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1. Introduction

Processes involving atmospheric vortices cover a vast range of temporal and spatial
scales, the underlying mechanisms are difficult to grasp. Creation, development and
resilience of such a vortex have been subject of intensive research, e.g. by Dunkerton
et al. (2009), Frank & Ritchie (1999), Jones (1995) and Reasor & Montgomery (2015).
In particular, our focus lies on the spin-up from a tropical storm to hurricane strength.
The theory developed by Paeschke et al. (2012) gives insight to a new mechanism driving
the vortex. Their findings will be the subject of a numerical study.

A commonly used model assumes a Gaussian distribution of vorticity (Reasor & Mont-
gomery, 2001) which well describes tropical cyclones at an incipient stage (Shapiro &
Montgomery, 1993, Willoughby, 1990). The setup is constructed along the lines of Rea-
sor & Montgomery (2001) who investigated the alignment process of tilted vortices.
Embedded in a geostrophic background we numerically solve the flow equations utiliz-
ing Durran’s pseudo-incompressible model (Durran, 1989). The flow solver EULAG has
been extensively used to model atmospheric flow phenomena, e.g. by Spichtinger &
Gierens (2009) and Wedi (2006). Its capability and versatility provide a good basis for
our simulations.

We study the interplay of vortex tilt and non-axisymmetric patterns of diabatic heating
effects following the analysis of Paeschke et al. (2012). The derived evolution equations
for centerline and core structure are numerically tested for several regimes.
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2. Modeling atmospheric flows

We begin with an introduction to the general framework of atmospheric flows including
the governing equations and commonly used approximations and numerical models.

2.1. Framework of the fluid flow

In a first step we present the modeling concepts of fluid flows. In a 3D space spanned by
the orthonormal, positively oriented vectors i, j,k we consider at time t a fluid parcel
located at x = (x1, x2, x3)> with density ρ, pressure p and temperature T . Inside the
parcel is a velocity field U(x, t). Due to the movement of the fluid parcel, quantities
can be described with respect to the moving frame of reference, or with respect to an
absolute origin. These different perspectives are referred to as Lagrangian or Eulerian
formulations, respectively. The latter gives a non-trivial total derivative for any quantity
C(x, t),

dC

dt
=
∂C

∂t
+
∂C

∂xn

dxn
dt

=
∂C

∂t
+U ·∇C (2.1.1)

where repeatedly occurring indices indicate the use of the Einstein summation conven-
tion. Accordingly, this is mostly referred to as the advective derivative:

DC

Dt
:=

∂C

∂t
+U ·∇C. (2.1.2)

It takes into account the frame of reference when observing changes in time. We choose
our origin to be rooted at a fixed point in the Earth’s atmosphere, following its rotation.
This leaves us with extra terms that need to be added to the acceleration in the rotating
frame in order to equal the acceleration seen from a fixed point at rest. Our derivation
is along the lines of Holton (2004).
To simplify the notation, we identify the basis vectors with (h1,h2,h3) = (i, j,k) and
the respective components of a vector with the same indices, i.e. C = Cnhn. The system
is rotating with an angular velocity Ω. The inertial frame of reference is spanned by the
orthonormal, positively oriented (ĥ1, ĥ2, ĥ3), thus

C = Cnhn = Ĉnĥn. (2.1.3)

The transformation between both bases is assumed to be isometric.

We can split the expression for the total derivative of any vector C in two parts, one rep-
resenting the co-moving component. The convective derivative in our frame of reference
is

DC

Dt
=

DCn
Dt

hn. (2.1.4)

13



2. Modeling atmospheric flows

∆ϑ

∠(Ω,hn)

hn(t+ ∆t)

hn(t)

r∆

Ω

Fig. 2.1.: Rotation of a basis vector hn, displayed at time levels t and t + ∆t. The
rotation axis is Ω.

Let
D̂

D̂t
denote the component-wise total derivative with respect to ĥn in the inertial

frame, i.e.

D̂C

D̂t
=

DĈn
Dt

ĥn (2.1.5a)

=
DCn
Dt

hn + Cn
D̂hn

D̂t
(2.1.5b)

=
DC

Dt
+ Cn

D̂hn

D̂t
. (2.1.5c)

The latter term is discussed following the considerations by Klein & Vater (2003), a
sketch of the problem is shown in figure 2.1. Because the basis vectors hn rotate with
the earth, their derivative is non-zero. As mentioned earlier, they only depend on time,
i.e. hn(t), leaving

D̂hn

D̂t
=
∂hn
∂t

. (2.1.6)

Specifically, to investigate this term further we now set the origin of the inertial frame
at the Earth’s center, the rotation axis by construction goes through the origin. To
calculate the differential quotient

∂hn
∂t

= lim
∆t→0

hn(t+ ∆t)− hn(t)

∆t
(2.1.7)

we now consider an arbitrarily small time interval ∆t > 0, then hn is rotated by an
angle of ∆ϑ = |Ω|∆t and changes by ∆hn = hn(t+ ∆t)− hn(t).

14



2.1. Framework of the fluid flow

A first order approximation is |∆hn| = r∆∆ϑ, the length of the arc that the rotation
of hn around Ω within ∆t describes. The radius r∆ of this arc is the shortest distance
from hn to the rotation axis, i.e.

r∆ =
|Ω× hn|
|Ω|

. (2.1.8)

Higher order terms O((∆ϑ)2) are negligible for ∆hn/∆t in the limit of an infinitesimal
time step since also ∆ϑ vanishes then with the same speed, because ∆ϑ = |Ω|∆t.
The direction of ∆hn becomes tangential to the described arc in the limit of an infinites-
imal time step, i.e. is parallel to Ω× hn. Thus, the unit vector is

lim
∆t→0

∆hn
|∆hn|

=
Ω× hn
|Ω× hn|

. (2.1.9)

Together, we have r∆ = |Ω× hn| ∆t/∆ϑ and therefore

lim
∆t→0

∆hn
∆t

= |Ω× hn|
Ω× hn
|Ω× hn|

, (2.1.10)

arriving at

∂hn
∂t

= Ω× hn. (2.1.11)

Concluding,

Cn
D̂hn

D̂t
= Ω× (Cnhn) = Ω×C. (2.1.12)

and for the co-moving total derivative

D̂C

D̂t
=

DC

Dt
+ Ω×C. (2.1.13)

2.1.1. Governing equations

To start with, we state here the full system of equations and will derive it in the following
paragraphs:

Dρ

Dt
+ ρ∇ ·U = 0, (2.1.14a)

DU

Dt
+

1

ρ
∇p+ fk ×U = g, (2.1.14b)

DΘ

Dt
= QΘ, (2.1.14c)

Θ =
pref

ρR

(
p

pref

)1/γ

. (2.1.14d)

We refer to the whole set as the Euler equations. These are conservation of mass,
momentum, energy, and a thermodynamic relationship in order to close the system
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2. Modeling atmospheric flows

of equations, leaving six equations for six unknowns p, ρ,Θ,U . Underlying this set of
equations is, in the same way as before, an origin that is a fixed point within the fluid
domain, i.e. the frame of reference moves with the fluid due to the Earth’s rotation.
We choose k = (0, 0, 1)> as the vector in vertical direction, instead of referring to
x = (x1, x2, x3)> we also refer synonymously to x = (x, y, z)>, and the respective
velocities are U = (u, v, w)>. A useful notation to consider horizontal and vertical
components separately is u = (u, v)>.

2.1.2. Continuity equation

In order to conserve the mass in the system we look at the mass flow. For any fluid
element bounded by the area dA the mass of fluid flowing through it per unit time is
ρU · dA, amounting to the total outflow∮

ρU · dA. (2.1.15a)

On the other hand, the existing mass in the volume element dV bounded by dA is∫
ρdV , thus we observe a decrease per unit time of

− ∂

∂t

∫
ρdV. (2.1.15b)

Together, the mass flowing out in (2.1.15a) balances the change in mass in (2.1.15b),
and it follows with the divergence theorem∫

∂ρ

∂t
+∇ · (ρU) dV = 0. (2.1.16)

Since this is true for any arbitrarily chosen volume element dV we arrive at

∂ρ

∂t
+∇ · (ρU) = 0. (2.1.17)

Finally, in terms of the total derivative, we arrive at the continuity equation (2.1.14a)

Dρ

Dt
+ ρ∇ ·U = 0.

2.1.3. Momentum equation

The full momentum equation is given by

(2.1.14b) :
DU

Dt
+

1

ρ
∇p+ fk ×U = g, (2.1.18)

it is a balance of acceleration, gravity, pressure gradient and Coriolis force per unit mass.
We neglect viscosity, i.e. internal friction.

In the Eulerian frame of reference, the acceleration is the convective derivative of the
velocity, giving rise to the first term of (2.1.14b). The second term is due to the pressure
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2.1. Framework of the fluid flow

exerted by the fluid on a volume element dV bounded by the surface dA, rewritten with
the divergence theorem

−
∮
p dA = −

∫
∇p dV. (2.1.19)

Consequently, the force on a unit volume is −∇p, and the force per unit mass is −ρ−1∇p.

The term on the right hand side in (2.1.14b) is due to gravity that the fluid experiences.
On the scales that we consider, the acceleration g = −gk is constant with g = 9.81m s−2.

Among the “forces” acting on a fluid parcel is also the Coriolis force, an artifact from
the choice of the non-inertial reference frame and not negligible on scales comparable to
the rotation length scale as considered. Due to the rotation of the Earth with constant
angular frequency Ω a linear trajectory in an inertial frame of references becomes a
curved path in a rotating frame.
In equation (2.1.13) we have derived a general transformation law from the view of the
inertial reference frame. With the position vector x we find

D̂x

D̂t
=

Dx

Dt
+ Ω× x, and since

Dx

Dt
≡ U (2.1.20a)

D̂
2
x

D̂t2
=

D

Dt
(U + Ω× x) + Ω× (U + Ω× x). (2.1.20b)

Simplifying the latter equation, reminding that Ω is constant, gives

D̂
2
x

D̂t2
=

DU

Dt
+ 2Ω×U + Ω× (Ω× x). (2.1.21)

We will omit the last term, the centrifugal acceleration, in these considerations be-
cause it is of order a|Ω|2 ≈ 1/30ms−2 where radius and rotation rate of the Earth
are a = 6.37 · 106m and |Ω| = 7.29 · 10−5s−1, respectively. This makes it negligible in
many cases for atmospheric flows, the extent of the atmosphere is small compared to
the Earth’s radius. A part of it can also be absorbed in the gravity force,

Ω× (Ω× x) = Ω(Ω ·x)− x(Ω · Ω) (2.1.22)

the latter will be parallel to g. Comparing the magnitude of gravitational or centrifugal
acceleration is also a good hint that the latter is commonly neglected.
Concluding the momentum balance, the Coriolis acceleration is −fk×U with the Cori-
olis parameter f = 2|Ω| sinϕ and latitude ϕ.

Commonly, the β-plane approximation for the Coriolis parameter is used. In that case,
we choose a Cartesian coordinate system where the z-axis is orthogonal to the Earth’s
surface, x- and y-axis denote the tangential plane. Specifically, x is the zonal and y the
meridional coordinate. Consequently, for f we find

∂f

∂x
= 0, but

∂f

∂y
6= 0. (2.1.23)
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2. Modeling atmospheric flows

Then, the Coriolis parameter is approximated to first order about a reference latitude
ϕ0,

f = f0 + βy, where β =
df

dy

∣∣∣∣
ϕ0

=
2|Ω| cosϕ0

a
(2.1.24)

where y(ϕ0) = 0 and β a constant parameter.

2.1.4. Energy equation

Besides mass and momentum the energy of a system is also subject to change. The
derivation is conducted along the lines of Holton (2004).

2.1.4.1. Thermodynamics of dry air

Atmospheric air is well described by assuming an ideal gas. The thermodynamics of the
atmosphere are fully determined by pressure, density and temperature. Therefore, we
revisit the thermodynamic relationships of an ideal gas.
We consider a volume V of a gas with pressure p and temperature T . It consists of N
molecules each with a mass of m∗, thus its density is ρ = Nm∗/V . The ideal gas law
states

pV = NkBT, (2.1.25)

where kB = 1.38 · 10−23J/K is the Boltzmann constant. This law has been derived from
first principles (Nolting, 2014, eq. (1.122)).
For a constant number of molecules the specific heat capacities for an ideal gas at
constant volume cv or constant pressure cp, respectively, are connected as follows,

cp − cv =
p

Nm∗

(
∂V

∂T

)
p,N

=
kB

m∗
. (2.1.26)

We introduce the specific gas constant R = kB/m
∗ and rewrite (2.1.25) to obtain our

equation of state

p = ρRT. (2.1.27)

For dry air we find R = 287 J kg−1K−1. This equation will be used to close our system
of equations, providing us with as many equations as unknowns.

2.1.4.2. Energy balance

Another conservation law applies to the energy of a system. We consider the transition
of a system from and to a thermodynamic equilibrium, specifically the state where no
energy or mass is exchanged. The first law of thermodynamics states how internal (E)
and kinetic energy (U ·U/2) change due to heating (rate Q) and work done by external
forces such as pressure and gravity, all acting on a unit mass fluid element. Since the
Coriolis force is orthogonal to velocity it does not contribute to the energy of the fluid
parcel. In the same way as in the momentum equation, we take into account that
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2.1. Framework of the fluid flow

the element moves with the flow, and the convective derivative denotes the change in
thermodynamic energy, such that the energy balance is:

D

Dt

(
E +

1

2
U ·U

)
= Q− 1

ρ
∇ · (pU) + g ·U . (2.1.28a)

Looking back at (2.1.14b) we can combine these two equations, the first one can be
rewritten to

1

2

D

Dt
(U ·U) +

1

ρ
U ·∇p = g ·U . (2.1.28b)

Consequently, from (2.1.28) we get

DE

Dt
+

1

ρ
p∇ ·U = Q. (2.1.29)

For dry air the internal energy is E = cvT where cv = 717 J kg−1K−1. Further taking
into account the continuity equation (2.1.14a) and the equation of state (2.1.27), we
obtain

cp
DT

Dt
− 1

ρ

Dp

Dt
= Q (2.1.30)

where cp = 1004 J kg−1K−1, and we remind the specific gas constant R = cp − cv. The
preceding equation is divided by T and rewritten, such that

D

Dt
(cp lnT −R ln p) =

Q

T
. (2.1.31)

Regarding (2.1.31) we define the entropy S by

DS

Dt
:=

Q

T
. (2.1.32)

2.1.4.3. Potential temperature

A useful quantity to describe adiabatic processes, i.e. reversible and without heat ex-
change, is the potential temperature Θ. We obtain it from the first law of thermody-
namics, i.e. we integrate (2.1.31) from a state (p, T ) to (pref,Θ) and get

Θ = T

(
pref

p

)R/cp
. (2.1.33)

It is the temperature a parcel would obtain if it is adiabatically moved from pressure
p to a reference pressure pref. Although originally designed for adiabatic processes the
change of this quantity along a streamline is connected to a heat source or sink via the
energy equation (2.1.31). We show this by

DΘ

Dt
=

Θ

cp

DS

Dt
, (2.1.34)
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2. Modeling atmospheric flows

which is just another form of (2.1.31), i.e.

DΘ

Dt
=

Θ

T

Q

cp
=: QΘ (2.1.35)

utilizing the entropy definition (2.1.32) and defining an according heat rate QΘ. Thus,
the energy conservation of the system is described hereby, heating results in a change of
potential temperature.
To close the system of equations we proposed the equation of state (2.1.27), which can
be rewritten using the potential temperature,

Θ =
pref

ρR

(
p

pref

)1/γ

(2.1.36)

with the isentropic exponent γ = cp/cv. We introduce for the ratio

R

cp
=
γ − 1

γ
=: Γ. (2.1.37)

By construction, it is a conserved quantity for (dry) adiabatic processes, i.e. QΘ = 0.
More specifically, the source term QΘ could include dissipation or latent heat release.

2.1.4.4. Exner function

Similarly, we define the Exner pressure π via

π =

(
p

pref

)R/cp
, (2.1.38)

it will enable us to rewrite the pressure gradient in the momentum equations later on.

2.1.5. Geostrophic model

Since the Euler equations are rather complicated to solve there are approximative regimes
offering an insight to the flow’s dynamics. We introduce the concept of the geostrophic
model.

Firstly, we split the momentum conservation with U = (u, w)> in horizontal and vertical
part,

∂u

∂t
+ u ·∇‖u+ w

∂u

∂z
+

1

ρ
∇‖p+ fk × u = 0 (2.1.39a)

∂w

∂t
+ u ·∇‖w + w

∂w

∂z
+

1

ρ

∂p

∂z
= −g (2.1.39b)

where ∇‖ = i∂/∂x+ j∂/∂y. Suppressing vertical movement, we recover the hydrostatic
balance

1

ρ

∂p

∂z
= −g. (2.1.40a)
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2.2. Stability of atmospheric flows

Then, for a 2D steady flow the horizontal balance reduces to

fk × u† = −1

ρ
∇‖p, (2.1.40b)

u† is the so-called geostrophic wind in the according geostrophic approximation. In this
regime pressure and Coriolis force balance each other, and a simple expression for the
velocity is obtained taking the cross product with k, remembering k× (k×u†) = −u†:

u† = k × 1

fρ
∇‖p. (2.1.41)

This allows the definition of a corresponding vorticity. With solely horizontal flow the
corresponding geostrophic vorticity is

q† = k ·∇× u†. (2.1.42)

As a result the velocity field of the flow is determined by the vorticity. Appropriate
boundary conditions to solve this inversion will be specified later on for the problem at
hand.

Motions that exhibit approximately geostrophic horizontal velocities are called quasi-
geostrophic. The respective quasi-geostrophic model is the result of an asymptotic ex-
pansion applied to the hydrodynamic variables, considering first- and leading-order terms
of the Euler equations (2.1.14). Beyond the hydrostatic balance (2.1.40a), geostrophic
balance (2.1.40b) and vorticity (2.1.42), it comprises of an anelastic constraint and trans-
port of potential temperature and vorticity. Hence, the model equations give rise to the
evolution in time and cover also higher orders of velocities and potential temperature. A
detailed derivation of the quasi-geostrophic model is provided by Paeschke et al. (2012),
it is well-suited for atmospheric synoptic-scale motions.

2.2. Stability of atmospheric flows

While the dynamics of the atmosphere are generally determined by the Euler equations,
specific cases can be singled out. Any quantity that characterizes the fluid flow can
separately describe a certain state and its deviation from it. This background state
is commonly stationary, i.e. without fluid motion, and beyond this there are three
szenarios:

(i) Returning to equilibrium, a stable state;

(ii) Moving away from equilibrium, an unstable state;

(iii) Remaining in equilibrium, a neutral state.

Along the lines of Durran (2010) we will discuss at this point the implications that arise
specifically for atmospheric flows.
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2. Modeling atmospheric flows

Firstly, we introduce another formulation of the Euler equations (2.1.14). With the new
pressure variable π (2.1.38), the pressure gradient in (2.1.14b) can be transformed to

1

ρ
∇p = cpΘ∇π, (2.2.1)

and the rewritten Euler equations for the six unknowns U , ρ,Θ and π are

Dρ

Dt
+ ρ∇ ·U = 0, (2.2.2a)

DU

Dt
+ cpΘ∇π + fk ×U = g, (2.2.2b)

DΘ

Dt
= QΘ, (2.2.2c)

π =

(
ρRΘ

pref

)γ−1

. (2.2.2d)

2.2.1. Background state

Let π and Θ denote a state with no vertical fluid motion, then from the third component
of (2.2.2b) we get the hydrostatic balance

cpΘ
dπ

dz
= −g. (2.2.3)

Specifically, we choose the state variables (π, ρ,Θ) as the respective horizontally averaged
quantities, leaving only a dependence on the vertical coordinate z,

π = π(z) + π′(x, y, z, t), (2.2.4a)

Θ = Θ(z) + Θ′(x, y, z, t). (2.2.4b)

In turn, utilizing the hydrostatic balance (2.2.3), the momentum equations (2.2.2b)
transform to

DU

Dt
+ cpΘ∇π′ + fk ×U = −g

Θ′

Θ
. (2.2.5)

2.2.2. Approximative regime

Some simplifications to the Euler equations allow us to learn more about the dynamics of
the flow under the imposed assumptions. A rigorous analysis of selected approximations
is given in section 2.3.

While the continuity equation stands for mass conservation,

∇ ·U = 0 (2.2.6a)

describes volume conservation and follows from (2.2.2a) for flows with
Dρ

Dt
= 0 that we

refer to as incompressible. The flow behaves according to the transformed momentum
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2.2. Stability of atmospheric flows

equations (2.2.5), and specifically for a constant reference potential temperature Θ0 we
find

DU

Dt
+ cpΘ0∇π′ + fk ×U = −g

Θ′

Θ0
, (2.2.6b)

while still Θ′ = Θ−Θ, we retain the variation in the bouyancy term.
A last equation describing this specific flow, and closing the system without needing the
equation of state, is the energy equation (2.2.2c), with the decomposition:

DΘ′

Dt
+ w

dΘ

dz
= QΘ. (2.2.6c)

Together, this set of equations (2.2.6) is called the Boussinesq system.

2.2.3. Internal waves

We recover wave equations under the Boussinesq approximation that lead us to the
question in the beginning: how will a deviation from the background state evolve?
To get an insight, we combine the vertical momentum equation (2.2.6b) and the energy
balance (2.2.6c), assuming that the deviation is small and the background state remains
undisturbed, i.e. π = π and leaving

Dw

Dt
= g

Θ′

Θ0
. (2.2.7)

From the energy equation, we also obtain an expression for the vertical velocity,

DΘ′

Dt
= −wdΘ

dz
, (2.2.8)

we insert this in (2.2.7) after applying D
Dt ,

D2w

Dt2
= − g

Θ0

dΘ

dz
w. (2.2.9)

Thus, the vertical velocity follows a wave equation of frequency

N =

√
g

Θ0

dΘ

dz
(2.2.10)

that is the bouyancy frequency, also referred to as Brunt-Väisälä frequency. The re-
sulting waves are called gravity waves. We deduct that any small state deviation will
evolve according to the sign and amplitude of N2. If the potential temperature Θ(z)
decreases with height, we find exponential growth, while an increase with height gives
rise to an oscillation about the equilibrium state. We refer to the atmosphere as stably
or unstably stratified, respectively. A stationary state is found for neutral stratification,
i.e. constant potential temperature.
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2. Modeling atmospheric flows

With this knowledge we can rewrite the governing equations (2.2.6)

∇ ·U = 0 (2.2.11a)

DU

Dt
+∇P o + fk ×U = Gok (2.2.11b)

DGo

Dt
+N2w = QΘ

g

Θ0
(2.2.11c)

introducing

P o = cpΘ0π
′, Go = g

Θ′

Θ0
. (2.2.12)

Beyond the Brunt-Väisälä frequency that focuses on vertical motion we are interested
in the wave-like behavior of the whole system, giving rise to general internal waves. In
particular, we restrict our analysis to an adiabatic flow and linear effects. This motivates
a traveling wave ansatz of the form

(U>, P o, Go) = (Û>, P̂ o, Ĝo)eı(a ·x−ψt), (2.2.13)

with wavenumbers a = (a, b, c) and frequency ψ. Coriolis and bouyancy frequency are
regarded as constant within this approach, emphasized as f0 and N0. We linearize the
advective derivative in (2.2.11) with respect to a background state with a constant wind
field Uo and insert the wave solutions, obtaining the linear system,

a b c 0 0
ı
(
Uo · a− ψ

)
−f0 0 ıa 0

f0 ı
(
Uo · a− ψ

)
0 ıb 0

0 0 ı
(
Uo · a− ψ

)
ıc −1

0 0 N2
0 0 ı

(
Uo · a− ψ

)



û
v̂
ŵ

P̂ o

Ĝo

 = 0.

(2.2.14)

A non-trivial solution to this linear problem is obtained looking at the determinant,
which vanishes if (

ψ −Uo · a
)2

=
f2

0 c
2 + (a2 + b2)N2

0

a2 + b2 + c2
. (2.2.15)

This dispersion relation determines phase (vp) and group velocity (vg) by

a · vp = ψ, vg = ∇a ψ. (2.2.16)

Given the frequency, one can also deduct the characteristic time scale of internal waves
via

tinternal =
2π

ψ
, (2.2.17)

the scaling factor with the constant number π arises from the traveling wave ansatz.
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2.3. Numerical models

Besides the constant advection speed and wave numbers, the frequency of an internal
wave depends on the Coriolis and the Brunt-Väisälä frequency. Its envelope propagates
with the corresponding group velocity and we find that its deviation from the background
state is orthogonal to the wave vector, i.e.

a ·

(
vg −Uo

)
= 0. (2.2.18)

It follows from the derivative of the angular frequency (2.2.15) according to (2.2.16),

∇aψ = Uo ±
c
(
N2

0 − f2
0

)
|a|4 (ψ −Uo · a)

 ac
bc

−(a2 + b2)

 (2.2.19)

for ψ 6= Uo · a.

2.3. Numerical models

Atmospheric flows are well described by the Euler equations (2.2.2), however they cannot
be solved by analytical means and we need numerical methods to solve them. There are
different approximations to the Euler equations that are well suitable for atmospheric
flows and solving them turns out to be more efficient than solving the full set of equa-
tions. To be precise, sound waves are incorporated in the Euler equations, and although
their influence on the dynamics of the atmosphere is small, they dictate a small time
step in a numerical model as their time scale is the smallest compared to other processes
Klein (2010). Therefore, some models have been introduced that filter negligible sound
waves, so called soundproof models. We will present them following the considerations
of Klein (2009).

To start with, we bring (2.2.2) in conservative form by subsequently applying the con-
tinuity equation, transforming the advective derivative and using the tensor product
U ◦U , such that

ρt +∇ · (ρU) = 0, (2.3.1a)

(ρU)t +∇ · (ρU ◦U) + cpρΘ∇π + fk × ρU = −ρgk, (2.3.1b)

(ρΘ)t +∇ · (ρΘU) = ρQΘ, (2.3.1c)

π =

(
ρRΘ

pref

)γ−1

, (2.3.1d)

while the differentiation in time is indicated by the lower index t.

2.3.1. Rescaling

To account for different scales it is necessary to first nondimensionalize the involved vari-
ables with respect to characteristic values of the quantities in the atmosphere. We choose
the reference values [pref, ρref, T ref, gref] for pressure, density, gravitational constant and
potential temperature as repeating variables and apply Buckingham’s Π theorem (Kundu
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2. Modeling atmospheric flows

& Cohen, 2002). Nondimensional quantities, as they arise from the theorem, are denoted
with a check, we remind the equation of state that relates the reference quantities and
arrive at

?
ρ?
t

+
?
∇ · (

?
ρ
?
U) = 0, (2.3.2a)

(
?
ρ
?
U)?

t
+

?
∇ · (

?
ρ
?
U ◦

?
U) +

1

Γ

?
ρ
?
Θ
?
∇?
π +

?
fk × ?

ρ
?
U = −?ρ?gk, (2.3.2b)

(
?
ρ
?
Θ)?

t
+

?
∇ · (

?
ρ
?
Θ

?
U) =

?
ρ
?
QΘ, (2.3.2c)

?
π = (

?
ρ
?
Θ)γ−1. (2.3.2d)

Reminding the definition of Γ in (2.1.37), the nondimensional equation of state is
?
pΓ =

?
π,

and thus we have
?
p1/γ =

?
ρ
?
Θ. We point out the nondimensional distance, velocity and

time. For any space variable we found for its coefficient

pref

ρref gref
=: hsc, (2.3.3a)

which is the pressure scale height. As for velocity, the factor is√
pref

ρref
=: cref, (2.3.3b)

up to
√
γ equal to the speed of sound. However, the speed of sound is not a good

measure for atmospheric velocities since they are usually much smaller, and our goal is
to eliminate the acoustic waves. Instead, we introduce another nondimensional quantity,
the Mach number

M :=
uref

cref
(2.3.3c)

that relates a suitable velocity scale uref to the speed of sound. Up to a rescaling factor
the presented dimensionless quantities are identical with the nondimensional products
that are obtained with Buckingham’s method. With these definitions, time scales with
tref = hsc/cref. While discussing numerical models we will focus on adiabatic flows.

Nevertheless, it is worthwhile to take a look at the heating rate
?
QΘ for later reference.

With an appropriate scaling factor QΘ,ref we recover the Damköhler number

Da :=
tref

T ref
QΘ,ref. (2.3.3d)

The dimensionless system in (2.3.2) then becomes

ρt +∇ · (ρU) = 0, (2.3.4a)

(ρU)t +∇ · (ρU ◦U) +
1

Γ
ρΘ∇π + fk × ρU = −ρgk, (2.3.4b)

(ρΘ)t +∇ · (ρΘU) = 0, (2.3.4c)

π = (ρΘ)γ−1, (2.3.4d)
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2.3. Numerical models

for simplicity dropping the star from here on only for this chapter. We refer to (2.3.4)
as the compressible model. In a next step, we will discuss approximations to these equa-
tions.

Continuity, momentum and energy equations are approximated with regards to a spe-
cific expansion parameter, comparable to Klein (2009) we choose it based on the Mach
number M. We aim to expand our variables with respect to M, and therefore rescale
time and velocity in (2.3.4) according to (2.3.3c),

tref =
hsc

uref
with uref = Mcref. (2.3.5)

Only the shape of the momentum equation changes under this transformation to

(ρU)t +∇ · (ρU ◦U) +
1

M2

1

Γ
ρΘ∇π + fk × ρU = − g

M2
ρk. (2.3.6)

In the subsequent asymptotic framework the scales are narrowed down to the advection
time scale tref and the pressure scale height hsc. For low Mach number flows, i.e. M→ 0,
we then state the expansion scheme

π(x, t; M) = π(z) + M2π′(x, t) + o(M2) (2.3.7a)

ρ(x, t; M) = ρ(z) + M2ρ′(x, t) + o(M2) (2.3.7b)

Θ(x, t; M) = Θ(z) + M2Θ′(x, t) + o(M2) (2.3.7c)

U(x, t; M) = U0(x, t) + o(1) (2.3.7d)

that we will exploit in the following. Regarding (2.3.6) we recover the hydrostatic balance
in leading order

1

Γ
Θ

dπ

dz
= −g (2.3.8)

that has also been obtained by the decomposition in section 2.2.1.

2.3.2. Pseudo-incompressible model

The first case that we will consider is the pseudo-incompressible approximation proposed
by Durran (1989, 2008).
To start with, we define the pseudo-incompressible density ρ∗ that fulfills

π = (ρ∗Θ)γ−1. (2.3.9)

Accordingly, it is connected to the density as

ρ = ρ∗
(π
π

) 1
γ−1

. (2.3.10)

The assumption of Durran’s pseudo-incompressible model is that M2π′ � π (Durran,
1989), i.e. the pressure deviation from the background state is small. Then, (2.3.10) can
be linearized,

ρ = ρ∗
(

1 + M2π
′

π
+ o(M2)

) 1
γ−1

≈ ρ∗
(

1 +
M2

γ − 1

π′

π

)
, (2.3.11)

27
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and in leading order we have

ρ∗Θ = ρΘ, (2.3.12)

the mean variables satisfy an equation of state.
To obtain a soundproof model we filter the effect of pressure deviations on density, and
the mass conservation (2.3.4a) reads

ρ∗t +∇ · (ρ∗U) = 0. (2.3.13a)

Considering momentum in (2.3.6), we make use of (2.3.12) and the hydrostatic balance
(2.3.8), expanding Θ and π, and drop higher order terms,

(ρ∗U)t +∇ · (ρ∗U ◦U) +
1

Γ
ρΘ∇π + fk × ρ∗U = −ρ∗gk (2.3.13b)

having rescaled it back to the original nondimensional variables from Buckingham’s Π
theorem. For the energy conservation (2.3.4c) we remind the definition of the pseudo-
density in (2.3.9), in leading order the pressure is steady. With the same preceding
considerations, we arrive at

∇ · (ρΘU) = 0. (2.3.13c)

Together, (2.3.13) represent the pseudo-incompressible model. Compared to the com-
pressible model (2.3.4) we have a time independent leading-order pressure and ρΘ =
ρΘ(z).

2.3.3. Anelastic models

Subsequently, we will consider anelastic models, several approximations of this kind have
been introduced, attaining different goals. Regarding the specific numerical model that
we will apply in the progress of this thesis, we focus on the proposed model of Lipps &
Hemler (1982) and the Boussinesq approximation. At this point, we expand all variables
according to their form in (2.3.7).

2.3.3.1. Lipps & Hemler’s model

Then, to leading order the continuity equation in (2.3.4a) is

∇ · (ρU0) = 0, (2.3.14)

which is also called anelastic compressibility. Similarly, we make use of (2.3.8) and
consider the zeroth order of (2.3.6), giving

(ρU0)t +∇ · (ρU0 ◦U0) +
1

Γ
ρ∇(Θπ′) + fk × ρU0 = ρg

Θ′

Θ
k (2.3.15)

where we used the assumption of weak potential temperature stratification as proposed
by Lipps & Hemler (1982) to simplify

Θ∇π′ = ∇(Θπ′)− π′∇Θ. (2.3.16)
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The last term is of lower order and omitted, assuming that the stratification behaves
like

1

Θ

dΘ

dz
= O

(
M2
)
. (2.3.17)

For the potential temperature evolution (2.3.4c) we find in second order

(ρΘ′)t +∇ · (ρΘ′U0) = 0 (2.3.18)

utilizing zeroth order results of this equation, and the zeroth and second order of the
continuity equation (2.3.4a). Concluding, (2.3.14), (2.3.15) and (2.3.18) motivate the
anelastic model of Lipps & Hemler (1982)

∇ · (ρU) = 0, (2.3.19a)

(ρU)t +∇ · (ρU ◦U) +
1

Γ
ρ∇(Θπ′) + fk × ρU = ρg

Θ′

Θ
k, (2.3.19b)

(ρΘ′)t +∇ · (ρΘ′U) = 0. (2.3.19c)

While in the pseudo-incompressible model we assumed a steady pressure to leading or-
der, we here find a similar restriction for the density, and additionally weak temperature
stratification is a condition. In fact, with the asymptotic expansion scheme (2.3.7) the
leading-order of the energy equation (2.3.4c) requires that for stronger mean stratifica-
tion than (2.3.17) internal waves are suppressed in the low Mach number limit.

2.3.3.2. Boussinesq approximation

Another class of an anelastic model is the Boussinesq approximation that has been ap-
plied in section 2.2.2 already. At this point, we target low Mach number flows, thus the
representation here is a reduced variant of (2.2.6). It comprises the anelastic equations
(2.3.19) and additionally assumes a small density variation, essentially requiring a con-
stant ρ. Further, we account for the small variation in potential temperature by replacing
Θ with Θ0 in the anelastic model, however retaining the variation in the bouyancy force
due to stratification:

∇ ·U = 0, (2.3.20a)

U t +U ·∇U +
1

Γ
Θ0∇π′ + fk ×U = g

Θ′

Θ0
k, (2.3.20b)

Θ′t +U ·∇Θ′ = 0. (2.3.20c)

2.3.4. Validity

While the presented models were constructed in the same spirit, to filter sound waves,
they rely on different conditions. For the anelastic model we need a time independent
leading-order density and a weakly stratified potential temperature distribution, whereas
the pseudo-incompressible model assumes a steady pressure to leading order and is also
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2. Modeling atmospheric flows

valid for large density and potential temperature variations.

For a detailed discussion on the suitability of these models when modeling atmospheric
flows we refer to Klein et al. (2010). Via a scale analysis they argue that for typical con-
ditions in the atmosphere the compressible, pseudo-incompressible and anelastic model
provide a good approximation to the low Mach number flow.
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3. Implementation

So far we have presented analytical means to model atmospheric flows, while in the
present chapter we focus on the numerical implementation. The computational model
EULAG1 has been successfully applied to a plethora of environmental systems, among
others Charbonneau & Smolarkiewicz (2013), Prusa et al. (2008), Rosa et al. (2011),
Spichtinger & Gierens (2009). It can handle Eulerian and Lagrangian frameworks, adap-
tive moving meshes, generalized coordinates, just to name a few capabilities. In order
to solve the underlying set of differential equations an elliptic solver (Smolarkiewicz &
Margolin, 1994) is coupled with an advection scheme (Smolarkiewicz & Margolin, 1998),
also with a non-oscillatory option (Smolarkiewicz & Grabowski, 1990).

We will investigate vortical flows in the atmosphere and start with an overview of the
advection algorithm, followed by a few words on the structure of the code and some
of the applied methods. Lastly, we use a well-known 2D test-case to double-check the
performance of EULAG on vortical flows.

3.1. Computational framework

EULAG offers besides the compressible also the anelastic model by Lipps and Hemler,
cf. section 2.3.3.1 consistent with Smolarkiewicz & Margolin (1997) and Smolarkiewicz
et al. (2001), and Durran’s pseudo-incompressible model, cf. 2.3.2, see (Prusa et al.,
2008, Smolarkiewicz & Dörnbrack, 2008).

3.1.1. Flow solver

An introduction to the flow solver is given along the lines of Smolarkiewicz (1984). The
explicit method with optional extensions is presented in great detail in Smolarkiewicz
& Margolin (1998). It is designed to solve the transport equation for a scalar variable
Ψ(x, t), e.g.

∂GΨ

∂t
+∇ · (UΨ) = GR, (3.1.1)

where R(x, t) takes the role of a source or combines forcings (Smolarkiewicz, 1991) and
G(x, t) accounts for curvilinearity of coordinates (Smolarkiewicz & Margolin, 1993). The
density is part of either G,Ψ or R, depending on the model type (Smolarkiewicz, 2006).
In the original idea Ψ was required to be nondiffusive and nonnegative.
Advective terms are approximated by the multidimensional positive definite advection
transport algorithm (MPDATA), a generally sign-preserving, conservative scheme and a

1The name EULAG indicates its capability to solve equations in both the Eulerian and Lagrangian
framework.
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correction to the upwind method. For finite-difference algorithms such as MPDATA the
Courant number C is an important measure for the stability and numerical diffusion of
the method. Its local value for a grid cell of size ∆xI in the Ith dimension is

Cloc = ∆t
3∑
I=1

UI,loc

∆xI
(3.1.2)

with a time step ∆t. A necessary condition for the original upwind scheme to be stable
is that the Courant number is everywhere smaller than unity, for solenoidal flow fields
it is even sufficient, while for divergent ones the bound is 0.5 (Smolarkiewicz, 1984).
MPDATA inherits this condition for stability at least in our scope, for a thorough dis-
cussion the reader is referred to (Smolarkiewicz & Szmelter, 2005).

Varying the number of corrective steps IORD − 1 influences the rate of convergence
of the algorithm, i.e. for IORD = 1 we recover first-order upwind and IORD = 2 re-
sults in a second-order scheme in time and space, the standard MPDATA. Increasing
the number of iterations only gives a higher order of accuracy in space but not in time
(Smolarkiewicz, 1984).

Another point of discussion is the change of the convergence rate with the Courant
number. The value C = 0.5 rises a non-trivial artifact for IORD = 3 and IORD = 4,
indicating a third-order accuracy (Smolarkiewicz, 1984, Smolarkiewicz & Grabowski,
1990).

With a slight modification, MPDATA can handle quantities with variable sign, specifi-
cally of interest for the transport of momenta. The so-called “infinite-gauge” stems from
the asymptotic form of MPDATA when (3.1.1) is extended, such that

∂G(Ψ +Aχ)

∂t
+∇ · (U(Ψ +Aχ))) = GR (3.1.3)

and the limit A → ∞ is observed. We added the mass conservation equation A times
that is obtained from (3.1.1) by replacing ψ with χ and adjusting the variables to the
respective system. Originally presented by Smolarkiewicz & Clark (1986), it has been
generalized in Smolarkiewicz & Margolin (1998) to this form and named MPDATM in
EULAG. As a consequence, the method is not sign preserving anymore, but its approxi-
mation is better: The test case with IORD = 2 and nonvanishing A is in good agreement
with IORD = 3 for A = 0. A further increase in the number of iterations gives only
slight improvement and typically IORD = 2 suffices. The appearing deviations can
be accounted for by extending MPDATM to a non-oscillatory forward-in-time (NFT)
algorithm (Smolarkiewicz & Grabowski, 1990) preserving monotonicity as proposed by
Smolarkiewicz & Margolin (1998). In the spirit of a flux-corrected transport (FCT) algo-
rithm the pseudo velocities are modified, they correspond to the advection of the diffusive
error in the donor-cell scheme. It has been shown by Smolarkiewicz & Grabowski (1990)
that the convergence rate is only slightly diminished. Concluding, when momenta are
to be advected numerically a viable option is non-oscillatory MPDATM.
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3.1. Computational framework

To visualize the different behavior we conduct a series of 1D tests with uniform grid and
velocity for both with and without the variable sign variant. The 1D setup is borrowed
from Klein (2009), however we build it on a number of cell-rows in two dimensions in
EULAG. Technically, the levels in the second dimension do not differ. An initial distribu-
tion c(x, t) of a scalar quantity, e.g. a chemical species, is advected by a constant velocity
field (u, v) = (1, 0). Gravity and other external forces and diffusion are neglected, and
the conservation equation reads

∂c

∂t
+ u

∂c

∂x
= 0. (3.1.4)

Since the chemical species is passively advected, i.e. does not influence velocity, pres-
sure, density or temperature, the conservation equations remain unchanged. The only
difference is that now the evolution of c(x, t) is added to the system of equations. In that
way, only advection plays a role and we observe the evolution calculated by MPDATA.
In this simple case we recover the Courant number

C = u
∆t

∆x
. (3.1.5)

We observe the performance of non-oscillatory MPDATA and MPDATM on four different
cases mentioned in Klein (2009), depending on the Courant number: a rectangle, a
triangle, a parabola and a cosine-shaped distribution are advected. The number of grid
points is n = 152 in streamwise and l = 3 in perpendicular direction. Periodic boundary
conditions are imposed. We fix the spatial increments and the background velocity, but
vary the time step in order to have different Courant numbers. Therefore, roughly 10
periods have passed after

te = 10

⌊
(n− 1)

C

⌋
∆t. (3.1.6)

Background density, temperature and pressure are assumed to be constant justifying
the use of the anelastic Boussinesq system in EULAG. The advected distributions are
shown in figure 3.1.

3.1.2. Elliptic solver

Besides advection the Euler equations contain more terms that need to be accounted
for when solving them numerically. The conservation equations are reformulated to
obtain an elliptic equation for the pressure that is solved with a preconditioned conjugate
residual (CR) scheme (Prusa & Smolarkiewicz, 2003, Smolarkiewicz & Margolin, 1994,
Smolarkiewicz et al., 2004).

3.1.3. Operator splitting

We have now introduced two different solvers that can each handle a specific part of
the Euler equations well. Normally, they are designed to calculate the solution at time
n + 1 starting from the integer time level n. However, it is intuitive to look at them
separately and consider them at an intermediate time level n + 1/2 (Smolarkiewicz,
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Fig. 3.1.: Distribution after te with u = 1ms−1 and ∆t ∈ {15s, 25s, 35s, 50s}, the number
of grid points is n = 152 in streamwise and l = 3 in perpendicular direction. The
horizontal axis x is normalized by its maximum value. The red curve is the advected
analytical distribution, blue denotes the numerical result.

1991, Smolarkiewicz & Margolin, 1993). This kind of operator splitting resembles the one
proposed by Strang (1968) (Smolarkiewicz & Margolin, 1998, Smolarkiewicz & Szmelter,
2005).
To be more precise, the idea in EULAG in each time step is the following: Firstly, half
the forcing is added to the fields, therefore accounting for half of the forcing operator.
Secondly, the resulting fields are advected. Lastly, another half of a forcing operator is
applied, but this time utilizing the elliptic CR scheme.

3.1.4. Initial and boundary conditions

A background state is initialized in EULAG, there are several options implemented to
choose from and they specifically fulfill the conditions requested in some of the common
models for atmospheric flows. We point out the one designed for the anelastic model of
Clark & Farley (1984): The equation of state and the definition of potential temperature
are linearized and expressions for Θ(z), p(z) and ρ(z) are derived. Potential temperature
is decreasing exponentially with height and depends on the constant stability parameter
s,

Θ(z) =Θ0 e
sz, (3.1.7a)

and the density follows

ρ(z) = ρ0 e
−sz
[
1− g

cpsΘ0

(
1− e−sz

)]1/(γ−1)

. (3.1.7b)

It will be used in a later course of this work.

In addition to initial conditions also boundary conditions are imposed to solve the un-
derlying set of equations, discretized on a finite grid. One can choose between periodic
and open boundary conditions, the latter rather meaning that the variables attain a
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3.2. Suitability for vortical flows

certain value in accordance with the predefined background state. Optionally, one can
request no-slip boundaries.

3.1.5. Sponge layer

In a stably stratified atmosphere vertical movement is suppressed, however internal
waves can be part of the solution and disturb this balance. In the case of a Neumann
condition incoming waves are reflected at the boundary. Atmospheric flows however
are not bounded, and the idea is to imitate an infinite domain, specifically suppressing
reflection. This motivates a sponge layer in the vicinity of the edge absorbing these kind
of disturbances. While it can be placed along any of the edges we present the basic idea
in the horizontal direction x. Waves are absorbed if a suitable term is added to the
evolution equation within this layer. For example, they could be included by “viscosity”
or “friction” (Israeli & Orszag, 1981). The latter is also known as Rayleigh damping
(Durran, 2010) and filters a broader range of waves. Generally, we have a damping pro-
file τ(x) determining what kind of waves are absorbed (Klemp & Lilly, 1978). Setting
up the absorber correctly is crucial, otherwise waves will not dissipate sufficiently.

In EULAG the Rayleigh sponge damping field is utilized (Clark, 1977, Smolarkiewicz &
Margolin, 1998) and the damping profile is characterized by the layer thickness DR and
the absorber time scale tR in each dimension. Therefore, we utilize the time and spatial
scales typical for gravity waves explained in 2.2.3. If we aim to suppress vertical motion
we need to look at the vertical propagation of the internal waves. Equation (2.2.15)
indicates that the frequency spectrum is dominated by the Coriolis and the Brunt-
Väisälä frequency determining the time scale tR = 2π/ψ by (2.2.17). The thickness
should be chosen with regards to a dominating wavelength λR (Klemp & Lilly, 1978)
that is obtained from frequency and group velocity (2.2.19), therefore λR = tRvg.
In case of a still environmental state the analysis yields a vanishing layer, however we
allow for disturbances to this state and can consider this as an estimate.

3.2. Suitability for vortical flows

A series of tests for two-dimensional setups is conducted, borrowed from Klein (2009) and
Kadioglu et al. (2008) to double-check EULAG’s performance on concentrated vortical
flows.

3.2.1. Setup

In order to construct a consistent setup we will determine how, for a specific problem,
the variables U , p and Θ are connected. In case of vortical flows rotation is involved, and
we will utilize a rotating frame of reference with constant angular frequency Ω to arrive
at a relation between velocity and pressure. So as to derive this balance the frequency
proves useful, it is connected to other variables via the transformation rule (2.1.13). It
will not play a role in the numerical test.
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Firstly, we consider a three-dimensional space spanned by the perpendicular unit vectors
i, j and k, and an inviscid fluid of density ρ, pressure p and temperature T . The location
and velocity field of a fluid parcel are x = (x, y, z)> and U = (u, w)>, respectively.
Conservation of mass (2.1.14a) and energy (2.1.14c) are assumed for an adiabatic flow
and neglecting gravity the momentum balance in an inertial frame is

D̂
2
x

D̂t2
+

1

ρ
∇p = 0. (3.2.1)

The co-moving frame rotates with a constant angular frequency Ω and is subject to
horizontal translation relatively to the inertial frame. We assume rotation takes place
in a 2D subspace with center X(t), Ω = X(t) + |Ω| ·k, and introduce polar coordinates
(r, ϑ)> with respect to the orthonormal basis vectors er and eϑ, each perpendicular to
k, such that the transformation is given by

r(x) = x−X, ϑ = arctan

(
y −Y

x−X

)
. (3.2.2)

Then, for the radius r we find

D̂r

D̂t
=

D̂x

D̂t
− D̂X

D̂t
= U −U0 defining U0 :=

D̂X

D̂t
. (3.2.3a)

Accordingly, we introduce the difference velocity

U∗ := U −U0 (3.2.3b)

that has the property

U∗ =
D̂r

D̂t
=

Dr

Dt
+ Ω× r, (3.2.3c)

utilizing the transformation rule (2.1.13) for a rotating frame of reference. If the radius
was changing within the rotating system it would contradict the steadiness of Ω or the
constant distance between origin and rotation axis. Therefore, by construction we have

U∗ = Ω× r. (3.2.4)

Taking a step towards the momentum equation we differentiate with respect to time
again and with (3.2.3) it holds

D̂
2
x

D̂t2
=

D̂U∗

D̂t
+

D̂U0

D̂t
. (3.2.5)

Clearly, U0 accounts for advection of the rotation axis that in our case of interest is set
to be uniform, i.e.

D̂U0

D̂t
= 0. (3.2.6)
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Further, again from (2.1.13) we obtain

D̂U∗

D̂t
=

DU∗
Dt

+ Ω×U∗, (3.2.7)

and U∗ is, with the same reasoning as for r, uniform in the co-moving framework, cf.
the derivative of (3.2.4) and remember that Ω is constant in space and time with respect
to the rotating frame. Consequently, this leaves us with the centrifugal acceleration

D̂
2
x

D̂t2
= Ω×U∗ where (3.2.4) U∗ = Ω× r. (3.2.8)

For the specific case of interest only a horizontal subspace is considered, i.e. r ⊥ Ω.
Note that for any x‖ ⊥ Ω it is

Ω× (Ω× x‖) = Ω(Ω ·x‖)− x‖(Ω · Ω) = −|Ω|2x‖. (3.2.9)

It simplifies the right hand side of (3.2.8) to

Ω× (Ω× r) = Ω(Ω · r)− r(Ω · Ω) = −|U∗|
2

r
er (3.2.10a)

since

r ×U∗ = r × (Ω× r) = Ω(r · r)− r(r · Ω) such that Ω =
r ×U∗
r2

(3.2.10b)

where r := |r| and U∗ ⊥ r by definition. Lastly, concerning the momentum balance
(3.2.1) we also express the pressure gradient in polar coordinates. The recent considera-
tions have shown that only a radially symmetric pressure distribution is consistent with
the case, and inserting (3.2.8) with (3.2.10) in (3.2.1) we arrive at

|U∗|2

r
er =

1

ρ

dp

dr
er. (3.2.11)

Concluding, the case that we study is described by this momentum balance and conser-
vation of mass (2.1.14a) and energy (2.1.14c).
The system is nondimensionalized with respect to [pref, ρref, T ref, xref], typical values are
T ref = 300 K, pref = 105 Pa and, for an ideal gas, ρref ≈ 1.1614 kg/m2. Similar to 2.3.1
we rescale the velocity with the Mach number and introduce uref = Mcref, such that time

is t =
?
txref/uref =

?
txref/Mcref and velocity U = uref

?
U = Mcref

?
U . Further, the radius is

rescaled with a nondimensional factor R̊, i.e. r =
?
r ·xref · R̊. Then, the nondimensional

form is

?
ρ?
t

+
?
∇ · (

?
ρ
?
U) = 0, (3.2.12a)

?
ρ
|
?
U −

?
U0|2
?
r

− 1

M2

d
?
p

d
?
r

= 0, (3.2.12b)

?
P ?
t

+
?
∇ · (

?
P

?
U) = 0, (3.2.12c)

where
?
P :=

?
p1/γ =

?
ρ
?
Θ (3.2.12d)

is the equation of state.
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3.2.2. Initial state

We assume a constant, isothermal and balanced background state with the aforemen-
tioned reference values for an ideal gas.

A vortex of fixed radius R̊ is placed inside a domain of length and width xref,
?
X(t)

denotes its center. Initially in the middle of the domain, it is advected with a velocity
?
u0 = (

?
u0,

?
v0), such that

?
X(

?
t) =

1

2
(i+ j) +

?
t ·

?
u0. (3.2.13)

A density profile
?
ρ(
?
r) and a velocity field

?
u(

?
r, ϑ, t) are prescribed, fully describing the

initial state: pressure is obtained from the conservation of momentum (3.2.12b) and
temperature follows from the equation of state (3.2.12d).
A density variation as follows is imposed

?
ρ(
?
r) =


?
ρc + 1

2

(
1− ?

r2
)6 ?

r ≤ 1
?
ρc

?
r > 1

(3.2.14)

and the divergence-free velocity field u = (u, v)> reads

?
u(
?
r, ϑ) =

{
?
u0 − 1024(1− ?

r)6?r6 sinϑ
?
r ≤ 1

?
u0

?
r > 1

(3.2.15a)

?
v(
?
r, ϑ) =

{
?
v0 + 1024(1− ?

r)6?r6 cosϑ
?
r ≤ 1

?
v0

?
r > 1

. (3.2.15b)

The parameters
?
u0,

?
v0 and

?
ρc are constant, let

?
ρc = 0.5 and

?
u0 = (1, 0). Then, the vortex

is advected horizontally. Solving equation (3.2.12b) gives the pressure perturbation
?
p∗

that is necessary to balance the rotational movement, such that the vortex is steady,

depending on density distribution and velocity field, for 0 <
?
R ≤ 1:
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?
p∗(

?
R)

M2
=

∫ ?
R

1

?
ρ(
?
r)
| ?u(

?
r, ϑ)− ?

u0|2
?
r

d
?
r

=

∫ ?
R

1

(
1

2
+

1

2

(
1− ?

r2
)6
)

10242(1− ?
r)12?r12

?
r

d
?
r

=10242

 ?
R12

 1

12
− 12

?
R1

13
+

9
?
R2

2
− 184

?
R3

15
+

609
?
R4

32
− 222

?
R5

17

− 38
?
R6

9
+

54
?
R7

19
+
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?
R8

20
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?
R9

7
+

1053
?
R10

22
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1014
?
R11
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?
R12

16
+
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?
R13

5
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510
?
R14

13
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?
R15

27
+

153
?
R16

8
+
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?
R17

29
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?
R18

15
+

174
?
R19

31
+

57
?
R20

32
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?
R21

33
+

15
?
R22

17
− 6

?
R23

35
+

?
R24

72


− 34373

1805044411170

)

(3.2.16)

where
?
p∗(1) = 0. The full pressure profile

?
p is then given by

?
p(
?
r) =

{
1 + M2 ?p∗(

?
r)

?
r ≤ 1

1
?
r > 1

, (3.2.17a)

and the corresponding potential temperature
?
Θ is

?
Θ(

?
r) =


(

1 + M2 ?p∗(
?
r)
)1/γ

/
?
ρ(
?
r)

?
r ≤ 1

1/
?
ρc

?
r > 1

. (3.2.17b)

We choose R̊ = 0.4 and the reference values uref = 1ms−1 and xref = 1m. The dimen-
sional form of the initial velocities (3.2.15), pressure and potential temperature (3.2.17)
is depicted in figure 3.2.

3.2.3. Numerical model

In order to solve this problem now in EULAG we need to choose a numerical model
among the ones presented in 2.3 and feed it with our initial data. We consider a low
Mach-number flow and choose uref accordingly. A review of the pseudo-incompressible

model deems it well-suited for the underlying case, since
?
P ?
t

is negligible:

?
P ?
t

= (
?
u0 cosϑ+

?
v0 sinϑ)

?
P ?
r
, where (3.2.18)

?
P ?
r

= ∂?
r

?
p1/γ =

1

γ

?
p−1+1/γ∂?

r

?
p (3.2.19)
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Fig. 3.2.: Initial state of the vortex. Pressure difference ∆p = p−pref (top left), potential
temperature Θ (top right), horizontal velocity u (bottom left) and vertical velocity w
(bottom right) are shown. Note that 1mPa= 10−3Pa.
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and ∂?
r

?
p ∼ O(M2).

The domain is discretized on a grid with 256×256 points and ∆x = ∆y = 255−1m. The
time step is chosen in a way that the Courant number is bounded by 0.45, i.e.

∆t = ∆x
0.45

1 + 0.25

s

m
≈ 1.2 · 10−3s. (3.2.20)

3.2.4. Consistency

In EULAG the initial velocities and potential temperature are set according to (3.2.15)
and (3.2.17b). We gain the discrete pressure p� for the specific problem utilizing the
construction of the flow solver. Initially, the pressure field is constant, e.g. p�0 ≡ pref.
Subsequently, we consistently set the pressure to the correct value: After the first time
step the discretized pressure is updated to

p�1/2 =
1

2
(p�0 + p�1) , (3.2.21)

the subscripts indicate the time level. The initial pressure p�0 and the pressure after one
time step p�1 are linearly interpolated in order to gain the pressure at an intermediate
time level 1/2. The general forcings are handled in the same way,

R�1/2 =
1

2
(R�0 +R�1) . (3.2.22)

Consequently, in the second time step the intermediate forcing and pressure are the
starting point to calculate the variable Ψ�2, followed by the regular sequence of half ex-
plicit forcing, advection and half implicit forcing. At every time the pressure and forcing
are half a step behind, i.e. after n+1 time steps we have Ψ�n+1 but p�n+1/2 and R�n+1/2. In
this way the pressure distribution is determined with help of the elliptic solver matching
the state dynamics, it is further only subject to advection.

Concluding, in the second time step we arrive at a pressure as in (3.2.17a). It solves the
momentum equation and depends only on the absolute value of the radius. Therefore,
we expect that the pressure field is solely advected, as the vortex center is, and its shape
remain unchanged.

3.2.5. Results

The vortex is advected over roughly one period, i.e. for a time

te = 20

⌊
256− 1

20

s2

m

∆x

∆t

⌋
. (3.2.23)

In that way, 20 time splits of one period are available. The final fields of velocities,
pressure and potential temperature are shown in figure 3.3. They differ only slightly
from the initial state. We gain a deeper insight subtracting the initial fields, cf. figure
3.2, that evolve according to (3.2.13). This means that we compare the final fields with
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Fig. 3.3.: Horizontally advected vortex. Same variables as in figure 3.2 but after t = te.
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Fig. 3.4.: Difference fields, initial state with t = 0 is subtracted from the final state with
t = te.
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the analytically advected initial fields at the same point in time. Hence, an exact deter-
mination of one period, matching the positions of final and initial fields, is not necessary.
The difference fields are pictured in 3.4. Compared to the order of magnitude of the
respective variables the error is small, yet non-negligible. Specifically, the pressure devi-
ates the strongest after te. This is not astonishing since the maximum deviation from the
background state is still much smaller than pref. We investigate this further and analyze
the intermediate states of pressure and potential temperature. Good measures for their
evolution are the mean value and the standard deviation, figure 3.5 distinguishes them
over one period for the available time splits. We observe that the potential temperature
distribution is only subject to small changes, while the pressure changes notably for
t/t2 < 0.4. As for the mean value the slightest pressure oscillations influence it strongly,
it is small and changes sign. The curve of the standard deviation allows a clear dis-
tinction when the pressure is an almost perfect match to the other variables. The fact
that the pressure only reaches this state after some time is due to smallest errors in the
initialization.
To sum it up, the characteristic state variables of the vortex are advected with minor
errors and EULAG is well suited to model vortical flows.

3.3. Averaging techniques

Extending the previous 2D example to three dimensions leads to the question of certain
vortex specific quantities such as the centerline and the circumferential velocity. Initially
the vortex is embedded in a geostrophic environment and exhibits certain symmetries
that serve specific averaging methods that we present in the following.

3.3.1. Vortex centerline

Beyond the initial state the vortex is subject to advection, gravity, pressure and Coriolis
force. The core of the vortex is a measure for its position, and in order to describe its
evolution we need to determine the center. Rotational flow has a non-vanishing curl,
and the vorticity

ω(x, t) = ∇×U(x, t) (3.3.1)

is a quantity of interest. More precisely, the vortex initially exhibits a vertical rotation
axis, therefore we restrict ourselves to the vertical component of vorticity when deter-
mining the vortex center. In the style of the center of mass calculation we consider ω3

as density function and get the horizontal components of the eye location in the domain
Σ for each level,

X(z, t) =
1

Ω(z, t)

∫
Σ
xω3(x, y, z, t) d(x, y) (3.3.2a)

Y(z, t) =
1

Ω(z, t)

∫
Σ
y ω3(x, y, z, t) d(x, y) (3.3.2b)

normalized by

Ω(z, t) =

∫
Σ
ω3(x, y, z, t) d(x, y). (3.3.2c)
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Fig. 3.5.: Normalized mean value (E) and standard deviation (σ) of pressure difference
and potential temperature over time in units of one period te. The value for t = 0 is
omitted to emphasize the less abrupt changes in the further course of the simulation.
The denoted reference is the value for t = te/20 and the dimensionless deviation from
it is shown on the vertical axis, i.e. the first point is zero by construction. Rescaling
factors in orders of 10 emphasize the magnitude of the difference.
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While the centerline X(z, t) = (X,Y)> is likewise characterized by a maximum of vortic-
ity this averaged measure is better suited, also promising reliable results when the data
is fluctuating. Typically the centerline will be located within the center of the domain
reducing the influence of the boundary. The integrals are easily solved over a rectangular
domain Σ with the trapezoidal rule, i.e. with (M + 1) × (M + 1) evenly spaced grid
points for any integrand s(x, y) we find∫

Σ
s(x, y) d(x, y) =

(∆x)2

4

M∑
i=1

M∑
j=1

(si,j + si,j+1 + si+1,j + si+1,j+1) (3.3.2d)

where the subscripts i and j stand for the evaluation at the grid point (xi, yj), i.e.
si,j := s(xi, yj).
If the density norm (3.3.2c) vanishes one can not specify a vortex core, a weakness
when using this approach. However, the later object of interest features a non-zero Ω,
justifying the primarily discussed averaging technique. We will just note here that many
other dedicated approaches to this kind of problem exist, e.g. by determining the vortex
core size (Schielicke et al., 2016).

3.3.2. Circumferential velocity

3.3.2.1. Measure

Once we obtained the vortex centerline we are able to calculate further characteristic
quantities of a vortex. A crucial one is the azimuthal velocity uϑ(r, z, t). Since numerical
quantities are subject to local oscillations, we introduce an averaged definition at this
point. A useful quantity in rotational flows is the circulation Γr along a closed circle
Br(X) with radius r and center X, embedded in the horizontal plane. For each level z
and time t we have

Γr(z, t) =

∮
∂Br(X)

u · dL, (3.3.3a)

and remembering that the azimuthal velocity is given by u · eϑ = uϑ the line integral is

Γr(z, t) =

∫ 2π

0
uϑ(r, ϑ, z, t) rdϑ. (3.3.3b)

Following Stokes’ theorem the circulation (3.3.3a) is also determined by

Γr(z, t) =

∫
Br(X)

ω · dS (3.3.4a)

and according to the integration path this integral becomes

Γr(z, t) =

∫
Br(X)

ω3(x, t) dS. (3.3.4b)

For a radially symmetric velocity we find, equating both expressions for circulation
(3.3.3b) and (3.3.4b):

2πruϑ(r, z, t) =

∫
Br(X)

ω3(x, t) dS. (3.3.5)
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∂Br(X)

r

p1

p2

X

Fig. 3.6.: Sketch of intersecting line and circle at p.

Solving the integral on the right hand side gives an averaged expression for uϑ(r, z, t)
for each circle Br(X). The challenge is now to determine the area a circle occupies on
a rectangular grid. For each cell of the grid a function is needed that returns the area
of the circle section inside. After a brief outline of the task at hand we will present a
method for numerical discretization.

3.3.2.2. Intersection of line and circle

The resolution dictates how many cells of the grid cover just a section of the circle
Br(X), this portion of the cell is needed for an area calculation. We first look at a 1D
problem.

Let p1 and p2 denote the position vectors of two distinct points where either of the
points lies inside and the other outside of a circle with center X and radius r (figure
3.6). We aim to determine a function I(p1,p2) that determines the distance of p1 to
the circle boundary pointing from p1 to p2. That is, we are searching for the point p
that is both on the line between p1 and p2,

p = p1 + I p2 − p1

|p2 − p1|
(3.3.6a)

and on the boundary of the circle,

|p−X|2 = r2. (3.3.6b)

Inserting (3.3.6a) in (3.3.6b) gives a quadratic equation for I, and its two solutions are

I± = −(p1 −X) · (p2 − p1)

|p2 − p1|
±

√
|p1 −X|2 |p2 − p1|

2

|p2 − p1|
2 − |p1 −X|2 + r2. (3.3.7a)
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Since this line intersects the circle twice, we assumed p1 and p2 to be on separate sides
of the circle boundary, also two solutions for I exist. Considering that the function
I(p1,p2) is designed to calculate the area of circle sections in a cell, we request that the
distance lies between 0 and |p2 − p1|, i.e.

I(p1,p2) =

{
I+ if 0 ≤ I+ ≤ |p2 − p1|
I− else

. (3.3.7b)

3.3.2.3. Cut-cells

With the function I (3.3.7) at hand we can now approach the 2D problem, utilizing our
function from 1D. There are five cases that we distinguish as pointed out in figure 3.7:
0 , 1 , 2 , 3 and 4 correspond to the number of cell vertices that lie inside the circle.

By design Br(X) is constructed starting from a specific r of a grid point. Consequently
there is no cell that covers the whole circle and at the same time has no vertex inside of
it. If no cell vertices are inside the circle this means that the cell lies completely outside
of it: the circle cannot be embedded in any cell without containing at least one vertex.
As before we assume a horizontally uniform grid, i.e. with the same spacing in each
horizontal direction. This assumption greatly simplifies the following considerations
without restricting the generality. It is well suited for the applications that we will
consider. In a next step, we will transform all cells in any of these five forms, and
integration is the sum of each contribution.

3.3.2.4. Universal vertices

Regarding the possible cases in figure 3.7 we emphasize that the vertices r1, r2, r3, r4

denote the distance to the circle center X and that they are in ascending order. This is
a result of the case design, differing by the number of vertices inside the circle.

In all, it motivates the following ansatz: for any cell vertex i positioned at pi determine
its distance to X and call it Ri = |pi −X|. Denote the integrand to be evaluated at Ri
with Si. A bubble sort algorithm on Qi = {pi,Ri,Si} gives the desired order, i.e. in
pseudocode:

do i=4,1,−1 ! for any cell vertex i
do j=1,i−1

if Rj > Rj+1 then ! if not ordered ascendingly
swap(Qj ,Qj+1) ! swap position, radius and integrand

endif
enddo

enddo

Geometrically, this is equivalent to rotation and/or reflection of the cell, i.e. an isometric
transformation. As a result, the vertices are in ascending distance from the circle center
and any of the integration problems reduces to one of the five cases in figure 3.7. Lastly,
we approximate the area in those circle sections.
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Fig. 3.7.: Sketch of different cases that arise when integrating a circle with boundary
∂Br(X) on a rectangular grid. The corners r1, r2, r3, r4 of each grid cell lie inside the
circle if they are denoted with a cross . The characteristic lengths A and B for each
geometrical object are highlighted.
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3.3.2.5. Quadrature

Let si denote the integrand evaluated at ri and ∆x be the spacing of the uniform 2D grid.
For each of the geometric shapes in figure 3.7 we use a quadrature formula to calculate
the integral, S, over the circle, i.e.

0 : empty, S = 0 (3.3.8a)

1 : triangle, S =
1

2
ABs1 (3.3.8b)

2 : trapezoidal, S =
∆x

2
(A+B) s12 (3.3.8c)

3 : square− triangle, S =

[
(∆x)2 − 1

2
AB

]
s123 (3.3.8d)

4 : square, S = (∆x)2s1234 (3.3.8e)

where the overlined s denote an average of the discretized integrand at the respective
vertices, i.e.

s12 :=
1

2
(s1 + s2) , s123 :=

1

3
(s1 + s2 + s3) , s1234 :=

1

4
(s1 + s2 + s3 + s4) .

(3.3.8f)

3.3.2.6. Integration and interpolation

With the preceding ideas the integral in (3.3.5) can be approximated in n2 steps on a
grid with n2 points. Regarding that the grid resolution is rather high and this needs to
be done for each level and in each time step we aim to reduce the number of steps. We
benefit from the design of the problem, a rather centrally positioned vortex core within
the domain. Utilizing an interpolation method less steps are needed:
The function uϑ is determined along a horizontal line, e.g. ϑ = π/2, for discrete radii
r integrating along Br(X) for each of them. Since the azimuthal velocity close to the
boundary is not of greater interest we choose, without loss of generality, to move along
the horizontal x-axis from X towards the boundary. In that way, we obtain in roughly
n/2 steps a discrete function uϑ(r, z, t) that we linearly interpolate to arrive at the
circumferential velocity profile uϑ(r, z, t).
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4. Vortices under environmental shear

In the preceding chapters we provided a basis for a numerical investigation of tropical
cyclones (TC). In a next step we will introduce a model for such storms followed by a
summary of some technical considerations that come with it, e.g. determining its center
from the data. Concluding, we will discuss two differently sheared adiabatic vortices.
We find that the initial tilt influences the further evolution of the centerline.

4.1. Model parameters

Our long-term goal is to numerically investigate the theory introduced by Paeschke
et al. (2012) on baroclinic vortices under environmental shear, and we therefore choose
the same characteristic parameters and rescaling, cf. table 4.1 and 4.2, representing
typical values for a dry atmosphere at sea level in the subtropics.

The domain of interest will consist of a vortex embedded in a geostrophic background.
In 2.3.1 we presented a possible rescaling of uref and tref to observe the influence of the
Mach-number on the flow. Instead, using the geostrophic model 2.1.5 motivates a sepa-
ration of vertical and horizontal dynamics. Also, in 2.2.3 we have seen that the vertical
and horizontal wave propagation are dominated by Brunt-Väisälä or Coriolis frequency,
respectively. If both contribute equally to the final internal wave frequency (2.2.15) a
specific relationship between the length scales arises (Pedlosky, 1987). The horizontal
scale lb and vertical scale hb correspond to the wave vector ae = (2π/lb, 2π/lb, 2π/hb)
that needs to fulfill

f2
0

(2π)2

h2
b

= N2
0

(2π)2

l2b
. (4.1.1)

A typical vertical length scale was found during nondimensionalization: the pressure
scale height hsc, (2.3.3a). It denotes the height an air column would need to induce
the reference pressure pref, assuming a constant ρref, starting from where the reference
values are measured, e.g. sea level. It will continue to serve as the vertical length scale.
Let lsyn be the according horizontal length scale, it is determined by (4.1.1),

lsyn =
N0

f0
hsc. (4.1.2)

This is the synoptic scale specifically of interest when investigating TCs and their sur-
roundings, in turn the vortex core size is much smaller and on the order of lmes, the length
scale of the mesoscale. The assumption of constant potential temperature stratification
and a consequently constant N ≡ N0 is made here as well. However, at this point the
Coriolis parameter is described by the β-plane approximation giving rise to a meridional
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4. Vortices under environmental shear

dependence. This in turn gives rise to Rossby waves that appear for non-constant f .
As a remark, the dispersion relation (2.2.15) states that the frequency of internal waves
depends on the (constant) Coriolis parameter. While we required a constant f = f0

to arrive at the linear system (2.2.14) the outcome would be the same for f = f0 + βy
since the the equations (2.2.11) were linearized and a possible variation of f would be
eliminated.

Despite the separate length scales we require a unique time scale tref for both horizontal
and vertical displacements. Since environmental shear dominantly affects horizontal
motions the time scale that we resolve is the one on the synoptic scale, i.e. tref = lsyn/uref

(Paeschke et al., 2012). Consequently, the velocities are related by

wref =
hsc

lsyn
uref. (4.1.3)

A useful quantity to describe vortical flows is the Rossby number

Ro :=
uref

lsyn f0
=

(
lsyn

uref

)−1 1

f0
. (4.1.4)

It denotes the ratio of inertial and Coriolis force, or equivalently the ratio of the time
scales for Earth’s rotation and advection. Analogously, the vortex Rossby number is

Romes =
umes

f0lmes
(4.1.5)

with a characteristic mesoscale velocity umes. It is a good measure for vortex strength:
A high Romes stands for fast advection compared to the Coriolis effect. In a next step
we observe the scaling of the horizontal velocity,

uref

hsc
∼
∣∣∣∣∂u†∂z

∣∣∣∣ , (4.1.6)

that itself will lead to the vertical velocity scale, cf. (4.1.3). The horizontal velocity
scale is, starting from the geostrophic model (2.1.41), determined by the thermal wind
relation (Klein, 2008, 2010):

∂u†

∂z
∼ 1

f0ρref
∇‖

∂p

∂z
. (4.1.7)

Hydrostatic balance (2.1.40a) and the bouyancy frequency (2.2.10) lead to

uref ∼ hsc tanϕ0
N2

f2
0

βa

(
dΘ

dz

)−1

∇‖Θ (4.1.8)

since f0 ∼ aβ tanϕ0. At last, we utilize the arc length from pole to equator and an
according temperature difference ∆Θ, such that

∇‖Θ ∼
∆Θ
π
2a

(4.1.9)
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4.2. Initialization of a TC-like vortex

Quantity Variable Value

Gravity acceleration g 9.81m s−2

Latitude ϕ 30◦ N
Coriolis parameter f0 7.3 · 10−5s−1

Meridional variation β 2 · 10−11m−1s−1

Pressure pref 105Pa
Temperature T ref 300K
Brunt-Väisälä frequency N 10−2s−1

Dry gas constant R 287m2s−2K−1

Isentropic exponent γ 1.4

Table 4.1.: Model parameters (Paeschke et al., 2012)

Quantity Variable Estimated value

Density ρref =
pref

RT ref
1.16 kg m−3

Vertical distance hsc =
pref

gρref
8.8km

Horizontal distance lsyn =
N

f0
hsc 1200km

Horizontal velocity uref = h2
sc

tanϕ0

π/2

N2

f2
0

β 10ms−1

Time tref =
lsyn

uref
1.2 · 105s

Vertical velocity wref =
hsc

lsyn
uref 0.1ms−1

Table 4.2.: Derived scales (Paeschke et al., 2012)

and with hsc ∼ ∆z we find for (4.1.8) a suitable velocity scale

uref = h2
sc

tanϕ0

π/2

N2

f2
0

β. (4.1.10)

As a side note, the regime we consider has a Rossby number (4.1.4) of

Ro =
uref

f0lsyn
≈ 0.11, (4.1.11)

typical for the incipient stage of a hurricane (Shapiro & Montgomery, 1993). Table 4.2
summarizes the preceding considerations.

4.2. Initialization of a TC-like vortex

Our object of interest are hurricanes at an incipient stage, i.e. with vortex Rossby
numbers of order 1. Recent studies (Reasor & Montgomery, 2001, Reasor et al., 2004)
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4. Vortices under environmental shear

suggested a Gaussian profile for the vortex’ vorticity distribution. In contrast to stronger
TCs the vorticity is broadly distributed and exhibits a slower decay in the tangential
wind (Shapiro & Montgomery, 1993, Willoughby, 1990). We construct a vorticity profile
along the lines of Reasor & Montgomery (2001).

An atmospheric vortex is embedded in an initially geostrophic flow, cf. 2.1.5, its center
is located at X(t) and the velocity profile is U(x, 0) = (u†, 0)>. Cylindrical coordinates
(r, ϑ, z)> with the orthonormal vectors er, eϑ and k are well-suited for this kind of
problem, and for the horizontal velocity u†(r, ϑ, z) we find the respective components

u†r = u† · er, u†ϑ = u† · eϑ such that

u† = u†rer + u†ϑeϑ.
(4.2.1)

This is a 3D extension to (3.2.2). For the specific case of radial symmetry with u†r = 0

and u†ϑ(r, z) the differential equation for vorticity (2.1.42) becomes

q†(r, z) =
1

r

∂

∂r

[
ru†ϑ(r, z)

]
(4.2.2)

utilizing the representation of ∇ in cylindrical coordinates. It has multiple solutions for
u†ϑ, including discontinuous ones. Requiring the boundary condition u†ϑ(0, z) = 0 leads

to a unique solution for u†ϑ, at the vortex center the azimuthal velocity is zero. We solve
(4.2.2) integrating from the origin to a radius r′:∫ r′

0
rq†(r, z)dr = r′ u†ϑ(r′, z). (4.2.3)

Therefore, the circumferential velocity is determined by

u†ϑ(r′, z) =
1

r′

∫ r′

0
rq†(r, z)dr. (4.2.4)

Prescribing the vorticity leads to a velocity profile that is utilized for initialization.

4.2.1. Characteristic parameters

For now we omit the dependence on the vertical coordinate, due to the symmetry ex-
pressed in (4.2.4) implementing it later on will be straightforward. Reasor & Mont-
gomery (2001) suggested to model a TC by an axisymmetric potential vorticity

q†(r) = q†me
−σ2r2 (4.2.5)

with the constant parameters q†m and σ. Their physical meaning becomes clear in the
following derivation.

Considering the structure of tropical vortices their extent is often designated by the
radius of maximum wind that we call L. With equation (4.2.4) we calculate the radius
and corresponding vorticity:

∂ u†ϑ
∂r′

∣∣∣∣∣
L

= 0, equivalently q†(L)− 1

L2

∫ L

0
rq†(r)dr = 0. (4.2.6a)
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4.2. Initialization of a TC-like vortex

This gives with (4.2.2)

q†(L) =
1

L
u†ϑ(L). (4.2.6b)

Now in the specific case of (4.2.5) the condition for maximum wind (4.2.6a) translates
to

e−σ
2L2

=
1− e−σ2L2

2σ2L2
, or rewritten with n := σL (4.2.7)

en
2

= 1 + 2n2. (4.2.8)

To solve this equation we make use of the Lambert W function that is the solution to
s = W (s) expW (s), in our case s ∈ R and

−1

2
exp

(
−1

2

)
=

(
−1

2
− n2

)
exp

(
−1

2
− n2

)
, s ≥ −e−1 (4.2.9a)

and we have W

(
−1

2
e−1/2

)
= −1

2
− n2, (4.2.9b)

such that the solution is

n =

√
−W

(
−1

2
e−1/2

)
− 1

2
. (4.2.10)

The Lambert W function exhibits two branches in the interval (−e−1, 0), so we have to
consider both as a solution to our equation (4.2.8). However, considering the principal
branch leads to the trivial solution n = 0, i.e. a spatially constant potential vorticity
and linearly increasing velocity, no radius of maximum wind can be defined. Thus we
accept the value of the −1th branch as a solution that corresponds to

σL ≈ 1.12. (4.2.11a)

In a second step we determine q†m by (4.2.6b):

q†m = eσ
2L2 u

†
ϑ(L)

L
. (4.2.11b)

Concluding, with (4.2.11) the parameters q†m and σ are determined by the radius of

maximum wind L and the maximum wind speed u†ϑ(L).

4.2.2. Wind profile

Reminding the underlying model parameters 4.1 the maximum wind speed u†ϑ(L) will
be on the order of uref in the model, i.e. roughly 10ms−1. With regards to the synoptic
scale and the incipient stage of the TC a reasonable choice of the radius of maximum
wind is 100km. With u†r = 0, u†ϑ(r) in (4.2.4) and (4.2.5) the initial velocity profile is

u†(x, y) =q†m
1− e−σ2r2

2σ2r

(
− sinϑ
cosϑ

)
where r =

√
x2 + y2 and ϑ = atan2 (y, x)

(4.2.12)
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Fig. 4.1.: Characteristic profile for a TC determined by L = 100km and u†ϑ(L) =
10ms−1.

Figure 4.1 shows vorticity and circumferential velocity for L = 100km and u†ϑ(L) =
10ms−1. The center of the vortex at r = 0 with maximum vorticity and zero velocity
is also called the eye of the storm. Further, the neighborhood of the strongest winds
surrounding r = L is referred to as the eye wall region.

The vortex is initially placed in the middle of a box that is H = 10km high (compare
with hsc) and has a square base of 4000km×4000km, representing a part of the Earth’s
atmosphere. In order to model an atmospheric vortex on a finite domain we need to
discuss the boundary conditions. We have seen that the velocity only slowly decays, but
to retain a vanishing circulation at the boundary we need the velocity to approach zero.
To obtain a concentrated vortex we define the lower and upper limit

r0 = 1000km, r∞ = 1750km (4.2.13)

and introduce the mollifier

m(r) = cos2

(
π

2

r − r0

r∞ − r0

)
for r ∈ [r0, r∞]. (4.2.14)

In the interval [r0, r∞] this is a smooth reduction, and the final form of the initial velocity
profile is

u†‖(x, y) =


u†(x, y) if r < r0

m(r) ·u†(x, y) if r0 ≤ r ≤ r∞
0 else

(4.2.15)
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4.2. Initialization of a TC-like vortex
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Fig. 4.2.: Same as in figure 4.1, but considering the decay of velocity. Velocity and
vorticity profiles are identical with 4.1 for r ∈ [0, r0]. Note the different unit for potential
vorticity.

demonstrated in figure 4.2. These bounds are reasonable since the undisturbed vortex
stretches over twice the synoptic scale, and there is enough room towards the boundary
for a slow decay of velocity. Accordingly, the vertical vorticity is

q†‖(r) =


q†(r) if r < r0

m(r) · q†(r) +m′(r) ·u†ϑ(r) if r0 ≤ r ≤ r∞
0 else

(4.2.16)

In accordance with the considerations on total circulation in 3.3.2.1 we also find for this
profile ∫ r∞

0
rq†‖(r)dr = 0, (4.2.17)

at this point circulation and u†ϑ,‖(r∞) vanish (3.3.5).

The quasi-geostrophic model also well describes the outer synoptic-scale flow for more
general setups, however we do not consider non-zero far-field flow in this work.

4.2.3. Vertical distribution of the horizontal vortex displacement

Picking up the vertical degree of freedom we will discuss two different setups. The varia-
tional profile has an amplitude A and is smooth regarding its application in atmospheric
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4. Vortices under environmental shear

flows, e.g. α(z) is equal to

αc(z) = A cos
(
π
z

H

)
or (4.2.18a)

αl(z) = A
(

2
z

H
− 1
)
, (4.2.18b)

where H denotes the height of the domain. The initial position of the vortex center
X(z, 0) is complemented with a vertical variation, e.g.

X(z, 0) = α(z) (i+ j) (4.2.19)

displacing the vortex centerline. If α(z) is different from zero the vortex will be displaced
horizontally, but its structure is unchanged. Our goal is to observe the evolution in time,
and further the role the different profiles play. This type of experiment is referred to
as free-alignment of the vortex, Reasor & Montgomery (2001) discussed the linear case.
We set the amplitude A = 80km or even A = 160km which is on the order of the radius
of maximum wind indicating a rather strongly tilted vortex.
The displaced centerline at initialization could physically be the result of an imposed
shear flow.

4.3. Implementation

Following the general framework introduced in the preceding sections the numerical
implementation of this problem is the next step to take. We have seen in 3.2 that the
pseudo-incompressible model in EULAG is well suited for vortical flows. The background
state with Θ(z) and ρ(z) is initialized appropriately, as described in 3.1.4. Specifically,
a stably stratified fluid is the basis, suppressing mean variations of vertical velocity, and
the stability parameter (3.1.7) is

s =
N2

g
(4.3.1)

with a constant bouyancy frequency N . The model parameters from table 4.1 are in-
serted, and the 4000km × 4000km × 10km domain is considered on a grid with 208 ×
208× 20 points. In the vertical direction the boundaries are impermeable, consistently
with the properties of the troposphere: It is bound by the tropopause on top, a layer of
constant potential temperature below the stably stratified stratosphere. Due to the tem-
perature inversion incoming waves are reflected and refracted, the tropopause strongly
diminishes internal waves. The chosen time step is ∆t = 300s, leading to an initial
maximum Courant number of C ≈ 0.3. Due to the problem setup the Courant number
is very sensitive to vertical velocity, since the vertical spacing is much smaller than the
horizontal one. Therefore, we might need to adjust the vortex configuration to fit in the
same numerical model, e.g. the amplitude of displacement.

4.3.1. Infinite domain

As explained in 4.2.2 the vortex should not be influenced by boundary effects. Therefore,
we need to imitate an infinite domain. Besides the prescribed zero velocity at the
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4.4. Aligning vortex

horizontal boundaries we suppress their interaction with the inner domain using an
absorber. The previous calculations for gravity waves provide a range of time scale tR
and thickness λR of the absorber. Following Klemp & Lilly (1978) we decide for a much
bigger absorber with tR = 1500s and λR = 750km at the horizontal boundaries.

4.3.2. Resolving the vortex core

In order to determine the circumferential velocity but also for technical reasons that will
become clear when discussing diabatic vortices we need to extract the centerline X(z, t)

from the data, its tilt ∂X(z,t)
∂z is then calculated with central differences. Boundary

effects strongly influence the determination of the vortex center that is initially placed
in the middle of the domain, and we consider horizontally only the innermost 10% of
the domain for the calculation. This subset is a reasonable restriction regarding the
initial displacement, not exceeding 160km for each point on the centerline, and the
narrow distribution of vorticity in figure 4.2 within this area: it is strictly positive and
above 200km already down more than 99% of its maximum value. For vortices that
experience a stronger tilt this might lead to errors, we will keep this in mind and return
to the question later. Then, with Σ = [−200km, 200km]2 the method presented in 3.3.1,
equation (3.3.2), gives the centerline, and the tilt is calculated with central differences.
Since our initial vorticity is positive on Σ and the negative values are significantly far
away from ∂Σ, cf. figure 4.2, we expect Ω(z, t) to be non-vanishing also in the later
course of the simulation. Subsequently, the azimuthal velocity is calculated as described
in 3.3.2 (3.3.5), utilizing the vorticity routine implemented already in EULAG.

4.4. Aligning vortex

Similar to the setup investigated by Reasor et al. (2004) we initially displace the vortex
centerline as directed in (4.2.19) and observe the aligning process. Due to the rotation
a stretched centerline leads to precession, but also the centerline itself might be sub-
ject to change. The influence of the different profiles in (4.2.18) will be analyzed, we
choose A = 80km. Figure 4.3 shows the initial vortex centerline. Note that the displace-
ment is exactly opposite due to the different sign of the linear and the cosine function,
sgn αl = −sgn αc. Since the setup is symmetric this has no influence on our findings.

In the further course of time the vortex precesses and the centerline rotates. Figure
4.4 shows it after three days. The synoptic time scale on which we expect to observe
changes is roughly 1.4 days, requiring the simulations to cover at least several days.
While the initially cosine shaped centerline was not deformed or stretched, in the linear
case after just a few time steps we get a cosine profile. With increasing time the αc
profile remains unchanged up to minor deviations, but the centerline of the initial αl
profile exhibits visible fluctuations. This is highlighted in the x-y plane in figure 4.4.

Further, we observe in all simulations that maximum wind speed and displacement are
reduced within the first time steps, a small mismatch of the initial parameters could
lead to this. The subsequent case runs also exhibit this decrease in the beginning.
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Fig. 4.3a.: Initial vortex centerline with A = 80km and the cosine profile αc(z). Each
discrete point of the centerline is complemented with a colored vector denoting the
strength (colorscale, absolute value) and direction of the tilt.
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Fig. 4.3b.: As in figure 4.3a but for the linear profile αl(z).
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Fig. 4.4a.: Setup as in figure 4.3a (page 60) but after three days. The cosine profile has
not changed significantly.
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Fig. 4.4b.: As in figure 4.3b (page 61) but for the initially linear profile. The centerline
has now assumed a cosine shape. A significant deviation to an initially straight line is
observed in the x-y plane.
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4. Vortices under environmental shear

The preceding behavior in the numerical simulations can be explained with the findings
of Paeschke et al. (2012): The cosine profile (4.2.18a) is one solution of the centerline
evolution equation, the gravest Eigenmode. Generally, the solution consists of a series
of Eigenmodes, however we suspect that numerical dissipation filters faster oscillating
modes. Consequently, under certain preconditions the centerline of a vortex subject to
displacement will converge to the cosine function. Although the imposed background
state in this case does not lead to a constant-coefficient differential equation we observe
a similar behavior for the gravest mode: The linearly displaced centerline takes on a
cosine shape while the initial cosine profile only changes little. Since the solution to
the centerline equation depends continuously on the coefficients we expect that almost
constant coefficients depict the same principals. The crucial difference lies in the density
(3.1.7b) that is not only an exponential function. However, the product of stability
parameter and height does not exceed 0.1 and to first order

dρ

dz
∼ ρ. (4.4.1)

In that case the coefficients in the centerline equation are constant. A Fourier ansatz in
the Boussinesq case with ρ ≡ ρ0 is presented and leads to a cosine shaped centerline. We
therefore expect any displacement to follow this tendency, as demonstrated in figures
4.3 and 4.4. Therefore, the deviations for αc are smaller than the ones for αl since the
former operates closer to the gravest Eigenmode. Fluctuations can still occur due to a
non-exact fit or numerical dissipation.

Consequently, the following investigation only consists of the initial cosine profile. We
conclude the discussion of the adiabatic vortex at this point, this and future simulations
consider the case A = 160km for αc if not stated otherwise.
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5. Diabatic effects

The preceding analysis focused on adiabatic vortices neglecting the influence of heating
that is generally covered by a source term QΘ in (2.1.14c). In their paper Paeschke
et al. (2012) investigate the influence of asymmetric QΘ on TC tilt and core structure,
giving rise to vortex attenuation or weakening in certain cases. Our numerical approach
focuses on those two specific implications and aims to support their hypothesis. For that
we need an extension to the previous chapter, complementing it with a spatially varying
heating in each time step.

To start with we will outline the theoretical predictions from Paeschke et al. (2012),
followed by a few details on the implementation and numerical caveats. Subsequently,
three different regimes are observed. Conditions for vortex conservation, attenuation or
amplification are tested against the numerical model. Additionally, a narrow heat source
and the connection between tilt and centerline evolution are reassessed.

5.1. Model prediction

In this part we shortly describe the proposed model equations. According to the scaling
presented in table 4.2 we introduce the nondimensional quantities

?
p =

p

pref
,

?
ρ =

ρ

ρref
,

?
Θ =

Θ

T ref
,

?
x =

x

c1lsyn
,

?
z =

z

hsc
, (5.1.1a)

?
u =

u

uref
,

?
t =

turef

c1lsyn
,

?
w =

w

uref

c1lsyn

hsc
,

?
β =

βlsyn

f0
. (5.1.1b)

Compared to the system in section 2.3.1 we require that the horizontal distance is of
order lsyn and the velocity scale is uref, the constant c1 will be determined later.
To start with, we utilize the scaling introduced in 4.1 and highlight the following nondi-
mensional quantities:

(2.3.3c) : M =
uref

cref
, (4.1.4) : Ro =

uref

lsynf0
, (5.1.2a)

(2.3.3d) : Da =
tref

T ref
QΘ,ref, Fr =

uref

Nhsc
(5.1.2b)

where the latter, the Froude number, denotes the ratio of flow and internal wave velocity.
It becomes clear with the scaling of the Brunt-Väisälä frequency,

N2 ∼ g

T ref

∆Θ

hsc
. (5.1.3)
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5. Diabatic effects

Then, the potential temperature can be rewritten utilizing the connection between ver-
tical derivative and N ,

?
Θ = 1 + c2

∆Θ

T ref

(
?

Θ1(
?
z) + Θ̃

)
(5.1.4)

with c2 = O(1). For thermal wind, internal and sound waves there are three different
velocity scales, i.e.

uref = h2
sc

tanϕ0

π/2

N2

f2
0

, cint = Nhsc, cref =

√
pref

ρref
. (5.1.5)

A distinguished asymptotic limit is set by (Klein, 2010)

cint

cref
∼ 1/3 ∼

√
ε,

uref

cint
∼ 1/9 ∼ ε, uref

cref
∼ ε3/2 (5.1.6)

leading to the scaling

M = ε3/2, c2
∆Θ

T ref
= c2

M2

Fr2
= ε, Ro =

ε

f̂0

,
?
β = β̂ε, c1

lsyn

hsc
=

1

ε2
(5.1.7a)

with (f̂0, β̂) = O(1) as ε → 0. Consequently, with c1 set by the limit we find for those
nondimensional quantities from (5.1.1)

?
x =

x

hsc
ε2,

?
t =

turef

hsc
ε2,

?
w =

w

uref

1

ε2
. (5.1.8a)

While a vortex is embedded in an environment with a typical scale of lsyn its typical
core size is much smaller and on the order of lmes. There the gradient wind balance is a
well-suited model with a vortex Rossby number of order unity due to the balance of pres-
sure gradient, centrifugal and Coriolis terms: Romes = umes/f0lmes = O(1). Combined
with the conservation of circulation Γ = O(2πlsynuref) and Ro = O(ε) we recover the
mesoscale lmes = O(

√
εlsyn) where the vortex core structure is resolved. Paeschke et al.

(2012) explain that in both inner and outer flow region the relevant changes happen
on the synoptic time scale tref, reasoned by observed changes in the TCs strength, i.e.
tref = lsyn/uref remains. Due to the factor

√
ε that separates the synoptic and the vortex

core scale we define

δ :=
√
ε, (5.1.9)

this parameter is utilized for an asymptotic expansion. Following these considerations,

δ ≡
√

Ro (5.1.10)

is a valid choice for our numerical approach. The problem setup justifies the use of
cylindrical coordinates, and the horizontal coordinates are split in the vortex centerline

position
?
X and the vortex core scale x̃,

?
x =

?
X(

?
t,
?
z) + δx̃ =

?
X0(

?
t) + δ

(
?
X(1)(

?
t,
?
z) + x̃

)
(5.1.11a)
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5.1. Model prediction

since lmes = O(δlsyn). The centerline is separated in a spatially constant part
?
X0 and

the vortex tilt
?
X(1). Upper indices “(i)” highlight the ith order of the term resulting

from asymptotic expansion of the respective variable. We focus on the following scheme
given by Paeschke et al. (2012), imposing a small heating term:

?
Θ = 1 + δ2

?
Θ1 +O(δ4) (5.1.11b)

?
w = w̃(1) +O(δ) (5.1.11c)

?
uϑ(

?
t,
?
x, z; δ) = δ−1 ?u

(0)
ϑ (

?
t, r̃,

?
z) +O(1) (5.1.11d)

Da

δ2

?
QΘ = δ2

?
Q

(2)
Θ +O(δ5). (5.1.11e)

Consequently, the data is to leading order related to this scaling via

r̃ =
δ3

hsc
r,

?
u

(0)
ϑ =

δ

uref
uϑ (5.1.12a)

∂
?
X

(1)
k

∂
?
z

= δ3∂Xk

∂z
,

?
Q

(2)
Θ =

lsyn

δ4T refuref
QΘ (5.1.12b)

w̃(1) =
tref

hsc
w,

?
Θ′1 =

1

δ2

hsc

T ref

∂Θ

∂z
(5.1.12c)

where
?
Θ′1 = d

?
Θ1/d

?
z and r̃ =

?
r/δ. The Fourier expansion of functions F of ϑ is

F (ϑ) = F0 +
∑
n

(Fn1 sin(nϑ) + Fn2 cos(nϑ)) (5.1.13)

and applied to both vertical velocity and heating, indicated by the lower indices. For this
specific setup of sufficiently weak heating we find the core structure evolution equation:

∂
?
u

(0)
ϑ

∂
?
t

+ w̃
(1)
0

∂
?
u

(0)
ϑ

∂
?
z

+
?
u

(2)
r,00

(
∂
?
u

(0)
ϑ

∂r̃
+

?
u

(0)
ϑ

r̃
+

?
f0

)
= −?u(2)

r,∗

(
?
u

(0)
ϑ

r̃
+

?
f0

)
, (5.1.14a)

with w̃
(1)
0 =

?
Q

(2)
Θ,0
?
Θ′1

, (5.1.14b)

?
u

(2)
r,∗ =

1

2

∂ ?
X(1)

∂
?
z

w̃
(1)
12 +

∂
?
Y (1)

∂
?
z
w̃

(1)
11

 (5.1.14c)

and
?
u

(2)
r,00 = −1

r̃

∫ r̃

0

r′

?
ρ0

∂

∂
?
z

 ?
ρ0

?
Q

(2)
Θ,0
?
Θ′1

 dr′, (5.1.14d)

and for the vertical velocity modes

w̃
(1)
1k =

1
?
Θ′1

 ?
Q

(2)
Θ,1k + (−1)k

∂
?
X

(1)
k

∂
?
z

(
?
u

(0)
ϑ

)2

r̃

(
?
u

(0)
ϑ

r̃
+

?
f0

) . (5.1.15)
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5. Diabatic effects

This result from the analysis in Paeschke et al. (2012) recovers the findings from Jones
(1995) and Frank & Ritchie (1999): it relates vortex tilt with asymmetric potential tem-
perature and vertical velocity patterns for adiabatic TCs.

Assuming that the heat source is solely composed of 1-modes, i.e.

?
Q

(2)
Θ (r̃, ϑ,

?
z,
?
t) =

?
Q

(2)
Θ,11 sinϑ+

?
Q

(2)
Θ,12 cosϑ, (5.1.16)

the core structure will be the same for each level
?
z, and w̃

(1)
0 = 0 and

?
u

(2)
r,00 = 0. In that

case, the azimuthal velocity evolves according to the simplified equation

∂
?
u

(0)
ϑ

∂
?
t

= −?ur,∗

(
?
u

(0)
ϑ

r̃
+

?
f0

)
, where (5.1.17a)

?
ur,∗ =

1

2

1
?
Θ′1

∂ ?
X(1)

∂
?
z

?
Q

(2)
Θ,12 +

∂
?
Y (1)

∂
?
z

?
Q

(2)
Θ,11

 (5.1.17b)

dropping the upper order index for
?
u

(2)
r,∗ and using (5.1.15) to have

?
ur,∗ depend on the

heating instead of the vertical velocity.

Moreover, Paeschke et al. (2012) derived the vortex centerline equations of motion, stat-
ing the dependence of the centerline among others on circumferential velocity and its
spatial derivatives. Therefore, we expect that the tilt changes with azimuthal velocity
and heating. In detail, for this case of a barotropic vortex and vanishing shear flow,
inducing motion solely from the initial displacement, Paeschke et al. (2012) predict that
temporal and spatial change of the centerline are orthogonal, i.e.

∂X

∂t
·

∂X

∂z
= 0. (5.1.18)

Our goal is to support the stated evolution equations for core structure and centerline
with a numerical model. Figures 5.1 show the initial setup and the quantities that we
observe in this context. The maximum initial tilt imposed is A = 160km but we observe
in figure 5.1a a difference of about 30 kilometers, i.e. less than two grid spacings. This
is due to the choice of the averaging domain Σ = [−200km, 200km]2 (cf. section 4.3.2),
the centerline is placed not far from its boundary and the integral measure leads to
stronger deviations. However, this is true for any center point close to the boundary,
and judging from the otherwise consistent cosine shape the initial vortex is well suited
for our following numerical investigations.

5.2. Implementation

In order to extend the preceding simulation of an adiabatic vortex in EULAG only few
changes are necessary. We start with the general idea of the adaption and explain how
the presented variables in 5.1 are inserted.
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Fig. 5.1a.: Initial vortex centerline. The maximum displacement of 160km for a single
vertex is not reached.
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Fig. 5.1b.: Initial azimuthal velocity profile.
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5.3. Vertical motions under heating

The method of Strang splitting that is used in EULAG was briefly outlined in 3.1.3. We
will utilize this structure in order to modify the potential temperature according to the
conservation of energy (2.1.14c), applicable to any of the available numerical models.
With the Euler method we create a function that integrates and sets the potential
temperature at half time steps, before and after advection considering the influence of
source terms. The discretized variables read

Θ�n+1/2 = Θ�n +
∆t

2
QΘ
�
,n. (5.2.1)

In that way, we place this function in the regular EULAG routine twice for each time
step, in each call accounting for heating in half a time step.

A question that remains is the choice of the time step. Potential temperature changes
in time according to (5.2.1), which in turn gives rise to gravity waves and vertical mo-
tion, section 2.2.3, since the heating will generally differ for the vertical layers, i.e.
QΘ(r, ϑ, z, t). The time scale of gravity waves is determined by the Brunt-Väisälä fre-
quency, and if the time step is bigger than N they are not resolved explicitly. This is
consistent with the asymptotic approach where the internal waves are suppressed for
sufficiently strong mean temperature stratification. However, we use the semi-implicit
handling of bouyancy in EULAG in order to retain the influence of gravity waves on the
flow. It leads to robust solutions despite N∆t > 1.

For the numerical model we use ∆t = 300s, although this does not satisfy N∆t < 1 we
find that the results do not differ significantly to the ones with ∆t = 10s. This is a sign
for consistency of our approach and justifies the further use of ∆t = 300s. At every eight
hours, i.e. in multiples of 96 time steps, we observe the characteristic variables of the
system. The time is given in days, and non-integer values are rounded to one decimal
place, leaving the possible last digits 0, 3 and 6.

As a remark, imposing this diabatic source happens quasi-stationary, in contrast to a
pulse-like behavior. It will become clear later on regarding the specific term of interest,
e.g. Q in figure 5.2b: It is of the order 10−5Ks−1, and nondimensionally the heat source
is also small, ∆tQ/T ref = O(10−5). The theory presented in Paeschke et al. (2012)
considers for the vortex core only quasi-stationary processes due to the aforementioned
characteristic time scale tref versus lmes/umes = δ2tref.

5.3. Vertical motions under heating

The analysis in 5.1 predicted a direct connection between diabatic source and verti-
cal velocity that we aim to reproduce numerically. If not stated otherwise the initial
displacement amplitude is A = 160km.
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5. Diabatic effects

5.3.1. Suppressing vertical draft

We utilize the theoretical connection between vertical velocity and diabatic source and

?
Qk(r̃, ϑ,

?
z,
?
t) := (−1)k+1∂

?
X

(1)
k

∂
?
z

(
?
u

(0)
ϑ

)2

r̃

(
?
u

(0)
ϑ

r̃
+

?
f0

)
, (5.3.1a)

and set

?
Q

(2)
Θ,1k =

?
Qk (5.3.1b)

hoping to suppress w̃
(1)
1k according to (5.1.15). Numerically, we would hope to see vertical

velocities that are an order of magnitude smaller compared to the case where QΘ = 0.
However, we did not observe a significant difference in the magnitude of w in our model.
A possible explanation for this is a dominant 0-mode of vertical velocity that also occurs
for QΘ = 0 despite (5.1.14b). Then, the influence of 1-modes is negligible and cannot
be measured in this context.

Instead, we analyze the vertical velocity pattern for QΘ = 0 and compare it to the
heating pattern proposed in (5.3.1).

5.3.2. Weak temperature gradient approximation

On mesoscales the weak-temperature-gradient model is commonly used (Klein et al.,
2010), stating at leading order

w̃(1)
?
Θ′1 =

?
Q

(2)
Θ . (5.3.2)

This is consistent with the 0-mode relation in (5.1.14b). It means that to leading order
the pattern of heating and vertical velocity agree, and the validity of (5.1.15) for 1-modes
is evaluated by the shape. Therefore, an alternative to comparing the magnitude of w

for
?
Q

(2)
Θ,1k = 0 and

?
Q

(2)
Θ,1k =

?
Qk is to compare the pattern of w for

?
Q

(2)
Θ,1k = 0 with the

pattern of
?
Qk. According to (5.1.15) and (5.3.1) the vertical velocity w̃

(1)
1k for

?
Q

(2)
Θ,1k = 0

exhibits the same mode structure as
?
Qk up to a sign.

This is now subject to numerical investigation, starting from the case highlighted in
figures 5.1. An adiabatic vortex is modeled and the corresponding heat source via (5.3.1)
is only calculated but not imposed. Figures 5.2 and 5.3 show the vertical velocity for
?
Q

(2)
Θ,1k = 0 and

?
Qk at two different times. Indeed we observe that their dipole structure

moves with the same speed and their sign is exactly opposite. Further, the vertical
velocity profile is slightly disturbed, the oscillations might occur from small instabilities
inducing vertical motion.
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Fig. 5.2a.: Emphasizing the relationship between adiabatic vertical velocity w and Q
after nine days. The vertical velocity is smoothed with a simple Gaussian filter.
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Fig. 5.2b.: Diabatic heating Q is to be compared with w in figure 5.2a (page 73). The
dipole structure of both w and Q variables coincides up to the sign.

74



5.3. Vertical motions under heating
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Fig. 5.3a.: Same as figure 5.2a (page 73), but after 17 days.

75



5. Diabatic effects

-600 -400 -200 0 200 400 600

x [km]

-6

-4

-2

0

2

4

6

Q

[

K s

]

(x
=

−
0.
5∆

x
,z

=
10
∆
z
)

×10
-6 Time[days]=17.0

-600 -400 -200 0 200 400 600

y [km]

-6

-4

-2

0

2

4

6

Q

[

K s

]

(y
=

−
0.
5∆

y
,z

=
10
∆
z
)

×10
-6

-600

-400

-200

0

200

400

600

x
[k
m
]

-600 -400 -200 0 200 400 600

y [km]

-500
0

500

x [km]

-500

0

500

y [km]

0

5

10

z
[k
m
]

Q

[

K
s

]

-6

-4

-2

0

2

4

6

×10
-6

Fig. 5.3b.: Same as figure 5.2b (page 74), but after 17 days.
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5.4. Core evolution

5.4. Core evolution

Similar to the preceding section we will now impose different diabatic source terms, all
solely composed of 1-modes such that we expect the simplified core structure evolution

equation (5.1.17) to hold. Accordingly,
?
ur,∗ is the forcing for the circumferential velocity

?
u

(0)
ϑ , and since

?
u

(0)
ϑ , r̃,

?
f0 > 0 the sign of

?
ur,∗ will determine if it has strengthening or

weakening character. Regarding (5.1.17b) tilt and heat source play a major role in this.

5.4.1. Stationary core structure

At this point we discuss the cases where
?
ur,∗ = 0, leading to a core structure that remains

unchanged in time, cf. (5.1.17). Note that these profiles are nevertheless subject to
horizontal advection. Besides the obvious choice of QΘ ≡ 0, i.e. the adiabatic case,

certain Fourier coefficients also lead to a time-independent
?
u

(0)
ϑ . We remember the case

with (5.3.1), that implies

?
ur,∗ =

1

2

1
?
Θ′1

−∂ ?
X(1)

∂
?
z

∂
?
Y (1)
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?
z

+
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?
Y (1)

∂
?
z
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?
X(1)

∂
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z


(
?
u

(0)
ϑ

)2

r̃

(
?
u

(0)
ϑ

r̃
+

?
f0

)
= 0 (5.4.1)

i.e. a stationary core structure. While we could not specifically show the modal relation
of w and QΘ we indirectly use it to arrive at the simplified core structure evolution
equation. We indeed observe that this case corresponds to zero forcing, the azimuthal
velocity is changing in time only slightly, its profile is almost constantly advected (figure
5.4). Most of the decrease in maximum wind speed is happening within the first time
steps, possibly due to a small mismatch of the initial setup. Moreover, the vortex cen-
terline precesses but is not deformed significantly. It solely rotates and keeps its fixed
shape. This is in agreement with the theoretical dependence of the centerline: a sym-
metric heating pattern and a constant core structure sustain in an otherwise unchanged
environment the centerline (Paeschke et al., 2012).
We refer the reader to appendix A.1 where an excerpt of the velocity, pressure and
potential temperature profiles for this case are shown.

5.4.2. Attenuation

Subsequently, we consider a certain modification of the diabatic term.
We note that due to the Fourier representation (5.1.16) rotating the heat source by π/2
exchanges the sine and cosine coefficients and possibly the sign,

?
Q

(2)
Θ

(
r̃, ϑ± π

2
,
?
z,
?
t

)
= ∓

[
?
Q

(2)
Θ,11 cosϑ+

?
Q

(2)
Θ,12 sinϑ

]
. (5.4.2)

The specific choice of the diabatic heat source resulted in a vanishing forcing in (5.4.1),

horizontal and vertical tilt were multiplied with each other. If instead
?
Q

(2)
Θ is rotated by
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Fig. 5.4a.: Vortex centerline after more than 23 days. Stationary core structure.
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Fig. 5.4b.: Azimuthal velocity in case of stationary core structure.
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π/2 we obtain a contribution of the squared absolute value of the tilt,∣∣∣∣∣∣∂
?
X(1)

∂
?
z

∣∣∣∣∣∣
2

=

∂ ?
X(1)

∂
?
z

2

+

∂ ?Y (1)

∂
?
z

2

. (5.4.3)

Consequently, we will distinguish two different forcings, corresponding to a rotation by
±π/2:

?
u±r,∗ = ∓ 1

2
?
Θ′1

∣∣∣∣∣∣∂
?
X(1)

∂
?
z

∣∣∣∣∣∣
2
(
?
u

(0)
ϑ

)2

r̃

(
?
u

(0)
ϑ

r̃
+

?
f0

)
. (5.4.4)

If rotated by +π/2 the forcing is negative, i.e.
?
ur,∗ =

?
u+
r,∗ < 0, and vice versa. In the first

case we expect a weakening of the azimuthal velocity and thus of the vortex strength.
Additionally, the centerline will change in time and space. We observe in figures 5.5
that the centerline straightens and the tilt is thus shrinking. Further, the precession
amplitude decreases. However, the velocity (5.5b) decreases only slightly and slowly in
time. Since the forcing depends on the tilt, with vanishing tilt the forcing will decrease.

If the forcing is chosen ten times as big, i.e.
?
ur,∗ = 10

?
u+
r,∗, we observe a faster reduction

in velocity, see figures 5.6. After more than 23 days the maximum azimuthal velocity
differs by about 0.5ms−1 from the preceding regime in figure 5.5. The tilt is almost zero
everywhere, thus is the heat source and the forcing (additional figures are presented in
appendix A.2). Consequently, the change in azimuthal velocity stagnates, in agreement
with the evolution equation.

5.4.3. Amplification

In the second case introduced in (5.4.4) we have
?
ur,∗ =

?
u−r,∗ > 0, i.e. an intensifying

vortex: The azimuthal velocity, and with it the maximum wind speed, are expected to
grow. At this point we face the challenge of an exploding Courant number due to the
problem setup since the increase in vertical velocity is high. Additionally, the domain Σ
becomes too small with an initial displacement of already 160km and a likely increase.
Therefore, we consider for this case only A = 80km, the initial setup does not differ
vastly from figures 5.1 and we refer the reader to appendix A.3 for the respective plots.

Figure 5.7 shows that as theoretically predicted the amplitude of precession increases
and the centerline is deformed. These are, after nine days and with regards to later
times, the biggest displacement and velocity of a single system. Up to now, the vertical
velocity exhibits a dipole structure similar to the one for the neutral forcing (figure 5.2a)
but with stronger up- and downdrafts. Shortly after, this structure changes immensely
in the observed vertical mid-level, cf. figure 5.8a after 9.3 days. More than two days
later, after 11.7 days, at the same level we find a split dipole in figure 5.8b. While it
is unclear whether an incipient stage TC would survive such long, we will discuss the
abrupt change in dynamics in the following to better understand the observed event.
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Fig. 5.5a.: Centerline of weakening vortex. The amplitude has decreased significantly.
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Fig. 5.5b.: Azimuthal velocity of weakening vortex. A significant decrease in velocity
compared to the initial state is observed at mid-level.
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Fig. 5.6a.: Centerline of extremely weakened vortex. The centerline is straight up to
small deviations.
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Fig. 5.6b.: Azimuthal velocity for extremely weakened vortex. The maximum value is
even lower than for the simple weakening regime in figure 5.5b (page 82), however a
further decrease is not observed.
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5.5. Centerline evolution

For the critical impact at 9.3 days we further examine in figures 5.9 azimuthal velocity
and pressure. The latter shows a spot of higher pressure in the top region, it will vanish
not long after. For uϑ we observe a low value at the bottom of the domain. During
this time, the centerline is distorted, it exhibits a cusp and upper and lower part seem
to evolve independently. Figures 5.10 show centerline, azimuthal velocity and pressure
after 22.3 days, long after the impact. The vertical velocity decreased vastly in the
levels that we observe. Two different vortex parts can be distinguished with regards to
the centerline and the pressure profile. The levels considered for the azimuthal velocity
belong to the vortex in the low layer, we find that it is much smaller than before the
impact and it oscillates just slightly around 6ms−1.

After the splitting event both vortices retain the precession, but the second cell in the
top layer drifts further away and the pressure in its center increases. While the tilt of
the centerline decreases the vortex itself moves within the inner domain.

The sudden impact and its consequences can be understood with help of the pressure
profile and the azimuthal velocity long after it (figures 5.10): At the mid-level height
the circumferential velocity is much smaller than at the bottom, and the extent of the
pressure drop indicates that the storm did split under shearing. The ongoing positive
forcing has reached a point where the vortex could not sustain the shear anymore and
drifted apart. The remaining cell at the lower vertical layer is not as tall anymore and
does not exhibit a growing azimuthal velocity, yet is stronger than the vortex in the
upper layer.

However, it is not certain if this is a realistic szenario for a TC in the incipient regime,
by that time it might have faded or turned into a mature hurricane due to environmental
disturbances.

5.5. Centerline evolution

The most recent result on the positively driven vortex suggested that the centerline will
not only be conserved, stretched or compressed. Instead, it can be torn apart with the
vortex itself. In the following part we will take a closer look at the influence of a local
heat source predominantly in the region of the centerline and the relation of tilt and
centerline evolution in time.

5.5.1. Local driving

An option to construct a heat source that mainly influences the inner part of the vortex
is through complementing the source term (5.4.2) with a Gaussian, e.g.

Q
(2)
Θ,1k =

Qk
(
r, ϑ− π

2
, z, t

)
√

2πrC
exp

[
−1

2

(
r

rC

)2
]
. (5.5.1)

The radius rC is the standard deviation, and we choose rC = 200km. This locally drives
the vortex and potentially we find a different behavior than for the overall intensifying
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5. Diabatic effects
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Fig. 5.7a.: Vortex centerline of intensifying vortex. We observe a wide stretched center-
line starting from a displacement of 80km going now up to about 150km.
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5.5. Centerline evolution
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Fig. 5.7b.: Intensifying regime, azimuthal velocity. We see here one of the highest values
reached within the time series.
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Fig. 5.8a.: Critical event, this “impact” becomes clear when looking at the vertical
velocity. It highlights up- and downdrafts in the vortex center.
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5.5. Centerline evolution
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Fig. 5.8b.: Vertical velocity of intensifying vortex 2.4 days after the impact. The main
dipole structure is visible again, however it looks like two dipole structures were mixed.
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Fig. 5.9a.: Intensifying regime, azimuthal velocity at time of impact. We highlight the
drop in azimuthal velocity at the bottom of the domain.
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5.5. Centerline evolution
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Fig. 5.9b.: Intensifying regime, pressure at time of impact. At the top level a spot of
higher pressure appears but will not be distinguishable at other time splits.
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Fig. 5.10a.: Vortex centerline of intensifying vortex long after impact. Between 6km
and 8km height we recognize a sudden change in shape, indicating that these are in fact
two independent centerlines for two vortices.
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5.5. Centerline evolution
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Fig. 5.10b.: Intensifying regime, azimuthal velocity long after impact. The highest value
is found at zero altitude. The structure of two maxima corresponding to the radius of
maximum wind is retained within the considered slices.
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Fig. 5.10c.: Intensifying regime, pressure long after impact. The two vortices in lower
and upper layer are clearly visible. The pressure drop in the top vortex is less severe
than in the bottom one.
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5.5. Centerline evolution

vortex. A first observation is that the case with A = 160km is covered well in the
model under these circumstances (initial state cf. figures 5.1). There is no need for a
smaller displacement in order to reduce vertical velocity and retain numerical stability.
Figures 5.11 show centerline, azimuthal velocity and pressure field after 22.3 days. We
also discover a cusp in the centerline and a splitting of the vortex, it takes place after
around 4.3 days, but in this case our time splits do not contain the critical event as
clearly. Compared to the recent case of a split vortex the resulting cell is stronger and
the decrease in velocity at the vertical mid-level is not as severe. Also, the azimuthal
velocity is not further decreasing in time, it seems to vary little around 8ms−1. The
displacement of the bottom vortex remains within 110km distance to the domain center,
it is shown after 22.3 days. Despite the ongoing heating and the less vertical extent the
tilt decreased further, the vortex straightened up and intensified, the maximum wind
speed increased. The centerline plot 5.11a shows that instead motion takes place inside
the central part of the domain.

5.5.2. Centerline evolution

Another instructive equation was derived by Paeschke et al. (2012) concerning the evolu-
tion of the centerline, their equation (6.2), a specific implication being the orthogonality
of spatial and temporal differences (5.1.18). In leading order they find

∂2X(1)

∂z2
= κn +O(δ) and k = τ + o(1) (5.5.2)

with curvature κ, normal vector n and tangential vector τ . Therefore, the tilt is per-
pendicular to the terms involved in the differential equation for the centerline, and for
a constant X0 it follows

∂X

∂t
·

∂X

∂z
= 0. (5.5.3)

We add to the centerline plot another set of vectors denoting ∂X
∂t , also calculated with

central differences. Moreover, we determine

cos∠

(
∂X

∂t
,
∂X

∂z

)
(5.5.4)

to investigate the deviation from orthogonality. Figures 5.12 show the result for two
cases that we already discussed, the neutral and the positive forcing. We indeed observe
that for almost all time steps the difference to a right angle stays below 2%.

5.5.3. Future work

It is worthwhile to collect more data in order to observe specific events such as the split-
ting of a vortex under strong shear. Also, the transition phase could be resolved higher.
This case in particular would benefit from higher vertical resolution. This however re-
stricts the time step and we need more computing resources to cover the same range of
system time.
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Fig. 5.11a.: Vortex centerline after 22.3 days. Concentrated heating on the inner 200km
for an initial displacement of A = 160km. Note the cusp of the centerline above 6km.
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Fig. 5.11b.: Azimuthal velocity after 22.3 days. Concentrated heating on the inner
200km for an initial displacement A = 160km.
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Fig. 5.11c.: Pressure profile after 22.3 days. Concentrated heating on the inner 200km
for an initial displacement A = 160km.
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Fig. 5.12a.: Neutral forcing on the vortex, initial displacement of 160km. Red vectors
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Fig. 5.12b.: Positive forcing on the vortex with an initial displacement of 80km. Tilt
(red) and centerline evolution (blue) are denoted by vectors and their angle is determined
(lower right corner).
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5.6. Conclusion

Another concrete example is the local driving of a vortex that finally lead to two vortices
as well. One could implement a strong and smooth decay away from the central part
of the vortex and only impose a Gaussian further away from it. Under certain circum-
stances this could prevent the vortex splitting.

Besides the numerical experiments presented here many more options could be tested
concerning domain setup, initialization of the vortex, data extracting routines just to
name a few. A particularly interesting aspect is the extension to moist processes that
play a crucial role in the dynamics of tropical cyclones. A tailored asymptotic analysis
needs to be conducted along the lines of the work by Paeschke et al. (2012), numerical
experiments could complement the findings.

5.6. Conclusion

A thorough parameter study was conducted and supports the findings of Paeschke et al.
(2012) concerning the Eigenmode of precession and the influence of diabatic heating
patterns on vortex core structure. A TC-like vortex embedded in a zero far-field en-
vironment is considered and displaced initially, aligning subsequently. If the centerline
vertically attains a cosine shape it will persist up to small fluctuations, while a linear
curve is deformed quickly. Paeschke et al. (2012) proposed an Eigenmode of the cen-
terline that is a linear function of cosine. Moreover, our numerical experiments support
that the heating follows the same principle for each of the three different regimes: vortex
conservation, attenuation and intensification. Only the orientation of the asymmetric
diabatic source decides on the respective case. For the centerline we recover orthogonal-
ity of temporal and spatial derivative to a large extent.

During the vortex amplification we observed that at some point the vortex cannot sustain
the vertical shear and splits. The event is characterized by extra up- and downdrafts, a
decrease of azimuthal velocity at the bottom and a short pressure increase in the top layer
close to the boundary. In the aftermath the centerline would need to be pictured in two
separate parts, highlighting that now we face two vortices. They remain separate and
both retain the precession resulting from the initial tilt, the overall setup stabilizes and
the maximum wind speed is not increasing further. Since the tilt is reduced significantly
in the proccess for both remaining vortices the influence of the heating is also diminished.

In case of locally strong driving we observe a similar behavior, however leading to a
stronger and slightly taller vortex in the lower layer, the cut in vertical altitude is best
seen in the vertical pressure profile. The motion range of the centerline is also slightly
smaller.

Storm splitting under environmental vertical shear typically leads to counterrotating
and countermoving vortices (Holton, 2004). However, we do not impose a constant
background wind shear but instead shear the vortex initially. Therefore, we do not
expect such a development, and the similarly built vortices in top and lower layer are
reasonable.
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A. Supplemental material

A.1. Numerical setup

We present here the profiles of velocity, pressure and potential temperature at different
times for an adiabatic vortex. The initial displacement is A = 160km with αc.
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Fig. A.1.: Initial horizontal velocity u.
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Fig. A.2.: Initial horizontal velocity v.
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A.1. Numerical setup
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Fig. A.3.: Vertical velocity w after 10 days.
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A.1. Numerical setup
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A. Supplemental material

A.2. Extremely weakening regime

In part 5.4.2 we discussed the weakening regime with a ten times higher forcing. At
this point we show that not only the tilt has almost vanished but also has the vertical
velocity (A.6a) and the heating (A.6b).
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Fig. A.6a.: Vertical velocity for extremely weakened vortex after 23.7 days. The velocity
is too small to reach any of the fixed contour line values inside the range.
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A.2. Extremely weakening regime
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Fig. A.6b.: Diabatic source term for extremely weakened vortex after 23.7 days.
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A. Supplemental material

A.3. Initial centerline and azimuthal velocity for A = 80km

The setup is slightly changed for a maximum displacement of 80km for a single centerline
vertex and shown in figures A.7.
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Fig. A.7a.: Initial vortex centerline for A = 80km, considered only for positive forcing
on the whole domain.
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A.3. Initial centerline and azimuthal velocity for A = 80km
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Fig. A.7b.: Initial azimuthal velocity for A = 80km, considered only for positive forcing
on the whole domain.

111





References

Charbonneau, Paul & Smolarkiewicz, Piotr K. 2013 Modeling the Solar Dy-
namo. Science 340 (6128), 42–43.

Clark, Terry L. 1977 A small-scale dynamic model using a terrain-following coordi-
nate transformation. Journal of Computational Physics 24 (2), 186–215.

Clark, Terry L. & Farley, R. D. 1984 Severe Downslope Windstorm Calculations
in Two and Three Spatial Dimensions Using Anelastic Interactive Grid Nesting: A
Possible Mechanism for Gustiness. Journal of the Atmospheric Sciences 41 (3), 329–
350.

Dunkerton, Timothy J., Montgomery, M. T. & Wang, Z. 2009 Tropical cyclo-
genesis in a tropical wave critical layer: Easterly waves. Atmospheric Chemistry &
Physics 9 (15).

Durran, Dale R. 1989 Improving the Anelastic Approximation. Journal of the Atmo-
spheric Sciences 46 (11), 1453–1461.

Durran, Dale R. 2008 A physically motivated approach for filtering acoustic waves
from the equations governing compressible stratified flow. Journal of Fluid Mechanics
601.

Durran, Dale R. 2010 Numerical methods for fluid dynamics: With applications to
geophysics, , vol. 32. Springer.

Frank, William & Ritchie, Elizabeth 1999 Effects of environmental flow upon
tropical cyclone structure. Monthly weather review 127 (9).

Holton, James R. 2004 An introduction to dynamic meteorology , 4th edn. Burlington,
MA: Elsevier Academic Press.

Israeli, Moshe & Orszag, Steven A. 1981 Approximation of radiation boundary
conditions. Journal of Computational Physics 41 (1), 115–135.

Jones, Sarah C. 1995 The evolution of vortices in vertical shear. I: Initially barotropic
vortices. Quarterly Journal of the Royal Meteorological Society 121 (524), 821–851.

Kadioglu, Samet Y., Klein, Rupert & Minion, Michael L. 2008 A fourth-order
auxiliary variable projection method for zero-Mach number gas dynamics. Journal of
Computational Physics 227 (3), 2012–2043.

Klein, R. 2008 An unified approach to meteorological modelling based on multiple-
scales asymptotics. Advances in Geosciences 15, 23–33.

113



References

Klein, Rupert 2009 Asymptotics, structure, and integration of sound-proof atmo-
spheric flow equations. Theoretical and Computational Fluid Dynamics 23 (3), 161–
195.

Klein, Rupert 2010 Scale-Dependent Models for Atmospheric Flows. Annual Review
of Fluid Mechanics 42 (1), 249–274.

Klein, Rupert, Achatz, Ulrich, Bresch, Didier, Knio, Omar M. & Smo-
larkiewicz, Piotr K. 2010 Regime of Validity of Soundproof Atmospheric Flow
Models. Journal of the Atmospheric Sciences 67 (10), 3226–3237.

Klein, Rupert & Vater, Stefan 2003 Mathematische Modellierung in der Kli-
maforschung . Fachbereich Mathematik und Informatik: Freie Universität Berlin.

Klemp, J. B. & Lilly, D. K. 1978 Numerical Simulation of Hydrostatic Mountain
Waves. Journal of the Atmospheric Sciences 35 (1), 78–107.

Kundu, P. K. & Cohen, I. M. 2002 Fluid Mechanics, 2nd edn. Academic Press.

Lipps, Franik B. & Hemler, Richard S. 1982 A Scale Analysis of Deep Moist
Convection and Some Related Numerical Calculations. Journal of the Atmospheric
Sciences 39 (10), 2192–2210.

Nolting, Wolfgang 2014 Grundkurs Theoretische Physik 6 . Berlin, Heidelberg:
Springer Berlin Heidelberg.

Paeschke, Eileen, Marschalik, Patrik, Owinoh, Antony Z. & Klein, Rupert
2012 Motion and structure of atmospheric mesoscale baroclinic vortices: dry air and
weak environmental shear. Journal of Fluid Mechanics 701, 137–170.

Pedlosky, Joseph 1987 Geophysical Fluid Dynamics, 2nd edn. Springer.

Prusa, Joseph M. & Smolarkiewicz, Piotr K. 2003 An all-scale anelastic model
for geophysical flows: dynamic grid deformation. Journal of Computational Physics
190 (2), 601–622.

Prusa, Joseph M., Smolarkiewicz, Piotr K. & Wyszogrodzki, Andrzej A.
2008 EULAG, a computational model for multiscale flows. Computers & Fluids 37 (9),
1193–1207.

Reasor, Paul D. & Montgomery, Michael T. 2001 Three-dimensional alignment
and corotation of weak, TC-like vortices via linear vortex Rossby waves. Journal of
the Atmospheric Sciences 58 (16), 2306–2330.

Reasor, Paul D. & Montgomery, Michael T. 2015 Evaluation of a Heuristic
Model for Tropical Cyclone Resilience. Journal of the Atmospheric Sciences 72 (5),
1765–1782.

Reasor, Paul D., Montgomery, Michael T. & Grasso, Lewis D. 2004 A New
Look at the Problem of Tropical Cyclones in Vertical Shear Flow: Vortex Resiliency.
Journal of the Atmospheric Sciences 61 (1), 3–22.

114



References

Rosa, Bogdan, Kurowski, Marcin J. & Ziemiański, Micha l Z. 2011 Testing
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Summary

The dynamics of atmospheric vortices play a great role in many environmental flow phe-
nomena. When vortices experience vertical shear they persist, even intensify, or weaken,
up to the point that they fade away. Identifying the parameters and conditions that lead
to the respective scenarios is key to understanding the evolution of vortical flows in the
atmosphere. Various temporal and spatial scales are involved and pose new challenges
that simulations can help to resolve. We consider a numerical approach with the flow
solver EULAG that has been successfully applied to a plethora of environmental systems,
addressing the multi-scale behavior of the flow. A series of tests for two-dimensional
setups is conducted first, borrowed from Klein (2009) and Kadioglu et al. (2008) to
double-check EULAG’s performance on concentrated vortical flows. A first application
is the numerical implementation of precessing quasi-modes of three-dimensional atmo-
spheric vortices. Their core structure and centerline change under environmental shear
and are of particular interest for the overall evolution in time. Averaged measures are
implemented in the code to extract these quantities from data without suffering from
numerical oscillations. In a simple model an incipient hurricane is described by an ax-
isymmetric, Gaussian vorticity profile, parameters are the radius of maximum wind and
the corresponding wind speed. Modeling the hurricane on a finite grid requires zero
velocity at the boundary, imitating an infinite domain, which we enforce with an appro-
priate mollifier. Instead of inducing shear flow we displace the vortex centerline initially,
giving rise to a subsequent realignment phase of the vortex. Thereafter, the problem at
hand is implemented and different initial shapes of the vortex centerline are discussed.
Theoretical predictions lead us to an Eigenmode of the precession that is as well covered
in the numerical experiment. Furthermore, the underlying model is supplemented with a
diabatic heat source utilizing EULAG’s design. Our choice of the heating term is based
on the nonlinear matched asymptotic analysis for vortices with large tilt by Paeschke
et al. (2012). Ultimately, our numerical study supports the asymptotic hurricane model
and provides room for enhancement.
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Zusammenfassung

Die Dynamik atmosphärischer Wirbel zu verstehen ist für viele Umweltphänomene
von entscheidender Bedeutung. Ein Wirbel kann in vertikaler Scherströmung beste-
hen bleiben, verstärkt oder abgeschwächt werden. Eine besondere Herausforderung
besteht darin die Parameter und Bedingungen zu bestimmen, unter denen die genan-
nten Szenarien auftreten. Ihnen wird eine besondere Rolle bei der zeitlichen Entwick-
lung von Wirbelströmungen beigemessen. Dass verschiedene zeitliche und räumliche
Skalen involviert sind, erschwert die Suche, mit Hilfe von Simulationen können jedoch
viele Hindernisse überwunden werden. Wir beschäftigen uns mit dem numerischen
Strömungslöser EULAG, der bereits mehrfach erfolgreich bei der Modellierung von
Umweltprozessen angewandt wurde. Insbesondere berücksichtigt er auch das Multi-
skalenverhalten vieler Strömungen. Testreihen mit zweidimensionalen Problemstellun-
gen nach einem Vorbild von Klein (2009) und Kadioglu et al. (2008) werden durchgeführt,
um EULAGs Eignung und Leistung nochmals zu überprüfen. Eine erste Anwendung
besteht in der Implementierung präzessierender Quasi-Moden dreidimensionaler atmo-
sphärischer Wirbel. Unter dem Einfluss von Scherströmungen ändern sich ihre Zen-
trallinie und Kernstruktur, die für die weitere zeitliche Entwicklung von großem Interesse
sind. Um sie anhand von Daten zu bestimmen wird der Code um einige Methoden erweit-
ert, die sich auf gemittelte Größen beziehen und so numerische Oszillationen verringern.
In einem einfachen Modell beschreiben wir einen entstehenden tropischen Wirbelsturm
mit einer achsensymmetrischen Gaußkurve, die die Wirbelstärke repräsentiert. Wichtige
Größen sind die maximale Windgeschwindigkeit und der dazugehörige Radius. Um
ein unendlich ausgedehntes Gebiet zu imitieren wird das Geschwindigkeitsprofil in der
Nähe des Randes mit einer glatten Funktion bis auf Null herunter gesetzt. Anstatt
den Wirbel einer Scherströmung auszusetzen verschieben wir vor dem ersten Zeitschritt
seine Zentrallinie und beobachten die Neuausrichtung. Verschiedene Startprofile werden
implementiert und diskutiert. Auf der Grundlage eines theoretischen Modells finden wir
auch in unserem numerischen Experiment eine Eigenmode der Präzession. Wir erweit-
ern unser Modell, sodass es den Einfluss von Wärmequellen berücksichtigt und machen
dabei von EULAGs Aufbau Gebrauch. Die diabatischen Terme werden auf Grundlage
asymptotischer Analyse von Paeschke et al. (2012) bei Wirbeln mit großer Auslenkung
angewandt. Schlussendlich steht unser numerisches Modell im Einklang mit dem asymp-
totischen Modell eines Wirbelsturms und bietet neuen Raum für Erweiterungen.
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