peak in a MALDI-TOF mass spectrum.

This asymmetry has to be considered in any peak picking approach,seeitehampers a
correct mass to charge determination.
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Chapter 7

Related work

The entry of mass spectrometry into the analytical biotechnology in the 18%8sezhnique
for the identification and quantification of proteins and peptides was accvetphy the de-
velopment of algorithms to process the resulting data. Many peak pickingithlgs were
established, which determine, tailored to the objective of the mass spectromeascrement,
important information about mass spectral peaks, such as accurate atopiigeak posi-
tions, centroid positions of resolved isotopic peaks, and the ion countsss spactral peaks
(height or area under the curve). Most of the peak picking algorithensl@signed for a spe-
cific instrument type or a particular application and cannot be used to exifanteresting
information from a mass spectrum.

A lot of peak picking algorithms were designed to enable the accurate identifi-
cation and characterization of proteins using peptide mass fingerprints in DMAL

TOF spectra LLB_Le_en_eLbIL_ZdOd)' Wehofsky and HoﬁHwathZd_Ql;_lkampai., |_20_d4;
Samuelsson et all, 2004; Gras et al.,_1999; Berndt et al..| 1999]. Some pebk pick-
ing algorithms were developed with respect to biomarker discovery in MALOF or
SELDI-TOF spectra| [Yasui et bIL_ZdOb Randolph and 9M2w@4
|Q_o_omb_e_s_e_t_altlL_2Qb$ Yu et aII., Zbdﬁ; Mantini et bLde?; Du eLaLJ]ZOOHfle remain-
ing peak picking algorithms are related to the general analysis of MS or BCpkb-

teomics data | [Wehofsky and Hoffmzinh._ZbdZJ_H_Qm:ét[aL_IZd_O_Q._S_mﬁmamy éZQ_OJB

Katajamaa et all, 2005; Bellew et al., 2006; Li etlal., 2005; Andreevi etG03]2

Most publications propose methods beyond a peak detection algorithnrticus, these are
methods

e for baseline and noise correctioLLB.m.enjlt il”_ﬁob_Q;_S_a.muﬂss_OJn
lB_emdl_elﬁj., |_151§9;|_C_ogn1b£§_ei aL._Zbdi;_m_ét é.L_lZOb_G;_Mamlnﬂe
Katajamaa et all., 2005; Bellew et al., 2006; Li etlal., 2005; Andreevi €203,

S
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e a calibration method [Yasui etlal., 2003; Kempka etlal., 2004; Samuelssbn 2004
Bellew et al.| 2006; Strittmatter etlal.. 2003; Gras et al.. 1999],

e a deconvolution algorithm | [Wehofsky and Hoffmlanlh, jOO|2; Horn lstﬂQQ_d}Z
Bellew et al.| 2006 Li et all, 2005],

e a deisotopin aIgoritthDALehoisk;Land_HpﬁmJar{aJOMdQZ:_HQmJetZQOb;
Ercon ot | 2000| Samuelssan &t & 2004; GraJotal ] 1900, Eerthtlaoch
Lictall [2055)

e a method for the alignment of peak Ilsts_LRa.ndleh_a.ndjistjD_O_ﬁ.lLtn&Iﬂaﬂ
@l],

e an algorithm for peptide mass fingerprintilhg_[_Sa.muglis_QnJél_alJ hQOAMilQ_Qb
Berndt et al.

1999,

e Or a pattern classification meth&ﬂﬂh&hitani_dtLa.L_iOM].

The existing peak picking algorithms can not only be classified by the M&dbasplication
or instrument type they are developed for, but also by their way of degeittehmass spectro-
metric peaks in spectra.

As mentioned in Section 8.1 (see Figlrel 6.4), mass spectra are composeeeadifferent
terms, which are a high-frequency noise term, a low-frequency bas#lipackground term,
plus the information we are interested in that occupies a frequency rabgéneen noise and
baselinel[Tan and Brownh, 2002].

Most of the proposed peak picking algorithms successively corredenand base-
line in a mass s ectrumLTBEg} a 000; Berndtetlal., /1999: Samuelsab,
2004; | Tibshirani et al.. 2004; Mantini etlal., 2007; Katajamaaletal., [2@0%ireev et al.,
|;0_0;k; |_G_r1$_el_iilll.|_19_99], or try to detect the peaks directly in the ungsederaw
mass spectrum| [Wehofsky and Hoﬁmhﬂﬂ,job;;_Yas_Lﬂeﬂ_aLJ 2b_@|1;ﬁa_ej_él.,|_20¢4;
Wehofsky and HfomanH]_,;be; Horn e1| éI_,_beQ Strittmatter |e|1 al.,|2003]

Several groupi [Yasui et a{l_‘ﬂ(bs Tibshirani ét@_ﬂ)m; Man:iallé;O_Qﬁ use a very sim-
ple peak picking strategy that searches for local maxima in SELDI-TORMAODI-TOF
spectra. All data points that have the highest intensity among a certain nufmiségloboring
data points are defined as “protein intensity peaks”, and extracted frempctrum. Prior
to peak detection, several groub_s_LMa.nl[nj_et[alu_i@l:llb_&hiLaﬂi&M] filter the noise
in the mass spectra, using a “loess” or a low-pass Kaiser filter. Subseigpuihe smoothing
processLMaMMlLBQb?] estimate a baseline and noise level withatespthe kurtosis
of the data and filter out peaks with a low signal-to-noise value. This simple getaktion
method is not able to distinguish the mass spectral peaks of interest fromicethaoise peaks,
because it does not incorporate the width of mass spectral peaks.
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Strittmatter et dI.L[;O_d3] use a fit of a Gaussian mixture to model the obsesyethzetry of
peak shapes in LC-ESI-TOF mass spectra. Two Gaussian distributeuoset to estimate the
m/z value of each peak in the mass spectrum. The second peak is used t@afiirtgeffect at
the high-mass end of the peak distribution, whereas the midpoint of the &ustszin function
represents the m/z position of the mass spectral peak. In connection withratc@ method
for LC-ESI-TOF machines (which should be transferable to other insmtatien, such as FT-
ICR and ion trap instruments), they achieve a considerable improvement snac@asacy for
non-convoluted LC-ESI-TOF daté. Kempka glt MOM] elaborate ismtixture modeling
and also test other mixtures such as a Lorentzian and a Gaussian dueyeactomplish the fit
of two Gaussian distributions in the time-of-flight dimension and use the midpbthedirst
Gaussian function as the flight-time of the peak distribution. Afterward sonteafetermined
flight times were used to estimate the coefficients in a fourth-order polynomietidum, which

rovides the relationship between known m/z values and the picked flight (Biods

]. They compare their results to those obtained by commercial pedkgilorithms

(SNAP) and conclude that they perform better for most peaks. For smdliconsiderably
skewed peaks, the improvement in accuracy is up to fiveiJQIsi._S_tLiILmaIIdr[btmi] and
[Kﬂmpka_eldl.ﬁzo_dq have shown how important it is to consider the skeswofgpeaks during
peak picking, but the improvement in mass accuracy is only shown by Keetpdda using
MALDI-TOF data without convoluted peaks, which are baseline or clobaseline separated.
Furthermore, their peak picking approach detects the peaks in the timgkafdlmension,
which limits its application to TOF mass spectrometric data.

Gras et QI.L[M9] determined the monoisotopic peak positions in MALDI-T@Es spectra.
In a first step a noise and baseline level is estimated. Each data point tleedsxhe noise
level is used as a starting point for a fit of a normalized average isotop@pabtained by an
in silico digestion of proteins in the SWISS-PROT databhs_e_[ﬁaiLo_ch_ambMi\MLb]. In
the vicinity of the starting point, an error function is evaluated. The lowest mimmithe er-
ror function indicates the monoisotopic peak position. To enable the sepepativerlapping
isotopic pattern, the average peak distribution is subtracted from thewmeatid the monoiso-
topic peak finding process is iteraté_ci._B_ef_ndlgétLaL_Lllggg] propogaitasapproach, which
differs only in the estimation of the baseline and the fitting method. They useenheig-
Marquardt algorithm to fit the average isotopic distribution to the data.
I.O] use a Poisson distribution to model the isotopic pattéeadhsf a sum
of Gaussian functions. They accelerate the matching of the isotopic pattéra data by an
enhanced preprocessing. In afirst step, they use mathematical maypbhotbwatershed algo-
rithms to extract the individual isotopic peaks in a mass spectrum. In a setamdhey fit the
Poisson model to the data to determine which peak in a group is the monoisotdpi®pesn
et al. prove the sensitivity of their peak picking method by comparing the atitatha de-
tected monoisotopic mass spectra with monoisotopic spectra that were manteihgided.

ML&thsk)Land_H_Qttman\rLLZle] use a mass-dependent averageispattern to deisotope
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mass spectra of peptides, but the iterative process of fitting the theopsitein to the spec-
trum and subtracting it afterward remains the same as in the methods desdrived

The peak extraction approachLQLS_amu_elis_QanLal_t2004] differstine other monoisotopic
peak picking algorithms. After baseline and noise estimation, similar to the grdessribed
in @Eh. 0], Samuelsson et al. initially extract isotopic peaksedeby consecu-
tive data points exceeding a certain signal-to-noise value. Afterwartecative peaks are
grouped into clusters and a convex programming problem is formulated.mirimization
procedure corresponds to the objective of determining the lowest nwhpeptides and their
m/z values, which, given the measured peak intensities and the template isistopetns,
can account for the isotopic pattern of the cluster.

For the monoisotopic peak detection in ESI mass spectra several gl'_QupE_d.l:aI.,LZQ_dO;
Wehofsky and Hoffmar MbZ] adapted the deisotoping approadi4aDI spectra data by
a charge deconvolution. The deisotoping methods are very similar to the regitesented
for MALDI mass spectra and use the fit of an average isotopic pattere. stibcessive fit
of theoretical isotopic pattern to the raw spectrum leads to a high runtime ofréipeged
monoisotopic peak picking methods. Excepi of Breen |e{_al._ﬂ2000], theoimatiopic peak
picking algorithms do not make use of an enhanced preprocessing akdlinectly on the
raw spectra.

Andreev et a|I.L[;0_d3] developed a further peak picking algorithm, whgds the 2D structure
of peaks corresponding to a sample component in LC-MS data. They odched filter
to minimize chemical as well as random noise. The matched filter is the optimal liftear fi
for maximizing the signal-to-noise ratio in the presence of additive noise. Ahmdttlter
uses the peak and noise characteristics to detect interesting signal indahé\ddreev et al.
estimate the noise characteristics in “vacant” EIC, assumes the chromdtiogrepk shape to
be Gaussian, and uses this information to obtain a properly matched filter.

After filtering each of the EICs using the matched filter, the actual peak gjakiperformed,
based on comparison of scores generated for each peak candidagecesithin threshold. In a
first step, a score for each EIC is computed, which indicates the presembsence of peaks
in the chromatogram. The peaks of EICs that have a score greater theataia ¢hreshold
represent peak candidates. To examine the peak shape in m/z dimensiorg & somputed,
based on the comparison of the intensity at the peak apex position with thetietengthe
neighboring m/z values.

As a final step, the monoisotopic peaks were selected from the isotopiaslastethen peaks
corresponding to sodium and potassium adducts were determined and &lahiioan the peak
list. The scoring rules include several parameters which are determinti@dland error, but
they plan to apply machine learning algorithms and large training data sets iri@digtermine
the optimum values of both the score parameters as well as the threshold.

The two simple peak picking strategieSJ_Qf_KaLa,ia.ma.aJeLaL_IZOOS] are implemiaraesbft-
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ware package for the analysis of LC-MS data. The first strategy, whiolcommended for
data already picked by the instrument, searches for all local maxima in thespedsa that
exceed a certain threshold. The second recursive strategy additiooaliders the width of
the peaks at each local maximum.

A different class of peak picking approaches takes advantage ofdhkdnd multiscale prop-
erties of spectral signals bf segaratinf a si%nal into its individual frezyueontributions using

the wavelet transformatio b97] or quadrature filﬁ[&[ﬂund_and_l&nuls_&bn.
|J.9_9_$]. |_C_O_Qn1b_e_$_el_h[._L2dOi1._B_eIJ_ew_ej iL_LZbdﬁ_L_LJ_ek E.L_Lﬁ00§§3 uhe wavelet transform
only for the noise correction of spectral data and search for peaksisrntoothed signal.
[Ra_ndgl,ah_a‘ndlaSMLLZQbé_l;D_u_eﬂAL_LZLbOG] isolate the contributiolkeanalyte signal from
background and noise in order to detect the peaks directly on the pongiag scales in the
wavelet transfor6] use the logarithm transformation @saber filter to detect
isotopic patterns.

[Randglph_andlaﬁuLLZQbG] propose a method that cannot be diredaflgrstood as a peak

picking method. The interesting signal extracted by their approach ddesrimgently cor-
respond to the positions of mass spectral peaks, but rather indicatesimgrchanges in the
spectrum intensities. Randolph et al. decompose MALDI mass spectra insorthef con-
stituent functions, each containing a particular scale of the signal. Atftliyadic scale, the
“scale detail functionD;” reflects the scale-based changes in a spectrum that occur across a
21-unit domain. The subsampling of the CWT at dyadic scales retaining all losasaalled
translation-invariant wavelet transform (TIWT). Randolph et al. losatealled “scalg-fea-
tures” defined as local maxima ;. The set of all local maxima iD; does not correspond
to the set of local maxima in the spectrum, but corresponds to local chantfessspectrum,

of scalej, as extracted b;. The existence of a scalefeature is not defined in terms of the
intensity of the signal at that position. Rather it depends on a relativegeharthe intensity
over a region whose width depends on the s¢aldence, it indicates inflections or shoulders
in the spectrum. The maxima [y are determined using wavelet families having one and two
vanishing moments.

To extract interesting feature patterns from different MALDI specdhay build histograms for
the scale} feature locations detected in the detail functi@nsof all spectra. They claim that
most relevant features are described by a small subset of scales.

|Q_09mb§§_el_flll.L[;Qb5] use the translation-invariant undecimated discesteet transform
(UDTW) for noise filtering of SELDI spectra. Afterward, the baselineesmoved and the
peaks are detected via a local maximum search in the preprocessed hiaf@eak endpoints
are defined by the adjacent local minima. Flat peaks as well as peaks wilrsen#dl width,
are filtered out and peaks that lie to close together are combined.

. @] developed an algorithm to extract isotopic patterns inypoesolved MALDI
spectra measured in linear mode. To reduce the dynamic range of the inseofsatispectrum,
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they initially compute the logarithmic transform of the spectrum. Yu et al. utilize theteat
distance of peaks isotopic patterns of charge one. After some prepmogeincluding baseline
correction and noise filtering, they apply a Gabor quadrature filter totdbtesotopic pattern
in the data. The impulse response of the Gabor filter is defined by a harnuoisiooih multi-
plied by a Gaussian distribution; consequently its frequency respoppeisito be a Gaussian
bandpass filter. This filter will therefore respond to some frequenayeramthe signal. The
Gabor filter is centered at a frequency corresponding to a wavelehgth=01 Th. There-
fore, maxima in the transformed signal indicate possible location of an isotojarmpan the
spectrum. If the peaks in the quadrature filtered signal exceed a ceitlim the maximum
positions define the peak positions in the spectrum.

The peak picking algorithms of several groubiLLLdt[&leLO.&;M]dﬂQQb] are im-
plemented in the software packadggecArrayandmsinspecfor the analysis of LC-MS data.
@] use the TIWT to smooth each scan in an LC-MS raw mapalloexima in the
smoothed spectra that exceed a certain threshold define the mass WI.

] suggest that they also use the wavelet transform to facilitate #iegseking process,
but unfortunately neither ih Bellew et a]l._[;dOG], nor in the user guide dhapgect they de-
scribe the peak picking procedure in more detail.

m. @] propose a CWT-based approach for the detection s sectral peaks in
SELDI-TOF mass spectra. Due to the varying peak width of protein pedks®spect to the
m/z dimension, they search for the peaks in 33 scales of the wavelet traesfepectrum using
a Mexican hat mother wavelet. Major peak locations correspond to ricggesrong on several
successive scales. To detect the interesting peaks, they therefare édiclocal maxima on
each scale and link corresponding maxima of adjacent scans togethearalbexb“ridge lines”.
Furthermore, they compute the signal-to-noise ratio of each maximum usingéflest scale
for the estimation of the noise level. If the length of a ridge line exceeds arcéntashold
and the scale of the maximum amplitude on a ridge line lies within a predefined aogke, r
and if furthermore the maximum amplitude exceeds a certain threshold it dafpeak. Their
algorithm follows in its essentials our peak picking approach, whereasavép a powerful
peak picking approach without the costly determination of 33 wavelet scil@thermore,
we extract the information of interest directly from the raw data and caefibreryield more
accurate m/z positions and peak widths.

None of the proposed peak picking algorithms represents a gener@safithe peak picking
problem. All methods depend on a specific instrument type and provide dahniation for a
certain analytical aim.
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Chapter 8

Own contribution

We propose a wavelet-based peak picking technique suited for the ajoplita the differ-
ent kinds of mass spectrometric data arising in computational protedm | 2006,
]. It solves the peak picking problem as defined in Se€fidn 6.2 atfiticadlly extracts
some useful information, which facilitates further analysis steps. The m/ewvahe accurately
determined not only for well-resolved, but also for convoluted data usingsymmetric peak
shape. It achieves this in real time and does not make assumptions abaodérying ma-
chine or ionization method (MALDI or ESI), which makes the algorithm rolbasdifferent
experimental settings. In Chapfér 9, we will show the performance of eak picking al-
gorithm on two different kinds of data: a low-resolution LC-ESI data sel lsigh-resolution
MALDI spectra. Compared to a vendor supplied standard algorithm, oaoritdm delivers
superior performance on the former and state of the art performarite tatter data set.
The independence of the underlying machine is achieved by addresesipgatblem from a
signal-theoretic point of view, which tells us that spectral data such as MSurements are
of an inherently multiscale nature. Different effects, typically localized ifedit frequency
ranges, add up to a result in the final signal (see Figute 6.4). As medtio/Sectiorf 6.2, we
will assume that the experimentally obtained signehn be decomposed into three such con-
tributions: a high-frequency noise temma low-frequency baseline or background tdynand
the information we are interested in, often referred to as the analytical sim
], whera occupies a frequency range in between noise and baseline.

In Sectiof 6.2, we described the peak picking problem and defined thaectéastic features
of mass spectral peaks. Compared to other approaches, our dpprbects additional infor-
mation about a peak’s shape, such that the fit of an average isotopimpatthe peak data
during the feature finding process is improved. In contrast to many es$tadlapproaches to
this problem, the algorithm presented here has been particularly designeditavell even

on data of low resolution with strongly overlapping peaks. This is especipfigr@nt when



separating, for example, charge two isotopic patterns with poor resolatdhe bombesin iso-
topic peaks in Figure 6.6. The peak picking approach directly exploits the naléisature of
the measured mass spectrum. This becomes possible with the help of the Qativanelet
Transformation (CWT) (see Sectibnb.2). A main advantage of the CWT ittairto other
decomposition methods such as the Fourier transform, is the preservaitidorofation about
the localization of different frequencies in the signal in a near-optimal mam

]. Using the CWT, we can split the signal into different frequeaayges or length scales
that can be regarded independently of each other. This is demonstré&igdie 8.1, where we
have plotted the transformed signal of a typical region of a mass specitrutifferent scales.
Apparently, looking at the signal at the correct scale—in our casejghrestimate of the typi-
cal peak width as depicted in panel B—effectively suppresses bogfimmand noise, keeping
only the contribution due to the analytical signal.

Part of a MALDI-TOF spectrum
1000 T T
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Figure 8.1: The plot on top represents a mass interval of a MALDI-TOF spec betweer2230 Th
and2250Th. Plots A, B, and C show the continuous wavelet transforth@Epectrum using a Mexican
hat wavelet with fixed scale valuagA: a= 3, B:a= 0.3, C:a= 0.06).

This decomposition allows us to determine each feature of a peak in the dooraimfrich it
can be computed best, i.e., either from the frequency range of the anladygicali, the full
signals, or from a combination of both.

Our algorithm is a three-step technique that first determines the positiongative peaks in
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the wavelet-transformed signal and then fits a peak function to the originatiata in that
region. In a third step, we use the CWT again to separate overlappingdssi§oathe optional
fourth stage, we offer two techniques from non-linear optimization, whith mprove the fit,
either in a single mass spectrum, or in two-dimensional LC-MS data.

8.1 General schema of our peak picking algorithm

Our peak picking algorithm searches peaks in individual mass spectia,case of LC-MS
data the mass spectral peaks are subsequently extracted from emeryisa@ first step, the
continuous wavelet transformation is computed of the whole scan. Staximglie maximum
position in the wavelet transform, every peak centroid, its height, and ascarebe estimated
in the raw data. Using these parameters, we are able to represent thataapeeks by typ-
ical analytical peak functions. We perform the fit of an asymmetricsand an asymmetric
Lorentzian function.

Afterward, overlapping peaks may be separated by an efficientat@patechnique: in a first
step, we estimate the number of convolved peaks in the continuous wave$otra, and dis-
criminate in the second step the peaks by a non-linear optimization technique.

At this stage of the algorithm, the fitted analytical description is typically in vegdgmrre-
spondence with the experimental signal. To further improve the quality ottliedicorrelation
of the resulting peaks with the experimental data can be increased in @sabseptional op-
timization step. This is of particular importance in two cases: first, if neighbqeadss overlap
strongly enough that they cannot be fitted well individually, and seabtitg resolution of the
experimental data is low.

The pseudocode of the algorithm is given in Fiduré 8.2. In the rest ofllaister we elaborate
on the individual steps of peak detection, fitting of an analytical peaktiiumcseparation of
overlapping peaks and the optional optimization of peak parameters.

8.2 Peak detection

Over the past decades the wavelet transformation has found a bridaaf &pplication, e.g., in
signal processing, image processing, as well as in bioinform ]. Itis commonly
used for denoising, baseline removal, and compression of chemometiacpAtk

]. Wavelets are used to transform the signal under investigationriotbex representa—
tion that presents the signal information in a more useful form. Mathematicabkamy, the
wavelet transform is a convolution of the wavelet function with the signahasvn in Equa-
tion[5.8. If the wavelet matches the shape of the signal well at a specifie @ed location,
then a large value of the transform is obtained. If, however, the waartkbthe signal do not
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3:

© o N o g R

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

PEAK PICKING PHASE

Input: Raw dateexperimentonsisting of one or several mass spectra
Output: Alist peaklist of all mass spectral peaks pickedexperiment

1: // pick the peaks in each spectrum
2: for all mass spectrain experimentdo
w:=pretabulateWavelet()
n:= 0, peaklist:=[]
repeat
peaknumber.= 0
cwt:= continuousWaveletTransformatiah(
while getNextMaximumPositior{vt, s, f) do

h := intensity([{)
Il tsne threshold for signal to noise ratio,:tminimal height
if (signalToNoisepy < tsne V (h < tj) then
continue
end if
(x1,%) := searchForPeakEndpoirds)
¢ := estimateCentroid(, X,)
(A, A) = estimateTotallntensity(, X;)
(p, fwhmasymcorr) := fitPeakShapéy, A, p, h)
if ((corr > teorr) A (fwhm> tsynm) then
push(, peaklist)
peaknumber.= peaknumbert 1
end if
removePealq, X, S)

end while
until peaknumber=0
25: end for
26: // optional separation of overlapping peaks
27: peaklist:=separateOverlappingPeaks@klist, experiment
28: /] optional improvement of the peak parameters by non-tiogéimization
29: peaklist:=optimizeAllPeakParameterséaklist, experiment
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correlate well then the transform value is small. The choice of waveletndispen the type
of signal that is being investigated. Short-duration (high-frequeregiufes are best inves-
tigated using narrow wavelets, while longer-lasting (low-frequencyufea are more suited
to wider wavelets. Changing the type of wavelet lets one zoom in on indivethoall-scale,
high-frequency components or to pan out to pick up larger-scale,legu&ncy components.

M. @h] used the CWT with thélexican hat waveleas the analyzing function to
separate overlapping voltammetric peaks in voltammetric spectra (voltammetry lscéno-e
analytical methods used in analytical chemistry that determines information ab@unalyte
by measuring the current as the potential is varied). Figuite 8.3 showsekied hat wavelet
with scalinga and translatiorb. The Mexican hat wavelet is also calldtarr waveletand
defined as the negative of the second derivative of the Gaussiatiofunc

2 2 2
PY(x) = (1—x2)exp<—X2> = —% exp(—X2> . (8.1)

Mexican hat wavelet

intensity

Figure 8.3: The Mexican hat wavelet with scalirsgand translatiof = O.

Wu et al. chose the Mexican hat wavelet as defined in Equatidn 8.1 leechits simple
symmetric form and the relation between voltammetric peaks and its wavelebtmransf the
original peak can be described by a symmetric dohction, Gaussian function, or Cauchy
function, Wu et al. proved that the maximum position in the continuous waveetfnan
(at a proper scale) corresponds to the maximum position of the origink) ped thus the
peak positions can be located in the wavelet transform. To separate twappmeg peaks,
they search for the first maximum in the wavelet transform. Assuming thatfthealé of the
first peak is not interfered with by the second peak, it can be used tovdeéealso its right
half, which is covered by the left half of the second peak. Wu et al. usesymmetry of
peaks and mirror the original signal at the maximum position of the first pedis@btract the
reflected signal from the original signal. Thereby the contribution of teedeak on the signal
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is removed and the second peak becomes visible in the iteration of the algorithm.

As we have seen in Sectign b.1, the mass spectrometric peaks are asymmettieshite
the skewness of the peaks, the maxima in the continuous wavelet trandfarpr@er scale
correspond approximately to the peak positions in the original spectrunre@Bglishows that
the mass spectral peaks can be detected in the wavelet transform &.86alés defined in
Equatiof 5.7 in Sectidn 5.2.3, the continuous wavelet transform of a signiaf is defined as

400

S Wi (t;b) dt (8.2)

—00

We(a.b) = (5 Yar) = = |

where* denotes complex conjugation. Using the Mexican hat wavelet defined iatiggl8.1
as a mother wavelet we get

- [ (ol ) s

sincey is a real-valued function and it holdg* = ¢. The wavelet transforrids(a,b) as a
function ofb for fixed a # 0 can be interpreted as the “detail” contained in the signal at scale
a, since we have seen in Equat[on]5.9 that the Fourier transform of a wgveddghe transfer
function of a bandpass filter and the convolution computes the waveletaranwith dilated
bandpass filters.

Let us consider the wavelet transfovkg(a, b) at a fixed scale # 0 computed with the Mexican

hat wavelet. Since the convolution and differentiation are linear sys@t] it holds

with the scaling Theorein 5.2.1

d? d? d?

S(X) x5 W(X) = 58 % B(X) = 35 (S * YK, (8.4)

Hence, we may reorganize Equation]5.7 and get

- [ o)) o

Therefore, th&\Vs(a, b) is the second derivative of a “moving weighted averages pérformed
with a translated and dilated Gaussian. The Gaussian filter extracts therfogqpart ofs
with respect t@a and the second derivative measures the concavity (second-ordérafdtas
“detail”. If a functionsis two-fold differentiable, a necessary condition fgto be an extreme
point iss'(tg) = 0. If salso fulfills s’ (tg) < 0 thens has a local maximum a&. Accordingly,
we can search for the local minima in the second derivaive find the maxima irs. If we
translate this fact into Equatidn_8.5, we can detect the mass spectral pehkssignal by
searching for local maxima in the negative second derivative of the stiegefrequency part.

Figure[8.4 illustrates the procedure of peak detection. After a potential spassral peak
is located in the continuous wavelet transform of the mass spectrum, the maxiosition
in Ws(a, b) is used to find the peak’s maximum position in the original spectrum. Using the
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maximum position of a peak, its endpoints are determined. Furthermore, tineidgrosition
and the height of the peak are estimated. In the following, this procedurbenilescribed in
more detail.

S wz N\ N /7
Figure 8.4: Workflow of the peak detection. 1. Compitg(a,b) with a fixed scalea and search for

a maximum inWs(a,b), 2. Search for peak’s maximum position, 3. Search for peahtpoints, 4.
Estimate the centroid.

8.2.1 Detecting a peak in the continuous wavelet transform

Figured 8.1l and 85 show that we can detect the mass spectral p¥éka, in) of the spectrum
susing the Mexican hat wavelgt with a proper scaling facta.

To extract the frequency range of mass spectral peaks, the scalingghould correspond to a
rough estimate of the typical peak width. With respect to the resolution of aimstrt we can
estimate a minimal mass spectral FWHM valwvehm In the current version of the algorithm,
we usefwhmto determine the scale This works quite well if the mass range is relatively
small (500- 1500 Th) and the FWHM values of the peaks do not vary extremely bettheen
peaks at low m/z values and the peaks at high m/z values. For greater mges, the scala
should be adapted to FWHM values that grow with increasing m/z values.

We chose the scale paramessof the waveletp such that the FWHM value of the wavelet is
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Figure 8.5: The left hand side plot on top represents an isotopic paiteam ESI-ion trap spectrum
betweerl075Th and1095Th (figure taken fro6]). Plots A, B, and C show thatnuous
wavelet transform of the spectrum using a Mexican hat waveté different scale valuea (A: a= 3,
B:a=0.3, C:a=0.06).

fwhm The FWHM value of the wavelet is derived by solving

2
P(x) = (1—x2)exp<—X2> =05 (8.6)

for x (since the height of the wavelet is 1) with the commercial computer-algeistars Maple
(version 10). Maple solves Equatibn18.6 using the Lambert W-Functioiclwib the inverse
function of f (W) = Wexp(W)) and results in the two pointg := —0.626a andx; := 0.626a.
Accordingly, the FWHM of the wavelet with scakeis 1.252a and the desired peak FWHM
fwhmis achieved by a scaling af:= fl"‘égg A proper scaling factor can therefore be estimated
if the resolution of the instrument is known.

Since Y is described by only a few data points, the convolution of wavelet and Isigima
be computed very efficiently with pre-tabulated valuespofWe tabulated the values of the
wavelet in the beginning of the peak picking algorithm and determine the eztjpaints ofiy
during the convolution with the spectrum at discretized translation valbgdinear interpola-
tion using the pre-tabulated valuesyof Thereby the convolution of the wavelet with the signal
is approximated by numerical integration. The runtime of the convolution is limeszause the
filter kernel of(x) contains only a small number of points with respect to the whole spectrum.
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To detect the approximate positions of mass spectral peaks, we lineanlyhed&s(a, b) for
local maxima.

8.2.2 Searching for a peak’s maximum and its endpoints

The maxima in the continuous wavelet transform approximatively represaximum posi-
tions of the mass spectral peaks in the spectrum. Accordingly, we can finel meighborhood
of each maximum positiop in the wavelet transform a corresponding maximum posigiagm "
the spectrum. To filter out chemical noise peaks (see Sdctibn 6.1) thaa fieepiency range
similar to that of mass spectral peaks, we introduce an intensity-basetdlurgs Further-
more, we filter out peaks with low signal-to-noise ratios. The signal-to-nailse of a peak is
defined by the signal-to-noise value of the raw data ppiWeé use a sliding window approach
to estimate the noise level for each raw data point in a mass spectrum. Théereisedefined
as the median intensity of all raw data points within the window. The algorithm is implistie
using histogramming techniques, such that we achieve a fast estimation @jrihkte-noise
values of all raw data points in a spectrl006]. If the maximum gitgand the
signal-to-noise value at positignekceed the user-defined threshdigisandt;, we search for
the endpoints of the peak at positipn ~

Defining the “ends” of a peak shape becomes difficult when effects asimoise or overlap-
ping of peaks have to be considered. In this case, we cannot expéthé¢hpeak’s intensity
drops below a given threshold before the next peak’s area of irtiduisrreached. To solve this
problem, we start at the maximum position and proceed to the left and righeithgl a min-
imum is reached, or the value drops below a pre-defined noise threshohihimum might
either be caused by the rising flank of a neighboring peak, or could beamée effect.
To discriminate between these two cases, we consider agaithed) in the neighborhood,
where noise effects are typically smoothed out and peaks can be clesasyrbd.

8.2.3 Estimating a peak’s centroid

To reduce the effect of asymmetry in the determination of the peak positiofplioes the
advice fron{m 5] to take only the most intense data points esyireg a MALDI-

TOF mass spectral peak for the computation of its m/z value. We estimate a pgakialue,

the so-calledpbeak centroid cas an intensity-weighted average using all consecutive set of
points next to the maximum with intensity above 70% of the peak’s height.
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8.3 Peak fitting

We discover the shape of a peak by the fit of an analytical peak fundbecause shape
information can be used in further analysis steps. The fit provides infanmabout the
guality of a raw peak. The better a raw peak can be described by a peetioh, the less its
shape is distorted by noise or other peaks and the more reliable this peakhs. literature,
several different analytical expressions have been proposethdorepresentation of mass
spectral peaks. Since no universally accepted peak shape existehdae two common
functions that describe the shape of mass spectrometric peaks very \gelle Aave seen in
Sectiori 6.1, imperfections of the mass analyzer often result in asymmetric peasabpeaks.
We take this into consideration and fit asymmetric peak functions to the datgtdtysthe
shape of mass spectral peaks precisely.

Figure[8.6 illustrates the procedure of peak fitting. For each detectedeaky we determine

an asymmetric peak function that has the same area, maximum position, and maximum
intensity as the raw peak. We explain the asymmetric peak function by two hafies
symmetric peak functions. The left half of the first symmetric peak functiartiiasame area

as the left half of the raw peak and it describes the asymmetric peak functidrihe peak
maximum position. Accordingly, to the right of peak maximum position the asymmaeddk p
function is defined by the right half of the second symmetric peak function.

8.3.1 Fit of an asymmetric Lorentzian and sechpeak function

In the current implementation, we fit two peak functions to the data, whichraasyammetric
Lorentzian function £y,  (),5) @and an asymmetric setliGh , x 5) function, but other peak
shapes such as double Gaussian profi ' E&T ; ] can be
easily included. The asymmetric functiofg x),p andS ) (x),p

h
Eh/\(X)ﬁ(X) = 1+/\2(X)(X— ﬁ)Z (87)
and
h
) T OB A0 p) e
where
)\(x):{)\" X< P (8.9)
Ar, X>P
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niyz m/z

Figure 8.6: Workflow of the second step of the peak picking algorithm. $tirBate the peak’s left area,
6. Fit a symmetric peak function to the left, 7. Analogoustyafipeak function to the right, 8. Two
halves of the symmetric peak function define the resultiygnasetric peak shape.

are defined by a height parameterparameterd, and A, for the left and right peak width,
and a parameter for the peak positipnA’peak can be fitted to the raw data in several ways.
In our implementation, we have chosen to use the peak’s m/z value at maximusitingard

the area under the experimental signal. Fitting the area of the peak automatitraliiyices a
smoothing effect, yields very good approximations to the original pealeslaal is extremely
efficient, since the peak’s width can be computed from its area in constarfotithe functions
considered here. Since the peaks are modeled as asymmetric functiansggrate from the
left endpointx up to the peak maximum positigrtd obtain the left peak are&. Analogously,

we compute the right peak aréda betweenp and the right peak endpoirt. Lety; be the
intensity atx, andy; be the intensity ak. From these values, we can finally analytically
compute the asymmetric Lorentzian or séfimction with positionp’and height that has the
same aredy as the raw peak frorp dntil the intensity valug, and, andA, betweenpand the
intensity valuey;, respectively.

We describe the derivation of the analytical expression with respect it tfea Lorentzian
function £y, ) ) 5. ASsume we are given a mass spectral peak in a raw spectrum, defited by
position g, the maximum intensith, the peak endpointg andx,, the intensity valuey, y; at

X andx;, as well as the left and right arég A;. As we want to determine an asymmetric peak
Lhax,p as defined in Equatidn 8.7, we have to fit two symmetric Lorentzian functiomestm
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the left peak half, and another to the right peak half. To this end, the £ights peak function
should have the same area frgnto’ax; with £y, 5. 5(X) = yr and it should hold

A,:/Arshm(x) dx (8.10)
p

Using the inverse function df;, ), s we obtain

1 /h
% =p+—/——1 8.11
I p Ar yr ( )

Inserting Equation 8.11 into Equatibn 810, we get
P/ 1
/ v Sh’)\hp(X) dx (812)
p
h P51

arctam 2(x— p)

A =

(8.13)

p

h /h
Ar= Z\arcta i 1 (8.14)

The computation of the width parametgrof the left Lorentzian functioty, 5,  is completely
analogous.

and we can conclude that

The analytical expression for the width parameeandA, of an asymmetric seétunction is
derived the same way. Far fiolds with&y, ). 5(%) = Vi

kr:ﬁ+iarccos Y (8.15)
Ar ‘/ h

SinceGy, ), s should have the same total intenstyfrom [ to X, we have to solve the definite
integral

P+ s-arccosh /¥
A = / Sh,.p(¥) dX (8.16)
p

to determine the width paramet&r of G, ), 5

_h Yr
A=y /1= (8.17)

The FWHM value fwhme of £, x5 is given by the half FWHM of£y, , s plus the half
FWHM value of £, s (the FWHM value of the asymmetric sécfunction is given analo-
gously). Solving

h h
TR PR 2 (649
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we obtain

1
= —. .1
X 3 (8.19)
Accordingly, fwhmg is given by
1 1
fwhme = AT (8.20)
The FWHM value ofSy, ) () 5 is given by
fwhme — arccosliv/2) N arccoslfv/2) (8.21)
A| Ar
_ In(\/)\?+1)+ln(\/)\§+l). ©.22)
| r

8.3.2 Examination of the best fitting function

In the previous subsection, we used the peak posfjdhe"maximum intensitf, the intensi-
ties at the peak endpoimtsandx;, as well as the left and right aréa, A, of each mass spectral
peak in the mass spectrum to determine an asymmetric Lorentzian function asghametric
secH function. Both functions are representations of the mass raw peak e@thessame area
as the original raw spectral peak, but in most cases one of the anapgadakhapes defines the
original peak shape more precisely. To determine the “best” fitting pea&kifumwe perform a
correlation test based on the fact that if two variables vary together ighanet of covariation

or correlation.

Suppose we are given tinieaw data pointgey, ..., ey} representing a mass spectral peak. Let
m/z(e) be the m/z value and i(g;) the intensity of thej-th raw data point. Furthermore, let
P € {Lhxx),p Sha),p) e either an asymmetric Lorentzian function or an asymmetric’sech
function.

The average intensiﬁ}of the raw peak and the average intengitgf the fitted peak function

are given by
1

3\!—\

i (m/z(ej))

“hp e

The coefficient of determinatiorfy which is the squared correlation coefficienideveloped
by Pearson in 1895 [J. L. RngGIL&_leS] is then given by
2. 2(int(ej) — 2(p(m/z(e))) - p)?
Y j(int(e) —i)2 3 (p(m/z(e))) — p)?

3

(8.23)

The correlation coefficient? has a value that ranges from zero to one, and is the fraction of
the variance in the two variables that is shared. For examm%:if 0.8, then 80% of the
variance is shared between the peak funcficend the raw data points of the original peak.
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By means of the correlation coefficients estimated for2hg ) 5 and theSy ) x5, We take

the function that represents the raw peak best. If the correlation deeffaf both functions is
lower than a certain threshotg,r, and the peak shape cannot be sufficiently described either
by a Lorentzian or a seéliunction, we reject the peak as a mass spectral peak.

8.4 Separation of overlapping peaks

A low resolution of the mass analyzer as well as a high charge state of thanee¢asmpound
may result in a high overlap of mass spectral peaks. Hence, broadremety asymmetric
peaks in a mass spectrum are often an indicator for the overlap of kpeals. Consider,
for example, the charge two isotopic pattern of bombesin in Figuie 8.7. TtaHiee iso-

5 Bombesin isotopic pattern
T T T

N

intensity
=
T
|

0
809 809.5 810 10.5 811 8115 812 812.5 813 813.5 814
m/z

CWT with scaling a:=0.1
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0 /\/\/\/\
\/ \/\/V
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809 809.5 810 810.5 811 8115 812 8125 813 813.5 814

Figure 8.7: Top: Isotopic pattern of a doubly charged bombesin measuittdE SI-ion trap. Bottom:
Continuous wavelet transform of the isotopic pattern withlea := 0.1.

topic peaks were not well resolved by the mass analyzer (here an idmtrdpdditional noise
prevents the occurrence of three maxima in the measured spectrum. Alpjo&éalg algo-
rithms that detect the peak positions by searching for maxima in the spectrufailtil pick
five individual peaks. FigurE_8.7 shows that our approach with the ideketeect the peak
positions in the continuous wavelet transfovi(a, b) with fixed scalea can solve the prob-
lem in principle; for highly convoluted peak patterns, a further modificatiordgired that
will be described below. All five approximate peak positions are repteddsy maxima in
Ws(a,b) (using scalea := 0.1) at positions 81@16 Th, 810790 Th, 811228 Th, 811790 Th,
and 812227 Th. The average distance between adjacent maximg(ab) is 0.45 Th and
agrees well with the theoretical peptide mass rule for isotopic patterns afech@o peptides
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d:= L0025 Th_ 0501175 Th (see Sectién .1).

As described in Sectidn 8.2.1 to Section 8.3.2 our basic peak picking algosget{guré 812,
line 1-25) will detect a maximum in the continuous wavelet transform with a fixadea and
afterward search for the corresponding maximum in the original signalngGmack to the
original raw data allows for an accurate determination of the position and rthepimnt (total
ion count and maximum ion count). Furthermore, it enables the representative raw peak
by an analytical peak function. But in case of a highly convoluted petiknpathis approach
will fail to detect the individual peaks and result in a broad peak at posit®1051 Th and
two narrower peaks at 888 Th and 8122 Th as illustrated in Figuile 8.8.

T T
—%—raw data points
18- —— peak function 3
’ —— peak function 2
—— peak function 1

16 - = =sum of peak functions [|
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intensity
N
T

0.8

0.6

0.4

e

. | | .
809 809.5 810 810.5 811 8115 812 812.5 813 813.5 814
m/z

Figure 8.8: Charge two isotopic pattern of bombesin and the three peadtiins determined by the
basic peak picker. The peak positions 8t®51 Th, 8118 Th, and8122 Th. The dotted line shows
the sum of the three peak functions.

Every deisotoping algorithm will have problems to discover the right changethe monoiso-
topic mass of bombesin with respect to the three peaks. To solve the prob&mriapping
peaks, we developed a sophisticated separation technique that usestineaus wavelet
transform to determine the number of convolved peaks and estimates thegraaieters by a
non-linear optimization technique in the raw mass spectrum.

After our basic peak picking procedure, we determine peaks in the method
separateOverlappingPeaks that likely represent an convolved peak pattern and sep-
arate the overlapping peaks. A broad or asymmetric peak is identified by itiMFVelue and

its symmetric value. The symmetric meassyenc [0,1] of a peak is defined bgym:= %

if Al < Ar andsym:= j‘\—lf if Al > A wherebyA, and A, are the left and right width parameter

of the peak function. Each peak with a FWHM value greater than a useedéfiyqy or a
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symmetric value less than a user-defined threstpigis labeled as too broad or asymmetric
and is examined more closely in the next step. The pseudocode of thatsmparocedure is
shown in Figuré 819.

A broad or asymmetric peafieakthat has one or two neighboring peaks (on the left and the
right hand side) lying within the peptide mass rule for charge one pajtera.1 Th is assumed

to be part of an isotopic pattern. If either the distances to the two adjacakd pee dissimilar

or if the FWHM values of the neighboring peaks are much smaller than the FWwHbéak

we “deconvolve”’peak Furthermore, we also separate broad or asymmetric peaks that have
no neighboring peak withity, since we assume those peaks represent an overlapping isotopic
peak pattern.

The method that determines the number of overlapping peaks in the continavekettrans-

form as well as the algorithm that estimates the parameters of the convobksigre described

in more detail in the next two subsections.

8.4.1 Determining the number of overlapping peaks

In Sectior 8.2 we have seen that, if we have a rough estimate of the frgqueenye we are
interested in, the continuous wavelet transform with a fixed saalan be used to localize
this information. Figur@ 613 shows the capability of the CWT using the Mexicawaeelet

to localize the approximate positions of the convolved mass spectral pealen &broad or
asymmetric peak function, we go back to the raw data and compute the comstivaoealet
transformWs(a, b) of the original raw peak that is represented by the raw data points within
the endpointsq andx,. Thereby, we use the same scale as in the basic peak picking step.
Subsequently, we take the positions of the maxima4fa, b) as initial estimates of the hidden
peak positions. Maxima Ms(a, b) that lie close to the peak endpointsandx; are disregarded
since they are often caused by side effects.

8.4.2 Discriminating overlapping peaks

In the previous section, we determined the nunberN™ of convolved peaks with respect
to the continuous wavelet transform of a broad or asymmetric raw datagpeakbym data
points{ey,...,en}. Each raw data poirg; := (x;,yi) (with i =1,...,m) is defined by its m/z
positionx; and an intensity valug.

We now search for thk asymmetric sechpeak functionsS; with i = {1,...,k} that describe
the convolved raw peak best. For a true separation, we need to fit thefsalink peaks
Sha e O the experimental raw signgey, ..., en}. Hence, our analytical peak modél
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PEAK SEPARATION PHASE
Input: The raw dataaw_data, the determined lispeaklist of all mass spectral peaks
picked inraw_data
Output: A list peaklist of the mass spectral peaks after the separation of overlgpaiaks
1: for all peakspeakin peaklist do
2. fwhm=getFWHM(peak
3. asym=getAsymmetryValugieak
4: [/ search for broad and asymmetric peaks
5. if (fwhm> trwhm) V (@Sym< tasym then
6: (di,dy):=getDistanceToNeighbonséakpeak!ist)
7: /I peak has two neighbors with a distance less than t
8: if (d <tg)A(dr <tg)then
9: /I dissimilar distances to the left and right adjacent peak
10: if dissimilarDistancesk,d;) then
11: {peak,..., peak,}:=separatePeaéakraw_data)
12 replace(peak, ..., peak,},peakpeaklist)
13: end if
14: else
15: /I peak has only one neighbor pegakith distance dless thang
16: if (d <tq)V(dr <tq)then
17: if satifiesPeptideMassRutkj then
18: fwhmy:=getFWHMNeighborpeak)
19: if dissimilarFWHMValuestwhm fwhny) then
20: {peak,..., peak,}:=separatePeagéakraw_data)
21: replace{ peak, ..., peak,},peakpeaklist)
22: end if
23: else
24: {peak, ..., pealk,}:=separatePeagéakraw_data)
25: replace{ peak, ..., peak,},peakpeaklist)
26: end if
27: end if
28: /I peak has no neighbor with a distance less than t
29: else
30: {peak,..., peak,}:=separatePeagéakraw_data)
31 replace{peak, ..., peak,},peakpeaklist)
32: end if
33  endif
34: end for

Figure 8.9: Pseudocode of the peak functisgparateOverlappingPeaks.
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for thek peaks is given by
k
M(a, X) = _Z6hia/\|i7)\l’ivﬁi (X) (824)
1=

where thei-th peak of & depends on four parametefh;, Aji, Ari, Bi} (i = 1,...,K) with the
peak positionp;; the heighth;, and the left and right width parametas, A;;. Since we as-
sume that the convolved peaks are part of the same isotopic pattern, e ssene left and
right width parameter for all peaks. Hence, the parameter vactoR?*2 of M is given by
a:= (A, Ar,hy, Pr, ..., hi, P) . We now fit the peak modéil to the datd (X1, Y1), - ., (Xm, Ym) }
by solving a non-linear least squares problem: Find a local mininaizerR?+2 (see Defini-

tion[5.3.2) for

F(a) = §i< fi(2))? (8.25)
with
k
fii=yi—M(ax)=yi— 3 pj(x). (8.26)

=

Starting from an initial guess of the parameter veafar= (A%, A%, h9, B9, ... 0, p)T € RZ+2K,
we search for the optimal parameter vec#rthat minimizes the sum of squared residu-
als in Equatiori 8.25. The initial peak positiop8 dre given by thek maxima in the con-
tinuous wavelet transform, the initial heigh by the intensity in the raw data at position
p°, and theA? and A2 values can be defined by the user. We faidusing the Levenberg-
Marquardt|fMarauarHL;9_63] algorithm (for more details, see SeEi@nhimplemented in the
GSL b_alas_&i_el_zilL_ZD_b&. The Levenberg-Marquardt algorithm isvaepful heuristic that
is based on the steepest descent method and the Gauss-Newton metach iteration, the
algorithm settles for a steepest descent like or a Gauss-Newton like stegdnys of local
curvature information (the ratio between the actual and predicted dedrefisiction value).
After each iteration, the convergence criteria are checked: is the maximmdder of iterations
reached or if either the absolute or relative error is small enough toatbare the location of
the minimum?

The values for the maximal number of iterations and the threshold for absoidteelative
error can also set by the user. The GSL offers the possibility to handigahl parameters
that might avoid undesirable effects such that large shifts of peakgative peak width and
height parameters. Hence, we introduce a penalty term for height ank padameters that
fall below certain thresholds. Furthermore, we force the distance betineeseparated peaks
to meet the peptide mass rule by penalizing too small or too large distances.

The dotted line in Figure-8.10 shows the model functibfa*, x) with respect to the localized
minimizera* resulting from the optimization step.
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Figure 8.10: Charge two isotopic pattern of bombesin and the five peakstireg from the basic peak
picker plus the separation method for overlapping peakschwtteconvolve the first broad peak (see
Figure[8.8) into three individual peaks. The peak positiare810.303 Th, 810.717 Th, 811237 Th,
8118 Th, and8122 Th. The dotted line shows the sum of the five peak functions.

8.5 Optimization of all peak parameters

The peaks computed so far typically yield a reasonable approximation ofueitnal, es-
pecially for well-resolved, clearly separated peaks. We tried to furtherawepaccuracy and
perform an additional (optional) optimization step of all picked peaks in atspa. In the
basic peak picker (see Figure8.2, line 1-25), each of the peaks baditied independently
of the others and only during the separation of overlapping peaks we f#uim of convolved
peaks to the experimental signal. In this step, we want to optimize the parawfed#nsicked
peaks in the spectrum by minimizing the sum of squared residuals betweeatehmithed peak
functions and the original raw signal. Our peak mddek now given by all peak functiong
picked in the spectrum,

k
M(a,x) == Zl Pri A A, B (X) (8.27)

wherebyp; can either represent ahor an& peak function (compare Sectibn B.3). Hence,
the modelM depends on K parameters and the parameter vector is definedaby:
(h1, A1, A, Py i, Al Al P) T € R, Since the number of peaks in a spectrum and
thereby the number of the parameters can be very high, we decompogeithization prob-
lem into smaller subproblems. After sorting all peak functions with respeckio plositions
we linearly search for connected peaks that are afterward fit simulialyeoThereby, two
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peaks are connected if the distance between the peak positions is smalkeictréain thresh-
old.

We use the Levenberg-Marquardt algorithm to find a local miniméefor the function de-
fined in Equatiorf 8.25. For a group &fconnected peaksg;, the initial parameter vector
a%:= (RN AL B9, ... ho A2 AR, pO)T € R* is given by the four peak parameters of each
pi (i=1,...,K).

We again use the additional parameters provided by the GSL to introdueétyptrms for
height and width values that fall below certain thresholds. Furthermogepenalize large
changes of position parameters during an iteration.

The dotted line in Figure 811 shows the model functibfa*, x) with respect to the localized
minimizera* resulting from the optimization step.
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Figure 8.11: Optimization of all peak parameters: Charge two isotopttgoa of bombesin and the five
peaks resulting from the basic peak picker plus the separatiethod for overlapping peaks and the
optimization of all peak parameters. Note the slight défferes to Figure 8.10: The peak positions are
810304 Th, 810718 Th, 811231 Th, 811722 Th, and812025 Th. The dotted line shows the sum of
the five peak functions.

8.5.1 The PeakPicker TOPP tool

We provide an application for “The OpenMS Proteomics Pipeline (TOMMMAI.,
] application calle@eakPickeifor the extraction of peaks in mass spectra that implements
the algorithm proposed in Chapfdr 8. The input and output format ofrspismzData (see

Figure8.1D).
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Raw data . Peak data
(mzData) REak ke (mzData)

Figure 8.12: Peak picking with the PeakPicker tool.

All parameters are provided by an XML-based control file. The usdgfeectool is described
in the TOPP documentation and an example is given in the TOPP tutorial.

The PeakPicker application, as all other TOPP tools, is based on the Gpkislry. Fig-
ure[8.18 shows the class diagram of our peak picking class@éLiformat. The classes are
described in the OpenMS documentation and examples of use can be fotlred@penMS
tutorial.

Conti T

ContinuousWaveletTransform

float seals_; void transform (InputSpectrumiterator first,
douhle spacing_; S, Inputiterator 1ast,

float resolution,

void initflaat scale, double spacing); unsigned intzeros),

PeakShape

PeakShapeType:Enum type;
double height;

doubile mz_position;

double left_width;

doublz right_width;

double area;

double r_value;
PeakPickerCWT double signal_io_noise;
Spectrumiterator right;

Confil owt;
- float seale_; double operatorQ(double )

PeakPicker vector<PeakShape= peak_shapes_ double getSymmetricMeasure();
float peak_bound_: float peak_cor_bound_ double getFWHM{;

float peak_bound_ms2_leval_ |} Egg: separate_overlapping_peaks_;
float signal_to_noise_bound_ =
floatfwhm_bound_; woid pick( first, last, O out);
void pick(nputSpectrum in,OutputSpectium outy; PeakArea
void first, rlast0 out);

Spectrumiterator left

in, O out);
bool separateOverlappingPeak_(PeakShape shape, PeakArea area); Spectrumiterator max,
Spectrumiterator right;

OptimizePeakDeconvolution OptimizePick

PenaltyFactors penalties_; PenallyFactors penalties_;
unsigned int charge_;

void optimize(vector<PeakShape> peak_shapes);

unsigned int int charge, peak_shapes);
bool optimize(vector<PeakShape> peak_shapes};

Figure 8.13: UML class diagram of the main classes for peak picking.
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Chapter 9

Experiments

The qualitative assessment of a peak picking scheme is a non-trividépr@md its solution
by a straight-forward and general approach is still missing. Obviouskgigorithm that solves
the problem should compute the peak’s centroid, height, and area astatcas possible
while featuring a high sensitivity and specificity. To determine the accurb@.@, a peak’s
centroid, the correct mass value is needed, and thus peak picking aigomtte typically
tested against a spectrum of known composition, e.g., a standard peptidesnixtiae tryptic
digest of a certain protein. Comparing the features of the peaks foune isptctrum with
the theoretical values gives a measure of the algorithm’s capabilities, typeqihessed as
the average absolute and relative deviation (measured in ppm). Unfiatiyrthese results
are heavily affected by the quality of the experimental data, and additicnadssuch as the
calibration. Consequently, peak picking algorithms are typically tested agaanscularly
well-resolved spectra, and internal calibration methods are employed. uShaly results
in high mass measurement accuracy, but the quality of the peak pickingtlatg®rcannot
be judged independently of the quality of the calibration scheme. From & psespective,
on the other hand, obtaining similarly well-resolved spectra is often infeasibt internal
calibration is not always an option. Thus, we have decided to demonsteataplabilities of
our approach on both LC-MS data measured by an ion trap with low resqlatoraining
severely overlapping isotope patterns, as well as on highly resolvedMADF spectra.

As described in Chapt€&rl 7, most peak picking algorithms are designedfmcific data type
and, furthermore, they often are not freely availabl_eJ_LLH_aL_[bmﬁi_B_eﬂﬂLel_dl.LLZD_dG]
propose algorithms for the determination of mass spectral peaks, buntietiseds are closely
connected with their 2D feature detection procedures. Thus, they asppopriate for the
comparison to our peak picking approach.

Hence, we decided to use the vendor-supplied software on the sanr@aspboth experiments
to provide a fair means of comparison.



9.1. Sample preparation and MS analysis

9.1 Sample preparation and MS analysis

Peptide mix ESI: A peptide mix (peptide standards mix #P2693 from Sigma Aldrich) of
nine known peptides (bradykinirfF§, bradykinin fragment 1-58), substance PH), [Arg®]-
vasopressing), luteinizing hormone releasing hormone bombe&j (eucin enkephalinX),
methionine enkephalinQ), oxytocin O)). Sample concentration was 0.25 pf/injection
volume 1.0ul. LC separation was performed on a capillary column (monolithic polystyrene/-
divinylbenzene phase, 60 mm x 0.3 mm) with 0.05% trifluoroacetic acid (TFApiem{eluent

A) and 0.05% TFA in acetonitrile (eluent B). Separation was achieved ateofi 2.0 ul/min

at 50°C with an isocratic gradient of 0-25% eluent B over 7.5 min. Eluting peptides we
detected in a quadrupole ion trap mass spectrometer (Esquire HCT frdmrBBuemen, Ger-
many) equipped with an electrospray ion source in full scan mode (m/z 500).1

Peptide mix MALDI : The MALDI matrix solution was prepared as a CHCA thin layer by
ultrasonicating an excess of CHCA in 90% tetrahydofurane, 0.1% trifaoetac acid (TFA).

A PolyK-mixture with 6.4 mg/ml polylysine in 1% TFA was deposited onto the matrix and
dried. Afterward, the samples were washed by depositingl 2f 1% TFA and 1 mM
n-octylglucopyranoside, and immediately aspirated. Peptide samples (withalénkpep-
tides: bradykinin 4), angiotensin Il B) and | C), substance P-methylestdd)( substance
P-methylester (ox.) ), fibrinopeptide A F), Glul-fibrinopeptide A G), bombesin i),
bombesin (ox.) I{), renin substrate (humanj)( ACTH clip 1-17 K), ACTH clip 1-17 (ox.)
(L), ACTH clip 18-39 (M), ACTH clip 3-24 (N), ACTH clip 3-24 (ox.) ©), ACTH clip 1-24
(P), ACTH clip 1-24 (ox.) Q), somatostatinK), and Insulin B chain (0x.)S)) were prepared
using the CHCA surface affinity preparation, previously describdd;@{&et_aj.l‘io_dl].
Mass analysis of positively charged peptide ions was performed on aafleMtrll LIFT
MALDI-TOF/TOF mass spectrometer (Bruker Daltonics, Bremen, Germauaipped with a
SmartBeam solid-state laser. Positively charged ions in the m/z range B0@4bwere ana-
lyzed automatically in the reflector mode. Altogether, 100 spectra were etondhere each
was the sum of 800 single-shot spectra acquired at two different losatibeach MALDI
sample.

9.2 Mass accuracy and separation capability in low resolved
LC-MS measurements

To assess the performance of our peak picking scheme on a low res@vbts run on on
the peptide mixture (datas@eptide mix EQl we determined how often each peptide was
found in the expected retention time interval, and whether the correspoisdiioge patterns
were discovered and separated. Furthermore, we computed the reseikitnge errors of the
monoisotopic peak’s centroid compared to the theoretical monoisotopic masssopic
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pattern is defined to be discovered if it lies within a predefined RT rangedsagigten by at
least three consecutive peaks. The distance between the isotopicshealdbe similar to the
theoretical distance defined by the peptide mass rule (sed_page 51).rfrordethe absolute
distance between the observed and the theoretical peak centroid posiagnsot exceed a
certain threshold. The same analysis was performed with the Bruker sefdasa Analysis
3.2, using the Apex algorithm recommended for ion trap data. The resolutior afdta set is
critically low (Rewnm ~ 2300 around m/z 800) with &m value of 02 Th, implying that each
peak is represented by as little as 3—6 data points, and instead of a sopgustiakbration,
we only allowed for a constant mass offset to keep the number of fit péeesres small as
possible. Using recommended signal-to-noise settings in the Bruker seftwared out to
miss a large number of the isotopic patterns. Therefore, we decided trmpenfio tests
against the Bruker software, one with the recommended sdtgingninimal FWHM 0.2 Th,
minimal signal-to-noise ratio 1, minimal intensity 500), and one with a significantlyaed
signal-to-noise threshold and peak bouindminimal FWHM 0.1 Th, minimal signal-to-noise
ratio 0.1, minimal intensity 100), leading to a total number of peaks comparable pe#kd .
(minimal FWHM 0.2 Th, minimal intensity 500) found by the peak picking method rilesd
in [La_nge_el_ah.LLZQ_dG]. We compare the peak listHl 5 andll, with the peak lists determined
by the current basic peak picking algoritim(minimal FWHM 0.08 Th, minimal signal-to-
noise ratio 6, minimal intensity 200). Furthermore, we evaluate the peak ligtsmgsrom the
additional separation step &nd the optimization steg.l The results of these tests are shown
in Table[8.1. For each peptide, we estimated the average relative error iwioth@sotopic
position (the theoretical monoisotopic position is givenmyeo) and counted the number of
scans, in which the peptide was discovered, and the total number of isptgis associated
with the measured peptide ions (shown in brackets). The “true” numbeaassand peaks for
each peptide was manually determined by an expert and is giverahpp.

Considering the resolution of the raw data, and the lack of sophisticatedahtalibration,
the mass accuracy that was obtained in these experiments is remarkatibeld?rimportant
is the behavior on highly convoluted charge two isotopic patterns: as caedrefrom the
number of correctly identified and separated patterns shown in [Tablew®.dlgorithms, both
the former version,and the current enhanced methagd [, and L), successfully deconvolute
significantly more of these patterns than the established approachesadibgéak picking
approach  was actually able to resolve the isotopic pattern of all charge one peptides in th
expected scans and missed only a small number of isotopic peaks due touhsigial-to-
noise ratios. Considering the total number of peaks.iand L, we significantly increased
the sensitivity of our peak picking algorithm by the incorporation of a robigsal-to-noise
estimator. The additional separation of overlapping pegkisscriminates many of the highly
convolved charge two peak patterns, see, for example, the isotopicnpattedoubly charged
bombesin (peptide F) in Figute 8]10. The optimization of all peak parametedds @aminor
improvement in mass accuracy for the charge two pattern and discoveesraore isotopic
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Table 9.1: Evaluation of datasd®eptide mix ESIIn the table, | denotes the results of our peak pick-
ing method described ln_La.ng_e_ef éL_[ZbO@],olf our current peak picking algorithm, the current
peak picking algorithm with the separation of overlappiregks, and represents the results of the
current peak picking method along with the separation oflapping peaks and the optimization of
peak parameters. Method, Itlenotes the Apex algorithm with reduced thresholds, apnthB Apex
method with default settings. The number of discovered apaiated scans for each peptide is given
by #occ.scansand#occ peaksdenotes the total number of separated isotopic peaks pordsg to
the peptide within the scans.

rel. err. [ppm]
#occscans(#occ peaks
peptide Z  Mineo [Da] | la Iy lc Ila Iy
man. op.

A 1 555.269 37 31 31 35 72 38
14(52) | 14(57) 14(44) 14(44) 14(44) 14(68) 14(51)

B 1 572.307 16 12 12 19 48 16
38(117) | 29(88) 38(118) 38(118) 38(118) 39(163) 29(88)

C 1 573.226 30 25 25 26 40 28
15(56) | 15(62) 15(51) 15(51) 15(51) 15(84) 15(60)

D 1 1006.437 39 29 29 65 - 7
11(52) | 11(52) 11(46) 11(46) 11(46) 0(0) 5(18)

E 1 1083.422 40 38 38 55 - 12
8(36) 7 (35) 8(36) 8(37) 7(31) 0(0) 2(8)

F 2 1059.561 - - 146 107 - -
19 (73) 0(0) 0 (0) 4 (16) 7(28) 0(0) 0(0)

G 2 1182.557 83 77 86 64 - -
18(71) | 10 (33) 9 (30) 14 (50) 15(54) 0(0) 0(0)

H 2 1347.712 40 35 57 48 - -
13 (52) 8 (30) 8(28) 13(50) 13(50) 0 (0) 0 (0)

I 2 1619.799 48 37 78 64 109

16(74) | 7(34)  8(33) 13(60) 14(64) 00 1(3)

total # occ. peaks ‘ 60485 15043 18958 18958 77459 22092

patterns. However, the peak positions of the charge one peptides a@racisely defined by
the centroid (Section 8.2.3) than by the position of the fitted peak function.

In addition, it should be mentioned that the data collection of a mass spectramatéme
consuming process; therefore our algorithm runs in real time and capgbiedonline. On
the LC-MS spectra of about 100 MB of data, the former peak picking diigoi.. took several
seconds on a PC with dual 3 GHz CPU, while the following optimization run lasteabiout
1 to 5 minutes, depending on the number of iterations performed. The runtfrtresaurrent
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peak picking algorithm, measured as absolute CPU time in seconds, are ishdalrie[9.2.
The algorithm | of Langﬁ_e_t_dl.u;o_dm that we presented there is an earlier versiomrof o

Table 9.2: Runtimes of the current peak picking algorithm on daté&sgitide mix ESlIn the table,
denotes our current peak picking algorithgthe current peak picking algorithm with the separation
of overlapping peaks, and tepresents the current peak picking method with separafiomerlapping
peaks and the optimization of peak parameters.

’ ‘ la ‘ Ib ‘ lc ‘
| CPU timein seconds | 11.07 | 36.20 | 60.68 |

current peak picking approach. | The main loop in | was less optimal and in the modified
version |, we avoid the computation of the continuous wavelet transform subsetueath
detection of a peak, and update the wavelet transform not until weggedall maxima in the
wavelet transform. This leads to a speed-up in runtime gitakes only 11 s and enabling the
optional separation method the whole runtime is with 36 s far below a minute. Tin@zgtion

of all peak parameters additionally takes only half a minute (allowing for 10&titers). The
applicability of the proposed scheme is not restricted to low-resolution data &S| data. To
demonstrate this, we performed our peak picking algorithm on a well-restdivd.DI-TOF
data set and present the results in the following.

9.3 Mass accuracy in high resolution MALDI-TOF measurements

To prove that the performance of our approach is independent ofritherlying instrument
type and the different analysis aims, we will demonstrate the performanee peak picking
algorithm on the high-resolution MALDI-TOF/TOF data $ptide mix MALDI Due to the
good resolution of the mass analyzer the mass spectral peaks are veeiteddn all spec-
tra. To this end we only compared the accuracy and precision values apptoach with the
accuracy and precision measurements of the Centroid algorithm implementesl varttior
suppliedflexAnalysis 3.@oftware.

Prior to the peak picking process in the m/z dimension, we performed a soptadticali-
bration procedure similar ﬂQ_G_Qb_Qm_ei é.L_LZbOZ] on the 100 time-of-flightsp. To avoid
systematic errors and yield comparable results, we used the same pealfqri¢ke calibra-
tion process and the subsequent peak picking step in m/z. The calibratimedpre is shortly
summarized in the following section.
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9.3. Mass accuracy in high resolution MALDI-TOF measurements

9.3.1 Spectra calibration

For external calibration, first the monoisotopic signals from the polylysahapers in the mass
range between 737 and 4096 Da were labeled in the calibrant spedirg,augeak picking
algorithm. Afterward, the labeled time-of-flight values were converted to mil{reg using the
calibration constants of the instrument. Subsequently, we determined thenstitibetween
the time-of-flight dimension and the m/z dimension by fitting a quadratic function td@te
values of the PolyK peaks and their expected masses. The remaining systrmoa between
the expected masses and the calculated m/z values was estimated by fitting ploubidbis
error function together with the quadratic function defines the final caidoréunction, which
was furthermore used to convert the flight times of ions detected in othetesmataopn/z values.
Subsequently, an internal correction was performed for each samplientoate the sample
position-dependent errors. For this correction, the relative erfdrean/z values determined
for two reference MH ions (peptideC andM) were used to determine the constants in a first-
order equation. This equation was then used for an internal corredtitie other externally
determined m/z values in the same sample.

After the calibration procedure, we picked the peaks in the resulting 106 spegtra using
our basic peak picking approach (minimal FWHM 0.07 Th, minimal signal-to-noise ratio
6, minimal intensity 400) and with the additional optimization stgpblut no separation of
overlapping peaks as lpin the previous section. Furthermore, we used the Centroid algorithm
of the flexAnalysissoftware; once, | with parameters (minimal FWHM 0.07 Th, minimal
signal-to-noise ratio 6, minimal intensity 400) similar to those used,iarid once we used a
standard parameter set (Iminimal FWHM 0.1 Th, minimal signal-to-noise ratio 10, minimal
intensity 0) determined for MALDI data. Using the resulting peak lists, we caetpthe
average relative error for each of the 19 known peptides in the 10firap® measure the
accuracy of the different peak picking algorithms. Additionally, we detegahithe precision
of each peak picker given by the average standard deviation of thiveetaror. The results
are given in Tablg 9]3.

Since peptide€ andM were used for the internal calibration procedure, their measured and
calibrated values do always coincide with the theoretical m/z values. Ourpieling al-
gorithm as well as the Bruker Centroid algorithrg Hchieved remarkable accuracies. Fur-
thermore, our basic peak picking algorithgyielded a slightly better average accuracy with
1.369 ppm than the Bruker algorithmy)iwhich resulted in B35 ppm. However, the aver-
age precision of j was slightly better than the average precision of our algorithm. Using
similar parameters for the Bruker peak picking methgalir algorithm achieved comparable
accuracy and precision values. In spite of that, the standard settingsoete for MALDI
spectra in lj resulted in a clear worsening of accuracy and precision, which was nainged

by measurements of the peptidesQ, andS. The total number of peaks determined by Il
and I, was restricted to 100 for each spectrum, whereas our meth@ad |, respectively)
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Table 9.3: Evaluation of datasd?eptide mix MALDL In the table, { denotes the results of our current
peak picking algorithm and, Irepresents the results of the current peak picking mettmthakith the
optimization of all peak parameters. Methog denotes the Centroid method with parameters similar
to those used in our method, and the resultsyrate based on a standard parameter set determined for
MALDI spectra.

average rel. err. [ppm] / standard deviation of rel. err. [ppm]
peptide Mg [DA] la Iy Il a Iy

A 757.399 | 3.902/12.941 6.723/14.672 16.349/10.989 0.721/10.980
B 1046.542 0.334/6.898 2.614/9.347 0.387/4.578 0.272/4.553
C 1296.685 | 0.000/0.000  0.000/0.000 0.000/0.000 0.000/0.000
D 1347.735 2.056/4.082 1.743/5.388 1.755/3.121 1.758/3.122
E 1363.730 1.875/5.611 4.662/6.902 1.225/3.783 1.225/3.785
F 1536.692 2.614/6.647 2.565/7.719 2.011/4.409 2.038/4.412
G 1570.677 1.887/4.849 4.056 / 4.954 1.894/4.713 1.935/4.717
H 1619.822 2.501/5.519 1.279/6.497 3.343/4.283 3.288/4.278
I 1635.817 | 3.392/7.666  0.602/6.892 3.170/5.030 3.030/5.424
J 1759.939 | 0.313/5.804 0.796/5.454 0.049/4.225 0.006/4.219
K 2093.086 0.003/5.302 0.039/5.104 0.350/4.152 0.347/4.144
L 2109.081 0.084 /5.058 0.238/4.557 0.845/4.331 0.828/4.299
M 2465.198 | 0.000/0.000  0.000/0.000 0.000/0.000 0.000/0.000
N 2682.493 0.420/4.175 2.056/3.591 0.560/2.369 0.561/2.347
(@) 2698.487 1.487/5.670 3.078/4.168 1.115/3.720 5.849/51.670
P 2932.588 0.544/7.174 3.569/4.893 0.518/5.205 0.551/5.199
Q 2948583 | 1.859/6.992  4.739/6.503 0.118/5.709 52.437/124.066
R 3147.471 2.341/8.089 2.788/7.084 2.167/6.732 1.921/6.777
S 3494651 | 0.393/11.987 6.350/9.719  0.902/10.280  26.578/82.540

total 1.369/6.024  2.521/5.971 1.935/4.612 5.439/17.186

resulted in average in 185 peaks per spectrum.

The optional optimization step i Idid not improve the accuracy of the detected peaks. We
have seen in Sectign 9.2 that if the mass spectral peaks are well sepdr@thtroid position
represents a more accurate estimate of the “true” m/z value than the peakmuoestidting
from the non-linear optimization technique.

In addition to the high accuracy and precision of our approach the runimieble 9.4 indicate

its applicability to high-resolution mass spectra. On the 220 MB of data (1@drajpeour basic
peak picking approach, took only 847 s (measured as absolute CPU time) on a PC with dual
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3.2 GHz CPU. However, the optional optimization of all peak parametersresqL489 s.
Note that we used different computers for the experiments and that runsmeepends on
the number of peaks in the data, so that these numbers cannot be coapasstexperiments.

Table 9.4: Total runtimes of the current peak picking algorithm on ti9@ $pectra of datas&eptide
mix MALDI . In the table, { denotes our basic peak picking algorithm, apdhe basic peak picking
algorithm together with the optimization of all peak paraens.

| [ tal b
| CPU timein seconds | 8.47 | 14.89 |
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Discussion and conclusion

We have presented a wavelet-based peak picking technique suited fappheation to the
different kinds of mass spectrometric data arising in computational proteomicentrast to
many established approaches to this problem, the algorithm presentedthactsall informa-
tion that can be used for any kind of experimental setup. Besides aragéeon/z and FWHM
value, our approach determines the two different quantity values ofia peimum intensity
and total ion count. Furthermore, the curvature of each raw data pestasted by the fit of
an analytical peak function. Our algorithm has been particularly designedrk well even on
low-resolution data with strongly overlapping peaks. This is especiallyrapparhen isotopic
peaks, for example of charge two isotopic patterns, with poor separaisanim mass spectra
(e.g., the LC-MS dataset discussed above). Here, the good perfmerofiour algorithm can
be attributed to two of its unique features: the ability to determine the position ailagyen
if it overlaps heavily with another one, which is due to the use of the wavelesfiorm, and
the optional non-linear optimization to determine the optimal peak parameters.

Applied to two real data sets a high-quality MALDI-TOF spectrum of a peptiddure, our
algorithm yields a high degree of accuracy and precision and compametavorably with the
algorithms supplied by the vendor of the mass spectrometers.

On the high-resolution MALDI spectra as well as on the low-resolution LE-flhta set, it
achieves a fast runtime of only several seconds.

The results of most peak picking algorithms depend on meaningful parasettiegs. In the
current version of th®eakPickettool, at least four parameters have to be adapted to the input
data set. These essential parameters are the minimal expected FWHM valoass$ spectral
peak, a minimal intensity of a peak, a minimal signal-to-noise value, as well asdleefor the
continuous wavelet transform. As we have shown in Se€fion]8.2.1, westiamage a proper
scale given the FWHM threshold. To facilitate the process of the paranierization, this
process could be automatized in the next version ofPdekPicker Assume we extracted a



representative number of peaks in one or multiple mass spectra with a defalétand the
FWHM, signal-to-noise, and intensity threshold set to zero. Given the ipitiak set we can
compute a histogram of the FWHM values and determine a proper FWHM |4@naise,
and intensity parameter with respect to it. To emphasize the separation ofamuisyrue”
mass spectral peaks in the histogram we may weight each FWHM value hgnlaét®-noise,
correlation, and intensity value.

The peak picking algorithm is implemented in the freely available OpenMS frarkeBased
on the peak picking classes in OpenMS we also implemented the easy-to-BBeapplication
PeakPicker.
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Chapter 11

Computational geometry
preliminaries

Computational geometry deals with the algorithmic aspects of geometric problgmpalT
problems in computational geometry are, for example, the intersection of lgmneesgs or
the point locations, which are motivated by the prevalent use of geomejeictslin computer
graphics and computer aided design. For a deeper insight into thisaleseaa we recommend
Chapter 8 of Mehlhol @4]. In the following we will shortly describe tiuodamental data
structures in computational geometry that can be used to solve the closgginpblem. We
will also present the k-nearest neighbor search based on the deﬁriinibﬂ&hlhgth [Ll9_8|4]

and Mehlhorn and Biher |L19_9_b].

11.1 Voronoi diagram

The Voronoi diagramfor a two dimensional point sé&® = {p,..., pn} is a partition of the
plane into|P| polygonal regions, one for each poigtc P. Given a metriad : R? x R? — R,
the Voronoi region of a point jp defined as

VR(pi) == {ycR?:d(pi,y) <d(p;,y),Vj € {1,...,n}},

consists of all points which are closer pp than to any other point i?. The Voronoi dia-
gramV D(P) of P is then defined as the union of the Voronoi regidix(p;) for 1 <i <n.

In the Voronoi diagram holds, that for each vertein V D(P), there are at least three points
Pi, Pj, P € P such thad(v, pi) = d(v, pj) = d(V, pk). |AuLenhamméﬂ_L19_¢l] provides an exten-
sive survey of Voronoi diagrams and their applications. In Figurel 1& Héshed lines show a
Voronoi diagram of ten points.




11.2. Delaunay triangulation

11.2 Delaunay triangulation

Consider the set of all triangles formed by the points in a poireseich that their circumcircle
is empty. The set of edges of these triangles give®#launay triangulation DP) of P. The
solid lines in Figuré_11]1 show the Delaunay triangulation of ten points and & gircle
illustrates the “empty circle” property by means of one triangle.

Figure 11.1: The dotted lines show the Voronoi diagram; the solid lines\stihhe Delaunay triangulation
of the points. The green circle illustrates the “empty @fgroperty of the Delaunay triangulation by
means of one triangle.

The planar Voronoi diagram and the Delaunay triangulation are duals iapdh-gheoretical
sense. Given a Voronoi diagram it is straightforward to find those tiggndf one connects
eachp; to all points in neighboring cells, then the resulting triangulation fulfills the above
mentioned conditions.

11.3 k-nearest neighbors

Given a point seP = {p1,...,pn} and a metriad : R? x R? — R, the k-nearest neighbors
of a pointp; € P are thek points {p;j,, ..., p;}, which have minimum distances {® with

d(pj;, Pi) <d(pj,, pi) < ... <d(pj, pi) < d(pr, pi) andl € {1,...,np\ {ja,..., jk i}

To efficiently answek — nearestneighbor searches, Voronoi diagrams are optimal in theory.
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In practice, other data structures that are less efficient in theory stitl seperform quite well.
Delaunay triangulation turns out to be a very powerful data structurstéoing dynamic sets
of points under range and nearest neighbor quél:i_e_s_LM_ehthm_'anderﬁ?_ng].
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Chapter 12

Introduction to LC-MS map alignment

The quantitative information in an LC-MS map can be used in numerous apptisatithe
spectrum ranges from additive series in analytical chemist_r'g‘zd(?an al. JLO_dS], over analysis
of time series in expression experimeﬁuts [Bisle JEIJ_&_IZb_Oﬁ_,M_aWIQO_dﬂ to applica-
tions in clinical diagnosticsl_Ms_s_e&_e_ﬂeh_.,_ZbO?], in which we want to fintissteally sig-
nificant markers for detecting certain disease states. All these applichBersin common
that the same peptides in different measurements have to be related to esckhatlexample,
Myoglobin, a low molecular mass heme protein, is a biochemical marker for mdiataecro-

sis associated with myocardial infarction. To quantify the concentrationyaighdbin in a test
blood sample, several measurements are made with known amounts of spigkbMn. The
change in ion counts for Myoglobin over these measurements allows fostingagion of the
initial Myoglobin concentration, [Gipl et aI.,|&)|5]. The underlying assumption is that the
measured m/z and retention time of a peptide stay roughly constant. As withlaergtory
experiment, this only holds true to a certain extent.

In particular, the retention time often shows large shifts and possibly distesiben different
runs are compared, but the m/z dimension might also show (typically smallenjtidisso The
overall change in RT and m/z is calledarp. Leaks, pump malfunctions, and changes in col-
umn temperature or mobile phase resultin distorted elution patterns and cacaerge changes
in the elution order of peptides. For example, in one measurement peptileandC may
elute in the ordeA — B—C, however, in the second measurement they elute in @ddB — A.
This scenario is not unlikely if the retention timesfaB, andC are similar[[_Sn;LdﬂLa.nd_D_Qﬂan,
]. The shift in RT makes the assignment of similar peptides difficult sireceelative shift

of two maps to each other is not known in advance. But it is crucial to coioe those shifts
and to consider time order changes. Otherwise it is hard or even impossiliid for a pep-
tide in the first map the corresponding partner in the second map. Thetoanref the shift in
RT and m/z is calledlewarpingaccording to the time warping problem of [Sak nd Chiba,
@] in speech processing. The advent of high-throughput quargifaroteomics made an
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efficient solution to this problem an important task.

Several approaches have been presented in the literature and wevavalrgoverview in Sec-
tion[I3.2. In Chaptdr 14, we will lay out our own solution in detail. In the follayyiwe will
first introduce a general distance measure for LC-MS maps. Basedsomélsure, we will
develop a problem definition for multiple raw and feature map alignment.

12.1 LC-MS map alignment problems

The estimation of suitable mappings between multiple LC-MS maps can be either paditio
at the beginning or at the end of a comparative proteomics data analyslisigipBoth al-
ternatives have their advantages and disadvantages. The compdrisanmaps places the
correction of the RT and m/z dimensions at the beginning of an analysis pipelieeeas the
comparison of feature maps positions the estimation of a suitable mapping atdtioé¢ the
pipeline prior to the statistical analysis. Feature maps have a much smaller datat dinam
raw maps and therefore allow for much faster dewarping algorithms. Hawsgnal prepro-
cessing, peak picking, and feature finding algorithms may also introduaes eand thereby
the quality of the feature maps strongly depends on the reliability of thesdthiger The
correction of RT and m/z dimensions on the raw data level enables the deamtifferen-
tially expressed peptides directly in the raw maps using multiway data analysisdagthg.,
PARAFAC : ). These approaches avoid errors introdbgepeak picking and feature
finding algorithms, but they tend to have high runtime and problems with time ondeges.
Our solution, however, works equally well on both raw and feature mgpsabsforming the
estimation of a suitable mapping between LC-MS maps into a well-known problesmipwta-
tional geometry. We consider the elements of an LC-MS raw or feature ntappaimensional
point sets, given by the RT and the m/z positions of the elements. This retuttespoint
pattern matching problenGiven two finite point set™ (themode) andS (thesceng we want
to know how much they resemble each otH@L[AJI_md_G_ﬁibasJ 1996]. Indim matching
problem the point sets underwent a certain transformation, which we tawastover. This
transformation should map the corresponding points of the two sets cloghdqdey this, it
discovers the correspondences betwdeandS.

Thepoint pattern matching problegan be divided into thexact point pattern matching prob-
lem (EPMP)and theapproximative point pattern matching problem (APMPhe EPMP as-
sumes two point sets of equal size and searches for a transformationapatthe points of
one set exactly onto the points of the other set. Since the RT and m/z dimensamis@MS
map are afflicted by measurement errors, and the positions of cordisga@iements in two
LC-MS maps will hardly ever be identical, the APMP is better suited to our pnobfBiven
two point setdvl andSsearch for that transformation that maps each poim ofose to another
pointinS.
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Chapter 12. Introduction to LC-MS map alignment

Our LC-MS map alignment problem constitutes a special case of the APMPaitial APMP.
Consider two LC-MS maps, where the 2D positions of the elements (whicheaawbdata
points or features) in the two maps define two 2D point $&tand S in the plane. In the
partial APMPM andS share only a fraction of common points. This is a realistic assumption
for LC-MS maps, where even two LC-MS maps resulting from repeateduresagnts do not
necessarily have identical elements.

To solve the partial APMP, we have to find a transformaffonM — M that mapsM onto S
such that the dewarped point setsindSbecome most similar. In our case, most similar means
that common elements Band dewarpedl have nearby positions. Determining pose and cor-
respondence between two sets of points in space, is, in other words)gfotra one point set

so that it best matches another point set in whole or in part. This is a fumdanpeoblem in
computer vision and a number of algorithms were developed to so'ie_it_[AICﬂJﬂnhHMG;
m 1]. Most point pattern matching algorithms are not genedehigndesigned for

a specific similarity measure: M x M — R between two point sets. These approaches are
defined by a similarity measure, a transformationM — M, and an optimization strategy
to determine the parameters of the transformation maximizing the similarity measure. Fo
more general approaches, which are used to solve the partial APMPoatdlalso be used

to dewarp LC-MS maps, are described in Secfion]13.1. Accordingly, wesither solve the
LC-MS map alignment by the adaptation of one of the general approache®nesl in Sec-
tion[I3.1, or by an algorithm that optimizes a certain similarity measure. Our omtrilmation

in Chaptef_I# builds on both ideas and proposes a multiple LC-MS map alignigeritram
using an adapted pose clustering approach, and suggests the implemema@mplication of

a specific distance function for LC-MS maps.

In the following, we will develop the mentioned distance function for LC-MS syaghich can

be used for LC-MS raw as well as feature maps, because it depelydsrotine 2D positions

of the elements and their intensity values.

12.2 A distance functiondsim for LC-MS maps

At first we consider a similarity of LC-MS/MS maps. In LC-MS/MS maps some efdte-
ments are annotated with reliable peptide identifications and thereby a paet odrfespon-
dence between the maps is already given. These corresponding elgieniisformation
about the extent of the distortions in both the RT and the m/z dimension and cesset¢o
discover the correspondence of the remaining elements without annotaGonsesponding
elements in two maps with similar 2D positions point at comparable RT and m/z dimensions
whereas common elements with different positions indicate a consideralilia $tifand m/z.

The more the 2D positions of common elements vary, the greater the distaneebdéw maps

and the more dissimilar the maps are. Therefore, we measure the similarity wesiligtdnce

of corresponding elements in the Euclidean spage The RT dimension is in general more

103



12.2. A distance functiodsimfor LC-MS maps

distorted than the m/z dimension, hence a weighted Euclidean metric shoulddiasisad of
the standard Euclidean distance. Instead of evaluating the distanceedpmmnding elements,
we can also evaluate the similarity of elements with similar coordinates. If the pasiifon
common elements vary significantly between different maps, an elementssheaighbor
in the other map will not have the same annotation. Instead of the sum of disthatween
corresponding elements, we can also count the number of correspagldments that have
similar coordinates and are nearest neighbors. This approach egquire-to-one assignment
of elements in two maps, that we will give in the following definition.

Definition 12.2.1: Given two LC-MS mapM = {my,....,m¢} andS:= {s;,...,5} and an
£ > 0. The matching functiomatch: R? x R> — B with B = {0,1} is defined as follows:
Two elementsn € M ands; € Sare matched if their positions lie within asenvironment in
a weighted Euclidean metrit: R? x R? — R, ands; is nearest neighbor ofy and vice versa:

1, d(m,sj) < €and
vmy e M\{m},s € S\ {sj}:
matchm, sj) := d(m;,sj) <d(m,s) and
d(mivsj) Sd(m,Sj)
0, otherwise

For the annotated elements we could verify each match using the identificatitmeliéments.
The total number of matched elements with identical identifications indicates the girofar
two LC-MS/MS maps.

The match function allows for an assignment of unannotated elements in tWwd3.Graps
and thereby can also be used in a similarity measure for LC-MS maps. Althbadack of
annotations prevents the verification of the matching, we can use the intehi$igyalements
as an additional similarity term instead. A matching of elements with similar intensitietdsho
be rewarded, whereas a matching of two elements with extremely differensiii¢s should
be penalized. The evaluation of the matching using the elements’ ion countsnsials as-
sumption if the majority of peptides is not differentially expressed, which ialiysthe case.

It should be noted that the comparison of intensities in different maps esqair intensity
normalization of the masz_[LaLaJamaa_d[[aLdeﬁ; Radulovic é;t_al_] tO_OA,_WaﬂdM]
The matching function in Definition 12.2.1 indicates the similarity of matched elememts’ p
sitions, and the ion counts of two feature maps. Hence, we are now ablére dalistance
function or dissimilarity measure for LC-MS maps:

Definition 12.2.2: Given LC-MS mapM = {my,...,m¢} andS:= {s,...,5} ande > 0.
Furthermore(RT(m ), m/z(m)) is the 2D position of the element andint(rmy) its ion count.
The distance or dissimilaritgsim: M x S— R of M andSis given by:

|d(my,sj) —&| min{int(m),int(sj)}
€ max{int(m),int(sj)}

dsimM,S) := max{k,l} — ii matchim, sj)
i=1j=1
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Chapter 12. Introduction to LC-MS map alignment

Given two mapM := {my,...,m¢} andS:= {sy,...,s }, the codomain of the distance measure
is[0,...,max{k,l}].
For all mapaM, SandX dsimsatisfies the following conditions

dsimM,S) > 0 (non-negativity).

dsimM,S) =0, if and only if M = S (identity).

c(dsimM, X) +dsimX,S)) > dsimM, S) for some constart > 1 (relaxed triangle in-
equality).

dsimM,S) = dsim(S, M) (symmetry).

Similarity measures for partial matching, giving a small distadsenM,S) if a part of M
matches a part db, in general do not obey the triangle inequality and it therefore makes sens
to formulate a weaker form, the relaxed triangle inequ200m])tIA\er useful
property ofdsimM, S) is the symmetry, which guarantees that the order in which the maps are
compared does not matter.

As an explanatory example, Figure 12.1 shows two feature maps, “feaapel” and “fea-
ture map 27, which share a fraction of common features. “Feature map fittdedata
from a real measurement. 80% of the data points were copied to “feature2inaiper
their RT positions had been warped by an affine transformafian- 1.1x + 30. Addi-
tionally, random points were added to the bounding box. Since the RT dinmeissigsu-
ally more distorted than the m/z dimension we use a weighted Euclidean metric given b

d(m,s) = \/Wf(mRT— SRT)2 + W3 (Mmyz — Smiz)2 with wy := 1 andw;, := 10. Furthermore, we
allow for an error of 22 s and.® Th and yielde ~ 30. Due to the shift, the distance between
the two maps is relatively large and shows up in the maxindsimvalue of 195. Even with

€ := 100 (corresponding to an error of20Th and 98 s) thelsimvalue of 190 indicates a
large dissimilarity of the maps. In Figute_IR.1 on the right hand side “featupe Ihand
the dewarped “feature map 2” are shown. The common 80% of the fedtavesow similar
positions and thesimvalue of 30 indicates relatively similar maps.

This general distance function can be used for every type of LC and&48d experiment.
Furthermore, it is also independent of the processing state of the majasisieeit uses only
the 2D positions and intensities of the elements. We will nowdsmto define the multiple
LC-MS raw and feature map alignment problem.
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Figure 12.1: Top: Two LC-MS feature maps are shown. “Feature map 1” as ageffeature map 2”
contain 195 features. The two feature maps share 156 comsaturés, but the RT positions of these
features are shifted in “feature map 2” by an affine transéiomT := 1.1x+ 30. Thedsimvalue of
the two dissimilar feature mapsi95 usinge = 30 (allowing for an error 00.2 Th in m/z and22 s in
RT) and even witle = 100 (allowing for an error 00.2 Th in m/z and®8 s in RT) the two maps have a
large distance df90. Bottom: “feature map 1” and the dewarped “feature map 2’sa@vn. Thedsim
value of these two feature maps is oBlyfor bothe = 30 ande = 100.
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12.3 Multiple raw and feature map alignment problem

To enable the comparison of raw or feature maps, we have to corrdaefshift in RT and m/z,
such that corresponding elements get similar 2D positions. The optimaldraratfon would
already solve the raw map alignment problem, because the assignmentesipomding ele-
ments is directly done by the following multiwvay data analysis met @ 1e@xjever,
when dealing with feature maps, the assignment of corresponding fe&aeequirement for
the following comparative analysis.

The retention time warp as well as the warp of the m/z dimension are continumihs but
a detailed description of their shape has not been specified in the literaturdhe shift in
the m/z dimension can be defined as a monotonically increasing function and thesitians
of corresponding elements in two different maps are typically very similaweder, the type
of function representing the distortion in RT is more difficult to characterzee to possi-
ble changes in the elution order of peptides, the monotonicity cannot beesttiygssumed.
LlailI;Lel_a.I. ILZD_Q|6] propose that the flow rate variability from experimenkfeament intro-
duces a global linear trend, whereas gradient noise, or to some etttentypes of variations
between analyses, e.g., temperature changes, variations in solventsttammpor changes to
the stationary phase may introduce local distortions. Any computationalagipto the multi-
ple LC-MS raw and feature map problem should overcome the inherdabildy in the time
and m/z axis and transform all maps onto a comparable coordinate system.

We define theMultiple LC-MS Raw Map Alignment Problem (MRMA&) follows:

Multiple LC-MS Raw Map Alignment Problem:
Givenk LC-MS raw mapdMy, ..., M of sizelq, ..., k.
Find k continuous transformation, . .., T with T; : Mj — M; (ie{1,...,k}), andT; :=1d,
such that the sum of pairwise dis:[an(g‘g} &, dsim(M;, Mj)
between the dewarped malds, . . ., M is minimal.

A feature map alignment should not only correct the inherent variability irtithe and m/z
axis, but also assign corresponding features to allow for the subsesfadstical comparative
analysis.

The correspondence information of all detected peptides in multiple maps ésl $Stoa so-
calledconsensus mapA consensus map consists of a numbecafisensus featuresach of
which groups together corresponding elements across multiple maps. télie@onstituting
a consensus feature should represent the same charge state of ed pmptide. Each feature
should be assigned to only one consensus feature and each cafeaigre should contain at
most one feature of each map.

Givenk maps a consensus feature may consist of a single feature, if no otheonmtams the
same charge state of the ionized peptide, or representlufesdures of different maps.
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Definition 12.3.1: Let My, ..., My bek LC-MS maps of sizéy,...,lx and fj; the j-th feature
of mapi

e Atuplec:=(RT(c),m/z(c),int(c),{fst:s€{1,...,k} andt € {1,...,Is}}) is calledcon-
sensus featurdf it fulfills the following properties

— If fix € ¢ thenfj & ¢ withi #r (uniqueness of features).

- If fix ecandfgccthenj#s (uniqueness of consensus features).

e The minimum and maximum RT position of all combined elements along with the min-
imum and maximum m/z position define theunding boof a consensus feature.

e The set of all consensus features definesm@sensus map & {c,...,cy} of the maps
My, ..., M with (max{ly,.... I} <n < K1),

A consensus ma@ represents a partition of the ddt;;, which contains the elements of all
mapsMy, ..., M. The consensus features are the disjoint subsét,jinand each consensus
feature may contain at most one feature of each map. In the alignmentwifesaps we want
to create meaningful partitions and to avoid consensus maps where efnfe feepresents a
singleton consensus feature. Corresponding features should ingegrin only one consen-
sus feature instead of being split in multiple subsets. Therefore, we definavex quality
measure, theize for a consensus feature.

Definition 12.3.2: The sizeof a consensus feature= (RT(c),m/z(c),int(c),{f1,..., fn}) is
given bysizgc) := (7).

Figure[12.2 illustrates the idea of size. The grouping of all five elements toomelgonsensus
feature leads to a size of ten, whereas the two consensus featuresthfs&and two achieve
sizes of three and one and lead to a total size of four.

m/z

Figure 12.2: The consensus feature on the left hand side has a size ofeenpdsing the five elements
to two consensus features of size three and two leads todfitlmee and one.
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We use the distance functiatsimand the total size of consensus maps to definerthiiple
feature map alignment problem (MFMAP)

Multiple LC-MS Feature Map Alignment Problem:
Givenk LC-MS raw mapaMy, ..., Mg of sizelq, ..., k.
Find k continuous transformatior, ..., Te with T : Mi — M; (i € {1,...,k}), andT; :=1d,
such that the sum of pairwise distanggs; 7%_; dsim(M;, M;) between the dewarped maps
Mz, ..., M is minimal and the consensus m@ag= {cy, ...,Cy} has a maximum total size

S sizec).
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Chapter 13

Related work

Both the multiple raw map and the multiple feature map alignment problem can beligaabr
to a 2D point pattern matching problem. This problem is common in computer visiomany
other fields 2]. In the following Sectign11B.1 we will briefly irdume the point
pattern matching problem and describe some general approaches tiissolve

Sectior I3.R gives an overview of existing algorithms for the alignment of mutpleor fea-
ture maps. Several of these algorithms will be performance evaluated ihid&action15.3.

13.1 General approaches for point pattern matching problems

Many algorithms match two point sets with respect to a predefined similarity negasur
Veltkamd) mh] provides a good survey of matching algorithms along withsariggion

of the used similarity measures. In the following, we will describe the basicidéfour
generic popular approaches for the partial matching problem, whicheareralized Hough

Transformationpose cIusterind&aﬂa&,ﬁ&&hl Stockman et HI., 1§éz:p_llsbn, j9%omet-
ric hashing||v_vQIfsQn and Riggulsdﬂs_‘ﬂb?], armtignment[Huttenlocher and LJIIma\Mb?].

These methods belong to the classvofing schemeand offer appropriate solutions for our
LC-MS alignment problem. They serve as methods for pattern recognitizerenthepose—
the position and orientation (with respect to the image coordinate system) wéraghape is
searched in an image. Given two point mapands, if we consideM as themodelor shape,
which we want to detect in theceneor imageS, our partial matching problem looks like a
pattern recognition problem. The question to answer is “Is there a tramsfiosubset df1 that
matches a subset &°”.

We will explain the basic ideas of pose clustering, geometric hashing, antreig on a
simple example given two sets of poits:= {my,...,m} andS:= {s,...,5}, which are
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related by a general affine transformatifyx) := Ax+t ,] with parameterns :=
{At} with Ac R?*? t ¢ R?. The scaling matriX, and the translation vectoare defined by

a1 a t
A= 2) cR22gngt = [ 1] e R2
A1 axp to

GivenM andS, we want to detect a warped versionTgfiM) in the imageS.

Generalized Hough Transformation. @h] laid the foundation of methods to de-
tect arbitrary 2D shapes undergoing transformations such as transktadimg, and rotation

by the generalization of the Hough Transform. The generalized Hougtsformation (GHT)

is a brute-force technique where a parametric equation of the shape isger lequired. The
shape can be of any complex form and is only described by the orientdtioa shape points,
e.g., the gradient in an edge representation, along with the orientation abitite pelative to

a given shape’s reference point. In a so-called R-generation piéséformation is stored

in a hash tabldR, with the gradient orientation of the points as the key values. In the follow-
ing object detection phase, the position of the shape in an unknown imadpe cltermined
using the R-table. Therefore, each poirih the image is considered as a point of the shape.
Using the gradient orientation &f the hypothetical reference position can be determined with
the R-table. Each possible reference point posixgs; is stored in a 2D accumulator array
A(X,Yyr) and a maximum will occur at the reference pointAmwhere the shape exists in the
image. The complexity of the GHT ©(kl). To allow for the search for an affine transformed
version ofM in S, the R-table as well as the accumulator array have to be expanded by 6 di-
mensionsa 1, 812, 821, a2, Iy, ty. This leads to a large increase in runtimekIAT) whereA

is the number of discrete scaling matrices dntthe number of discrete translation vectors. In
order to ensure precise transform parameters, small intervals shousgtebut GHT quickly
becomes infeasible.

Pose clustering. Pose clustering is a specialized form of GHT. In contrast to GHT, a pose
clustering method does not compute all possible transformed forms of a ahdpcompares
them to an image, but it computes only those transformations that correspdrngbothe-
sized matches between shape points and image points. To solve for theassnepans of an
affine transformation, three shape points my, mg (each given by its two-dimensional posi-
tion my := (m 1,m 2)) and three image pointsg,s;, sz are needed. Using the system of six
linear equations j := & 1M; 1 + & omj > +t; the parameters that map thg ontos can be
uniquely determined.

Two point setM := {my,...,m¢} andS:= {sy,...,s} vield 6(%) (3) distinct matching triples
along with just the same number of hypothesized poses of the shape. Matohiasponding
points onto each other yields the correct transformation, which would itedica position and
scaling of the shape in the image. In theory the correct matches will yieldfdramestions
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close to the correct pose of the shape in the image. Correct matches esfuyttiee correct
pose appea('g) times if each point oM can be matched onto a point$ In practice, due to
localization errors in detected features the estimates are not exactlytdmrtebe cluster in
the parameter space should still be easy to detect. Most pose clusterintpaigdind clusters
by histogramming the poses in the multidimensional transformation space. Bgdimhan
affine transformation in this method, each pose is represented by a simgiéngbe 6D pose
space. The pose space is discretized into bins and the poses are histogriantinese bins
to find large clusters. Clustering techniques are more precise than histogrmnbortiim most
cases they lead to unacceptably high runti@l 1997]. Even in thsgagramming
techniques, an accurate pose clustering results in an immense pose@phecfineness of
discretization and the runtime @(k3I3).

Stockman et AI.L[L%Z] reduce the pose space by a coarse-to-firtericigsvhere the pose
space is quantized in a coarse manner and the large clusters found inathizgtion are then
histogrammed in a more finely quantized pose space. A problem that camahghis tech-
nique is that the largest clusters in the first clustering step do not neibessarespond to the
largest clusters in the entire pose spic_e._QL'Lms_Qn_a.nd_Hﬂﬂen\Ib_th] Er@f0that for clut-
tered images, an extremely large number of bins would need to be examinaushiaration
of the coarse histogram.

@1 @] shows a considerable improvement in both speed andchag@frobject recogni-
tion with his approach. He divides the recognition problem into smaller sbbgrs, whereby
randomization is used to limit the number of subproblems. Furthermore, heungs@ sim-
ple grouping mechanism that locates pairs of points that are likely to belong saithe object
and matches only these possible matching points. He achieves a runtkl8f and space
complexity ofO(kl).

Geometric Hashing. Geometric HashingLDALQILS_Qn_and_RnguIISJJ_&_JbQ?] is an indexing

technique and proceeds in two steps comparable to GHT. In a first steprepmcessing
phase, possible forms of the shapes are extracted. In contrast ta@gdmetric Hashing does
not work with all transformations, but only with that subspace of trams&bions constrained
by the data points. Therefore, each triplet, mp,mg) of shape points is used to construct
an orthonormal basis and the point positionsof all other shape pointsy are calculated in
respect to the new basis. The basis triplg, mp, mg) is inserted at each quantized vaimﬁ -
in a hash table. In the second step, the recognition phase, the preqgwdeisns of the shape
are recognized in the image. Each trip(st,s,s3) of image points is used to compute an
orthonormal basis and all residual image pomtare transformed relative to the new coordi-
nate frame. The transformed and quantized va:lfime”used to determine whether the image
point matches any shape point in a certain orthonormal basis. Histogramhtimegtash-table
entries along with the actual image basis then discovers the basis of theastthfie image
achieving the best matching. This basis can be used to find all corrésggrant pairs and
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recover an affine transformation that results in the best least squark betteeen the point
pairs. Geometric hashing is a popular method due to the recognition of multigilesshraan
image even in case of partial occlusion but it requires a large memory totetohash table.
The runtime of the preprocessing phas@©&*) and for recognition is in worst ca&(14), but
in typical real-world applications, the runtime often is linear.

Alignment. The alignment approach is similar to the pose clustering approach. It igyativ
computes a certain affine transformation for each tripte m;, my) of shape points and each
triple (s,sm, S) of image points. In contrast to pose clustering, the transformation parameter
are not voted for, but the shape is mapped into the image by applying théotraaton to

the shape points. This allows the search for corresponding points ohépe $n the image
and the total number of common elements is used to evaluate the transformatiorefss.

If the validation of a transformation exceeds a certain threshold the iteratfonsised. The
alignment method achieves a runtimeQik*®) consisting of0(k3I3) for the determination of

all transformations an@(k) for the verification phase of each transformation. In case of noisy
image point setE_G_l:ims_Qn_e_d al.L_Llﬁ)Ql] showed that the probability of falsehestesing the
alignment approach is substantially smaller than for the Geometric Hashingeappibut the
high runtime of this method makes it inapplicable for large point sets.

13.2 Multiple LC-MS map alignment algorithms

The computational challenges in LC-MS map alignment have recently moved iatfth
cus of the bioinformatics community and several alignment algorithms havedwliezen
developed. In the following we will review the existing algorithms for multiple raw
LC-MS map alignment| [Bylund et buddMMMMMMG
Listgarten et I[Z_(Md)il Listgarten and Emili, 2005] and muItiaIe feature LCrv align-
ment [Radulovic et l. 1_0_34 Katajamaa eJtL_ t LJ2¢LO_5_‘_b_ad; |ZO_%|5
Jaitly et al.| 2006; Bellew et al., 2006; Smith et ud_O_G_,ﬂmJeh_L] 2007].

Multiple LC-MS raw map alignment algorithms.  Many of the algorithms for raw LC-MS

map alignment|[Bylund et all, 2002; Prakash ét@._th_Q:P_YMC_e_MMrQO_Qb] are

based on two standard non-parametric approaches, namely dynamic tipiegvddTW)
||5ang and thﬂ)&L_19|76] and correlation optimized warping (de)_[m@gsgﬂ.,w].
Both approaches align time series by stretching or shrinking the time axis. DasAith
origin in speech processing and computes a non-linear mapping of oz siga another by
minimizing the distances between time series. COW is comparable to DTW, but it tesrgou
piecewise linear transformation by dividing the time series into segments andeHenming

a linear warp within each segment to optimize overlap while constraining sedpmendaries.
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The parameters for the best linear transformation are determined by maxintEngum
of correlation coefficients between data segments in pairs of samples. Bdthiqees
appeared first in the alignment of chromatograhJS_EQma_sﬂél_alJ 2004yverel afterward

extended to the case of two-dimensional LC-MS dﬁla_LB;LIu_ndJeLalJ ZPeskash et al.,
[ZD_Ode;LEUnss_aad_MaLcdﬂe._ZﬂOG].

The approach dLB;LIund_eLLiL_LZdOZ] is based on the idea of the tradit@@®V algorithm.
The pairwise alignment of two LC-MS maps is determined by using represensatibsets of
extracted ion chromatograms of the complete maps (typically taken from the mitdthe o
two maps). To allow for the largest time shift at the end of the chromatogradrtharrejection
of end portions in both maps which are not relaet al. usedblarsgegment
boundaries. Furthermo al. show that the sum of correlatiefficients as well
as the sum of covariance coefficients are sensible scoring functi¢nah wield the best set
of segment boundaries and therefore the optimal set of linear trandfonmiy maximizing
the total score via Dynamic Programming. The evaluation of the method showsdéssity
of an alignmentm&. compares the amount of variance in basehramatograms
explained by the two principal components determined by PCA, which was béfere
alignment and 98% afterward. Similarly, explained variance went from @09 % with a
seven-component parallel factor analysis (PARAF[ 997heweralization of PCA
to three-way data), indicating a reduction in the major sources of sampléearia

Prakash et all [2006] and Prince and Marcotte [2006] describetansian of DTW and differ

mainly in the similarity function they maximize. Prakash tMOOG] introduceeedsased
on a normalized dot product of the mass spectra to lower the influencess peaks. The
fuzzy dot product is based on the similarity measure proposb_d_b;LSlﬂmnHLQ_Q_h], which
exploits the mass resolution. To avoid high similarity scores for noisy spehb#ascoring
function is expanded by an additional term. The maximal score is determirgedlbial align-
ment using a modified version of the Needleman-Wunsch algorllhm_LN_e_e_dJ&lnnHMﬂmS_dh,
] and the optimal path, the so-callgignal map is the mapping of mass spectra in the
two experiments that lead to the maximal score.

[Eﬂns_e_a.nd_Ma.m_o_dté;LZQbm verify the applicability of DTW for the alignmeht6-MS raw

data and, in a comprehensive study, show that the best scoring furictidhe similarity

of MS spectra besides covariance, dot product, and Euclidean distésd¢he Pearson
correlation coefficient. Furthermore, the penalization of gaps shoulegmréhe stray from
the optimal warping path, which occurs without any gap penélty |Pra@ﬂ1 mb].

Prin nd Marcotte introduce a bijective one-to-one spectra mappinddrparation of the
warping path yield during DTW.
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Li rten and Em Ii|_[;0_d5] propose a Continuous Profile Model (CPM}He alignment of
multiple raw LC-MS maps using their total ion chromatograms (TICs). Eachredsd I1C or
time series represents a noisy transformation of a canonical time seridstethietrace The
time points of the latent trace are a series of hidden states in a HMM, whiclugneeaited
by scale states that allow for intensity scaling. Due to mapping both in time andstatds
the alignment procedure maps not only all time points in the TICs onto hiddeis statiee
HMM, but also normalizes the intensities at the same time. The latent trace is detdrmin
by unsupervised learning with a Dynamic-Programming-based Expectdaaimization
algorithm. After the training phase, the model is used for the simultaneous algrofe
multiple TICs. The proposed time consuming HMM-based alignment is reducétCw of
repeated measurements.

In |Li rten I.L[;O_Cb?] the CPM model is expanded by the m/z dimensiorteabhf
taking the total ion count at each time point of an LC-MS map into account, thelnog
uses the intensity of four m/z bins at each time point. The authors note thadtargnember
of bins would increase the runtime whereas too few m/z bins would result irs afapiality
of the alignment algorithm. The normalization is no longer regulated by scalitesstaut
performed by adding a new parameter vector to the model to speed up tmeeuAlthough
I. declare that the alignment algorithm is no longer restrictegplicated data
sets, a high similarity of the aligned samples is assumed and the algorithm is edainatata
sets that differ in only three peptides.

In general, raw map alignment methods tend to produce more accurate gvanpations, but
they are computationally expensive and therefore often not applicabtedanultiple align-
ment of many samples. Moreover, algorithms that compute an alignment using dmpagv
cannot accommodate for reversals in the retention time of peptides. If in cagsuneenent
peptidesA, B, andC appear in the ordeA — B — C and in the second measurement in or-
derC — B — A. This scenario is not unlikely if the retention times AfB andC are simi-
lar ﬂin;LdﬁLa.nd_D_QLEH_ZQbﬂ Prakash et E.L_LiOOG] assume that tidex ohanges do not
appeatr, wherea{s_Eﬂng_e_and_MaL&oh.te_[iOOG] address the probl®@WWfbased algorithms
dealing with time order changes, since these algorithms preserve the teomderadf the pep-
tides. Thereby these methods are only suitable for the determination of thagvéunction,
but not for the mapping of corresponding elements. To assign the tpeptides in different
maps, some further processing steps have to be applied, which exulaiirzad useful peptide
information e.g., the charge state.

Multiple LC-MS feature map alignment algorithms. In contrast to raw map align-
ment methods there exist also a great number of approaches for aligoicesped LC-MS

data setsLLRa.dqum:_eﬂ L_ZédA._KaLaJa.ma&l?{_alJZO_O_&_LﬂéLa.LJ mgﬁl_ah | 2005;
Jaitly et al.| 2006; Bellew et al., 2006; Smith et al., 2006; Wang et al.| 200% faature map
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alignment methods can be organized into algorithms, which

e estimate linear or non-linear (typically piecewise linear) dewarping funciomksuse
these transformations to compute a consensus ét Ja] ,

20067 Li et al.| 2005; Zhang et al., 2005; Bellew etlal., 2006]; or

e compute the consensus map directly without the correction of RT and.m
7| Katajamaa et al., 2005).

(@)

Furthermore, some of the algorithms compute the final consensus map by

o allgnlng all maps in a pr ressive or starwise manr{_eLLBaduJ_OALi_d et al.4; 200

05; Zhang ét al., 2005]; or

e assigning corresponding features in all maps simultaneotllsly_DA[anb émi; 2
i : ... 2dos].

And finally, some of the methods

e use only the 2D positions of the featurb_s_[_ad_w_c_laLa_JdD_O_._aLajaIMHM
Jaitly et al.| 2006; Li et all, 2005],

e whereas other incorporate the ion count, charge, or other featuramiafo

tion [Wang et al., 2007; Zhang etlal., 2005; Bellew ét al., 20086].

[Ra.dquLis_el_dl.LLZD_dq propose an multiple feature map alignment algorithiistenbedded
in a software framework for biomarker discovery. The final consemsap, which is called
mother-pamphletis computed in two steps. Using one map as reference map, all other maps
are successively aligned to this reference map. First, all best pieceanséormations, which
transform the elements of each map onto the coordinate system of thencefenap, are deter-
mined using a Monte Carlo optimization technique. The similarity score, which is madmiz
provides information about the feature overlap between two maps. Finalgotinesponding
features are assigned using a “wobble” function that determines thestedjacent features in
the other mapfﬁ_lamg& al. admit that the proposed alignment is very tirseramg and
takes the most time during their analysis pipeline. To improve the runtime, theyineend a
progressive alignment strategy.

The multiple feature map alignment aIgorithnbLKaIajama.aJeLa.L_lZOOS] is alsodetaben
a software package for the analysis of LC-MS data, cdlletMine The simple alignment

approach does not estimate any dewarping transformations. The sasseap, which they
call master raw listis successively generated. Starting with one map as the initial master raw
list, the elements of all other maps are added to the steadily growing master list.nEdyireg
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within a given RT and m/z window are grouped together to consensusdsatilihis simple
alignment strategy is fast, but highly error prone. It assumes only a slijftin RT and m/z
and will fail if the RT dimensions of different maps are additionally scaled.

The multiple feature map alignment algorititt@  MSWARPfJaitly et al. [2006] is developed
as a part of an accurate mass and time tag data analysis piﬁ_eli_ne_[_Sm‘tl )., Z0@e
alignment algorithm is based on two steps. In a first step, a reference rohpssn and a
piecewise linear warping function for each map with respect to the refemmap is estimated.
To this end, all maps are broken up into a number of RT segments similar to theap@\dach.
The number of segments of the reference map and the other maps difféosvtéoaa scaling
of the RT dimension. The best piecewise transformations are determinedxayiziag the
sum of matching scores of all segment pairs via Dynamic Programming. Thainmszore
assesses the number of assigned features, whereby two featuggsgyed together if the
Mahalanobis distance is smaller than a predefined error bound. Thesfe@itches are used to
discover a recalibration function. This function should correct for therén m/z and allow for
a rematching of features. Rematched feature pairs are used to estimatel tinerfsiarmation
in RT using a natural regression spline.

This first step of the algorithms computes an initial alignment, which is further weprn
a second step. The determined piecewise transformations are used tp tesvenaps with
respect to a reference map and a final consensus map is computed bgtagwomplete (or
single-linkage) clustering approach using again the Mahalanobis metric.

m M] developed a multiple feature map alignment algorithm embdddesoftware
suite calledSpecArray The proposed algorithm computes all pairwise alignments and com-
bines them to a final consensus map. To correct the distortion in RT a reténtmcalibration
curve (RTCC) is iteratively computed for each pairwise alignment. To thisfeatures with
similar m/z values are paired together to construct an original feature pairgtse retention
times of the paired features are used to estimate a retention time calibration gumiaib
mizing the root mean square distance of the features’ RT positions to the mimniotoction.
Afterward, pairs with a small pairing score are removed and the redwatenf feature pairs
is again used to estimate a RTCC. The two steps are repeated until only theigaiashigh
pairing score remain and each feature in one map is paired with at most aine=fen the
other map. The final RTCC curve and the distance of peptides in m/z is usetktd likely
and unique feature pairs from the original set of feature pairs. Timbicw@tion of all pairwise
alignments vyields the final consensus map, or the so-calledr list The determination of
all pairwise alignments results in a high runtime and makes the algorithm inapplfoalbte
comparison of a high number of feature maps.

|Zhﬁ.ng_el_a|l.L[ZD_d5] propose a heuristic algoritWilign for the alignment of multiple feature
maps. XAlign computes in a first step a so-called gross-alignment, where the algorithm cor
rects a systematic shift in RT. In the second step, a final consensus ream-talledmicro
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alignment is determined. The gross-alignment algorithm aligns multiple maps in a starwise
manner, whereby the reference map is chosen in the following way. Fpreakfined RT

and m/z windows the most intense features of each map are determined. Hf@wdontains
features from all maps, the features are called significant and their itgteresghted average
mean RT position is calculated. The map with the minimal difference of all its signifiea-

tures to the averaged RT positions is chosen as the reference map.akétealother maps are
dewarped with respect to the reference by estimating a straight line that migithzenean
absolute deviation of the RT positions of significant features. In the migoraent phase
features yielding a high correlation coefficient are successivelypgabtogether and establish
the final consensus map.

The multiple feature map alignment aIgoritthQf_B_ellemu-:Lt b_L_LiOOG] is part oL@rMS
analysis platform callechsinspect Before a consensus map, a so-cafpegtide array is de-
termined the algorithm corrects the non-linear distortions of the RT dimensiahroaps in a
starwise manner with respect to a certain reference et ahadssat the distor-
tion in RT is explained by a global linear trend plus a remaining non-linear coergo The
overall non-linear warp for each pairwise alignment is estimated iteratilelthe first step,
the linear trend is estimated using the most intense features with similar m/z positioiss. T
initial model of the RT transformation is used to iteratively determine a non-ling@asforma-
tion using smoothing-spline regression methods from the previous model.d&fterping all
maps, a global alignment is performed by applying divisive clusteringratiyethe tolerances
in RT and m/z of assigned features are user-supplied. The quality of timereig is defined
by the number of clusters that include at most one feature from each niagpalgorithm of
. optionally offers the automatic choice of the optimal RT and m/z talesamsing
the quality of clustering.

The approach df_Smjlh_eﬂaL_LZdOG] simultaneously aligns multiple feature miaps.algo-
rithm is also part of a software package, which is cak&MS In a first step, an initial feature
matching is determined by grouping all features across the maps with similar nitibpes
Using a kernel density estimator, groups, which contain features witheliffeetention times
are split into smaller subgroups. Each group that contains featuresféwen than half the
maps are eliminated. This gives a coarse matching of features into rebsgralps. To cor-
rect for the RT distortion, the median RT and the deviation of the median foy é&vature in
each group are calculated. A local regression fitting method, called losessthe deviations in
RT within each group to compute a non-linear transformation. This functiosed to correct
the retention times of all features in the original feature maps and is followaid by match-
ing. To enhance the precision of the final consensus map, the matching/aligproeedure
can be repeated in an iterative fashion.

Ma.ng_el_aj.[LZD_dﬂ propose a statistical approach, cdE@AL which simultaneously uses
feature and raw data information to align LC-MS maps. The algorithm usesniptthe
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2D position of a features, but also RT range, charge state, and theidsdisgibution of
the feature. The features’ isotopic distribution scaled to unit total ion dsurdlledelement
spectrum vectorAssume we are given a peptide library that contains all possible features
the multiple maps. The peptide library as well as the features of an individaialréemap are
represented as a linear combination of the scaled versions of the eleraeintispvectors. An
assignment of corresponding features is done by means of the similariignoéiet spectrum
vectors. Maximum similarity is determined by fitting a least square regressioalpedalized
by thelL; norm, with an additional penalization term to prevent the matching of peptides with
a great deviation in RT. By varying the scaling factors of the element \&ofothe peptide
library and searching for the minimum sum of squared distances ihjtn@rm between the
element vectors in the aligned map and the scaled element vectors of the fiepdige the
abundance of each peptide of the library in the map can be determinedudBedta peptide
library is usually not known in advanmt al. propose a methodéondiee a peptide
library. Starting with all features of the maps to be aligned, the algorithm sedegisper
subset of all features in a backward-stepwise strategy. To extrass thatures for the peptide
library which are contained in preferably many maps, all features artechasusing a sparse
regression approach called Elastic lllel_[ZQ_u_a.nd_I:HleeJ 2005].

Given the peptide library, all maps can be aligned simultaneously with resptwt peptide
library. The proposed method is very time consuming, because the geneshttte peptide
library takesO(nk) (wheren is the number of maps ardthe total number of features in all
maps). It is more suited for applications in which the peptide library is alreadnde.g.,

peptide “accurate mass tagE" Smith ét[aLQOOZ]).
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Own contribution

As mentioned in Section 12.1, the multiple raw map alignment problem (MRMAP) and th
multiple feature map alignment problem (MFMAP) can be solved by using effip@int pat-
tern matching approaches. The multiple maps can either be superimposeadiaxihrézation
of a specific similarity measure for LC-MS maps, or by an algorithm basecdhermbthe gen-
eral approaches described in Secfion 113.1. We will treat both attempts htti@rsoand at
first propose a fast implementation of our own similarity measlgienalong with its area of
application. Furthermore we will describe in detail a fast and accurateitl I,

] for the MRMAP and the MFMAP based on the general pose clugtapproach. The
performance of this algorithm will be evaluated in the following chapter.

14.1 Implementation and applications ofdsim

The distance functiodsimas defined i 12.2/2 can be used in several ways. The dissimilarity
measuredsimcould find an interesting and promising application in a progressive alignment
approach. It could be used to generate a distance matrix, which inclugesralise dissim-
ilarities of multiple maps. This matrix defines the generation of a guide tree (heuphtie
logenetic tree”). The progressive alignment approach starts with thensdiginof the most
similar LC-MS maps in the hope that the fewest errors are made. Thenmepsdgely, more

and more LC-MS are aligned to the already existing alignment. The guide mdmedauilt by

a Neighbor-Joining methoh_[_S_ai_ImLaﬂdJI\lLengw].

Another application could be the superposition of LC-MS maps. Assume svgiaen two
LC-MS mapsM andS, which share a fraction of common elements, and the poinkd afe
shifted by a transformatiof. The partial APMP would be solved by the determination of the
correct transformation parameters, which allow for the superpositidharidS. The distance
measuradsimcould be used in a specific algorithm which determines the correct tramsfor
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tion parameters by minimizing the distance between two maps. Although we willpreefsest
implementation ofisim the method proposed in Section 14.2 is an even faster solution for the
MRMAP and the MFMAP.

The comparison of hundreds or thousands of maps requires an dffinjgementation of the
dsimmeasure. Assume we are given two LC-MS mipandS, the distance measudsim
requires the computation of the nearest neighbors of each poidt iof S and vice versa.
The nearest neighbor of a 2D point in a point set can efficiently berdeted in data struc-
tures such as Voronoi diagrams or Delaunay triangulations. The Commatiateometry
Algorithms Library (CGAL) @ﬂma}i_l&lbﬁ_Eanﬂ_e_d M%] impletegha 2D point set
classPoint_set_2 based on a Delaunay triangulation, which offers efficient neareshineig
searches and range queries. This data structure can be used to im@erapptoach for the
computation ofdsim The construction of the Delaunay triangulation for a point set of size
n has a runtime oD(nlogn). For the computation ofisimwe have to compute a Delaunay
triangulation for both LC-MS maps. Afterward, for each elememfliwe have to determine its
nearest neighbor iBand vice versa. The nearest neighbor is determined in constant time using
the Delaunay triangulation. Finally, we only have to check which neareghibers corre-
spond, if the distance between them is smaller than a given threshold,mngghe intensity
and position dependent similarity value. The total runtimelsimis thusO(nlogn) and the
distance between two feature maps of size 195 takes about 40 ms on aB@ical

A heuristic speed-up by a constant factor can be achieved if we lay amgadboth maps. The
grid size should approximately correspond to the maximum distance in RT ande@zpect
for nearest neighbors. To avoid boundary effects, which canracing fixed grid cells, we
search for the neighbors of each point within a grid ceMim the corresponding grid cell i
and its surrounding grid cells. The construction of the grid cell takes litear However, the
search of the neighbor depends on the number of points in each cell.oFkeocase, where all
elements lie within only one grid cell, can be ruled out due to the nature of LGrgl$s and
the number of points within each cell can be assumed to be limited by a constant.

14.2 Multiple LC-MS map alignment

In this section we propose a fast and accurate aIgori|Lhm |Langgl: |e_0_a_lh for theMultiple
Raw Map Alignment Problem (MRMARNd theMultiple Feature Map Alignment Problem
(MFMAP). The solution of the MRMAP is a partial solution of the MFMAP, because thie co
rect superposition of all maps does not only solve the MRMAP but alslitéées the search
of common elements in multiple feature maps. The mapping in a star-wise mannemajal|
onto a certain reference map leads us to the desired superpositionsBegawant to use the
superposition algorithm for both raw and feature maps, we design it to bpéndent of the
element type. We use only an element’s RT position, m/z position, and ion cohict) are
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the three characteristics that raw data points and features have in comonahe Bolution of
the pairwise dewarping we developed a powerful pose clustering agiprthe algorithm for
the search of consensus features is also based on efficient datarssuc

In the following sections, we will lay out in detail our approach to multiple LC-M&p align-

ment and will prove certain properties of our algorithm. In Sedfion T4.2.1degeribe the
fast and accurate algorithm for the pairwise map alignment. This algorithm ilm@moved

version of the pose clustering method described in SeLfion 13.1. SEciio@ $A®vs how
pairwise map alignment and the resulting transformation can be used to sotlre MRMAP.

The method described in Section 1412.3 expands the pairwise alignment bylafeeaorre-

sponding elements in two maps. In Secfion 14.2.4 we show how pairwise map atiganae
the search for common elements is combined to an algorithm for the MFMAP. §ddtid.b

describes the TOPP application, which implemented the algorithms for multiple hfean
ture map alignment.

14.2.1 The superposition phase

The Multiple Raw Map Alignment problem searches for a set of transformatioat maps
all elements of the LC-MS maps onto comparable RT and m/z dimensions suchirabo
elements are shifted closer together. The determination of the corredtmaameters of the
underlying warping functions would also allow for the grouping of cqraggling elements,
which represents the actual solution of the MFMAP. Hence, both probleed the optimal
set of transformations.

We developed a star-like progressive multiple alignment approach, wiebiisythe set of
transformation functions for both problems. The multiple dewarping apprsacased upon
pairwise alignments. Given two maps we define the estimation of the transforrteitonaps
one map onto the other as teaperposition phaseAfter an initial, coarse transformation
is found using pose clustering, results are refined by landmark matchah@ &nal linear
regression technique.

Efficient pose clustering for LC-MS data

Given two 2D point setM andS, the point pattern matching methods described in Secfiom 13.1
determine an affine transformatidnsuch thafT (M) best matcheS. Depending on the pro-
cessing stage, LC-MS maps may contain up t& dléments; the straightforward application
of these approaches thus is intolerable.

In the following subsection, we will show how we developed an adapteel gastering algo-
rithm, which accurately solves for the partial point pattern matching probfdr@aviS maps

in feasible time. Our pose clustering determines the transformation which mapsrauma
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number of points itM close to points irs. Since we use the same metric as indisendistance
function, and also incorporate the similarity of intensities, our approacheicttiirmaximizes
thedsimmeasure oM andS.

Pose clustering is a voting schema and the correct transformation paraaretdetermined by
histogramming. The matching of tripléay, mp, mg) onto triples(s;, Sy, S3) uniquely defines
the six unknown parameters of an affine transformation

a;1 a X t
Tu(X) = 11 A2 1) ()
A1 axp/ \X to

The parameters of transformation are recorded in a 6D grid and each mpaiching
(m, m;,m), (st,Su,Sy) yields a vote for their transformation parameters. In the end the correct
transformation is given by the maximum number of votes, because the mat¢cmygespond-

ing tuples will always result in the correct transformation, whereas theftsemations of other
non-matching tuples are more or less randomly distributed.

@1 @] shows that besides a speed-up in runtime, the accurgmysefclustering is
improved by limitations of the pose space. He constricts the pose space bytaugngnly
poses for triples in the shape point set and image point set that arelpassibmatches. We
develop a similar approach and use the characteristics of LC-MS measuseimdimit the
pose space and, on the other hand, improve the runtime.

We develop a similar approach and introduce four improvements exploitindhéraateristics
of LC-MS measurements. Given two point sets of dizendl, the general pose clustering
approach solving for an affine transformation has a runtin@(kfl). The four improvements
described in the next four subsections limit the pose space and reduperttieer of false
positives. The first three improvements achieve a remarkable speddsupeoclustering and
achieve a total runtime @(kC?) with a constan€ < . The fourth improvement reduces the
false-positive rate.

Figure[14.1 summarizes the stepwise improvement of runtime.

O ( k,B l3) Improvement 1 O ( k2 l2) Improvement 2 O( kQ 02) Improvement 3 O ( k 02)

Figure 14.1: The runtime of the pose clustering approach after the iraratfpn of each improvement.

Pose clustering improvement 1—Nature of the warp in RT and m/z dimesion. Due to
the fact that the RT and the m/z are based on the measurements of two tiieagrsis tech-
niques, the uncertainties in measurement are independent. The masssptatmay be well
calibrated and thereby the error in m/z may be small, but the mobile phase of tbellu@n
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may change during measurement; this could result in drifts in the retention time aie¢h-

sured compounds. We can therefore address the warp in both dimeimglepgndently. In
case of a well-calibrated mass spectrometer, the shift in m/z should be minimahartae

described by an affine transformatidn.;lailbdt[al._LiOOG] notice that xpeaed from the
central limit theorem that even after correcting for global trends of deael and flow rate
changes, effects of less understood factors can result in the ebdseltion times being nor-
mally distributed around an ideal elution time. Also, we observed that an &ffinsformation

is frequently sufficient for the RT dimension. Figlre 14.2 and Figurel 14o@/g¢he results of
an experiment, which supports this observation of an affine transforniati®n.

corrésponding pair +

3000 | f(=0.99x-55.92 —p

2000 r

RT of sample "middle" [s]

1000 r

1000 2000 3000
RT of sample "early" [s]

Figure 14.2: Retention times of corresponding peak&$ verified common identifications) in two
LC-MS raw maps of the Mycobacterium smegmatis experimezg Gectiof 1513). Sample “early” is
a protein profiling of Mycobacterial smegmatis in early enpotial phase, whereas “middle” states a
protein profiling in middle exponential phase.

We selected a set of high-confidence peptides in two LC-MS samples aflddgterium smeg-
matis. Corresponding peptides in both samples, verified by common identifEatiane
matched and manually validated. An affine correction was applied to the R@linates yield-

ing a Pearson correlation coefficient 0909. Figurd 14J2 shows the corresponding pairs dis-
tributed over the whole RT axis of the experiment and the fitted affine warpedah pair,
we plot difference versus mean RT. As can be seen in Flguré 14.3 rthdreretention time
remaining after correction is scattered around zero.

Although we could compute transformations using higher-order functigsmddubtful whether
they are necessary or even practical since there is the potential dittovgr Furthermore, it
should be noted that each additional parameter will expand the poselspance dimension
and therefore increase both runtime and memory space. However, fitiale allows also
for non-affine functions.
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Figure 14.3: The plot shows the remaining differences in retention tifter a suitable affine dewarping
function has been applied to the time standard of the “eahd “middle” sample. For each pair of
retention timegs,my), we plots — m (vertically) againsts +my)/2 (horizontally). The figure shows
that the remaining error after affine dewarping is almosépahdent of the retention time. The affine
transformation used for dewarping was calculated by a fliregression of all retention time pairs.

We define the warps in RT and m/z by one-dimensional affine transformatfigtie) :=
arTerT + brT @nd pm/z(€) := am/zemiz + bmsz- The two-dimensional warping functiqn which
transforms the positiorssyt andey,, of an elemene into &gt andey,, is given by

~ o~ agrt O ErT brT
€RT, €m/z) -= (ERT,E€m/z) = + .
p( T /Z) ( T /Z> ( 0 arn/z) (em/z> (bm/z>

This special case of two independent affine transformations limits the pase $ only four
instead of six dimensions. To solve for the four unknown parametgrstimo pointsmy, mp of

one map along with two pointsy(,s;) of the other map are needed. Using the system of four
linear equations

SLRT = @arTMRT+bRT
SRT = arTMpRT+bRT
Stmiz =  8mizMmiz+ bz
Smiz = amizMmiz+ bz

the parameters that mam ontos; andmy, ontos, can be uniquely determined. Wiktelements
in one LC-MS mapM and| elements in another LC-MS mapwe yield 2() (}) distinct
matching tupleg(m,s;), (m;,s)) that result in the same number of hypothesized posés of
in S. If the model point seM is completely contained i and thereby all pointk points of
M have a corresponding point 8ithen the correct pose is supported (I@' matching tuples.
Even in case of partial matching when onfik (f is the fraction of the model points that
appear inS) points ofM have a corresponding point #8ithe correct pose is supported ()y)
matching tuples and they form a cluster in the pose space. The introductiospetial affine
transformation reduces the complexity of pose clusterir@Q(id1?).
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Pose clustering improvement 2—Hypothesized correspondence in m/zGiven two
LC-MS element map$1 andS. Even in case of insufficient calibrated mass spectrometers,
the deviation of corresponding elemeris;, sj) in m/z position should be smaller or equal
than the mass spectrometer’s precisipp,

‘m m/iz = Sj m/z‘ < Om/z-

To allow for errors which can occur during processing of the maps Vieedan error tolerance
Em/iz > Om/z INn M/z and take advantage of the precision of mass spectrometric measurements
and limit the pair of matching tuplggm;, s), (m;,s))

IMimiz = Skmvzl < €miz @nd|[Mj . — Simyzl < Emiz

to those that meet the above condition with and are likely to originate the cpoeet Fig-
ure [I4.2 illustrates the hypothesized correspondence of an element. rrbles andicate
the potential corresponding elements in the other map, which lie in betweemain &gy~
environment.

m/z

RT

Figure 14.4: The blue points represent a point $&tand the red points form point s8t Potential
partners of a pointh € M in S have to lie in between a certain error bound, shown by theeddites.
The arrows indicate the hypothesized partnems.of

In the worst case, the complexity remadg?l?). But this case, where all points M andSlie
within &y, is unrealistic and under real circumstances, the number of hypothesideers of
each point irM is typically constant in the number of points and bounded by a corStartie
runtime becomes the@(k’C?) with C < |. The approach of hypothesized correspondence in
m/z has the same effect as the grouping techniqm[m%] anahdbenly improve
the complexity but also the accuracy of pose clustering by elimination of a tangder of
false positive poses.

Pose clustering improvement 3—Decomposition of the problem. To further improve the
complexity of our algorithm we propose a similar decomposition technique asiloles in
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@1 @7]. The idea behind the following theorem is that if we take a muoalat my of
M, which has a corresponding partneiSrand compute all matching tuplégm, s), (m;,s»))
that includemy then we will already yield a cluster of size— 1 at the correct pose in pose
space. This avoids computing all the possible matching tuples and redunptegity from
O(k?) to O(k). The matching ofm; ontos; andm, onto s, is called a group matchy :=
{(mM,s1),(My,s2) }. A subsetd(y) of the pose spad® can achieve the matching of; ontos;
andmy, ontos, within some error bound

B(y)={pcO:|pm)—s| <e forl<i<2}.

Theorem 14.2.1: The following statements are equivalent for each ppse©:

1. There exisg = ('g) distinct group matches that pogebrings into alignment up to the
error bounds. Formallyy, ...,y s.t.we 8(y) for1<i<g.

2. There exisk distinct point matchest, . .., 7§ with 77 = (m, sj) that posep brings into
alignment up to the error boundsm, ..., 7 s.t.we 6({r}) for 1 <i < k.

3. There exisk — 1 distinct group matches sharing one point match that pds#ngs into
alignment up to the error boundsrg, ..., 7k s.t. 6({m, 7% }) for 2 <i <k

Proof. We will prove in a circular fashion that& 2, 2« 3, and 3« 1. Therefore, the three
statements must be equivalent.

1 < 2: Each of the group matches is composed of a set of two point matchete\wés point
matches from which we can choo@ group matches ik. The definition of6(y) guarantees
that each of the individual point matches of any group match that is btooghalignment
are also brought into alignment. Thus, each of these k point matches mbsbught into
alignment up to the error bounds.

2 <= 3 Choose a point match that is brought into alignment. Form all of th& group matches
composed of this point match and each of the additional point matches. @icttefehe point
matches is brought into alignment, each of the group matches composed aflftemust be
from the definition of9(y).

3« 1 There ar& distinct point matches that compose the 1 group matches, each of which
must be brought into alignment. Any of tl@) distinct group matches that can be formed from
them must therefore also be brought into alignment. Ol

If we knew in advance an element of the model nvyphat has a partner in the element map
S we only had to bin all(k — 1) (g) possible poses and could achieve a runtime®cC?).
Unfortunately, we do not know anything about correspondence in thartaps and have to
find a common element &fl andShy chance. If we randomly choose a point\dfthat has a
corresponding element Bwe will find the correct pose in pose space, but how many trials are
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required until we choose a correct element? We will derive an uppercoiinot choosing a
correct point inM in t trials if fl model points are present $ The probability for a randomly
chosen element to be correctj}sand to be wrong1 — %). Thereby, the probability to choose
t wrong elements imtrials isp= (1— f—k')t. If we require the probability of a false negative to
be less tha® we have:

Solving fort leads to:

In(d)

In(1—¢)

Using the approximation of [1 + x) ~ x for x — 0 we get a first order approximation és a
lower bound ot

From this follows that we have to evaluate at Ie@st) model points to expect at least one
correct model point ih trials. Each model point can be matched d@tbypothesized element
partners in the other map. For the choice of the second model and scemengl®(kC)
possibilities remain. Fok ~ | we achieve a complexity o®(kC?) and only ifk > | the
complexity remain®(k’C?).

Pose clustering improvement 4—Incorporation of intensity informaion To reduce the
number of false positive clusters in pose space we can further inedeptire elements’ in-
tensity values. By a simple normalization using the total ion count of a map the éEmen
intensities in different maps become comparable. The ion count of cormdsmy elements

in maps resulting from repeated measurements should be almost identicakarid ease of
maps containing differentially expressed peptides, the majority of peptidab@nhtensities
should be usually similar. We exploit this property and multiply each vote by ahvidicat-

ing a level of confidence in the mapping before we histogram it. We give mgtgioints with
similar intensity a higher vote than the matching of points with varying ion counts.

We could easily incorporate other constraint such as equal chargefstaséched peptides, to
prevent histogramming of unrealistic candidate transformations. We dideshthese possible
extensions because we want to stay independent of the element typeraidasithm should
work for raw, and feature maps.
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Landmark matching

Although the pose clustering approach yields a suitable estimation of the wlfipand m/z,
the initial pose estimation can still be improved upon. We use the initial estimate ohthe u
derlying warp in RT and m/z to detect reliable element pairs in two maps, whidikahlgeto
represent corresponding elements and use these pairs as “landnatkdinarks are element
pairs that are likely to represent common elements.

Even in case of an RT warp that would be better approximated by a higther polynomial
than by an affine transformation, the RT warp usually has a prominent lireadt and is
globally smooth. If we determined an adequate estimate of the correct mauasian the ap-
plication of the initial transformation should map corresponding elements dlogether and
some of them should even become nearest neighbors.

Adaptation of the Euclidean metric. Because in an LC-MS map the element’'s RT position
is affected by a much larger measurement error than the m/z position, wetasse the
Euclidean metric to determine a nearest neighbor. A typical uncertainty iretltion time
measurement lies between 10-30 s (the remaining errors in RT of thepmrdésg elements
in Figurel14.B yield a mean of 182 and a standard deviation of B3 s). However, the mass
accuracy is in the ppm range. In our case, differences in m/z are muctolesable, and
should be weighted more heavily, than differences in RT. We adapted ttieléan metric to
this purpose by introducing scaling factevg andw, for the RT and m/z positions.

Definition 14.2.1: The adapted Euclidean distarmeqm, s) between two elements

m:= Rt ands:= ol is defined by
Mm/z Smiz

euqm,s) := \/W%(mRT — SRT)2 -+ W3(Mnyz — Smiz)%.

with wy,wo € R.

Search for landmarks. The initial transformation is precise enough that at least a subset of
corresponding elements becomes nearest neighbors in respect tapiedaduclidean metric

as defined il I4.211. To ensure reliable matching pairs, the hypothesineghntlgairs should
fulfill two conditions:

1* Two elements can be matched only if, for each of them, the other one is thestieaighbor
within a given error bound in the other map, and

2* the distance to the second-nearest neighbor is significantly larger thalstaece to the
nearest one.
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The second condition necessitates not only the determination of an elemearésinneighbor

but also of its second nearest neighbor. Given two LC-MS nm\aps {my,...,m} andS:=
{s1,...,5} whereby the elements M are already dewarped. By searching only the 2-nearest
neighbors of eacl; in Sand not vice versa we can accelerate runtime greatly, but we also
have to relax the first and second condition mentioned above to:

1 Two elementsn;,s; can be matched only & is nearest neighbor afy and all other points
my for whichs; is nearest neighbor have a larger adapted Euclidean distasgeatul

2 the adapted Euclidean distance to the second-nearest neightoprsagignificantly larger
than the distance tg. Furthermorem, also hassj as nearest neighbor and has the second-
smallest distance ts; of all points that have; as nearest neighbor. The distancerpfand
s;j is significantly larger than the distance betwsgandm.

Figure[I4.5 illustrates condition 1 and 2. The nearest neighbor of a pdineiather map is
indicated by an arrow, and the second nearest neighbors by anwittow dotted line. If two
points are linked by a left right arrow, and conditiohtblds, the two points form a pair, which
is highlighted by a solid rectangle.

m/ZA
O“O«—-«_,Q
.‘\»O
o O
o
........ R
Og;v\’o; fffffffff +O0
RT=

Figure 14.5: The empty circles represent a point Betand the filled circles form point s& If the
distance to the nearest neighbor of a point is significamtiglsenough the point and its nearest neighbor
are linked by a solid arrow. The second nearest neighbadm, avdignificantly small enough distance is
indicated by a dotted arrow. Pairs that fulfill condition 2°, 1, and 2 are framed by a solid rectangle,
whereby pairs meeting only 1 and 2 are highlighted by a do#etangle.

We will now show that a set of matching pairs that obeys conditioant 2 is a subset of all
matching pairs that fulfill condition 1, and 2.
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Theorem 14.2.2: An algorithm that searches for matching pairs that meet condition 1 and 2
also yields all matching pairs that fulfill conditiori,land 2.

Proof. Assume conditionland 2* hold form; ands; and condition 1 and 2 are violated.

If condition 1* holdsm is nearest neighbor &f and vice versa and all other pointy have

a greater adapted euclidean distancs; ttihanm, which obeys condition 1. The conditiori 2
implies that the distance betwernand the second nearest neighbampis significantly larger
than the distance between ands;, which meets the first part of condition 2. Furthermore,
the distance betwees)y andm is significantly smaller than the distance betwseand any
other pointm,, which hass; as a nearest neighbor, which fulfills the second part of condition
2. Thereby, given condition*land 2 condition 1 and 2 hold, which contradicts the initial
assumption. Ol

The relaxed conditions expand the number of hypothesized elementyhick, obey condi-
tion 1* and 2* by pairsn, s; for which at leass; is the nearest neighbor af. Furthermore,
the distance betweem ands; is sufficiently small such that all other points, which have
a smaller distance ts; are already paired with af, which lies closer tan, thans;. Such
pairsm,s; can also be treated as hypothesized element pairs and are appendelistoothe
landmarks. The dotted rectangle in Figlire 14.5 illustrates such a pair.

The set of matching pairs meeting condition 1 and 2 can be determined bgé&rshsg for the
2-nearest neighbors for aii in Susing a Delaunay triangulation 8ffor the adapted Euclidean
metric as defined in14.2.1. A Delaunay triangulaii®(®) of Sis created irO(I logl) time and
needsO(l) space[LM_ehthm_a.nd_&hﬂr]_lﬂd;_B_Qiss_anaLeﬂ MOO]. Besides the Delaunay
triangulation ofS we need a lookup table, which stores for each a list of points inM
choosings as nearest neighbor. UsilyS) andL the determination of landmarks is performed
as follows: For eacim we useD(S) to find its neares$, and second nearest neighlspin S.

If the distance betweef ands is large enough we appemd to the list ofs in L. In the end,

L has to be processed to determine the matching pairs:

1. If |lil = 0= s has no matching partner M.
2. If[li| =1 andl; = [mj] = (s,m;) is a hypothesized element pair.

3. If |li] > 1 andl; = [my, ..., my] with m; < mj;¢ for 1 < j < nand the adapted Euclidean
distance of andmy is significantly larger than the distance betwseandm, = (s, my)
is a hypothesized element pair.

The total runtime of landmark search taked logl) for the creation oD(S) and the nearest
neighbor search of athy. The runtime of a nearest neighbor search of a paint D(S) is
constant. It consists of the insertionof in D(S), search for the two nearest nodeswfin
D(S), and deletion ofm; in D(S)).
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Improvement of the initial warp by linear regression. In a second step, we can refine the
estimated warp even further. The landmarks obtained in the previous stelged to obtain

the final transformation by linear regression. We again assume an affirefdrmation, which
mapsM onto S but at this point any other type of transformation can be estimated using the
matching pairs.

The linear regression method calculates the translation and scaling fadtaris, minimize the

sum of the squared deviations of the pairs in RT and m/z

{arr,brr} = argmin g Y (srr— (arT*RT(M) + brr))?
!
{amizbmiz} = argminpep 3 (Swz— (@mz*RT(M) +biiz))?
|

with 2 < i < min(k, ).

While the final transformation given Bly(e) := Ae+t with the scaling matrix

A= BT 0 € R?*2 and translation vectdr:= al c R?
0 amwz m/z

will typically not differ much from the initial transformation, it is guaranteed ®di least
locally optimal.

Moreover, it renders our algorithm robust to small changes in the péeasettings applied
for pose clustering, such as histogramming bin size, and m/z tolerance.

Piecewise defined transformation. Our multiple alignment approach allows not only for the
determination of a globally defined affine warp, but also for an affingwlaat is piecewise
defined.

Considerable problems with the chromatogram during an LC-MS measurearenésult in
significant distortion of the RT dimension and sometimes the variability of carnepg ele-
ments’ retention times then is better approximated by a piecewise affine furietdrcularly,
for the multiple alignment of raw maps a precise estimation of the shift is more impéntan
in multiple feature map alignment where corresponding elements can typicalbubd éven
with a less restrictive estimate of the warp.

To compute an initial piecewise transformation with pose clustering, given twis Maand
S we first partition the model mapl into segmentdy,..., M. Afterward, we follow the
approach as described in Section 14.2.1 for eédchndS. Thereby, the partition should en-
sure that each segmeMt contains a number of common elementdvofindS; otherwise, we
will find only false positive poses during histogramming. The transformafiges:= Aie+b;
(with A € R?%2 b; € R?, and 1< i < m), which define the initial piecewise transformation

T]_(e) ecM;
T(e)=1q :
Tm(e) ee My
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are improved by linear regression as described in Selcfion 14.2.1.

It has to be noted that this procedure results in a piecewise affine traradfon that is not
guaranteed to be continuous at the boundariedof Without the knowledge of the warp
the co-domains of; cannot be limited and ead¥i; has to be mapped onto the almost whole
map S. But again we can use the pose clustering approach in Sécfion]14.2.1i¢weaah
globally defined affine transformation in a first step. The substitution of tlealiregression
in Section 14.2]1 by a linear spline regression as describé_d_b;LEnel_m@ ] will

yield a continuous defined piecewise affine transformation.

Final algorithm

In Section’14.2]1 we developed an efficient algorithm for pairwise demgrphe so-called
superposition phase. Figure 14.6 shows the pseudocode of our aigovitiich implements
the effective pose clustering approach described in Seciion 114.2.1 énllbwthe procedure in
Sectior 14.Z11 to find the optimal affine waFgx) := Ax+t (with A € R?*2 ¢ R?) in RT and
m/z, which shifts common elements in two maps closer together.

A first estimate of the correct warp paramet@randt can be recovered from the data using
the pose clustering approach as described in Selcfion 14.2.1. Followingréndigim of pose
clustering, we find the initial warp by a voting scheme. Consider the setuif@us of the local
superposition problem for all pairs of pairs of data po(njtsl, S1), (Mg, 52)). In the space of all
affine transformations (which is spanned by the paramétargdt) the correct transformation
shows up as an accumulation point (or cluster), whereas the local saelfitionon-matching
pairs of pairs are more or less randomly distributed ovef ) plane. An example is shown
in Figure[14.Y.

We use the centroid of the accumulation point as a guess for the optimabtraasion. These
initial parameters are optimized afterward.

The algorithm records the candidate transformations in a hash table. $hdatde itself is
implemented as a sparse matrix, and the vote of a candidate transformationbsigidtamong
its four neighboring discretized positions in the hash table in such a way yhaking their
weighted average we will retrieve the original parameters.

In its simplest form, the voting scheme could iterate over all pairs of pairsatfifes and
then search for the accumulation point using the hash table. However ttigstteanQ (k?12)
algorithm, which is potentially very slow or even infeasible kol > 1000, as is often the case
in real applications.

Fortunately, the set of candidate transformations is highly restricted feMBGnaps and the
incorporation of three of the four improvements described in Seffion 14 2dt e a total
runtime ofO(k?C?), whereC is the number of potential matching partners of egcéh S. The
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SUPERPOSITION PHASE

Input: Reference ma@:={sy,...,}, and magM := {my,...,m}
Output: Affine transformationltng such thaflting (M) ~ S.

Il preprocessing
normalizelntensitieS)
normalizelntensitied()
for all elementsmin M do
partnerlist,, = searchForPartnel§(m)
end for
/I find initial transformation by pose clustering
for all elementsn, in M do
for all elementsmy £ my in M do
for all partnerss; of my in partner.listy, do
for all partnerss, # s; of mp in partner.listy,, do
Ta=computeTransformatiofify,s1), (Mg, sz))
if isAdmissible{y) then
hashTransformationParameter}(
end if
end for
end for
end for
end for
Tinitial = €stimatelnitial Transformation()
I find corresponding element pairs
Mdewarped= dewarp, Tinitiar)
computeDelaunayTriangulatid®)(
pair_list = findElementPairs§, Mgewarped
/I compute final transformation
Thinal = linearRegressiom@ir_list)

Figure 14.6: Pseudocode of the superposition phase.

implementation of improvement 3 is work in progress, but in the current veddithe algo-
rithm we also reduce the number of pairs considered in Bacturing the superposition phase.
We observe that it is sufficient to consider only pairs of pointsjrihat lie close together in
m/z. This is a reasonable assumption since local distortions are frequentlyalimmiand
leads also to the same runtime as improvement 3 @{#C?).
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votes

1%, e
5 T la

o %% shift

Figure 14.7: Histogram of the transformation hash table used for alighivo M. smegmatis samples in
middle exponential phase. The accumulation point stantislearly. The minor “ripples” are artifacts
due to the discretization of positions during the re-samgpli

Once we have computed and hashed all potential poses the accumulatiocepdie found in
the hash map, and we estimate the parameters of the transformations usinptedvaigrage
over a small neighborhood of it, to compensate for discretization errdnssadom fluctuations
present in the data.

Finally, we apply the initial transformation to the model and search for landsnestkich meet

condition 1 and 2 on padge 1130. To determine the matching pairs we uBeithe set_2 class

of the Computational Geometry Algorithms Library (CGAMMM@'.,
] and its fast ned nearest neighbors search based on a Delaunay triangulation.

Given a list of landmarks we obtain the final transformation by linear regres

14.2.2 Application to LC-MS raw maps

In Section’I4.2]1 we developed an efficient algorithm for pairwise demgrphe so-called
superposition phase. Given two LC-MS magsandS, a first estimate of the correct transfor-
mation that maps common elementsMnand S onto each other within some error bound is
estimated using an adapted pose clustering approach. Afterward, thetraitisfiormation is
improved by linear regression and results in a final affine estimate of theiw&T and m/z.

We use the pairwise dewarping in an algorithm for solving the MRMAP. Weizen a set of
element mapgMoy,...,Mp}. First, we select the map with the highest number of elements. It
is used to initialize the reference mifa. . The other maps are successively aligned to the ref-

136



Chapter 14. Own contribution

erence map. Thus we perform a star-like progressive multiple alignmsatgon pairwise
alignments. The superposition phase results in the optimal affine warp, aiiftdicommon
elements of each may; and the reference mayes close together. Applying these warps to
the other maps we transform all elements onto the coordinate plane of thenefanap and
solve the MRMAP. Figuré_1418 illustrates the workflow of our multiple raw map atigmt
algorithm.

Multiple raw map alignment

Superposition phase
]\/f'refi Afl A/Iref

\/ pair list, landmark search —71 final,
]Lfl — Afref / \ 7Tfinal1 (AII)

initialy

Superposition phase

M,
M, —] pose clustering pair listy landmark search [—7inat, —Tinat, (Mn)
Myer

T‘initialn

Figure 14.8: Workflow of the multiple raw map alignment approach. Givenl maps, our algorithm
dewarps maps with respect to a chosen reference map.

The pseudocode of the algorithm for multiple alignment of raw LC-MS maps dsvishn

Figure[14.9.

MULTIPLE ALIGNMENT OF RAW MAPS

Input: List of element mapmaplist = My,..., M,
Output: List of dewarped element mapsaplist = My, ..., My
/I multiple alignment
/I choose map with highest number of elements as reference map
ref = indexOfReferenceMaMy, ..., M)
Mret = reduceElementMes)
I\Wref = Mret
for all mapsM; in maplist (with i # ref) do
M := reduceElements()
T, := superpositionPhase(Mre 1, M;)
Mi:= dewarpWii, T;)
end for

Figure 14.9: Pseudocode of the multiple raw map alignment.
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14.2.3 The consensus phase

Using the superposition phase we can not only solve the MRMAP, butadditdte the search

of corresponding elements in the MFMAP. Assume we have two ivapsidC, which are
mapped onto the same coordinate system, such that corresponding elemgitkérlia given

error bound. LeM be an element map a@a consensus map. Assigning the elemenid ¢

the consensus featuresGrwe can use again the algorithm proposed on page 130. We consider
M andC as two-dimensional point sets given by the elements’ RT and m/z positions.

The elements o€ are represented by their consensus RT and m/z positions. A consensus
RT position is the weighted mean of the RT positions of all combined featuresretwh the
features’ ion counts serve as weights. The consensus m/z position isoheteérin the same
way.

Common elementécy, ;) of M andC should meet conditions 1 and 2 defined on dagé 131.
Accordingly, givene,d > 0, a pair of potential corresponding elemefts m ) lie within an
e-neighborhood and all othen, € M have a distance further thahto my. Furthermore, the
distance betweeety and all other points,, which chosamy as nearest neighbor, is greater than

d. These conditions allow a unigue assignment of common elements, and elemeritEh

do not belong to a certain consensus featiligre pushed into the consensus map as singleton
elements. The pseudocode of the algorithm for the consensus-phbseisia Figurd 14.70.

14.2.4 Application to LC-MS feature maps

We can use the superposition phase in Seéfion 14.2.1 along with the conpbase in Sec-
tion[I4.2.3 to solve the MFMAP. Given multiple feature maéfis. . ., M, we computen affine
transformationdy, ..., T, using the algorithm shown in Figure I%.6, which allows the superpo-
sition of all mapViet, T1(M1), ..., Ta(Mp) with respect to a chosen reference méps. Using

the dewarped mapd; = Ti(Mj) and the initial consensus mé&yp, containing all elements of
Mes as singleton consensus features, we can build a consensuS,méthen+ 1 maps by
applyingn times the algorithm of the consensus phase (see Higurel 14.10).

In each consensus phase {1,...,n} we assign the elements of 84 to iteratively growing

consensus maps_1. The final consensus map contains the elements ofall maps either as
part of a consensus feature or as a singleton consensus featan@sthC, of the progressive
alignment approach depends on the order in whichvthare combined to a consensus map.
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CONSENSUS PHASE
Input: MapM :={my,...,m}, and consensus m&p.= {cy,...,q }
Output: Consensus map
C:=cC
D(M):=delaunayTriangulatioi{)
for all elementsin C do
(my, mp):=findTwoNearestNeighbors(M),c)
if (euqm, my) > d) A (eudmy,c) < €) then
L(my) := append((my),c)
end if
end for
/I find hypothesized pairs meeting condition 1 and 2
for all listsl :=L(m) in L with me M do
/I no ¢ has m as nearest neighbor
if |I| =0then
Cm := buildConsensusElement]
C := appendC, cy)

else
/I m has one nearest neighbor
if | ={c} then

€1 ;= combine€;, m)
C :=replaceC, ¢y, 61)
else
/I m is the nearest neighbor of and ¢
/' with euqci, m) < euqcz, m)
if euqcy,c) > dthen
€1 := combine¢;, m)
C := replaceC, c1, 1)
else
/I m can not be uniquely assigned to ¢
Cm .= buildConsensusElement]
C := appendC, cy)
end if
end if
end if
end for

Figure 14.10: Pseudocode of the consensus phase.
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Figure[I4.111 shows the workflow of our algorithm for a multiple feature mamalent, and
the pseudocode is given in Figlre 14.12.

M'r'ef Ml T ]\Jn

Multiple feature map alignment

M'ref M, Mref Mn
superpositionPhase ‘ o ’superpositionPhase
I I

Tfi,nall Tfinaln
CO Tfimzl1 (Ml)

consensusPhase

[y

Tfina12 (]\/[2)

consensusPhase

mergingPhase

Cfinal

Ofinal

Figure 14.11: Workflow of the multiple feature map alignment approach. 68+ 1 maps our algo-
rithm searches for corresponding elements and resultsonseasus map.

Sometimes it may happen that a certain consensus feature is split in two or omsensus
features. Figur€_14.13 illustrates an example how six elements can be gruugéferent
consensus features depending on the order in which the elements cesgaw.
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MULTIPLE ALIGNMENT OF FEATURE MAPS

Input: List of element mapsaplist := {M,...,Mn}
Output: Consensus map
/I choose map with highest number of elements as reference map
ref:= indexOfReferenceMaMy, ..., M)
I(/lvref = Mret
/I superposition of the # 1 maps
for all mapsM; in maplist (with i # ref) do
Ti:= superpositionPhase(Myef, M;)
M;:= dewarpii, T;)
end for
// build consensus of thedal maps
Il initialize Cy with all elements oMt as singleton consensus features
Co:=buildConsensusMapfe)
/I Assign the elements of Map M step i
for all mapsM; in {My,..., My} (withi # ref) do
C; = consensusPhase(Ci_1, M)
end for
/I merge overlapping consensus features
Ctinal:=mergeConsensusElemeas

Figure 14.12: Pseudocode of the multiple feature map alignment.

On the left hand side the cross is chosen as a reference conseatsus,fand the sequence
“rectangle, plus, filled rectangle, filled circle, circle” results in two différeonsensus features.
However starting with the circle and processing the elements in order “ggetditied rectan-
gle, cross, filled circle, plus” yields the desired grouping of the elementslynome consensus
feature.

In the following section, we will describe our approach to merge overlgppimsensus fea-
tures that combine elements from different maps.

Merging of consensus features

To determine overlapping consensus features, we developed a simptepvedgorithm. Given
a consensus mapwith n consensus featurgs;, ..., cy}. Each consensus featurds defined
by its consensus RT and m/z position, the set of combined features, anduhdirty box
be, = ((MinkT, Minyz), (MadgT, Maxy;))—spanning a rectangle iR? given by the minimal
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Figure 14.13: The six different marks represent six corresponding featorf six different maps. The
result of the six pairwise consensus phases depends ondéeinrwhich the elements are processed.
The dotted rectangles are the bounding boxes of the conséresures.

RT and m/z positioimin,,min,,,) and the maximum RT and m/z positiomax,,, max,, ).

In the first step, we detect overlaps of consensus features in RT. oWwehe list| :=
(MiNgr, MaXy, - - -, MiNgg,, M@, ) Of all minimum and maximum RT positions. Afterward,

we linearly pas$ and store elements that overlap in retention time. In the second step those
elements which overlap in RT are searched for those which also overlap .irvwe/mergek
overlapping consensus features only if the features ik elinsensus features originate from
distinct maps. The merging phase has a runtim@(@flogn).

142



Chapter 14. Own contribution

14.2.5 The MapAlignment TOPP tool

We provide a TOPPLLKthbﬁQhﬂ_e_daJLJbO?] application calddpAlignmentfor the
MFMAP and the MRMAP, which implements the algorithm proposed in Sedfion 14.2.2
and[I4.2.1. The user can either dewarp a set of raw maps giwetDita format (see Fig-
ure[14.14), or determine the correspondence in multiple feature mapsigifeatureXML
format (see Figure_14.115). We developed an own XML format, cat&tsensusXML), to fa-
cilitate the storage of the consensus map resulting from a multiple feature mampeathgn

HPLC-MS map 1
(mzData)

transformed
HPLC-MS map 2
(mzData)

HPLC-MS map 2
(mzData)

transformed
HPLC-MS map 3

HPLC-MS map 2 (mzData)
(mzData)

Figure 14.14: Multiple raw map alignment using the MapAlignment tool.

HPLC-MS map 1
(feature XML or consensusXML)

HPLC-MS map 2
(featureXML or consensusXML)

Consensus map
(consensusXML)

HPLC-MS map 3
(feature XML or consensusXML)

Figure 14.15: Multiple feature map alignment using the MapAlignment tool

All parameters for the superposition and the consensus phase aidegorby an XML-based
control file. The usage of the tool is described in the TOPP documentatibaraexample is
given in the TOPP tutorial.

The MapAlignment application, as all other TOPP tools, is based on the Cpditkary.
We separate the algorithms for multiple raw and feature map alignments into das#es
superposition phase and the consensus phase. The factory ddtégn km.mma_e_t_élL_lQbS]
allows us to replace most of the classes with another class implementing the satfiaeente
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14.2. Multiple LC-MS map alignment

Figure[14.16 shows the class diagram of the concerned clas8es format. The classes are
described in the OpenMS documentation and examples of use can be fotnedOpenMS
tutorial.

BaseAlignment

std:vector<ConsensusElementType> final_consansus_map_
st vector<String> file_names_

St vector<GridType> ransformations_
std:vector<ElsmentMapType*> element_map_vector_

String map_type

BasePairFinder* pair_finder

virtual void rung = 0

StarAlignment

Unsignedint reference_map_

void rung

[ PoseCiueringr \

[void un0 |

BasePairwiseMapMatcher

ElementMapType element_map_(2]
ElementPairvectorType all_element_pairs
GridType grid_

PoseClusteringAffine Superimposer
void initGridTransformation(const ElementMapType& scene_map)

SimplePairFinder vitualvold rung = 0 e
void run
void findElementPairs(
BasePairFinder BaseSuperimposer
¥
_ K—
virtual void findElementPairs() = 0 virtual run( = 0
DelaunayPairFinder
PoseClusteringShiftSuperimposer

void findElementPairs()
void computzConsensus( P

Figure 14.16: UML class diagram of the classes for multiple feature andmeap alignment.
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Experiments

Multiple LC-MS raw as well as feature map alignment algorithms should prectsehgct
the distortion in RT (and m/z), to allow for the assignment of correspondiptideesignals
in different maps. Feature map alignment algorithms should additionally groephier cor-
responding features. Besides the variability of the feature positions, tidex ohanges of
peptides further complicate the computation of an accurate consensus reagvalyate both
the quality of the transformation for the correction of the RT dimension as wéhequality
of the consensus on the basis of annotated feature data. We couldeatbe dsstance measure
dsimto score the accuracy of transformations, but to evaluate the quality afseieeus map
we need the information about correspondence in the maps.

Another reason to use annotated data is the circumstance that none ofédhéathre map
alignment tools provide access to the transformation, and some algorithms teynfdek
any dewarpingL[LaajamaLe_ﬂ MOB].

The consensus phase of our algorithm matches features that arstmesghbors or at least
lie close together. Therefore, the resulting consensus map provideslganformation about
the quality of the consensus phase, but also information about the quathy determined
transformations.

We compare our algorithm with the alignment algorithms implemented in the freely
available software packages msinspect [Bellew 2006], szaycﬁ{tn etal ]

%fn [Zhang et al., 2005], XCMS| [Smith et &ll, 2006], and MZMin

]. Implementations of the other al orithms proposed in Se€fiod 13.2 are Bﬂhe

available lLBaduLom_eﬂal L_ZQbL{ Jaitly et 06] or not usable in theireot ver-

mﬂbﬁ&hﬁe\jl LZQ.(b?] or only designed for raw map alignment [Bylured e2002;
.. 2008; Prince and Marc &i%; b006; [iéiééﬁéﬁ 1.2007




15.1. Usage of the different feature map alignment tools

15.1 Usage of the different feature map alignment tools

In the following subsections, we will briefly describe how we invoked gach

15.1.1 OpenMS alignment algorithmO penM$a

Our multiple feature map alignment algorithm is implemented in the TOPP tool
MapAlignment. We call the tool from command line withMapAlignment -ini
parameters.ini”. The “parameter.ini” is an XML file that contains all parameters for the
alignment algorithm.

15.1.2 mslinspect alignment algorithmmsinspegia

msinspect is a suite of algorithms for the analysis of high-resolution LC-k$epmics
data. The software package is written in the platform-independent laaglaag and is freely
available under http://proteomics.fhcrc.org. We use msinspect on a Wirdevesd call the
alignment algorithm from command line using
“java -jar -Xmx512M viewerApp.jar --peptideArray --scanWindow=ART
--massWindow=Am/z --out=‘‘consensus map.tsv’’ ‘‘featuremap 1.tsv’’
‘‘feature map n.tsv’’”. We implemented an algorithm that translates our feature
map format “featureXML’ into the tsv feature map format of msinspect axtdaets the
consensus map from the msinspect “peptide.tsv” and “peptide.detailslesy " The alignment
algorithm of msinspect provides the setting of two parameters, which amdkenum size
of a consensus feature in time space “scanWindow” and the maximum sizearfsansus
feature in mass space “massWindow”. The optiendptimize” is used to determine the best
choices for the two parameters with respect to the numbgedéct matchesvhich are “true”
consensus features, as defined in Definifion IP.3.1, and which contaiosatone feature of
each map.

15.1.3 SpecArray alignment algorithmS pecArraya

The software suite SpecArray offers algorithms for the analysis of L&gvbteomics data.
The algorithms are implemented in C and tested on Linux operating systems. r&pecA
is freely available on thée website of the SASHIMI project on SourceFM&?
We implemented software to convert our feature map format “featureXMLtho binary
feature format “pepBof” of SpecArray. To circumvent the conversad the SpecArray
consensus map in Microsoft Excel format and allow for the output in onsensus format,
we added some lines of code to the "PepMatch.h” files. The multiple feature ligamant
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algorithm is called via command linePépMatch -inputfile feature map_1.pepBof

feature map.n.pepBof -outputfile consensus_map.pepBof -paramfile
consensus_map.param”. The parameters for the alignment algorithm are hardcoded and
cannot be set by the user.

15.1.4 XAlign

XAlign ﬂZhang_el_aj.LZO_dS] is designed as a component of a data analysis pifeelp®tein
biomarker discovery. The stand-alone executable runs in the Windawsand line. It reads

tab separated feature lists and generates several output files incluglialigtiment table and
peak statisticsX Alignwas invoked with XAlign 1 Am/z ART 80 datafile.txt”, where
datafile.txt contains the names of the files to be aligned. The first parameter determines
the file type (1=LC/MS Data), the parametéms/z andART define the tolerance in m/z and
retention time. The last parameter is of significance for pipeline use onlywss ihot changed.

The Xalign software is available upon request from the authdr_oL[LI&aaﬁ,QO_Ql'S].

15.1.5 XCMS alignment algorithmXCMSua

XCMS ﬂS_mjlh_e_t_a|.]_ZD_d6] is part of Bioconduct&ar_[_G_enll_Qma.n_éd_aL._bOOzt]open source

software project for bioinformatics. All Bioconductor packages canob&ined from
http://www.bioconductor.ofg. The XCMS package can be used to proc&843.and GC/MS
data. It includes functionality for visualization, peak picking, non-linegemtion time align-
ment, and relative quantification. XCMS was modified to skip the peak detedtpnasd
read peaklists directly from feature map format “featureXML". The alignteevere calcu-
lated using thgroup function. XCMS also supports a retention time correction step (function
retcor) but we observed better results when this step was omitted.

15.1.6 MZmine alignment algorithm MZMingya

MZmine lLaLajamaa_e_t_&L;QbG] is a toolbox for processing and visualizatib@®S data.
Due to its implementation in Java, it is platform-independent and it can be dateddeee
of charge fronhttp://mzmine.sourceforge.net. The source code was slightly modified
to allow the import of peak lists instead of raw data files. MZmine offers two alignmalgo-
rithms, “slow aligner” and “fast aligner”. Due to the better results with multipleratignts,
the “slow aligner” was applied.
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15.2 Evaluation of the consensus maps

The correspondence between multiple annotated maps can be directlyedéstby the assign-
ment of identical identifications in all maps. Using this optimal consensus mapotballed
ground truth we evaluate the performance of each alignment tool. The ground trutilcen
information about the similarity and difference of peptides in multiple maps; thetietgimes
of corresponding features give additionally information about the viditigim RT between the
different maps. An optimal alignment algorithm should correct the distortidiTifand m/z)
and contain the same consensus features as the ground truth. The optiseisus map rep-
resented by the ground truth enables the computation of recall and preciiges for each
alignment algorithm.

15.2.1 Recall and precision of multiple feature map alignmet algorithms

Recallandprecisionare evaluation measures frequently used for the performance of informa
tion retrieval systems. Given a collection of documents and a query, fichwine relevancy of

the documents is known, the precision is the proportion of retrieved angntldocuments to

all the documents retrieved. However, recall is the proportion of reted@cuments that are
retrieved out of all relevant documents available.

In our case, a multiple feature map alignment algorithm is our information reitsgggem,

and the query is represented by the alignment of multiple feature maps.

In[IZ.3.2, we introduced a convex quality meassirefor consensus features, which we used
to define the MFMAR_1Z]3. We use this measure to define the “relevant dotsinmea multi-

ple feature map alignment. The size of a consensus feature af Ezgven by the number of
pairwise assignmen@) of the grouped features. All pairwise assignments represented by the
consensus features in the ground truth define “relevant documentsf information retrieval
system. The “retrieved documents” are given by the pairwise assignmehisti#st consensus
map determined by the feature map alignment algorithm. Tablé 15.1 shows the tegyiab

true positives (TP), false positives (FP), and false negatives (ffNYy&spect to the comparison

of a test consensus map with the ground truth consensus map.

Table 15.1: Terminology of true positives (TP), false positives (FR)ddalse negatives (FN) with
respect to the comparison of a consensus map with the grouthd t

H relevant\ irrelevant

retrieved TP FP
not retrieved FN -
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The number of pairwise assignments that are represented in the grotindgmwell as in the
test consensus map defines the true positives (TP). The pairwiserassignof the ground
truth that are not found by the feature map alignment algorithm define treerfatmtives (FN).
However, the number of pairwise assignments that are represented t@gtlcensensus map
only and that are not contained in the ground truth defines the false psdiE?). The number
of pairwise assignments neither represented by the ground truth nor tastl@mnsensus map
is zero in our case.

Recall and precision are defined as

TP
- TP
precision := TPLFP (15.2)

Figure[I5.1 illustrate§ P, FP, andFN on an example ground truth and an exemplary test
consensus map. The different markers represent features offferedt maps. The optimal
consensus map consists of two consensus features of size five ananhtbthe number of

“relevant” pairwise assignments Rel= (3) + () = 16. However, the number of “received”

pairwise assignments in the test consensus ma&eis= (3) + (3) + (5) = 10. The 8 true
positive pairwise assignments are highlighted by blue edges. The grges eulicate the

FN = Rel— TP = 8 false negative pairwise alignments, which are not detected by the algo-
rithm. The red edges represent the = Rec— T P = 2 false positive pairwise alignments in the
test consensus map that are not contained in the ground truth. In this lexdnepalignment
algorithm assigned two elements of the same map (two stars), which violatesgbengss of
consensus features in Definition 12]13.1. Accordingly, the test consemesp yields a precision

of %2 = 0.8 and a recall ofa% = 0.5. The recall of (6 states that the alignment algorithm
discovers only 50% of the pairwise assignments in the ground truth, andebisipn of 08
shows that 80% of the detected pairwise assignments are relevant.

An algorithm performs better than another algorithm if its recall and precisitues are better.

15.3 Experimental data

In this section, we want to show the performance of our algorithm on twlowedd data
sets. Both data sets are freely available ai the Open Proteomics Dataltiw.l_zo_dq.
The OPD is a public database for storing and disseminating mass spectrostiy fro-
teomics data. The database currently contains rougd@000 spectra representing ex-
periments from Escherichia coli, Mycobacterium smegmatis, Saccharormgmmgsiae, Mus
musculus, and Homo sapiens. We pick two data sets resulting from two differper-
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Figure 15.1: The left figure shows the two consensus elements of a groutfdand the right figure
shows three consensus features of a test consensus mamideteby an alignment algorithm. The
blue edges indicate the true positive pairwise featurgassgnts, contained in the ground truth as well
as in the test consensus map. The green edges show the fgddwe@airwise alignments and the red
edges the false positive pairwise assignments.

iments from two different organisms, which were already used for theuavan of OBI-
Warp |Prin nd Marcott 06]. The first data set results from aatilseries from Escheria
coli (E. coli) and the other data set represents different cell stateyodidbcterium smegmatis
(M. smegmatis). Both samples are of high complexity and provide typical aligrsnenarios.

15.3.1 Sample preparation and LC-LC-MS/MS analysis

We will briefly describe the sample preparation and the two-dimensional gedgiermance
liquid chromatography (LC-LC-MS/MS) analysis of the two experiments. lenitiformation
on the E. coli data set can be found on the OPD website and the M. smegnpeisrent is

explicitly described ir|1 Wang et b| 2d05].

Data setecoli: E. coli soluble protein extracts (representing E. coli cells in exponential
growth-phase) were diluted in digestion buffer, denatured, and day@sth trypsin. Tryp-
tic peptide mixtures were separated by automated LC-LC-MS/MS. The injectian-q
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tity of the analyte was altered between the two different ru62101Qjp32A 15ul1 and
021016jp32A10ul3. In 02101Qjp32A15ull 15 ul of the protein extract were analyzed
and in021016jp32A.10ul.3 only 10 ul. Chromatography salt step fractions were eluted from
a strong cation exchange column (SCX) with a continuous 5% acetonitrile YAG@dkground
and 10-min salt bumps of 0, 20, 40, 60, 80, and 100 mM ammonium chloridé. $&dt bump
was eluted directly onto a reverse-phase C18 column and washed fsal. oOReverse-phase
chromatography was run in and peptides were analyzed online with ane@&pmass spec-
trometer. In each MS spectrum, the three tallest individual peaks, ponmdisg to peptides,
were fragmented by collision-induced dissociation with helium gas to prdd$¢kS spectra.
Raw mzXML data and corresponding SEQUEST identification resu@29016jp32A 10ul 3
and02101Qjp32A 15ul 1 were downloaded from the OPD.

Data setmsmeg: M. smegmatis soluble protein extracts (representing M. smegmatis cells in
different growth-phases) were diluted in digestion buffer, denafaned digested with trypsin.
Tryptic peptide mixtures were separated by automated LC-LC-MS/MS. Thke tifferent
runs6-17-03 7-17-03 and6-06-03represent protein profiles of a M. smegmatis cell in early,
middle, and stationary phase. Chromatography salt step fractions wéed &om a strong
cation exchange column (SCX) with a continuous 5% acetonitrile (ACN) vadkgl and 10-
min salt bumps of 20, 40, 80, and 100 mM ammonium chloride. Each salt bumplutas
directly onto a reverse-phase C18 column and washed free of saltrsRguease chromatog-
raphy was run in and peptides were analyzed online with an ESI ion trapspassometer.

In each MS spectrum, the three tallest individual peaks, correspotwmeptides, were frag-
mented by collision-induced dissociation with helium gas to produce MS/MSrapeRaw
mzXML data and corresponding SEQUEST identification resuls-»7-03 7-17-03 and6-
06-03were downloaded from the OPD.

15.3.2 Preprocessing and extraction of peptide features

The raw data were already centroided by the instrument. The poor resodidition traps and
the insufficient centroiding of the raw data hampers the recognition of igopaiterns and
inhibits a meaningful charge prediction of features. Therefore, wisatharge of all features
to a default value of O after the feature finding process. Hence, allre=aare similar with
respect to their charge. The processing of the raw data files waspeddy the successive
application of several TOPP tools: In a first step, we convert all raa files from mzXML
format into mzData formafF(ileConverter). To emphasize the feature signals, we transform
each raw data map into a uniformly spaced matrix by bilinear resamplingérResampler).
The spacing of the transformed matrix was 1 Th and 1 second. Afterwardetect and extract
all peptide charge variants in the resampled raw data maps using a featlimg fapproach
(FeatureFinder).

The number of features in the resulting feature maps of fraction 0, 2B@®0 and 100 of

151



15.3. Experimental data

theecolidata set are shown in Taljle 15.2. The number of features in the resuliilngeenaps
of fraction 20, 40, 80 and 100 of tesmeglata set are shown, respectively, in Tdble115.3.

Table 15.2: The number of features in each of th2 feature maps of thecoli data set. The features
are extracted from the preprocessed raw data of the sixdrautith different injection volumes. In
brackets the number of features that are annotated withtalpegentification is given.

number of all features (number of annotated features)
injection volume 0 20 40 60 80 100
15ul | 5824 (1282)| 1114 (475)| 1230 (572)| 1902 (765)| 1183 (625)| 745 (399)
10ul | 4782(1120)| 1021 (575)| 958 (519)| 1440 (696)| 903 (510)| 581 (344)

Table 15.3: The number of features in each of th2feature maps of thensmegdata set. The features
are extracted from the preprocessed raw data of the fiveédragith protein profiles in different growth
states. In brackets the number of features that are andatétte a peptide identification is given.

number of all features (number of annotated features)

growth state 20 | 40 | 80 | 100
middle | 529 (390) | 678 (491) | 438 (329) 429 (338)

early | 557 (346)| 520 (296)| 524 (332) 545 (412)
stationary | 3271 (974)| 1483 (835)| 474 (374) 401 (304)

15.3.3 Generation of a ground truth

The generation of the “expected consensus map”, the so-aathedd truth for theecoliand
themsmeglata sets is performed in three steps using the peptide identifications detebyined
SEQUEST. To discover the correspondence in different maps wessonly those features
in the maps that are annotated with a reliable peptide identification. We use thigoretene
of the MS/MS scans and the m/z values of the precursor ions to label thesfeatith peptide
identifications in a first step. If peptide identifications of an MS/MS scan exigtif the RT
value of the scan as well as the m/z value of the precursor ion lie within thexdnul of
a feature, the peptide identifications are assigned to the feature. Adaglgrdéach feature
may be labeled with peptide identifications resulting from more than one MS/M$ doa
Tabled 15.2 and 15.3, the number of all features in a feature map as wedl msrttber of the
labeled features (in parentheses) are given.

Unreliable peptide identifications are filtered out in a second step with respte features
they are assigned to. The annotation of two features with extremely diffe@fepositions and
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the same peptide identification indicates that one or both features are fateeltated. To
discover unreliable identifications, we compute the mgamd standard deviatiom of the RT
positions of all features they are assigned to. If the RT distribution of Hdeejgentification

has a standard deviation greater than 100 s, we remove this identificatiorafrdeatures.
Furthermore, we remove peptide identifications from all features with Rifigas that do not

lie within [—20,20]. Furthermore, we also remove unreliable peptide identifications that have
anXcorr < 1.2. The Xcorr MIL_TQJM] is a specific match score of SEQUESS dh
absolute measure of spectral quality and closeness of fit of the expeairtasmdem spectrum

to the theoretical tandem spectrum. The closeness is measured by thecereksion of the

two spectra divided by the average of the auto correlation of the expdahsgectrum.

Step three is the actual generation of the ground truth. Reliable peptide iddittifa allow
for the determination of the correspondence between the differentdeataps under consid-
eration. A correct assignment of features should be emphasized Wicaerliable peptide
identifications. Using the peptide identifications assigned to the features,itiadlyirdeter-
mine all possible consensus elements and calculate their score. The seath @onsensus
feature is given by the sum of thécorr values of all peptide identifications that support this
certain grouping of features. The higher the score of a feature gthepnore reliable is the
assignment of those features. A consensus map, composed of all@dsathre groups may
violate the uniqueness of features in Definition 12.3.1. To solve this problendeweloped a
simple iterative strategy reducing all consensus elements to a consensGsmaaprovides a
unigue assignment of each feature to only one consensus feature.degimningC is empty
andCy is the consensus map composed of all possible feature groups. Theditié@r, is
performed iteratively:

1. Take the feature groupthat yields the maximum score @y and add it as consensus
feature to the consensus map

2. Remove all feature groups @y, that contain at least one featuregof

3. Iterate step 1) and 2) un€@l is empty.

A ground truth is only considered if its number of consensus elementsspoinds to at least
10% of the number of annotated features in the aligned feature maps.[aBlshbws the
number of consensus features in the ground @utksulting from the SEQUEST identifications
and the 12 feature maps (see Tdble 115.2) resulting fronet¢b& data set. In Table_13.5, the
size of the ground truth resulting from the SEQUEST identifications and tHeal@re maps
(see Tablé_1513) of themsmeglata set are given.

It has to be noted that the “relevant” pairwise assignment representdee lground truth is
incomplete, because we can only discover the correspondence dasethfeatures. Hence,
the determined recall values are accurate, since they are represgibedtiue positives and
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the total number of consensus features in the ground truth. Howevepréesion values

are underestimated, because the true positives are only restricted totitatad feature; the
number of false positives (pairwise assignments that are present intkerisensus map, but
not in the ground truth) is overestimated.

Table 15.4: Number of consensus elements in the six ground truth consenaps generated for the
different fractions in thecoli data set.

number of consensus features
0 |20 |40 |60 |80 | 100
ecoli | 138 | 40 72 111 | 72 50

Table 15.5: Number of consensus elements in the five ground truth consenaps generated for the
different fractions in thensmeglata set.

number of consensus features
20 |40 |80 |100
msmeg| 161 92 61 64

15.3.4 Sample with different injection volume

Theecolidata set represents a typical experimental setting and therefore istlyestéted for
the evaluation of an LC-MS feature map alignment algorithm. @b data set represents
the proteome of E. coli cells in the exponential growth-phase. The digpsitzin extract was
measured in two different concentrations on six different fractiong. pre-processing proce-
dure of the 12 resulting raw maps as well as the extraction of peptide featasedescribed in
detail in the previous section. In the following, we will compare the six LC-M&dire map
alignment algorithm® penM§a (implemented in OpenMSE pecArraya (implemented in
SpecArray),msinspegjia (implemented in msinspectyCMSua (implemented in XCMS),
MZMineya (implemented in MZMine), an& Align with respect to the feature maps resulting
from the ecoli data set. For each fraction we align two feature maps, whereby onedeatur
map represents the lower injection volume and the other the higher injection vofuimeE.
coli cell proteome. The two maps with different injection volume are likely to dordgamul-
tiplicity of the same peptides. This similarity of peptides should facilitate the assigrohen
corresponding peptides. On the other hand, the feature maps are qujikexo Particularly,
the feature maps of fraction O complicate a proper assignment of featnoestkey contain
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around 5000 features in a range of 10 to 5000 s and 300 to 1500 Th.

We evaluate the six consensus maps determined by each alignment algorithimevgtbund
truth consensus maps that are based on reliable peptide identificatiorsctionS[5.3.2, we
described the procedure to generate a ground truth consensus meaphgifeature maps to be
aligned as well as the corresponding SEQUEST annotations for eatitofraThe size of the
resulting ground truth consensus maps for each fraction is given in[I&ble

We computed recall and precision values of each alignment algorithm loastte six de-
termined consensus maps and the corresponding ground truth conseassl The precision
values are only given for the sake of completeness since they do rethesame explanatory
power as the recall values. As already mentioned in SeEfion 15.3.3 theigmegadues are
underestimated, because true positives are only given for annotatacefeand the correspon-
dence of the remaining unlabeled features is not known and therefoottha evaluated. For
most alignment algorithms the user can define the maximal deviation of feagit@pavithin

a consensus feature given ART andAm/z. We optimized these parameters for each tool and
set

OpenM@a: ART ;=150 s and\m/z .= 2 Th.

mslnspegia: ART := 250 (defines in this case the number of scansyantk .= 1.5 Th.

XAlign: ART := 180 s andAm/z .= 2 Th.

MZMinaya: ART ;=120 s and\m/z .= 1.5 Th.

XCMSya: ART := 40 s (given by the parametbw) andAm/z .= 1.5 Th.

The alignment algorithm implemented in SpecArray does not provide anyngéees that may
be defined by the user. Taljle 115.6 shows the recall and precision dltiessix algorithms
for the six pairwise feature map alignments in dwli data set.

In five of six alignments,OpenMa clearly outperforms the other alignment algorithms
with its high recall values. Only in fraction 100Align achieves the same recall value as
OpenMaa. Except for the fraction 0 all recall values lie betwee®@and 094. Accordingly,
the consensus maps resulting from the OpenMS alignment contain 86 to & dirwise
feature assignments that are given by the ground truth consensusImé#pes consensus map
of fraction 0 OpenMS performs slightly worse and achieves only 72% aéxpected pairwise
feature assignments, but is still better than the other algorithms. Be3jplsM & a there are
three more alignment algorithms that also result in good recall values facibledata set.
The consensus maps determinedd®ignrepresent 64 to 92% of the pairwise feature assign-
ments in the ground truth maps. HowewdiZ Mingya determined 62 to 89% arXiCMSya 65

to 82%. mslnspegia achieved only 31 to 68% arfipecArraya 22 to 54% of the expected
pairwise feature assignments.
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Table 15.6: Recall and precision values for the six algorithms aligrting feature maps of thecoli
data set.

fraction 0 | OpenM$a | SpecArraya | msinspegia | MZMingya | XCMSua | XAlign
recall 0.72 0.22 0.31 0.62 0.65 0.64
precision 0.03 0.01 0.01 0.03 0.02 0.02
fraction 20
recall 0.88 0.23 0.35 0.85 0.68 0.73
precision 0.07 0.01 0.00 0.10 0.04 0.05
fraction 40
recall 0.86 0.49 0.46 0.82 0.72 0.74
precision 0.11 0.04 0.01 0.12 0.07 0.08
fraction 60
recall 0.94 0.41 0.60 0.68 0.79 0.75
precision 0.10 0.03 0.02 0.08 0.07 0.08
fraction 80
recall 0.94 0.49 0.54 0.89 0.82 0.82
precision 0.12 0.04 0.01 0.12 0.08 0.10
fraction 100
recall 0.92 0.54 0.68 0.88 0.84 0.92
precision 0.12 0.05 0.01 0.12 0.07 0.12

Besides good recall and precision values, an LC-MS feature map alig@ahgenithm should

be fast and thereby allow the alignment of several hundred featureimagsssable runtime.
We compare the runtimes of the six different alignment algorithms oret¢é data set. To
provide a fair means of comparison, we measured the user CPU time (totatnoMmbPU-
seconds that the process spent in user mod@)paEnMa, MsIinspegia, SpecArraya, and
XCMSua alignment on the same PC with 1.8 GHz CPU (Linux operating system) using the
GNU 1.7 version of the “time” command. Due to the slow, self-implemented impodepro
dure of feature maps in the alignment algoritti€MSya, we decided to measure only the
runtime of the alignment algorithm itself. However, the runtime®penM$a, msinspegia,
andSpecArraya include the 1/0 process. Since the MZMine alignment algorithm can only
be invoked from the GUI and not from command line, we measured the runtfrteg six
pairwise alignments with a common stop watetAlignran in a VMWare (Workstation 5.5.2
build-29772), where the GNU time command in a cygwin shell did not yield comeasure-
ments. Manual wall clock time measurements indicated same run time order of nolaggstu
the other algorithms. In Table 15.7 the runtimes of the six alignment algorithms @cdtie
data set are given.

Besides the remarkable recall values, our algorithm did also achieveabdgauntimes. In
most of the considered fractions, our alignment algorithm is faster tharthibetools. Except
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Table 15.7: Runtimes of the six alignment algorithms on #woli data set measured as the total user
CPU time using the GNU “time” command. The mérindicates that the runtime of the algorithm was
measured with a stop watchgives the user CPU of the alignment algorithm without IX®ligr® ran

in a VMWare (Workstation 5.5.2 build-29772), where the GNitig command in a cygwin shell did
not yield correct measurements. Manual wall clock time mes®ents indicated same run time order
of magnitude as the other algorithms.

] | OpenM$a | SpecArraya | msinspegia | MZMing, [ XCMS,, [ XAligr® |

fraction 0 76.67 8.34 14.87 24 12.42 n/a
fraction 20 2.66 5.52 9.14 2 5.97 n/a
fraction 40 3.24 74.91 8.73 2 5.86 n/a
fraction 60 6.64 5.49 10.08 2 7.61 n/a
fraction 80 3.32 8.74 8.56 2 5.51 n/a
fraction 100 3.28 7.71 8.36 2 3.71 n/a

for the alignment of the relative complex feature maps of fraction 0, ouritigo took only
2.66 to 664 s for the computation of a consensus ndZMineya determined the consensus
map of fraction 0 in around 24 s and took only 2 s for all other pairwise aligisnélowever,
XCMSya that achieved similarly good recall valuesMZMineya, took 371 to 7.61 s for each
alignment (1242 s for the alignment of fraction 0) without measuring the considerationeof th
I/0 process.

This experiment proves the applicability of our method on ordinary data ofumedomplex-
ity. We showed its performance on a typical alignment scenario, where jéaiam volume
was altered between two LC-LC-MS/MS runs. We yielded the highest neadalés in all pair-
wise alignments and are also faster than the other methods. In the experonsiteced in
the following section, the emphasis is placed on the alignment of feature nmaeseating
different biological variations.

15.3.5 Different biological state

The msmegdata set provides also a typical alignment case, but with another emplesis th
the ecoli data set. Thensmegdata set represents a test of biological variation. It contains
LC-LC-MS/MS measurements of the M. smegmatis proteome extracted from ceiteendif-
ferent growth-phases. Digested protein extract of the early, the makiieell as the stationary
phase on four different fractions was measured. The pre-piiogga®cedure of the 12 result-
ing raw maps as well as the extraction of peptide features was the sameteesdooli data set
and was described in detail in Sectlon 15.3.2. We again compare the six Lfeddl8e map
alignment algorithm® penM@a (implemented in OpenMS¥ pecArraya (implemented in
SpecArray),msinspegia (implemented in msinspect{CMSua (implemented in XCMS),
MZMineya (implemented in MZMine), an&X Align with respect to the feature maps resulting
from themsmeglata set. For each fraction we align three feature maps, whereby edarefe
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map represents the M. smegmatis proteome in a different cell growth-phasalignment of
the msmegdata set constitutes a more difficult problem thaneheli data set, since the pro-
teome of cells in different growth-phases may share only a small fractiooromon proteins.
We evaluate the four consensus maps determined by each alignment alguittitthre ground
truth consensus maps that are based on reliable peptide identificatiorsction8l5.3.2, we
described the procedure to generate a ground truth consensus mepshgi feature maps to
be aligned as well as the corresponding SEQUEST annotations for reatioti. The size of
the resulting ground truth consensus maps for each fraction is givemie[IT&.5.

We computed recall and precision values of each alignment algorithm bastw four de-
termined consensus maps and the corresponding ground truth comisesst The precision
values are only given for the sake of completeness since they do rethesame explanatory
power as the precision values. As already mentioned in Sécfion15.3.3¢thisipn values are
underestimated, because true positives are only given for annotatatefeand the correspon-
dence of the remaining unlabeled features is not known and therefootche evaluated. For
most alignment algorithms the user can define the maximal deviation of feasiti®paevithin

a consensus feature given ART andAm/z. We optimized these parameters for each tool and
set

OpenM@a: ART ;=200 s andAm/z .= 2 Th.

msinspegia: ART := 300 (defines in this case the number of scansyan&z .= 1.5 Th.

XAlign: ART := 180 s and\m/z :=2 Th.
e MZMingya: ART ;=120 s and\m/z = 1.5 Th.

e XCMSua: ART =40 s (given by the parametbw) andAm/z .= 1.5 Th.

The alignment algorithm implemented in SpecArray does not provide anynpéees that may
be defined by the user. Taljle 15.8 shows the recall and precision wdlthessix algorithms
for the four feature map alignments in thesmeglata set.

Our alignment algorithm again achieves high recall values. The pereeofamprrectly dis-
covered pairwise feature assignments lay between 60 and 79 for thierisa20, 40, and 60
and is higher than the recall values of the other tools. How&€penM 4 failed to align the
three feature maps of fraction 80 and discovered only 12 % of the exbeaisvise feature as-
signments. The alignment of the three feature maps of fraction 80 poses prbblem for all
other tools and was not solved satisfyingly by any other tool. SpecAdhigeed the highest
recall value for fraction 80, but discovers only 49 % of the pairwiséuigeassignments given
by the ground truth consensus map. Besides this fraction, SpecArrayptdidsult in a recall
higher than (4. XALign MZMingya andXCMSya are, as in thecoli data set, ranked be-
hind our alignment approach and achieved recall values betwddr-©.72, 056 — 0.68 and
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Table 15.8: Recall and precision values for the six algorithms aligrting feature maps of thesmeg
data set.

fraction 20 | OpenM@a | SpecArrayia | msinspegia | MZMingya | XCMSya | XAlign
recall 0.79 0.23 0.30 0.68 0.70 0.72
precision 0.16 0.01 0.02 0.15 0.01 0.16
fraction 40
recall 0.60 0.49 0.09 0.56 0.47 0.44
precision 0.08 0.04 0.01 0.10 0.09 0.06
fraction 80
recall 0.12 0.49 0.31 0.25 0.25 0.28
precision 0.06 0.04 0.02 0.06 0.06 0.05
fraction 100
recall 0.76 0.54 0.39 0.59 0.57 0.71
precision 0.09 0.05 0.04 0.09 0.09 0.09

0.47—0.70 respectively. The three algorithms also failed to align fraction 80. Theratgt
algorithm of msinspect did not exceeded a recall.800

The OpenMS alignment algorithm again outperforms the other tools not onlyitwitiigh
recall values, but also with its fast runtime. Runtime measurements were tatkenaweat
as described on page 156. In the Tdble115.9 the runtimes of the six alignigerithans on
themsmeglata set are given. The manual wall clock time measuremen¥Abgn indicated
same run time order of magnitude as the other algorithms.

Table 15.9: Runtimes of the six alignment algorithms on themeglata set. For details, see Tdble 15.7.

OpenM$ia | SpecArraya | msinspegia | MZMing, o XCM%‘,IA XAlign®

fraction 20 3.74 282.38 9.94 55 11.27 n/a
fraction 40 2.31 37.39 9.52 3 9.43 n/a
fraction 80 1.12 28.21 7.99 2 6.43 n/a
fraction 100 1.09 66.58 8.15 2 2.89 n/a

Our approach is consistently faster than the rest and took cb®ytd 374 s for the computation

of a consensus map. MethtZMingya needed 55 s to compute a consensus map of fraction
20, but all other alignments took only 2 to 3 s. HoweweEM Sy a that achieved similarly good
recall values ad1ZMineya, took 289 to 943 s for the alignment of fraction 40, 80 and 100.
The runtime of the alignment of fraction 20 was also much slower witB7.&.

The msmegdata set represents also a typical but more complex alignment scenarithéhan
ecolidata set. We proved once more the applicability of our algorithm to real-waté] @here

its precise and quick alignments outperform the results of the other alignipersehes. In

the following section we will prove the robustness of the six alignment methddsimnulated
data.
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15.4 Robustness analysis with simulated data

In the last section we proved the applicability of our algorithm on two typicahatignt scenar-
ios. Our approach yielded for both data sets with different emphasis éigli values and fast
runtimes and outperforms the alignment algorith8y@ecArraya, msinspegia, XCMSua,
MZMineya, and XAlign. In the following sections, we will prove the robustness of our al-
gorithm in the presence of local distortions (Secfion 15.4.3) and will shototiraalignment
approach is also robust in aligning feature maps, which share only a sawibh of common
elements (Sectidn 15.4.4).
To analyze the robustness of our alignment algorithm implemented in Opentith@wther
five approaches we generate a so-catlgginal feature magdrom theprotein mixdata set de-
scribed in the following section. Afterward we generate warped copidseobriginal feature
map. Thereby, the warp is composed by a 2D affine transformation anddéive Gaussian
error in both dimensions. To test the performance of each algorithm in #semce of noise,
we vary the degree of noise added to the features’ RT and m/z positionstior§E5.4.3. In the
second experiment described in Secfion 15.4.4 we evaluate the applicabiligymthods on
an alignment scenario given by Multidimensional Protein Identification Taolyy .,

] experiments. To this end, we vary the number of correspondatgrés in the original
feature map and its noisy copies.

15.4.1 Sample preparation and LC-MS analysis

Protein mix: A tryptic digested protein mix of ten known proteins (beta-Casein, conalbu-
min, myelin, hemoglobin, hemoglobin, albumin, leptin, creatine, alphal-Aciddphatein
and bovine serum albumin). LC separation was performed on a capillamnogmonolithic
polystyrene/-divinylbenzene phase, 60 mm x 0.3 mm) with 0.05% trifluorocagtiq TFA) in
water (eluent A) and 0.05% TFA in acetonitrile (eluent B). Separation waeweed at a flow

of 2.0 ul/min at 50°C with an isocratic gradient of 0—25% eluent B over 7.5 min. Eluting pep-
tides were detected in a TOF mass spectrometer (microTOF from BrukeneBresermany)
equipped with an electrospray ion source.

15.4.2 Preprocessing and extraction of peptide features

The data set resulting from the experimental procedure describeé &bof/high resolution,
i.e., single isotopic peaks for charges up to four can easily be distingusstiethe LC-MS

maps take up to 1 GB disk space per run. We reduce the complexity by summaiaips of

data, which point to single peaks using our wavelet-based peak pickiogtaig described in

Chaptef 8.

Afterward, we create lists of features for each data set by groupirsgectuof isotopic peaks
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that appear in consecutive scans. The charge of each featureriniteis by fitting a theoreti-
cal isotope model based on the average composition of a peptide fomangass as proposed
earlier LS_Qhulz—_'[Li_nga.ﬁ_e_t_élL_ZQm]. The 10 proteins give rise touald®5 features in total.
Mass and retention time were measured with very high precision.

In the next section we use this simple data set as the original feature mapaamthe robust-
ness of six different alignment algorithms in comparison to our approach.

15.4.3 Alignment of noisy LC-MS maps

In this first robustness analysis we want to assess the ability of all aligrafgoithms to

match corresponding peptides in the presence of noise and conselqcieariges in elution
order. As already mentionelg, Jaitly gf MO6] noticed that the distorti&®T irs composed
by a global trend and local effects of less understood factors normialiybdited around an
ideal elution time. We analyze the robustness of the six alignment tools in thenpeesf

noise with respect to two experimenarySigmar andvarySigmayz In both experiments we
model the warp in RT and m/z by a global affine transformation and pose thkdffects by

an additive local Gaussian error.

We use the original feature map generated in Sefion 15.4.2 and test up to extént of
local distortion in RT and m/z the different algorithms are able to precisely siodvBIFMAP.
The 2D position RT(f),m/z(f)) of each featurd in the original map is shifted by a transfor-
mationT : R?2 — R2. The global trend off is given by an affine transformation with scaling
matrix A € R?*2 and translation vectdr € R? and the local effects are simulated by an additive
Gaussian errofegr, &m/z) With gt ~ N(0,02;) and&m; ~ N(0,02,,). Thus the transformed
feature positioRT'(f),m/Z(f)) of a featuref is given by

RT(f)\  _ (RT(f) arr 0 \ [RT(f) t £
(m/z’(f)) =T (m/z(f)) - ( 0 am,z> <m/z(f)> - (t:;) - (ejl) (15.3)

Due to uncertainties in measurement, the feature maps of repeated meassineragmot

be identical and share only a fraction of corresponding features. Telntlois situation and
thereby achieve a more realistic setting, we first generated warped cfpiesoriginal map
using the transformatiom. In a second step, we replaced some of the distorted features with
random features. These random features were inserted within theibhguoox of the re-
maining distorted features in the warped copies. The correspondingdeatuall maps—the
original feature map and its warped copies—definegitoeind truthconsensus map, which is
used to determine recall and precision of all alignment algorithms.

For most alignment algorithms the user can define the maximal deviation ofdqadsition
within a consensus feature given ART andAm/z. We optimized these parameters for each
tool and set
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OpenM@a: ART := 120 s andAm/z .= 0.5 Th.

msinspegia: ART := 150 (defines in this case the number of scans)&antz .= 1 Th.

XAlign: ART := 180 s andAm/z .= 2 Th.

MZMineya: ART =120 s and\m/z = 1.5 Th.

XCMSua: ART =40 s (given by the parametbw) andAm/z .= 1.5 Th.

The alignment algorithm implemented in SpecArray does not provide angngéges that may
be defined by the user.

In the first experimentarySigmar we vary the standard deviation of the local error in RT and
analyze the performance of the alignment algorithms with respect to the rgsdtall and
precision values. The global linear trendTofn Equatio I5.8 was given gt ~ N(1,0.2),

brt ~ N(100,50), am/z = 1, bm;z = 0, and a fixed standard deviatiog,, = 0.1 Th for the error
distribution that models the local distortion in m/z. The varying local distortion innRE
modeled by seven different standard deviatiang € {5510s20 530540550560 s}.

For each value ofirT we generate 10 test sets, each consisting of the original feature map and
100 warped copies. The warped copies and the original feature mep alfi@ction of 70%
corresponding features.

Unfortunately,SpecArraya could not manage the alignment of 101 maps. The computation
of all pairwise alignments leads to a quadratic blow-up in runtime; apparerglygamplexity

of the implementation is even worse because we had to cancel the unfiniigimeaeat of 101
after 24 h. Accordingly, we created 10 particular test sets for eaghwhich contain beside
the original feature map only 5 warped copies instead of 100.

The increasing local distortion in RT should reflect severe problems dfhsystem. The
increasing influence of the local distortion reduces the global chaistatef the transforma-
tion T in Equation I5.8. However, in real data sets (e.g., see Figuré 14.7) wevetishat
the global trend mainly characterizes the warp and accordingly the stbdelaationorr lies
between 10 to 20 s.

Figured I5.P t§ 1517 show box whisker plots of the recall and precisiorwalfithe differ-
ent alignment algorithms for varyinggr values. Our alignment approach (see Fidure]15.2)
yielded the best precision values and 81 to 86% of the pairwise featlignaents in the
consensus map are “relevant” and represented in the ground truthefezdips. We precisely
model the global linear trend of the walfp but with increasingrr the local distortion dom-
inates and accordingly the mean precisiorODgdfenM &4 decreased. However, considering a
typical degree of the local distortion given by a standard deviation of B t®tBe determined
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consensus maps contain 75 to 80 % of the “relevant” pairwise featurenas=igs.
mslInspegja (see Figur€I5]3), which estimates a global linear trend plus a non-linegroso
nent, as well aSpecArraya (see Figuré_1514), which also models a non-linear trend of the
warp in RT precisely determine the distortion in RT. The achieved recall yateerelatively
constant for the varyingirt values and are given by.&1— 0.83 and 082— 0.85, respec-
tively. However, both alignment algorithm result in relatively poor precisialues and many

of the pairwise feature assignments given by the resulting consensusanedpsse positives.
The consensus maps determinedniisi nspegja contains only about 59 % of the “relevant”
pairwise feature assignments a@gecArraya discovers between 46 to 48 % of the expected
assignments. Regarding the recall and valueSpécArraya we have to consider that the

values are based on smaller test data sets.

The other three alignment algorithtX<CMSya (see Figuré_I5]5)XAlign (see Figuré 15]6),
andMZMineya (see Figur€1517) all resulted in low recall as well as low precision values.
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Figure 15.2: Box whisker plots of the recall and precision values of thigramhent algorithm of OpenMS
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Figure 15.4: Box whisker plots of the recall and precision values of thgrahent algorithm of SpecAr-

ray for varyingogr values.
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Figure 15.5: Box whisker plots of the recall and precision values of thigrahent algorithm of XCMS
for varying orr values.

Figure[15.8 illustrates the recall and precision values of all alignment algwith represents
a so-calledprecision-recall diagranfor the six alignment algorithms. Each curve is given
by the mean precision and mean recall values determined for the six diftprenes 6rr €
{55105 205 305 40Th 505 60s}).

In Lange et al.|[2007] we showed that using a standard deviation ofc@dnes up with al-
most 40 % peptide time order changes within two maps. The number of thesetaigoms
increases with the standard deviation of the noise in the RT dimension. Thie t® dertain
characteristics of the data. Even if the 10 protein mixture is not too complexietasvely
dense and consequently, the extracted peptide features lie closely to§etiadl disturbances
in RT will already result in features moving even closer together, larges will result in pep-
tides changing their elution order. Therefore, this data set is particulailyswited to assess
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Figure 15.6: Box whisker plots of the recall and precision values of thgrathent algorithm XAlign
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Figure 15.7: Box whisker plots of the recall and precision values of thgrathent algorithm of MZMine
for varying orr values.

the performance of an alignment algorithm in these situations.

Table[I5.1D shows the runtimes of the six alignment algorithms on the datarg&igmar.

The runtime for eaclort was averaged over the 10 test sets. Runtime measurements were
taken with caveat as described on phagel 156. The manual wall clock timenmaeents for
XAlignindicated same run time order of magnitude as the other algorithms.

Our approach outperforms the alignment of msinspect and SpecAn@gyistook only around
10 s for the alignment of the 101 feature mapsInspegjia needed the tenfold runtime with
around 122 s. ActuallySpecArraya took 25 to 29 s for the reduced test sets including six
feature maps. Although, the runtimes MZMineya, and XCMSua are faster they may be
neglected due to their low recall and precision values.

165



15.4. Robustness analysis with simulated data

—©-mslnspect

0.9 = OpenMS
—+—XAlign ——d

0.8/ -a-xcMs

o.7h SpecArray

|| =¥ mzMine

c 06
S °
)

‘5 057 ﬁ

o ¥
a 0.4

0.3f
0.2

0.1

0 0.2 0 0.8 1

4 0.6
Recall
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Table 15.10:Runtimes (averaged over the 10 runs for eagf) of the six alignment algorithms on the
varySigmar data set for details see Table 15.7.

| orr (s) | OpenM$ia | SpecArrayia | msinspegia | MZMing, [ XCMS,, | XAligr® |

5 10.03 24.74 121.63 2.44 1.58 n/a
10 10.07 24.84 121.80 2.44 1.59 n/a
20 10.17 26.33 121.81 2.46 1.59 n/a
30 10.10 27.00 121.87 2.46 1.60 n/a
40 10.34 26.03 121.39 2.47 1.62 n/a
50 10.23 26.77 121.71 2.49 1.60 n/a
60 10.69 28.65 122.13 2.49 1.60 n/a

In the second experimemarySigma,;; we test the alignment algorithms with respect to their
ability to align feature maps generated with varying strength of distortion in m/zadslen
renounce a global linear trend in m/z and model the warp by local distortiolys docal
distortions in m/z may result from a poorly calibration or may be introduced by suif-in
ficient preprocessing of the data. We use the global linear tiemdth agr ~ N(1,0.2),
brt ~ N(100,50), am;; = 1, bmz = 0, and a local distortion in RT witlogr = 15s. For
the standard deviation of the error distribution in m/z we use six differentesaly,, €
{0.01Th0.05Th 0.1Th,0.2Th,0.3Th,0.4Th}. For each value oby,, we generate 10 test
sets, each consisting of the ground truth and 100 warped copies. Due togth runtime
of SpecArraya we created again 10 extra test sets for eagh, which contain besides the
ground truth feature map only 5 warped copies instead of 100.
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A standard deviation of 15 s is realistic and we could observe this deviatioevaera real
world examples. The values for the standard deviation in m/z reflect alisticzaettings.
High resolution mass spectrometers like FT-ICR or QTOF instruments yield &ipreof

5 ppm or higher. Hence, the m/z positions of corresponding features irfelmtaore maps
should be less than@L Th comprising the error introduced by the peak picking and feature
finding process. However, a standard deviation df Dh reflects poorly resolved data and
imprecise peak picking and feature finding steps. It is doubtful, if theteada be used for

a quantitative analysis at all, but we want to exhaust the alignment algorithenshaw their
limitations.

Figured 150 t¢_15.14 show box whisker plots of the recall and precisimesaf the dif-
ferent alignment algorithms for varying,;, values. The alignment approaches implemented
in OpenMS, SpecArray, and msinspect result in very good recah fstandard deviation up
to 0.2 Th. SpecArraya achieved the highest recall values that lie between 0.8 and 0.88, but
those values were determined on a reduced datans&iinspegia resulted in average in re-
call values of 0.75 to 0.82 andpenMa Yielded in average a recall of 0.75 to 0.79. For
Om/iz > 0.2 Th all recall values rapidly fell of to values about 0.5. The same behasio be
observed with the precision values. The precision values of our agipere overall very high
and the mean precision values lie between 0.76 and 0.85, but they also rdgitbase for
Om/iz > 0.2 Th. The precision values ahsinspegja fell of linearly and lie in average be-
tween 0.49-0.61. Howeve§pecArraya achieved in average only values between 0.3-0.5.
The other three alignment algorithirK€M Sy a (see Figuré15.12X Align (see Figur€ 15.13),
andMZMineya (see Figuré 15.14) resulted once again in low recall and precision values
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Figure 15.9: Box whisker plots of the recall and precision values of thgrahent algorithm of OpenMS
for varying o, values.

Figure[15.Ib shows the precision-recall diagram for the six alignmentitiigs. Each
curve is given by the mean precision and mean recall values determindtefeix different
queries Om/; € {0.01Th 0.05Th 0.1Th,0.2Th,0.3Th,0.4Th}).
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Figure 15.10: Box whisker plots of the recall and precision values of thigrethent algorithm of msin-
spect for varyingoy,,, values.
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Figure 15.11: Box whisker plots of the recall and precision values of thgrahent algorithm of
SpecArray for varying,,, values.

Table[I5.111 shows the runtimes of the six alignment algorithms on the datarg8igma,/..

The runtime for eaclo,,;; was again averaged over the 10 test sets. Runtime measurements
were taken with caveat as described on gagé 156. The manual walltcteekneasurements

for X Alignindicated same run time order of magnitude as the other algorithms.

The runtimes are similar to Talle 15111. We again outperformed the alignmentrdpast
and SpecArray and took only around 10 s for the alignment of the 1@dréemaps.

Our approach performed well even on noisy data. It precisely andklguatigned feature
maps when the distortion of the RT and m/z dimension is mainly defined by a globdl tre
The number of falsely discovered pairwise feature assignments deterbynibeé OpenMS
alignment was in both experiments very low.
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Figure 15.12: Box whisker plots of the recall and precision values of thgrahent algorithm of XCMS
for varying o, values.
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Figure 15.13: Box whisker plots of the recall and precision values of thgrahent algorithm XAlign
for varying on,/, values.

Table 15.11:Runtimes (averaged over the 10 runs for eagfp) of the six alignment algorithms on the
varySigmay, data set for details see Table 15.7.

| Omiz (Th) [ OpenM§a | SpecArrayia | msinspegia | MZMingly, | XCMS, | XAligr®

0.01 10.03 17.59 125.69 2.23 1.62 n/a
0.05 10.09 27.39 125.68 2.24 1.62 n/a
0.1 10.01 28.78 121.57 2.25 1.63 n/a
0.2 10.15 29.92 117.28 2.26 1.63 n/a
0.3 10.11 35.86 115.20 2.40 1.64 n/a
0.4 10.10 39.54 115.40 2.42 1.67 n/a
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Figure 15.14: Box whisker plots of the recall and precision values of thigrahent algorithm of
MZzMine for varying oy, values.

1 :
—©—-mslnspect
0.971 =% OpenMS
XAlign V—V"‘V’VWV
0.8 =~ xcMms
071 SpecArray
|| =¥ mzMine
c 0.67
S G/e/e/@
7]
Dost  AF
g
o 0.4r
0.3f
0.2
0.1
0 . . . .
0 0.2 0.4 0.6 0.8 1
Recall

Figure 15.15: Precision-recall diagram for the six alignment algorithmgxperiment/arySigmay/z.
The six curves show the mean precision and mean recall valetesmined for the six different
queries ¢z € {0.01Th,0.05Th,0.1Th,0.2Th,0.3Th,0.4Th}).

15.4.4 Aligning maps with little overlap

A third important issue in the performance evaluation of an alignment algorittina ability to
align LC-MS maps with little overlap such as maps obtained from different sainagions in
a Multidimensional Protein Identification Technology (MudPIT) [Lin etlal.02Pexperiment.
In these experiments, complex peptide mixtures are separated using 2D hquidatography.
That is, several chromatographic columns are coupled and the separait®eds in several
steps.
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The LC-MS data acquired in these experiments results in several samglierfsathat are
mostly distinct regarding the contained peptide but also share a set eponding peptides.
The size of this common peptide set depends on the column technology. Aapfieation of
alignment algorithms is to create the superset of the peptides contained imiple $aactions
for further processing. To achieve this, peptides occurring in sefvacdions need to be found
and used to compute an accurate alignment.

To assess the performance of our approach in a MudPIT experimeugrwaow the number
of common features in the ground truth feature map and the warped copesoMputed
alignments for changing numbers of random features and again compaliearet precision
values for all six alignment algorithms.

In the experimentaryFractionwe keep the standard deviation of the local error in RT and m/z
fixed. We again use the transformatibromposed by a global linear trend plus a local error as
defined in Equation15.3. The parameterd ofiere set taart ~ N(1,0.2), brr ~ N(100,50),

am/z = 1, bz = 0. The local distortion in RT is 15 s and in m/zZLOTh. We generate maps
using five different percentage valugsof overlap between the original feature map and the
warped copiep € {100% 80% 60% 40% 20%}. For each value op we again generate 10
test sets, each consisting of the ground truth and 100 warped copiegjaiviecreated 10 extra
test sets foSpecArraya, each consisiting of only 6 feature maps instead of 101.

Figured 15.76 t6 15.21 show box whisker plots of the recall and precisioes of the differ-
ent alignment algorithms for varying numbers of corresponding featuteg original feature
map and its warped copies.

The recall values 0O penMa stayed relatively constant with 0.76 to 0.78 for the varying
percentage of common features and also the average precision vauektvely robust and
fell off only slightly from 0.85 to 0.75 untip = 40 %. Forp = 20 % our approach even yielded
a mean precision of 0.55. The recall of the five other alignment algorithmsmechalso rela-
tively constant, but with an increasing number of random features theerwhfalse positive
pairwise feature assignments in the consensus maps increased and firesisibn curves
fell off sharply. The alignment algorithm implemented in msinspect achiemedyverage, a
recall of 0.81 to 0.82. However, the precision values are much smaller thae tietermined
by our approach. Given 101 feature maps—whereby all featuresdajribinal feature map
are represented in the 100 warped copiesstspegia yielded only a mean precision of 0.6
and fell off to 0.42 atp = 40 %. SpecArraya achieved high mean recall values of around
0.82 to 0.84. The decrease of its average precision values is percipitthereas the mean
precision ato = 100 % is 0.82.SpecArray Yielded a precision of only 0.2 fgp = 40 %.
The other three alignment algorithtKEM Sy (see Figuré 15.19X Align (see Figuré 15.20),
andMZMineya (see Figuré15.21) all resulted in low recall as well as low precision values

Figure[I5.Ib shows the precision-recall diagram for the six alignmentitigs. Each
curve is given by the mean precision and mean recall values determingueféve differ-
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Figure 15.16: Box whisker plots of the recall and precision values of thigrahent algorithm of
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Figure 15.19: Box whisker plots of the recall and precision values of thgrahent algorithm of XCMS
for a varying number of common features.
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Figure 15.20: Box whisker plots of the recall and precision values of thgrahent algorithm of XAlign
for a varying number of common features.
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Figure 15.22: Precision-recall diagram for the six alignment algorithm&xperimentaryFraction
The six curves show the mean precision and mean recall valetesmined for the five different
queries p € {100%, 80%, 60%6, 40%, 20%} ).

Table[I5. 1P shows the runtimes of the six alignment algorithms on the datarg€taction

We averaged the runtime for eaphover the 10 test sets. Runtime measurements were taken
with caveat as described on pagel156. The manual wall clock time measitseioreX Align
indicated same run time order of magnitude as the other algorithms.

Table 15.12: Runtimes (averaged over the 10 runs for eaglof the six alignment algorithms on the
varyFractiondata set for details see Table 15.7.

| p (%) | OpenM$ia | SpecArrayia | msinspegia | MZMing, | XCMS,, | XAligr® |

100 6.64 32.04 125.20 2.61 1.38 n/a
80 13.81 27.41 122.63 2.40 1.60 n/a
60 12.27 25.89 119.75 2.48 1.61 n/a
40 11.19 36.40 117.79 251 1.53 n/a
20 9.18 85.79 115.63 2.61 1.43 n/a

Our approach outperforms the alignment algorithms nspegjia and SpecArraya since it
took only 618 to 1381 s for the alignment of the 101 feature maps. Howewvesinspegia
needed again the tenfold runtime with around 120 s. Actu8lpgcArraya required 25.89

to 85.79 s for the reduced test sets including only six feature maps. Alththeghyuntimes

of MZMineya, and XCMSya are faster they may be neglected due to their low recall and
precision values.
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We are aware that the evaluation of algorithms on simulated data has its ciN@aesheless,
these experiments allow us to assess the performance of our method oritda@ewific char-
acteristics. It is also not clear if our model for the distortion of RT and m/zdinates comes
close to perturbations in real experiments. But affine warps as intrddn¢kese experiments
are frequently observed in practice. Note that we sampled Gaussianudedritoise for each
feature independently. This results in distortions that are more severerieamould expect in
real-world data. In a real large-scale experiment, one would expetdhl@orrelated perturba-
tions in RT and systematic shifts in subsets of the LC-MS maps. Since we introdige into
areal sample, and not an entirely artificial one, our data already in@igsathis phenomenon
to a certain extent. We further aggravate these drifts by applying our mmsel to m/z and
RT and by doing so, we can estimate the robustness of our algorithm anditistathandle
changes in the elution order of peptides, something, which is impossible foithlgs based
on dynamic time warping.
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Chapter 16

Discussion and conclusion

The automatic alignment of LC-MS data sets is an important step in every higihgthput
proteomics experiment. Algorithms that can perform this task efficiently acuraiely have
a huge potential for basic research in biology but also for more appliedtigns such as
biomarker discovery and drug research in general. We have prdsamtdignment technique
that is able to precisely and quickly align multiple LC-MS raw or feature mapsndspen-
dence of the processing stage of the LC-MS data to which it is applied, nidlesble and
applicable to any kind of data from upcoming LC-MS technologies and psirtg algorithms.
Our geometric approach precisely solves the multiple raw map problem and atigjtiple
LC-MS maps in feasible time. The LC-MS raw or feature maps are aligned inrdiketa
manner and superposed using an adapted pose clustering algorithm.difiored step was
implemented to solve the multiple feature map alignment problem. It precisely anklyquic
groups the corresponding features in the superposed maps and deteth&resulting con-
sensus map.

We compared the recall, precision, and runtime of our algorithms with thosecofther fea-
ture map alignment algorithms analyzing two real world data sets as well thresrwéated
data sets. Our approach outperforms the other alignment approachethoreal data sets
representing typical alignment scenarios. By means of the simulated dateespteved the
robustness of our approach in the presence of noise and its applicabilitgge with little
overlap, e.g., given by Multidimensional Protein Identification Technol@,@h]
experiments. In all experiments, our algorithm was the fastest and adhiesebest recall
values as well as good precision values.

In the real data we considered so far, the RT distortion was composethbjoaglobal linear
trend and a minor additive local effect. As we have seen, our algorithifarpes well as long
as the global trend prevails. If the local error gains influence on thp indRT the affine trend
modeled by our approach is not able to precisely estimate the distortion in Riicréase the



precision of our algorithm even for those data a more sophisticated segresind mapping
functions may be incorporated. Due to the modular architecture of ouiithligoand OpenMS
in general this could be done effortlessly.

Different chromatographic fractions may result in maps with only a little overldge align-
ment of such maps may be improved upon a progressive alignment apprBasides our
alignment algorithm, we defined a sophisticated distance measure for LC-MS$ tiret will
allow for the development of such a progressive alignment approach.

Our raw and feature map alignment algorithm is implemented in the OpenMS frathewo
Based on the alignment classes in OpenMS we also implemented an easy-{plicstian for
“The OpenMS Proteomics Pipeline (TOPP)” applicatitipAlignment. OpenMS is freely-
available to the bioinformatics community from www.openms.de.
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Availability and requirements of the
OpenMS/TOPP project

Project home pagehttp://wuw.openns.de

Operating system(s): Platform-independent (OpenMS can be compiled on most Unix-like
platforms using an ANSI C++- compliant compiler)

Programming language: C++

Other requirements: Qt 4.1 or higher, OpenMS contrib package

License: GNU Lesser General Public License (LGPL)

Any restrictions to use by non-academicssee LGPL license

Documentation: The class documentation is available in HTML format. The OpenMS tutorial
and the TOPP tutorial are available in HTML/PDF format.


http://www.openms.de




Chapter 18

Glossary

Deisotoping
Deisotoping is needed for identifying isotopic peak groups that belong teame or-
ganic specimen.

Deconvolution
Charge state deconvolution determines the actual charge of the analygavhatse to
a certain peak (or isotopic peak group as a whole).

Extracted ion chromatogram (EIC)
Chromatogram created by plotting the intensity of the signal observed atsarmcmn/z
value in a series of mass spectra recorded as a function of RT.

Feature
The two-dimensional signal created by some chemical entity (e.g., a pe@#itegture
is characterized by its isotopic pattern in mass-to-charge dimension and biutios
profile in retention time dimension.

Mass spectrum
Plot of ion abundance versus m/z.

Mass spectral peak
A mass spectral peak is a localized maximum signal in a mass spectrum crgatedd
chemical entity (e.g., a peptide).

Multidimensional Protein Identification Technology (MudPIT)
MudPIT is a technique for the separation and identification of complex pratelpep-
tide mixtures. MudPIT separates peptides using 2D liquid chromatographyisiway,
the separation can be interfaced directly with the ion source of a massmspetsr.



Parts per million (ppm)
The mass accuracy is often expressed in parts per million.

Total ion chromatogram (TIC)
The chromatogram produced from an LC-MS experiment, which is the $wat the
intensities of the individual ions at each time interval in the experiment.
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Appendix A

Deutsche Zusammenfassung

Sowohl Identifikation als auch Quantifikation der Proteine anhand einesemssek-
trometrischen Signals (MS oder LC-MS) erfolgen in mehreren aufeiméoigenden Ana-
lyseschritten; zwei fundamentale Schritte sind Thema dieser Arpetk pickingund map
alignment Eine erfolgreiche Proteinidentifikation erfordert die akkurate Ermittiuardeptid-
massen in einer Probe. Der Erfolg einer Proteinquantifikation hingegyeyt kron pazise bes-
timmten Peptidquantiten ab. Im Gegensatz zu vielen anderen peak pickingitaes haben
wir einen Algorithmus entwickelt, der alle relevanten Informationen aus dersenapek-
trometrischen Peaks extrahiert und somit urgatgfig von der analytischen Fragestellung und
dem MS Instrument ist. Im ersten Teil dieser Arbeit stellen wir diesen ggafiem peak pick-
ing Algorithmus vor. ir die Detektion der Peaks nutzen wir die Multiskalen-Natur massen-
spektrometrischer Messungen und erlauben mit einem Wavelet-basiemsaizAauch das
Prozessieren von stark verrauschten und Baseline-behafteterridpekiren. Neben der ex-
akten m/z Position und dem FWHM Wert eines Peaks werden seine maximalsithtteowie
seine Gesamtintenaitbestimmt. Mithilfe des Fits einer analytischen Peakfunktion extrahieren
wir ausserdem z@gzliche Informationefiber die Peakform. Zwei weiterere optionale Schritte
ermdglichen zum einen die Trennung stdrkerlappender Peaks sowie die Optimierung der
berechneten Peakparameter. Anhand eines niedrig éstgalLC-ESI-MS Datensatzes sowie
eines hoch aufgékten MALDI-MS Datensatzes zeigen wir die Effizienz unseres getemisc
Algorithmus sowie seine schnelle Laufzeit im Vergleich mit kommerziellen peddngaAl-
gorithmen. Im zweiten Teil der Arbeit besaftigen wir uns mit dem sogenannten map align-
ment. Ein direkter quantitativer Vergleich mehrer LC-MS Messungen setaieheitliches
Koordinatensystem der LC-MS Maps voraus, d.h., Signale des gleicmid®innerhalb un-
terschiedlicher Maps solltendglichst die gleichen RT und m/z Positionen besitzen. Aufgrund
experimenteller Unsicherheiten sind sowohl die RT als auch die m/z Dimengiperste Un-
abhangig vom Prozessierungsstand der LC-MS Majissen die Verzerrungen vor einem Ver-
gleich der Maps korrigiert werden. Mithilfe eines eigens entwickeftbnlichkeitsmassedif



LC-MS Maps entwickeln wir die erste formale Definition des multiplen LC-MS Rotd Fea-
turemap Alignment Problems. Weiterhin stellen wir unseren geometrischetzAnsd dsung

des Problems vor. Durch die Betrachtung der LC-MS Maps als zwei-dioraie Punkt-
mengen ist unser Algorithmus unabigig vom Prozessierungsgrad der Maps. Wir verfolgen
einen sterrifrmigen Alignmentansatz, bei dem alle Maps auf eine Referenzmap abgebilde
werden. DieUberlagerung der Maps erfolgt hierbei mithilfe eines pose clusteringes
Algorithmus. DiesdJberlagerung der Map®st bereits das definierte LC-MS Rohmap Align-
ment Problem. Zur tsung des multiplen Featuremap Alignment Problems implementieren
wir einen zugtzlichen, effizienten Gruppierungsschritt, der zusammeéirigsh Peptidsignale

in unterschiedlichen Maps einander zuordnet. Wir zeigen die EffiziedRabustheit unseres
Ansatzes auf zwei realen sowie auf dréinktlichen Dateré&gzen. Wir vergleichen hierbei
die Gite (anhand von precision und recall) sowie die Laufzeit unseres igigars mit inf
weiteren frei verfigharen Featuremap-Alignmentmethoden. In allen Experiméiiterzeugte
unser Algorithmus mit einer schnellen Laufzeit und den besten recall WVesteser peak pick-

ing und auch der map alignment Algorithmus sind innerhalb von OpenMS -dtn@amework

fur Massenspektrometrie- implementiert.
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