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Summary

To understand how the brain translates sensory input into behavior, one needs to iden-
tify, at the cellular level, the involved neural circuitry and the electrical signals it carries.
This thesis describes methods and tools that enable neuroscientists to obtain important
anatomical data, including neuron numbers and shapes, from 3D microscopy images.
On this basis, tools have been developed to create and visually analyze anatomically
realistic 3D models of neural networks:

1.

An automatic segmentation method for determining the number and location of
neuron cell bodies in 3D microscopy images. Application of this method yields
a difference of merely ~4% between automatically and manually counted cells,
which is sufficiently accurate for application in large-scale counting experiments.

A method for the automatic alignment of 3D section volumes containing filamen-
tous structures. To this end, an existing point-matching-based method has been
adapted such that sections containing neuron and microtubule fragments could be
successfully aligned.

The Filament Editor, a 3D proof-editing tool for visual verification and correction
of automatically traced filaments. The usefulness of the Filament Editor is demon-
strated by applying it in a validated neuron reconstruction pipeline to create 3D
models of long-range and complex neuronal branches.

The tool NeuroNet, which is used to assemble an anatomical model of a neural
network representing the rat barrel cortez (or subnetworks therein, e.g. individual
cortical columns), based on reconstructed anatomical data, such as neuron distri-
butions and 3D morphologies. The tool estimates synaptic connectivity between
neurons based on structural overlap between axons and dendrites.

A framework for the interactive visual analysis of synaptic connectivity in such
networks at multiple scales. It works from the level of neuron populations down to
individual synapse positions on dendritic trees. It comprises the Cortical Column
Connectivity Viewer, developed to analyze synaptic connections between neuron
populations within and between cortical columns.

The usefulness of these methods is demonstrated by applying them to reconstruct and
analyze neural networks in the rat barrel cortex. Finally, I describe several applications
of these methods and tools by neuroscientists, yielding significant biological findings
regarding neuron anatomy and connectivity.
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Zusammenfassung

Um zu verstehen wie das Gehirn Sinnesreize, die zu bestimmtem Verhalten fithren, verar-
beitet, muss man in zellularer Auflésung die beteiligten neuronalen Schaltkreise und die
von ihnen iibertragenen elektrischen Signale identifizieren. Diese Dissertation prasentiert
Methoden und Werkzeuge, die es Neurowissenschaftlern ermdéglichen, wichtige anato-
mische Daten wie Neuronenanzahl und -form aus 3D-Mikroskopaufnahmen zu rekon-
struieren. Darauf aufbauend wurden Werkzeuge entwickelt, um anatomisch realistische
Modelle neuronaler Netzwerke zu bilden und visuell zu analysieren:

1.

Eine Methode zur automatischen Erkennung und Lokalisierung von Nervenzellkor-
pern in 3D-Mikroskopbildern. Die Anwendung dieser Methode ergibt eine Dif-
ferenz von lediglich ~4% zwischen automatisch und manuell gezihlten Zellen.
Diese Genauigkeit ermoglicht die automatische Verarbeitung von grofien Daten-
volumen.

. Eine Methode zur automatischen Ausrichtung von 3D-Schnittvolumen, die linien-

artige Strukturen enthalten. Dazu wurde eine auf Point-Matching basierende
Methode so adaptiert, dass Neuronen- und Mikrotubulifragmente erfolgreich aus-
gerichtet werden konnen.

Der Filament Editor, ein Werkzeug fiir die visuelle Validierung und interaktive
Korrektur von automatisch segmentierten linienartigen Strukturen. Der Nutzen
des Filament Editors wird durch Anwendung zur 3D-Rekonstruktion von langen
und komplexen axonalen Verzweigungen eines Neurons gezeigt.

Das Tool NeuroNet, mit dem anatomisch realistische dreidimensionale Modelle
eines neuronalen Netzes aus rekonstruierten anatomischen Daten zusammengesetzt
werden konnen. Dieses Werkzeug schétzt die synaptische Konnektivitat zwischen
Neuronen basierend auf raumlicher Uberlagerung von Dendriten und Axonen.

Ein interaktives System zur visuellen, skaleniibergreifenden Analyse synaptischer
Konnektivitdt in 3D-Modellen neuronaler Netze. Der darin enthaltene Cortical
Column Connectivity Viewer ermoglicht die Analyse synaptischer Verbindungen
zwischen Neuronenpopulationen innerhalb und zwischen kortikalen Saulen.

Die entwickelten Methoden werden anhand des Nachbaus eines Netzwerkes im Barrel
Cortex der Ratte, in dem Sinnesinformationen der Barthaare verarbeitet werden, demon-
striert. Abschlielend werden einige Studien vorgestellt, in denen Neurowissenschaftler
die beschriebenen Methoden angewendet haben und dadurch wesentliche neurobiolo-
gische Erkenntnisse gewinnen konnten.
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1 Introduction

1.1 Neurobiological motivation

1.1.1 Understanding neural information processing

The study of the brain provides inspiration for better treatment for brain injury or
neurological disorders and the development of more sophisticated computers and algo-
rithms (National Academy of Engineering, n.d.). To understand how the brain works, it
is important to have a structural description of its neural elements and their connections,
the connectome (Sporns et al., 2005), because structural organization of neural circuitry
is an important determinant of brain function. Continuous advances in staining and
imaging techniques have increased the accessibility of connectivity information in the
brain, both structural and functional, and from the micro- to the macro-scale (Klein-
feld et al., 2011). Complementary development of image processing, data analysis and
visualization techniques is however required to extract, represent, integrate and analyze
connectome data (Pfister et al., 2014).

For example, one fundamental question in neuroscience is how the brain translates
sensory information into behaviour. An initial step to answer this question is to identify
the local and long-range microcircuits of interconnected neurons that mediate this trans-
lation (Fig. 1.1a). A precise structural description of the neurons comprising the circuit
and their synaptic connectivity provides a basis for investigating functional properties,
e.g., using numerical simulation (Helmstaedter et al., 2007).

1.1.2 Reverse engineering of neural microcircuits

To comprehensively describe neural microcircuits, ideally, one would use dense recon-
struction of electron-microscopic images to identify all neuronal branches and their
synaptic connections in a volume of interest (Bock et al., 2011; Briggman et al., 2011).
However, this is currently only feasible for relatively small volumes (e.g., 0.008 mm? (Bock
et al., 2011), 0.06 mm? (Briggman et al., 2011)).

For larger volumes, for example comprising a cortical column (see Section 1.1.3) having
a volume of ~0.2mm? (R Egger et al., 2012; VC Wimmer et al., 2010), reverse engi-
neering approaches for reconstructing circuit anatomy and synaptic wiring have been
suggested (Helmstaedter et al., 2007; Markram, 2006). These statistical approaches for
the reconstruction of an ‘average’ anatomical network aim to estimate the mean values
and variability of morphological parameters for individual neurons, as well as anatomical
and physiological parameters for connections between cells (Helmstaedter et al., 2007).
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To this end, a sparsely sampled set of reconstructed neurons, representative of the en-
tire population, is integrated into a common reference frame. These reconstructions are
cloned and repositioned to obtain a network realization that satisfies a measured neuron
density. Based on this explicit 3D network representation, the synaptic connectivity
between (populations of) neurons can be estimated (Kozloski et al., 2008; Lang et al.,
2011). The resulting anatomically realistic models of neural circuits yield insight into the
structural organization and allow for numerical (in silico) computer simulations (Lang et
al., 2011), which will help to unravel circuit functions and their underlying mechanistic
principles, for example during sensory-evoked behaviors.

In this thesis, methods and software tools are described to obtain required anatomical
data from microscopic images, particularly the spatial distribution and 3D shape of
neurons, and to assemble 3D neural network models based on this information. The
effectiveness of these methods and tools is demonstrated by applying them to create
a model of the rat barrel cortex. The whisker-barrel system of the rat has several
properties that make it a popular model system for neuroscientific research (DE Feldman
and Brecht, 2005), particularly the one-to-one representation of individual whiskers by
discrete functional and anatomical areas in the vibrissal cortex: cortical barrel columns.
It has therefore been extensively studied, making it a suitable model system to pursue
the reverse engineering approach.

1.1.3 Model system: the whisker-barrel system of the rat

Rats, like most nocturnal rodents, use their whisker hairs as complex tactile sensory
organs to explore their environment. The tactile somatosensory pathway from whisker to
the cortex in rodents is a convenient model system for studying neural processes, because
it provides a well-defined system for exploring the link between molecular mechanisms,
circuits of synaptically coupled cells, and behavior (CCH Petersen, 2007) (see Fig. 1.1b).

The whisker is anchored to the skin by the follicle. Mechanoreceptor neurons respond
to rotation of the whisker follicle by its muscles or to deflection of the whisker shaft
by external contacts. They convert mechanical energy into action potentials, encoding
information about velocity, direction and duration of whisker displacements and torques.
These nerve cells terminate in the trigeminal nucleus (TN) in the brainstem (Diamond
et al., 2008).

Sensory information from the whiskers reaches the cortex via three different path-
ways (Diamond et al., 2008). In this work, we are primarily interested in the lemniscal
pathway, which conveys tactile information to the primary somatosensory cortex (S1,
also called barrel cortex) in a per-whisker segregated manner as follows.

Neurons in the principal TN are clustered into barrelettes: small, whisker-related cell
groups. These brainstem neurons transmit whisker-related information to somatosensory
regions of the contralateral thalamus. The major recipient of TN input is the medial
division of the ventral posterior nucleus (VPM), which, like the TN and S1, contains
groups of neurons, each related to the information from a single whisker. In VPM these
groups are in the form of elongated ovoids, called barreloids (Oberlaender, 2009).
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Figure 1.1: (a) 3D reconstruction of a Layer 5 thick-tufted neuron within an abstract cor-
tical column, showing morphological substructures involved in signal processing: the cell
body (soma, green), multiple dendritic branches (red, pink), and one axonal tree (blue).
Chemical or electrical signals received by the dendrites are integrated at the soma, poten-
tially resulting in an action potential that travels along the axons and results in output
signals transferred to other nerve cells (Kandel et al., 2000) (Data: M. Oberlaender).
(b) The whisker-barrel system of the rat. Information from individual whiskers is con-
veyed by the brain stem (1) to the thalamus (2) and finally to the primary somatosensory
cortex (3). The cortical columns comprising S1 are innervated by azons from the VPM.
Image modified from (Helmstaedter et al., 2007). (c) Tangential view onto the barrel
field. The layout of the columns in SI1 corresponds to the spatial organization of the
whiskers on the rat’s snout.

t
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The axons of VPM neurons project to the primary somatosensory cortex (S1), where
they terminate in barrels: discrete, well-defined anatomical structures consisting of dense
clusters of small neurons in layer IV, in a whisker-specific manner (Woolsey and Van
Der Loos, 1970). Thus, the barrelettes, barreloids and barrels form anatomical maps in
which whiskers are represented individually, thereby retaining whisker segregation along
the entire pathway. The somatotopic arrangement of the barrels is almost identical to
the layout of the whiskers on the snout (see Fig. 1.1c).

The mammalian cortex, including the rat cortex, is organized into six layers (L1-L6,
see Fig. 1.1b). A cortical barrel column can be defined as the vertical thickness of the
neocortex, laterally bounded by the width of the L4 barrel (Lefort et al., 2009). The
barrels are separated by cell-sparse zones, called septa (see Fig.1.1c). S1 receives input
from, or transfers output towards other brain areas, such as the thalamus. Hence, many
anatomical and functional studies of cortical columns in S1 revealed neural microcircuits
between and within layers, from the thalamus to the cortex (thalamocortical) and vice
versa (corticothalamic) (Oberlaender, 2009). The cortical (barrel) column is related in
a one-to-one fashion to a single facial whisker hair on the animals snout. Functional
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output from this network, based on single whisker information, is sufficient to trigger
simple behaviors, such as decision making (Celikel and Sakmann, 2007).

The anatomical description of the whisker-barrel system above is rather qualitative.
A realistic 3D anatomical model involving quantified numbers of neurons and their
interconnections, could, together with measured and/or simulated functional data, yield
new insights and understanding of principle mechanisms that explain how the brain
translates environmental input into behavioral responses.

1.2 Problem formulation

The goal of this thesis is to present

a complete set of methods and tools to create and analyze an anatomically
realistic 3D model of neural networks in the rat barrel cortex, consisting of
populations of neurons and their synaptic connectivity.

To this end, the following problems have to be solved:

Determination of the number and spatial distribution of neurons in the brain area
of interest To model anatomically realistic neuron populations, the number and lo-
cation of neurons must be known. Exhaustive counting is preferred over sampling and
extrapolation, which could be inaccurate since neuron density varies across brain re-
gions. Three-dimensional imaging techniques (e.g., confocal laser scanning microscopy)
together with suitable stains, like NeuN (Mullen et al., 1992), labeling all neuron somata
(cell bodies), provide images with sufficient resolution and contrast to identify individual
somata, although they often appear as overlapping. All somata, appearing as roundish
objects, need to be extracted automatically, to be able to quantify neuron densities in
any non-trivial brain volume, such as a cortical column, which contains ~18 thousand
neurons (HS Meyer et al., 2010). From an informatics point of view, this amounts to
the following problem:

P1 Given a 3D confocal laser scanning microscopy image containing roundish, possibly
touching objects, identify the number and location of the center of mass of each
object.

Reconstruction of the 3D axonal and dendritic morphology of a representative set of
neurons of all occurring cell types Reconstruction of all neurons within any non-trivial
brain volume, such as a cortical column, is currently not possible, neither using dense
nor sparse labeling. Instead 3D reconstructions of a representative sample of neurons
of all occuring cell types are to be generated, which can be duplicated to attain the
measured number of neurons in the modeled population. A representative sample is
also required to determine the location-specific mixture of cell types, which varies with
cortical depth.
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Because neuron function depends to a large extent on its shape, morphologies must
be traced with high accuracy. At the same time, long and complex axonal arbor requires
large areas to be imaged. Currently, these structures can only be reconstructed from
individually stained neurons that have been physically sectioned and imaged using light
microscopy techniques. To obtain a sufficiently large population sample in reasonable
time, the reconstruction method must be relatively high-throughput. Although many
automatic tracing methods exist (Donohue and GA Ascoli, 2011; Meijering, 2010; Ober-
laender et al., 2007), different types of background, staining and other image properties
have a degrading impact on their results, necessitating an efficient and effective proof-
editing tool to visually validate tracings (Peng et al., 2011) and correct errors (Luisi
et al., 2011). Further, tracings from adjacent sections must correctly be merged to at-
tain complete reconstructions. Third, neuron reconstructions should be augmented by
anatomical landmark structures, such as barrel, white matter or pia contours, to be used
as features during registration in a reference frame (R Egger et al., 2012), or morphome-
tric analysis. Finally, statistics on neurite lengths differentiated with respect to neuron
substructure (axon, apical/basal dendrite) and containment by reference volumes (e.g.
cortical columns) are of interest in order to characterize cell types and quantify axonal
innervation patterns. Thus, from an informatics point of view, the following problems
have to be solved:

P2 Given multiple 3D data sets containing filamentous structures as polylines, ob-
tained from adjacent sections, find a 2D rigid transformation for each data set,
such that filaments in neighboring sections match.

P3 Given multiple data sets containing a potentially large number (>1M vertices)
of filamentous structures, traced in 3D images obtained from adjacent sections,
provide a proof-editing tool with the following functionalities:

e data structure to represent the tracing as a graph embedded in 3D space that
can be edited at interactive rate,

o effective visualization allowing comparison of a tracing with the original image
data,

o efficient and effective interactive editing of the graph data structure,
e annotation of substructures for visualization and morphometric analysis,
e manual delineation of reference structure contours,

e morphometric analysis of branch length, with respect to substructure anno-
tations and user-defined reference volumes.

Assembly of the anatomical neural network and computation of synaptic connectivity
After collecting the anatomical data described above, these have to be combined into
a 3D model representing a neural network in the brain area of interest. To this end,
the data is first registered into a common reference frame, which in our case of the rat
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vibrissal cortex is given by the geometry of the cortical columns, and the pia and white
matter surfaces (R Egger et al., 2012). A software tool is required that generates a 3D
neural network model, based on this data:

P4 Given a distribution of neuron somata, a representative set of 3D neuron recon-
structions of all occurring cell types and location-specific cell type mixtures, regis-
tered in a common coordinate frame representing the brain area of interest, provide
a tool

e to assemble an anatomically realistic network, satisfying the given anatomical
constraints,

e to compute estimates of spatial distributions of synaptic contacts between
(groups of ) neurons, based on local axon-dendritic overlap,

e to compute realizations of synapse positions on the dendrites of postsynaptic
neurons, satisfying the computed distribution.

Visual and quantitative analysis of synaptic connectivity at multiple scales The mod-
els generated by the tool above are explicit representations of an anatomically realistic
neuron populations and are therefore amenable to visual and quantitative analysis of
morphological and connectivity properties at multiple scales: from neuron populations
down to the subcellular scale. The information contained in the model allows neurosci-
entists to answer questions like: Where does a neuron or group of neurons obtain input
from and where does it project to? Are there quantitative differences in innervation
strength by thalamic axons between individual cortical columns? How are synapses dis-
tributed on a postsynaptic cell? However, to be of general use, this intrinsic, quantitative
information must be made accessible. Therefore a visualization tool is required that al-
lows the user to explore data, and supports a drill-down workflow to answer increasingly
specific questions:

P5 Given an explicit representation of a 3D neural network, consisting of a neuron
population and an algorithm to compute number of the synaptic contacts between
(groups of) neurons as well as the synapse locations on individual neurons, provide
an interactive visualization tool that allows the user

e to efficiently select (groups of) pre- and postsynaptic neurons, based on cell
type and cortical column,

e to visualize and quantify the connection strength between these selected
(groups of ) neurons,

e to visualize the predicted distribution of synapses on a selected postsynaptic
cell.
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1.3 Contributions

This thesis presents new methods and tools in the field of image segmentation, 3D
geometric modeling and interactive visualization to solve the problems mentioned above.
In particular, this thesis presents the following scientific contributions:

1.

An automatic method to detect and count neuron somata in 3D images (Oberlaen-
der et al., 2009). The presented method segments these roundish objects, paying
specific attention to correctly split touching objects.

The Filament Editor: an interactive proof-editor for validating, correcting, align-
ing, merging, annotating, and analyzing tracings of filamentous structures obtained
from multiple brain sections (Dercksen et al., 2014). The Filament Editor is a key
element in a workflow for creating high-resolution 3D neuron reconstructions, in-
cluding long and complex axonal arborizations, from sparsely labeled image stacks.

An automatic method for the 2D rigid alignment of 3D sections containing fila-
mentous structures, such as neuronal arborizations (Dercksen et al., 2009). The
alignment method builds on an existing point-matching approach (Baum, 2007)
to quickly align boundary points in neighboring sections.

A tool to create an anatomical model of a neural network representing the rat barrel
cortex, based on reconstructed anatomical data, such as neuron distributions and
3D morphologies (Dercksen et al., 2012). The tool estimates synaptic connectivity
between neurons from structural overlap between axons and dendrites.

A framework for the interactive visual analysis of synaptic connectivity at mul-
tiple scales, i.e. from the level of neuron populations down to individual synapse
positions on dendritic trees (Dercksen et al., 2012). An important part of the
framework is the The Cortical Column Connectivity Viewer, a visual analysis tool
to analyze synaptic connections between neuron populations within and between
cortical columns.

Finally, the effectiveness, usefulness or even indispensableness (Dercksen et al., 2012)
of the developed methods and tools is illustrated by reviewing how they have been
applied to answer neuroscientific questions regarding anatomy (HS Meyer et al., 2010;
Oberlaender et al., 2011; Oberlaender et al., 2012), synaptic connectivity (R Egger
et al., 2014; Oberlaender et al., 2012), and, using numerical simulation of electrical
activity, structure-function relationships (R Egger et al., 2014; Lang et al., 2011) in
neural networks in the rat barrel cortex.






2 Determination of the number of neurons
and their spatial distribution

2.1 Introduction

The number of neurons in the brain and their varying density between different brain
regions is thought to be a fundamental determinant of brain function (Donaldson, 1895;
Williams and Herrup, 1988; Williams and Rakic, 1988). During the last 60 years, great
effort has been made to estimate neuron densities quantitatively, first addressed by Aber-
crombies article “Estimation of Nuclear Population from Microtome Sections” (Aber-
crombie, 1946). The estimation of absolute numbers of neurons, densities or rates of
density change in neuron populations used to be based on random, sparse sampling meth-
ods (Cragg, 1967; Rockel et al., 1980) such as stereology (Sterio, 1984). These methods
determine cell densities by inspecting a representative sub-volume of tissue and extrap-
olating the obtained density values to a reference volume. However, for more accurate
numbers and quantification of density changes across a large volume, e.g. ~0.5 mm? for a
cortical column in the rat barrel cortex (HS Meyer et al., 2010), it would be favorable to
count the absolute number of neurons and derive the detailed three-dimensional neuron
distribution of the brain area of interest.

Recently available three-dimensional imaging techniques (mosaic/optical-sectioning
confocal laser scanning, 2-photon or widefield microscopy) and suitable neuronal stains
opened new possibilities for the determination of neuronal densities within entire vol-
umes. Neuronal stains, like NeuN (Mullen et al., 1992) labeling all neuron somata (cell
bodies), or GAD67 (Kaufman et al., 1986) labeling GABAergic interneuron somata, as
well as genetically encoded labels of specific neuron populations in transgenic mice or
drosophila (Akemann et al., 2004; L Luo et al., 2008) allow in principle the quantitative
determination of density differences between neuron populations at high level of detail
(e.g. between or within cortical layers).

Imaging these stained specimen results in 3D data sets with the somata appearing as
roundish objects of approximately equal size, sometimes prolongated by the onset of the
dendritic arbors that have taken up some stain. The somata may touch; the contact
area may range from very small, resulting in a thin “neck” between the somata, to very
large, making soma boundaries hard to distinguish.

The problem is to determine the exact number of somata in the 3D image and their
approximate centroid position. Clustered somata therefore need to be separated to avoid
systematic underestimation.
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Here, we present a method to automatically detect and count NeuN-stained neuron
somata in 3D confocal images. The method consists of 3 steps. First, the somata are
separated from the background in a binary segmentation step. Second, clustered somata
connected by a thin neck are separated using watershed-based morphological operators.
Third, remaining clusters are split based on a statistical model of soma volumes. The
first step is stain/microscope-dependent. We describe the method for NeuN-stained
somata imaged with a confocal microscope. This step can be slightly adapted for other
stain/microscope combinations (Oberlaender et al., 2009), after which the remaining
steps can be applied unaltered.

The method is applied to several data sets obtained from the rat somato-sensory
cortex. Comparison of the automatically determined soma positions to manually placed
counterparts yields that the deviation in landmark position is negligible and that the
difference between the numbers of manually and automatically counted neurons is less
than 4%. In consequence, this novel approach for neuron counting is a reliable and
objective alternative to manual detection.

2.2 Related work

The simplest way to detect all somata in such 3D images is by manual marking. This
is, for example, achieved by moving a 2D image slice through the data set and clicking
on the center of each soma to place a landmark at its approximate centroid. The center
is set on the slice where the soma has the largest diameter. Although this procedure is
quite accurate, with a reported inter-user variability of 2% (HS Meyer et al., 2010), it
is very time-consuming. For the quantification of larger brain volumes, e.g. a cortical
column containing many thousands of neurons, an automatic method is required.

There is a large body of literature on the automatic segmentation of near-round objects
(blobs) in 2D or 3D images. The objects of interest in these images are frequently entire
cells or sub-cellular structures, like nuclei or neuron cell bodies. Comparison of these
segmentation methods yields a number of basic processing steps that by themself or in
combination constitute the individual methods to achieve the segmentation goal. These
central processing steps are described below.

Image enhancement is often required to compensate for image characteristics that
complicate the analysis, for example limited signal-to-noise ratio (SNR), or non-uniform
illumination in x/y and/or z-direction. These characteristics are often specific to the im-
age acquisition technique. Segmentation methods therefore often incorporate acquisition-
type-dependent techniques to counter these effects. These techniques typically com-
prise one or more image filters, for example for smoothing (Long et al., 2007), denois-
ing (Kharma et al., 2007; G Lin et al., 2003), shading correction (G Lin et al., 2003;
Malpica et al., 1997) or filling unstained interiors (Long et al., 2007).

Foreground extraction. For foreground extraction both bottom-up techniques (delin-
eating objects based on pixel, edge or region information), and top-down model-based
methods (using a priori knowledge about the expected shape) are employed, as well
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as combinations of both. Bottom-up, intensity-based approaches include edge detec-
tion (Liu et al., 2008; Raman et al., 2007) and thresholding (Jung et al., 2010; Kharma
et al., 2007; Long et al., 2007; Malpica et al., 1997; Wu et al., 2000). Top-down, model-
based approaches include active contours (Cheng and Rajapakse, 2009; Fatakdawala et
al., 2010), level set segmentation (H Chang and Parvin, 2006), template matching (Byun
et al., 2006) and graph-cut algorithms (Danék et al., 2009; Al-Kofahi et al., 2010). In
the resulting image the background is usually set to black; the foreground is either set
to white or the original gray-value is retained.

Marker/seed detection. The goal of seed detection is to find a single small region for
each individual object that marks its approximate location. The seed position is used to
initialize some method that finds the entire region comprising the object. The number
of seeds therefore equals the number of segmented objects. Seed/marker detection can
be done on a gray-value image (either the entire image or the gray-value foreground)
or on the binary foreground. Methods for seed detection in gray-value images include
voting along the image gradient (H Chang and Parvin, 2006; Parvin et al., 2007; Qi
et al., 2012) and peak response detection of a Laplacian-of-Gaussian filter (Byun et
al., 2006; Al-Kofahi et al., 2010). In binary images often the regional maxima in the
distance transform of the foreground are used as markers (Vincent, 1993). To remove
spurious maxima, which would result in over-splitting, often the H-maxima transform
is applied (Cheng and Rajapakse, 2009; Jung et al., 2010; Malpica et al., 1997).

Cluster splitting. Several approaches can be identified to split clustered objects. Geo-
metrical criteria have been used to split clustered objects in the foreground of 2D images,
e.g. by fitting ellipses to the foreground (Kharma et al., 2007), or by connecting contour
concavities (Fatakdawala et al., 2010; Raman et al., 2007). Alternatively, a watershed-
based method can be used, e.g. on the distance transform (Long et al., 2007) or the
gradient-weighted distance transform of the foreground (G Lin et al., 2003). However,
this frequently results in oversegmentation, and subsequent region merging is therefore
required. Criteria for deciding which regions to merge include convexity (Long et al.,
2007) or the fit to a model shape (G Lin et al., 2003; G Lin et al., 2005) or one of
multiple models, thereby classifying the shape (G Lin et al., 2007). Finally, clusters
can be split by computing the corresponding regions of the markers found using any of
the techniques mentioned above. Methods to achieve this include marker-based water-
shed segmentation (Cheng and Rajapakse, 2009; Jung and C Kim, 2010; Malpica et al.,
1997), level sets (H Chang and Parvin, 2006; Qi et al., 2012), fitting a Gaussian Mixture
Model (Jung et al., 2010) or a graph-cut algorithm (Danék et al., 2009; Al-Kofahi et al.,
2010).
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1) Binary segmentation 2) Morphology-based 3) Model-based
cluster splitting cluster splitting
Bricking
Intensity mapping Geodesic distance transform Mean neuron size calculation
Lower threshold Grayscale reconstruction Number of neurons per cluster
Hit-or-miss transform Watershed segmentation Cluster splitting

Median filter
Closing transform
Removal of artificial halos

Figure 2.1: Summary of the neuron somata segmentation pipeline. The pipeline is il-
lustrated using a small volume of a confocal stack containing NeuN stained somata. (a)
Mazimum intensity projection of the volume. (b) First, a sequence of image filters,
including a threshold-based segmentation produces a binary image, illustrated by the iso-
surface. (c) In a second step, objects connected by narrow links are separated using a
marker-based watershed algorithm. (d) In the last step, any remaining clusters are split
into the most likely number of somata, based on a statistical model of soma volume. (e)
The centroids of the resulting regions are the final soma positions.

2.3 Method for automatic detection of neuron somata in 3D
images

2.3.1 Method overview

Here we present an automated 3D neuron counting method that combines a thresholding,
watershed and model-based approach into a novel high-throughput system for detection
of neuron somata (alternatively called neurons throughout this chapter) in confocal
images. The processing pipeline consists of three steps and is summarized in Figure 2.1.

The goal of the first threshold-based step is to create a binary image separating fore-
ground (i.e. stained neurons) from background. It consists of a number of image pro-
cessing steps, including compensation for imaging or staining artifacts such as bleaching,
shading or uneven uptake of the stain, and binarization by local thresholding. This step
is data-specific and tailored towards confocal image stacks of NeuN-labeled neurons.
Oberlaender et al. (Oberlaender et al., 2009) describe how this step can be adapted for
images acquired with other stain/microscope combinations, in particular neurons stained
with Ca?T-sensitive dye images imaged with two-photon microscopy and NeuN-stained
neurons imaged with widefield microscopy.

This threshold-based approach is usually not sufficient to detect the true number and
position of neurons. High neuron densities and limited microscope resolution result
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in clusters of neurons that cannot be separated by the local threshold step. The first
processing step is therefore regarded as a pre-processing step that guarantees a similar
input to the second (watershed-based) and third (model-based) processing steps. The
implementation of the latter two steps is independent of the data type.

In the second watershed-based step, clusters of neurons which are connected by nar-
row links are separated by a morphological filtering process, resulting in an image of
distinct watershed regions (3D objects of connected foreground voxels, identified by a
label number), and ideally representing individual neurons. Some clustered neurons ap-
pear however like a single, large and uniformly stained neuron. The morphological filters
are not capable of splitting such clusters into distinct watershed objects.

The third, model-based processing step addresses this problem. We assume a single
dominant neuron population within the image stacks with a Gaussian-distributed soma
volume. The mean neuron volume and its variance are calculated from a volume his-
togram of the watershed regions. Undivided clusters are then split according to their
volume, assuming that it has to be an integer multiple of the mean soma volume. An
additional advantage of this constraint is that its parameters are not specified by the
user but automatically calculated during the image processing.

2.3.2 Threshold-based filtering (pre-processing)

Fluorescent images can suffer from two kinds of artifacts. First, shading or bleaching
of the stain leads to an uneven illumination across the images and is usually caused by
the image acquisition itself. It results in different signal-to-noise ratios (SNRs) across
and between individual image planes. The second artifact is caused by uneven uptake
of the fluorescent dye, resulting in varying intensity values across individual neurons.
The first issue is addressed by subdividing each image plane into rectangular bricks and
processing each image plane individually as will be described in Section 2.3.2.2/2.3.2.3.
The second issue is addressed by processing each three-dimensional object (e.g. neuron
soma) individually as will be described in Section 2.3.2.7.

2.3.2.1 Bricking

Uneven illumination across individual image planes prohibits the application of global
image operators. Further, illumination deviations between individual image planes limit
a general application of 3D image operators. Each image plane (i.e. one field of view;
1024 x 1024 pixels) is hence subdivided into 2D bricks. In the case of the confocal
microscope at 40x magnification the bricks size is 256 x 256 pixels. This size is linearly
adjusted for different magnifications (or pixel resolutions), in order to guarantee a similar
brick area (in mm?) for all kinds of images.

2.3.2.2 Intensity mapping

Direct application of a lower threshold operator, setting all pixels having a value smaller
than the threshold value to zero, to each 2D brick proved to be problematic. The
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2 Determination of the number of neurons and their spatial distribution

Figure 2.2: Overview of the processing pipeline. Each panel shows x/y-, x/z- and y/z-
projections of a 80x 80 x 80 um? sub-volume of a confocal image containing NeuN-stained
somata. (a) Original stack, (b) intensity mapping, (c) lower threshold, (d) hit-or-miss
transform, (e) median filter, (f) closing filter, (g) removal of artificial halos (green), (h)
Euclidean distance transform, (i) regional mazima (markers), (j) modified distance field
to be flooded by the watershed algorithm, (k) marker-driven watershed segmentation, (1)
model-based splitting: soma positions (yellow) and their projections (red).
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Figure 2.3: Illustration of local intensity mapping and local threshold function. (a) Single
x/y image plane affected by uneven illumination. The high-contrast in the upper brick
results in a broad gray-value histogram (c, standard deviation o of black histogram =
6.22), whereas the low-contrast bottom brick has a narrower histogram (d, black, o =
3.58). (b) Image plane after local intensity mapping. The neurons across the entire plane
are of similar intensities. The noise in the prior low-contrast brick is high, resulting in
a much broader histogram (d, red, o = 56.52) whereas the width of the histogram of the
high-contrast brick remains more or less unchanged (c, red, o = 4.36). (c¢) The uneven
illumination results in different histogram width after intensity mapping. In bricks with
high contrast, the intensity mapping leads to amplification of the somata and attenuation
of the background. Hence the lower threshold should be approximately the mean value of
the mapped image. (d) In low-contrast images, the structures and a significant part of
the background are amplified, resulting in a broad histogram. Hence the lower threshold
needs to be higher than the mean value after mapping, which is lowered by amplified
background. This is realized by the threshold function defined in Eq. 2.3. For high-
contrast images t1 is essentially pinew (here: pinew + 1), whereas in the low-contrast case
t1 is significantly increased (here: ppew + 17). 15



2 Determination of the number of neurons and their spatial distribution

SNR is usually too low to set an adequate threshold value that separates somata from
background. Hence the intensities for each brick are mapped by a non-linear sigmoid-
shaped filter (Eq. 2.1) (Ibanez et al., 2005) onto a new range:

255
I = 174_ - R (2.1)

where I’ and I denote the new and old intensity (gray) values, respectively. 3 ideally
represents the center and « the width of the neuron’s intensity range. This filter pro-
gressively attenuates intensity values outside this range and produces a very smooth and
continuous transition to the specific intensity range of interest (Fig. 2.2b). It results in a
per-brick amplification of the neurons with respect to their surroundings (Fig. 2.3a/b).
Systematic testing yielded an intensity range of neurons that is best described by the
following values for 8 and «:

B = Horiginal T 0.75 Ooriginal, & = Ooriginal (22>

where fioriginal and Ooriginat refer to the mean gray value and standard deviation of each
2D image brick, respectively.

2.3.2.3 Lower threshold

Once the neurons are amplified with respect to their surrounding, a lower threshold ¢;
is applied in order to separate the neuron somata from background:

t1 = fnew + 1.1+ _Inew (23)

Ooriginal

where [inew and e, refer to the mean gray value and standard deviation of each 2D
image brick after intensity mapping. This thresholding step sets all voxels below t; to
background, i.e. to value zero. The local threshold function comprises a term inversely
proportional to the standard deviation of the image brick prior the intensity mapping.
This accounts for possible uneven illumination within each image plane. The width of
the intensity distribution (oorigina) can vary significantly from one brick to the next.
Two extreme situations occur when neurons are surrounded by low background, resulting
in broad intensity distributions (Fig. 2.3a, top brick/Fig. 2.3c), and when neurons are
surrounded by background values similar to the neurons’ intensities, resulting in a narrow
distribution (Fig. 2.3a, bottom brick/Fig. 2.3d). In the latter case, the width of the
intensity distribution after mapping will be much larger than the original one (oye >
Toriginal), Tesulting in an approximate threshold of ¢1 & finew + Onew (Fig. 2.3d). In the
other case, the two widths will be of similar order of magnitude, resulting in a threshold
of t1 & ppew (Fig. 2.3¢). Thus, this filter is capable of discriminating neurons surrounded
by high and low background values (Figs. 2.2¢ and 2.3b).
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2.3.2.4 Hit-or-miss transform

The two previous filtering steps result in image stacks of significantly reduced back-
ground. However, small speckle artifacts are usually still present. The image planes
are therefore subjected to a hit-or-miss transformation with rectangular frame masks of
increasing size as structuring elements (Gonzalez and Woods, 2002; Oberlaender et al.,
2007). The transformation is applied to every image plane. Isolated foreground objects
that are completely surrounded by a frame are converted to background (Fig. 2.2d).
Beginning with a radius of one pixel and increasing the frame size subsequently to three
pixels, small and isolated artifacts are removed.

2.3.2.5 Median filtering

In order to smooth the intensity distribution within neurons, a median filter is applied
as implemented by the ITK (Ibanez et al., 2005). Each voxel is assigned a new intensity
value that is the median value of its surrounding voxels (Fig. 2.2e). A neighborhood
size of 5 x 5 x 5 voxels was chosen. This filter is computed in three dimensions because
neurons are 3D objects, which consist of 2D planes that may vary systematically in gray
values. 2D median filters would not decrease these inter-plane deviations.

2.3.2.6 Closing transform

Next, a grayscale closing filter (Gonzalez and Woods, 2002) is applied as implemented
by the ITK (Ibanez et al., 2005). Its geometrical interpretation is that a “sphere”
rolls along the outside boundary of a foreground object (i.e. neuron soma). It tends
to smooth contours, fuses narrow breaks, eliminates small holes, and fills small gaps in
the neurons (Fig. 2.2f). The 3D structuring element (sphere) has a radius of five voxels
(approximately 2/3 of a soma radius).

2.3.2.7 Removal of artificial halos

The uneven uptake of stain results in neurons of weak intensities in intermediate neigh-
borhood to neurons with high intensity values. The intensity mapping described above
causes amplification of the surrounding of such weakly pronounced neurons and some-
times fuses them with other neurons (halos (Fig. 2.2g, green)). By removing “halos”
that were introduced by the intensity mapping, the neurons are cropped to their orig-
inal volume (Fig. 2.2g, yellow/orange). This is realized by processing each 3D object
of connected foreground pixels individually. For each 2D plane of each object, a lower
threshold value t, is calculated, defining the foreground for this object plane:

40
to = Hfilter — 1.2 O filter + ———— (24)

Ooriginal

where fifiiter and o e, refer to the mean gray value and standard deviation of each
2D object plane after the closing filter. The local threshold function comprises a term
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inversely proportional to the intensity deviation of the 2D object plane oigine in the
unprocessed image, again compensating for uneven illumination between the bricks as
described in Section 2.3.2.3. Bricks with weakly pronounced objects have a relatively
small 04riginal, resulting in a larger threshold value. Thus, an outer layer of higher-
intensity voxels is removed from such objects, while retaining it for objects in high-
contrast bricks. The parameters for the threshold function are obtained by systematic
testing. This is the final result of the first (pre-processing) step.

2.3.3 Watershed-based splitting of object clusters

The filtering described in Section 2.3.2 results in a stack of 2D gray-value images, which
is then transformed into a binary stack by setting all pixels with a gray value larger than
0 to 255. In the following such stacks will be considered as single 3D binary images.
In order to find the total number of neurons in the image, one could simply count the
total number of 3D connected foreground objects (groups of connected voxels) in the
image. However, the limited resolution of light microscopy imaging systems in addition
to high neuron densities results in clusters of neurons that cannot be separated by the
pre-processing pipeline. In consequence, direct counting produces total neuron numbers
which are generally too low, because a single foreground object may consist of multiple
connected neurons. We therefore divide such clusters into their constituent neurons,
using a method described by Vincent and Dougherty (Vincent and Dougherty, 1994).
This method consists of three steps:

1. Computation of a distance transform for each 3D foreground object of the binary
image.

2. Finding exactly one marker for each neuron (i.e. multiple markers for neuron clus-
ters), where marker refers to a single voxel or a group of connected voxels.

3. Computation of a watershed transformation, using the markers as initial basins.

2.3.3.1 Geodesic distance transform

First, a distance transform (Gonzalez and Woods, 2002) is computed for each 3D fore-
ground object in the binary image. This results in intensity values for each voxel that
resemble the physical Euclidean distance to the closest background voxel. Thus, voxels
in the interior of objects have high values; object voxels close to the boundary have low
values; and background voxels have zero value (Fig. 2.2h). These values are computed
by repeatedly (binary) eroding (Gonzalez and Woods, 2002; Ibanez et al., 2005) the
objects in the pre-processed image, successively peeling their outer boundaries. During
each erosion step and for each foreground object, the physical Euclidean distance to the
prior erosion level is assigned to voxels of the current outermost layer. A 3 x 3 x 3 voxel
binary cross is used as the structuring element for erosion.
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Figure 2.4: One-dimensional illustration of the separation of touching somata by marker-
based watershed segmentation. Objects containing two (or more) maxima in the distance
field separated by a minimum are assumed to consist of two (or more) clustered neurons
and need to be separated. (a) Regional mazxima of the distance field D. Due to contour
irregularities multiple mazima per object may appear (left object), which is undesired.
(b) By subtracting 1 from the distance field at the positions of the regional mazima,
and computing the regional mazxima of this modified distance field, better markers are
obtained. (c) The adapted distance field is “flooded” using the marker positions as initial
basins (D has been inverted to better illustrate the basin-flooding metaphor). Positions
where the levels from different watersheds meet, are marked as crest regions. After the
flooding is completed, crest regions are turned into background. As a result clustered
neurons are split at the minima of the distance field, i.e. where the connection between
two neurons is thinnest.

2.3.3.2 Grayscale reconstruction

The second step will ideally generate a single marker for each neuron within a foreground
object (Fig. 2.21). One approach to realize this would be to compute the regional maxima
of the distance image (Fig. 2.4a). A regional maximum M of a grayscale image I is
defined as a connected region of voxels with a given value h (plateau at altitude h),
such that every voxel in the neighborhood of M has a value strictly lower than h. An
efficient method to compute regional maxima uses a morphological operation called
grayscale reconstruction (Vincent, 1993) as implemented by the ITK (Ibanez et al.,
2005). Computing all regional maxima results however in too many markers: some
objects have multiple very close regional maxima, due to contour irregularities and
discretization artifacts. Usually these markers differ by only one level in the distance
function. We therefore reconnect such regional maxima by subtracting 1 from the values
in the distance image at all marker positions and compute the regional maxima (Fig. 2.2i)
of this modified distance function (Fig. 2.4b).
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2.3.3.3 Watershed segmentation

The final step uses the set of markers M to assign the set of foreground voxels belonging
to each neuron. These neuron regions are found using a procedure called marker-driven
watershed segmentation.

The general watershed algorithm uses intensity information to divide a gray-value
image into foreground regions (catchment basins), separated by watershed lines (back-
ground). This algorithm can be illustrated by a landscape flooding metaphor. The
inverted distance image D’ = —D can be regarded as a landscape where the minima
of D correspond to valleys (Fig. 2.4c). When this landscape is flooded, the water level
starts to rise from the valleys (or catchment basins) until the different basins meet at
the watershed lines (or crests). Afterwards, each basin corresponds to one of the desired
neuron regions and is bounded by the watershed lines and/or the image background.

The marker-driven watershed segmentation ensures that we obtain exactly one region
for each marker, by creating an input image Dx* adapted from D such that (a) its only
regional minima are located at the marker positions and (b) its only crest-lines are the
highest crest-lines of D that are located between the minima (marker positions). The
image D=x* is then flooded as in the general watershed case. For details we refer to
Vincent and Dougherty (Vincent and Dougherty, 1994). We use the flooding algorithm
described by Soille (Soille, 1999) in order to efficiently find the neurons corresponding
to the markers (Fig. 2.2k).

2.3.4 Model-based cluster splitting

The preceding processing steps result in individual 3D objects (neuron regions) that
represent the neuronal somata within the image stack. However, some clusters of neurons
are still not separated because they have similar intensities and are so close to each other
in the original image that they appear like a single, almost spherical neuron. To separate
such clusters we chose a model-based filter. We assume that within each stack there is
a single dominant neuron population of neurons with Gaussian distributed volumes and
that most clusters could be split by the filters of the first two pipeline steps.

2.3.4.1 Volume histogram and mean neuron size calculation

Regarding the assumption above, we calculate the voxel volume of each watershed region
and create a histogram of these volumes. The first histogram bin always comprises many
small artificial objects. Hence, taking the second peak of the histogram as the mean
volume of the dominant neuron population, a Gaussian distribution is fitted to the
histogram at this value (Fig. 2.5a). The distribution for individual neurons (i.e. not
part of a neuron cluster) is parameterized by three values, the mean value, the standard
deviation and the peak amplitude (u1, o1, A1). Clusters of n = 2,3,..., N connected
neurons will also be parameterized by Gaussian distributions. Their according mean
value p, is simply given by:

pn =111y (2.5)
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Figure 2.5: (a) Volume histogram of watershed objects. The first mode is assumed to
reflect the dominating neuron population and is fitted by a Gaussian (red 1). The higher
modes are assumed to be integer multiples of the first mode (here: 8 more Gaussians
representing clusters of 2, 3 and 4 meurons respectively). The blue plot represents the
sum of the four distributions. (b) Normalized probability values for each object volume.
According to the above distributions four probability values are calculated for each object
volume and normalized to 1. The resulting 4 plots are shown. The intersections (vertical
dashed lines) represent volumes that separate the clusters.

The additional multiplication with 1.1 is due to the assumption that the unresolved
gaps between the neurons add a small amount to the cluster volume, and is derived
experimentally. The standard deviation for each cluster type o, is calculated by standard
error propagation:

on =+/n-o (2.6)

and the according amplitude A, is calculated by averaging the height of the five bins
around p,,. This is done until the largest 3D region (object) in the watershed image is
covered by a distribution (Fig. 2.5a).

2.3.4.2 Evaluation of cluster type

Each watershed object can only belong to a single distribution. Therefore the probability
Pmn for each object and for each distribution is calculated, where m refers to the object
number and n to the nth cluster distribution (number of connected neurons). Each p.,
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2 Determination of the number of neurons and their spatial distribution

value is normalized to one (Fig. 2.5b), resulting in N normalized cluster probabilities
for each watershed object.

— pmn

Pmn = &SN (2.7)
2 n=1Pmn

Each object is regarded to consist of as many neurons as its highest normalized probabil-
ity value. However, objects that are smaller than the mean neuron volume minus twice
the standard deviation are considered to be artifacts and ignored during the further

processing.

2.3.4.3 Splitting of clusters by k-means cluster analysis

Once each watershed object is assigned a most likely cluster type (i.e.n =k =1,2,..., N
neurons), the according k reference voxels (landmarks) are calculated. We therefore use
a k-means clustering algorithm as implemented by the ITK (Ibanez et al., 2005). The
k-means algorithm works as follows:

1. The input for each watershed object are k (= n; i.e. most likely number of neurons
in a cluster) initial mean values (default landmarks) specified as k random voxels
within the object.

2. Each voxel of a watershed object is assigned to its closest landmark among the k
mean values.

3. Calculation of each k-means cluster’s mean from the newly assigned landmark
voxels within the objects and hence updating the k mean values of a neuron cluster.

4. Repetition of step 2 and step 3 until the termination criterion is met, here if no
voxel changes its cluster membership from the previous iteration.

This results in & landmark voxels for an object (consisting of k& = n neurons). Each
landmark is used as position reference of an individual neuron and a list of these land-
mark voxels is visualized in Amira (Stalling et al., 2005) (Fig. 2.21).

2.3.4.4 Correction for 2nd population of larger neurons

The assumption of a single Gaussian distributed neuron volume across the entire image
stack can cause miss-counting if two neuron populations of significantly different vol-
umes are present. Here we assume that there is only a small spatial overlap between
these populations and that one of them is dominant. We argue that this is a reason-
able assumption for the presented image sizes of 375 um x 375 um x 50 um (confocal
microscope with 40x objective). If the minor population is smaller in volume than
the majorities’ mean volume (i.e. GABAergic interneurons), these neurons will still be
counted as one. However, if the minority population consists of large neurons (Fig. 2.6)
the prior described splitting will result in an overestimation of the neuron density.
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100 pm

Figure 2.6: Mazimum z-projection of NeuN-stained confocal image stack. The yellow
box represents the representative volume shown in Fig. 2.2. This stack is in an area
of the cortex where layer 4 neurons (upper part) overlap with larger layer 5 neurons
(lower part). Even though two neuron populations with significantly different volumes are
present, the correction algorithm avoids miscounting (e.g. neurons indicated by arrows).

This issue is addressed by evaluating the local surrounding of each watershed object
before model-based splitting. If more than 10% of the watershed objects in a surround-
ing box of 300 x 300 x 100 voxels have the same cluster probability (larger than 1),
the object will not be split (Fig. 2.6). This filter also corrects for systematic errors
of the pre-processing step. In bricks with low SNR the neurons are slightly enlarged
compared to bricks of high SNR. If significant SNR gradients are present within the im-
age stack, the systematic increase in volume in low SNR bricks can lead to an artificial
second neuron type. This means that the neuron volume in some regions of the image
can be systematically larger compared to the original image stacks. This effect is also
compensated by the described correction filter.

2.4 Methods for visual validation

The development of a segmentation algorithm that consists of a sequence of image
filters, each with its own parameters, is often a trial-and-error process that requires
a frequent evaluation of intermediate results. As an objective quantitative measure
is not always available, this evaluation is commonly done visually. For an efficient
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2 Determination of the number of neurons and their spatial distribution

Figure 2.7: Visual algorithm validation. (a) The result of the binary segmentation step
is visualized by blending the binary mask (red) with the original image data. (b) A 3D
surface representation of each region allows for validation of the cluster splitting tasks.
Clipping planes (front, left) reduce visual clutter. (c) 3D walidation of location and
number of soma centers by simultaneous display of automatically (yellow) and manually
(red) generated landmark sets. Image data, such as a maximum intensity projection,
aids in deciding on correctness of the landmarks.

workflow during algorithm development, easy-to-use visualization tools are therefore
indispensible (Dercksen et al., 2012).

A common way to judge the result of a binary segmentation algorithm is to display
a gray-value image slice overlaid with the segmented foreground in a semi-transparent
color, for example, using Amira (Stalling et al., 2005) (Fig. 2.7a). By moving the 2D slice,
the algorithm developer can quickly verify the quality of the segmentation result. If a
foreground voxel object needs to be separated into its constituent parts, as, for example,
in the cluster splitting steps of the automatic soma detection method, the 2D slicing
approach is insufficient. The boundary between two touching objects should be located
at a thin ‘neck’; which is very dificult to verify on 2D slices. In this case, the generation
of object boundary surfaces using the Generalized Marching Cubes algorithm (Hege
et al., 1997) has proven very useful (see Fig. 2.1c, d; Fig. 2.7b). As in this surface
representation each object has a distinct color, the correctness of the splitting result can
be determined almost instantly.

Visualization is also very useful to compare differences between automatically com-
puted soma positions and those of a reference data set, e.g., a ‘gold standard’, created
manually by an expert. In order to discover whether a particular false positive or neg-
ative result is caused by the automatic algorithm, by expert error, data artifacts, or
differences in treatment of only partially imaged boundary objects, etc., one has to look
closely at each differing data point in combination with the image data. In Amira, one
can for example display both landmark sets with different colors, and show the image
data using 2D textured slices with contrast control (Fig. 2.7¢), or 3D direct volume ren-

24



2.5 Quantitative validation

dering. Together with a simple 3D viewer allowing for interactive zooming and rotating,
this is a very effective environment for visual method validation.

2.5 Quantitative validation

To evaluate the automatic soma detection method, we compare sets of landmarks as
computed by our method to manually created sets that are considered as the “gold
standard”. It should however be emphasized that the results of the manual counting
yielded an inter-user variability of 2.1% (HS Meyer et al., 2010). In general, the scientific
interest focuses on neuron densities. Hence the absolute number of neurons within the
stack volume and the deviation of the neuron positions from manually defined locations
need to be investigated. In addition, we perform a false positive (FP) /false negatives
(FN) analysis.

The comparison was performed “double blind”, meaning stacks were first evaluated
manually by different individuals and afterwards processed by the automated pipeline
described above, without prior inspection of the manual counts.

2.5.1 Input image data and gold standard

The evaluation of the automated counting pipeline is done for 11 confocal image stacks of
NeuN-stained neuron somata, kindly provided by Hanno Sebastian Meyer (Max Planck
Florida Institute). They were randomly chosen from a large data pool that was used for
evaluation of neuron densities within a cortical column of the primary somato-sensory
cortex in rats (HS Meyer et al., 2010). The stacks were taken at various magnifications,
resulting in different resolutions and stack volumes, at various cortical depths (300 —
1800 pm from the pia surface), yielding different dominant neuron populations in each
sample (e.g. layer 4 spiny stellates or layer 5 pyramidal neurons). The stacks were
acquired from 50 pm thick physical sections from cortical tissue of rats. Large three-
dimensional confocal image stacks were generated by mosaic/optical sectioning. Mosaic
refers to multiple overlapping images (e.g. 4 x 4), each representing one microscopic
field of view. In the following, the pipeline was always applied to single fields of view
(i.e. 1024 x 1024 pixel wide image stacks). Pixel size was 0.232 um x 0.232 um (63 %
magnification) for Stack 1 in Table 2.1, and 0.366 pm x 0.366 um for Stacks 2-11 (40x).
Sampling distance along the z-direction during optical sectioning was 0.61 um. For
further image acquisition details we refer to Oberlaender et al. (Oberlaender et al.,
2009) and Meyer et al. (HS Meyer et al., 2010).

The “gold standard” was created as follows. Image stacks containing single mosaic
tiles were loaded into Amira 4.0 or 4.1 (Stalling et al., 2005). Landmarks (3D voxel
coordinates) were assigned manually to the center of all neuron somata during a careful
examination of the image planes (optical sections). Objects at the stack border in the
x- or y-direction were always counted. The z/y overlap was set to approximately 5 pum.
In consequence neurons at the x/y border (overlap area) of mosaic tiles were detected
twice. By aligning the mosaic images, twice detected neuron somata coincided and could
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2 Determination of the number of neurons and their spatial distribution

Stack | #Manual | #Automatic | Abs. # diff. | Rel. diff. (%) | Pos. dev. (um)
1 430 425 5 1.16 4.54
2 846 896 -50 -5.91 3.93
3 270 594 -24 -4.21 4.23
4 871 915 -44 -5.05 4.74
5 1219 1237 -18 -1.48 4.75
6 809 776 33 4.08 1.92
7 719 670 49 6.82 2.05
8 739 680 99 7.98 2.07
9 1035 983 92 5.02 2.70
10 862 846 16 1.86 2.96
11 975 976 -1 -0.10 3.16

Table 2.1: Comparison of manual and automated neuron counts. 14 image stacks from
different cortical layers, at different magnification and acquired with different imaging
techniques were compared. Differences in numbers (relative and absolute) and landmark
positions are of acceptable quality and similar to inter-user variability of manual counts.

be erased. If the mosaic area is chosen larger than the area of interest, x/y border effects
can hence be completely neglected. The x/y border rule was not applied at the z-borders
of the image stacks. Here neurons were regarded to be within the image stack if their
diameter increased to a maximum value and decreased again or was constant for three
more optical sections before reaching the stack border. A detailed description of the
manual counting, the validation of the border criteria and the approximate inter-user
variability of 2.1% can be found in (HS Meyer et al., 2010).

2.5.2 Counting difference

Table 2.1 shows the results for the comparison of automatically and manually detected
landmarks. We observe that no systematic miscounting is performed by the automated
pipeline. The number of detected neurons differs similarly in both directions resulting
in an average counting difference that is less than 1% (0.92% averaged over the number
of data sets). However, the average absolute counting difference in landmark numbers
is around 4%. This value is regarded as the absolute error of the automated counting.

2.5.3 Deviation in landmark position

The average radius of neurons in S1 is between 5 and 15 ym. If the deviation between a
manually placed landmark and its automated counterpart is sufficiently lower than the
smallest radius value of 5 um, the error in position can be neglected and the absolute
difference in landmark numbers is regarded as a meaningful error value.

For evaluation of position deviation the following algorithm was used:

1. Calculate the distance from each automated landmark to each manual landmark.
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Stack | FN[%] | FP[%]

1 9.30 2.78
2 7.23 6.31
3 4.71 7.58
4 4.65 5.35
5 3.19 3.01

Mean 5.82 5.01
Std 2.43 2.08

Table 2.2: False positive landmarks (FP), automated neuron position references with
no manual counterparts and false negative landmarks (FN), manual position references
with no automated counterparts were investigated for 5 confocal NeuN image stacks.
Both values are similar and therefore compensate each other, explaining the low values
of relative neuron number differences.

2. Sort the distances, starting with the shortest one and assignment of this manual
landmark as the nearest neighbor (NN) of the automated one.

3. Check for multiple times assigned NN. If more than one automated landmark has
the same NN, the closest automated one will keep this NN, the other automated
landmarks are assigned to have their second closest manual landmark as their NN.

4. Repeat step 3 until no manual landmark is assigned to more than one automated
landmark.

5. Compute the average distance of all automated landmarks to their assigned manual
NN (see Table 2.1).

The average deviation in position of 3.37 £ 1.11 um is sufficiently less than 5 ym. We
also observe that the position deviation for each dataset is smaller than 5 um. Hence the
error in position can be neglected, because each automatically determined landmark has
a manual counterpart within reasonable distance. It is therefore justified to state that
the absolute difference between manually and automatically detected neuron somata is

4%.

2.5.4 False positive/negative landmarks

In addition to the above considerations about average differences between manual and
automated counts, we performed a false positive /negative analysis for five randomly cho-
sen stacks. We visualized the two corresponding landmark sets in Amira and manually
deleted corresponding landmarks. The remaining automated landmarks were regarded
as FP and the remaining manual landmarks were regarded as FN. These FP/FN ob-
jects are usually ambiguous cases of touching neurons that could for instance either be
counted as one or two neuron somata. Table 2.2 shows the results for this analysis.
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2 Determination of the number of neurons and their spatial distribution

Both, the average FP and FN values are around 5%. This compensatory effect explains
the average relative counting difference of less than 1%.

Further, the automated approach is much faster, reducing manual labor of approxi-
mately 4 h per stack to a few minutes and additional computing time of about 1 h.

2.6 Discussion

We presented a novel approach for fast automated detection of neuron somata in 3D im-
ages. The processing pipeline is based upon three steps: threshold-based pre-processing,
watershed-based and model-based cluster splitting. The method was illustrated by
applying it to NeuN-stained confocal image stacks. However, by adjusting the pre-
processing step, the pipeline can be adapted to deconvolved widefield stacks of NeuN-
labeled neurons and to in vivo 2-photon images of Ca2*t-sensitive neurons (Oberlaender
et al., 2009).

By comparing the automated results with manually generated counterparts and re-
garding these manual counts as the “gold standard” (i.e. neglecting the 2.1% inter-user
variability), the automated system correctly reproduces manually detected neuron so-
mata with more than 90% accuracy. The deviations originate from detection of ambigu-
ous objects, meaning touching neurons that could for instance be counted as one or two
neurons. Compensatory effects of approximately 5% FP as well as FN detections from
ambiguous clusters of neuron somata result in average relative counting differences of
less than 1%. The average error in absolute numbers is approximately 4%.

Further, the automated approach is much faster than manual counting, reducing man-
ual labor of approximately 4 h per stack to a few minutes and additional computing time
of about 1 h.

However, since the last processing step is model-based and hence restricted by con-
straints, the approach presented here has certain limitations. We assume that a single
dominating neuron population with Gaussian-distributed volumes is present within each
field of view (1024 x 1024 pixel wide image stack). If a second minor population of large
neurons is present within the image, it is assumed to be spatially separated from the dom-
inant population. In summary, the first mode of the watershed object volume histogram
should not be blurred by a second or third population. These constraints are met for the
presented “small” image size of 375 x 375 x 50 um? for most brain regions. Nevertheless,
isolated large neurons (e.g. in Layer 5B of S1) can lead to a significant overestimation
of neuron density At this stage these singular events are corrected by manually editing
the landmark file while superimposing the original image stack in Amira.

We would like to argue that our method is not only more accurate than classical
sparse sampling methods, but will reveal new insights in brain organization and will
hence produce deviating results from previous studies. By investigating a volume of
~8mm? of S1 in rats, we observed significant density variations along all three axes
within each cortical layer (HS Meyer et al., 2010). Hence, sparse sampling methods
will yield strongly deviating results, depending on the sample position and orientation
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within the cortex. By counting the absolute neuron number and hence obtaining the
3D neuron distribution across the entire area of interest, our method is independent of
sample orientation, position or shrinkage.

In summary, the here presented counting pipeline is a fast, reliable and objective
alternative to manual counting of neurons. It is applicable to different brain areas,
yields absolute numbers and 3D neuron distributions. It is therefore possible to obtain
statistically valid neuron densities for functional subunits in the brain, revealing their
detailed anatomical basis.
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3 Automatic alignment of sections
containing filamentous structures

3.1 Introduction

Physical sectioning combined with optical sectioning enables researchers to image large
tissue volumes at submicrometer resolution. Optical sectioning microscopy, e.g. using
confocal laser scanning or transmitted light brightfield microscopy, permits the three-
dimensional imaging of the internal structure of tissue by varying the focal plane of
the microscope. However, the resolution that can be obtained is limited by the thick-
ness of the tissue, due to light scattering. Thick tissue can be imaged by first cutting
the specimen into thin sections, which are mounted and optically sectioned individu-
ally to produce a stack of thin, but three-dimensional subvolumes (Bajcsy et al., 2006;
Oberlaender et al., 2007). When using electron tomography instead of light microscopy,
individual cells can be studied at even smaller scale (McIntosh, 2007).

To reconstruct the entire object, the subvolumes representing the physical sections
have to be aligned, because the individual sections may have different positions and
orientations on the microscope slides. There are basically two different approaches to
this problem: image-based and feature-based alignment. Problems with image-based
alignment include imaging artifacts like noise, uneven brightness and poor contrast
(particularly towards the top and bottom of the section, the crucial regions for correct
alignment), as well as the potentially large data sets (multiple gigabytes per section).
For volumes containing filamentous structures, the information that could be used to
obtain a correct alignment is often very sparse, and may be difficult to discriminate from
other, non-reliable structures in the image. It is therefore often beneficial to first extract
features from the image data and perform the alignment on the features. This is the
approach taken here.

We present an automatic method to align a pair of subvolumes containing filamentous
structures (published previously (Dercksen et al., 2009)). The problem can be described
more specifically as follows (see Fig. 3.1): given two subvolumes Sy and S containing
a potentially different number of filaments (polylines), we are looking for a transform T
which maps the end points of filaments in S; onto the corresponding end points in Sy in
an optimal way. A prerequisite for computing 7" is the assignment of correspondences
between filaments in both slices, for which a solution is presented as well. We assume
that enough corresponding filaments are available to find a correct match and that the
slices have not been severely deformed beyond a rigid transform. We demonstrate the
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Figure 3.1: Alignment of sections containing filamentous structures. The two sections
So and S1 have to be aligned. In our approach, the set of filament end points {p;3p} in
So and {q;3p} in S1 in boundary regions, defined as a fraction ro 1y of section thickness
dgo,1y, are projected on the wy-plane. The projected point sets {p;2p} and {q;2p} are
aligned in 2D. The resulting transformation is applied to the entire section.

effectiveness of the fast and robust method by applying it to neuron and microtubule
data sets.

3.2 Related work

Many different methods exist for alignment based on image data directly (Dercksen et
al., 2008; Maintz and Viergever, 1998; Oliveira and Tavares, 2014; Szeliski, 2006) and
image-based feature descriptors (Mikolajczyk and Schmid, 2005; Zitova and Flusser,
2003). Such methods however cannot be used in our case, because our objects of interest
are very thin and difficult to distinguish, especially in noisy images with background
structures in the same intensity range.

In our case, the filaments are obtained by manual or automatic tracing (Meijering,
2010; Weber et al., 2012) and the features to be aligned are the filament end points.
Several methods have been proposed to solve the challenge of simultaneous optimization
of 1) point correspondences between two point sets of possibly different size and 2) the
transform with respect to a particular objective function.

The Softassign Procrustes Matching Algorithm (Rangarajan et al., 1997) casts the
combined continous and combinatorial optimization problem into a nonlinear optimiza-
tion problem by regarding the entries in a match matrix as probabilities. The solu-
tion is obtained by iteratively optimizing the correspondences and the transformation.
Chui (Chui and Rangarajan, 2003) extends this method for non-rigid point matching.
Luo (B Luo, 2001) also extends the Procrustes analysis, but casts the problem into an
Expectation Maximization framework, similarly to Myronenko et al. (Myronenko and
Song, 2010), who provide a closed-form solution to the maximization step of the EM
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algorithm for a general multidimensional case. These methods usually require a suitable
initialization in order to converge to the optimal solution.

Hogrebe et al. (Hogrebe et al., 2012) align axonal branches in neighboring sections
by a rigid and a non-rigid method. The rigid alignment establishes an initial corre-
spondence between axon end points by comparing a point’s histogram containing the
number of points within a set of distances (the bins). The matching is optimized by
a RANSAC (Fischler and Bolles, 1981) approach. For the non-rigid registration, the
correspondence is computed by comparison of each point’s 2D polar histogram of point
positions, filtered by criteria such as maximum distance and incidence angles. The cor-
respondences are refined after warping the points using a B-spline transform with a
control grid of increasing resolution.

Bajcsy et al. (Bajesy et al., 2006) solved the problem in order to align segmented
extracellular matrix proteins and blood vessels contained in a stack of Confocal Laser
Scanning Microscopy subvolumes. A rough initial transform is computed by finding a
matching of filaments with similar cross-section area and similar distances between the
centroids. The transform is then optimized taking into account also angular constraints.
In (SC Lee and Bajcsy, 2008), the transform for the found matching is further optimized.
A polynomial function is fit to the filaments and extrapolated onto a plane between the
subvolumes. The optimal transform is then computed by minimizing position deviation
of the extrapolated points or by maximizing curve smoothness.

Characterization of molecule similarity, important in drug design, is another problem
often posed as 3D point matching (Akutsu, 1996; Baum, 2007). Kirchner (Kirchner,
2007) optimizes an objective function involving the fraction of matched points and the
root mean square distance (rmsd) between matched points after transformation. He
shows that there exists a fully polynomial time approximation scheme (FPTAS) for this
problem, which however runs in polynomial time of high degree.

3.3 A point-matching-based method for section alighment

Of all methods methods mentioned above, we chose to use the point matching approach
of Baum (Baum, 2007) as a basis for the alignment of filament data, because it is fast,
robust, flexible and provides a good initialization of the optimization process. In its
original form, it computes the correspondence between two 3D point sets of possibly
different size and the rigid transform that optimally maps one point set onto the other
(in a least squares sense). We extend it to the alignment of 2D point sets obtained
from traced filaments, describe how to incorporate an optional uniform scaling in the
transform and present some efficiency optimizations.

Given two sections containing multiple polylines, our method computes an optimal
transform, i.e. a rotation angle around the z-axis, a 2D translation parallel to the zy-
plane and an optional uniform scaling, using the following steps:

1. Find the sets of points P = {p;} from the first slice Sp and @ = {q;} from the
other slice S, to be matched. We use the line end points in the section boundary
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3 Automatic alignment of sections containing filamentous structures

regions ro and r1 respectively (see Fig. 3.1) and obtain 2D point sets by orthogonal
projection onto the zy-plane. The region size is chosen as a fraction of the total
slice thickness: 7o = Sdo, 8 € (0, 3].

2. Find a set of candidate matchings and compute a starting transform for each
matching.

3. For each starting transform, optimize the matching and transform with respect to
a scoring function. The result is the transform corresponding to the optimal score.

3.3.1 Computation of candidate point matchings

Given two point sets P = {p;} and Q = {q;},p;,q; € R?, the first step to find the
optimal matching and the corresponding transform, is to compute a set of candidate
matchings.

A matching M defined on two finite sets P and Q is a bijective function M : P —
Q,P C P,Q C Q. M can be written as a set M* of pairs from P x Q with (p,q) €
M* < M(p) = q. The number of pairs |M*| will be referred to as the size of M.

Candidate matchings are found by looking at the Euclidean distances between point
pairs. The goal is to find subsets of points in P and ) that have the same spatial
pattern, i.e. similar mutual distances. In particular, the goal is to find a matching
M : P — Q@ such that the distance between each point pair (p/,p”) in P and the
distance of the corresponding point pair (q’,q”) in Q differ by no more than a given
distance threshold d:

" =P = l(d = a")l] < d. (3.1)

If this condition holds for each point pair in 15, we say that M is a d-bounded matching.
The points in both sets then have a similar positional pattern and M is thus considered
a candidate matching.

The parameter d is data-dependent. It should be chosen small for tracings obtained
from tissue that was little deformed and larger for more deformed specimens.

Usually, multiple d-bounded matchings exist. In order to find them all, we use a
method based on clique detection in the distance compatibility graph (DCG). The vertices
of this graph consist of all (p’, q') pairs. Thus, there are |P|-|Q| vertices. Two vertices
(p’,d’) and (p”,q”) are connected by an edge, if the matching M given by M* =
{(p’,d),(p”,q")} is d-bounded (see Eq. 3.1). A clique in a graph is a subset of vertices
that induce a complete subgraph, i.e. each vertex in the subset is connected to all other
vertices in the subset. A clique is maximal when it is not part of any larger complete sub-
graph. In the following, we use clique to refer to a maximal clique. We find all cliques
(and thus all candidate matchings) using the Bron-Kerbosch (Bron and Kerbosch, 1973)
algorithm.

For each candidate matching we compute a transform that minimizes the root mean
square distance (rmsd) of the matched points. The rmsd of two point sets P and Q
with respect to a matching M and a rigid body transform 7' is defined as:
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Z(p,q)eM* Hp - T<q)”2
| M|

rmsd(P,Q,M,T) = (3.2)

This transform is called the matching transform of M and can be computed in O(|M*|)
time, using the algorithm described in (Kabsch, 1978). The matching transforms of all
candidate matchings are the starting transforms {7} serving as the input for the
following optimization step.

3.3.2 Optimization of matching and rigid transform

In this step, we find the optimal matching M and transform 7" with respect to a scoring
function score:

_ |M*| . ,—oarmsd(P,Q,M,T)

score(P,Q, M, T) —min(|P|, an e (3.3)
The scoring function measures the number of matched points and the root mean
square distance of the matching points after transformation. Its range is [0, 1], where 1
corresponds to the best score. The optimal score is achieved when all points have been
matched and the transform maps the corresponding points exactly onto each other.
The parameter o € [0, 1] weighs the contradicting goals of a large match (o small)
versus small positional error (a large). In an iterative algorithm, we maximize score
alternatingly with respect to M and to T, see Algorithm 1. M is optimized by a
simple and fast greedy approach (Kirchner, 2003), see Algorithm 2. The scoring function
ensures that no point pairs will be assigned to M that are too far apart. T is optimized
by computing the matching transform for a given M. The score-function is maximized
once for each starting transform Tf”it, using the respective Tf"it as initialization. The
final result of the alignment algorithm is the matching and transform corresponding to

the highest score across all computed score maxima.

3.3.3 Extension: Uniform scaling for deformed data

For data that suffered from severe deformations, an additional uniform scaling can lead
to a better alignment. The scaling factor s for the matching transform is computed as
follows:

SMIp )
5= TM*| i l, pP;=pi—cp, q; =R(q —cy), (3.4)

Zz 1 qz qi
where cp/ and ¢ are the average point positions of the matched sets P’ and @’
respectively. R isthe rotation computed as in the rigid case. However, this approach only
works if a suitable clique can be found. The points in such a clique are usually spatially
concentrated, as the effect of the global scaling on their absolute mutual distances is
limited (see e.g. Fig. 3.2b).
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3 Automatic alignment of sections containing filamentous structures

Algorithm 1: Optimize matching and transform

Input: Point sets P and @Q, set of starting transforms {77}
Output: Near-optimal matching M, transform T,

1 foreach T/™! do

2 Snew < 0

3 T'Z — Tiinit

4 repeat

5 Si < Snpew
6 M; + greedyPointMatching(P,Q,T;)
7 T; < computeTransform(P,Q, M;)

8 Snew < score(P,Q, M;,T;)

9 until s,0 < s

10 end
11 (Mopt, Topt) <— arg max score(P, Q; M;; T;)
T

3.3.4 Performance optimization

As the computation of the starting transforms is independent of the point matching
optimization, we can generate a set of starting transforms using different point sets and
use these for the optimization step. When these point sets are smaller than the original,
computing time for clique detection will be reduced. In the case of microtubuli, for
example, one could select the endpoints of filaments which are nearly parallel to the z-
axis (and thus have a good chance of having a matching counterpart) for the computation
of the starting transforms, resulting in much smaller point sets and a significant speed-
up. Of course one can also use the reduced point set for the optimization step, as we do
in Section 3.5.2. As long as enough reliable points remain, a correct alignment can be
achieved much faster.

A second efficiency improvement is a reduction of the number of starting transforms
to compute the optimal matching for, by retaining only transforms corresponding to
cliques larger than a certain minimal size ¢ (we set ¢ = max(2,0.3 - min(|P|, |Q]))).

3.4 Visual alignment validation method

The automatic alignment method is integrated in the Filament Editor, a software frame-
work for proof-editing reconstructions of filamentous structures (see Ch. 4) from multiple
sections. Here, the following visualization techniques are used to aid the user in assessing
alignment correctness:

1. Filament coloring by section. The same color is applied to the filaments within

each section. A small set of clearly discernable colors is assigned repeatedly to
ensure that section membership can be easily determined (Fig. 3.2a).
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3.5 Results

Algorithm 2: Greedy Point Matching

Input: Finite point sets P and @, transform T’
Output: Near-optimal matching M,

Mg 0

P+ P, Q +Q

k<0

while dp € P',q € Q' do

(p,q) < arg min _|p—T(q)|
pEP’ ,qeq)’

My« Mpu{(p.q)}

P+ P"\ {p}

Q'+ Q" \{q}

k+k+1

10 end

11 Mopt <— arg ml?X SCOI‘e(P’ Q; M*; T)

CU o W =

© 0 N o

2. Point coloring and scaling. Filament end points are colored according to the fol-
lowing scheme: matched points obtain the same (random) color, unmatched points
are black, unused points (i.e., end points not in the boundary regions) are colored
white (Figure 3.2b,c; Figure 4.2b). Unmatched and unused points are rendered
smaller to improve the visibility of the matched points.

3. Filament and point visibility. For an unobscured view, rendering of points and
filaments of user-selected sections can be temporarily turned off (Fig. 4.2c).

4. 3D viewer with interactive camera movement, rotation and zooming.

3.5 Results

3.5.1 Alignment of fragments of neural processes

The automatic alignment algorithm was applied to a stack of 30 slices containing frag-
ments of neural branches (axons) obtained from brightfield microscopy (see Fig. 3.2a).
The number of endpoints to match ranged from 3-101.

Almost all slices could be aligned, except two at the top and one at the bottom, where
there were too few points (3—6) to produce a valid result. A good match, and thus a
good alignment, is characterized by a matching fraction that is large enough to rule out
randomness and by the absence of mismatches. The results obtained with parameter
values d = 10um and « = 0.25 fulfilled these criteria, as they resulted in a match size
of 32-100% with a minimum of 5 points and no visually apparent mismatches. The
computation time ranges from 0.02-8.5s.
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3 Automatic alignment of sections containing filamentous structures
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Figure 3.2: (a) Aligned stack containing neuron fragments (filaments colored by section).
(b) Rigidly aligned slice pair containing microtubuli. The matched points are clustered
in the center of the data set (colored point pairs). Further away from the center, there
are many unmatched points (black). Many of those could be matched when using an
additional scaling (c).

—
IS

14

£ B Avg. end pointdist. z M Section 1
212 nter-subject max. 212 M Section 2
19} .
2 10 = *Inter-subject avg. § 10 [J Section 3
B 8 B Section 4
© 5 .
E 8 e e L K z 8 B Section 5
2 g
- 6 5 6
o &
% 4 Q4
g 8
[ %)
- I"l ||||I| I ‘ © '

! :

4 6 8 10 12 14 16 18 20 22 24 26 28
Section number

Figure 3.3: Left: Average distance between manually and automatically aligned end
points (Ao = 25.2um). Right: Average end point distance between the alignments
of three subjects (1, 2, 8) and our automatic method (A). The average and mazimum
value of all subject-subject combinations are indicated by a line in the left figure.
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3.5 Results

The successfully aligned sections (4-29) were compared to their manually aligned
counterpart. The manual transform 7T); and automatic transform 74 were computed
for each slice with respect to the untransformed predecessor section. Then the average
distance A between the filament end points q; that served as input for the alignment
was computed: A = ﬁ Z'fj'l ITh (i) — Ta(q;i)||. The results are displayed in Figure

3.3 (left).

For comparison we assessed the inter-subject differences in manual alignment. A 6-
slice data set was aligned automatically and by three individuals. The average point
distance A was computed as above for all combinations of manual and automatic align-
ments (see Fig. 3.3, right). After visual comparison of the outlier sections 23 and 27, the
expert who carried out the manual alignment confirmed that the automatic alignment
was at least as good. From these results we conclude that the automatic alignment
results in similar quality as the manual alignment.

3.5.2 Alignment of microtubule fragments

We also applied our algorithm to the alignment of a stack of 9 sections containing micro-
tubuli, obtained by manual tracing of electron tomography data using the IMOD (Kre-
mer et al., 1996) software (electron tomograms and tracings were kindly provided by A.
Hyman and Q. de Robillard, MPI of Molecular Cell Biology and Genetics, Dresden).
We failed to manually align the sections as there are many filaments (~700 per section)
but no prominent, clearly identifiable features.

For the automatic alignment the number of points was reduced using the angle-based
selection (see Sec. 3.3.4) to increase performance. All lines having an angle smaller than
70 degrees with the zy-plane were ignored, reducing the average point set size from 436
to 61. Parameter values were set to d = 40nm and a = 0.1.

Our method was able to align six out of eight slice pairs within a few seconds (0.10—
6.7s). Visual inspection showed that the matchings are generally correct and of sufficient
size (18-66% of the points, with a minimum of 10) to obtain a reliable transformation.

However, an additional number of matching point pairs that were not reported by the
automatic algorithm could usually be determined by visual inspection (see Fig. 3.2b).
Firstly, this can be explained by the defensive choice for a resulting in almost no false
pairings, but also in a reduced number of total pairings. Secondly, the results indicate
a non-rigid deformation of the sections. To test this, we added a uniform scaling s as
an additional degree of freedom (see Sec. 3.3.3). The resulting scaling factors ranged
between 0.5-10%, and particularly for the more severely deformed sections resulted in
significantly better alignments (see Fig. 3.2c).

Two slice pairs could not be aligned for reasons that are not yet understood. Analysis
is difficult as manual alignment is not feasible.
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3 Automatic alignment of sections containing filamentous structures

3.6 Conclusion

We presented an automatic method for the alignment of data stacks containing filamen-
tous structures. It uses a point matching approach to find the optimal rigid transform
(with optional uniform scaling) for each section. The application to neuron data showed
that it is fast and produces accurate results. Also microtubuli data could be aligned,
something that is infeasible to do manually.
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4 Reconstruction and analysis of 3D neuron
morphologies

4.1 Introduction

During the past 20 years, many technical barriers for reconstructing single neurons have
been overcome. Labeling neurons using intracellular (Horikawa and Armstrong, 1988) or
cell-attached (Pinault, 1996) pipettes has allowed reconstructing large parts of individual
neurons (e.g. (Binzegger et al., 2004; Broser et al., 2008; Broser et al., 2004; Oberlaender
et al., 2011), thus linking their structure with activity patterns in vitro (e.g. (Feldmeyer
and Sakmann, 2000; Schubert et al., 2006) and in vivo (Oberlaender et al., 2012). In
addition to such conventional techniques, genetic labeling methods based on fluores-
cent proteins have started the identification and reconstruction of relatively uniform,
molecularly identified cell populations (Groh et al., 2010). Further, digital imaging has
advanced rapidly. New imaging methods, such as high-speed mosaic/optical-sectioning
widefield (Oberlaender et al., 2009; Oberlaender et al., 2007) and confocal (Kleinfeld
et al., 2011) systems, as well as block-face two-photon (Ragan et al., 2012) and light-
sheet (HU Dodt et al., 2007) microscopes promise high-resolution imaging of large brain
regions. Finally, the limitations on archiving terabyte data sets have disappeared with
the falling costs of hard disk drives.

As a result of these developments various manual, semi- and fully automated ap-
proaches for reconstructing single neuron morphologies have been reported (see (Dono-
hue and GA Ascoli, 2011; Meijering, 2010) for reviews). The hence rapidly increasing
number of reconstructed neuron morphologies gave rise to collaborative efforts that
collect single neuron reconstructions — the most comprehensive being the NeuroMor-
pho.org repository (GA Ascoli, 2006; GA Ascoli et al., 2007) — or assemble neuronal
network models for computer simulations of cortical signal flow, e.g., the Blue Brain
Project (Markram, 2006). However, the vast majority of single neuron tracings has so
far been obtained from in wvitro preparations, i.e., individual neurons are labeled within
a tissue slice of usually 300 um thickness, e.g., the Blue Brain Project relies entirely
on in vitro tracings (SL Hill et al., 2012). Unfortunately, in vitro tracings suffer from
cut off dendrites and axons (Oberlaender et al., 2012). Reconstructing the complete 3D
dendrite and axon morphology of individual neurons thus requires in vivo labeling in
combination with histological sectioning of the brain (i.e., due to penetration limits of
staining and imaging methods) and subsequent imaging of large tissue volumes. Tracing
of faintly labeled, long-range projecting thin neurites, and recovering across-section con-
tinuity of neuronal branches, thus render reconstructions of in vivo labeled neurons as
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4 Reconstruction and analysis of 3D neuron morphologies

a major challenge in neuroscience research (e.g., see ‘DIADEM’ competition (Svoboda,
2011)).

Nevertheless, for sparsely labeled tissue, reconstruction results are usually assumed to
be highly reliable. However, little validation of this reliability has been reported (Helm-
staedter et al., 2011). Reconstruction validation requires tools that allow users (i) to
assess the correctness of the tracings by visual comparison with the image data, and
(ii) to interactively correct incomplete or erroneous tracings (Luisi et al., 2011). In ad-
dition, in case of in vivo data, alignment and interconnection of tracings across brain
sections must be established and verified. In consequence, we argue that at present,
reconstruction reliability limits the determination of complete 3D morphologies from in
vivo data.

The Filament Editor (FE) presented here (and published previously (Dercksen et al.,
2014)) is an integrated software environment specifically designed to reconstruct and val-
idate single neuron tracings from in vivo preparations. It comprises tools for visualizing
and interactively correcting 3D neuron tracings, alignment, and across-section continu-
ity, allowing for efficient proof-editing within and across brain sections. In addition, the
FE incorporates advanced annotation and morphometric analysis functionalities. We
illustrate the applicability of the FE on frequently occurring use cases and demonstrate
that the proof-editing routines can result in unambiguous tracings of in vivo labeled
axons.

4.2 Related work

Two common approaches to obtain 3D neuron morphology reconstructions are sparse la-
beling (only a small fraction of the neurons in a tissue volume is stained, often only one),
followed by light-microscopic (LM) imaging of the tissue, and dense labeling, followed
by electron-microscopic (EM) imaging.

Helmstaedter (Helmstaedter, 2013) provides an overview of current dense reconstruc-
tion approaches. He contends that purely automatic methods lack sufficient accuracy,
therefore human intervention is required. Two approaches can be distinguished. First,
neurites are traced manually and highly redundantly, followed by automated compu-
tation of the consensus skeleton (Helmstaedter et al., 2011) and potentially a volume
reconstruction (e.g. (Andres et al., 2008)). Alternatively, data sets are segmented au-
tomatically, often involving a classifier trained on user input, followed by interactive
proofreading of the result (Mishchenko, 2009; Sommer et al., 2011). The user proof-
reads the result by inspecting the volumetric segmentation, visualized by color-blending
the labeling onto the original image data; Jeong et al. (Jeong et al., 2010) provide
also 3D volume rendering. Corrections are performed, for example, by modifying the
training set of the classifier (Sommer et al., 2011), or splitting, merging and relabeling
objects (Kaynig et al., 2013).

However, neurons may innervate several cubic millimeters and extend over tens of
centimeters. Currently only sparsely labeled LM images can be used for their recon-
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4.3 Method for proof-editing, visualization and analysis of 3D neuron reconstructions

struction, due to the limited volume (e.g. 60 x 350 x 300 um? (Briggman et al., 2011))
that can currently be imaged using EM. Therefore, we will focus on sparse reconstruction
below.

Peng et al. (Peng et al., 2011) argue that despite great advances in automated tracing
methods (for a review see (Donohue and GA Ascoli, 2011; Meijering, 2010)), proof-
editing remains a necessary, but laborious process. Besides a fully automated proof-
editing system that learns by example to predict the different error types and their
bounds, Peng et al. regard a highly ergonomic 3D interactive WYSIWIG (What You
See Is What You Get) system as a solution to this problem. Although a wide array
of digital tracing tools are available (reviewed in (Parekh and GA Ascoli, 2013)), only
few software packages implement a system that provides effective visual verification and
fast interactive correction of tracings. The FARSIGHT Trace Editor (Luisi et al., 2011),
V3D (Peng et al., 2010), Neuromantic (Myatt et al., 2012) and NeuronStudio (Wearne
et al., 2005) are some examples of tools that provide simultaneous display of image
and tracing data for verification and a set of tools to modify the latter. Some aspects
in which the above mentioned tools differ are the degree of usability (e.g., undo/redo
functionality), whether the tracing can be viewed and edited in 3D (supporting human
pattern recognition to quickly resolve ambiguities), the available measurement functions
and supported platforms (Windows, Linux, Mac).

The FE was designed and implemented to meet high standards with respect to all
of these aspects. In addition, the FE provides alignment and splicing functionalities to
merge multi-section data sets, allowing for a final quality control by checking continuity
of tracings across sections, which none of the above-mentioned packages does.

4.3 Method for proof-editing, visualization and analysis of 3D
neuron reconstructions

The Filament Editor has been developed based on the Amira software (FEI Visualiza-
tion Sciences Group, 2013a), a visualization framework, implemented in C++, which is
frequently used in neuroscience research (e.g. (Ertiirk et al., 2012; Halavi et al., 2012),
NeuroMorpho.org accepts Amira file format).

4.3.1 Input data

The FE takes as input 3D tracings of neuronal branches (or other types of fibrous
structures). These must be represented as polylines, i.e. connected linear line segments.
In addition, image data from which the branches were traced can be provided, either
as 3D stacks, or in 2D, e.g., as a maximum intensity projection. Further, tracings from
multiple image stacks, e.g., consecutive brain sections, can be provided for alignment
and merging.
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Figure 4.1: The SpatialGraph data structure. (a) Dendritic tree of a layer 5 pyramidal
neuron (Oberlaender et al., 2012), colored according to the anatomical labels defined
in (d). (b) Magnification of the encircled region of (a). The nodes (grey spheres) are
connected by edges, represented and displayed as polygonal lines defined by edge points (or
points, for short; displayed as squares). (c) Schematic representation of the Spatial Graph
object in (b). The object consists of three directed edges (Ey, E1, Fa) which interconnect
nodes No, N1, Na (the source node of Ey is not displayed). At branching nodes, the
last point of the incoming edge (P8(0) on edge Ey) coincides with the first point of the
outgoing edges (Pél) and P(§2) on Ey and Es respectively). (d) Semantic information
can be associated with the morphology using labels. The Label viewer is used for editing
label hierarchies, assignment of labels to graph elements, and selection of these elements
for editing, visualization and analysis.

4.3.2 Data structure

Neuron morphology is represented in the FE by the SpatialGraph data structure (Fig. 4.1),
which is similar to previously reported graph formats (Mayerich et al., 2011). Specifi-
cally, the topological skeleton of the graph is defined by a set of nodes, connected by a
set of (unbranched) edges. The edge direction is defined by specification of the source
and target node. Edges can be treated as undirected by ignoring this information. The
graph is embedded in space by associating 3D coordinates with each node. The edge
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trajectory is defined by a sequence of 3D points (vertices). The first and last point of
each edge coincides with the source and target node, respectively.

The data structure was designed to allow interactive editing and rendering of large
3D tracings (e.g. >10k edges, >1M points). For traversing the graph, an adjacency list
is maintained for each node. This approach is more memory-efficient than adjacency
matrices (Skiena, 1998) for storing the present sparse graphs. Further, the explicit
representation of the (high-level) topological structure using nodes and edges allows for
more efficient traversal than through linked lists of (low-level) points (e.g. SWC (Cannon
et al., 1998)) or segments (e.g. MorphML (Crook et al., 2007)). Points are stored as
coordinate arrays per edge for efficient rendering as line strips.

Different types of attribute data can be associated with the nodes, edges and points
of the SpatialGraph for visualization and morphometric analysis. Labels are used to
associate semantic information with substructures of the graph, e.g. ‘Dendrite’, ‘Axon’
and ‘Soma’ (Fig. 4.1a, d). Additionally, numerical attributes can be defined, e.g. a
floating-point value representing the radius at each edge point. Multiple attributes can
be defined on nodes, edges and points simultaneously. For each attribute defined on
nodes, an array is generated holding one value for each node. The array size thus
equals the number of nodes. Edge and point attributes are stored analogously. The
attribute arrays are kept up-to-date throughout the editing process to match the graph
structure. Tracings can be imported into the FE using the SWC (Cannon et al., 1998),
hoc (Carnevale and Hines, 2006) or the amiramesh (FEI Visualization Sciences Group,
2013b)) file format. These formats, as well as MorphML (Crook et al., 2007) can be
used to export the tracings.

4.3.3 Visualization

The FE provides a 2D and 3D viewer for proof-editing a tracing. The 3D viewer of the
FE displays the graph using spheres for the nodes, squares for the points and polylines
for the edges. The user can inspect the spatial structure of the tracing in 3D by camera
rotation, zooming and panning using the mouse, and edit each of the graphs’ compo-
nents. Nodes, edges and points can be colored according to one of the label attributes.
Their displayed size is user-adjustable. Besides traced morphologies, the 3D viewer can
display additional data using any available Amira display module (FEI Visualization
Sciences Group, 2013b). For example, the neuron morphology can be jointly visualized
with the image data using volume rendering, 2D slices or intensity projections. The
SpatialGraph can be visualized as tubes by mapping a radius attribute defined on edge
points to cylinder thickness (rendering is based on (Sigg et al., 2006)).

The 2D viewer displays a slice of user-defined thickness of the graph, superimposed
on a maximum intensity projection (MIP) of the corresponding 3D image region (FEI
Visualization Sciences Group, 2013b). Hiding the remaining image and tracing regions
provides an unobstructed view to locally verify the tracing with respect to the image
stack. By varying the slice depth and/or orientation, the user navigates through the
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volume. The slice MIP and bounding box can be displayed in the 3D viewer to provide
additional spatial orientation.

Both viewers can be used either side-by-side or one may be used exclusively. User-
selected sets of nodes and edges can temporarily be hidden in both viewers by excluding
them from rendering. Images are using standard bitmap formats such as BMP, JPEG,
PNG, and TIFF, or in the amiramesh format. Stacks of 2D images are converted into
3D volumes during import.

4.3.4 Selection tools

Modification of the traced morphology is achieved by selecting one or more elements
(nodes, edges, points), followed by the invocation of an operation (e.g. deletion) (McGuf-
fin and Jurisica, 2009). To provide a selection system that is ‘powerful’ (i.e., allowing
efficient selection of any subset of elements) and ‘forgiving’ (i.e., the selection itself can
easily be modified) (Wills, 1996), the following tools are available in the FE:

o Single-Element Selection: selects single nodes, edges or points that have been
clicked on with the mouse.

o (Connected-Component Selection: selects the entire subgraph connected to the el-
ement that has been clicked on with the mouse;

e Lasso Selection: selects all nodes and edges within a user-drawn polygon. Using
a modifier key, only connected components that are completely contained within
the Lasso polygon are selected.

o Select-All, Clear and Invert Selection: selects the entire SpatialGraph, deselects
and inverts the current selection, respectively.

e Label Selection: selects graph elements with a particular attribute by clicking on
the respective label in the Label Viewer (Fig. 4.1d).

Holding a modifier key adds to the current selection. Selected items are highlighted
in red in the viewers.
4.3.5 Editing operations

The following operations are available to manipulate the data structure:

e Deletion of selected nodes and edges;

e Splicing (connecting) edges. Splicing is achieved by selecting either two nodes,
two points, or one point and one node, followed by the invocation of the connect
operation. Nodes are connected by a new straight edge. Selected points are con-
verted to nodes as they will be branching points; the new nodes are subsequently
connected. The splicing operation connects multiple selected elements at once as
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follows. First, all nodes and edges connected to the currently selected elements
are added to the selection, resulting in multiple connected subgraphs. An edge
is added between any two terminal nodes from different subgraphs that have the
smallest Euclidean distance until all subgraphs are connected.

e Point-to-node conversion converts a selected point into a node, resulting in an edge
split. The inverse Node-to-point operation concatenates two edges, while removing
the intermediate node. The latter can be run for a single selected node or for all
intermediate nodes at once. Together with the Remove-isolated-nodes operation,
all nodes that are neither branching nor terminal nodes can be purged from the
graph.

e Edge-smoothing. Edges are smoothed by repositioning their edge points as follows:
the user specifies the neighborhood size N, which must be odd. The position of
each point p; on the edge is replaced by the average of its own position and the
M = (N — 1)/2 points along both directions:

i+M

;1
P = Z Pk (4.1)
k=i—M

The first and last M points on the edge are not moved, effectively leaving all nodes
in place.

e Transformation. An affine transformation can be applied to tracings, images or
any other 3D data set (FEI Visualization Sciences Group, 2013b). For example,
a linear scaling could be applied, independently for all dimensions, to compensate
for tissue shrinkage.

All editing operations can be undone/redone. Shortcut keys are defined to efficiently
switch between the different selection and editing tools, as an alternative to clicking tool
buttons (Nielsen and Mack, 1994).

4.3.6 Semantic labels

Semantic information can be associated with nodes, edges and points by assigning labels.
A label is a name (i.e. a string), uniquely identified by an integer value and associated
with a color. Labels are organized in a hierarchical fashion, i.e. in a tree data structure,
providing access to graph substructures at different levels of detail. Upon creation of a
node (or edge/point) label attribute, each node (or edge/point) is assigned a label from
the tree.

The Label Viewer (Fig. 4.1d) is part of the FE user interface allowing the user to (i)
define and edit custom label trees, (ii) assign labels to selected substructures of the graph
and (iii) select these substructures for editing, visualization and analysis. For example,
one could define a hierarchical label tree with root label ‘Neuron’ having child labels

47



4 Reconstruction and analysis of 3D neuron morphologies

Align options ‘\ rotation
Sort by attribute: | Transforminfo handle
Section Show Z-Coordinate  File [ Hideall |
i 0.000000 S08_Arilam | o y
= e
2 2 80.000000 S06_Ariel.am ‘ /A/‘—’
3 >  120.000000 505_Ariel.am A Al X ~ o
4 | 160.000000 504 Ariel.am ‘& \
5 2  200.000000 S03_Ariel.am %\
6 =  240.000000 S02_Arielam |
7 @  280.000000 SO1_Ariel.am ':,t:,::ff,t,'x,e % \_
Automatic alignment ®
Align slices: o Pair-wise All \
Points start transform: v/ End nodes | | Contour centers \ o /{
Points PM optimization: (¥| End nodes | | Contour centers ) '_I_>
Show advanced options Auto-Align b s ol A ® translation
a b 4 MY PeEETe oo c handle

Figure 4.2: Section alignment. (a) The Align toolbox provides access to both automated
and interactive alignment. The section list allows a user to (i) select a section to align,
(ii) toggle section wisibility, and (iii) manually adjust the z-position of a section. (b)
XY -view after alignment of eight sections. FEdges are colored by section, alternating
red, blue, and black. Nodes are colored by matching result. Matching nodes in different
sections are assigned the same label, and thus the same color. Black nodes could not
be matched; white nodes were not used for alignment. (c) Interactive alignment using
a handle. Only the section that is currently transformed (red, highlighted in the table
in (a)) and its predessor (blue) are visible; other sections are hidden not to obscure the
view.

‘Axon’ and ‘Dendrite’ and assign these to the respective edges and nodes. Selecting the
root label (i.e. ‘Neuron’) in the Label Viewer highlights all edges and nodes assigned
to child labels recursively (i.e. ‘Axon’ and ‘Dendrite’), while selecting ‘Dendrite’ would
highlight the subset of ‘Dendrite’ elements exclusively. Alternatively, the Label Viewer
supports flat label hierarchies (i.e., only one level of labels below the root). For example,
the ‘identify loops’ functionality of the FE (FEI Visualization Sciences Group, 2013b)
automatically assigns all edges comprising a loop the same label, pinpointing potential
autapses (i.e., an intersecting dendrite and axon from the same cell) or falsely connected
branches.

4.3.7 Section alignment

The FE incorporates an automated method (Dercksen et al., 2009) for rigid align-
ment (Zitova and Flusser, 2003) of tracings obtained from adjacent image stacks, e.g.
from consecutive brain sections (see Ch. 3). The automated algorithm is complemented
with a user interface for interactive manual alignment (Fig. 4.2a, c).

First, tracings from adjacent image stacks are merged using the CreateSpatialGraph-
Stack module. This module generates a new SpatialGraph by positioning tracings from
image stacks obtained from adjacent brain sections at either fixed distances along the
z-axis (i.e. perpendicular to the cutting plane) or such that the bounding boxes adjoin.
Tracings from image stacks obtained from the same brain section can be merged with-
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out (z-)translation for subsequent manual alignment. The nodes and edges are assigned
identifier labels that refer to the corresponding image stack. Transformations can thus
be applied to tracings of each individual stack by transforming all nodes and edges with
a particular label.

The stack of tracings is aligned by repeated pair-wise alignment of neighboring sec-
tions. The automated method (Dercksen et al., 2009) uses a 2D point matching approach
to compute the optimal transform, i.e. a rotation angle around the z-axis and a 2D trans-
lation parallel to the xy-plane. The points to be matched are the terminal nodes in the
top and bottom region of each section, e.g. within the upper and lower 25% (Fig.4.2b).
The algorithm seeks to maximize the number of matching points, while minimizing the
positional difference between matched points, weighting these conflicting goals, similar
to other feature-based alignment methods (Szeliski, 2006). This approach is sufficiently
fast to be used in an interactive workflow (Dercksen et al., 2009), with response times
ranging from a fraction of a second for a small number of end points (~30), to several
seconds for a larger set (~100).

Sections can be aligned simultaneously or pair-wise. The resulting alignments imme-
diately appear in the 3D viewer, allowing visual validation (Fig. 4.2¢). In cases where
the automated alignment result is not satisfactory, the user can interactively translate
and rotate each section with respect to its predecessor section in the 3D viewer using
handles. All other sections can be hidden to not obscure the view.

4.3.8 Interactive manual tracing

The interactive tracing functionality available in the 2D viewer (FEI Visualization Sci-
ences Group, 2013b) can be used to manually add filamentous and/or anatomical ref-
erence structures. The user adds new nodes by clicking on the desired location in the
image. The node is added at the mouse cursor position at the depth of the image plane
(for 2D images) or the depth with highest image intensity (3D image). The node is auto-
matically connected to the latest created node by a new edge. This feature can be used
to augment automatically generated tracings, for example with contours representing
anatomical landmarks, such as pia, white matter or blood vessel outlines (Fig. 4.3a), as
well as with 2D outlines of the soma in different optical and or histological sections.

4.3.9 Visual and quantitative morphometric analysis
The FE includes the following tools for visual and quantitative morphometric analysis
(Fig. 4.3):

e Branch length and node statistics (number of branching, terminal nodes) for the

entire graph or for a selected subgraph, grouped by semantic labels.

e Quantitative measurement and visualization of branches within/outside a reference
volume (Fig. 4.3a). Closed 3D surfaces representing such reference volumes can
be generated from 2D contour outlines of anatomical landmarks, as well as from

49



4 Reconstruction and analysis of 3D neuron morphologies
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Figure 4.3: Morphometric analysis. (a) Manual drawing of anatomical landmark con-
tours. Contours outlining so called barrel columns in rat vibrissal cortex (S1) are cre-
ated by clicking on the MIP image. A new node (red) is automatically connected to
the previously created node by an edge (green). (b) Visual and quantitative analysis of
semantically labeled neuronal branches with respect to anatomical reference structures.
Here, azonal length of a Layer 5 slender-tufted pyramidal neuron is evaluated with re-
spect to the barrel columns in S1 (Oberlaender et al., 2011). The axon length within
and outside each column was automatically computed, exported to a spreadsheet, and
visualized using the Filament Editor by labeling all edge points as either inside (red) or
outside (black) any cortical column. (c) Branch density visualization and quantification.
A grid of 50 um vozels is superimposed onto a reconstructed thalamocortical axon labeled
in rat vibrissal thalamus in vivo (Oberlaender et al., 2012). For each grid cell the total
azxon length is computed and visualized in 3D or as 1D density profile by accumulating
length densities across each xy-plane.

50



4.3 Method for proof-editing, visualization and analysis of 3D neuron reconstructions

contours representing neuron somata (Fuchs et al., 1977). The length contained
within a volume is computed by intersecting all edge segments with the triangles
comprising the bounding surface, performing a point location test (Skiena, 1998)
and accumulating the length of the confined branches. The result is output to a
spreadsheet. The parts of the morphology contained within a volume can further
be visualized by labeling the edge points by the name of the respective structure
and coloring the graph according to these labels (Fig. 4.3a).

e 3D density of morphological properties. A 3D grid of user-defined voxel size is
superimposed onto the morphology and morphological properties of the tracing
within each voxel (Fig. 4.3b) are computed. Particular properties of interest are
the number of branching nodes or branch length. Branch length within a voxel
is computed by clipping each segment between adjacent edge points against the
voxel’s bounding box (Liang et al., 1992) and accumulating the resulting lengths.
Semantic labels allow distinguishing between substructures.

e 1D profile of morphological properties. By accumulating the values in voxels in
each plane (e.g. having the same z-value) of the 3D voxel grid described above, a
1D profile of the property of interest along an axis can be extracted (see Fig. 4.3¢
and (HS Meyer et al., 2010; Oberlaender et al., 2012)).

4.3.10 Visual and quantitative comparison of tracings

Quantitative comparison of tracings obtained from the same image data set requires
defining their correspondence. Because of the intricate relation between topology and
geometry, at present, correspondence definitions need to employ heuristics (Gillette et
al., 2011; Mayerich et al., 2011).

Here, we implemented such a comparison metric, based on (Helmstaedter et al., 2011),
as follows: Given the set of reconstructions Ry,..., Ry (/N being the number of users),
first, edge points are inserted on all edges (without modifying the trajectory), such that
the distance between any two edge points is smaller than a maximum sampling distance
D.

Second, the reconstruction R, is pair-wise compared to the reconstructions of all other
users Ra...Ry. For each edge point p on R; the number of reconstructions is counted
that have a point p that corresponds to p. p corresponds to p if they are no further
than a maximum correspondence distance R apart, i.e., |p — p| < R. This results in
the number of corresponding edge points C(p) € [1, N]; C(p) = 1 if there is no other
reconstruction with a matching point (R; agrees only with itself in p), C(p) = N if all
other reconstructions have a matching point.

Third, the total length of all edges of Ry is divided among N bins Li,...,Ly. A
bin L; represents the length of Ry that was agreed on by i reconstructions. To this end
all straight segments between pairs of successive edge points p and q are regarded. If
C(p) = i, then half the length of segment pq is added to L;, same for q. The length
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bins are computed separately for all other reconstructions Ro, ..., Ry. The length per
bin is presented to the user in a spreadsheet.

To visualize the correspondences, an integer attribute is defined on the edge points,
storing the value of C'(p) for each point. Displaying one or more reconstructions colored
according to this value, similar to (Mayerich et al., 2011), effectively pinpoints inter-user
differences.

4.3.11 Implementation

The FE is integrated in the Amira (FEI Visualization Sciences Group, 2013a) /ZIBAmira
(Zuse Institute Berlin, http://amira.zib.de) visualization framework. The FE GUI
contains the 2D and the 3D viewer, the Label Viewer, a toolbar containing the selection
and editing tool-buttons and a set of toolboxes. First, the View toolbox contains GUI
elements to control the display of the nodes, edges and points. Second, the Align toolbox
(Fig. 4.2) provides access to manual and automated alignment functionalities. Finally,
the CorticalColumn toolbox provides tools for morphometric analysis with and without
respect to anatomical landmark contours.

The Amira/ZIBAmira framework is implemented in C+4. It uses Qt 4.6 for the
graphical user interface (GUI) and the Openlnventor (FEI Visualization Sciences Group,
2013c) library for 3D rendering. The main FilamentEditor class is a Singleton (Gamma
et al., 1994) that holds references to the image and SpatialGraph data, the highlighted
and visible selections, the viewers and other GUI elements. This class acts as a Me-
diator (Gamma et al., 1994) that (i) accepts requests from tools and GUI elements
to change its data members (e.g. editing operations, selection/visibility changes), (ii)
applies the changes, (iii) redraws the views and (iv) notifies the tools and toolboxes
regarding the changes by emitting differentiated Qt signals. Tools and toolboxes can
attach a Qt slot to each of these signals allowing them selectively update their state
(Observer pattern (Gamma et al., 1994)).

The SpatialGraphSelection class represents the selection status of the nodes and
edges as bit vectors (for constant-time lookup) and an array of selected points (the
number of points can be large, but only few are usually selected at once). Single element
selection uses the picking functionality of Openlnventor. The connected component
selection tool uses a depth-first traversal (Skiena, 1998) of the graph, starting at the
picked graph element. The Lasso selection uses available Amira functionality that (i)
lets the user draw a 2D polygon, (ii) rasterizes it resulting in a screen-sized bitmask
indicating the polygon containment for each pixel and (iii) answers point containment
queries by projecting a given 3D point to screen coordinates and looking up the bitmask
value. To select all nodes and edges encircled by the polygon, the Lasso tool first selects
all contained nodes. Then all points of edges having both source and end node selected
are checked for containment. Edges with all of their points located within the polygon
are added to the final selection.

All editing operations are derived from an abstract Operation class, following the
Command pattern (Gamma et al., 1994). Each Operation subclass takes the currently
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highlighted selection as input and implements an execute() and an undo() method,
the latter reversing the effect of the former. An OperationSet is a special subclass that
represents a sequence of elementary Operations, allowing multi-step modifications to be
handled as one. The main FilamentEditor class receives Operations from the editing
tools, calls their execute () method and pushes them onto the undo/redo stack.

4.4 Results

4.4.1 Application example: 3D reconstruction of individual axons labeled in
vivo

We illustrate a potential workflow using the tools of the FE to generate complete 3D
morphologies for the example of in wvivo labeled axons, reconstructed by a previously
reported automated imaging and tracing pipeline (Oberlaender et al., 2007). The ex-
ample workflow consists of the following steps: (i) preprocessing: sample preparation,
imaging, and tracing, (ii) proof-editing of tracings of individual image stacks and (iii)
alignment and proof-editing of tracings across multiple image stacks. The steps will be
described in detail below.

4.4.1.1 Preprocessing: sample preparation, imaging and tracing

Briefly, individual neurons in rat vibrissal thalamus (for a gallery of reconstructed cells
see (Oberlaender et al., 2012)) were filled with biocytin using whole-cell (Margrie et al.,
2002) patch-clamp recordings in vivo. This technique allows labeling the complete den-
dritic and axonal projections of individual neurons (Horikawa and Armstrong, 1988).
After perfusion, brains were fixed and cut into 50 pm thick consecutive vibratome sec-
tions. Histological staining with DAB (Wong-Riley, 1979) enhances the contrast of
the biocytin-labeled neuronal branches in each section. Using a custom-designed mo-
saic/optical-sectioning brightfield microscope (Oberlaender et al., 2009; Oberlaender et
al., 2007) and Surveyor image acquisition software (Objective Imaging Ltd.), 3D image
stacks of typically 2 mm x 2mm x 0.05 mm volumes were acquired in vibrissal cortex at
a resolution of 0.184 um x 0.184 um x 0.5 um per voxel (i.e., at 100x magnification).

Neuronal structures were automatically extracted from eight consecutive image stacks
using a previously reported and validated automated tracing software named Neuro-
Morph (Oberlaender et al., 2007). Projection images of each image stack, as well as
3D skeletons of neuronal branches (i.e. SpatialGraph files) represent the final results of
the automated pipeline for each brain section. A position label is assigned to all edges.
The labels indicate whether the connected component containing the edge (i) touches
the top of the section (blue), (ii) touches the bottom (green), (iii) passes through (i.e.
touches top and bottom; red) or (iv) touches neither top nor bottom (yellow). Thus, a
fragmented neuronal process passing through an image stack generally consists of one
or more green, zero or more yellow, and one or more blue parts (Fig. 4.4).
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Figure 4.4: Splicing fragmented branches. (a) In the 2D MIP image (from an inverted
brightfield image stack) an azxon fragment can be clearly distinguished from background.
(b) Based on 3D information, the automated tracing algorithm generated a fragmented
result (possibly due to faintly stained regions in the axial direction), with connected com-
ponents labeled as touching top (blue), bottom (green) or neither top nor bottom (yellow).
(c) MIP and tracings are superimposed in the FE. (d) Rotating the view immediately re-
veals the order in which the axonal fragments have to be spliced. (e) After zooming in on
the region pointed at by the arrow, two branches are selected. (f) The selected branches
are connected using the splicing tool, resulting in an added edge segment (magenta). (g)
Splicing of the remaining fragments. (h) The 3D view facilitates visual validation.

4.4.1.2 Proof-editing of tracings from individual image stacks

The FE is used to interactively splice (connect) fragmented edges and to delete falsely
traced edges from the automated tracing in each individual section. The user loads the
automatically traced neuron fragments and displays them in the 3D viewer, colored by
position labels. The tracing data is superimposed on the maximum intensity projection
image (MIP) of the respective image stack. Four typical proof-editing situations are
illustrated in Figures 4.4-4.7.

Case 1: Splicing (Fig. 4.4). In the MIP, neuronal processes are easily distinguish-
able from background structures (Fig. 4.4a). Nevertheless, the tracing algorithm may
generate a fragmented result (Fig. 4.4b, c), for example due to poorly stained regions
in the axial direction. In such cases, the position label colors facilitate identification of
potentially contiguous parts. However, the lack of depth information in a 2D projection
view hampers user decision-making on which fragments are to be connected and in what
order. By 3D rotation of the camera (Fig. 4.4d), human pattern recognition can quickly
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Figure 4.5: Connecting edges at a branching point. (a) Azonal fragments (black arrow),
whose 3D configuration is difficult to identify from the 2D MIP. (b) Even when display-
ing the position labels, the correct configuration remains ambiguous in 2D. (c¢) Rotation
of the camera immediately reveals the three-dimensional configuration of the fragments.
(d) After splicing azonal fragments (magenta segments) and removal of false segmenta-
tion results, branches may have to be connected at branching points (one such point is
indicated by the arrow). (e) Close-up of the region pointed at by the arrow in (d). Nodes
are displayed as circles, edge points as small squares. The edge point to be turned into
a branching node and the terminal node of the upper edge are selected and (f) spliced,
resulting in a point-to-node conversion and a new edge connecting the selected node with
the new branching node. (g) The reconstruction result superimposed onto the MIP, and

(h) viewed in 3D.

resolve this. Using the selection and splicing tools of the FE, gaps between identified
fragments can be closed (Fig. 4.4e-h).

Case 2: Creating new branching points (Fig. 4.5). A new branching connection is
created by selecting a terminal node and a point on a different edge. The latter will
be converted into a branching node (Fig. 4.5d, e) when applying the splice operation
(Fig. 4.5f). The most likely location of the new branching node can easily be identified by
the operator, using the position-dependent coloring (Fig. 4.5b) and 3D camera rotation
of the tracing and MIP (Fig. 4.5c). The Splicing operation invokes a point-to-node
conversion of the selected point. The new node is connected to the selected node by
a new edge, turning the former into a branching node. These steps result in a fully
connected structure (Fig. 4.5g, h). Any intermediate nodes (having exactly two incident
edges) are removed in a final step by invoking the node-to-point operation.
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Figure 4.6: Removal of false segmentations. (a) A correctly traced neurite segment (blue)
is surrounded by oversegmented fragments (yellow). (b) To remove these, the lasso selec-
tion tool is employed, using the modifier key that ensures that only connected subgraphs
are selected that are completely contained within the user-drawn polygon (green). (c)
Thus only oversegmentations are selected (red), (d) which can be quickly deleted.

Figure 4.7: Removal of false connections. (a) Axonal branches, superimposed on the
MIP. Nodes are displayed as circles. The tracing is difficult to verify from this view.
(b) The 3D view reveals that the tracing consists of two almost parallel azonal branches
connected by a bridging edge (red) at the arrow, which is to be removed. (c¢) 3D close-up
of the region around the false connection. (d) Resulting two separate branches (colored
differently for visualization purposes) after deletion of the selected edge and node-to-
point conversion of its defining nodes.

Case 3: Remowval of false segmentations (Fig. 4.6). When all neurites in a particular
region have been identified, falsely segmented fragments must be removed. In the present
example, the NeuroMorph algorithms accept oversegmentation to ensure that no faintly
stained axons are falsely discarded. The Lasso tool provides a dedicated mode (activated
using a modifier key) to select only connected subgraphs that are entirely contained
within a user-drawn polygon. This allows to select all small artifacts in the neighborhood
of a reconstructed neuronal process at once and to delete them, without affecting the
larger structure.

Case 4: Removal of false connections (Fig. 4.7). Occasionally, nearby branches may
have been falsely connected by the tracing algorithm. Figure 4.7 illustrates how such
situations are resolved. In the present example, the NeuroMorph algorithms created
tracings whose spatial structure is difficult to verify from the 2D MIP image (Fig. 4.7a).
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The 3D view (Fig. 4.7b, c) reveals that the structure consists of two parallel axonal
branches connected by a ‘bridge’. Such bridges originate from limited resolution and
are biologically implausible — they could result in loops in the neuronal tree — and must
therefore be removed. To correct the false connection the user selects the bridging
edge and removes it (Fig. 4.7d). After deletion of the edge, the defining nodes are no
longer branching nodes. These intermediate nodes are removed using the node-to-point
operation, joining its two incident edges (Fig. 4.7d).

4.4.1.3 Alignment and proof-editing across multiple image stacks

An important aspect of reconstructing complete 3D neuron morphologies is the merg-
ing of tracings obtained from multiple image stacks (e.g. consecutive brain sections).
Here, tracings containing axonal branches from thalamocortical axons in eight consecu-
tive brain sections were proof-edited as described above and then merged into a single
SpatialGraph using the CreateSpatialGraphStack module (see Sec. 4.3). The tracings
obtained from each image stack were translated in the z-direction, i.e. perpendicular to
the cutting plane, such that their bounding boxes adjoin.

The Align toolbox (Fig. 4.2a) in the FE was then used to rigidly align the subgraphs
corresponding to each section tracing. The automated algorithm determined the correct
transformation for all tracings in the 8-section data set. After alignment, the branches
were connected across the section boundaries using the Splicing operation. The align-
ment and splicing process is regarded as the final quality control, as tracings of branches
passing through multiple brain sections can be checked for continuity.

The final tracing result is scaled in the z-direction to match the vibratome-defined
thickness of the brain sections (i.e. 8 x 50 um = 400 pm), compensating for potential
tissue shrinkage. Further, smoothing along the z-direction is applied (N=9, see Sec. 4.3)
to remove staircase artifacts in the skeletons due to anisotropic voxel sizes (i.e. 0.184 um
in z/y, and 0.5 um in z). As a result, axonal branches of more than 1em path length,
including 31 branching points, were extracted from this example data set.

4.4.2 Inter-user variability of proof-editing in vivo-labeled neurons

The proof-editing of tracings obtained from individual image stacks, as well as the
alignment and interconnection of tracings across image stacks, may introduce inter-user
variability to the final 3D neuron reconstructions. Thus, we validate the above described
tasks involving the FE by investigating the reproducibility of the final tracing result. To
do so, five users proof-edited, merged and aligned the 8 tracings of the example data set.
The users had varying degree of experience. One expert user has been involved in the
development of the FE, two experienced users have been using the FE for approximately
12 months and two novice users only received a short introductory training.

Table 4.1 shows a comparison across users of the reconstruction results after proof-
editing and merging (including smoothing and z-scaling) the 8 input tracings. As a
first assessment of the inter-user variability, we compared the number of reconstructed
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U1 U2 U3 U4 U5 Mean | SD | % of mean
#Branches 20 19 20 21 19 20 0.84 4.2
#Branch points 31 31 31 32 30 31 0.71 2.3
Length (um) 10762 | 10953 | 11053 | 11313 | 11153 || 11047 | 207 1.9
Time intra (min.) 344 209 118 130 405 241 129 53
Time inter (min.) 25 22 20 17 24 22 3.2 15

Table 4.1: Comparison between 5 users (U1-US5) of the morphological properties of the
final reconstructions. ‘Branches’ are edges in the SpatialGraph. ‘Time intra’ is the accu-
mulated time in minutes required for proof-editing all eight input tracings. ‘Time inter’
1s the time required for inter-section proof-editing, i.e., merging, alignment, interconnec-
tion, scaling, and z-smoothing. Ul and U5 are novice users, U2 and U3 are experienced
users, U4 is an expert user.

axonal branches (i.e. edges in the SpatialGraph) and branch nodes. The results of the 5
users were essentially identical, given these coarse measures (i.e. 20 £+ 0.84 branches, and
31 £ 0.71 branching nodes, mean+SD). Second, we investigated whether the extracted
branches were similar in path length. We found that the inter-user variability in path
length was surprisingly small (SD=2% of the mean) for the present example data set of
axonal branches from an in vivo labeled thalamocortical neuron.

While we could not observe any differences in tracing reliability across users, the
time required for proof-editing deviated substantially with experience. Novice users (Ul
and Ub) need 2-3 times longer (344 and 405 minutes, respectively) than well-trained
users (U2 and U3; 209 and 118 minutes, resp.). The difference between well-trained
and the expert user (U4; 130 minutes) was less pronounced. In addition to the coarse
comparison, we investigated the agreement between different users on branch trajectories
(see Sec. 4.3). The user agreement of a single example section (S01) and of the final
result after alignment, interconnection, smoothing and z-scaling (S01-S08) is shown
in Figure 4.8a,b and Figure 4.8c—, respectively. To quantitatively describe the user
agreement of the proof-edited tracings, we computed the accumulated length of all edge
segments of each reconstruction that was agreed upon by the majority of the users (i.e.
at least two other users found a corresponding segment). This length, expressed as a
percentage of the total length, is computed for all users and for each of the eight tracings
(Table 4.2).

We find that, on average, between 85.7% and 94.5% of the tracings from individual
image stacks are agreed upon by at least 3 users. The larger values of the standard
deviation of particularly S02, S03 and S04 are mainly due to U5, whose proof-edited
tracings have a relatively large fraction of branches not retained by the other users.
These numbers have to be interpreted with caution. Inexperienced users (e.g. U5) may
pursue a conservative approach, by retaining fragments that cannot doubtlessly be iden-
tified as foreground and by revisiting them during the inter-section proof-editing phase,
where they can be judged within the context of the other brain sections. Consequently,
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Figure 4.8: User agreement between reconstructions. (a) Reconstruction of section S01
created by one of the users. FEach edge point is colored by the number of users that
found a corresponding point. (b) S01 reconstruction of all 5 users superimposed. (c)
Reconstruction of all 8 sections by one of the users. (d) X Z-view of the reconstruction
result of a single user showing the original sections (odd sections in green, even in red)
and the interconnecting segments (black). (e) The results of all users superimposed
(X Z-view). The bottom section remains untransformed, resulting in a virtually exact
overlap between all users. Differences in alignment accumulate towards the top of the
stack, resulting in minimally diverging branches. (f) XY -view on superimposed results
of all users. Mazimum sampling distance for single section (S01) comparison: D =
0.25 um; mazimum correspondence distance: R = 0.5um (vozel length in z-direction).
For comparison of entire stack: D = 2.5 uym, R =5 um.
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Ul U2 | U3 | U4 | Us || Mean | SD
S01 95.6 | 96.1 | 97.0 | 96.5 | 87.5 || 94.5 | 3.5
S02 91.1 | 92.3 | 95.8 | 85.8|63.6 | 8.7 | 11.5
S03 95.6 | 94.3 | 96.4 | 98.7 | 64.6 || 89.9 | 12.7
S04 92.3 | 88.8 | 97.1 | 96.2 | 62.5 || 87.4 | 12.8
S05 88.5 1 96.8|96.9 | 955|855 | 92.6 | 4.7
S06 929 | 84.9 | 98.9 | 91.1 829 | 90.1 | 5.8
S07 96.7 | 92.6 | 96.4 | 94.3 | 88.2 || 93.7 | 3.1
S08 97.1 | 83.1|97.6|99.0| 874 | 928 | 6.3
S01-08 (R=1pum) | 59.5 | 69.9 | 24.3 | 77.7 | 70.2 || 60.3 | 18.9
S01-08 (R=5um) | 100.0 | 99.6 | 98.8 | 97.4 | 98.4 | 98.8 | 0.9

Table 4.2: Fraction of length (%) found by three or more users for each section after intra-
section proof-editing and the final reconstruction (S01-08) after inter-section splicing
(R = 0.5 um, unless stated otherwise; D = R/2).

retaining ‘false positive’ branches is not necessarily wrong, as long as they are removed
during inter-section proof-editing.

Thus, we applied the same procedure for the completed reconstructions comprising the
eight aligned and interconnected tracings (Table 4.2, S01-08). We find that for a small
correspondence distance (R = 1 um) on average 60.3% of the total axon length is agreed
upon by the majority of users. To investigate whether this relatively small fraction
is due to missing branches or differences in alignment, the correspondence distance
was increased to 5 pum, resulting in an average agreement of 98.8%. Thus, virtually
all branches had counterparts and the large fraction of unmatched branches (i.e. at
R = 1 um resolution) must originate from small differences in alignment, as illustrated
in Figure 4.8.

In a previous study (Dercksen et al., 2009) we showed that the automated alignment
method yields results comparable to those produced by an expert user when aligning the
same data sets. However, in the present example, we compare the alignment between
data sets that are slightly different due to inter-user differences after proof-editing trac-
ings of each image stack. All sections in all five data sets could be successfully aligned us-
ing the default parameters (distance threshold d = 10 um and weighting factor o = 0.25,
see (Dercksen et al., 2009)). Differences in rotation and translation between users are
listed in Table 4.3. We find that these differences are small. Rotations differ by at most
0.33 degree, translations by at most 4.04 ym and 4.17 um in x and y, respectively.

In summary, comparison of the proof-editing results produced by five different users
indicates a high degree of accuracy of the final morphology. First, coarse comparison
yielded only small differences in the number of branches (~1 error per 20 branches),
branching nodes (~1 error per 31 branching nodes) and total length (~19 um error per
1mm axon, see Table 4.1). Second, agreement in trajectories after proof-editing varied
between 85.7% and 94.5% across individual image stacks (Table 4.2). Third, differences
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R(°) T (pm) T, (pm)
max-min | SD | max-min | SD | max-min | SD
S02 0.11 0.04 1.66 0.58 2.14 0.71
S03 0.03 0.01 0.44 0.18 0.17 0.06
S04 0.25 0.09 2.49 0.81 3.85 1.27
S05 0.33 0.13 3.94 1.52 4.17 1.57
S06 0.13 0.05 1.56 0.60 1.44 0.54
S07 0.27 0.09 1.36 0.43 3.68 1.32
S08 0.13 0.05 4.04 1.44 3.46 1.22

Table 4.3: Inter-user differences in alignment. FEach row lists the difference between
mazimum and minimum rotation angle (R), translation in x- and y-direction (T, Ty)
of each section with respect to its preceding section (S01 remains untransformed), as well
as the standard deviation (SD) of all 5 users.

in alignment are small, i.e. ~4 um (Table 4.3). Consequently, the trajectories of the
final reconstructions across multiple image stacks are very similar: on average 98.8% of
the reconstructed trajectories were identical across users, using a correspondence radius
of 5um. No significant differences were measured between expert and novice users.
Specifically, the consensus length was computed for two groups consisting of the three
most (U2, U3, U4) and three least experienced (U1, U3, U5) users, respectively. The
average consensus length (i.e., at least 2 of 3 users agreed) as a percentage of the total
length was 98.7% for the less experienced and 98.8% for the more experienced group
(using the correspondence distance of R = 5 um). However, the amount of manual labor
required for proof-editing automated tracings decreases with experience from ~6.5 to
~2 hours per centimeter axon.

4.5 Discussion

4.5.1 Applicability and inter-user variability of the Filament Editor

The FE combines various visualization, selection and modification functionalities that
allow interactive proof-editing and analysis of 3D neuronal tracings within an easy-to-use
and intuitive GUI. Using an example dataset of in vivo labeled thalamocortical axons
from eight consecutive large, high-resolution image stacks, we illustrated four general
situations that may occur during proof-editing any sparsely labeled morphology data.
The relative abundance of each of the four use cases will however strongly depend on
the image and labeling quality, as well as on the accuracy of the automated or manual
tracing methods.

The example data set used here, can be regarded as one of the most challenging
cases for reconstructing complete and accurate 3D neuron morphologies. First, the
neurons were labeled in rat thalamus in vivo, whereas its axonal branches were imaged
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within vibrissal cortex, about 3mm away from the recording site. Thus, in addition
to faint staining caused by thin axonal diameters, diffusion of the tracer (i.e., biocytin)
along centimeters of axon may have further decreased signal-to-noise ratios of terminal
branches. Second, due to the large axonal innervation volume, here 2mm x 2mm X
1mm, the tissue was imaged using a brightfield microscope (at a resolution at the
diffraction limit of light) at the cost of contrast and axial resolution. Any fluorescent
microscope system of superior contrast and resolution (e.g. 2-photon) would require
impractically long imaging times, compared to the ~24 hours required using the present
system (Oberlaender et al., 2009; Oberlaender et al., 2007).

Finally, because of the faint labeling and limited contrast, the automated tracing algo-
rithms (i.e. as implemented within the NeuroMorph pipeline) accept oversegmentation
to guarantee that all axonal fragments are reconstructed, at the cost of picking up also
background structures. The completeness of detecting and tracing all axonal fragments
by the NeuroMorph system has been validated against manual results generated by hu-
man expert users previously (Oberlaender et al., 2007). Consequently, because the FE
allows unambiguous proof-editing of the thalamocortical axons presented, datasets of
higher contrast, higher resolution or less background will certainly allow for an even
faster and equally reliable proof-editing of complete 3D morphologies using the FE.

Using a challenging dataset, we illustrated that the combination of 3D image data (e.g.
as a 2D MIP) with (i) 3D tracings (edges are rendered as polylines, nodes as spheres,
points as squares), (ii) semantic labeling, (iii) 3D viewing (i.e. camera rotation, transla-
tion and zoom), as well as (iv) 3D selecting, hiding and editing is a convenient, intuitive
and fast approach to extract reliable 3D morphologies from large sparsely labeled im-
ages. Here, about 0.5 terabyte of image data, containing more than one centimeter
of axonal fragments could be proof-edited with 98.8% accuracy within 2-6 hours, the
proof-editing time depending on the experience of the operator.

4.5.2 The Filament Editor facilitates proof-reading in vivo datasets

In contrast to existing neuron proof-reading tools (see Sec. 4.2), the FE has been de-
signed to meet the specific demands of in vivo labeled datasets. The general challenges
for validating neuronal tracings from in vivo data arise from the (i) the large innerva-
tion volumes of individual axons (e.g., ~12mm? for L5 slender-tufted pyramidal neurons
(L5st, see Figure 4.3b) in rat vibrissal cortex (S1) (Oberlaender et al., 2011)), (ii) the
complexity of the axonal arbor (e.g., 86.8 & 5.5 mm path length, 216 + 35 bifurcation
points for L5st in S1) and (iii) axonal diameters as thin as 100nm. Consequently,
validating in vivo tracings can be considered as at least one order of magnitude more
complex (i.e., in terms of imaging volume, axonal path length and topology) compared
to in vitro data from the same species, brain region and cell type (e.g., L5st axon length
in S1 from in vitro tracings was reported as 7.8 & 2.5 mm (Frick et al., 2008)). These
challenges are for example illustrated by the fact that, at present, the NeuroMorpho.org
repository comprises 5,405 neocortical neurons from various species, but only 3% (188
neurons) of them were labeled in vivo and only 0.4% (21 neurons) contain both, recon-
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structed dendrites and axons. Moreover, none of these 21 neurons were reconstructed
at a magnification of 100x (i.e., as was the present example dataset), which may be
critical to reliably detect all axonal projections (Oberlaender et al., 2009).

The Filament Editor provides proof-editing strategies to overcome the challenges de-
scribed above. First, we incorporated 3D visualization and 3D editing routines that
remain functional for imaging volumes and tracing complexities beyond typical in wvitro
datasets. For example (i) the data structure was designed to render and edit large fil-
ament data sets, a consequence of the complexity of in vivo labeled morphologies and
of oversegmented automated tracings results, while maintaining interactive usability.
(ii) The selection system allows the user to efficiently highlight the desired part of the
tracing based on location (single click, lasso selection), connectivity (connected com-
ponent), or semantic label for editing or visualization. (iii) Selectively hiding parts of
the tracing allows focusing on specific regions of large structures without visual clutter.
(iv) As shown in the results, the semantic labeling feature enables position-dependent
labels, which visually support user decision making on what neuronal fragments are to
be connected or discarded. Second, we integrated alignment and splicing functionalities
to merge multi-section datasets, allowing for a final quality control by checking continu-
ity of tracings across brain sections. Again, the semantic labeling eases across-section
editing by visualizing edges from different sections in different colors.

Other unique features of the Filament Editor include simultaneous display and quan-
titative comparison of tracings for assessing inter-user variability, as well as morpho-
metric analysis with respect to 3D anatomical structures. Taken together, the FE will
help increasing the so far negligible number of validated 3D neuron tracings from in vivo
preparations.

4.6 Conclusion

We presented the Filament Editor (FE), a software toolbox integrating components
for proof-editing neuron tracings in 3D, across-section alignment and morphometric
analysis. The effectiveness of the FE was demonstrated on the example of in vivo
labeled axonal branches from multiple brightfield image stacks. The FE addresses a
clear need for efficient and effective proof-editing, advancing the possibilities for high-
throughput reconstruction of accurate and complete 3D neuron morphology. Altogether,
the FE facilitates quantitative neuroanatomical studies from in vivo labeled data (see
Ch. 6), as illustrated on the examples of determining cell types (Oberlaender et al.,
2012), axon projection patterns (Oberlaender et al., 2011), plasticity during sensory
deprivation (Oberlaender et al., 2012) or simulations of sensory-evoked signal flow (Lang
et al., 2011).
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5 Assembly of neural networks and visual
analysis of synaptic connectivity

5.1 Introduction

Investigation of the cytoarchitectonic structure and synaptic connectivity of the rat
barrel cortex, or cortical brain regions in general, is important to gain insight into signal
flow between cell types and cortical columns. This potentially yields an understanding
of how sensory input is processed and ultimately leads to certain behavior. In order to
study the barrel cortex and its synaptic connectivity, an anatomically realistic model is
to be created. The model represents the neuron population comprising the barrel cortex,
or subnetworks therein. It is created using a reverse engineering approach, integrating
different types of detailed anatomical data, including spatial neuron distributions (see
Ch. 2) and 3D morphology reconstructions (Ch. 4). Based on the spatial structure of
the neuron population, the synaptic connectivity between (groups of) neurons is to be
estimated.

The resulting model is an explicit 3D geometrical description of a neural network,
annotated with metadata, such as the cortical columns containing the cells, cell types,
and subcellular structures (soma, axon, dendrite). As such, the model contains all
information to compute the synaptic connectivity between any two neurons or groups
of neurons, based on structural axon-dendritic overlap (Peters’ rule (Peters, 1979)),
yielding estimated connectivity at the subcellular, cellular and population scale.

This wealth of connectivity information is however nontrivial to access, due to the
resulting size of the models (~0.5 million neurons for the entire barrel cortex) and
number of connections. Therefore, a visual analysis tool is required that lets the user
explore the data, and supports an iterative, drill-down workflow to answer increasingly
specific questions. Particular neuroscientific questions of interest that could be answered
based on the information contained in the model are:

Q1 Where does a neuron or group of neurons obtain input from, i.e. to which presy-
naptic cells is it connected? Or, conversely, where does a presynaptic group project
to?

Q2 How does thalamic innervation differ between columns and between cell types in
the columns?

Q3 How are synapses distributed on the postsynaptic cell? Can cell-type-specific clus-
tering of synapses at particular locations be identified?
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Q4 How large is the input of surrounding columns compared to intra-column input
for different cell types?

Answers to these questions would help to identify local (intra-column) and long-range
(inter-column) microcircuits involved in processing of tactile information obtained from
single or multiple whiskers. Furthermore, at the subcellular level, cell-type-specific dis-
tributions of synapses may be directly compared to functional imaging data (Varga et
al., 2011) to understand how cell function relates to its structural properties.

In the following, first the reverse engineering method for assembling neural net-
works (Dercksen et al., 2012) is described in detail, including the estimation of synaptic
connectivity. The approach has been applied to model connectivity in networks repre-
senting two neuron types (VPM and L4ss (Lang et al., 2011)), the excitatory neuron
population in a cortical column (Oberlaender et al., 2012), and the entire barrel cortex,
including their VPM input. Here, first the assembly of the model representing the entire
barrel cortex will be described; the other networks have been created in a similar man-
ner, but with less cortical columns/cell types. Second, a framework (Dercksen et al.,
2012) is presented for the visual analysis of synaptic connectivity in such networks across
multiple scales, which could be used to answer the neuroscientific questions above.

5.2 Related work

The reverse engineering approach to establish an anatomically realistic neuron popula-
tion has recently been used to model and analyze the structure (but not the connectivity)
of the rat hippocampus (Ropireddy et al., 2012). Burysjuk et al. (Borisyuk et al., 2011)
use a similar approach to model a tadpole spinal cord and its connectome, albeit us-
ing an axon growth algorithm instead of anatomical reconstructions. No literature was
found, however, on modeling of the rat barrel cortex.

Lin et al. (CY Lin et al., 2011) present a tool for issuing spatial queries on a database
containing reconstructed Drosophila neurons registered into an atlas. Although this
provides information about neural connectivity based on spatial proximity, it does not
permit quantitative conclusions about connectivity strength as this requires realistic
estimates of number and type of neurons.

Brain connectivity can be studied at different scales, ranging from the macroscale
(connections between brain regions) to the microscale (connections between individual
cells). At the mesoscale, connections between medium-sized neuron populations, e.g.
cortical columns, are studied (Sporns et al., 2005). Independent of scale, the connec-
tion pattern can be represented by a graph, which, in the context of connectomics, is
often represented by a connectivity matrix. The nodes represent anatomical units, e.g.
synapses, neurons, groups of neurons or brain regions, depending on the scale. The links
represent connections between the nodes and are either binary, indicating the presence
of a connection, or weighted, quantifying the connection strength.

The most appropriate way to obtain connectivity information depends on the scale (Pfis-
ter et al., 2014). At the macroscopic level, fiber tracking of axons in diffusion tensor
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imaging (DTI) is a technique to identify connections (Hagmann et al., 2010). At
smaller scales mainly electron- or light-microscopic techniques with appropriate stains
are used (Kleinfeld et al., 2011).

Brain networks can be analyzed mathematically, using methods and concepts from the
fields of graph/network theory and topology (Kaiser, 2011), and/or visually. Creating
easily interpretable visualizations of brain networks is non-trivial, as such a network
is often a complex graph embedded in 3D. For example, axonal tracts obtained by
DTT fiber tracking can be directly rendered in 3D. However, their number and density
causes clutter and hampers interpretation, requiring techniques such as abstraction and
filtration (Jianu et al., 2012) to create effective visualizations.

Being a graph, the connection matrix can be visualized using common graph vi-
sualization methods. The most common method is direct visualization by a heat map
(Fig. 5.4c), where the connection strength between each pair of nodes is color-coded (Bas-
sett et al., 2011). The main disadvantage is that this visualization provides no spatial
context. To aid their interpretation, heat maps can be complemented by a 3D visual-
ization of the anatomical elements, represented by the nodes. Often these elements are
brain regions, e.g. obtained by segmenting MRI data. They are displayed in 3D using
surfaces (see e.g. (Bassett et al., 2011; Gerhard et al., 2011)) or volume rendering (Y Guo
et al., 2012), thereby color-coding some network property of the nodes. Alternatively,
node-link diagrams based on a force-directed layout algorithm (Hagmann et al., 2008) or
connectograms (Irimia et al., 2012) are used. These, however, suffer from clutter when
network complexity increases. A disadvantage of multiple complementary views is that
switching incurs mental effort.

Concluding, at present anatomically realistic 3D models of the rat barrel cortex at
cellular resolution do not exist. In addition, general tools for analyzing connectivity
information, such as the heat map or variations of node-link diagrams, have severe
drawbacks. Dedicated tools for analyzing multiscale connectivity information between
neuron populations within and across cortical columns are currently lacking.

5.3 Assembly of cortical neural networks

5.3.1 Input data

The following data forms the input for the network assembly:

e 3D Soma distribution. The soma distribution is given by a 3D density field; the
value of each 50 x 50 x 50 um? grid cell represents the number of somata that it
contains. This (preliminary) data is obtained by automatic counting of somata in
confocal images, as in (HS Meyer et al., 2010).

e Column properties. The cortical columns, together with the pia and white matter
surfaces, form the geometric reference system of the barrel cortex (R Egger et al.,
2012). The barrel cortex model (Dercksen et al., 2012) consists of 24 cortical
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columns. Each column is described by its center, axis (approximately perpendic-
ular to the pia), radius, and a label, derived from their position in the barrel field
(see Fig. 1.1c). Each position is identified by a row (A-E) and arc (1-4), with
additional columns a—¢ in front of the first arc. These geometrical properties and
metainformation are important for neuron positioning and model analysis, as de-
scribed below. For the single-column model (Oberlaender et al., 2012) only the
D2 column was used.

Cell type metadata. Currently, 10 cell types are modeled: 9 excitatory neuron
types in the barrel cortex, and the VPM neurons in the thalamus (axons only).
Each cortical cell type is named after the layer in which their somata are pre-
dominantly located, with an optional subtype indication, e.g. Layer 4 pyramidal
(L4py) neurons. Provided is also the number of presynaptic contact sites (boutons,
B) per um axon and the number of postsynaptic contact sites (spines, o) per um
dendrite. At present, these are given constants (0.33 and 0.5 resp. (Lang et al.,
2011)), and identical for all cell types.

3D morphologies of all cell types. Approximately 100 dendritic and ~60 axon
morphologies of 10 different cell types have been reconstructed from brightfield
microscopy images (Bruno et al., 2009; Oberlaender et al., 2011; Oberlaender et
al., 2012), a representative sample that captures the anatomical variability of the
excitatory cell types in the vibrissal cortex (Oberlaender et al., 2012). They have
been registered into all 24 columns (R Egger et al., 2012), resulting in ~3700
morphologies.

Cell type mixture boundaries. The mixture of cell types varies with cortical depth.
To correctly populate the modeled volume, including the septum, the boundaries
between different cell type mixtures have to be defined for the entire region. In
order to model the correct mixture of cell types at each location, a set of curved,
nearly-parallel surfaces bounding different mixture types and spanning the entire
barrel field is computed as follows. First, the mixture boundaries within a repre-
sentative column (e.g. C2) are determined (Oberlaender et al., 2012). To achieve
this, the position and cell type is determined for all somata of the dendritic mor-
phologies in the column. Then, the soma positions are projected onto the column
axis and binned into 50 pm intervals. Finally, the cell type mixture for each inter-
val is computed. When neighboring intervals have different mixtures, a boundary
point is defined between them on the column axis. The resulting set of points is
transferred to all other column axes, applying a scaling to reflect the differences in
column length. A surface between corresponding boundary points on all column
axes is created by Delaunay triangulation. Fig. 5.1a shows the resulting surfaces.

Orientation field. The apical dendrite of pyramidal neurons in the cortex is usu-
ally oriented perpendicular to the pia (for cell types that lack an apical dendrite
the neuron orientation is defined as the direction of the main axon towards the
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white
matter

Figure 5.1: Establishing the barrel field neuron population. For illustrative purposes, each
step of the population assembly is shown in a different column and for a small number of
morphologies only. a) Mixture region boundary surfaces (clipped). b) Soma distribution
inside a column. c) Cell type assignment. d) Dendrite reconstructions, colored by cell
type. e) VPM azon reconstructions.

white matter). To retain this property when populating the neural network, the
orientation of morphologies has to be adjusted. This local apical dendrite orien-
tation is computed by interpolating the axis direction of the 3 nearest columns at
each point. To speed up computation, this local axis direction is precomputed by
sampling on a uniform grid A (50% um? voxels).

5.3.2 Establishing the neuron population

Based on this data, the model of the barrel cortex is created as follows. First, a re-
alization of soma positions is computed that satisfies the given soma density field, see
Fig. 5.1b.

Second, each soma is assigned a cell type (Fig. 5.1¢c). The mixture region containing
a soma is determined by finding the intersection with the boundary surfaces above and
below the soma along the direction of the axis of the nearest column. The soma is
randomly assigned a cell type satisfying the mixture for this region.

Third, dendrite morphologies are placed at the computed soma positions (Fig. 5.1d).
For each soma, a dendrite morphology, which soma position is close (< 50 um) to the
computed soma position, of the assigned cell type and column that is closest to the
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soma is picked. This morphology is transformed as follows: 1) rotation around the
column axis, such that the orientation with respect to the column center is retained; 2)
translation of the reconstructed soma to the new position; 3) scaling along the column
axis so the dendrite remains within the column; 4) rotation around the soma, such that
the orientation towards the pia surface is retained; the new orientation is looked up in
the axis field A.

Finally, reconstructed axons of neuron types for which dendrites are placed are du-
plicated such that their number equals the number of dendritic reconstructions. VPM
axons are also duplicated; their number is determined by counting the somata in their
respective thalamic region (Oberlaender et al., 2012).

The result of the final step is a population P of axon and dendrite morphologies
positioned in 3D space. Each morphology has a cell type. Given the definition of the
column cylinders, for each dendritic morphology its nearest column is computed and
whether its soma is inside or outside this column. This allows us to define groups of
morphologies: a group G(¢-) consists of all neurons of cell type ¢t having their soma
inside column col. In addition, we define the groups G(VFM <o) consisting of VPM
cells, whose somata are located in the thalamus instead of the columns, but have axons
projecting mainly into their respective columns col.

5.3.3 Estimation of synaptic connectivity

Synapse numbers are estimated based on structural overlap between axons and dendrites,
commonly referred to as Peters’ rule (Peters, 1979). Specifically, the number of synapses
is determined by dividing the local number of presynaptic contact sites (boutons) on the
axons among the local number of postsynaptic contact sites (spines) on the dendrites
(see Fig. 5.2). To this end, the volume V containing all neurons is partitioned into a
uniform grid of volumetric elements (of grid cell size 50% um? in our case, related to the
registration error of the morphologies into barrel field reference system (R Egger et al.,
2012)). Given the bouton and spine densities /3, o, the number of boutons B(c, x) of
neuron ¢ within grid cell x is

B(C7 X) = /B : Laxon(ca X), (5.1)

where Lggon(c,x) is the axon length of ¢ in x. The number of spines SP(c, x) is,

analogously,
SP(c,x) = 0 - Laendrite(¢, X). (5.2)

The number of boutons of an entire presynaptic group is obtained by summing over all
neurons in the group:

B(Gpre,x) = Y B(i,x), (5.3)

1€Gpre

and for the number of spines of the entire population:

SP(P,x) = > SP(j,x). (5.4)

JjeEP
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Figure 5.2: lllustrative example of the computation of synaptic connectivity for a small
neuron population. (a) The 3D bouton density (red) of a presynaptic neuron groups is
estimated by computing the length of the axonal branches (grey) in cubical grid cells,
multiplied by the number of boutons per pym axon. The image shows a mazrimum in-
tensity projection of the 3D bouton density field. (b) The spine density of the dendritic
branches of a postsynaptic neuron group is computed analogously. (c) Based on these
distributions, the number of synaptic contacts between the pre- and postsynaptic neuron
group s estimated. The synapse density is highest in the region with most axo-dendritic
overlap.

The number of synaptic contacts S(Gpre, ¢, x) of a presynaptic neuron group Gpr. with
a postsynaptic cell ¢ within grid cell x is computed as follows:

B(Gpre, %)

S(Gpre, ¢, x) = SP(c,x) - SP(P.x)

(5.5)

From these single-cell synapse distributions, we can compute different statistical quan-
tities of interest, e.g. the total number of synapses S(Gpre,c) of ¢ with a presynaptic

group:
S(GPT‘€7 C) = Z S(Gprea C, X)> (56)

xeV

or the total number of synapses of a postsynaptic group with a presynaptic group:

S(Gpres Gpost) = > S(Gpre, ). (5.7)

CEGpogf,
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Dividing by the number of postsynaptic cells |Gpost| results in the average number of
synapses per postsynaptic cell:

S(Gprea Gpost |Gpost‘ Z S pre; C (58)

CEGpOSt

Computing S(Gpre, Gpost) for all combinations of pre- and postsynaptic groups results in
a connectivity matrix M, representing the total number of synapses between each pair
of groups. This can be done analogously for the matrix M consisting of S (Gpre, Gpost)
entries.

5.4 Framework for visual analysis of synaptic connectivity at
multiple scales

A framework has been developed that lets the user visualize and extract quantitative
synapse connectivity information from a barrel cortex model described above. It can
be used, e.g., to answer the neuroscientific questions (Q1-Q4) posed in the Introduction
(5.1). The framework consists of multiple coordinated views and follows the Model-
View-Controller paradigm. The model consists of:

e neuron population P,

e network metadata: column geometry and cell type properties (e.g., bouton/spine
density 5 and o, respectively),

e synapse evaluator proxy providing values of connectivity matrices M, M and
synapse densities for the 3D view,

e selection of pre- and postsynaptic groups {Gpre}, resp. {Gpost },

e and a selected postsynaptic neuron ¢ € {Gpost }-

To ensure interactive response times, the connectivity matrix values are precomputed.
The 3D synapse distributions (see Eq. 5.5) are computed on-the-fly using cached values
of frequently used fields (population spine density grid SP(P,x) and bouton densities
for all groups B(Gpye, X)).

The framework presents the user the following views:

e Cortical Column Connectivity View (CCCV, see Sec. 5.4.1),

e 3D view showing the synapse density as well as synapse distributions on the den-
drites of individual neurons (see Sec. 5.4.2),

e heat map view of a connectivity matrix, because it is a standard visualization (see
Fig. 5.4c).
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Whereas the CCCV and the heat map visualize connectivity at the scale of cell popu-
lations, the 3D view shows synaptic innervation at the subcellular scale. Both the heat
map and the CCCV can display either the values of M or M. The user can explore
the connectivity information by interactively defining selections {Gpye} and {Gpost} for
which the synapse information is to be shown in the CCCV. This can be done either in
the CCCV or in the heat map; the selection is automatically propagated to the other
view (in the heat map, the selection is simply highlighted, as it always shows the entire
matrix). In addition, a single neuron of any of the selected postsynaptic groups can be
selected, for which the synapse distribution is displayed in detail in the 3D view. Single
neurons can be selected by picking from a list, sorted by neuron group. By iteratively
modifying the selection in a targeted manner the user can drill down in the data, while in-
creasing insight. The framework is implemented in ZIBAmira (http://amira.zib.de).

5.4.1 Cortical Column Connectivity View

To overcome the main disadvantage of the heat map (no spatial reference), we devised
a visualization that presents the essential connectivity information within and between
cortical columns in a semi-spatial context. In the CCCV, the columns are displayed in
2D as contours (Fig. 5.3a). Their position approximates their relative position within
the cortical sheet (Fig. 1.1c), thus creating a spatial reference. A more exact mapping
of the cortical sheet to the 2D plane would be conceivable, but for our application this
approximation sufficed. In each contour the pre- and postsynaptic connectivity values
are displayed as bars. The vertical ordering of the cell types follows the cortical layering
and is therefore a rough approximation of the spatial column axes (Fig. 5.3c).

The user explores the connectivity information by interactively specifying selections
{Gpre} and {Gpost} (Fig. 5.3b, ¢). When a selection has been defined, the bars on the
left side of each column show for each selected presynaptic neuron group the sum of
synapses this group projects to. Conversely, the bars on the right side display the sum
of synapses each postsynaptic group receives from the selected presynaptic groups. The
sum of all values on the presynaptic side thus always equals the sum of values on the
postsynapic side.

5.4.2 3D view of subcellular synapse distributions

The purpose of the 3D view is two-fold: first, it visualizes subcellular differences in
synaptic density by coloring the morphology of a selected postsynaptic neuron ¢ by the
local synapse density S({Gprc},c,x) (see Fig. 5.4a). Second, it shows the distribution
of synapses on the dendritic branches of ¢, colored by presynaptic cell type, in order
to identify subcellular regions of preferred synaptic innervation for different presynaptic
cell types (Fig. 5.4b).

The synapse positions are determined by randomly placing S(Gypyre, ¢, X) synapses on
the dendrites of ¢ within the 503 ,um3 grid cell x, for each Gpre € {Gpre}. When more
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Figure 5.8: Framework for the wvisual analysis of synaptic connectivity: the Cortical
Column Connectivity Viewer (CCCV). (a) The CCCV lays out all columns according
to their position in the cortical sheet. The bars show the number of synapses selected
that presynaptic groups (left, here: all VPM groups) share with selected postsynaptic
groups (right, here: all other cell types). (b) Cell type legend that is displayed as part of
the CCCV, and which can be used to make selections by clicking on the marked areas.
(c) One example column in the CCCV. The rendered elements can be used to define
selections. Here the presynaptic L4ss group of column D2 has been selected (indicated
by the dashed line). Multi-selection is achieved by holding a modifier key. Values can be
displayed as text (only one value shown for illustration,).

detailed information concerning the true distribution along the dendrites becomes avail-
able, this can be incorporated.

5.5 Application example

To show how the framework is used to obtain insight into the synaptic connectivity in
the barrel cortex model, we apply it to answer the questions posed in Section 5.1.

In order to quantify thalamic input into the barrel cortex (Q1l, Q2), we select all
presynaptic VPM groups by clicking on the PRE-VPM box (Fig. 5.3b). The total
presynaptic number of synapses of these groups is indicated by the black bars in Fig. 5.3a.
We observe that the VPM cells corresponding to the central columns and the E-row
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Figure 5.4: Framework for the wvisual analysis of synaptic connectivity: subcellular
synapse distributions and heat map visualization. (a) Synapse density color-coded on
L4py dendrites. Each edge point is colored by the number of synapses in the 50° um?
grid cell that contains it (color interpolated between edge points). (b) Synapse positions
of presynaptic Ljss and L4sp cells on Lipy dendrites. (c) Connectivity matriz visual-
1zation by the heat map view.

provide most input, and that the cells in these columns receive most input. Further we
observe that the relative amount of synapses per postsynaptic group is similar for each
column: Layer 4 star pyramids (L4sp) and spiny stellates (L4ss) receive most input,
whereas L2 and L3 cells hardly receive any (as reported in (Oberlaender et al., 2012)).

To reveal how one of the central columns (D2) is innervated by its corresponding VPM
axons (Q1), we select the presynaptic D2-VPM group and all postsynaptic D2 groups
(Fig. 5.5a). Again we observe that L4sp and L4ss receive the largest number of synapses
from VPM (indicated by the red arrows). To determine whether this is due to the large
number of neurons in these two groups, we display the average number of synapses per
postsynaptic neuron (Fig. 5.5b) and observe that this is the case, and that among all
cell types actually Layer 4 pyramids (L4py) receive most synapses per cell from VPM.

To find out what other cell types a L4py neuron gets input from (Q1), we select all
presynaptic groups and the postsynaptic L4py group in D2. Most input is due to L4ss
and Ld4sp (Fig. 5.5¢, red arrows). As pyramidal cells have distinct dendritic compart-
ments with short, highly arborized basal dendrites around the soma and a long apical
dendrite extending towards the pia, we ask whether there is cell-type-specific clustering
of synapse positions on the dendrites (Q3). We therefore switch to the 3D view, select
a Ldpy cell and observe that synapses are densest close to the soma (Fig. 5.6a). The
main input types are L4ss and L4sp. Restraining the selection to these types and show-

75



5 Assembly of neural networks and visual analysis of synaptic connectivity

a—  [HEE
L ]
. 3
4  Lapy
=]  lasp
.« / ==
o1 L5st
a \ S
a L6cc
e . L6t
!
N

o
14
17
183
14
\ | /x103

Figure 5.5: (a) Total number of VPM synapses with D2 cell types.(b) Average number
of VPM synapses. (c) Average number of synapses that an L4py neuron receives from
other cell types in D2. (d) Intra-column L2 innervation (total synapses). (e) L2 input
from surrounding columns.

ing the synapse positions (5.6b) reveals that these cell types mainly innervate the basal
dendrites. This raises the question what cell types connect to the apical dendrite. We
broaden the selection to all presynaptic cell types and zoom in on the apical tuft (5.6c).
The L2, L3 and L5 slender-tufted (L5st) cells seem to dominate the synaptic input to
the tuft. Indeed, if we look at the L2-L4py synapses only (5.6d,e), we observe that L2
predominantly innervates the apical dendrite.

What cells does L2 receive input from, when not from VPM? Selecting the post-
synaptic L2 group in D2 immediately provides the answer. To differentiate between
intra-column input and input from surrounding columns (Q4), we first select all presy-
naptic D2 cell types and observe that L2 in D2 is innervated by ~3.8 million synapses
(Fig. 5.5d). Selecting all presynaptic cell types in the columns surrounding D2 reveals
that L2 in D2 receives more input from neighboring columns (~4.3 million synapses),
mainly from Lbst (5.5e).

5.6 Discussion

The barrel cortex model described here enables the study of its (sub)cellular architecture
region and synaptic connections. The most important assumptions for model validity
are that (i) the reconstructed morphologies are a representative sample of the true
population and that (ii) the computation of the synaptic connectivity based on Peters’
rule is a good estimate. See (Oberlaender et al., 2012) for a more detailed discussion.
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Figure 5.6: (a) Synapse density color-coded on L4py dendrites. (b) Synapse positions of
presynaptic Lss and Lisp cells. (c) Synapses on apical tuft. (d) Number of synapses
for the L2-L4py connection in the CCCV. (e) L2 synapse positions.

The information displayed by the CCCV is to a large extent the same as a heat
map representation. The main differences are the aggregation of connectivity matrix
values when more than one pre- or postsynaptic group is selected, and the semi-spatial
context, aiding localization and the investigation of the interaction between columns.
Whether it can replace the heat map, which is more generally applicable and currently
the familiar standard representation, remains to be seen. However, as they share the
same data structure (the connectivity matrix) they can easily be used side-by-side in
an integrated framework. The CCCV is not limited to the barrel cortex, but can be
used for all regions located on a curved 2D surface, such as the cortical sheet. The
size of the brain region that can be studied using the CCCYV is, however, limited by
the number of columns that fit on the screen. While the framework presented here
allows studying connectivity from the level of synapses and individual neurons up to
cortical areas containing several dozens of columns, such as S1, larger models spanning
more scales and eventually representing entire brains will undoubtedly be developed.
Their investigation requires visualization tools that extend the multiscale approach to
the entire hierarchy from micro- to macro-scale.

The modeling approach and the visualization framework are considered very useful by
domain experts from the Max Planck Florida Institute: “This set of tools allows scientists
to investigate structural organization principles at the scale of an entire cortical area
with sub-cellular resolution. In particular cell-type- and location-specific connectivity
patterns are accessible for the first time, and may be extended and/or compared to more
direct connectivity measurements from electron microscopy. The 2D layout of columns
and cell types is a great advantage of the CCCV over the heat map representation as
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it aids in localization and understanding of column interactions. The various selection
options make query specification simple, resulting in short question/response iterations.
It is therefore fun to work with.”
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6 Applications in neuroscience: reverse
engineering the rat barrel cortex

The methods and tools described in the previous chapters have been applied to address
neurobiological research questions regarding structure and function of neurons and neu-
ral circuits. In the following, several published studies are reviewed that benefited
significantly from the presented methods and tools.

6.1 Number and spatial distribution of neuron somata in
cortical columns

As stated by Meyer et al. (HS Meyer et al., 2010), the number of neurons in a cortical
column has previously been estimated by extrapolating measurements of neuron density,
based on Sterio’s disector method (Sterio, 1984). However, the estimates for neuron
density in the rat somatosensory cortex varied by almost a factor of 2: between 48 000/
mm? (Beaulieu, 1993) and 77 000/mm? (Keller and GC Carlson, 1999).

To obtain more precise measurements, required for example for quantitative models of
cortical function (Helmstaedter et al., 2007), Meyer et al. (HS Meyer et al., 2010) used
the automatic soma detection method described in Chapter 2 to count all neurons in
the D3 barrel column, in addition to the manually counted C2 and D2 columns. To this
end tangential brain sections (50 ym thickness) were stained with NeuN (Mullen et al.,
1992), labeling all neuron somata, and imaged using a confocal microscope. The column
boundaries were determined by delineation and extrapolation of clearly discernable areas
in L4 in images of stained VPM axons or GAD67 immunolabeled sections.

The number of neurons and their 3D distribution within the C2, D2, D3 and cortical
columns could thus be determined with high precision (Fig. 6.1), yielding an average
of approximately 19000 neurons per column. Based on the soma density profile along
the column axis, layer boundaries could be determined. Disagreement in neuron density
reported in previous studies could thus be resolved by exhaustive counting: the neuron
density reported by Meyer et al. (~78000/mm?) agrees with the numbers reported by
Keller and Carlson (Keller and GC Carlson, 1999).

Recently, the neuron distribution in the entire barrel cortex and thalamus of four rats
has been determined, on the basis of the automatic soma counting method (HS Meyer
et al., 2013). This yielded that the number of neurons per column and thalamic bar-
reloid varies substantially within individual animals, particularly an increase in neuron
numbers from the A- to the E-row can be observed. The soma density field resulting
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Figure 6.1: Number and distribution of NeuN-labeled cell bodies. (a) Markers repre-
senting soma midpoints within (blue) and outside the C2 barrel outline. Yellow arrows
indicate cells at slice edges that were not counted as their midpoint was not contained
in this section (see orthogonal view in bottom panel). (b) Soma positions in the region
comprising the C2 column. (c) Soma density profile of the C2, D2, and D3 columns and
their average. Image modified from (HS Meyer et al., 2010).

from this study has been used to create the barrel field neural network model, described
in Chapter 5.

6.2 Reconstruction and analysis of neuron morphology

Using the pipeline described in Chapter 4 relatively large numbers of neurons can be
reconstructed in great detail within relatively short time. The resulting increase in sam-
ple size often increases the amount of evidence for findings involving neuron morphology
from merely anecdotal to statistically relevant. In the following, we describe published
neuroscientific results that involve detailed reconstructions of dendritic and/or axonal
trees, created using the Filament Editor, to illustrate this point.

6.2.1 Classification of dendritic cell types

Oberlaender et al. (Oberlaender et al., 2012) reconstructed 95 dendrite morphologies of
excitatory neurons in a cortical column in the rat barrel cortex using the reconstruction
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pia surface

white matter 500pum

Figure 6.2: Excitatory cell types in a cortical column. Cluster analysis of morphological
features identified 9 cell types. The wvertical colored bars (left) represent the wvertical
extent of the cell-type-specific soma locations. These cell type boundaries do not always
match the cytoarchitectonic definition of cortical layers, indicated by the dashed lines
(adopted from (HS Meyer et al., 2010)). Some cell types intermingle within layers.
Image reproduced from (Oberlaender et al., 2012).

pipeline described in Chapter 4. This relatively large sample made it feasible to perform
a cluster analysis (Ankerst et al., 1999). Nine different cell types could be distinguished
based on 90 morphological features (Fig. 6.2). Most discriminating features are: soma
depth from the pia, maximal vertical span of the apical dendrite, and the box volume
around all terminal nodes.

6.2.2 Behavioral state-specific pathways involving layer 5 neurons

Cortical layer 5 contains two excitatory cell types, slender-tufted (L5st) and thick-tufted
neurons (L5tt). These neuron types respond differently in terms of spiking activity, de-
pending on behavioral state. L5st neurons convey motion and phase information during
active whisking, but do not respond to passive whisker touch. In contrast, L5tt neurons
increase spiking after passive touch (De Kock et al., 2007; De Kock and Sakmann, 2009).

Oberlaender et al. (Oberlaender et al., 2011) used the morphology reconstruction
pipeline and analysis tools described in Chapter 4 to create 3D axonal and dendritic
morphologies of L5st and L5tt neurons from in vivo preparations, and to analyze their
length characteristics and innervation patterns. They found that L5st neurons densely
innervate supragranular layers (L1-L3) of large portions of the vibrissal area and beyond
(Fig. 6.3a—d). In contrast, the projections of L5tt neurons are less dense and primarily
confined to infragranular layers (L5-L6) (Fig. 6.3¢-h).

These results give rise to the hypothesis that thick-tufted neurons in the rat vibrissal
cortex facilitate object location by active whisking, based on near-simultaneous input
from two pathways (Oberlaender et al., 2011). First, input from L5st neurons on the
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Figure 6.3: Morphological reconstruction and analysis of layer 5 slender-tufted (a-d) and
thick-tufted (e-h) neurons reveals cell-type-specific innervation patterns. (a) View on
the 3D morphological reconstruction of a List neuron. The azonal tree (blue), apical
(orange) and basal (red) dendrites are shown with reference to the barrel field. This neu-
ron displays wide lateral spread into multiple barrel columns, surrounding the principal
column (PC) and outside the vibrissal area (dysgranular cortex, DZ). (b) Semicoronal
view along row D in (a). The lateral projections mainly innervate the supragranular
layers. This is quantified by the azon density profile (azon length per mm?) of all five
reconstructed Lbst neurons (¢). (d) Azon length profile along the vertical column axis
reveals two innervation zones. The Lbst infragranular innervation zone is restricted to
the principal column, in contrast to the supragranular innervation zone, which extends
to surrounding columns. Morphological reconstruction of an individual L5tt neuron (e,
f) as well as quantified axon density and length profiles of five L5tt neurons (g-h) reveals
that innervation remains confined to the principal column and to the infragranular layers
of a limited number of surrounding columns. Image modified from (Oberlaender et al.,
2011).

82



6.2 Reconstruction and analysis of neuron morphology
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Figure 6.4: (A,B) Reconstructions of thalamocortical azons in control (A) and deprived
(B) animals. Azons in deprived animals correspond to trimmed whiskers. Deprived
animals had all but two whiskers trimmed. Left: tangential view. Right: radial view.
Lines: barrel borders. Dots: branch and end points. (C) Columns targeted by control
(black) and deprived (gray) azons. (D) Distributions of total azon lengths within the
cortex. Lines represents means + SD. (E) Distributions of branch points within the
cortex. Reproduced from (Oberlaender et al., 2012), with permission from Elsevier.

L5tt apical tuft, carrying whisker motion and phase information, may lock the L5tt
dendrite membrane potential to the whisking cycle. Second, the L5tt basal dendrites
receive VPM input carrying whisker touch information. Near-coincident input from
these two pathways may result in increased spiking activity of thick-tufted neurons and
thus enhanced signaling to their subcortical targets.

6.2.3 Thalamocortical plasticity in adult rats

The brain’s capacity to rewire is thought to diminish with age. It is widely believed that
development stabilizes the synapses from thalamus to cortex and that adult experience
alters only synaptic connections between cortical neurons (Oberlaender et al., 2012).

To investigate sensory experience-induced plasticity, Oberlaender et al. (Oberlaender
et al., 2012) used the reconstruction pipeline described in Chapter 4 to reconstruct the
axonal trees of 23 thalamic VPM neurons projecting into the barrel cortex (Fig. 6.4).
Of these neurons 11 belonged to input-deprived adult rats, whose whiskers had been
trimmed for the preceding 12-27 days, and 12 to the control group. Quantitative analysis
of axon length revealed that the average axon length decreased by 25% and the number
of branching points by 32%. Innervation of L4 was decreased by 37% in the targeted
column. This rewiring indicates that thalamo-cortical axons remain plastic in adulthood.

In vivo recordings of L4 neurons of the deprived group revealed that the number of
action potentials from individual cells after sensory stimuli does not significantly differ
from the control group. These results suggest that other elements of the thalamocortical
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6 Applications in neuroscience: reverse engineering the rat barrel cortex

circuit must be plastic to compensate for the loss of synapses due to rewiring, potentially
homeostatic strengthening of corticocortical and/or unpruned thalamocortical synapses.

6.3 3D neural network assembly and analysis

In this section, two studies are reviewed that used the reverse engineering approach to
generate models of neural networks in the rat barrel cortex, and to make quantitative
predictions about the synaptic connectivity between (populations of) neurons. First, the
approach is used to predict cell-type-specific connectivity of thalamical VPM neurons
in a model of a single cortical column (Oberlaender et al., 2012). Second, cell-to-cell
connection probability is computed in a model of the entire barrel cortex and compared
to experimental measurements reported in literature (R Egger et al., 2014).

6.3.1 3D cortical column: analysis of cytoarchitecture and synaptic
connectivity

The reverse engineering approach to modeling anatomically realistic neural networks,
results in an explicit 3D geometrical description, which enables quantitative 3D analysis
of cytoarchitectonic properties of the modeled neuron population, and prediction of
synaptic wiring. Such investigations are of particular interest to understand the structure
of a cortical column, being a basic anatomical unit.

Oberlaender et al. (Oberlaender et al., 2012) constructed a 3D model representing
the excitatory neuron population of a cortical column in the rat vibrissal cortex and its
thalamic (VPM) input using the modeling approach described in Section 5.3 (Fig. 6.5)
and quantified anatomical properties of interest, for example cell-type-specific dendrite-
spine and VPM synapse densities.

The cell-type-specific dendrite-spine density (Fig. 6.6A, B) density indicates the spa-
tial extent within the column where a specific cell type population receives its input. The
spine density for each cell type population (i.e., each postsynaptic group, see Eq. 5.2, 5.3)
was computed in 503 um? grid cells for 3D visualization (Fig. 6.6A), and in 50 um thick
xy-slabs for the depth profile (6.6B). Clearly observable from these analyses is that in-
dividual cell types have different innervation domains within the column, which overlap
to differents extents. Some cell types have two major innervation domains, particularly
L5tt and to a lesser extent Lbst and L4py neurons.

After computing the 3D bouton density based on the VPM axons, the synapse estima-
tion method described in Section 5.3.3 was applied to compute the number of synaptic
contacts between the VPM axons and all cell types in the column (Fig. 6.6C, D) in
503 um? grid cells. Cell-type-specific differences in synaptic innervation are clearly vis-
ible in the 3D density visualization and depth profile. The VPM innervation is largest
in layer 4, with L4sp and L4ss neurons receiving most putative synapses, with a less
pronounced innervation zone between Layer 5 and 6. The VPM synapse distributions
displayed in general only a single innervation peak for each cell type, except for L6ct
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soma dendrite VPM axon
column column column

Figure 6.5: Reconstruction of thalamocortical circuits between VPM and excitatory neu-
rons in a cortical column. (a) Excitatory neuron somata, colored by cell type. (b) 8D
network of dendrites of excitatory neurons (only a small subset displayed for visualiza-
tion purposes). (c) VPM azxon reconstructions innervating the cortical column. Image
reproduced from (Oberlaender et al., 2012).

and, to a lesser extent L5tt. Although the spine density for L5tt showed two major
innervation domains, only the lower one is targeted by the VPM axons.

Although the synaptic connectivity is an estimation, which uses a heuristic based on
structural overlap (for a discussion, see (Oberlaender et al., 2012)), the predicted bouton
and VPM densities are in agreement with experimental studies (Bruno and Sakmann,
2006; Da Costa and Martin, 2011; HS Meyer et al., 2010).

6.3.2 Quantitative analysis of neuron-to-neuron connectivity in a model of
the rat barrel cortex

In (R Egger et al., 2014) the barrel cortex model described in Ch. 5 was extended to
include inhibitory neurons (interneurons). In addition, an explicit mathematical ex-
pression quantifying the innervation of one neuron by another, based on axon-dendritic
overlap, is presented. From the innervation the probability that a connection by one or
more synapses exists between any pair of neurons can be computed, resulting in a dense
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Figure 6.6: Quantitative analysis of cell-type-specific dendrite-spine and synapse den-
sities. (A) 3D spine densities. (B) Spine density profile along column axis. (C) 8D

synapse densities. (D) Synapse density profile. Image reproduced from (Oberlaender
et al., 2012).
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(i.e., cell-to-cell), statistical connectome. Based on innervation and connection proba-
bility, derived quantities, such as divergence (average number of postsynaptic neurons
that connect to a single presynaptic neuron) and convergence (average number of post-
synaptic neurons that connect to a single presynaptic neuron), can be computed, as well
as the putative number of synapses. In the following this quantitative version of Peters’
rule and comparisons of these predicted quantities with in vivo/in vitro measurements
are briefly reviewed.

Interneurons form synaptic contacts not only at the spines, but also on the surface
of soma and dendrites. Therefore, the computation of the synaptic connectivity (see
Sec. 5.3.3) was updated to accommodate this. In the following, spines and post-synaptic
contact sites on the surface are collectively called post-synaptic target sites (PSTs).
Assuming that all PSTs in a voxel centered on x are equally likely to connect to any
bouton in the same voxel, the probability that neuron j is targeted by a bouton of a
neuron i with cell type T'(7) within x is given by:

pj(x, T (7)) = Z]ji?g(g (Ti)()i)) o

If neuron ¢ has B; boutons in the voxel at x, the average innervation fij is defined as:

Iij = Bi(x) - pj(x) (6.2)
The probability that neuron j connects to n out of B; voxels can be approximated by
a Poisson distribution:

INZ(X) -

P(n; I;j(x)) = e i) (6.3)

n!

The probability of finding a connection between any two neurons i and j within a
specific voxel at x equals 1 minus the probability that neuron j does not connect to any
bouton in any voxel:

pij(x) = 1= P(n=0;L;;(x)) =1— ey (6.4)
Assuming that synapses in different voxels are formed independently of another, the
total probability of finding a connection between neurons ¢ and j is:

pij =1- HP(n = 0; LJ(X» =1—e" Zx fij(x) =1- 6_Iij (65)

Here, I;; is the total (i.e., summed over all voxels) average innervation from neuron ¢
to neuron j. Intuitively, I;; is the expected number of synapses connecting ¢ to j. Thus,
for a given innervation value I;;, we can compute the probability that neuron i and j
share n;; synapses as: n;; = Poisson(n; I;;).

This approach is illustrated for the connection between a VPM axon and a L4 spiny
stellate (L4ss) neuron in Fig. 6.7. Although there is substantial overlap between the
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Figure 6.7: Computation of the statistical innervation, conmection probability, and pu-
tative number of synapses between neurons in dense networks. (A) VPM axon (blue),
L4 spiny stellate dendrite (red), and the grid used for computing bouton and PST den-
sities. (B) The computed innervation I;;(x) from the VPM azon to the Liss dendrite.
The gray-colored squares in the grid represent the maximum projection of fij(x). The
total I;; = 0.66. (C) Left top: connection probability from neuron i to j as a func-
tion of I;;. Bottom: Possible range of number of synapses as a function of I;;. Right:
four possible synapse distributions and their probability of occurrence, computed from
the 8D innervation density in (B). (D) Comparison of pair-wise connectivity statistics
in the D2 column of the in silico model and experimental results from physiological and
anatomical measurements in vitro and in vivo. Top: convergence of intra-barrel connec-
tivity (L4ss-L4ss) and thalamocortical connectivity (VPM-L4/L5st/L5tt /L6). Bottom:
observed and calculated range of number of synapses per connection. Image modified
from (R Egger et al., 2014).
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axon and dendrites (6.7A), the resulting innervation value I;; equals merely 0.66 (6.7B),
due to on the order of 1000 other potential target neurons in the same region competing
for the same boutons. The probability that the two neurons are connected is therefore
only 48% (6.7C), and the probability of the two cells sharing 1, 2 or 3 synapses is 34%,
12% and 2%, respectively.

To validate the model, the predicted convergence and putative number of synapses was
compared to experimental measurements for connections between cell types for which
results have been reported (Fig. 6.7D). The in silico predictions of convergence matched
the previously reported values (Bruno and Sakmann, 2006; Constantinople and Bruno,
2013; Feldmeyer et al., 1999; CC Petersen and Sakmann, 2000) within one standard
deviation. The range of putative synapses per connection also matched: for L4ss-to-
Ld4ss connections this range was 1-5 (in silico), compared to 2-5 (in vitro (Feldmeyer
et al., 1999)). For VPM-to-L4 connections, the range was 1-6 (in silico), compared to
1-6 (in vivo (Schoonover et al., 2014)).

6.4 Numerical simulation of neural signal processing

The neural network modeling approach described in Chapter 5 predicts the number and
spatial distribution of synaptic connections between (groups of) neurons. This is es-
sential information for investigating signal propagation through a network by numerical
simulation. Here, two studies are presented illustrating that the proposed anatomical
modeling method in combination with simulation is a feasible approach to investigate
structure-function relationships in individual neurons (R Egger et al., 2014) and neuron
populations (Lang et al., 2011).

6.4.1 Stimulus-dependent activity of a layer 5 thick-tufted neuron

Egger et al. (R Egger et al., 2014) illustrate how the anatomical modeling approach
can be combined with simulation experiments to investigate structure-function relation-
ships at the single neuron level. On the example of one specific L5 thick-tufted (L5tt)
pyramidal neuron it is shown how neuron location and 3D morphology, as well as the
behavioral state (passive whisker deflection vs. active touch), can largely influence a
neuron’s function in response to sensory stimulation.

In particular, Oberlaender et al. (Oberlaender et al., 2011) hypothesize that the in-
terplay of spiking input of VPM, encoding touch, and L5st neurons, encoding whisking
cycle phase, may cause Lbtt serve as a coincidence detector encoding object localization
(see also Sec. 6.2.2).

To look into this, Egger et al.(R Egger et al., 2014) first use the modeling approach de-
scribed in Section 5.3 (Fig. 6.8A) to estimate the number of synapses, particularly from
VPM and Lb5st from the principal whisker (PW) and the eight surrounding whiskers
(Su8W), and their position on the dendrites of an exemplary L5tt neuron in the D2 col-
umn (Figure 6.8B,C). The estimated number of contacts of this neuron with presynaptic
neurons is 20658. Roughly 2% (460) of these synapses stem from the VPM. Interestingly,
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Figure 6.8: (A) The reverse engineering pipeline. From left to right: assignment of
neuron somata to different cell types, replacement of each neuron soma with a dendrite
tracing of the same cell type, all L5tt dendrites of one column, all VPM azxons of one
column, an individual L5tt neuron registered to its location in the average network model.
(B) Subcellular distribution of VPM synapses from the principal whisker (PW) and the
eight surrounding whiskers (Su8W) on the individual L5tt neuron from panel A. (C)
Subcellular distribution of L5st synapses from the PW and Su8W on the individual L5tt
neuron from A. (D) Active VPM synapses after passive touch. Scalebar applies to D—
G. (E) Spread of depolarization along the neuron 12ms and 17 ms after passive touch,
respectively. (F) Lbst synapses with increased activity during whisking. (G) Spread of
depolarization along the neuron 125ms and 175 ms after beginning of the whisking cycle,
respectively. Image reproduced from (R Egger et al., 2014).
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only 245 of the VPM synapses originate from the corresponding D2 barreloid in the tha-
lamus, nearly the same amount as from the Su8W (215). This estimate of the structural
thalamocortical connectivity may in part explain why L5tt neurons usually respond well
to deflections of the PW and Su8W, in contrast to VPM neurons, which responses are
largely confined to the PW. Approximately 16% (3 368) of the cell’s synapses stem from
L5st neurons, the majority (2055) originating in Su8W.

Figure 6.8B and C show a possible distribution of the predicted synapses on the den-
dritic branches. Quantification of the path length from each of these synapse positions to
the soma reveals a striking difference in subcellular location of VPM and L5st synapses.
Approximately 79% of the VPM synapses are located on the dendrites around the soma
(proximal contacts, see also Fig. 1.1a); the remaining 21% are located on the apical
trunk and tuft (distal contacts). In contrast, ~60% of the L5st synapses are located on
the apical tuft, while 40% are proximal contacts.

Second, using a simplified full-compartmental simulation model (see (R Egger et al.,
2014) for details), the potential spread of depolarization caused by VPM input after
passive whisker touch (Brecht and Sakmann, 2002; Bruno and Sakmann, 2006) and by
L5st input during periods of active whisking (De Kock and Sakmann, 2009; Oberlaender
et al., 2011) was investigated.

After VPM input 145 of 245 PW and 8 of 215 Su8W synapses were active (Fig. 6.8D).
Figure 6.8E shows the resulting depolarization 12 ms (left panel) and 17 ms (right panel)
after the stimulus. The depolarization by VPM input after passive touch remains largely
restricted to the basal and apical oblique dendrites and does not spread into the apical
tuft.

L5st input was simulated during one whisking cycle, effectively activating 444 of 1313
PW and 736 of 2055 Su8W synapses (Fig. 6.8F). Figure 6.8G shows the resulting de-
polarization 125ms (left panel) and 175ms (right panel) after the onset of the whisker
movement. In contrast to the VPM activation after passive touch, the depolarization
by L5st input remains largely confined to the apical tuft dendrite, leaving the proximal
dendrites largely at rest.

Egger et al. (R Egger et al., 2014) conclude: “These simplified simulation experi-
ments demonstrate that a typical L5tt neuron may have two structurally and function-
ally distinct domains, the proximal and apical tuft dendrites, respectively. The two
compartments receive very different synaptic input and may thus process and encode
different aspects of whisker-evoked sensory stimuli. Depending on the spatial and tem-
poral superposition of the two inputs, the output of a L5tt neuron may change, encoding
information of the environment, such as the location of an object”.

6.4.2 Thalamocortical activation of a L4 spiny stellate neuron population

Lang et al. (Lang et al., 2011) illustrate how the reverse engineering approach can be used
to investigate structure-function relationships at the network, cellular, and subcellular
scale.

91



6 Applications in neuroscience: reverse engineering the rat barrel cortex

The network modeling approach described in Chapter 5 was employed to create a
network formed between the thalamus (VPM) and spiny stellate neurons in layer 4 (L4ss)
of a cortical barrel column in rat vibrissal cortex. After (passive) whisker deflection, the
VPM cells activate synaptically connected neurons of the Ldss population by emitting
action potentials (APs, spikes), resulting in electrical signals on the postsynaptic side.
These travel along the dendrites towards the soma, resulting in a excitatory postsynaptic
potential (EPSP). Superposition of unitary EPSPs (WuEPSPs, i.e. EPSPs originating from
different synapses) results in an action potential of the L4ss cell when the accumulated
potential exceeds a threshold.

The ensemble of L4ss neurons within an average barrel comprises 2752 + 46 dendrite
morphologies. This ensemble is innervated by 285 4+ 13 thalamocortical axons from
the respective VPM barreloid, which results in an average number of 246 £+ 123 VPM
synapses per L4ss neuron. These numbers resemble results from previous studies that
investigated connectivity between thalamus and L4ss neurons in the cortex (Bruno and
Sakmann, 2006; Da Costa and Martin, 2011).

The activation of the L4ss population by the VPM cells is numerically simulated us-
ing NeuroDUNE, a software framework for simulating (networks of)) full-compartmental
neurons. The electrical membrane parameters of the L4ss neurons were chosen in agree-
ment with previously reported experimental data (see (Lang et al., 2011) for details).
The VPM spike probability and timing is based on in vivo measurements (Brecht and
Sakmann, 2002; Bruno and Sakmann, 2006). In the simulation experiment, the number
and location of L4ss neurons was investigated that showed a subthreshold or spiking
response after VPM activation.

Lang et al. (Lang et al., 2011) report findings both at the network and the subcellular
level. At the network level, reconstruction of the network structure and synaptic wiring
predicted that the number of VPM synapses on a postsynaptic cell strongly depends
on the soma location of the L4ss neurons. Specifically, the number of VPM synapses
decreased with increasing distance from the barrel column center (BCC) toward the
barrel borders (Fig. 6.9D). Activating the L4ss population by VPM input results in
similar location-specific spiking responses (Fig. 6.9A, C). While the relative number of
neurons producing a subthreshold response displays only a weak radial decay (~19%)
toward the barrel borders, spiking responses decay dramatically (~60% lower than at the
BCC). A similar radial decay in spiking probability has been observed for L2/3 neurons
in a barrel column of mouse vibrissal cortex using 2-photon Ca?* imaging (Kerr et al.,
2007).

In addition to this structure-function relationship at the network level level, the simu-
lation results predict a second mechanism at the subcellular scale. A bimodal histogram
of uEPSP amplitude and peak time suggests that VPM synapses may be pooled into
proximal (close to the soma, therefore shorter peak times and larger amplitudes) and
distal (further from soma, longer peak times, smaller amplitude) synapses (Fig. 6.10B,
C). In addition to the total number of synapses, the relative numbers of proximal and
distal VPM synapses per L4ss neuron may also be location-specific. Toward the barrel
borders, the number of proximal contacts decreases more than the number of distal con-
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6.4 Numerical simulation of neural signal processing
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Figure 6.9: Radial decay in Ljss spiking. (A) Top view onto the distribution of Ljss
somata in a barrel column. Spiking neurons are shown in green and are preferentially
located around the barrel column center (BCC). (B) Quantification of the radial depen-
dence of the subthreshold (i.e. EPSP amplitude at the soma) and (C) spiking responses
for 5 simulation trials. (D) The radial decay in spiking follows the radial decay of (ac-
tive) VPM synapses (light gray: all synapses, dark gray: active synapses). The decay
in spiking at the barrel borders even exceeds the decay of active synapses (E). This may
reflect a stronger reduction of prorimal VPM synapses toward the barrel borders, when

compared to distal contacts. Image modified from (Lang et al., 2011).

tacts (with 14% and 5% respectively). This could explain the spiking probability at the
barrel borders being even lower than predicted by the radial decay in VPM synapses

per cell (Fig. 6.9E).
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6 Applications in neuroscience: reverse engineering the rat barrel cortex
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Figure 6.10: (A) Realization of synapse locations on dendrites of a Lj spiny stellate
neuron. (B,C) The histograms of the uEPSP amplitudes and peak times display bimodal
distributions for this example neuron, suggesting a pooling into prozimal (close to the
soma) and distal (further from soma) synapses. Image modified from (Lang et al., 2011).
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7 Conclusion

This thesis presented a complete set of methods and tools to create and analyze anatom-
ically realistic 3D models of neural networks in the rat barrel cortex. These networks
consist of populations of neurons and their synaptic connectivity. They are created using
anatomical data reconstructed from 3D microscopic images. The particular contribu-
tions are:

e an automatic algorithm for the automatic detection and counting of neuron somata
in 3D images,

e an interactive proof-editor for validating, correcting, alignment, merging, annotat-
ing, and analyzing tracings of filamentous structures obtained from multiple brain
sections,

e an automatic method for the 2D rigid alignment of 3D sections containing fila-
mentous structures, such as neuronal arborizations,

e a tool to create 3D a model of a neural network representing the rat barrel cortex,
based on reconstructed anatomical data, and

e a framework for the interactive visual analysis of synaptic connectivity at multiple
scales.

We have seen how these visual computing techniques support neuroscientists in ad-
dressing biological questions regarding anatomy and structure-function relationships of
neural circuits. Particular aspects where these techniques significantly contribute to
advancing the field of neuroscience are:

e Mastering scale and complexity. The presented tools address the challenges in-
duced by the size of the brain area under investigation, and/or the size of the
data to a large extent by automation of labor-intensive tasks. For example, the
automatic cell counting algorithm (Ch. 2) makes the exhaustive counting of all
neurons in a large brain area (such as the rat barrel cortex) possible (Sec. 6.1).
The presented neuron reconstruction workflow (Ch. 4) significantly reduces the
amount of manual labor, and the dependency on neuroscience experts, effectively
increasing the number of reconstructions that can be created within a particular
time frame.
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7 Conclusion

e Quality assurance. Visual computing techniques are essential to assess and improve
the quality of data extracted from 3D images for the following reasons. First, a
common approach to validate image analysis methods is to compare their results
to an expert-generated ground truth. This requires either a quantitative compar-
ison algorithm and/or an effective visualization (e.g., see Sec. 2.5.3, 3.4, 4.3.10).
Interactive tools are often required to create a ground truth in the first place (e.g.,
see Sec.4.3.7). Second, visual proof-editing tools enable the user to interactively
make corrections (e.g., see Sec. 4.3.7). In the case of the Filament Editor, the
user is intentionally part of the reconstruction workflow: the interactive editing/
correcting employs human pattern recognition abilities to resolve ambiguities in
often unwieldy data, thus complementing automatic methods in an efficient way.

e Quantitative analysis. Visual computing methods are a prerequisite to increase
sample sizes of the investigated objects. Shifting from anecdotal to statistically
relevant evidence increases confidence in the reported quantities of interest. For
example, the presented automated method allows to exhaustively count the num-
ber of neurons in large brain volumes (see Ch. 2), thereby avoiding errors due to
extrapolation of manually counted smaller samples. Also, classification of morpho-
logical cell types (6.2.1) is only meaningful, when the sample size is large enough
to be considered representative for the entire population.

e Model building. The 3D neural network models are concrete representations of
accumulated anatomical knowledge of the brain region at hand. As such they
may serve as an integrated view on the current state of knowledge, and allow
to put individual findings into a broader (network) perspective. Additionally,
from the 3D neural network models and the associated algorithm to estimate the
synaptic connectivity (Ch. 5) quantitative predictions involving anatomy, and,
through numerical simulations (Sec. 6.4) also physiology, can be generated, which
can be compared to experimental measurements (Sec. 6.3) for model validation,
or used as testable hypotheses of experimentally inaccessible network properties.

e Interactive, visual data exploration. Interactive, visual data exploration aids in
acquainting oneself with the data, data set comparison, anomaly detection, gener-
ating hypotheses, etc. when a priori knowledge about the data is limited. In this
neuroscientific context, this is useful from the relatively trivial scenario of compar-
ing the 3D morphology of individual neurons (Dercksen et al., 2012) to the complex
case of multi-scale exploration of synaptic connectivity from the subcellular to the
population level (Sec. 5.4).

Altogether, visual computing techniques are key prerequisites to gain understanding
of structure and function in neural networks, for example the mechanistic principles
underlying sensory information processing in the mammalian brain, and have therefore
become essential in the daily work of neuroscientists.
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