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Introduction

In the last few decades, theoretical physics has provided a significant input to
mathematical research. In this thesis, we will investigate two objects whose
appeareance in algebraic geometry was influenced by physical theories, namely
instanton bundles and Higgs bundles.

Instanton Bundles. Originally instantons were defined by physicists as self-
dual solutions of the Yang-Mills equations. Mathematically, an instanton is a
self-dual or anti-self-dual connection on a principal bundle on a four dimensional
manifold. Via the Penrose-Ward correspondence on S4 they give rise to algebraic
vector bundles on odd dimensional projective spaces. In 1978, Atiyah, Drinfeld,
Hitchin and Manin gave a construction of instanton bundles involving only linear
algebra [AHDM78]. A few years later, Okonek and Spindler defined mathematical
instanton bundles and studied their moduli spaces [OS86].

The first definition of an instanton bundle was a rank two vector bundle on
three dimensional projective space satisfying some instanton conditions. These
conditions include being simple and symplectic; that is, it is isomorphic to its dual
bundle via an anti-symmetric isomorphism. We call a vector bundle autodual if
it is isomorphic to its dual bundle. Important examples include orthogonal and
symplectic bundles.

The results in the second chapter are from a joint work with S. Marchesi and
M. Jardim [JMW14]. Our goal is to explicitly describe the set of isomorphism
classes of autodual instanton bundles using certain linear algebra data. The
construction we use has its origin in the work of Atiyah, Drinfeld, Hitchin and
Manin in the 1970s. The ADHM construction of instanton bundles via monads
was developed by Donaldson [Don84] on the projective plane, and by Jardim in
general [FJ08, HJM14]. Using the ADHM-datum given by an instanton bundle
and the autoduality structure, we can prove the first result.

Main Theorem. Framed autodual instanton bundles on complex projective space
can be parametrised by an extended ADHM-datum.

Moreover, the parametrisation can be refined in the orthogonal and symplectic
cases. Using this description of an orthogonal instanton bundle, we prove the
following results.
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Main Theorem. There are no rank two orthogonal instanton bundles of trivial
splitting type on the projective plane.

Main Theorem. There are no orthogonal instanton bundles of trivial splitting
type with odd second Chern class.

However, we will provide an example of a rank 2n orthogonal instanton bundle
of non-trivial splitting type on Pn with odd second Chern class. Finding examples
of orthogonal bundles is still a non-trivial task, for example in [FFM09] the
authors prove that there are no orthogonal instanton bundles of rank 2n on P2n+1.
Orthogonal vector bundles on curves and their moduli spaces have also been
studied recently in [CH12, CH14] and [Ser08].

Whereas the moduli space of symplectic instanton bundles has been studied
thoroughly (we only mention [BMT12] for a recent reference), the moduli space
of orthogonal instanton bundles is less explored. Orthogonal instanton bundles
on the projective plane have been studied recently in [AB13], where the authors
show smoothness and irreducibility and provide examples for particular ranks
and charges.

We hope that our results may lead to new insights into the geometry of the
moduli spaces of instantons.

Higgs Bundles. In 1986 Higgs bundles were defined by Hitchin in his seminal
paper [Hit87] as solutions to certain self-duality equations obtained from the
Yang-Mills equations via some dimensional reduction. He named them after
Peter Higgs because of an analogy with the Higgs boson. However, the term
“Higgs bundle” was only later introduced by Simpson. Since their first appearance,
Higgs bundles have played an important role in many areas of mathematics, most
recently in the Langlands program. The moduli space of Higgs bundles carries a
deep geometric structure providing an example of a non-compact Hyperkähler
manifold.

Our goal is to prove the existence and uniqueness of a canonical reduction for
Higgs bundles on smooth projective curves using the complementary polyhedron
technique. Behrend introduced this construction in the case of reductive group
schemes [Beh95]. Harder and Stuhler [HS03] generalised this to the arithmetic
situation of Arakelov group schemes. Here one needs to be more careful, since
the automorphism group of an Arakelov bundle is non-reductive in general. The
automorphism group of a Higgs bundle can be non-reductive, too. However, this
does not seem to play a big role in our constructions.

The canonical reduction can then be used to obtain a stratification on the
moduli stack of Higgs bundles, as done by Behrend in his Phd thesis for the
moduli stack of principal bundles. Our first result is the following.

Main Theorem. A principal Higgs bundle defines a complementary Higgs poly-
hedron that is equal to Behrend’s complementary polyhedron if the Higgs structure
is zero.

x
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The complementary polyhedron will depend on the choice of a maximal torus.
Along the way we will also prove the following result.

Main Theorem. Given a principal bundle with a global reduction to a maximal
torus, its complementary polyhedron with respect to this torus reduces to a point.

The complementary polyhedron enables us to finally prove the main result of
the last chapter.

Main Theorem. Any principal Higgs bundle has a canonical Higgs reduction
that is unique in a natural sense.

In the case of vector bundles, the canonical reduction is given by the Harder-
Narasimhan filtration [HN75]. For Higgs vector bundles, the existence and
uniqueness of a Harder-Narasimhan filtration is proven by Simpson in [Sim94].

In [DP05] the authors prove the existence of a canonical reduction for prin-
cipal Higgs bundles. Although they claim in the abstract that they also show
uniqueness, they only show uniqueness of the canonical Higgs reduction for “semi-
harmonic” principal Higgs bundles, i.e. principal Higgs bundles with vanishing
Chern classes. Since they reduce the stability of principal Higgs bundles to sta-
bility of the associated Higgs vector bundle, their proof can not be generalised to
positive characteristic. Note that the construction of Behrend that we use in this
work applies to positive characteristic.

Overview. We will now give a short overview of the contents of this thesis.
In the first chapter, we introduce the main objects of study, namely vector

and principal bundles on projective schemes. We give the necessary definitions of
linear algebraic groups and group schemes. We also explain stability conditions
for these and explain how autodual vector bundles and Higgs bundles can be
interpreted as principal bundles with decorations.

The second chapter is devoted to the study of autodual instanton bundles on
projective space. We explain how instanton bundles of trivial splitting type can
be constructed from ADHM-data. After that we investigate how the autoduality
structure is reflected in the ADHM-datum and obtain an extended datum. For
symplectic and orthogonal instanton bundles these extended data can be refined.
Finally we take a look at the construction of examples of symplectic and orthogonal
instanton bundles from an extended ADHM-datum.

In the last chapter, we investigate principal Higgs bundles on smooth projec-
tive curves. We start by introducing root systems and complementary polyhedra
and explain how a connected reductive algebraic group equipped with a maxi-
mal torus defines a root system. We then explain Behrend’s construction of the
complementary polyhedron associated to a principal bundles and compute some
examples. A section is devoted to the study of torus reductions. Then we give an
original construction of a complementary polyhedron associated to a principal

xi
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Higgs bundle. Finally, we state some consequences of the complementary Higgs
polyhedron, i.e. the existence and uniqueness of a canonical Higgs reduction.

xii



Chapter 1

Decorated Principal Bundles

We start by introducing decorated principal bundles. These are principal bundles
equipped with a section of an associated fibre bundle. We also explain how vector
and principal bundles fit into the picture of group schemes and coherent sheaves.
In this chapter, K is an algebraically closed field of characteristic zero and X is
projective smooth of arbitrary dimension dim X ≥ 1.

1.1 Coherent Sheaves and Vector Bundles
We will mainly use the notation of [HL10]. Let E be a coherent sheaf on X and
denote by Ex the stalk at a point x ∈ X . We will assume that all coherent sheaves
satisfy

dim(supp(E )) := dim { x ∈ X | Ex 6= 0 }= dim X .

In other words, we only consider sheaves that are pure of dimension dim(X ) in
the sense of [HL10] which is equivalent to being torsion-free. The sheaf E is
torsion-free if for all x ∈ X and sections s ∈OX ,x \{0 } multiplication with s is an
injective morphism Ex → Ex. Finally, E is locally free of rank r if for all x ∈ X :
Ex ∼=O⊕r

X ,x.
For a coherent sheaf E we define its dual as E∨ :=Hom(E ,OX ). There is a nat-

ural morphism E → E∨∨. We say that E is reflexive if E → E∨∨ is an isomorphism.

1.1.1 Lemma. [HL10, Chapter 1.1] Let E be a coherent sheaf on X . There is the
following chain of implications of properties of E :

locally free ⇒ reflexive ⇒ torsion-free.

1.1.2 Example. If X = C is a smooth projective curve, any coherent sheaf decom-
poses as E = T (E )⊕E /T (E ) where T (E ) is the torsion subsheaf. Thus, in the
case dim X = 1, being torsion-free is equivalent to being locally free. If X = S is
a smooth surface, then being reflexive is equivalent to being locally free [HL10,
Example 1.1.16].
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1.1.3 DEFINITION (Vector bundle). A vector bundle on X is a locally free coherent
sheaf on X . A line bundle is a vector bundle of rank 1. For a vector bundle E , we
define its determinant to be the line bundle det(E ) :=∧rankE E .

Choose an ample line bundle OX (1) on X . We let OX (m) :=⊗m OX (1) for m ≥ 0
and OX (−1) :=OX (1)∨. The Hilbert polynomial of a coherent sheaf E is defined as

P(E )(m) := χ(E ⊗OX (m))=
dim X∑

i=0
(−1)ihi(X ,E (m))=

dim X∑
i=0

ai(E )
i!

mi.

This enables us to define the rank of an arbitrary (not necessarily locally free)
coherent sheaf E as

rank(E ) := adim X (E )
adim X (OX )

.

The definitions of the rank agree whenever E is locally free. We also define the
degree of E as

degE := adim X−1(E )−rank(E )adim X−1(OX ).

This implies degE = deg(det(E )) for a locally free coherent sheaf E .

1.1.4 DEFINITION (Stability). A nonzero coherent sheaf E will be called (semi)-
stable if it is torsion-free and for all coherent subsheaves F ⊂ E with rankF <
rankE :

rankE degF (−)< rankF degE .

We call E simple if End(E )=Hom(E ,E )∼=K via the isomorphism λ 7→λ · idE .

If E is a vector bundle, the (semi)-stability is usually formulated as follows:
For all saturated subsheaves 0(F ( E (that is subsheaves F such that E /F is
pure of dim(supp(E )) or zero), there is an inequality of the so called slopes

degF

rankF
=:µ(F ) (−)< µ(E ) := degE

rankE
.

1.1.5 Lemma. Let F and G be semistable vector bundles on X .

1. If µ(F )>µ(G ), then Hom(F ,G )= 0.

2. If µ(F )=µ(G ) and f : F →G is non-trivial, then f is injective if F is stable
and f is surjective if G is stable.

Proof. [HL10, Prop 1.2.7],[LP97, Prop 5.3.3]

1.1.6 Corollary. If f : F →G is a non-trivial homomorphism of vector bundles
with µ(F )=µ(G ) and F or G is stable, then f is an isomorphism. In particular
any stable vector bundle is simple.

2
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1.1.7 Remark. For a point x ∈ X , we let K(x) := OX ,x/mx be the residue field. If
F is a coherent sheaf, then for any point x ∈ X , the localised stalk Fx ⊗K(x) is a
finite dimensional vector space. In case of a locally free sheaf, the dimensions of
the stalks are locally constant, which motivates the name vector bundle.

For the construction of moduli spaces, one needs to restrict to the (semi-) stable
objects. Not every coherent sheaf is semistable. However, for vector bundles on
curves the semistable objects can be considered as the building blocks of all vector
bundles due to the following result [HN75].

1.1.8 Theorem (Harder-Narasimhan filtration for vector bundles). Let X be a
smooth projective curve and E a vector bundle on X . There is a unique filtration of
E into subbundles

0= E0 ( E1 ( . . .( Es = E

with the following properties:

1. The quotients E i/E i−1 are semistable for i = 1, . . . , s.

2. µ(E1/E0)>µ(E i/E i−1)> . . .>µ(Es/Es−1).

Proof. The family of vector bundles isomorphic to E is bounded, meaning that
there is a constant C with

µmax(E ) :=max
{
µ(F )

∣∣ 0(F ⊂ E
}≤µ(E )+C.

We can find a subbundle E1 ⊂ E such that µ(E1) = µmax(E ), and such that E1
has maximal rank with respect to this property. This gives the first step in the
filtration and we proceed with E /E1.

More generally, a similar filtration exists for pure coherent sheaves on higher
dimensional bases (see [HL10]). Here a pure sheaf E is (semi)stable if for all
proper subsheaves F ( E , we have p(F )(≤)p(E ), where p(E ) := P(E )/adim X (E )
denotes the reduced Hilbert polynomial. Note that it also exists in the case of
slope stability as defined above.

1.1.9 Example. We provide some easy examples for Harder-Narasimham filtra-
tions. If E itself is semistable, then we get the trivial filtration 0( E .

Consider the vector bundle E :=OX (1)⊕OX (1)⊕OX (−1) which is not semistable.
One computes the slopes of the subbundles F1 = OX (1)⊕OX (1), F2 = OX (1)⊕
OX (−1), F3 =OX (1) and F4 =OX (−1) to get the filtration

0(OX (1)⊕OX (1)(OX (1)⊕OX (1)⊕OX (−1)= E .

3
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1.2 Linear Algebraic Groups
A principal bundle is a geometric object that is equipped with a structure group.
We recall the most important definitions and facts about linear algebraic groups
(cf. [Bor91, Spr09]).

1.2.1 DEFINITION (Linear Algebraic Group). A (linear) algebraic group is a
group object in the category of affine varieties over K. To be more precise, an
algebraic group G consists of the datum (G,mult, inv, eG) where eG ∈ G(K) and
mult: G ×G → G, inv: G → G are morphisms of varieties such that the usual
group axioms hold.

The most important example of an algebraic group is the general linear group
GL(V ) of a vector space V . Furthermore, any closed subgroup G ⊂GL(V ) is again
algebraic and the following theorem shows that all examples of linear algebraic
groups are of this form.

1.2.2 Theorem. [Bor91, Spr09] If G is a linear algebraic group, then there is a
finite dimensional vector space V and an embedding G ,→GL(V ).

1.2.3 Example. As already mentioned above, for a finite dimensional vector space
V , the general linear group

GL(V ) := { A : V →V | A linear isomorphism }

and its closed subgroups are algebraic groups. We also define GL(n) := GL(Kn).
In particular, the multiplicative group Gm :=GL(1)= (K, ·) is an algebraic group.
The additive group Ga := (K,+) is algebraic and there is an embedding

Ga →GL(2), a 7→
(
1 a
0 1

)
.

Products of algebraic groups are again algebraic. The algeraic group T := (Gm)n =
Gm × . . .×Gm is called n-dimensional torus.

A group G is solvable if there is a finite composition series { eG }=G0 ⊂G1 ⊂
. . .⊂Gs =G such that G j−1 is normal in G j and the quotient G j/G j−1 is an abelian
group for j = 1, . . . , s.

If B ⊂ G is a connected solvable subgroup such that the quotient G/B is
projective, then B is called a Borel subgroup. Any Borel subgroup contains a
maximal torus. A closed subgroup P ⊂G is called parabolic if it contains a Borel
subgroup [Hum75, Corollary B, page 135]. In particular G itself is parabolic. If
P ⊂G is parabolic then the quotient G/P is projective.

Recall that a subgroup G ⊂GL(V ) is unipotent if all its elements are unipotent,
meaning that (g−1)r = 0 for some r > 0.

4
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1.2.4 DEFINITION (Reductive Group). The radical of an algebraic group R(G) is
the largest connected solvable normal subgroup of G, its unipotent part R(G)u is
the unipotent radical of G. The group G is defined to be semisimple if R(G)= { eG }.
If R(G)u = { eG }, then G is reductive.

If G is an algebraic group, there is a decomposition G = R(G)u oL. Here L is
a reductive subgroup of G that is unique up to conjugation. This decomposition is
called a Levi decomposition and L the Levi factor of G.

1.2.5 Example. Consider G =GL(n), which is not semisimple for n ≥ 1. We have

R(GL(n))= {
λ · id ∣∣λ ∈K∗ }

.

However, GL(n) is reductive for any n ≥ 1. The special linear group SL(n) :=
{ A ∈GL(n) | det(A)= 1 } is semisimple and hence reductive. For a parabolic sub-
group P ⊂GL(n), there are 1≤ r i ≤ n with

∑k
i=1 r i = n such that P is conjugate to

the subgroup of upper block matrizes
M1 ∗ ∗

0 . . . ∗
0 0 Mk


∣∣∣∣∣∣∣Mi ∈GL(r i)

 ,

which stabilises a flag 0 = V0 ( V1 ( . . . ( Vk =Kn where dim(Vi) = ∑i
k=1 rk. In

particular, dim(Vi/Vi−1)= r i holds for i = 1, . . . ,k. Conversely, for any partition of
n, the subgroup of block upper triangular matrizes is a parabolic subgroup. The
standard Borel subgroup B ⊂GL(n) is given by the subgroup of upper triangular
matrices. A Levi decomposition is given by B = T nU, where T = (Gm)n is the
maximal torus of diagonal matrices and U is the unipotent subgroup of upper
triangular matrices with ones on the diagonal.

A character is a morphism of algebraic groups χ : G → Gm, whereas a one
parameter subgroup is a morphism λ : Gm → G of algebraic groups. We denote
by X∗(G) the group of characters of G and by X∗(G) the set of one parameter
subgroups. For a d-dimensional torus T, there are isomorphisms (of abelian
groups!)

Zd → X∗(T), (a1, . . . ,ad) 7→ (
diag(t1, . . . , td) 7→∏

(ti)ai
)
,

Zd → X∗(T), (a1, . . . ,ad) 7→ (
t 7→ diag(ta1 , . . . , tad )

)
.

Given a parabolic subgroup T ⊂ P ⊂G that contains a torus T, then X∗(P)⊂ X∗(T)
by restricting a character to T. The converse inclusion does not need to hold. The
characters are identical only if P = B is a Borel subgroup.

1.2.6 Lemma. Let G be a linear algebraic group and T ⊂ B a maximal torus
that is contained in the Borel subgroup B. Any character χ : T →Gm can be lifted
uniquely to a character of B. In other words, X∗(T)∼= X∗(B).

5
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Proof. First of all, note that B decomposes as B = TnU , where U is its unipotent
radical. Thus, any character χ : T → Gm can be lifted to B by defining it to be
trivial on U . Conversely, given two characters χ1,χ2 : B →Gm whose restrictions
to T are identical, then χ1 ·χ−1

2 defines a character on U. Since U is unipotent,
there is a nonzero x ∈K that is fixed by (χ1 ·χ−1

2 )(u) for all u ∈U (see [Spr09] p.36,
[Bor91] 4.8). This implies χ1(u)= χ2(u) for u ∈U and the characters are identical
on B.

1.3 From Vector Bundles to Group Schemes
In this section we will consider a generalisation of vector bundles in another
direction. First we explain how vector bundles can be seen as principal bundles
and then how a principal bundle defines a group scheme.

1.3.1 DEFINITION (Etale morphism). Let Y and Z be schemes over K. A mor-
phism f : Y → Z is étale at a point y ∈Y if it is flat and unramified at y. This is
equivalent to the following three conditions:

1. The induced map f # : OZ, f (y) →OY ,y is a flat morphism of rings.

2. f is locally of finite type.

3. The maximal ideal n of OY ,y is generated by f #(mZ, f (y)) and OZ, f (y)/mZ, f (y) →
OY ,y/n is a finite separable field extension.

A morphism f : Y → Z is said to be étale if it is étale at every y ∈Y .

If V and W are nonsingular varieties, then a morphism ϕ : V → W is étale
at p ∈ V if and only if the differential dϕp : TpV → Tϕ(p)W is an isomorphism
between tangent spaces. Similarly for V and W singular varieties, a morphism
ϕ : V →W is étale at p ∈V if and only if it induces an isomorphism Cϕ(p)W → CpV
of tangent cones.

By the inverse function theorem, a differentiable map between manifolds
of the same dimension is a local diffeomorphism at a point if and only if the
differential in this point is non-zero. Hence étale maps can be seen as the
algebraic counterpart of local diffeomorphisms.

1.3.2 Example. Consider ϕ : A1 →A1, x 7→ xn. Then dϕx = nxn−1. Hence ϕ is étale
at all points x 6= 0. Note that ϕ is not étale at any point if the characterisic of K
divides n.

Let G be an linear algebraic group. Principal bundles are defined as being
locally trivial in the étale topology as follows [Ser58].

1.3.3 DEFINITION (Principal bundle). A tuple (P ,π,µ) is a principal bundle with
structure group G if the following holds.

6
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1. µ : P ×G →P is a right action.

2. π : P → X is G-invariant, that is π(p.g)=π(p).

3. P is étale locally trivial, i.e. there is an étale covering ( f i : Wi →Ui)i∈I of X
with G-equivariant isomorphisms f ∗i (P |Ui )∼=Wi ×G.

The last condition implies that there is a cartesian square (or pullback dia-
gram)

Wi ×G

Wi

P |Ui

Ui.

π1 π

f i

We say that ( f i : Wi →Ui)i∈I trivialises the principal bundle P . In this situation
a principal bundle is uniquely determined by cocycles ϕi j : Wi ×X Wj → G with
values in G. Here by cocycle we mean a collection (ϕi j) of morphisms satisfying
ϕik =ϕ jk ·ϕi j on Wi ×X Wj ×X Wk.

Let F be a variety equipped with a left action G ×F → F and P a principal
G-bundle. We consider the right G-action

µ : (P ×F)×G →P ×F, ((p, f ), g) 7→ (pg, g−1 f ),

and define the associated fibre bundle

P (F) :=P ×G F = (P ×F)/µ.

Note that the quotient exists by [Sch08, Proposition 2.1.1.7]. This is a fibre bundle
with fibre F, which is not in general a principal bundle.

An algebraic group G is called special if any principal G-bundle can be trivi-
alised in the Zariski topology. Grothendieck classified all special groups in [Gro58].
Important examples include GL(n),SL(n) and Sp(n).

1.3.4 Example. Let K=C, choose a point x ∈ X and let G =π1(X , x) be the topolog-
ical fundamental group. Then the universal covering Y → X is a π1(X , x)-bundle.
This also motivates why we choose principal bundles to be étale locally trivial,
the Zariski topology would be too restrictive.

1.3.5 Example. Since GL(n) is special, for any prinicpal GL(n)-bundle there is
an open covering (Ui) of X and cocycles ϕi j : Ui ∩U j → GL(n) that can be used
to glue a rank n vector bundle. Conversely, any rank n vector bundle E gives a
GL(n)-bundle via its frame bundle

⊔
x∈X Isom(Kn,Ex). Alternatively any GL(V )-

principal bundle gives a vector bundle E via the standard action GL(V )×V →V ,
(g,v) 7→ gv and letting E :=P (V ) be the associated bundle with fibre V .

7
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Let P be a principal G-bundle. If H ⊂ G is a subgroup, then the projection
π : G →G/H defines a principal H-bundle. For the existence of the quotient G/H
see [Hum75, §12]. Let G act on the quotient via left multiplication G ×G/H →
G/H and define P /H := P (G/H). Given a section σ : X → P /H consider the
commutative diagram

σ∗(P )

X

P

P /H.

H-bundle

σ

Then σ∗(P ) → X defines an H-bundle on X . We will say that σ : X →P /H is a
reduction of structure group of P to H. To give an H-bundle (where H ⊂G is a
subgroup) is equivalent to giving a principal G-bundle and a reduction σ to H.
Since all linear algebraic groups are embedded in some GL(V ), principal bundles
can be seen as vector bundles plus some extra data.

On the other hand if f : G → H is a morphism of groups, one can extend the
structure group. For this we define a left G-action on H via (g.h) := f (g) ·h. Then
P × f H :=P (H) can be shown to be a principal H-bundle.

1.3.6 DEFINITION (Group scheme). A group scheme on X is a group object in
the category of schemes over X . It is given by a scheme G → X together with
morphisms over X

mult: G ×X G →G , inv: G →G , e : X →G ,

that satisfy the usual group axioms (meaning that certain diagrams commute).

Given a principal G-bundle π : P → X , we define its automorphism bundle
Aut(P ) as follows. Let G act on itself by conjugation G×G →G, (g,h) 7→ ghg−1

and define Aut(P )=P (G). The group structure is given by the following maps

mult: Aut(P )×X Aut(P )→Aut(P ), (p, g1), (p, g2) 7→ (p, g1 g2),

inv: Aut(P )→Aut(P ), (p, g) 7→ (p, g−1),

e : X →Aut(P ), x 7→ (px, eG) for a fixed px ∈π−1(x).

Note that when replacing a principal bundle by its automorphism group scheme,
one looses structure, as the map G →Aut(G) is not bijective in general.

There is also a stability notion for principal bundles. Since the category of
principal G-bundles is neither abelian nor additive, we need to find an appropriate
replacement for subbundles.

8
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1.4 Stability and Decorations
Let G be a reductive algebraic group and χ : P →Gm a character of the parabolic
subgroup P ⊂G. Consider the P-bundle G →G/P and define the associated line
bundle

Lχ := (G →G/P)×χGm.

We define χ to be an antidominant character of P if Lχ is ample and χ is triv-
ial on the center Z(P). Similarly a character χ : P → Gm is dominant if χ−1 is
antidominant (meaning that L ∨

χ is ample).

1.4.1 DEFINITION (Semistability of Principal Bundles). A principal G-bundle
P → X is semistable if for all parabolic subgroups Q ⊂ G, reductions β : U →
P |U /Q on a big open subset U ⊂ X (that is codim(X \U)≥ 2), and any dominant
character χ : Q →Gm, one has

deg(β∗P |U ×χGm)≤ 0.

Here β∗P |U ×χGm is the line bundle on U constructed from P using β and χ.

1.4.2 Remark. An equivalent definition of semistability is to require that for all
parabolic subgroups Q ⊂ G and reductions β : U → P |U /Q on a big open subset
U ⊂ X , we have

deg(β∗P |U ×Ad q)≤ 0,

where Ad: Q →GL(q) is the adjoint action of Q on its Lie algebra and β∗P |U ×Adq
the associated vector bundle [Lan09, Section 4]. We will work with the definition
above since it is more suitable for our constructions. Also note that semistability
is only defined for reductive G. For reductive groups the adjoint action factors
through SL(g), and thus

deg(P ×Ad g)= deg(det(P ×Ad g))= deg(OX )= 0.

Hence, deg(P ×Adg)= 0 for reductive G. Since β∗P |U×Adq for a maximal parabolic
subgroup corresponds to the determinant bundle of a subbundle of P ×Ad g, this
shows that if P ×Ad g is a semistable vector bundle then P is a semistable
principal bundle. The converse does not hold in positive characteristic.

1.4.3 Example. Let G = GL(n) so that principal G-bundles correspond to rank
n vector bundles. Consider the parabolic subgroup Q0 ⊂ GL(n) consisting of
matrizes of the form

M =
(
M1 ∗
0 M2

)
,

where the first block M1 has size r < n. A reduction β : X → P /Q0 to Q0 of a
principal GL(n)-bundle P gives a rank r subbundle F ⊂ E of the corresponding

9
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vector bundle. Since Q0 is maximal parabolic, any antidominant character of Q0
is a positive multiple of

χ : Q0 →Gm, M 7→ det(M1)r−n det(M2)r.

The associated line bundle L (β,χ)=β∗P ×χGm = det(F )⊗(r−n) ⊗det(E /F )⊗r then
has degree

deg(L (β,χ))= (r−n)degF + rdeg(E /F )= rkF deg(E )−rkE deg(F ).

We see that if P is semistable, then µ(F ) ≤ µ(E ) and we recover the usual
semistability of vector bundles. Conversely, if µ(F )≤µ(E ) then deg(L (β,χ))≥ 0
and P is a semistable principal bundle (since χ is antidominant).

Note that if Q ⊂GL(n) is a parabolic subgroup, then any antidominant char-
acter on Q is a nonnegative linear combination of antidominant characters of
parabolic subgroups containing Q. Since the degree deg(L (β,χ)) behaves linearly
with respect to χ, it is enough to consider maximal parabolic subgroups.

We now turn our focus on decorations on curves. Let X be a curve, G a
reductive linear algebraic group and F a projective variety that is equipped with
a left G-action G×F → F and let P (F) be the associated fibre bundle.

1.4.4 DEFINITION (Decoration). A pair (P ,σ) consisting of a principal G-bundle
P and a section σ : X →P (F) will be called decorated principal bundle.

1.4.5 Example. The most important examples of decorations arise from linear
representations ρ : G →GL(V ). The representation induces an action G×V →V ,
(g,v) 7→ ρ(g)v and hence an associated vector bundle P (V ). The section σ : X →
P (V ) is then equivalent to a map of vector bundles ϕ : OX →P (V ).

One can also look at the induced action G ×P(V ) → P(V ), where we define
P(V ) as the projective space of hyperplanes in V in the sense of Grothendieck.
This step is needed to construct projective moduli spaces. The decoration in this
case is a section σ : X →P(P (V )) of the associated projective bundle. This data is
equivalent to giving a surjective map P (V )→L where L is a line bundle.

Decorated principal bundles (in particular constructions of moduli spaces) on
curves have been studied by Schmitt in [Sch08]. We will focus on different aspects
of these objects.

1.5 Examples
In this secton, we will introduce two examples of decorated bundles, namely
autodual vector bundles and Higgs bundles. In the next two chapters of this
thesis, we will take a closer look at these.

10
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1.5.1 Autodual Vector Bundles

A vector bundle E is autodual if there is an isomorphism Φ : E → E∨ to its dual
bundle. These include the important examples of symplectic bundles and orthogo-
nal bundles.

Let G =GL(n) and H : Kn ×Kn →K a symmetric bilinear form. We define the
orthogonal group as O(n,H) := { A ∈GL(n) | H(Ax, A y)= (x, y)∀x, y ∈Kn }. If Hstd
is the standard inner product on Kn, we let

O(n) :=O(n,Hstd)= {
A ∈GL(n)

∣∣ At A = 1
}
.

We also define Sym(n) := {
A ∈GL(n)

∣∣ At = A
}

to be the symmetric matrices. The
kernel of the homomorphism

GL(n)→Sym(n), A 7→ At A

is the standard orthogonal group and thus GL(n)/O(n)∼=Sym(n) since the above
map is surjective by linear algebra results. Now let P be a principal O(n) bundle.
We have already seen that this is the same as a GL(n)-bundle plus a reduc-
tion β : X → GL(n)/O(n) ∼= Sym(n). This section β is therefore equivalent to an
isomorphism Φ : E → E∨ such that Φ∨ =Φ.

1.5.1 DEFINITION (Orthogonal Bundle). An orthogonal bundle is a vector bundle
E together with a symmetric isomorphism Φ : E → E∨.

The same procedure works if H : Kn×Kn →K is a nondegenerate antisymmet-
ric bilinear form (and hence n is even). We let

Sp(n,H) := {
A ∈GL(n)

∣∣ H(Ax, A y)= (x, y)∀x, y ∈Kn }
be the associated symplectic group. The standard symplectic group then takes
the form

Sp(n) := {
A ∈GL(n)

∣∣ AtΩA = 1
}
, Ω :=

(
0 1
−1 0

)
.

We define Asym(n)= {
A ∈GL(n)

∣∣ At =−A
}

to be the set of skew symmetric ma-
trices and consider the map

GL(n)→Asym(n), A 7→ AtΩA,

whose kernel is the standard symplectic group Sp(n). This induces an isomor-
phism Φ : E → E∨ with Φ∨ =−Φ.

1.5.2 DEFINITION (Symplectic Bundle). A symplectic bundle is a vector bundle
E together with an antisymmetric isomorphism Φ : E → E∨.

11
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Given a vector bundle E and an arbitrary isomorphism Φ : E → E∨, one might
be tempted to decompose it as Φ=Φsym +Φasym where

Φsym = 1
2

(Φ+Φ∨), Φasym = 1
2

(Φ−Φ∨)

and consider (E ,Φsym,Φasym) as an O(n)×Sp(n) bundle. The problem here is that
GL(n) does not decompose as O(n)×Sp(n). For example if Φ is symmetric then
Φasym = 0 and this does not give an element in Asym(n). In other words given a
non-degenerate bilinear form H, one can decompose it into a symmetric and an
antisymmetric part, but these do not have to be non-degenerate.

1.5.2 Higgs bundles
Let X be a smooth projective curve and G a connected reductive linear algebraic
group. Consider the adjoint representation Ad: G → GL(g). Given a principal
G-bundle P , we obtain the adjoint vector bundle

Ad(P ) :=P ×Ad g.

In the case G = GL(n) the Lie algebra gln = Mat(n× n) consists of all (n× n)-
matrices and the adjoint bundle is simply the endomorphism bundle End(E ) of
the associated vector bundle. Hence, a decorated GL(n)-bundle with a decoration
of type Ad consists of a vector bundle E and an endomorphism E → E . Consider a
representation

ρ : GL(n)→GL(gln⊕ K).

The associated principal bundle Pρ takes the form End(E )⊕O⊗m
X for an integer

m ∈Z. A section of Pρ consists of a pair (ϕ,ε) where ϕ ∈End(E ) and ε : OX →O⊗m
X

is a section. Using the associated projective bundle P(Pρ), we obtain a line bundle
L and a surjective map End(E )⊕OX →L (cf. Example 1.4.5) which we can use
to describe Higgs bundles (see also [Sch04, Section 3.6], [Sch08, 2.3.6.10, 2.8.2.5]
and the references therein).

1.5.3 DEFINITION (Higgs bundle). Let L be a line bundle. A Higgs vector bundle
is a pair (E ,ϕ) consisting of a vector bundle E and a twisted endomorphism
ϕ : E → E ⊗L . A principal Higgs bundle is a pair (P ,ϕ) where P is a principal
G-bundle and ϕ : OX → (P ×Ad g)⊗L is a section.

12



Chapter 2

Moduli of Autodual Instanton
Bundles

In this chapter we will investigate the moduli space of autodual instanton bundles
(this is joint work with M. Jardim and S. Marchesi [JMW14]). Let K be an
algebraically closed field of characteristic zero. We work over the n-dimensional
projective space X :=Pn

K
where n ≥ 2.

2.1 Cohomology Bundles
Despite its age, an excellent reference for vector bundles on projective space is still
the book of Okonek, Schneider and Spindler [OSS80]. We recall some concepts
and notation. Another reason for the importance of instanton bundles is that they
can be described effectively via monads.

2.1.1 DEFINITION (Monad). A complex of coherent sheaves

0 A B C 0
a b

(2.1)

is a monad if it is exact at A and B, in other words a is an injective sheaf map
and b is a surjective sheaf map. The coherent sheaf E := kerb/ ima will be called
cohomology of the monad.

Many important properties and invariants of cohomology sheaves can already
be read off the defining monad, such as its rank and Chern polynomial.

2.1.2 Lemma. If E is defined as the cohomology of the monad (2.1), then

rank(E )= rank(B)−rank(A )−rank(C ),

c(E )= c(B)c(A )−1 c(C )−1.
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Proof. Define K := kerb and Q := cokera. The monad (2.1) induces a commuta-
tive diagram (also called the display of the monad) with exact rows and columns

0

K

B

C

0

0

E

Q

C

0

A0 0

A0 0.

b

a

a

Now observe that

rank(Q)= rank(E )+rank(C ), c(Q)= c(E )c(C ),
rank(B)= rank(A )+rank(Q), c(B)= c(A )c(Q),

which is immediate from the display.

2.1.3 DEFINITION (Morphism of monads). A morphism of monads is a morphism
of the underlying complexes. More precisely, there is a commutative diagram

0 A B C 0

0 A ′ B′ C ′ 0

a b

a′ b′

Φa Φb Φc

where the Φi are morphisms of coherent sheaves. We denote a morphism Φ of a
monad by the tuple (Φa,Φb,Φc).

A morphism E → E ′ of cohomology sheaves does not need to lift to a morphism
of monads. However, the morphism groups are in bijection for some special
monads.

14
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2.1.4 Lemma (Lemma 4.1.3 in [OSS80]). Let E and E ′ be cohomology sheaves de-

fined by the monads M : 0 A B C 0 and M′ : 0 A ′ B′ C ′ 0 ,
respectively. There is a bijection Hom(E ,E ′)→Hom(M, M′) between morphisms of
sheaves and morphism of monads if

1. Hom(B,A ′)=Hom(C ,B′)= 0.

2. H1(X ,C ∨⊗A ′)= H1(X ,B∨⊗A ′)= H1(X ,C ∨⊗B′)= H2(X ,C ∨⊗A ′)= 0.

A cohomology sheaf E need not be locally free, even if the sheaves in the
monad are locally free. The degeneration locus of (2.1) is defined as

Σ := {
x ∈ X

∣∣ the stalk Ex is not a free OX ,x −module
}
.

Then E is locally free if and only if Σ is empty. In this case we refer to E as a
cohomology bundle. We will come back to this later.

2.2 Mathematical Instanton Bundles
In their 1986 article [OS86], Okonek and Spindler defined mathematical instanton
bundles as rank 2m locally free sheaves E on odd dimensional complex projective
space P=P2m+1

C
that satisfy the following conditions:

1. There is a c > 0 such that the Chern polynomial is given by

c(E )= 1
(1−H2)c = (1+H2 +H4 +·· · )c,

where H is the class of a hyperplane. In particular, E has Chern classes
c1(E )= 0 and c2(E )= c > 0.

2. The bundle E has natural cohomology in the range −2m−1 ≤ k ≤ 0. This
means, that for all k in the range there is at most one l ≥ 0 with H l(P,E (k)) 6=
0.

3. The bundle E has trivial splitting type. There is a line l ⊂ P such that
E |l ∼=O2m

l .

Using the Beilinson spectral sequence, Okonek and Spindler deduce the
following result from these defining properties.

2.2.1 Theorem. Any mathematical instanton bundle E can be represented as the
cohomology of a monad of the form

0 H1(E ⊗Ω2(1))⊗OP(−1) H1(E ⊗Ω1)⊗OP H1(E (−1)⊗OP(1)) 0.

15
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Since the monad in Theorem (2.2.1) has a special form, the following definiton
seems natural.

2.2.2 DEFINITION (Linear monad). A linear monad is a monad of the form

0 U ⊗OX (−1) V ⊗OX W ⊗OX (1) 0.
a b

(2.2)

Here U ,V and W are finite dimensional K-vector spaces so that a ∈Hom(U ,V )⊗
H0(OX (1)) and b ∈Hom(V ,W)⊗H0(OX (1)).

In the following, we will consider more general objects than the mathematical
instanton bundles of Okonek and Spindler. These have also been studied by
Jardim in [Jar06], where he defines linear sheaves as cohomologies of linear
monads.

2.2.3 DEFINITION (Instanton Sheaf). A torsion-free coherent sheaf E on X is
called an instanton sheaf of charge c and rank r if it is the cohomology of a linear
monad (2.2) and dim(U)= dim(W)= c, dim(V )= r+2c. Again we refer to E as an
instanton bundle if it happens to be locally free.

By Lemma (2.1.2), an instanton sheaf satisfies rank(E ) = r, c1(E ) = 0 and
c2(E )= c > 0. Since E does not need to be locally free, the cohomological charac-
terisation becomes more complicated. In fact E satisfies (for a proof see [Jar06]):

1. For n ≥ 2: H0(E (−1))= Hn(E (−n))= 0.

2. For n ≥ 3: H1(E (−2))= Hn−1(E (1−n))= 0.

3. For n ≥ 4: Hp(E (k))= 0 for 2≤ p ≤ n−2 and all k.

Later, we will want to restrict our attention to instanton bundles in order to
define a suitable autoduality structure. To that end, consider the degeneration
locus Σ. For any x ∈ X , the maps of stalks ax : U ⊗OX ,x(−1) → V ⊗OX ,x and
bx : V ⊗OX ,x →W ⊗OX ,x(1) are injective and surjective, respectively. The problem
is that if we tensor with the residue field OX ,x⊗K(x)∼=K of the point x, exactness is
not preserved. Denote by a(x) : U⊗OX ,x(−1)⊗K(x)→V ⊗OX ,x⊗K(x) and b(x) : V ⊗
OX ,x ⊗K(x)→W ⊗OX ,x(1)⊗K(x) the map of the fibres. One may rephrase this by
saying that the sequence

0 U V W 0.
a(x) b(x)

may not be exact at U for an arbitrary point x ∈ X . This discussion also shows
that

Σ= { x ∈ X | a(x) is not injective } .

Let l ⊂ X be a line in X (which will later be fixed). Given a vector bundle E

on X , the splitting theorem of Grothendieck [Gro57] asserts that the restriction
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of E to this line splits as a direct sum of line bundles. We say that E has trivial
splitting type on l if E |l ∼=O rankE

X . The instanton bundles we will construct will be
of trivial splitting type on a particular line. Moreover, they will be equipped with
a framing.

2.2.4 DEFINITION (Framing). An isomorphism Φ : E |l −→O⊕r
l is called a fram-

ing. We will refer to the pair (E ,Φ) consisting of an instanton sheaf E and
a framing Φ as a framed instanton sheaf. A morphism of framed instanton
sheaves ( f , f ) : (E1,Φ1)→ (E2,Φ2) is a morphism of sheaves f : E1 → E2 such that
f =Φ2 ◦ f |l ◦Φ−1

1 ; in other words, f fits into the commutative diagram

(E1)|l O
⊕r1
l

(E2)|l O
⊕r2
l .

f |l

Φ1

f

Φ2

An isomorphism of framed instanton sheaves is a pair ( f , id), where f is an
isomorphism of sheaves.

To determine the splitting type of a cohomology bundle, the following criterion
is useful.

2.2.5 Lemma (4.2.3, 4.2.4 in [OSS80]). Let E be a cohomology bundle on X defined
by a linear monad (2.2) with dim(U)= dim(W) and p1, p2 ∈ X two distinct points.
If l ⊂ X is the unique line through p1 and p2, then the restriction E |l has trivial
splitting type if and only if b(p1)◦a(p2) ∈Hom(U ,W) is an isomorphism.

In the next section, we will see how these properties of an instanton bundle
can be formulated in terms of ADHM data.

2.3 ADHM Construction of Instanton Bundles

The ADHM construction provides an explicit description of the monad maps
in terms of certain matrices. It has its name from the famous 1978 article
“Constructions of Instantons” by Atiyah, Drinfeld, Hitchin and Manin. It has
since been studied by Donaldson in 1984 [Don84] and more recently by Jardim in
[FJ08].

Let V and W be K-vector spaces of dimension dimV = c > 0 and dimW = r > 0.
We also define d := n−2, which is a non-negative integer since we chose n to be
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at least 2. An ADHM datum is given by a tuple of linear maps (Ak,Bk, Ik, Jk) for
k = 0, . . . ,d where Ak,Bk ∈End(V ), Ik ∈Hom(W ,V ) and Jk ∈Hom(V ,W).

V W

Jk

Ak,Bk

Ik

Next we choose homogeneous coordinates [x : y : z0 : . . . : zd] on X such that the
elements z0, . . . , zd form a basis of H0(Pd,OPd (1)) and define

A :=
d∑

i=0
A i ⊗ zi, B :=

d∑
i=0

Bi ⊗ zi, I :=
d∑

i=0
I i ⊗ zi, J :=

d∑
i=0

Ji ⊗ zi.

We see these as elements of B := (End(V )⊕End(V )⊕Hom(W ,V )⊕Hom(V ,W))⊗
H0(Pd,OPd (1)). We obtain a map µ : B → End(V )⊗ H0(Pd,OPd (1)) by defining
µ(A,B, I, J)= [A,B]+ IJ.

2.3.1 DEFINITION (ADHM datum). The subset µ−1(0)⊂B is called the set of all
d-dimensional ADHM data. An element (A,B, I, J) ∈µ−1(0) satisfies the ADHM
equation [A,B]+ IJ = 0.

2.3.2 Remark. For any p ∈Pd we can consider the evaluation map

evp : H0(Pd,OPd (1))→K

which we tensor with the identity to obtain

evp : B→ (End(V )⊕End(V )⊕Hom(W ,V )⊕Hom(V ,W)).

So a datum (A,B, I, J) ∈B can be seen as a family (Ap,Bp, Ip, Jp) of real ADHM
data parametrised by Pd. These real data will satisfy the real ADHM equations
as developed in [Don84] and [FJ08]. On P3 they are parametrised by P1 ∼=K∪{∞ }
and that is why they were called complex ADHM-data in [FJ08].

To construct an instanton bundle out of an element (A,B, I, J) ∈B we define
W̃ :=V ⊕V ⊕W and a monad

0 V ⊗OX (−1) W̃ ⊗OX V ⊗OX (1) 0
α β

(2.3)

where the monad maps are given by

α=
A+1x

B+1y
J

 ∈Hom(V ,W̃)⊗H0(X ,OX (1)),

β= (−B−1y A+1x I
) ∈Hom(W̃ ,V )⊗H0(X ,OX (1)).
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A straightforward calculation shows that the vanishing of β◦α= 0 is equivalent to
the requirement that (A,B, I, J) ∈µ−1(0) or that the ADHM equation [A,B]+ IJ =
0 holds.

As already mentioned above, we want to restrict our attention to instanton
bundles. This will imply that the dual E∨ of the cohomology bundle is again an
instanton bundle. Let us take a closer look at the degeneration locus of the above
monad Σ= { p ∈ X | α(p) not injective }.

Firstly, consider a point p ∈ X that lies on the line l∞ = { z0 = . . .= zd = 0 }. Then
α(p)= (

1x 1y 0
)T and β(p)= (−1y 1x 0

)
, and these are clearly injective and

surjective, respectively, since [x : y] ∈P1. So let p = [x : y : z0 : . . . : zd] ∈ X such that
at least one of the zi is not 0. Suppose that α(p) : V →V ⊕V ⊕W is not injective.
There is a 0 6= v ∈V with α(p)(v)= 0 which gives

(A0z0 + . . .+ Ad zd)v =−xv
(B0z0 + . . .+Bd zd)v =−yv

(J0z0 + . . .+ Jd zd)v = 0.

Thus v is a common eigenvector of Ak and Bk, and v ∈ ker Jk for all k = 0, . . . ,d.
We also need to check that (2.3) defines a monad; that is, the map β has to

be surjective. Suppose that β(p) : V ⊕V ⊕W →V is not surjective. Then the dual
map β(p)∨ is not injective and there is a nonzero v ∈V with

−(B0z0 + . . .+Bd zd)∨v = yv
(A0z0 + . . .+ Ad zd)∨v =−xv

(I0z0 + . . .+ Id zd)∨v = 0.

Again we see that v is a common eigenvector of Ak and Bk, and v ∈ ker(I∨k ) =
(im Ik)∨. This justifies the following definition.

2.3.3 DEFINITION (Regularity). An ADHM datum (A,B, I, J) is said to be regular
if the following condition holds. There is no proper subspace 0 ( S ( V that is
Ak,Bk-invariant (Ak(S),Bk(S)⊆ S) and im Ik ⊆ S, S ⊆ ker(Jk) for all k = 0, . . . ,d.

The above discussion shows that the cohomology of the monad (2.3) is locally
free whenever the ADHM datum (A,B, I, J) is regular.

Instanton bundles arising from ADHM data will always have trivial splitting
type. They are trivial on the line l∞ = { z0 = . . .= zd = 0 } with fibre given by W.
This can be seen by looking at the restriciton of (2.3) to l∞ ⊂ X which is

0 V ⊗Ol∞(−1) W̃ ⊗Ol∞ V ⊗Ol∞(1) 0.

(
1x 1y 0

)
−1y

1x
0
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Alternatively, l∞ is the line through the points p1 = [1 : 0 : 0 : . . . : 0] and p2 = [0 : 1 :
0 . . . : 0] in X . One computes

β(p1)α(p2)= (
0 1 0

)(
0 1 0

)= 1

and uses Lemma (2.2.5). To identify those ADHM data that produce isomorphic
cohomology bundles, we let GL(V ) act on B by defining

g.(A,B, I, J)= (
gAg−1, gBg−1, gI, J g−1) .

One checks that the set µ−1(0) is GL(V )-invariant. Finally, the following result is
crucial for our considerations.

2.3.4 Theorem (Thm 3.8 in [HJM14]). Let X =Pn
K

and r, c > 0 positive integers.
The above construction provides a bijection between the following two sets:

1. Equivalence classes (A,B, I, J) of (n−2)-dimensional regular solutions to
[A,B]+ IJ = 0.

2. Isomorphism classes of framed instanton bundles E on X with rank(E )= r
and charge c2(E )= c.

Note that choosing any H ∈GL(W) gives a framing of the cohomology bundle
of the ADHM monad (2.3).

2.4 Autodual Instanton Bundles
The purpose of this section is to see how an isomorphism ϕ : E → E∨ of an instan-
ton bundle to its dual bundle is reflected in the corresponding monad and ADHM
data. This will lead to a description of the moduli space of autodual framed
instanton bundles using the resulting relations. Note that we do not consider any
scheme theoretic structure on the moduli spaces, meaning that we only describe
the underlying set of isomorphism classes of the objects in question.

Since we restrict ourselves to instanton bundles, the dual bundle is again an
instanton bundle, which is already proven in [AO94]. However, we will need the
following stronger result.

2.4.1 Lemma. If E is an instanton bundle, then its dual bundle E∨ is the coho-
mology of the monad which is dual to the monad that defines E . In particular, E∨

is again an instanton bundle.

Proof. The bundle E is defined by a monad of the form (2.3) which we can split in
two pairs of short exact sequences, namely 0−→K −→ W̃ ⊗OX

β−→V ⊗OX (1)−→ 0, K = kerβ

0−→V ⊗OX (−1) α−→K −→ E −→ 0, E = kerβ
/

imα

(2.4)
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and  0−→V ⊗OX (−1) α−→ W̃ ⊗OX −→Q −→ 0, Q = cokerα

0−→ E −→Q
β−→V ⊗OX (1)−→ 0.

(2.5)

Since E is locally free, we can dualise (2.4) to obtain
0−→V∨⊗OX (−1)

β∨−→ W̃∨⊗OX −→K ∨ −→ 0,

0−→ E∨ −→K ∨ α∨
−→V∨⊗OX (1)−→ 0.

(2.6)

From the monads (2.6) and (2.5) and using the isomorphism (kerβ)∨ ∼= cokerβ∨,
we can reconstruct the following monad

0 V∨⊗OX (−1) W̃∨⊗OX V∨⊗OX (1) 0,
β∨ α∨

(2.7)

which is dual to the defining monad of E and whose cohomology bundle is indeed
E∨ (see 2.6).

2.4.2 Remark. The above argument also applies to monads 0 A B C 0
of locally free sheaves whose cohomology bundle E is locally free. However, it is
false if E contains non-trivial torsion, because after dualising (2.4), the sequence
(2.6) is not exact in the torsion case.

We shall now state the precise definitions of the objects which will be consid-
ered in the remainder of this chapter.

2.4.3 DEFINITION (Autoduality). We call an instanton bundle E autodual if it
is isomorphic to its dual, i.e. there exists an isomorphism ϕ : E → E∨ (of framed
instanton bundles). If the isomorphism ϕ satisfies ϕ∨ =−ϕ the instanton bundle
(E ,ϕ) is called symplectic. If it satisfies ϕ∨ =ϕ we call (E ,ϕ) orthogonal. We denote
a framed autodual instanton bundle by the triple (E ,Φ,ϕ), where Φ : E |l →W ⊗Ol
denotes the framing and ϕ : E → E∨ the isomorphism that respects the framing.

We denote by Maudi(r, c) the set of isomorphism classes of framed autodual
instanton bundles (E ,Φ,ϕ) of rank r and second Chern class c2(E ) = c. Simi-
larly Msymp(r, c) denotes the set of isomorphism classes of framed symplectic
instanton bundles and Morth(r, c) the set of isomorphism classes of framed orthog-
onal instanton bundles. In the following, we will often drop the term “framed”,
remembering that all bundles we consider come with a fixed framing.

Let E be an instanton bundle. By Theorem (2.3.4) there is an ADHM datum
and hence a linear monad defining E . Note that a map ϕ : E1 → E2 between two
instanton bundles can be lifted to the corresponding monads, since (compare
Lemma 2.1.4)

H0(X ,W̃1
∨⊗V2 ⊗OX (−1))= H0(X ,V∨

1 ⊗W̃2 ⊗OX (−1))= 0,
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and similarly

H1(X ,V∨
1 ⊗V2 ⊗OX (−2))= H1(X ,W̃∨

1 ⊗V2 ⊗OX (−1))

= H1(X ,V∨
1 ⊗W̃2 ⊗OX (−1))

= H1(X ,V∨
1 ⊗V2 ⊗OX (−2))

= 0.

Hence, in the situation of an autodual instanton bundle, the isomorphism ϕ : E →
E∨ lifts to an isomorphism of monads

V ⊗OX W̃ ⊗OX V ⊗OX (1)

V∨⊗OX (−1) W̃∨⊗OX V∨⊗OX (1).

α β

β∨ α∨

G1 F G2
(2.8)

The maps G1,G2 and F are isomorphisms V → V∨ and W̃ → W̃∨, respectively.
Recall that W̃ =V ⊕V ⊕W and so F takes the block form

F =
F1 F2 F3

F4 F5 F6
F7 F8 F9

 : V ⊕V ⊕W →V∨⊕V∨⊕W∨.

The commutativity of (2.8) gives us relations for the maps involved, in particular
the left half gives us Fα=β∨G1 whereas the right half gives us G2β=α∨F. The
description of α and β given by the ADHM construction and the description of F
above gives

Fα=
F1 F2 F3

F4 F5 F6
F7 F8 F9

A+1x
B+1y

J

=
F1A+F1x+F2B+F2 y+F3J

F4A+F4x+F5B+F5 y+F6J
F7A+F7x+F8B+F8 y+F9J

 ,

β∨G1 =
−B∨−1y

A∨+1x
I∨

G1 =
−B∨G1 −G1 y

A∨G1 +G1x
I∨G1

 ,

from which we obtain F1 = F5 = F7 = F8 = 0 and F2 =−G1, F4 =G1. The right half
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then reduces to

α∨F = (
A∨+1x B∨+1y J∨) 0 −G1 F3

G1 0 F6
0 0 F9



= (
B∨G1 +G1 y −A∨G1 −G1x A∨F3 +F3x+B∨F6 +F6 y+ J∨F9

)
,

G2β=G2
(−B−1y A+1x I

)
= (−G2B−G2 y G2A+G2x G2I

)
,

and we get F3 = F6 = 0 and furthermore G1 = −G2. Our calculations give the
following description of autoduality in terms of monads.

2.4.4 Lemma. Let (E ,ϕ) be an autodual instanton bundle. Then the isomorphism
ϕ : E → E∨ is given by isomorphisms G : V →V∨ and H : W →W∨ that fit into the
defining monad as

V ⊗OX (−1) W̃ ⊗Ox V ⊗OX (1)

V∨⊗OX (−1) W̃∨⊗OX V∨⊗OX (1).

α β

β∨ α∨

−G F G

where

F =
 0 G 0
−G 0 0
0 0 H

 : V ⊕V ⊕W → (V ⊕V ⊕W)∨.

Lemma (2.4.4) allows us to parametrise autodual instanton bundles by an
extended datum (A,B, I, J,G,H). We will refine this parameterisation. The first
step is to make use of the commutativity of the diagram to obtain the duality
relations

GB = B∨G, GA = A∨G, HJ =−I∨G, GI = J∨H. (2.9)

The (anti-)symmetry of ϕ : E → E∨ is also reflected in the refined parametrisation.
We take a closer look at this in the next lemma.

2.4.5 Lemma. Let E be an autodual instanton bundle be given by the extended
datum (A,B, I, J,G,H).

1. The bundle E is symplectic, if and only if H is antisymmetric and G is
symmetric.
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2. The bundle E is orthogonal, if and only if H is symmetric and G is antisym-
metric.

Proof. By dualising the map ϕ : E → E∨, one obtains the following diagram

V ⊗OX (−1) W̃ ⊗OX V ⊗OX (1)

V∨⊗OX (−1) W̃∨⊗OX V∨⊗OX (1).

α β

β∨ α∨

G∨ F∨ −G∨

In other words the bundle map ϕ∨ : E → E∨ is given by the isomorphisms −G∨ : V →
V∨ and H∨ : W →W∨. Now ϕ∨ =−ϕ is equivalent to G∨ =G and H∨ =−H. This
gives the statement in the symplectic case. The orthogonal case is completely
analogous.

We need to extend the GL(V )-action on the ADHM datum (A,B, I, J) to these
extended data. Indeed, if we consider a change of coordinates g ∈ GL(V ), it
induces a change of coordinates on the dual vector space g∨ ∈GL(V∨). The action
is now defined as g.G := (g∨)−1G g−1 : V →V∨, so that the action of GL(V ) on the
extended datum is

g.(A,B, I, J,G,H)= (gAg−1, gBg−1, gI, J g−1, (g∨)−1G g−1,H).

Considering everything seen so far and keeping in mind Theorem (2.3.4), we can
state the following result.

2.4.6 Proposition. Let X =Pn
K

and r, c > 0 positive integers. There is a bijection

Maudi(r, c)∼= { (A,B, I,G,H) }
/

GL(V )

where the datum (A,B, I,G,H) satisfies the following:

1. (A,B, I,−H−1I∨G) is a regular ADHM datum.

2. GA = A∨G, GB = B∨G, GIH−1 +G∨I(H∨)−1 = 0.

Proof. We have already observed that a framed autodual instanton bundle (E ,Φ,ϕ)
gives an extended ADHM datum satisfying the duality relations (2.9). Note that
we have J =−H−1I∨G by the duality relations and thus GIH−1 − J∨ = 0, which
gives the last relation. One checks that all relations are GL(V )-invariant. Fur-
thermore, the isomorphism H : W →W∨ determines the framing of E∨ by fitting
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into the commutative diagram

E|l W ⊗Ol

E∨
|l W∨⊗Ol .

ϕ
∣∣
l

Φ

H

(Φ∨)−1

Conversely, given a datum (A,B, I,G,H), we let J :=−H−1I∨G and define E as
the cohomology of the monad obtained from the ADHM-datum (A,B, I, J). Then
E is a framed auto dual instanton bundle by construction (cf. Theorem 2.3.4), the
isomorphism ϕ : E → E∨ is determined by (G,H) and Lemma (2.4.4).

2.5 Symplectic Instanton Bundles
In this section we will describe the set of isomorphism classes in the symplectic
case. Since this is a special case of autoduality, we get by Proposition (2.4.6) that a
symplectic instanton bundle gives an extended ADHM datum (A,B, I,G,H). From
Lemma (2.4.5) we obtain that H : W →W∨ is an antisymmetric isomorphism and
G : V →V∨ is a symmetric isomorphism. Moreover, considering the group action
defined by

(g.G)∨ = ((g∨)−1G g−1)∨ = (g∨)−1G g−1 = g.G

for any g ∈GL(V ), we see that the symmetry of G is not affected by it.
Let us take a closer look at the duality relations in Proposition (2.4.6). Using

the (anti)-symmetry of G respectively H, we see that the third relation

GIH−1 +G∨I(H∨)−1 =GIH−1 −GIH−1 = 0

holds for all given I. In summary, we have the following.

2.5.1 Proposition. Let X =Pn
K

and r, c > 0 positive integers. There is a bijection

Msymp(r, c)∼= { (A,B, I,G,H) }
/

GL(V )

where (A,B, I,G,H) satisfies the following:

1. (A,B, I,−H−1I∨G) is a regular ADHM datum.

2. GA = A∨G, GB = B∨G.

3. G∨ =G, H∨ =−H.
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2.5.2 Example. We will provide some examples of ADHM data defining symplectic
instanton bundles on P2. For simplicity, assume that the rank is r = 2.

First consider the case c = 1. Let A,B ∈K arbitrary and consider I = (
1 0

)
, G =(

1
)
, H =

(
0 1
−1 0

)
. Then we get

J =−H−1I∨G =
(

0
−1

)
,

and the ADHM equation reduces to IJ = 0. Furthermore, im(I) =K,ker(J) = 0
and the regularity of (A,B, I, J) is immediate.

Now consider the case c = 2. Again, we let G =
(
1 0
0 1

)
, H =

(
0 1
−1 0

)
. We also

choose

I =
(
x1 x2
x3 x4

)
, A =

(
0 1

2
1
2 det(I)

)
, B =

(
det(I) 1

2
1
2 0

)
.

This forces

J =−H−1I∨G =
(

x2 x4
−x1 −x3

)
,

and we compute the ADHM equation as

[A,B]+ IJ =
(

0 −det(I)
det(I) 0

)
+

(
0 det(I)

−det(I) 0

)
= 0.

To check the regularity of (A,B, I, J), note that det(I)= x1x4 − x2x3 = det(J) and
choosing any I ∈GL(2) guarantees regularity.

Let (E ,ϕ) be a symplectic instanton bundle. We will take a closer look at the
framing Φ : E |l →W ⊗O |l . Recall that there is a commutative diagram

E|l W ⊗Ol

E∨
|l W∨⊗Ol ,

ϕ

Φ

H

(Φ∨)−1

in other words, the isomorphism H : W → W∨ satisfies H = ϕ
∣∣
l . Let h ∈ GL(W)

and define the action

h.(I,H) := (Ih−1, (h∨)−1Hh−1).

This induces an action of GL(V )×GL(W) on the extended ADHM datum corre-
sponding to E . Now the pair (W ,H) defines a symplectic vector space and hence
we can assume via the above action that

H ∼=
(

0 1
−1 0

)
=:Ω.
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Defining Fsymp(r, c) to be the set of isomorphism classes of symplectic instanton
bundles (E ,ϕ) of trivial splitting type (without any fixed framing), the discussion
shows the following.

2.5.3 Proposition. Let X =Pn
K

and r, c > 0 positive integers. There is a bijection

Fsymp(r, c)∼= { (A,B, I,G) }
/

GL(V )×GL(W)

where (A,B, I,G) satisfies the following:

1. (A,B, I,−Ω−1I∨G) is a regular ADHM datum.

2. GA = A∨G, GB = B∨G.

3. G∨ =G.

Of course, the investigation of Msymp(r, c) and Fsymp(r, c) is far from being
complete. Recently Bruzzo, Markushevich and Tikhomirov showed in [BMT12]
that the moduli space of symplectic instanton bundles of rank 2r ≥ 4 and second
Chern class c ≥ r on P3 where c ≡ r mod 2 contains an irreducible component of
dimension 4c(r+1)− r(2r+1).

2.6 Orthogonal Instanton Bundles
In this section we will describe the set of isomorphism classes in the orthogonal
case, concluding with some examples. Orthogonal instanton bundles occupied a
special position because it was very hard to find any examples. For instance, in
[FFM09] the authors proved that in the classical situtation of rank 2n on P2n+1,
orthogonal instanton bundles do not exist. We will extend this result in various
directions.

Similarly to the symplectic case, an orthogonal instanton bundle gives an
extended ADHM datum (A,B, I,G,H) with H : W →W∨ symmetric and G : V →
V∨ antisymmetric. Again, the antisymmetry of G is not affected by the action of
GL(V ). The duality relation is again fulfilled for all I, since

GIH−1 +G∨I(H∨)−1 =GIH−1 −GIH−1 = 0.

2.6.1 Proposition. Let X =Pn
K

and r, c > 0 positive integers. There is a bijection

Morth(r, c)∼= { (A,B, I,G,H) }
/

GL(V )

where (A,B, I,G,H) satisfies the following:

1. (A,B, I,−H−1I∨G) is a regular ADHM datum.

2. GA = A∨G, GB = B∨G.
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3. G∨ =−G, H∨ = H.

2.6.2 Corollary. If E is an orthogonal instanton bundle of trivial splitting type,
then c = c2(E ) is even. In particular Morth(r, c) is empty for c odd.

Proof. The ADHM datum of E gives an antisymmetric isomorphism G : V →V∨,
forcing dimV = c to be even.

As in the symplectic case, if we forget the chosen framing of an orthogonal
instanton bundle, we can get H : W →W∨ into a standard form. We let GL(W) act
on the pair (I,H) via

h.(I,H) := (Ih−1, (h∨)−1Hh−1).

The pair (W ,H) can be interpreted as a vector space together with a nondegenerate
symmetric bilinear form. Via the above defined action, we can assume that
H ∼= 1W , since the signature of H must be (dim(W),0). Again let Forth(r, c) be the
set of isomorphism classes of orthogonal instanton bundles of trivial splitting type
(wihout fixed framing) parametrising pairs (E ,ϕ).

2.6.3 Proposition. Let X =Pn
K

and r, c > 0 positive integers. There is a bijection

Forth(r, c)∼= { (A,B, I,G) }
/

GL(V )

where (A,B, I,G) satisfies the following:

1. (A,B, I,−I∨G) is a regular ADHM datum.

2. GA = A∨G, GB = B∨G.

3. G∨ =−G.

2.6.4 Example. We provide an example of an orthogonal instanton bundle of non
trivial splitting type. Let E on Pn be defined as the cohomology of the monad

0 OPn(−1) O2n+2
Pn OPn(1) 0,

αt α

where [x0 : . . . : xn] are homogeneous coordinates on Pn and

α= (
x0 x0i . . . xn xn i

)
.

Clearly αα∨ = 0, and α∨(p) is injective at every point p ∈ Pn so that E is an
orthogonal instanton bundle of rk(E )= 2n and charge c = 1. However, restricted
to any line l = 〈xy〉 through x, y ∈Pn, the bundle E is not of trivial splitting type
since (cf. Lemma 2.2.5)

det(αl(x)αl(y)∨)=
n∑

i=0
xi yi + i2xi yi = 0.
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2.7 The Rank Two Case
Let E be an autodual rank two instanton bundle on X . Since the first Chern class
of E is zero, the determinant line bundle det(E )=Λ2E ∼=OX is trivial. Hence there
is a natural isomorphism ϕ : E → E∨. The map ϕ can be seen as an element of

Hom(E∨,E )= H0(E ⊗E )= H0(S2E )⊕H0(Λ2E ). (2.10)

Note that ϕ ∈ H0(S2E ) if and only if ϕ∨ =ϕ is symmetric and ϕ ∈ H0(Λ2E ) if and
only if ϕ∨ =−ϕ is antisymmetric. As remarked above

H0(Λ2E )= H0(OX )=K,

which says that any rank two instanton bundle admits a symplectic structure that
is unique up to scaling. Similarly, the orthogonal structures of E are parametrised
by H0(S2E ). Note that the decomposition (2.10) reflects the fact that any autod-
uality structue ϕ can be decomposed ϕ=ϕsym +ϕasym into a symmetric and an
antisymmetric part (that might be zero).

Suppose now that E is also simple. Then necessarily H0(S2E )= 0 from (2.10)
and there is no orthogonal structure on E . Hence, if E is a simple rank two
instanton bundle, then it does not admit an orthogonal structure.

To simplify computations, we will now focus on rank two orthogonal instanton
bundles on X = P2. Recall that the second Chern class c has to be even by
Corollary (2.6.2).

2.7.1 Case r = 2, c = 2 and n = 2

The easiest case is that of rank two orthogonal instanton bundles with second
Chern class two on the projective plane X =P2.

2.7.1 Theorem. Orthogonal instanton bundles of rank two and charge two on P2

do not exist. In other words MP2

orth(2,2) is empty.

Proof. All maps in an extended ADHM datum (A,B, I, J,G,H) ∈ MP2

orth(2,2) are
given by (2×2)-matrices with entries in K. In order to obtain an orthogonal
bundle, we need that G is an antisymmetric isomorphism. Equivalently, the pair
(V ,G) defines a symplectic vector space and hence we can choose a basis such that

G =
(

0 1
−1 0

)
.

Setting A =
(
a1 a2
a3 a4

)
, we compute the duality relation GA = A∨G and get

(
a3 a4
−a1 −a2

)
=GA = A∨G =

(
a1 a3
a2 a4

)(
0 1
−1 0

)
=

(−a3 a1
−a4 a2

)
,
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hence A = a ·1 and similarly B = b ·1 are multiples of the identity matrix. Then A
and B commute, so the ADHM equation reduces to IJ = 0. The maps I and J have
the same rank since GI = J∨H, and combining this with the ADHM equation we
get that rk(I),rk(J)≤ 1. Choosing homogeneous coordinates [z : x : y] on P2, the
monad maps take the form

α=



az+ x 0
0 az+ x

bz+ y 0
0 bz+ y

i1z i2z
i3z i4z

 , β=
(−bz− y 0 az+ x 0 j1z j2z

0 −bz− y 0 az+ x j3z j4z

)
,

where I =
(
i1 i2
i3 i4

)
, J =

(
j1 j2
j3 j4

)
. We let p = [−1 : a : b] ∈P2 and the fibre maps are

α(p)=
 0

0
−I

 , β(p)= (
0 0 −J

)
.

Since rk(I),rk(J)≤ 1, we see that α(p) can never be injective and β(p) can never
be surjective, which shows that there are no regular solutions.

2.7.2 Case r = 2, c = 4 and n = 2

Using Proposition (2.6.3) we will investigate the existence of orthogonal instanton
bundles of rank two and charge four on P2. We know by now that this means
considering the commutative diagram

V ⊗OX (−1) W̃ ⊗OX V ⊗OX (1)

V∨⊗OX (−1) W̃∨⊗OX V∨⊗OX (1).

α β

β∨ α∨

−G F G

with the following relations

GB = B∨G, GA = A∨G, HJ =−I∨G, GI = J∨H,

such that H is symmetric and G antisymmetric. Fix a basis of the symplectic
vector space V such that

G =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 .
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Using the first two relations in (2.9), a computation shows that A and B have the
following form

A =


a1 a2 0 a4
a5 a6 −a4 0
0 a10 a1 a5

−a10 0 a2 a6

 , B =


b1 b2 0 b4
b5 b6 −b4 0
0 b10 b1 b5

−b10 0 b2 b6

 .

To simplify computations we also fix H to be the identity matrix and choose

J =
(

j1 0 0 0
0 0 0 j8

)
.

Note that we can recover I from the remaining relations.
After making these choices we can compute the ADHM equation and this

produces a (4×4)-matrix whose entries must equal zero.

AB−BA+ IJ =


−a5b2 +a10b4 +a2b5 −a4b10 −a2b1 +a1b2 −a6b2 +a2b6

a5b1 −a1b5 +a6b5 −a5b6 a5b2 +a10b4 −a2b5 −a4b10
2a10b5 −2a5b10 + j2

1 −a10b1 +a10b6 +a1b10 −a6b10
−a10b1 +a10b6 +a1b10 −a6b10 −2a10b2 +2a2b10

2a4b2 −2a2b4 −a4b1 +a1b4 −a6b4 +a4b6
−a4b1 +a1b4 −a6b4 +a4b6 2a5b4 −2a4b5 − j2

8
a5b2 −a10b4 −a2b5 +a4b10 −a5b1 +a1b5 −a6b5 +a5b6
a2b1 −a1b2 +a6b2 −a2b6 −a5b2 −a10b4 +a2b5 +a4b10

 .

We are looking for solutions in the variables ai and bi such that j1 and j8 are not
zero. Define the ideal R ⊂K[ai,bi] generated by all entries of the matrix without
a summand in either j1 or j8. After that we consider the ideal S defined as

S = 〈R,a10b5 −a5b10,a5b4 −a4b5〉 .

A computation using Macaulay2 [GS] shows that R and S are not the same ideal,
which means that we can find solutions of the ADHM equation with j1 and j8
different from zero.

Furthermore, we need to look for regular solutions of the ADHM equation. To
this end note that

I =G−1J∨H =


0 0
0 − j8
j1 0
0 0

 ,

and hence im I =
〈(

0 1 0 0
)T ,

(
0 0 1 0

)T
〉
= ker J. For the regularity of

(A,B, I, J) we need that for all subspaces S ⊂V ∼=K4 satisfying im I ⊂ S ⊂ ker J,
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that S is not A,B-invariant. Since

A ·


0
x
y
0

=


a2x

a6x−a4 y
a10x+a1 y

a2 y

 ,

it is sufficient to ask that both a2 and b2 are not zero. However, the ideal R
decomposes as R = S∩U where

U = 〈a2,b2,−a1 +a6,−b1 +b6,−a10b4 +a4b10〉 .

Since a2 and b2 are generators of this ideal, there cannot be regular solutions
of the ADHM equation with these choices of (A,B, I, J,G,H). It remains open
whether there are regular solutions for different choices.

2.7.3 Case r = 2, c ≥ 6 and n = 2

The computations become very large, when using a similar algorithm for higher
charges. Indeed, Macaulay2 could not finish the computations in the charge six
case. Again the problem is not to find a solution but a regular solution of the
ADHM and duality equations.

In [AB13] there are also examples of orthogonal instanton bundles on P2 of
rank r ≥ 2 and second Chern class c = r. The authors also show that the moduli
space of stable orthogonal instanton bundles of trivial splitting type of rank r and
even second Chern class c on the projective plane is smooth and irreducible, and
compute its dimension for certain values of r and n.

2.A Macaulay2 Code
Below is the Macaulay2 Code that was used in the case of orthogonal instanton
bundles of rank two and charge four.

// we work in the polynomial ring

R=QQ[a_0..a_10,b_0..b_10,j_1..j_8,i_1..i_8]

// the matrices A, B, G, and J are choosen as above

A=matrix{

{a_1,a_2,0,a_4},

{a_5,a_6,-a_4,0},

{0,a_10,a_1,a_5},

{-a_10,0,a_2,a_1}

}
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B=matrix{

{b_1,b_2,0,b_4},

{b_5,b_6,-b_4,0},

{0,b_10,b_1,b_5},

{-b_10,0,b_2,b_1}

}

G=matrix{

{0,0,1,0},

{0,0,0,1},

{-1,0,0,0},

{0,-1,0,0}

}

iG=inverse G

J=matrix{

{j_1,0,0,0},

{0,0,0,j_8}

}

TJ=transpose J

// the matrix I is determined by the choices and the duality equations

I=iG*TJ

// Q is the ideal of all solutions of the ADHM equation

M=A*B-B*A + I*J

Q=ideal{M}

// compute the generators of Q

mingens Q

// Y is the ideal R from above

Y=ideal(

a_4*b_2-a_2*b_4,

a_10*b_2-a_2*b_10,

a_5*b_2-a_2*b_5,

-a_4*b_10+a_10*b_4,

a_10*b_1-a_10*b_6-a_1*b_10+a_6*b_10,

a_5*b_1-a_1*b_5+a_6*b_5-a_5*b_6,

a_4*b_1-a_1*b_4+a_6*b_4-a_4*b_6,

a_2*b_1-a_1*b_2+a_6*b_2-a_2*b_6

)
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// compute the generators of Y

mingens Y

// X is the ideal S from above

X=ideal(Y, a_10*b_5-a_5*b_10, a_5*b_4-a_4*b_5 )

// compute the generators of X

mingens X

X==Y

// decompose the ideal Y

decompose Y
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Chapter 3

Complementary Polyhedron of
Higgs Bundles

In this chapter we will investigate canonical reductions of principal Higgs bundles.
Let K be an algebraically closed field of characteristic zero. In this chapter X will
be a smooth projective curve of genus g over K and G a connected reductive linear
algebraic group.

3.1 Complementary Polyhedra
We recall the definition of complementary polyhedra as introduced in [Beh95].
Further details on root systems and root data can be found in [Hum72].

Let (V ,〈·, ·〉) be a Euclidean vector space of dimension n and Φ⊂V a reduced
root system in V . More precisely, Φ satisfies the following:

(R1) Φ is finite, generates V and does not contain 0 ∈V .

(R2) If α ∈Φ, then λα ∈Φ if and only if λ=±1.

(R3) If sα is the reflection at the line spanned by α ∈Φ, then sα(Φ)=Φ.

(R4) For all α,β ∈Φ, we have (α,β) := 2〈α,β〉
〈β,β〉 ∈Z.

The elements of a root system are called roots. Note that sα(β) = β− (β,α)α
and hence sα(β)=β+nα for an integer n ∈Z. The subgroup W ⊂GL(V ) generated
by all reflections sα for α ∈Φ is called Weyl group.

A subset ∆⊂Φ is called basis of Φ if it satisfies:

(B1) ∆ generates V .

(B2) Every root is an integral linear combination of elements of ∆ and the
coefficients are either all non-negative or non-positive.



Complementary Polyhedron of Higgs Bundles A. Wißdorf

Elements of a basis are called simple roots. The choice of a basis gives a
partition Φ = Φ+∪Φ− into positive and negative roots. If α ∈ V we let Lα :=
{ v ∈V | 〈v,α〉 = 0 } be the hyperplane orthogonal to α. The collection (Lα)α∈Φ gives
a partition of V into facets. Two vectors v,w ∈V are in the same facet if and only
if for all α ∈Φ, we have v,w ∈ Lα or 〈v,α〉〈w,α〉 > 0. The unique facet of dimension
0 is the origin {0 } and the facets of dimension n are called Weyl chambers.

A subset R ⊂Φ is parabolic if it satisfies:

(P1) For all α ∈Φ, we have α ∈ R or −α ∈ R.

(P2) If α,β ∈ R and α+β ∈Φ, then α+β ∈ R.

Note that after choosing a basis ∆, the positive roots Φ+ with respect to ∆
form a (minimal) parabolic subset.

3.1.1 Lemma (Corollary 1.8 in [Beh95]). The following correspondence

R : {Facets of Φ }−→ {Parabolic subsets of Φ } ,
P 7→ R(P),

where R(P) := {α ∈Φ | 〈α,λ〉 ≥ 0 ∀λ ∈ P } is bijective. Furthermore, it is inclusion
reversing; that is, if P1 ⊂ P2 are facets then R(P1)⊃ R(P2).

If P is a facet of Φ, we define the subspace VP := (spanP)⊥ ⊂ V . Then ΦP :=
Φ∩VP is a root system in VP , we refer to it as the reduction of the root system
Φ to the facet P. With this definition the parabolic subset corresponding to P
decomposes as R(P)=U(P)∪ΦP where U(P)= {α ∈Φ | ∃λ ∈ P : 〈α,λ〉 > 0 }.

We let Λ := {λ ∈V | (λ,α) ∈Z ∀α ∈Φ } be the set of weights. If ∆ is a basis,
then λ ∈Λ will be called dominant (with respect to ∆) if (λ,α) ≥ 0 for all α ∈ ∆.
Suppose ∆= {α1, . . . ,αl } and define elements λ1, . . . ,λl ∈Λ by requiring 2

〈
λi,α j

〉=
δi j

〈
α j,α j

〉
. Recall that (V ,〈·, ·〉) is a Euclidean vector space and hence there is an

isomorphism

G : V →V∨, v 7→
(
w 7→ 2〈v,w〉

〈v,v〉
)
.

The (λi) can then be interpreted as the dual basis of (G(αi))i and are called
fundamental dominant weights (with respect to ∆). We let Λfd ⊂Λ be the subset
of all fundamental dominant weights. The elements α∨ := G(α) ∈ V∨ are also
called dual roots and do indeed form a root system on V∨. If S := (

(αi,α j)
)

i j
denotes the Cartan matrix, the fundamental dominant weights can be computed
using

S ·

λ1
...
λl

=

α1
...
αl

 .
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For any facet P ⊂V , we define vert(P) :=
{
λ ∈Λfd

∣∣∣λ ∈ P
}

and call the elements
vertices of the facet P. With this definition, P = {

∑
aiλi | ai > 0,λi ∈ vert(P) }.

Note that if c is a Weyl chamber corresponding to the basis {α1, . . . ,αl }, then
vertc = {λ1, . . . ,λl } is the set of fundamental dominant weights with respect to
this basis.

3.1.2 DEFINITION (Conjugate chambers). If c and d are Weyl chambers that have
precisely n−1 vertices in common and there is a unique α ∈Φ that is positive
with respect to c and negative with respect to d, we will call them α-conjugate.

3.1.3 Example. We consider V =R2 and let Φ be the reduced root system of type
C2; that is, after defining α= (0,2) and β= (1,−1), we have

Φ= {±α,±β,±(α+β),±(α+2β)
}
.

The set ∆ = {
α,β

}
is a basis of Φ and hence determines a chamber B whose

vertices are Λ = {
α+β,α+2β

}
. There are unique chambers Bα with vertices

Λα = {
α+β,β

}
and Bβ with vertices Λβ = {

α+β,α
}

(see Figure (3.1)). The
corresponding bases are ∆α = {−α,α+β}

and ∆β =
{−β,α+2β

}
. Clearly B and

Bα are α-conjugate and B and Bβ are β-conjugate.

α

β

Bα

Bβ

B

Figure 3.1: Conjugate chambers in C2

We are now ready to define the object of interest, which will occupy the rest of
the chapter.
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3.1.4 DEFINITION (Complementary Polyhedron). We let C be the set of Weyl
chambers of the root system Φ. A family d = d(c)c∈C of points in V∨ is called a
complementary polyhedron on Φ if the following holds:

(C1) If λ is a vertex of the Weyl chambers c and d, then

d(c)(λ)= d(d)(λ).

(C2) If the Weyl chambers c and d are α-conjugate and α ∈Φ is positive with
respect to c and negative with respect to d, then

d(c)(α)≤ d(d)(α).

We define F(P) := conv { d(c) | P ⊂ c } for any facet P and also F := F({0 }) =
conv { d(c) | c ∈C }, which is the polyhedron that justifies the terminology. Given
a complementary polyhedron d and a facet P, the inclusion ι : VP ,→ V induces
a complementary polyhedron dP on ΦP by letting dP(c) = (d ◦ ι)(c). We call this
reduction of the complementary polyhedron to the facet P.

3.1.5 DEFINITION (Stability). Let d be a complementary polyhedron on the root
system Φ. For a facet P of Φ, we define its degree by

deg(P) := ∑
α∈R(P)

d(c)(α),

where c ∈ C is any chamber with P ⊂ c. By the first property (C1) and because∑
α∈R(P)α ∈ P, this is well-defined. The root system (Φ,d) with complementary

polyhedron is semistable if for every facet P of Φ, we have deg(P)≤ 0. Note that
the root system (Φ,d) is semistable if and only if 0 ∈ F.

3.1.6 DEFINITION (Special facet). Let d be a complementary polyhedron on the
root system Φ and F ⊂V∨ the corresponding polyhedron. Let y(d) be the unique
point of V∨ in F closest to the origin. A facet P of Φ is called special (with respect
to d) if y(d) ∈ F(P).

3.1.7 Proposition (Proposition 3.14 in [Beh95]). A root system with complemen-
tary polyhedron (Φ,d) has a unique special facet.

Thus, our strategy to prove existence and uniqueness of canonical reductions
for principal G-Higgs bundles is to define a complementary polyhedron on a
suitable root system and show the equivalence of the two stability concepts.

3.1.8 DEFINITION (Numerical invariant). Let P be a facet of Φ and λ ∈ vert(P)
a vertex of P. Define Ψ(P,λ) = {

α ∈Φ ∣∣ (α,λ)= 1, (α,µ)= 0∀µ ∈ vert(P)\λ
}
. If Φ

is equipped with a complementary polyhedron d and P ⊂ c is any chamber, we
define the numerical invariant of P with respect to λ and d as

n(P,λ)= ∑
α∈Ψ(P,λ)

d(c)(α).
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Let P be a facet of Φ with vertices vert(P) = {λ1, . . . ,λr }. Consider the dual
root system Φ∨ in V∨, for each vertex λi there is a corresponding dual vertex
λ∨

i . Note that in general G(λi) 6=λ∨
i . We define the dual facet P∨ of P by letting

vert(P∨) := {
λ∨

i , . . . ,λ∨
r

}
.

The following characterisation of the special facet will be more suitable for
our considerations.

3.1.9 Lemma (Section 3 in [Beh95]). A facet P of Φ is special with respect to a
complementary polyhedron d if and only if the following holds:

1. For all vertices λ ∈ vert(P) the numerical invariants n(P,λ)> 0 are positive.

2. The reduction (ΦP ,dp) of d to P is semistable.

These two properties are equivalent to P∨∩F(P) 6= ;.

To become more acquainted with the terminology, we will provide an easy
example of a root system with a complementary polyhedron.

3.1.10 Example. Let V =R with the standard inner product given by multiplica-
tion and define Φ := {1,−1 }. This is a root system in V (of type A1). There are
exactly three facets, namely the origin {0 } and P± :=R>0 ·(±1). The Cartan matrix
is S = (2) and we can compute the fundamental dominant weights as Λfd =

{±1
2

}
.

To give a complementary polyhedron on Φ is to give two points d± ∈ V∨.
Suppose that d± = x±. The first condition (C1) in this case is void and the second
condition (C2) means we have to compute the relation d+(1) ≤ d−(1), giving
2x+ ≤ 2x−. Hence the polyhedron is the interval F = [

x+, x−
]
. We see that (Φ,d)

is unstable if x+ > 0 or x− < 0. The facet P+ is special if x+ > 0, and in the case
x− < 0 the special facet is P−. Semistability is equivalent to x+ ≤ 0≤ x−.

P+P−

x+ x−

α−α

Figure 3.2: Complementary polyhedron in A1

3.2 Root Data and Parabolic Subgroups
We let G be a connected reductive linear algebraic group with Lie algebra g =
Te(G). We also fix a maximal torus T ⊂ G with Lie algebra t and let X∗(T) =
Hom(T,K∗) be the character group. Consider the adjoint representation Ad: G →
GL(g). The restriction to the torus T gives a decomposition into root spaces

g= t ⊕ ⊕
α∈X∗(T)

gα,
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where gα = { X ∈ g |Ad(t)X =α(t)X∀t ∈ T }. Then the roots (of G with respect to
T) are the elements of Φ(G,T) := {α ∈ X∗(T) | gα 6= 0 }. There are only finitely
many roots because the dimension of g is finite. Recall for the following that the
normaliser of a subset S ⊂G is defined as NG(S) := {

g ∈G
∣∣ gSg−1 = S

}
.

3.2.1 Proposition. Let T ⊂G be a connected reductive linear algebraic group with
fixed maximal torus. Define V := (spanΦ(G,T))⊗ZR equipped with the standard
inner product. Then Φ(G,T) is a reduced root system in V . Its rank dimV is equal
to the semisimple rank of G and the Weyl group is isomorphic to NG(T)/T.

We will explain two constructions of parabolic subgroups using the root data
of G. A good exposition of these can be found for example in [Spr09].

Since all parabolic subgroups contain a Borel subgroup, it seems natural to
start with one of those. Let T ⊂ B ⊂G be a Borel subgroup containing the fixed
torus and let ∆⊂Φ(G,T) be the corresponding basis. For a root α ∈Φ, we denote
by Sα the element in NG(T)/T given by the reflection sα. Choose a subset I ⊂∆
and define WI as the subgroup generated by all Sα for α ∈ I. Then PI := BWIB is
a parabolic subgroup of G, and in particular P; = B and P∆ = G. Furthermore,
the roots of PI with respect to T are Φ+∪ (Φ−∩ΦI), where ΦI is the set of roots
that are integral linear combinations of elements of I. All parabolic subgroups of
G containing B are of this form.

The second construction of parabolic subgroups involves a one parameter
subgroup λ : Gm →G. Define the subgroup

P(λ) :=
{

g ∈G
∣∣∣∣ lim

z→0
λ(z)gλ(z)−1 ∈G

}
.

Suppose that im(λ)⊂ T with λ non-trivial. Choose a set Φ+ of positive roots such
that all roots α with 〈α,λ〉 > 0 are contained in Φ+. Let ∆ ⊂Φ+ be a basis and
consider I := {α ∈∆ | 〈α,λ〉 = 0 }. Then P(λ)= PI and again all parabolic subgroups
are of this form.

The following correspondence is the first step towards the identification of the
two stability concepts.

3.2.2 Lemma. Let T ⊂G be a maximal torus and Φ(G,T) the corresponding root
system. There is a unique bijective (inclusion reversing) correspondence between
parabolic subgroups of G containing T and facets of the root system Φ(G,T). If
B ⊂ P ⊂G is a parabolic subgroup, its Lie algebra p⊂ g decomposes as

p= t ⊕ ⊕
α∈R(P)

gα,

where R(P) is a parabolic subset of Φ(G,T). If ∆ is the basis corresponding to B
and P = PI for a subset I ⊂∆, then R(PI) :=Φ+∪ (Φ−∩ΦI).
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3.2.3 Remark. Lemma (3.2.2) can be generalised for reductive group schemes
G → S with connected fibres and connected base scheme S. Given a split max-
imal torus T of G one can define a root system Φ(G ,T ) to obtain a bijective
correspondence between parabolic subgroups of G containing T and parabolic
subsets of Φ(G ,T ) (cf. [sga70b],[Beh95, Lemma 5.2] and [Con14, Proposition
5.2.3]). Here a parabolic subgroup is a subscheme Q ⊂G such that Qs is parabolic
in Gs for all geometric points s : Spec(L)→ S. We will use this correspondence in
the construction of the complementary polyhedron of a (Higgs) principal bundle.

The case of the general linear group is especially important and hence we will
describe its root system in the next example.

3.2.4 Example (Root system of type An−1). Let n > 1 and G =GL(n) be the general
linear group with Lie algebra gln = Mat(n×n) and T ⊂ G the maximal torus of
diagonal matrices. Define E i j ∈ gln as the matrix having a 1 in the (i, j)-th entry
and zeros elsewhere. For 1≤ i 6= j ≤ n we define the character

αi j : T →Gm, αi j(diag(t1, . . . , tn))= ti t−1
j .

The roots of G with respect to T are Φ(G,T) = {
αi j

∣∣ 1≤ i 6= j ≤ n
}

and the root
spaces glαi j are one dimensional and spanned by E i j. The Weyl group W is
isomorphic to the symmetric group Sn and therefore has n! elements. Let e i ∈
Kn denote the i-th standard basis vector. Given a permutation σ ∈ Sn, the
corresponding element in W can be identified with the permutation matrix

Pσ =
(
eσ(1) eσ(2) · · · eσ(n)

)
.

The subset ∆ := {αii+1 | 1≤ i ≤ n−1 } is a basis of Φ(G,T) and corresponds to the
Borel subgroup B of upper triangular matrices. Consider I := {α12 } ⊂ ∆, the
corresponding parabolic subgroup PI has one additional root −α12 = α21. This
means that PI takes the form

PI =


∗ ∗ ∗ ·· · ∗
∗ ∗ ∗ ·· · ∗
0 0 . . . . . . ...
... . . . . . . ∗ ∗
0 · · · 0 0 ∗

 .

There are exactly n! Borel subgroups containing T, which can be computed
via Bσ = PσBP−1

σ . Note that Bid = B is the standard Borel subgroup of upper
triangular matrices. To give a complementary polyhedron on Φ(G,T) is to give n!
points d(Bσ) in V∨ = {

(x1, . . . , xn)t ∈Rn ∣∣ x1 + . . .+ xn = 0
}

satisfying the properties
(C1) and (C2).
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3.3 Canonical Reduction for Principal Bundles
Let P be a principal G-bundle on X . Since a principal GL(n)-bundle can be
identified with a vector bundle, we want to generalise the existence of a Harder-
Narasimhan filtration. The stability of principal bundles depends on reductions
to parabolic subgroups, hence we are looking for a reduction that is canonical in
some sense.

The following result is the analogous statement to the existence of a maximal
destabilising subbundle of a vector bundle. It grants the existence of a maximal
destabilising reduction.

3.3.1 Lemma (Lemma 4.3 in [Beh95]). Let P be a principal G-bundle. There is a
positive constant D > 0 such that

deg(β∗P ×Ad q)≤ D

for all parabolic subgroups Q ⊂G and reductions β : X →P /Q.

Proof. For any reduction β : X →P /Q to a parabolic Q ⊂G, the associated (vector)
bundle β∗P ×Adq is a subbundle of P ×Adg, and hence we can compute the degree
using Riemann-Roch

deg(β∗P ×Ad q)= h0(X ,β∗P ×Ad q)−h1(X ,β∗P ×Ad q)+rk(β∗P ×Ad q)(g−1)

≤ h0(X ,β∗P ×Ad q)+rk(β∗P ×Ad q)(g−1)

≤ h0(X ,P ×Ad g)+ (rk(P ×Ad g)−1)(g−1).

Since the right hand side does not depend on Q or β, the statement follows.

3.3.2 DEFINITION (Canonical reduction). Let P be a principal G-bundle. The
non-negative integer

ideg(P ) :=max
{

deg(β∗P ×Ad q)
∣∣∣ Q ⊂G parabolic and β : X →P /Q reduction

}
is called the degree of instability of P . A pair (β,Q) consisting of a parabolic
subgroup Q ⊂ G and a reduction β : X → P /Q is called canonical reduction if
deg(β∗P ×Ad q)= ideg(P ).

The following lemma is the analogous statement of Lemma (3.1.9) and illus-
trates the identification of a canonical reduction and with a special facet.

3.3.3 Lemma. A canonical reduction (β,Q) of the principal G-bundle P satisfies
the following properties.

1. For any dominant character χ : Q → Gm, let L (β,χ) := β∗P ×χK be the
associated line bundle. Then deg(L (β,χ))> 0.
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2. The extension of the Q-bundle β∗P to the Levi quotient L = Q/Ru(Q) is a
semistable L-bundle.

Proof. See [Beh95, Proposition 7.2] and [Hei08, Lemma 4].

3.3.4 Example. We consider the situation of Example (1.4.3) and compare the
properties of the Harder-Narasimhan filtration and canonical reduction.

1. As Levi quotient L of the parabolic subgroup Q, we can choose the subgroup
of block diagonal matrices with the same block sizes

M1 0 0

0 . . . 0
0 0 Mk


∣∣∣∣∣∣∣Mi ∈GL(r i),

k∑
i=1

r i = n

 .

Let (β,Q) be the canonical reduction. This gives a filtration of the associated
vector bundle

0= E0 ⊂ E1 ⊂ . . .⊂ Ek = E ,

such that rk(E i/E i−1) = r i for i = 1, . . . ,k. The extension to L is a GL(r1)× . . .×
GL(rk)-bundle, which in our situation corresponds to the direct sum of the quo-
tient vector bundles

E1/E0 ⊕ . . .⊕Ek/Ek−1.

This is a semistable principal L-bundle, which gives that E i/E i−1 is a semistable
vector bundle for all i = 1, . . . ,k.

2. To simplify computations, we will assume that (β,Q0) is the canonical
reduction to the maximal parabolic subgroup Q0. This means the associated fil-
tration has only one step 0⊂F ⊂ E and it is enough to consider the antidominant
character

β : Q0 →Gm, M 7→ det(M1)r−n det(M2)r.

The property degL (β,χ) < 0 is equivalent to rk(F )deg(E ) < rk(E )deg(F ) and
thus

µ(E /F )−µ(F )= deg(E )−deg(F )
rk(E )−rk(F )

− deg(F )
rk(F )

= rk(F )deg(E )−deg(F )rk(E )
rk(F )(rk(E )−rk(F ))

< 0,

which is the second defining property of the Harder-Narasimhan filtration for
vector bundles.

3.3.5 Theorem (Proposition 8.2 in [Beh95]). Any principal G-bundle P has a
canonical reduction (β,Q) to a parabolic subgroup Q ⊂G such that
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1. For all dominant characters χ : Q →Gm, the line bundles L (β,χ)=β∗P ×χK

have positive degree.

2. The extension of the Q-bundle β∗P to the Levi quotient L = Q/Ru(Q) is a
semistable L-bundle.

It is unique in the sense that given two pairs (β1,Q1) and (β2,Q2) consisting of
parabolic subgroups Q i ⊂G and sections βi : X →P /Q i, we have β∗

1(P )∼=β∗
2(P ).

For the proof one constructs a suitable complementary polyhedron, which we
describe in the next section.

3.3.1 Construction of the Complementary Polyhedron
Let G be a connected reductive linear algebraic group, P a principal G-bundle
and η ∈ X the generic point. Since for a parabolic subgroup, the quotient G/Q
is projective and reductions correspond to sections of P /Q, any reduction of P

to a parabolic subgroup Q ⊂G in η can be extended uniquely to X [sga70b, Exp.
XXVI]. Hence we can consider the restriction P |η ∼=G⊗K(X )=: G(η) where K(X )
denotes the function field of X .

Recall that there is an étale cover (Wi → Ui)i of X such that the principal
G-bundle on X is determined by a cocyle (ϕi j : Wi ×X Wj → G) and hence by an
element of H1(X ,G). To give a principal G-bundle over η reduces to giving an
element of H1(K(X ),G) . Steinberg showed in [Ste65, §10] that H1(K(X ),G)= 0
(see also [DS95]). Hence over η any principal bundle becomes trivial.

Given a split maximal torus T ⊂ G(η) (which exists by [sga70a, Exp. XIV,
Théorème 1.1]; see also [Con14, Theorem A.1.1]), we let Φ(G(η),T) be the root
system of G(η) with respect to T. If T ⊂ B ⊂ G(η) is a generic Borel subgroup,
we can interpret it as a generic principal B-bundle PB. Note that B has a Levi
decompositon B = TnU and hence given a character χ : T →Gm, we can extend it
to B by letting it be trivial on the unipotent part U . We then define

LB(χ) :=PB ×χK

to be the line bundle obtained from the extension PB of the generic B-bundle to
X and the character χ.

3.3.6 Proposition (Proposition 6.6 in [Beh95]). Let P be a principal G-bundle
and T ⊂G(η) a maximal torus. Define the map

d :
{

T ⊂ B ⊂G(η) Borel subgroup
}−→ X∗(T)∨⊗R

B 7−→ (χ 7→ deg(LB(χ)).

Then this defines a complementary polyhedron on Φ(G(η),T).
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Proof. We show the two properties of a complementary polyhedron. In this case
they read as follows:

(C1) If B and B′ are two Borel subgroups contained in the parabolic P ⊂G(η) and
χ : P →Gm is a character, then

d(B)(χ)= d(B′)(χ).

(C2) Let B and B′ be Borel subgroups such that the simple roots of B are precisely
IB = {α,α1, . . . ,αr−1 } and {−α }=−IB ∩ΦB′ . Then

d(B)(α)+d(B′)(−α)≤ 0 ⇔ d(B)(α)≤ d(B′)(α).

1. The parabolic P ⊂G(η) gives the line bundle LP(χ) := (PB ×B P)×χK and
since B and B′ are conjugate inside P, this agrees with (PB′ ×B′

P)×χK. Since χ
is a character of P, we get

d(B)(χ)= deg(LB(χ))= deg(LP (χ))= deg(LB′(χ))= d(B′)(χ).

2. The claim is equivalent to degLB(α) ≤ degLB′(α). By induction we can
assume that G(η) has semisimple rank one as follows (see also [HS10]). Let P :=
BB′ be the parabolic subgroup generated by B and B′. Then P is of semisimple
rank one with two Borel subgroups B and B′ that are also maximal parabolic
inside P. Let L be a Levi factor of P and consider the L-bundle PL =PP /L.

Now B corresponds to a subbundle L1 ⊂ PL and B′ corresponds to a sub-
bundle L2 ⊂ PL. Furthermore, they are generically opposite. Then LB(α) =
L1 ⊗ (PL/L2)∨ and LB′(α)= (PL/L1)⊗L2. Thus degLB(α)≤ degLB′(α) follows
from Lemma (3.3.7).

3.3.7 Lemma. Let E be a rank two vector bundle on X and L1,L2 ⊂ E two line
subbundles that are generically opposite, meaning that over the generic point
Eη ∼= L1,η⊕L2,η. Then deg(L1)+deg(L2) ≤ deg(E ) with equality if and only if
E ∼=L1 ⊕L2.

Proof. Since L1 is a subbundle of E , we can consider the short exact sequence

0 L1 E E /L1 0.

Then the composition map L2 → E /L1 of line bundles is non-zero and hence
deg(L2)≤ deg(E )−deg(L1). If equality holds, then necessarily L2

∼= E /L1 since
they are both line bundles and the sequence splits.

The unique special facet of (Φ(G(η),T),d) gives a parabolic subgroup T ⊂
P ⊂ G(η). As already explained above, we can uniquely extend this generic
principal bundle to a parabolic principal bundle PQ on X , and there is a section
β : X → P /Q with β∗(P ) ∼= PQ . By construction the pair (β,Q) satisfies the
conditions of Theorem (3.3.5).
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3.3.8 Example. We will explicitly describe Behrend’s construction for the case
G =GL(3) where we are dealing with rank three vector bundles.

Given a rank three vector bundle E , we restrict it to the generic point η and
obtain a three dimensional vector space Eη. Let { b1,b2,b3 } be a basis of Eη. Note
that a T-bundle corresponds to a rank three vector bundle that splits into a direct
sum of line bundles. Hence choosing a T-reduction of Eη is equivalent to choosing
a direct sum composition

Eη = 〈b1〉⊕〈b2〉⊕〈b3〉 .

Any B-bundle corresponds to a rank three vector bundle together with a complete
flag 0( E1 ( E2 ( E . So given a T- bundle, one obtains a B-bundle by choosing an
order of the line bundles or of the basis vectors of Eη. There are exactly |S3| =
3! = 6 possibilites. For instance, the flag 0 ( 〈b2〉 ( 〈b1,b2〉 ( 〈b1,b2,b3〉 = Eη

corresponds to the Borel subgroup

B12 =
∗ 0 ∗
∗ ∗ ∗
0 0 ∗

 ,

which corresponds to the permutation exchanging 1 for 2. Note that we can extend
a B-reduction at the generic point to the whole curve, but not a T-reduction (since
E might not split as a vector bundle). Finally, we end up with a complete flag

0= E σ
0 ⊂ E σ

1 ⊂ E σ
2 ⊂ E σ

3 = E

for each permutation σ ∈S3. The complementary polyhedron is defined as a map

d : S3 → X∗(T)∨, σ 7→ d(Bσ),

where X∗(T) ∼=Z3 is the character group of T. The complementary polyhedron
from Proposition (3.3.6) now takes the form

d(Bσ) : X∗(T)→Z,

(α1,α2,α3) 7→
3∑

i=1
αi deg(E σ

(i)/E
σ
σ(i)−1).

Let us show that this indeed defines a complementary polyhedron. The two
properties read as follows:

(C1) If T ⊂ B,B′ ⊂ P are contained in the parabolic subgroup P ⊂ GL(3) and
α ∈ X∗(P) is a character, then d(B)(α)= d(B′)(α).

(C2) Let B be a Borel subgroup with corresponding basis ∆B = {
α,β

}
. If B′,B′′

are the Borel subgroups with ∆B′ = {
α+β,−α}

, ∆B′′ = {
α+β,−β}

then

d(B)(α)≤ d(B′)(α)
d(B)(β)≤ d(B′′)(β).
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Proof. (C1). We consider the maximal parabolic subgroup

P =
∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

 .

The characters of P are given by tuples (α1,α1,α2) ∈Z3 and there are two Borel
subgroups contained in P, namely

Bid =
∗ ∗ ∗

0 ∗ ∗
0 0 ∗

 , B12 =
∗ 0 ∗
∗ ∗ ∗
0 0 ∗

 .

If Bid corresponds to the flag 0⊂ E1 ⊂ E2 ⊂ E , then the flag of B12 takes the form
0⊂F1 ⊂ E2 ⊂ E . Hence we can compute

d(Bid)(α1,α1,α2)=α1 deg(E1)+α1 deg(E2/E1)+α2 deg(E /E2)=
= (α1 −α2)deg(E2)+α2 deg(E ),

d(B12)(α1,α1,α2)=α1 deg(E2/F1)+α1 deg(F1)+α2 deg(E /E2)=
= (α1 −α2)deg(E2)+α2 deg(E ).

The other cases can be obtained similarly.
(C2). If B = Bid is the Borel subgroup of upper triangular matrices, then

∆B = {
α,β

}
where α= (1,−1,0) and β= (0,1,−1). With α+β= (1,0,−1), we obtain

B′ =
∗ 0 ∗
∗ ∗ ∗
0 0 ∗

 , B′′ =
∗ ∗ ∗

0 ∗ 0
0 ∗ ∗

 .

So if 0⊂ E1 ⊂ E2 ⊂ E is the filtration given by B, this means that the filtrations of
B′ and B′′ are

B′ : 0⊂F1 ⊂ E2 ⊂ E ,
B′′ : 0⊂ E1 ⊂F2 ⊂ E ,

and furthermore F1,E1 ⊂ E2 and F2/E1,E2/E1 ⊂ E /E1 are generically opposite
subbundles. By Lemma (3.3.7) we obtain the inequalities

deg(F1)+deg(E1)≤ deg(E2),
deg(F2)+deg(E2)≤ deg(E )+deg(E1).
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We can now compute

d(B)(α)= deg(E1)−deg(E2/E1)
= 2deg(E1)−deg(E2)
≤ deg(E2)−2deg(F1)
= d(B′)(α),

d(B)(β)= deg(E2/E1)−deg(E /E2)
= 2deg(E2)−deg(E1)−deg(E )
≤ deg(E )+deg(E1)−2deg(F2)
= d(B′′)(β).

Again the other cases can be obtained by similar calculations.

3.3.2 Alternative description
We give an alternative description of the complementary polyhedron in the case
G =GL(n) using the automorphism group scheme. Let E be a rank n vector bundle
and consider its automorphism group scheme Aut(E ), which has the following Lie
algebra (cf. [Con14, Chapter 4-5])

Lie(Aut(E ))=Hom(E ,E )= E∨⊗E .

Note that this is a vector bundle on X . Furthermore, after choosing a generic
splitting Eη ∼= (L1⊕ . . .⊕Ln)η (which corresponds to the choice of a maximal torus
of GL(n)(η)) it decomposes into subbundles

Lie(Aut(E ))η =
(
O n

X ⊕ ⊕
α∈Φ(GL(n)(η),T)

Lα

)
η

, (3.1)

where the root bundles Lα can be seen as line bundles on X . Let T ⊂ B ⊂GL(n)(η)
be a Borel subgroup corresponding to the basis ∆= {α1, . . . ,αr }⊂Φ(GL(n)(η),T)
with vertices Λ= {λ1, . . . ,λr } ⊂ V and let

{
λ∨

1 , . . . ,λ∨
r

} ⊂ V∨ be the dual vertices.
For any root α ∈∆, we define

v(α) :=
r∑

i=0
λ∨

i (α)λi ∈Λ

and the numerical invariant of B with respect to v(α) as

n(B,v(α)) := deg(Lα).

Note that v : ∆→ Λ is a bijection. The complementary polyhedron of E with
respect to T is then defined by letting

d(B) :=
l∑

i=0
n(B,λi)λ∨

i ∈V∨.

48



A. Wißdorf Canonical Reduction for Principal Bundles

If G is an arbitrary connected reductive linear algebraic group and P is a G-
bundle, the automorphism group scheme Aut(P ) has a similar decomposition of
the form (3.1) and the complementary polyhedron can be described in the same
manner using numerical invariants. In particular, a complementary polyhedron
is determined by the numerical invariants of the Borel subgroups of G(η) [Beh95,
Note 3.8].

3.3.9 Example. We let E =OX (m)⊕OX (−m) for a non-negative integer m ≥ 0. We
can interpret this as an SL(2)-bundle which already has a global T-reduction. The
root system Φ=Φ(SL(2),T) consists of two roots which we denote by α1 = (1,−1)
and α2 = (−1,1). The set of weights is then given by Λ= {λ1,λ2 } where 2λi =αi.
Since all roots have inner product two, we have that the dual root system is given
by Φ∨ ∼=Φ and the dual weights are Λ∨ ∼=Λ.

Consider the associated group scheme Aut(E ). Its Lie algebra is given by

Lie(Aut(E ))=Hom(E ,E )= E ⊗E∨ =O2
X ⊕OX (2m)⊕OX (−2m)

and decomposes as Lie(Aut(E )) = O2
X ⊕Lα1 ⊕Lα2 where the root bundles are

L±α1 =OX (±2m).
There are two Borel subgroups B+ and B− of upper triangular and lower

triangular matrices, respectively, with corresponding bases ∆(B+) = {α1 } and
∆(B−)= {α2 }. For the complementary polyhedron we need to define the numerical
invariants n(B,λ).

1. Case B+: Here λ1 is the only weight. Furthermore v(α1) = λ∨
1 (α1)λ1 = λ1.

Hence n(B+,λ1)= deg(Lα1)= 2m.

2. Case B−: The same calculations give n(B−,λ2)= deg(Lα2)=−2m.

We can now define d(B±) as

d(B+)= n(B+,λ1)λ∨
1 = mαt

1 = (m,−m)t,
d(B−)= n(B−,λ2)λ∨

2 =−mαt
2 = (m,−m)t.

The complementary polyhedron reduces to one point F = {
(m,−m)t }. We see that

E is semistable if and only if m = 0, and B+ is canonical if m > 0.
Note that B+ corresponds to the filtration 0(OX (m)( E , which is indeed the

Harder-Narasimhan filtration. This can be seen from the fact that sections of
Lα1 = OX (2m) correspond to elements of Hom(OX (−m),OX (m)) and these leave
the filtration invariant.

3.3.10 Example. Let E =OX (m)⊕OX (n)⊕OX (−(m+n)) for m ≤ n, which we inter-
pret as an SL(3)-bundle with a global T-reduction. The root system of SL(3) is
given by Φ= {±α1,±α2,±α3 } where

α1 = (1,−1,0), α2 = (0,1,−1), α3 = (1,0,−1).
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The corresponding weights are Λ= {±λ1,±λ2,±λ3 } with

3λ1 = (2,−1,−1), 3λ2 = (1,1,−2), 3λ3 = (1,−2,1).

Once again Φ∨ =Φ and Λ∨ =Λ. The Lie algebra of Aut(E ) decomposes as

Lie(Aut(E ))=O3
X

3⊕
i=1

(Lαi ⊕L−αi ).

We see furthermore that

L±α1 =OX (±(m−n)),
L±α2 =OX (±(m+2n)),
L±α3 =OX (±(2m+n)).

Suppose now that B is a Borel subgroup given by the basis ∆(B) = {
α,β

}
. The

weights of B are then λα, λβ where 3λα = 2α+β and 3λβ =α+2β. We compute

v(α)=λ∨
α(α)λα+λ∨

β (α)λβ =λα,

v(β)=λ∨
α(β)λα+λ∨

β (β)λβ =λβ,

which gives n(B,λα)= deg(Lα), n(B,λβ)= deg(Lβ) and finally

d(B)= deg(Lα)λ∨
α+deg(Lβ)λ∨

β .

There are exactly |S3| = 3! = 6 Borel subgroups containing the given torus (cf.
3.A). Denote these by Bσ for σ ∈S3. One computes

d(Bid)= (m,n,−(m+n)), d(B(123))= (m,n,−(m+n)), d(B(132))= (m,n,−(m+n)),
d(B(12))= (m,n,−(m+n)), d(B(13))= (m,n,−(m+n)), d(B(23))= (m,n,−(m+n)).

We see that the complementary polyhedron is given by F = { (m,n,−(m+n)) } =
{ mα3 +nα2 }. There are several cases to distinguish (suppose that m ≤ n).

1. m = n = 0. Then F = 0 and E is semistable.

2. m = n 6= 0. Then F = { m(1,1,−2) } which gives the filtration 0 ( OX (m)⊕
OX (m)( E .

3. 0 ≤ m < n. Then F lies in the chamber with corners λ2 and −λ3, which
corresponds to the filtration 0(OX (n)(OX (n)⊕OX (m)( E .

4. m < 0 < n. Then F lies in the chamber with corners −λ1 and −λ3, which
corresponds to the filtration 0(OX (n)(OX (n)⊕OX (−(m+n))( E .

5. m < n ≤ 0. Then F lies in the chamber with corners −λ1 and −λ2, which
corresponds to the filtration 0(OX (−(m+n))(OX (−(m+n))⊕OX (n)( E .
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3.3.11 Remark. In the previous examples, we restricted ourselves to degree zero
vector bundles, or in other words to SL(n) rather than GL(n). The computations
for the GL(n) case are basically the same, but can also be obtained by a projection
method. We demonstrate this for a vector bundle that splits as a direct sum of
line bundles. It also works for a non-split bundle (see Example 3.3.12).

Let E be a GL(n)-bundle with a global T-reduction; that is, a vector bundle
that splits as E =L1⊕·· ·⊕Ln. The complementary polyhedron can be obtained
by letting

F = (deg(L1), . . . ,deg(Ln)) ∈Rn

and projecting this point to the hyperplane H0 := { x1 + . . .+ xn = 0 } (see Figure 3.3).
For example, in the case n = 2, the point (deg(L1),deg(L2)) ∈ { x1 + x2 = deg(E ) }
maps to

F0 =
(
deg(L1)−deg(L2)

2
,
deg(L2)−deg(L1)

2

)
∈ H0.

This also reflects the fact that the vector bundle L1 ⊕ ·· ·⊕Ln is semistable if
and only if deg(L1)= ·· · = deg(Ln). If E is an SL(n)-bundle, then deg(E )= 0 and
clearly F = F0.

(0,1)

(1,0)

H0

Figure 3.3: Projection of complementary polyhedron

3.3.12 Example. (A non-split example [HL10, page 13]) Let E be a vector bundle
given by a non-trivial extension 0 → L0 → E → L1 → 0, where the Li are line
bundles with degL0 = 0 and degL1 = 1. Such an extension exists whenever the
genus g ≥ 2. In this case E is semistable with slope µ(E )= 1

2 .
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We can choose a generic splitting Eη ∼= (L0⊕L )η such that the Borel subgroup
B+ of upper triangular matrices corresponds to 0 ⊂ L0 ⊂ E and the opposite
Borel B− corresponds to the subbundle 0⊂L ⊂ E of degree degL = l < 1. Then
d(B+) = (deg(L0),deg(E /L0)) = (0,1) and d(B−) = (deg(E /L ),deg(L )) = (1− l, l).
The complementary polyhedron is obtained by defining (see also Figure 3.3)

F = { (0,1)+ t(1− l, l−1) | t ∈ [0,1] } .

The projection to the hyperplane { (x, y) | x+ y= 0 } ∼= R is given by (x, y) 7→ 1
2 (x−

y, y− x) and maps F to the complementary polyhedron [−1
2 , 1

2 (1− l)], which obvi-
ously contains zero.

(0,1,−1)

(1,−1,0)

(1,0,−1)

(0,−1,1)(−1,0,1)

(−1,1,0)

F

Figure 3.4: Complementary polyhedron of Example 3.3.13

3.3.13 Example. Let E =F ⊕OX (−1) where F is the rank two bundle of Example
(3.3.12). We can choose a generic splitting such that the six Borel subgroups Bσ
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correspond to the following filtrations (cf. 3.A):

Bid : 0⊂L0 ⊂F ⊂ E

B(12) : 0⊂L ⊂F ⊂ E

B(23) : 0⊂L0 ⊂L0 ⊕OX (−1)⊂ E

B(13) : 0⊂OX (−1)⊂L ⊕OX (−1)⊂ E

B(123) : 0⊂OX (−1)⊂L0 ⊕OX (−1)⊂ E

B(132) : 0⊂L ⊂L ⊕OX (−1)⊂ E .

We can then compute the complementary polyhedron F using Example (3.3.8) to
obtain the following points:

d(Bid)= (0,1,−1)
d(B(12))= (1− l, l,−1)
d(B(23))= (0,1,−1)
d(B(13))= (1− l, l,−1)

d(B(123))= (0,1,−1)
d(B(132))= (1− l, l,−1).

Note that projecting the polyhedron to the hyperplane { (x,−x,0) } ⊂ R3 (which
means projecting E to its direct summand F ) gives the complementary polyhedron
of F . We also see that E is not stable and the special facet is the positive span of
(1,1,−2), which gives the Harder-Narasimhan filtration 0⊂F ⊂ E .

3.4 Torus reductions
Let T ⊂ G be a maximal torus, that is T ∼= (Gm)r. Since Gm = GL(1) a principal
T-bundle can be interpreted as a direct sum of line bundles. We will say that
a principal G-bundle P admits a T-reduction if there is a T-bundle PT and
a reduction β : X → P /T with β∗(P ) ∼= PT . For vector bundles the problem of
admitting a T-reduction is equivalent to splitting as a direct sum of line bundles.

As we have seen before in some examples, the complementary polyhedron
associated to a principal G-bundle P reduces to a point if P admits a global
T-reduction. In this section we will investigate the converse statement.

3.4.1 Proposition. Let P be a principal G-bundle and T ⊂G a maximal torus. If
P admits a T-reduction, then its complementary polyhedron d on Φ(G,T) reduces
to a point.

Proof. Recall that if T ⊂ B ⊂ G is a Borel subgroup, then d(B) : X∗(T) → R is
defined by d(B)(α) = deg(LB(α)). The line bundle LB(α) is defined as LB(α) =
PB ×αK where PB is the B-bundle constructed from P . If P has a T-reduction,
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then PB =PT×TB for a T-bundle PT and hence LB(α)= (PT×TB)×αK=PT×αK,
which implies d(B)= d(B′) for all Borel subgroups T ⊂ B,B′ ⊂G.

3.4.2 Corollary. Let P be a principal G-bundle on P1. Then for any choice of a
generic maximal torus, the complementary polyhedron of P reduces to a point.

Proof. Since any G-bundle on P1 has a global reduction to a maximal torus (see
[Gro57] and more recently also [Ram83, MS02]), this follows from Proposition
(3.4.1).

In case G =SL(2) the converse statement can be easily proven by hand.

3.4.3 Lemma. Let P be an SL(2)-bundle and T a generic torus such that the
complementary polyhedron of P with respect to T reduces to a point. Then P

admits a global reduction to T.

Proof. The root system Φ(SL(2)(η),T) is of type A1, so we are in the situation of
Example (3.1.10).

Let E be the rank two vector bundle associated to P . The generic torus gives
a generic splitting Eη = (L +⊕L −)η for two line subbundles L ± of E and the
Borel subgroups B± of upper (and lower) triangular matrices then correspond
to the filtrations 0 ⊂ L ± ⊂ E . The complementary polyhedron is given by d+ =
(deg(L +),−deg(L +)) and d− = (−deg(L −),deg(L −)). Since we assume that it
reduces to a point, this gives

deg(L +)+deg(L −)= 0= deg(E ),

and we can conclude with Lemma (3.3.7).

3.4.4 Lemma. Let d be a complementary polyhedron in the root system Φ ⊂ V
such that equality holds in the second property (C2). Then F = convT⊂B Borel { d(B) }
reduces to a point.

Proof. Let B be a Borel subgroup and Bα the unique Borel subgroup that is
α-conjugate to B. If the vertices of B are λ1, . . . ,λn, then the vertices of Bα are
σ(λ1),λ2, . . . ,λn where σ is the reflection fixing the hyperplane orthogonal to α.

The point d(Bα) is uniquely determined by its values on a basis of V . Since α
is a root of B and −α is a root of Bα, α is not contained in 〈λ2, . . . ,λn〉. Since the λi
are linearly independent, the set {±α,λ2, . . . ,λn } is a basis of V . We already know
that d(Bα)(λi)= d(B)(λi) for i = 2, . . . ,n from the property (C1). But the equality
in (C2) means that d(Bα)(α)= d(B)(α) and hence d(B)= d(Bα). Since any Borel
subgroup has exactly n conjugate subgroups, this implies that d(B)= d(B′) for all
borel subgroups B,B′ and F = { d(B) }.

3.4.5 Conjecture. Let P be a principal G-bundle and T ⊂G(η) a maximal torus.
Denote by F(T) the complementary polyhedron given by P in the root system
Φ(G(η),T). Then F(T) is a point if and only if T can be extended to X ; that is, P

admits a global torus reduction.
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In the case G = GL(n), Conjecture (3.4.5) could be proven by an induction
argument using Lemma (3.4.3) and (3.4.4). It would also be interesting to study
the analogous statement for principal Higgs bundles; that is, the Higgs polyhedron
reduces to a point if and only if the Higgs bundle admits a Higgs reduction to a
torus.

3.5 Higgs Bundles

Let G be a connected reductive linear algebraic group and L a line bundle on X
of arbitrary degree. In this section we will construct a complementary polyhedron
for the following objects.

3.5.1 DEFINITION (Higgs vector bundle). A pair (E ,ϕ : E → E ⊗L ) consisting of
a vector bundle E and a twisted endomorphism ϕ : E → E ⊗L is a Higgs bundle.
A Higgs subbundle is given by a ϕ-invariant subbundle F ⊂ E , meaning that
ϕ(F )⊂F ⊗L . The Higgs bunde (E ,ϕ) is semistable if for all Higgs subbundles
F ⊂ E

µ(F )≤µ(E ).

A filtration 0 = E0 ( E1 ( . . . ( Es = E of the Higgs bundle (E ,ϕ) into Higgs
subbundles is called Harder-Narasimhan (HNF) if the following holds:

1. The quotients E i/E i−1 are semistable Higgs bundles for i = 1, . . . , s.

2. µ(E1/E0)>µ(E i/E i−1)> . . .>µ(Es/Es−1).

An automorphism of a Higgs bundle (E ,ϕ) is an automorphism f : E → E of the
underlying vector bundle that is compatible with the Higgs structure, meaning
that there is a commutative diagram

E

E

E ⊗L

E ⊗L .

f

ϕ

f ⊗ idL

ϕ

We denote the automorphism group of a Higgs bundle (E ,ϕ) by Aut(E ,ϕ).

The proof of the existence and uniqueness of the Harder-Narasimhan filtration
in the Higgs vector bundle case is the same as in the vector bundle case (see
[Sim94]).
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3.5.2 DEFINITION (Principal Higgs bundle). A principal G-Higgs bundle (P ,ϕ)
consists of a principal G-bundle P and a section ϕ : OX → (P ×Ad g)⊗L . A pair
(β,Q) consisting of a parabolic subgroup Q ⊂ G and a section β : X → P /Q is a
Higgs reduction if ϕ factors through β∗P ×Adq→P ×Adg, i.e. there is a morphism
ϕQ such that the following diagram commutes

OX

(P ×Ad g)⊗L .(β∗P ×Ad q)⊗L

ϕϕQ

In other words, (β∗P ,ϕQ) is a principal Q-Higgs bundle. A principal G-Higgs
bundle is semistable if for all Higgs reductions (β,Q) the following holds

deg(β∗P ×Ad q)≤ 0.

The nonnegative integer

idegH(P ) :=max
{

deg(β∗P ×Ad q)
∣∣∣ (β,Q) Higgs reduction

}
is called the Higgs degree of instability of P . A canonical Higgs reduction is a
Higgs reduction (β,Q) such that deg(β∗P ×Ad q)= idegH(P ).

Note that a canonical Higgs reduction satisfies the following properties:

1. For any dominant character χ : Q → Gm, let L (β,χ) := β∗P ×χK be the
associated line bundle. Then deg(L (β,χ))> 0.

2. The extension of the Q-bundle β∗P to the Levi quotient L = Q/Ru(Q) is
a semistable L-Higgs bundle. Here the Higgs structure is induced by
ϕQ , which is possible since the Lie algebra decomposes as q = l⊕ r where
l=Lie(Q) and r=Lie(Ru(Q)).

3.5.3 Example (Non-reductive automorphism group). Behrend has constructed
complementary polyhedra only for group schemes that are reductive. However,
the automorphism group of a Higgs bundle does not have to be reductive, as the
following example shows.

Let V be a two dimensional K-vector space and E =V ⊗OX , L =OX . Hence,
a Higgs structure on E is the same as an endomorphism ϕ : V → V , and the
automorphism group of (E ,ϕ) is

Aut(E ,ϕ)= {
g ∈GL(2)

∣∣ gϕ=ϕg
}
.
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1. Suppose that ϕ has Jordan normal form ϕ=
(
λ 1
0 λ

)
. For an arbitrary

g =
(
a b
c d

)
∈GL(2)

we compute

gϕ=
(
λa a+λb
λc c+λd

)
=

(
c+λa d+λb
λc λd

)
=ϕg,

which forces c = 0, d = a and hence

g =
(
a b
0 a

)
.

Finally this implies Aut(E ,ϕ)=GmnGa, which is a non-reductive algebraic group.

2. If ϕ is diagonalisable as

ϕ=
(
λ 0
0 µ

)
,

one computes Aut(E ,ϕ) = GL(2) if λ = µ and Aut(E ,ϕ) = Gm ×Gm if ϕ has two
eigenvalues λ 6=µ. Both automorphism groups are reductive.

Our construction of the Higgs polyhedron will not use the automorphism group
of the Higgs bundle. The automorphism group will not be of importance in the
following.

3.5.1 Construction of the Higgs Polyhedron

Let (P ,ϕ) be a principal G-Higgs bundle which will be fixed for the remainder
of this section. We fix a maximal torus (or a generic splitting) T ⊂ G(η) and
denote by d the complementary polyhedron of P with respect to T without a
Higgs structure as constructed by Behrend. Broadly speaking, we will distort the
polyhedron where the distortion is determined by the Higgs structure ϕ. Recall
that the Higgs polyhedron will be a function

dH :
{

B
∣∣ T ⊂ B ⊂G(η) Borel

}→ X∗(T)∨⊗R=: V∨.

The automorphisms Aut(P ) form a reductive group scheme over X whose Lie
algebra Lie(Aut(P ))=P ×Ad g has a generic decomposition into root bundles

(P ×Ad g)η =
(
O n

X ⊕ ⊕
α∈Φ(G(η),T)

Lα

)
η

,
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where the Lα are one dimensional and hence can be seen as line bundles on
X . The Higgs structure ϕ is a section of the twisted adjoint bundle and we can
consider the projections

ϕα : OX ,η→ (Lα⊗L )η ⊂ (P ×Ad g)η⊗L

for any root α ∈Φ(G(η),T). We define the numbers

ε(α) :=
{

0 if for all decompositions α=α1 + . . .+αs there is an i with ϕαi = 0,
1 if there is a decomposition α=α1 + . . .+αs with ϕαi 6= 0 for all i.

3.5.4 DEFINITION (Higgs polyhedron). Let T ⊂ B ⊂G(η) be a Borel subgroup and
R(B)⊂Φ(G(η),T) the corresponding parabolic subset. Recall that α∨ ∈V∨ is the
dual root of α and define the Higgs polyhedron as

dH(B) := d(B)+|deg(L )| ∑
α6∈R(B)

ε(α)α∨.

3.5.5 Remark. In the definition of the Higgs polyhedron we can replace the
constant |deg(L )| by any positive C > 0 and still get a complementary polyhedron.
However, we will need that C ≥ |deg(L )| in the proof of Lemma (3.5.15).

Before showing that the Higgs polyhedron indeed defines a complementary
polyhedron on the root system Φ(G(η),T), we give some examples to illustrate the
computation of the Higgs polyhedron.

3.5.6 Example. Let E be an unstable rank two vector bundle of degree zero
and Φ := {±α } the root system of SL(2) (cf. Example 3.1.10). Denote by Fmax
the maximal destabilising subbundle, i.e. the maximal subbundle with x :=
deg(Fmax) > deg(E ) = 0. We can choose a generic splitting Eη = (Fmax ⊕F )η so
that the two Borel subgroups B± correspond to the following filtrations

B+ : 0⊂Fmax ⊂ E , B− : 0⊂F ⊂ E ,

and deg(F ) ≤−deg(Fmax) =−x < 0 since F is generically opposite to Fmax. We
also suppose that E is equipped with a Higgs structure ϕ : E → E ⊗L and consider
the following cases:

1. Fmax is ϕ-invariant.

2. Fmax is not ϕ-invariant and F is ϕ-invariant.

3. Fmax is not ϕ-invariant and F is not ϕ-invariant.

1. If Fmax is ϕ-invariant, we get dH(B+) = (deg(Fmax),−deg(Fmax)). For
the second Borel subgroup, dH(B−) = (−deg(F ),deg(F )) if F is invariant, and
dH(B−)= (−deg(F )+|deg(L )| ,deg(F )−|deg(L )|) if it is not invariant. But since
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0< deg(Fmax)≤−deg(F )≤−deg(F )+|deg(L )|, in both of these cases the Higgs
bundle E is unstable with Harder-Narasimhan filtration 0⊂Fmax ⊂ E .

2. Consider the map Fmax E ⊗L F ⊗L
ϕ

. It is not generically zero
because Fmax is not ϕ-invariant. Therefore, it cannot be zero. A non-zero map of
line bundles implies an inequality of the slopes, hence

0< x = deg(Fmax)≤ deg(F )+deg(L ).

In particular, deg(L )≥−deg(F )> 0. As F is ϕ-invariant, we can now compute
the Higgs polyhedron as

dH(B+)= (deg(Fmax),−deg(Fmax))+deg(L )(−1,1)= (x−deg(L ),deg(L )− x),

dH(B−)= (−deg(F ),deg(F )).

From the inequalities −deg(F )> 0 and x−deg(L )≤ deg(F )< 0, we see that the
convex hull of these two points contains zero. Note that in this case E is indeed a
semistable Higgs bundle.

3. In this case we again have x = deg(Fmax)≤ deg(F )+deg(L ) and deg(L )> 0.
Furthermore, F is not ϕ-invariant and thus

dH(B+)= (deg(Fmax),−deg(Fmax))+deg(L )(−1,1)
= (x−deg(L ),deg(L )− x),

dH(B−)= (−deg(F ),deg(F ))+deg(L )(1,−1)
= (−deg(F )+deg(L ),deg(F )−deg(L )).

Again E is a semistable Higgs bundle, since −deg(F )+deg(L )> 0.

(m,−m)

(−m,m) (3m,−3m)

Figure 3.5: The four possible Higgs polyhedra in Example 3.5.7
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3.5.7 Example. Let E =OX (m)⊕OX (−m) which we interpret as an SL(2)-bundle
with a global T-reduction. Since E is semistable if m = 0, we assume that m > 0
be positive. Then OX (m) is the maximal destabilising subbundle. If ϕ : E → E ⊗L

is a Higgs structure, we get the following possible Higgs polyhedra.

1. If OX (m) is invariant, then dH(B+)= (m,−m), and if it is not invariant:

dH(B+)= (m−deg(L ),deg(L )−m) and deg(L )≥ 2m.

2. If OX (−m) is invariant, then dH(B−)= (m,−m), and if it is not invariant:

dH(B−)= (m+|deg(L )| ,−(m+|deg(L )|)) and deg(L )≥−2m.

3.5.8 Example. Let E = OX (m)⊕OX ⊕OX (−m) for a positive integer m > 0 and
define a Higgs structure ϕ : E → E ⊗OX (m) by

ϕ=
 0 0 0
ψ1 0 0
0 ψ2 0


where ψ1 : OX (m)→OX⊗OX (m) and ψ2 : OX →OX (−m)⊗OX (m) are nonzero maps.
Since E has a global torus reduction, we can assume that the Borel subgroups
correspond to the flags (cf. 3.A)

Bid : 0⊂OX (m)⊂OX (m)⊕OX ⊂ E ,
B(12) : 0⊂OX ⊂OX (m)⊕OX ⊂ E ,
B(23) : 0⊂OX (m)⊂OX (m)⊕OX (−m)⊂ E ,
B(13) : 0⊂OX (−m)⊂OX ⊕OX (−m)⊂ E ,

B(123) : 0⊂OX (−m)⊂OX (m)⊕OX (−m)⊂ E ,
B(132) : 0⊂OX ⊂OX ⊕OX (−m)⊂ E .

Notice that ψ1 = ϕ(−1,1,0), ψ2 = ϕ(0,−1,1) which implies ε(1,−1,0) = ε(1,0,−1) =
ε(0,1,−1)= 0 and ε(−1,1,0)= ε(0,−1,1)= ε(−1,0,1)= 1. This gives the following
corners of the Higgs polyhedron:

dH(Bid) = (m,0,−m)+m(−2,0,2) = (−m,0,m)
dH(B(12)) = (m,0,−m)+m(−1,−1,2) = (0,−m,m)
dH(B(23)) = (m,0,−m)+m(−2,1,1) = (−m,m,0)
dH(B(13)) = (m,0,−m)+0 = (m,0,−m)
dH(B(123)) = (m,0,−m)+m(−1,1,0) = (0,m,−m)
dH(B(132)) = (m,0,−m)+m(0,−1,1) = (m,−m,0)
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The convex hull of these points contains zero (see Figure 3.6) and (E ,ϕ) is a
semistable Higgs bundle (it is not a semistable vector bundle with the Harder-
Narasimhan filtration 0⊂OX (m)⊂OX (m)⊕OX ⊂ E that corresponds to the Borel
subgroup Bid).

One could also see this by looking at the proper Higgs subbundles, which are
OX (−m) and OX (−m)⊕OX . Then the semistability of E follows from deg(OX (−m))=
deg(OX (−m)⊕OX )=−m < deg(E )= 0.

(1,−1,0)

(−1,0,1) (0,−1,1)

(0,1,−1)

(−1,1,0)

(1,0,−1)

Figure 3.6: Complementary Higgs polyhedron of Example 3.5.8 with m = 1

3.5.9 Lemma. Let (P ,ϕ) be a principal Higgs bundle and dH the Higgs poly-
hedron as constructed above. Then dH defines a complementary polyhedron in
Φ(G(η),T).

Proof. We will show the two defining properties of a complementary polyhedron.
To show (C1), consider two Weyl chambers that share a common vertex. In

other words, we are given two Borel subgroups B,B′ ⊂ P ⊂G(η) that are contained
in the parabolic subgroup P and a vertex λ ∈ vert(P)⊂ vert(B),vert(B′). Then

dH(B)(λ)= d(B)(λ)+|deg(L )| ∑
α6∈R(B)

ε(α)α∨(λ).
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Since R(B) is a minimal parabolic subset, we know that α 6∈ R(B) is equivalent
to −α ∈ R(B). We already know that d is a complementary polyhedron and thus
d(B)(λ)= d(B′)(λ). Combining these two facts leaves us to show that∑

α∈R(B)
ε(α)α∨(λ)= ∑

α∈R(B′)
ε(α)α∨(λ).

Recall that R(B) = {
α ∈Φ(G(η),T)

∣∣∀λ ∈ vert(B) : 〈α,λ〉 ≥ 0
}

and consider a root
α ∈ R(B)\ R(B′). Then −α ∈ R(B′) and thus 〈α,λ〉 ≤ 0. Since λ ∈ vert(B)∩vert(B′)
we must have α∨(λ)= 0, which shows dH(B)(λ)= dH(B′)(λ).

To show (C2), consider two α-conjugate chambers B and B′. This means that
R(B)= (R(B′)\{−α })∪ {α } and α is the unique positive root of B that is negative
with respect to B′. Using this we can compute( ∑

β6∈R(B)
ε(β)β∨(α)− ∑

β6∈R(B′)
ε(β)β∨(α)

)
= (

ε(−α)(−α)∨(α)−ε(α)α∨(α)
)

=−2(ε(−α)+ε(α)) .

Again since d is a complementary polyhedron, d(B)(α)−d(B′)(α)≤ 0 and we finally
obtain

dH(B)(α)−dH(B′)(α)= d(B)(α)−d(B′)(α)−2 |deg(L )| (ε(−α)+ε(α))
≤−2 |deg(L )| (ε(−α)+ε(α))
≤ 0,

which finishes the proof.

Proposition (3.1.7) implies that there is a unique facet P ⊂V = X∗(T)⊗ZR that
is special with respect to the Higgs polyhedron dH . By abuse of notation we also
denote by T ⊂ P ⊂ G(η) the parabolic subgroup that corresponds to the facet P.
Using the projectivity of G(η)/P, we can uniquely extend the parabolic P ⊂G(η) to
obtain a global reduction β : X →P /Q for a parabolic subgroup Q ⊂G.

The next step is to show that this is indeed a Higgs reduction of the Higgs
bundle (P ,ϕ); that is, ϕ factors through (β∗P ×Adq)⊗L . We say that the parabolic
subgroup P ⊂ G(η) admits a Higgs reduction if the extended reduction (β,Q)
defines a Higgs reduction of the Higgs bundle (P ,ϕ).

First of all we are now able to define the degree and the numerical invariant
of a parabolic subgroup with respect to the Higgs polyhedron (cf. Section 3.1).

3.5.10 DEFINITION (Higgs degree). Let T ⊂ P ⊂ G(η) be a parabolic subgroup
with corresponding parabolic subset R(P) ⊂ Φ(G(η),T). We define the Higgs
degree to be

degH(P)= ∑
α∈R(P)

dH(B)(α)

where B ⊂ P is a Borel subgroup contained in P and dH is the Higgs polyhedron.
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3.5.11 DEFINITION (Numerical Higgs invariant). Let T ⊂ P ⊂G(η) be a parabolic
subgroup and λ ∈ vert(P) a vertex. Let B ⊂ P be a Borel subgroup and define the
numerical Higgs invariant as

nH(P,λ) := ∑
α∈Ψ(P,λ)

dH(B)(α),

where again Ψ(P,λ) := {
α ∈Φ(G(η),T)

∣∣ 〈λ,α〉 = 1,
〈
µ,α

〉= 0∀µ ∈ vert(P)\λ
}
.

3.5.12 DEFINITION (Higgs facet and vertex). Let P be a facet of the root system
Φ(G(η),T). We say that P is a Higgs facet if the corresponding parabolic subgroup
P ⊂G(η) admits a Higgs reduction. If λ is a vertex of Φ(G(η),T), we say that λ is
a Higgs vertex if the one dimensional facet spanned by it is a Higgs facet.

We also need to check that the degree and numerical invariants of a parabolic
subset do not get changed if it admits a Higgs reduction, which is the content of
the next lemma.

3.5.13 Lemma. Let P ⊂G(η) be a parabolic subgroup. If P admits a Higgs reduc-
tion, then degH(P)= deg(P) and nH(P,λ)= n(P,λ), where deg and n denotes the
degree and numerical invariant, respectively, with respect to Behrend’s comple-
mentary polyhedron.

Proof. Let P ⊂G(η) be a parabolic subgroup with corresponding parabolic subset
R(P)⊂Φ(G(η),T). Recall that it decomposes as R(P)=U(P)∪ΦP where

U(P)= {
α ∈Φ(G(η),T)

∣∣ ∃λ ∈ vert(P) : 〈α,λ〉 > 0
}

and ΦP = (spanP)⊥∩Φ(G(η),T)= {
α ∈Φ(G(η),T)

∣∣ 〈α,λ〉 = 0∀λ ∈ vert(P)
}
.

Assume that P admits a Higgs reduction. Then there is a β : X →P /Q such
that ϕ factors through ϕQ : OX → (β∗P ×Ad q)⊗L and qη = p. Using the fact that

p=O n
X ⊕ ⊕

α∈R(P)
Lα,

this implies ϕα = 0 for all α 6∈ R(P). If B ⊂ P is any Borel subgroup, then

degH(P)= deg(P)+|deg(L )| ∑
α∈R(P)\R(B)

ε(α)α∨
( ∑
β∈R(P)

β

)
= deg(P),

because
∑
β∈R(P)β ∈ P [Beh95, Proposition 1.9] and all roots that are in R(P)\R(B)

are actually in ΦP and hence in (spanP)⊥.
Let λ be a vertex of P and η = ∑

α∈Ψ(P,λ)α. Note that η ∈ P from [Beh95,
Lemma 3.6] and as above α∨(η)= 0 for all α ∈ R(P)\R(B). We immediately obtain

nH(P,λ)= n(P,λ)+|deg(L )| ∑
α∈R(P)\R(B)

ε(α)α∨(η)= n(P,λ),

which finishes the proof.
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3.5.14 Remark. If P ⊂G(η) is a parabolic subgroup that does not admit a Higgs-
reduction then there is an α 6∈ R(P) with ϕα 6= 0. Then −α ∈ R(P) because R(P) is
a parabolic subset. Recall also that

∑
β∈R(P)β ∈ P lies in the facet corresponding

to P and that R(P)= {
α ∈Φ(G(η),T)

∣∣ 〈α,λ〉 ≥ 0∀λ ∈ P
}
. This implies

degH(P)= deg(P)+|deg(L )| ∑
α6∈R(P)

ε(α)α∨
( ∑
β∈R(P)

β

)
≤ deg(P)−|deg(L )| ,

nH(P,λ)= n(P,λ)+|deg(L )| ∑
α6∈R(P)

ε(α)α∨
( ∑
β∈Ψ(P,λ)

β

)
,

and it can happen that nH(P,λ)> n(P,λ). However, if deg(L ) 6= 0, then degH(P)<
deg(P) and nH(P,λ) 6= n(P,λ). Note also that we may assume without any loss
of generality that deg(L ) 6= 0. This follows from the fact that, if deg(L ) = 0,
a principal Higgs bundle (P ,ϕ) is semistable if and only if P is a semistable
principal bundle (cf. [FGPN13a, Proposition 4.1], [FGPN13b, Proposition 3.1]
and [Sch08, Example 2.5.6.7]).

3.5.15 Lemma. Let B ⊂ G(η) be a Borel subgroup that does not admit a Higgs
reduction. Then there is a vertex λ ∈ vert(B) with nH(B,λ)≤ 0. In particular, any
Borel subgroup that does not admit a Higgs reduction cannot be special.

Proof. Let α 6∈ R(B) with ϕα 6= 0. Since ϕα : OX →Lα⊗L is a nonzero map of line
bundles, this implies

deg(L )≥−deg(Lα)= deg(L−α).

Let ∆= {α1, . . . ,αn } be the basis corresponding to B. Since −α ∈ R(B), there are
ci ≥ 0 with −α=∑

ciαi. Then

n∑
i=1

ci ·nH(B,v(αi))= deg(L−α)+|deg(L )| ∑
β6∈R(B)

ε(β)β∨(−α)

≤ deg(L−α)−|deg(L )|
≤ 0,

because n(B,v(β))= deg(Lβ) by the definition of Behrend’s complementary polyhe-
dron and

∑
β6∈R(B) ε(β)β∨(−α)≤−1 (cf. Remark 3.5.14). Hence there is a λ ∈ vert(B)

with nH(B,λ)≤ 0.

We can now return to the special facet of the Higgs polyhedron.

3.5.16 Lemma. Let dH be the Higgs polyhedron as constructed above and P ⊂G(η)
the canonical parabolic subgroup corresponding to the special facet. Then P admits
a Higgs reduction.
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Proof. Since G(η) always admits a Higgs reduction and a Borel subgroup is special
if and only if n(B,λ)> 0 for all λ ∈ vert(B), we can assume that the special facet P
corresponds to a proper parabolic subgroup B ( P (G(η) by Lemma (3.5.15).

Let Q be a parabolic subgroup corresponding to a non-Higgs facet. Then there
is an α 6∈ R(Q) with ϕα 6= 0. If B ⊂ Q is any Borel subgroup, then R(B) ⊂ R(Q).
Thus Q only contains Borel subgroups that correspond to non-Higgs chambers.
By Lemma (3.5.15), there is a λ ∈ vert(B) with nH(B,λ)≤ 0, and since

dH(B)= ∑
λ∈vert(B)

nH(B,λ)λ∨

we see that dH(B) 6∈ B∨ for any Borel subgroup B ⊂Q. Note that Q∨ =⋂
B⊂Q B∨,

hence F(Q)∩Q∨ =; for any non-Higgs facet.
Because a facet is special if and only if F(P)∩P∨ 6= ;, the special facet P must

admit a Higgs reduction.

We are finally able to prove the main result of this section.

3.5.17 Proposition. Let G be a connected reductive linear algebraic group and
(P ,ϕ) a principal G-Higgs bundle. Then P has a canonical Higgs reduction. It is
unique in the sense that if (β1,Q1) and (β2,Q2) are two canonical Higgs reductions,
then there is a g ∈G with Q1 = gQ2 g−1 and β1 = gβ2 g−1.

Proof. Since we already know that a canonical Higgs reduction exists (the degree
of instability is finite by Lemma 3.3.1), only the uniqueness part remains to be
proven.

Let (β1,Q1) and (β2,Q2) be two canonical Higgs reductions. By [sga70b, Ex-
posé XXVI, Lemme 4.1.1], there is a torus T ⊂ (Q1∩Q2)η and we can construct the
Higgs polyhedron dH with respect to T onΦ(G(η),T). Lemma (3.5.13) and (3.5.16)
imply that (Q1)η and (Q2)η give a canonical facet of dH and hence (Q1)η = (Q2)η
from Proposition (3.1.7). Since reductions are determined generically up to conju-
gation, this implies that there is a g ∈G with Q1 = gQ2 g−1 and β1 = gβ2 g−1.

Note that if we fix a maximal torus T ⊂G, then there is a unique canonical
Higgs reduction (β,Q) with T ⊂Q.

It might be worth noting that although we restricted ourselves to characteristic
zero, the construction of Behrend, and hence also the Higgs polyhedron, can be
applied to positive characteristic.

3.6 Decorated Bundles
After defining a complementary Higgs polyhedron, it would be desirable to also
define a complementary polyhedron for other kinds of decorated bundles. The
semistability condition of more general decorated bundles will often depend on a
parameter. In closing, we will give a short overview of some ideas for future work.
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Weighted filtrations. Let V be a finite dimensional K-vector space and con-
sider a representation ρ : G →GL(V ). Since some parameter dependent stability
conditions will depend on weighted filtrations, we will clarify the connection
between weighted filtrations of V and parabolic subgroups of G.

Given a one parameter subgroup λ : Gm →G, we let Q(λ) := P(−λ) be the asso-
ciated parabolic subgroup of G. The one parameter subgroup defines a weighted
flag of V as follows. The composition ρ ◦λ : Gm →GL(V ) gives a decomposition of
V into eigenspaces

V =Vγ1 ⊕·· ·⊕Vγs ,

where Vγi =
{

v ∈V
∣∣ (ρ ◦λ)(z)v = zγi v ∀z ∈Gm

}
for some weight γi ∈Z. We suppose

that γ1 < . . .< γs and let Vi :=Vγ1 ⊕·· ·⊕Vγi . This gives the filtration

0(V1 ( · · ·(Vs =V ,

and to each subspace Vi we associate a rational weight defined as

αi := γi+1 −γi

dimV
, i = 1, . . . , s−1.

δ-Semistability. We will restrict to the case G =GL(n) and ρ : GL(n)→GL(V ).
We let (E ,σ) be a decorated vector bundle where σ : X → P(E (V )); that is, we
let ρ act on P(V ) and consider the associated projective bundle. Fix a positive
rational δ ∈Q≥0 – this will be the parameter in the stability condition. A weighted
filtration (E •,α•) of E consists of a filtration

0= E0 ⊂ E1 ⊂ . . .⊂ Es = E

into subbundles and positive rational weights αi ∈ Q>0 for i = 1, . . . , s. Given a
weighted filtration, we also define

M(E •,α•) :=
s∑

i=1
αi(deg(E )rk(E i)−deg(E i)rk(E )).

We call (E ,σ) δ-semistable if for every weighted filtration (E •,α•) of E

δ-deg(E •,α•) := M(E •,α•)+δ ·µ(E •,α•,σ)≥ 0,

where µ(E •,α•,σ) is a certain function that also depends on the representation ρ

(cf. [Sch04],[Sch08]).

3.6.1 Remark. Note that unlike M(E •,α•), the function µ is not linear in α.
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Hitchin Pairs. Let us return to Higgs bundles. Consider the representation
ρ : GL(n)→GL(gln⊕ K). As we have seen before (1.5.2), the decorated principal
bundles (with affine fibres) obtained from ρ correspond to Higgs vector bundles.
The decorated principal bundles obtained from ρ with projective fibres are the
so called Hitchin pairs. Hence for given δ ∈Q≥0, we can define a δ-semistability
condition for these objects.

3.6.2 DEFINITION. A Hitchin pair is a tuple (P ,ϕ,ε) where (P ,ϕ) is a principal
Higgs bundle and ε ∈C a complex number. It is called semistable if

1. (P ,ϕ) is a semistable Higgs bundle.

2. If ε= 0, then ϕ is not nilpotent.

Recall that ϕ is nilpotent if it factors through β∗P ×Ad r, where r denotes the
unipotent radical of gln (nilpotent matrices in gln). Obviously any (semistable)
Higgs bundle gives a (semistable) Hitchin pair via (P ,ϕ) 7→ (P ,ϕ,1).

3.6.3 Theorem (Lemma 3.13 in [Sch04], Lemma 2.7.4.2 in [Sch08]). There exists
a ∆> 0 such that for all δ≥∆ the following are equivalent:

1. The principal Higgs bundle (P ,ϕ) is Higgs semistable.

2. The Hitchin pair (P ,ϕ,1) is δ-semistable.

To show the existence and uniqueness of a canonical filtration, one strategy
would be to show that the δ-stability defines a complementary polyhedron. The
problem here is that µ is not linear in α but only piecewise linear and by definition
the complementary polyhedron is a linear form. For future work, [RR84] might
be helpful.

Affine Bumps. Another strategy could be to define a complementary polyhe-
dron for affine bumps which should work in the same manner as the Higgs
polyhedron. After that one might try to reduce decorated bundles with projec-
tive fibre to this case (cf. [Sch08, Remark 2.1.2.5]). Let G be a reductive linear
algebraic group.

3.6.4 DEFINITION (Affine bump). Let ρ : G →GL(V ) be an irreducible represen-
tation and L a line bundle on X . An affine ρ-bump is a pair (P ,ϕ) consisting of a
principal G-bundle P and a morphism ϕ : Pρ →L . Here Pρ is the vector bundle
associated to P using the representation ρ.

The stability condition for affine bumps will depend on a rational character χ ∈
X∗(G)⊗Q. The affine bump (P ,ϕ) is called χ-semistable if for all one parameter
subgroups λ : Gm →G and reductions β : X →P /Q(λ) with µ(β,ϕ)≤ 0 we have

M(E •(β),α•(β))+〈
λ,χ

〉≥ 0.
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Here (E •(β),α•(β)) is the weighted filtration given by the reduction β and the
function µ(β,ϕ) again depends on the representation ρ (see [Sch08, p. 289]). Note
that here

〈
λ,χ

〉
is linear in both λ and χ.
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3.A Root Datum and Parabolic Subgroups of SL(3)

For reference we give the root datum of SL(3) = { A ∈GL(3) | det(A)= 1 }. Let
T ⊂ SL(3) be the two dimensional torus of diagonal matrices. Its character
group is X∗(T)= {

(a1,a2,a3) ∈Z3
∣∣ a1 +a2 +a3 = 0

}∼=Z2. The corresponding root
system in V = X∗(T)⊗ZR∼=R2 takes the form

Φ= {±(1,−1,0),±(0,1,−1),±(1,0,−1) } .

Choose the scalar product on V given by the standard inner product on R3, that is
〈(x1, x2, x3), (y1, y2, y3)〉 =∑

xi yi. A basis of Φ is given by two roots α,β such that〈
α,β

〉=−1. The Cartan matrix is

S =
(

2 −1
−1 2

)
.

The vertices can be computed as Λ= {λ1, . . . ,λ6 } where

3λ1 = (1,1,−2),
3λ2 = (2,−1,−1),
3λ3 = (1,−2,1),
3λ4 = (−1,−1,2),
3λ5 = (−2,1,1),
3λ6 = (−1,2,−1).

We now examine the parabolic subgroups T ⊂ P ⊂SL(3).
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The Weyl group is isomorphic to S3, which has six elements. Hence there are six
Borel subgroups containing the torus, each of which correspond to a permutation
σ ∈S3. We list the Borel subgroups with the corresponding bases and vertices
below.

Bid =
∗ ∗ ∗

0 ∗ ∗
0 0 ∗

 ∆id = { (1,−1,0), (0,1,−1) } Λid = {λ2,λ1 }

B(12) =
∗ 0 ∗
∗ ∗ ∗
0 0 ∗

 ∆(12) = { (−1,1,0), (1,0,−1) } Λ(12) = {λ6,λ1 }

B(23) =
∗ ∗ ∗

0 ∗ 0
0 ∗ ∗

 ∆(23) = { (0,−1,1), (1,0,−1) } Λ(23) = {λ3,λ2 }

B(13) =
∗ 0 0
∗ ∗ 0
∗ ∗ ∗

 ∆(13) = { (−1,1,0), (0,−1,1) } Λ(13) = {λ5,λ4 }

B(123) =
∗ ∗ 0

0 ∗ 0
∗ ∗ ∗

 ∆(123) = { (1,−1,0), (−1,0,1) } Λ(123) = {λ3,λ4 }

B(132) =
∗ 0 0
∗ ∗ ∗
∗ 0 ∗

 ∆(132) = { (0,1,−1), (−1,0,1) } Λ(132) = {λ6,λ5 }
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Similarly, there are six maximal parabolic subgroups corresponding to a proper
subspace of K3. Maximal parabolic subgroups have exactly one vertex.

P1 =
∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

 R(P1)= {±(1,−1,0), (0,1,−1), (1,0,−1) } Λ1 = {λ1 }

P2 =
∗ ∗ ∗

0 ∗ ∗
0 ∗ ∗

 R(P2)= {±(0,1,−1), (1,−1,0), (1,0,−1) } Λ2 = {λ2 }

P3 =
∗ ∗ ∗

0 ∗ 0
∗ ∗ ∗

 R(P3)= {±(1,0,−1), (1,−1,0), (0,−1,1) } Λ3 = {λ3 }

P4 =
∗ ∗ 0
∗ ∗ 0
∗ ∗ ∗

 R(P4)= {±(1,−1,0), (0,−1,1), (−1,0,1) } Λ4 = {λ4 }

P5 =
∗ 0 0
∗ ∗ ∗
∗ ∗ ∗

 R(P5)= {±(0,1,−1), (−1,1,0), (−1,0,1) } Λ5 = {λ5 }

P6 =
∗ 0 ∗
∗ ∗ ∗
∗ 0 ∗

 R(P6)= {±(1,0,−1), (−1,1,0), (0,1,−1) } Λ6 = {λ6 }

Since we are also interested in the filtrations that get stabilised by the Borel
and parabolic subgroups, we will list them below. For this we decompose K3 =
V1 ⊕V2 ⊕V3 according to the chosen torus. The filtrations are as follows.

Bid : 0⊂V1 ⊂V1 ⊕V2 ⊂V P1 : 0⊂V1 ⊕V2 ⊂V
B(12) : 0⊂V2 ⊂V2 ⊕V1 ⊂V P2 : 0⊂V1 ⊂V
B(23) : 0⊂V1 ⊂V1 ⊕V3 ⊂V P3 : 0⊂V1 ⊕V3 ⊂V
B(13) : 0⊂V3 ⊂V3 ⊕V2 ⊂V P4 : 0⊂V3 ⊂V

B(123) : 0⊂V3 ⊂V3 ⊕V1 ⊂V P5 : 0⊂V2 ⊕V3 ⊂V
B(132) : 0⊂V2 ⊂V2 ⊕V3 ⊂V P6 : 0⊂V2 ⊂V
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Figure 3.7: Root system of SL(3)
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Summary

This thesis investigates certain decorated principal bundles on smooth projective
schemes whose appearance in algebraic geometry was influenced by theoretical
physics. We will consider the moduli space of autodual instanton bundles on
projective space and canonical reductions of principal Higgs bundles on smooth
projective curves.

In the first chapter, we introduce the main objects of study, namely vector
and principal bundles on projective spaces. We give the necessary definitions of
linear algebraic groups and group schemes. We also explain stability conditions
for these and explain how autodual vector bundles and Higgs bundles can be
interpreted as principal bundles with decorations.

The second chapter is devoted to the study of autodual instanton bundles on
projective space. We explain how instanton bundles of trivial splitting type can
be constructed from ADHM-data. After that we investigate how the autoduality
structure is reflected in the ADHM-datum and obtain an extended datum. For
symplectic and orthogonal instanton bundles these extended data can be refined.
Finally we take a look at the construction of examples of symplectic and orthogonal
instanton bundles from an extended ADHM-datum.

In the last chapter, we investigate principal Higgs bundles on smooth projec-
tive curves. We start by introducing root systems and complementary polyhedra
and explain how a connected reductive algebraic group equipped with a maxi-
mal torus defines a root system. We then explain Behrend’s construction of the
complementary polyhedron associated to a principal bundle and compute some
examples. A section is devoted to the study of torus reductions. Then we give
an original construction of a complementary polyhedron associated to a princi-
pal Higgs bundles. Finally we give consequences of the complementary Higgs
polyhedron, i.e. the existence and uniqueness of a canonical Higgs reduction.



Zusammenfassung

Diese Dissertation untersucht dekorierte Prinzipalbündel auf glatten projektiven
Schemata. Wir betrachten den Modulraum autodualer Instantonbündel auf pro-
jektiven Räumen sowie kanonische Reduktionen von Higgs-Prinzipalbündeln auf
glatten projektiven Kurven. Das Aufkommen dieser Objekte in der algebraischen
Geometrie wurde stark von theoretischer Physik beeinflusst.

Im ersten Kapitel führen wir die zugrundeliegenden Objekte ein, nämlich
Vektor- und Prinzipalbündel auf projektiven Räumen. Wir definieren linear alge-
braische Gruppen und Gruppenschemata. Desweiteren erklären wir Stabilität
dieser Bündel und zeigen wie autoduale Vektorbündel und Higgs-Bündel als
dekorierte Prinzipalbündel aufgefasst werden können.

Im zweiten Kapitel widmen wir uns dem Studium von autodualen Instan-
tonbündeln auf projektiven Räumen. Wir erklären wie Instantonbündel von
trivialem Spaltungstyp aus den sogenannten ADHM-Daten konstruiert werden
können. Danach untersuchen wir wie die Autodualität sich in diesen ADHM-
Daten widerspiegelt und erhalten daraus ein erweitertes Datum. Im symplektis-
chen und orthogonalen Fall kann dieses erweiterte Datum noch weiter verfeinert
werden. Schießlich werfen wir einen Blick auf die Konstruktion von Beispielen
von symplektischen und orthogonalen Instantonbündeln aus diesen erweiteren
ADHM-Daten.

Im letzten Kapitel untersuchen wir Higgs-Prinzipalbündel auf glatten projek-
tiven Kurven. Wir beginnen mit Wurzelsystemen und komplementären Polyedern
und erklären wie eine zusammenhängende reduktive algebraische Gruppe zusam-
men mit einem maximalen Torus ein Wurzelsystem definiert. Dann erklären
wir die Konstruktion von Behrend die einem Prinzipalbündel einen komplemen-
tären Polyeder zuordnet und geben zur Verdeutlichung einige Beispiele. Einen
Abschnitt widmen wir außerdem den Torusreduktionen. Anschließend geben
wir eine Konstruktion die einem Higgs-Prinzipalbündel einen komplementären
Polyeder zuordnet. Zum Abschluß erklären wir die Konsequenzen des komplemen-
tären Higgs-Polyeder, nämlich die Existenz und Eindeutigkeit einer kanonischen
Higgs-Reduktion.
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