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Chapter 4:  Custom and Adaptable Process 
Topologies 

In the previous chapter, we described the distributed architecture of multi-tiered enterprise applications. 
Among other things, we defined process topologies (see Subsection 3.2.2), discussed the design of 
process topologies (see Section 3.3), and presented a language of topology patterns for constructing 
process topologies (see Section 3.4). In this chapter, we first motivate that, for many enterprise 
applications, simple standard process topologies are not sufficient. We explain that, instead, many 
demanding enterprise applications need custom and adaptable process topologies. To illustrate the need 
and to give an example, we present a detailed case study. The case study describes a tiny system that 
develops into a large, complex, multi-tiered enterprise application. During its life cycle, its process 
topology is constantly subject to change to meet new requirements. After presenting the case study, we 
explain what cross-process management of data objects is and why it is important for custom process 
topologies. Then we identify several key requirements for enterprise application middleware to support 
custom and adaptable process topologies. However, we also show that existing enterprise application 
middleware does not fulfill all these requirements. Therefore, it is still hard today to build enterprise 
applications with custom and adaptable process topologies on top of existing middleware. 

This chapter is structured as follows: In Section 4.1, we motivate the need for custom and adaptable 
process topologies. Section 4.2 presents a case study that illustrates the need for custom and adaptable 
process topologies. Section 4.3 explains cross-process management of data objects. In Section 4.4, six key 
requirements for enterprise application middleware are identified and discussed. Section 4.5 explains 
limitations of existing middleware and their consequences for application developers. A few selected 
questions are discussed in more detail in Section 4.6. Finally, in Section 4.7, we provide a brief summary 
of this chapter. 

4.1 Motivation for Custom and Adaptable Process Topologies 

In Section 3.3, we discussed the design of process topologies: We explained that, traditionally, the design 
of a suitable process topology for an enterprise application is a task of a software architect. The software 
architect decides on distribution and other high-level design details early in the development process. We 
outlined the most important driving forces that have to be taken into account when designing process 
topologies � e.g., performance, fault tolerance, security, and costs. We also explained why, in general, 
there are no precise rules for constructing complete adequate process topologies for a given set of 
requirements; among other things, a reasonable trade-off between a large number of conflicting and 
heavily application-dependent factors has to be found. Finding such a trade-off in the context of a specific 
project is a complex task that cannot easily be formalized. However, in Section 3.4, we presented a 
pattern language that addresses typical design problems in parts of process topologies. 

In the following subsections 4.1.1 and 4.1.2, we motivate the need for custom and adaptable process 
topologies, respectively. 

4.1.1 Custom Process Topologies 
For small enterprise applications, simple standard topologies, such as shown in Figure 3-1 and Figure 3-2 
in Subsection 3.2.3, are often sufficient. That is especially the case for enterprise applications that have 
only few users, are not mission-critical, do not experience high load situations, and run in local area 
networks. However, large, mission-critical enterprise applications are typically much more demanding � 
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building such applications on top of simple standard topologies would prevent the applications from fully 
making use of their capabilities. 

As already discussed in Section 3.3, different requirements may lead to different process topologies. We 
call such process topologies custom process topologies because they are designed to meet individual 
requirements of their respective applications and users, i.e., are heavily application-dependent. An 
example of a custom (non-standard) process topology has been shown in Figure 3-4. 

How should a software architect construct a custom process topology? Ideally, he starts with a simple 
standard topology (e.g., a two-tier or a three-tier structure) and then successively applies process topology 
patterns to parts of the process topology. Each pattern changes a part of the process topology. Analogous 
to design patterns, which can be freely combined to form complex, object-oriented designs, topology 
patterns can be used to form custom process topologies. Step by step, a standard topology can be 
transformed until it meets the specific requirements of an application. 

However, it should be noted that not all topology changes necessarily correspond to topology patterns as 
defined in Section 3.4. An example is the addition of a new client process that implements a graphical 
user interface (GUI) to a process topology. Although that action changes the topology (and the definition 
of the process replication pattern in Subsection 3.4.2 could be modified to include that change), we would 
not consider such a change a software pattern because it does not encapsulate a significant portion of 
design knowledge (see Subsection 3.5.4). 

Custom process topologies can either be designed from scratch (a sequence of simple changes and/or 
topology patterns is applied to construct an initial process topology) or be the result of system evolution 
(from time to time, simple changes and/or topology patterns are applied to an existing enterprise 
application). 

4.1.2 Adaptable Process Topologies 
A typical custom process topology is heavily application-dependent because the basis for its design is a 
trade-off between many application-dependent factors (see Section 3.3). However, during the life-cycle of 
an enterprise application, one or more of these factors are likely to change. For example, a change to the 
user interface could introduce new access patterns and thus change transaction load. Or, due to its 
success, a tiny application may evolve into a mission-critical application and require more availability. 
When relevant factors change, a software architect has to reconsider the trade-off that led to the current 
process topology and, if necessary, adapt the process topology to better meet the new requirements. 

Ideally, a process topology is adaptable, i.e., the topology can be changed without having to re-design 
and/or re-implement large parts of the corresponding enterprise application. Typically, re-design and re-
implementation are not only costly but also time-consuming. Therefore, adaptable process topologies are 
particularly important for organizations that have to quickly react and adapt to changes. (However, in 
Section 4.5, we will see that enterprise applications with adaptable process topologies are difficult to 
realize today.) 

4.2 Case Study 
In this section, we present a case study with an imaginary � but nevertheless realistic � scenario that 
illustrates the need for custom and adaptable process topologies.  

Let us consider an enterprise application that implements a marketplace for accommodations. The 
enterprise application is developed and is run by a travel agency. Customers of the agency can make, 
update, withdraw, and query accommodation offers. Also, they can view the location of particular 
accommodations on a map and make reservations. For the travel agency, a comfortable, sophisticated user 
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interface is important. Therefore, they have decided to use rich (fat) clients instead of thin HTML clients 
(web browsers). 

We will see that the application starts as a tiny system. Then, step by step (as shown in Figure 4-1), the 
application grows and develops into a system with a complex custom process topology. At each step, 
requirements change and the process topology is adapted accordingly: 

 

Step 1: Initial Two-Node Structure 

The initial enterprise application is designed with a minimal process topology that simply consists of two 
nodes: a client process (a rich client with a GUI) and a transactional data store. The data store persistently 
stores all accommodation offers and reservations and is directly accessed by the client. The client runs on 
a personal computer and is operated by a single travel agent employed by the travel agency. Customers of 

Figure 4-1. Evolution of an enterprise application’s process topology. 
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the travel agency that are interested in accommodations do not have direct access to the enterprise 
application. Instead, they have to contact the travel agent (face-to-face or via fax/email/phone). 

Step 2: Multiple Clients 

The customer base grows and more travel agents are hired so that multiple customers can be served 
simultaneously. To allow multi-user access, more client processes are added to the process topology. 
Each agent is assigned his own personal computer that runs one of the client processes. 

Step 3: Three-Tier Topology 

The software architect of the enterprise application decides that the current two-tier structure is not 
flexible and scalable enough. He introduces a three-tier architecture to decouple clients from the central 
data store and thus to improve modularity and scalability. The software architect applies the wrapper 
insertion pattern (see Subsection 3.4.1) to insert a new process M (�market server�) between the clients 
and the central data store. 

Step 4: Data Distribution 

With a growing number of concurrent users (agents from several call centers at this stage), higher 
transaction throughput is required. The software architect identifies the central data store as the main 
bottleneck. He decides to apply the data distribution pattern (see Subsection 3.4.4) and inserts additional 
data stores to the process topology. More specifically, he selects variant (b) of the pattern (i.e., 
distribution based on a static partitioning criterion) to distribute data objects among the data stores. With 
the pattern applied, requests � and thus load � are distributed horizontally among the data stores. As a 
result, the enterprise application�s transaction throughput improves significantly. 

Step 5: Cooperation with another Marketplace 

The travel agency starts to cooperate with another enterprise that runs a similar marketplace. At first, the 
cooperation is loose � the other enterprise agrees that one of the travel agency�s clients can directly access 
its marketplace (read-only). The software architect orders a developer to prototypically extend one of the 
rich clients such that the client can access data from both marketplaces. Letting the client access two 
different systems corresponds to application of variant (a) of the integration of subsystems pattern (see 
Subsection 3.4.6). 

Step 6: Integration of the other Marketplace 

The other marketplace is more tightly integrated into the travel agency�s marketplace: All clients of the 
travel agency are granted full read and write access to both systems. In principle, that change could be 
realized by extending all client processes as described in Step 5. However, the software architect decides 
that managing access to different data sources is a server-side issue and thus should not be implemented 
as part of client processes. Instead, the changes made in Step 5 are undone, the implementation of the 
travel agency�s middle tier process is extended, and a C1 connector from market server M to the other 
enterprise application is added. Adding the C1 connector again corresponds to variant (a) of the 
integration of subsystems pattern. 

Step 7: Access from the Internet 

To further expand the travel agency�s customer base, customers are allowed to directly access the 
enterprise application via the Internet (without having to contact a travel agent). The travel agency 
develops a Java applet that runs inside the customers� web browsers and communicates with the 
enterprise application. Via the applet, Internet users are offered a subset of the functionality available to 
travel agents. For instance, unlike agents, Internet users are not allowed to perform system management 
functions, update maps, or query revenue data. For security reasons, Internet users are never allowed to 
directly access the enterprise application�s central market server process M. Instead, they access the 
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system through a dedicated new intermediate server I. The intermediate server evaluates client requests 
and rejects all requests that go beyond the Internet clients� reduced functionality. It also rejects requests 
that would produce too much load, e.g., querying all accommodation offers without specifying additional 
criteria. The process topology is changed as follows: An arbitrary number of new client processes (web 
browsers with Java applets) are added to the process topology. For each new client, a C1 connector from 
the client to M is added. Then the wrapper insertion pattern is applied to insert the intermediate server I 
between the new clients and M. 

Step 8: Proxies for Internet Clients 

The number of Internet clients increases with growing popularity of the marketplace. Soon, both 
intermediate server I and central market server process M become overloaded. A thorough analysis shows 
that the set of data objects accessed by a typical Internet client is closely correlated with the client�s 
geographical location (e.g., France, Scandinavia, North America). In order to better handle the high load 
produced by Internet users, the software architect decides to insert a set of proxy processes between the 
Internet clients and intermediate server I. Each proxy process serves clients from a specific geographical 
region and caches data objects frequently accessed by its clients. In this way, many requests can be 
answered by proxy processes without having to contact processes I and M. The process topology is 
adapted as follows: First, the wrapper insertion pattern is applied to insert a single proxy process between 
Internet clients and I. Then the process replication pattern (see Subsection 3.4.2) is used to replicate the 
proxy process. As a result, load is first shifted from I and M to the proxies and then horizontally 
distributed among the proxies. 

Step 9: Replication of the Central Market Server Process 

Although the actions taken in Step 8 take much load away from central market server process M, that 
process still remains a bottleneck: During peak Internet usage times, not only Internet users but also all 
travel agents experience bad response times. Additionally, the travel agency becomes aware that process 
M is a single point of failure since all clients of the travel agency finally depend on M. The enterprise 
application has developed into a mission-critical system by that time and generates a significant part of 
the travel agency�s revenues. Therefore, a single point of failure is not acceptable any more. To address 
the problems, the software architect replicates M. He applies the process replication pattern to add a 
replica M’ of M to the process topology and deploy M’ on a dedicated new server machine. While clients 
operated by travel agents are allowed to access both M and M’ (see the meshing pattern in Subsection 
3.4.3), requests of Internet users are always routed via M’. As a result, the enterprise application can 
provide basic fault tolerance and better response times for the travel agents: First, when either M or M’ 
fails, the remaining replica keeps the system functional. Second, requests from travel agents are 
distributed among M and M’ (load balancing). Third, travel agents are less affected by heavy load from 
Internet users because M is not affected by Internet load.  

Step 10: Replication of Proxy Processes 

Each month, more Internet users access the marketplace and thus put more load on the proxy processes 
responsible for specific geographical regions. One option to handle the growing load would be to add 
more proxy processes and to reduce the size of the geographic region handled by each proxy. That would 
correspond to changing (or: undoing and then re-applying) the process replication pattern applied in Step 
8. However, since there are also availability issues related to the proxy processes (which are hosted by 
another company), the software architect selects a different solution: For each existing proxy process, the 
process replication pattern is applied in combination with the meshing pattern (see Subsection 3.4.3). The 
Internet clients of each specific geographical region are now served by a pair of proxy processes. Load 
produced by Internet clients of a region is horizontally distributed among the region�s two proxy 
processes. Since each Internet client needs only one operational proxy process but can access two, this 
also improves availability. 
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The case study above describes an enterprise application with a simple process topology that evolves into 
a complex custom topology. We can see that a simple standard topology clearly would not address the 
travel agency�s requirements in an appropriate way. We can also see that the final process topology layout 
(see Step 10 in Figure 4-1) has not been designed from scratch � instead, it is the result of an iterative 
process that consists of many evolutionary steps. In each step, parts of the process topology are changed 
to adapt the application to new requirements. In scenarios similar to the one presented here, adaptable 
process topologies are of particular importance because they significantly simplify topology changes. 

4.3 Challenge: Cross-Process Management of Data Objects 
Up to this point, enterprise applications and their process topologies have been discussed on a relatively 
high architectural level. Having motivated the need for custom and adaptable process topologies in the 
previous section, we now approach the question of how such systems can and should be realized. As a 
prerequisite, this section describes what cross-process management of data objects is and why it plays an 
important role for custom process topologies. 

From a traditional service-oriented perspective, realizing enterprise applications with custom topologies 
seems straightforward: Each process in a topology offers services to its client processes. Client processes 
consume these services by invoking functions on server processes using, for instance, remote procedure 
calls, web service requests, or other messaging mechanisms. A consumer/client of a service can in turn be 
a server for other processes, which, in principle, allows one to construct arbitrarily complex process 
topologies. 

However, this perspective tends to ignore the data management dimension of the problem, which is often 
one of the most important issues to be addressed. In object-oriented, data-intensive enterprise 
applications, services are centered around transactional data objects. Usually, these objects play an 
important role for both the provider and the consumer of a service. For example, in an object-oriented 
enterprise application that manages customer data and reservation data, both the provider and the 
consumers of a service require access to Customer and Reservation data objects. As part of its service, a 
server usually has to expose data objects across process boundaries to its clients. In that case, we say that 
a server offers clients access to a given set of data objects. 

For such services, a mechanism for cross-process management of data objects is needed for efficient, 
transactional, distributed, and shared access to data objects. The mechanism is part of the implementation 
of C1 connectors and can either be provided by enterprise application middleware (which means more 
comfort and more transparency) or be part of the application code itself (less comfort and less 
transparency). Cross-process management of data objects plays an important role in the requirements we 
present in the subsequent section. 

4.4 Requirements for Enterprise Application Middleware 

In this section, we identify and discuss key requirements for enterprise application middleware to support 
custom and adaptable process topologies. We specifically address data management for data-intensive, 
object-oriented enterprise applications.  

Traditionally, aspects like distribution and data access are mostly handled by middleware (see Section 
2.4): Application code is developed by application developers and primarily focuses on business logic 
and/or user interface. For issues that involve distribution and transactional data access, application code 
typically relies on functions provided by the underlying middleware. Therefore, especially the capabilities 
of the underlying middleware determine to what extent custom process topologies can be realized and 
how adaptable these topologies are. 
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We assume that application code, regardless of its location in the process topology, requires object-
oriented access to transactional data objects. Typically, that includes (but is not limited to) transparent 
navigational access, support for object identity, and type-safety. In principle, enterprise applications can 
be realized without such an object view on data. For example, an enterprise application implemented in 
Java may rely on low-level access to a relational database and process data through explicit SQL 
statements and tabular JDBC result sets. But in practice, an object view is considered very important in 
many projects � especially when object-oriented analysis (OOA), object-oriented design (OOD), object-
oriented programming languages, and object-oriented tools are used. Typically, an object view on data (at 
least for the business logic) is much more intuitive and provides a higher level of abstraction than low-
level access. In fact, often, one of the main reasons for using a middleware (e.g., an object/relational 
mapping framework or an application server that supports Enterprise JavaBeans) is to realize an object 
view on transactional data. 

In the following subsections, we identify six fundamental requirements (R1 to R6) for enterprise 
application middleware to support custom and adaptable process topologies. Requirement R1 addresses 
efficiency, R2 addresses consistency, R3 and R5 address custom topologies, and R4 to R6 address 
adaptable topologies.  

4.4.1 Copying Data Objects across Process Boundaries 
(Requirement R1) 

A service (offered by a server process) usually has data objects associated with it. For instance, a service 
for managing accommodations might heavily rely on data objects of type Customer, Accommodation, and 
Reservation. When a client wants to access data objects associated with a service (see cross-process 
management of data objects in Section 4.3), there are basically three alternatives for handling these data 
objects: 

(1) Remote data objects.  

Data objects physically remain in the server process and are remotely accessed by the client. This 
alternative is usually realized by using object middleware such as CORBA or RMI to represent 
data objects as middleware-level remote objects that are directly accessed by clients. For 
example, a Customer object could be represented as an entity bean using Enterprise JavaBeans or 
as a CORBA transactional object. While this approach has several advantages, it also leads to 
significant performance and scalability problems: In many applications, data objects and object-
oriented access to them are relatively fine-grained. Remote client access to data objects typically 
requires a large number of network roundtrips � in the worst case one request per access to an 
attribute of a remote data object. For example, a client that simply displays a list of customers 
including all their attribute values could easily produce hundreds of remote invocations just for 
displaying a single view and hence create an immense overhead. Each invocation requires several 
actions, such as marshalling of parameters, network communication, encryption, security checks, 
unmarshalling of parameters, request dispatching, establishing a transaction context, and 
processing the invoked code. Even with a relatively small number of clients, this approach often 
results in high bandwidth consumption, high server load, and bad response time. Later, in Section 
7.4, we will demonstrate and analyze the adverse effects of fine-grained access to remote data 
objects for one particular application scenario. 

In many cases, an object middleware approach is adequate for coarse- and medium-grained 
objects/communication only and is less suited for fine-grained objects/communication 
[WWWK94] [CD96]. For example, benchmark results presented in [CMZ02] show that, with 
EJB entity beans, only a fraction of the throughput of a solution with less fine-grained remote 
access can be achieved. The problem is also described in an increasing number of publications 
that address practitioners, e.g., [SSJ02], [FRF+02], and [Tate02]), and is also mentioned in the 
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Enterprise JavaBeans specification [Sun01]. For performance reasons, these publications strongly 
recommend avoiding direct client access to remote objects for fine-grained access patterns. 

(2) Data objects are moved.  

Data objects can be moved (i.e., migrated) from the server process to the client�s address space. 
Systems that support object migration are, for example, Emerald [JLHB88] and COOL [LJP93]. 
However, data objects are shared objects and often have to be accessed concurrently by different 
clients. Moving a data object away from a server to one of its clients complicates, delays, or even 
prevents other clients from accessing it. Therefore, in enterprise applications, it is usually 
preferred to copy data objects between clients and servers (see below) instead of moving them. 
Copying also allows for caching at both the client and the server. 

(3) Data objects are copied.  

With the third alternative, data objects (or at least their state) are copied from the server into the 
client�s address space. Depending on the cross-process data management mechanism, only 
individual data objects or whole collections of data objects (e.g., a query result) can be copied 
into the client process. Repeated accesses to the same data objects can then be satisfied by the 
local client cache, thus avoiding a too fine-grained remote communication style. The degree of 
caching on the client side may range from simple short-term buffering to a full-fledged object-
caching solution. 

Connections from clients to transactional data stores, e.g., JDBC or ODBC, are typically 
implemented using the copy approach. While relational database management systems copy 
query results as flat, tabular data (i.e., not as data objects) to a client process, object database 
management systems typically copy complete objects. 

For copying a data object from an intermediate server process to a client process, there are many 
possibilities. For example, application code at the server may convert a data object�s state into a 
string or array of bytes and transmit it to a client, where it is converted back to an object again. 
Today, middleware products typically have basic built-in support for such tasks. For instance, 
data objects can be copied as SOAP XML messages, with the help of Java serialization [Sun03b], 
or as CORBA value type objects. 

 

Another alternative would be to use mobile code [FPV98] [CHK97]. In principle, mobile code can be sent 
from a client process to a server process to locally access data objects at the server side. However, as the 
mobile code approach limits the choice of programming languages, raises new security and 
interoperability problems, and, in general, has not been accepted in the domain of enterprise applications 
yet, we do not consider mobile code an option here. 

Because of the efficiency problems of the remote data objects approach and the need for shared access, 
we require that middleware supports a way to copy data objects across process boundaries. Not only 
copying from server processes to client processes must be supported, but also the reverse direction: When 
clients obtain copies from a server and are allowed to perform updates on them, the updated objects (or 
updates) must eventually be sent back to the server. 

4.4.2 Preserving Object Identity (Requirement R2) 
One of the most fundamental object-oriented concepts is the concept of object identity [KC86]. With 
object identity, the existence of an object does not depend on its value. Equality (same object values) is 
distinguished from identity (same objects). Object identity can be realized, for instance, by assigning 
unique object identifier values to objects or by associating identity with a physical location in memory. 
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Object identity also applies to objects with persistent state (i.e., data objects); for example, it has been 
defined as a mandatory feature in the object-oriented database system manifesto [ABD+89]. 

In object-oriented systems, there can be multiple (different) references to a single data object. Adequate 
support for object identity implies that, for read and write operations, such references are interchangeable, 
which means that it is important which objects are accessed but not which references are used for access. 
However, when data objects are copied across process boundaries (see requirement R1), special care must 
be taken to provide client applications with a consistent object view. Relying solely on low-level 
mechanisms for copying data objects � such as Java serialization or CORBA value objects � leads to a 
problem: Multiple requests can produce multiple copies for the same entity in a client process. As a result, 
transaction semantics are violated, e.g., when a transaction updates a copy and subsequently reads a 
second (now inconsistent) copy representing the same entity. Even existing higher-level mechanisms for 
copying data � such as ADO.NET [Scep02] and Java RowSets [Sun03c] � do not preserve object identity. 
Without middleware support for object identity, that problem forces application developers to pay close 
attention to avoid inconsistencies and also prevents an effective mid- and long-term caching of data 
objects. Furthermore, when an application processes data from multiple (and possibly overlapping) data 
sources, application-level object identity management may become highly complex. 

To preserve consistency, we require that middleware supports object identity. To adequately support 
object identity in the presence of copies (see requirement R1), a data management mechanism has to 
ensure that application code �sees� only a single, consistent state for a data object � independent of the 
reference(s) used for accessing the data object and independent of the remote request that created a copy 
in an address space. 

4.4.3 Transitive Data Management (Requirement R3) 
In custom process topologies, it cannot be assumed that each process that processes data objects has direct 
access to all data stores that persistently store those data objects. Instead, indirect access via other 
processes is often required. Indirect access implies that there are one or more intermediate processes that 
are both client and server. Indirect access has implications for cross-process management of data objects 
(see Section 4.3). To support indirect access, we require that a data management mechanism has to be 
transitive, i.e., has to support arbitrary chains of client/server relationships. This includes, e.g., copying, 
caching, and synchronizing data objects along these chains. 

More formally, we define transitivity as follows: Given a process topology that contains at least a process 
A, a process B, and a server (process or data store) C. Also given a path of one or more C1 connectors 
from A to B and a path of one or more C1 connectors from B to C. Let us assume that B offers A access to 
a set S of data objects through a mechanism M for cross-process management of data objects. Similarly, C 
offers B access to S through the same mechanism M. We call M transitive if it always follows that C 
implicitly offers A access to S through M. The idea of transitive data management is illustrated in Figure 
4-2. 
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4.4.4 Limited Visibility (Requirement R4) 
For each process, only directly connected clients and servers should be visible. Each process is a data 
source for its client processes, provides them with a consistent, integrated view of data, and hides the fact 
that some or all data may in turn originate from other, underlying data sources. A process should neither 
make assumptions about processes and data stores not directly connected to it nor rely on a specific 
topology, e.g., on the (non)existence of meshes (which are alternative paths to a node, see Subsection 
3.4.3). 

This requirement ensures modularity and helps to minimize the impact of changes: Topologies are much 
easier to adapt because changes primarily affect only the parts that have been modified. Figure 4-3 shows 
an example process topology and the processes/data stores that are visible to process P. When, for 
instance, P is replicated or removed, only those processes to which P is visible are directly affected. All 
other processes are shielded from the change as long as the directly affected processes find a way to keep 
their service functional. 

 

 

 

Figure 4-2. The idea of transitive data management. 
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4.4.5 Decoupling of Topology, Data Distribution Scheme, and 
Application (Requirement R5) 

In many existing enterprise applications, the following three aspects are tightly coupled: 

(1) the process topology, 

(2) the data distribution scheme, which defines how data objects are distributed among multiple data 
stores (see 3.4.4), and 

(3) the application code. 

Typical reasons for pairwise coupling are: 

! (1) " (2): A given data distribution scheme requires a specific process topology. For example, if
a set of objects is replicated among several data stores, a central process with direct access to all 
these data stores could be required � instead of allowing topologies where all data stores are only 
reachable via other nodes. 

! (1) " (3): Application code contains logic that explicitly controls server interactions and assumes 
a specific (�hard-coded�) process topology. For example, application logic in a process could
assume that there is only a single server or exactly two replicated servers. Or, application code 
could assume that its process is the only server for its clients (i.e., that clients never load data 
objects offered by this server from other, alternative servers). 

! (2) " (3): Application code contains logic specific to a particular data distribution scheme. For
instance, application code could assume that sets of data objects loaded from different data stores 
can never overlap (i.e., data objects are never replicated across multiple data stores). 

Coupling between the three aspects makes it hard to change one aspect independently of the others. In 
particular, coupling complicates (or even prevents) changes to the process topology. We require that 
middleware pairwise decouples all three aspects so that each aspect can be changed with minimum impact 
on the others. Decoupling (1) from both (2) and (3) is essential for adaptable process topologies. In 
addition, decoupling (2) from (3) is important for building custom process topologies because explicitly 
managing data distribution in the application code is likely to rely on a specific process topology. 

Note that �decoupling� does not imply that the three aspects can be treated completely independently. A 
certain amount of coupling is inevitable as, for example, a data distribution scheme that specifies 
replication across n data stores implies that there is a process topology with at least n data stores. Or, 
application code that processes data objects of a given type always requires direct or indirect access to at 
least one data store that stores data objects of that type. However, it is important to minimize the 
dependencies between the three aspects as much as possible. 

4.4.6 A Mechanism for Object and Query Routing (Requirement R6) 
When a process requests execution of a query, the query has to be routed from that process through the 
process topology to appropriate data store(s). This process is called query routing. Similar to query 
routing is the process of routing newly created data objects or updated copies of data objects from a given 
process to the appropriate data store(s) to store them persistently. We call that process object routing. 

In simple topologies where each process has at most one server, object and query routing is not an issue 
because there is always exactly one path to be followed. But in topologies where processes can connect to 
multiple servers and/or where meshes exist, a mechanism for object and query routing is required. Such a 
mechanism has to take both the structure of the topology and the data distribution scheme into account. In 
addition, when there are multiple valid options for routing (e.g., in the presence of meshes), a routing 
mechanism might try to optimize the routing according to given criteria (see Section 5.8 and Section 6.9). 
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In which part of an enterprise application should routing be implemented? As routing is an infrastructure 
issue, it should be part of the middleware. In principle, it could alternatively be implemented by 
application developers as part of their application code. However, we believe that application developers 
should focus on business logic and not on implementing infrastructure functionality. Also, implementing 
routing as part of the application code bears the risk that the routing mechanism is specific to a particular 
topology and/or data distribution scheme, which conflicts with requirement R5. 

When object and query routing is realized as part of the middleware, how can we assure that routing does 
not introduce unnecessary coupling between process topology and data distribution scheme (see 
requirement R5)? To minimize coupling between these two aspects, we require that the routing 
mechanism supports all reasonable combinations of topologies and data distribution schemes. Only when 
all combinations are supported, it is possible to change one aspect to a large extent independently of the 
other aspect, which is important for adaptable process topologies. 

Example: Figure 4-4 shows three different process topologies and defines three different data distribution 
schemes. An appropriate routing mechanism would support all nine combinations. If one of the nine 
options � e.g., (D1, T2) � was not supported, that would limit the options for adapting the process 
topology. For instance, a transition from (D1, T1) to (D1, T2) would be difficult. 

 

4.5 Limitations of Existing Middleware 
In the previous section, we identified six key requirements for enterprise application middleware to 
support custom and adaptable process topologies. This section shows that current middleware does not (or 
only partially) fulfill our requirements. We analyze the limitations and discuss consequences for 
application developers. 

In Section 2.4, we gave an overview of current middleware for enterprise applications. To what extent 
does existing middleware meet our six requirements for custom and adaptable process topologies? In 
principle, it is not sufficient to analyze each middleware standard/product separately to answer that 
question because enterprise applications often employ combinations of different middleware products. 
For example, an enterprise application may use an object/relational mapping framework for mapping 
relational data in a data store to objects in a middle tier server. These data objects could be wrapped and 
exposed as remote objects that are accessed by clients via CORBA. However, analyzing each of the 

Figure 4-4. A routing mechanism should support all reasonable combinations 
of process topologies and data distribution schemes. 

topolgy T1 topolgy T2 topolgy T3 

# An object and query routing mechanism should support all combinations, i.e.: 
    (D1, T1), (D2, T1), (D3, T1), (D1, T2), (D2, T2), (D3, T2), (D1, T3), (D2, T3), and (D3, T3). 

ds1 ds2 ds3 ds1 ds2 ds3 ds1 ds2 ds3

data distribution schemes: 
  D1: “each new data object is stored in one of the three data stores” 
  D2: “each new data object is stored in all of the data stores (replication)” 
  D3: “each new data object is either stored in ds1 or is replicated to ds2 and ds3” 
 
process topologies: 
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countless possible middleware combinations separately clearly is not realistic. Instead, we approach the 
question in three steps: 

(1) First, in Subsection 4.5.1, we discuss to what extent existing middleware supports C1 connectors 
(including object data management) from processes to transactional data stores. In this step, we
consider only those requirements that apply to such connectors, i.e., R1, R2, and R6. 

(2) Then, in Subsection 4.5.2, we examine how data objects located in a given process can be
mapped to direct client processes, i.e., we look at possible realizations of C1 connectors that
connect two processes. In that context, requirements R1, R2, and R4 play an important role � we 
show that application developers often face significant problems here. R3, R5, and R6 are not 
considered because that would only be useful for middleware that complies with at least R1 and
R2 as a prerequisite. 

(3) Subsection 4.5.3 discusses various approaches for application developers to circumvent the
problems described in the second step. In addition, we explain why these approaches are 
suboptimal and lead to conflicts with at least some of our six requirements. 

4.5.1 C1 Connectors from Processes to Data Stores 
How does existing middleware support C1 connectors from processes to transactional data stores? As we 
focus on object-oriented enterprise applications, we consider only middleware that provides application 
code with at least a basic object view on data (see Section 4.4). Current object-oriented enterprise 
applications typically use either object/relational mapping frameworks or (less common) object database 
management systems as C1 connector implementations. Both approaches can be used in combination 
with other middleware (e.g., Enterprise JavaBeans or Java Data Objects) and, in general, provide good 
support for direct object access to persistent data. Typically, data objects are copied across process 
boundaries (requirement R1) and can be cached at direct client processes of the data stores. Furthermore, 
despite copying, the identity of data objects is preserved (R2) � application code typically sees only a 
single instance per data object. Sophisticated middleware products also allow clients to connect to 
multiple data stores and transparently handle routing of objects and queries to appropriate data stores 
(R6). All in all, C1 connectors from processes to transactional data stores are well-supported with respect 
to requirements R1, R2, and R6. 

4.5.2 C1 Connectors between Processes 
This subsection discusses the use of existing middleware for C1 connectors between processes. Imple-
menting these connectors is much more challenging than connectors between processes and data stores.  

Note that object databases and object/relational mapping frameworks cannot be used here because they do 
not provide ways to realize arbitrary C1 connectors, which prevents construction of most custom 
topologies. Object databases provide an object view on data only for database servers and their direct 
clients, i.e., are useful only in the last two tiers of a multi-tier application. Similar restrictions apply to 
many object/relational mapping frameworks. A couple of advanced mapping products, such as 
ObJectRelationalBridge (OJB) [OJB03], Caché [Inte03], and OracleAS TopLink [Orac03], can extend 
their data management to some degree one step further, i.e., from direct clients of a database server to the 
clients of these clients. Unfortunately, these products are designed for very specific two- and three-tier 
process topologies � they are not general-purpose. 

With RPC-based and message-oriented middleware, it is straightforward to connect two processes. 
However, only relatively low-level communication is supported; there is no cross-process data 
management and, if objects are supported, identity of transmitted data objects (R2) is not preserved (see 
Subsection 4.4.2). Currently, the only middleware-based approach to realizing C1 connectors between 
processes while preserving object identity is object middleware. With object middleware, data objects in a 
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process are exposed as middleware remote objects and other processes can access them through remote 
invocations, e.g., CORBA operation calls or RMI invocations. However, that approach does not meet 
requirement R1 (see discussion on performance in Subsection 4.4.1). In addition, it does not fulfill 
requirement R4 because remote data objects have fixed locations. This problem is depicted in Figure 4-5: 
Consider a remote data object R located in process C. C has a direct client B which obtains a reference to 
R and passes the reference to a process A (which is a direct client of B). When A accesses R, a direct 
communication between A and C is required. This in turn violates R4 because C becomes visible to A 
although there is no C1 connector between A and C. Even worse, direct communication between A and C 
is likely to offset all advantages that were the reason for introducing an indirection between processes A 
and C. Bypassing B may, for instance, break security or prevent an effective load balancing provided by 
B. 

 

Note that performance penalties of object middleware can partly be offset by using so called smart 
proxies [Bake97] [IONA99] (or smart stubs): With object middleware, clients access server-side remote 
objects through local proxy (stub) objects. Smart proxies can be used to add a client-side caching 
mechanism to such proxies objects [KAD96] [WT00]. For example, a smart proxy could fetch and cache 
all attribute values of a remote object on the first access to it. Subsequent read accesses could then be 
processed locally. Smart proxies for caching can reduce the number of remote accesses from a per-
attribute basis to a per-object basis. However, object-oriented, navigational access still requires a 
significant number of remote invocations. Furthermore, the problems with requirement R4 and indirect 
access (see above) remain. Besides, smart proxies are not standardized and a caching mechanism burdens 
application developers with complex infrastructure issues like cache replacement, propagation of changes, 
dealing with inconsistencies, and many more (see item 4 in the following subsection). 

All in all, there is no reasonable middleware support for implementing arbitrary C1 connectors between 
processes. As a consequence, such connectors have to be implemented by application (see following 
subsection). 

4.5.3 Consequences for Application Developers 
The limitations of existing middleware often force application developers to consider suboptimal 
solutions, e.g.: 

(1) No custom process topologies. 

Application developers restrict themselves to a limited subset of topologies adequately supported
by their middleware. 

Figure 4-5. Exposing data objects as remote objects conflicts with 
the limited visibility requirement. 

C1 connector 

process A

process B

process
C 

data object R exposed as a 
middleware remote object 

C1 connector (1) B obtains a 
reference to R 

(2) A obtains a 
reference to R 

 from B (3) A accesses R: A has to  
 directly communicate with C 

(although there is no correspond-
ing C1 connector) 

R 
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(2) Thin clients. 

Thin clients (e.g., web browsers) are selected as clients even in situations where fat clients are
much more appropriate, e.g., for realizing complex, user-friendly interfaces. Thin clients focus on 
presentation issues � they do not require an object view on data because all business logic and
data access logic are located at the server side. Thus, the implementation of C1 connectors
between thin clients and server processes is relatively simple as no cross-process management of 
data objects is required at all. The problems discussed in Subsection 4.5.2 are avoided � at least 
for C1 connectors between thin clients and other processes. However, for the rest of the process 
topology, the problems remain. 

(3) Application-specific facades for data shipping.  

Application developers implement a simple, ad-hoc solution for C1 connectors between 
processes. The server process exposes an application-specific facade to client processes. Clients 
cannot directly access data objects on the server; instead they talk to the facade, which
implements application-specific data-shipping operations: The object states are extracted, 
transformed into a format for shipping, and then copied to the client (e.g., using one of the copy 
mechanisms outlined in Subsection 4.4.1 and Subsection 4.4.2). 

Listing 4 shows an excerpt of an example interface (RMI) for such an application-specific facade. 
A facade often implements application-specific operations for inserting, updating, and deleting 
data objects in addition to its data-shipping operations (as shown in the listing). For data shipping, 
either generic data structures (e.g., strings or Java hash tables) or type-specific container classes 
can be used. While generic data structures are not type-safe, type-specific container classes are 
effectively duplicates of all server-side data object types. In Listing 4, type-specific container 
classes are used. 

 

 

 Typically, such ad-hoc solutions do not preserve object identity (R2) on the client side and 
provide only a very limited object view on data. For instance, transparent, navigational access is 
difficult to realize and is rarely supported. In addition, developers have to create and maintain 
application-specific facades, container classes, and access operations, which can be a tedious and 
error-prone task even for object models of medium complexity. Finally, client application code 
explicitly manages communication with servers (by invoking functions of the facade), which 
conflicts with requirements R5 and R6. 

// container class for shipping values of a Customer instance 
public class CustomerRecord implements java.io.Serializable { 
   public CustomerRecord( Customer c ) { ... } 
   ... 
} 
... 
 

public interface OrderSystemFacade extends java.rmi.Remote { 
   CustomerRecord[] getCustomersByName( String pattern, int maxHits ) 
                throws RemoteException, DatastoreEx; 
   OrderRecord[] getOrdersByCustomer( String customerId ) 
                throws RemoteException, DatastoreEx; 
   OrderRecord[] getOrdersByDate(Date from, Date to, int page, int ordersPerPage) 
                throws RemoteException, DatastoreEx; 
   void updateCustomer( CustomerRecord cr ) 
                throws RemoteException, NotFoundEx, UpdateConflictEx, DatastoreEx; 
   void insertCustomer( CustomerRecord cr ) 
                throws RemoteException, NotFoundEx, AlreadyExistsEx, DatastoreEx; 
   void deleteCustomer( CustomerRecord cr ) ... 
   ... (other methods) ... 
} 

Listing 4. Example of an application-specific facade for data shipping. 
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Development of a cross-process data management mechanism. 

Application developers implement a full-fledged cross-process data management mechanism as 
part of their application code. Such solutions tend to become very complex since application 
developers have to deal with many aspects that are generally regarded as infrastructure issues, for 
instance: 

! client side caching of objects, 

! managing identity of objects on the client side, 

! integration of cached data and client access operations into the server side transaction 
management, 

! synchronization of stale data, 

! load balancing, and 

! error handling. 

(4) 

Most application developers want to focus on business logic and are not prepared to handle these 
infrastructure issues, which should be part of the middleware. Even with skilled developers, this 
approach is costly, error-prone, and time-consuming, and thus a risk for many projects. In 
addition, as the data management is part of the application code, requirements R5 and R6 are 
typically not fulfilled. 

In this section, we have shown that application developers have several options for dealing with the 
limitations of existing middleware. In practice, often a combination of these options is employed, e.g., 
thin clients, simple process topologies, and application-specific facades. In our opinion, neither option 
(nor combination of options) represents an adequate solution. Moreover, it should be noted that the 
problems discussed in this subsection and the previous subsection do not apply exclusively to enterprise 
applications with exceptionally complex custom topologies. Even simple standard topologies, like three-
tier structures with fat clients, experience such problems (especially with respect to R1 and R2). 

4.6 Discussion 
In this section, we discuss two aspects in more detail: 

! In Section 4.4, we identified requirements for middleware to support custom and adaptable
process topologies. Fulfilling all requirements is a key factor for realizing custom and adaptable
process topologies � however, it is not a sufficient condition. We chose the given six
requirements given because they address crucial, high-level design issues. In addition to the 
requirements, a broad range of design and implementation details of a middleware usually play an
important role. Also, each of the process topology patterns described in Section 3.4 requires at
least some support by a middleware implementation: For instance, when the wrapper insertion 
pattern (see Subsection 3.4.1) is applied for vertical load distribution, a caching mechanism could
be needed. Or, when the meshing pattern (see Subsection 3.4.3) is applied to improve fault 
tolerance, a mechanism for fail over is important. 

! In Subsection 4.1.2, we stated that, because of changing requirements, it is often necessary to 
adapt an existing process topology. It should be noted that not all possible changes in 
requirements can (and have to) be addressed by topology changes. For instance, when functional 
requirements change, usually this cannot be addressed by topology changes (alone). Also, as
discussed in Section 3.3, the design of a process topology typically is a trade-off between many 
application-dependent factors. Adapting a process topology is only helpful and required if factors
change in such a way that the result of the new trade-off differs from the previous topology. 
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4.7 Summary 
In this chapter, we first motivated the importance of custom and adaptable process topologies. Custom 
processes are needed to address individual requirements of demanding enterprise applications � often, 
simple standard topologies are not sufficient. Adaptable process topologies address evolution of 
enterprise applications and their process topologies. We presented a case study describing the evolution of 
a tiny enterprise application into a large, mission-critical system with a complex topology. The case study 
illustrated the use and advantages of custom and adaptable process topologies. 

Then we explained that support for custom and adaptable process topologies is a matter of enterprise 
application middleware. We identified six key requirements for middleware and showed that existing 
middleware do not support all of these requirements. This makes it difficult to realize enterprise 
applications with custom and adaptable process topologies on top of current middleware products. 

The six key requirements identified in this chapter are a basis for the following Chapter 5. In that chapter, 
we present concepts for middleware to fulfill all six requirements and explicitly support custom and 
adaptable process topologies. 

 






