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Introduction

In this thesis, we address the challenge of model based clustering for the analysis of
large and complex networks by the examples of earthquake networks. Networks are
composed of vertices which can be connected by edges. Edges can be directed or undi-
rected, weighted or unweighted. The edges of the network model the relationships
between the vertices.

Our application for network analysis are the earthquake networks introduced by S. Abe
and N. Suzuki in [1]. In the case of earthquake networks, the vertices are the cells of the
geographic region under consideration and the edges model the successive occurrence
of earthquakes in time and space. By construction, earthquake networks are directed
and have multiple edges which we consider as weighted.

In order to analyse networks we use the approach of model based clustering according
to the Stochastic Block Model (SBM) [51, 52, 108, 97, 35, 84, 73]. Vertices having a
similar edge connection profile are considered as a block or cluster of the SBM, which
is one possibility to define clusters. These blocks or clusters provide a way to analyse
a given network, where each vertex is exclusively assigned to one cluster. There are
parameters for each cluster, which govern the existence, directions and weights of each
edge in the cluster. Thus, the topology and generation of a network can be analysed
with the help of the SBM.

The SBM is a flexible model which can model different types of network structures.
At the same time, the SBM is intuitively interpretable and allows link prediction based
on the clusters and model parameters. The SBM can model hubs which are densely
connected with all or most of the vertices in the network [71]. It can also model sets of
densely linked vertices of the network, often called modules in the literature [71]. The
existence and importance of hubs in earthquake networks was shown in [1]. It is also
possible to model sets of vertices with the SBM which are sparsely linked to each other
but are densely linked to another set of vertices. This is called disassortative linkage
behaviour [71].

We chose the Poisson version of the SBM [84] as our main model because it allows
for the inclusion of edge directions and edge weights which we need for the analysis
of earthquake networks.

We want to estimate the Poisson SBM for a given network without prior knowledge of
the optimal cluster assignments of the vertices, the model parameters and the optimal
number of clusters. For this task we need an inference algorithm and a criterion which
shows which is the best of these values and parameters of the SBM.

Direct optimisation of the likelihood of the SBM is computationally intractable for
larger networks [35, 84]. In addition, we can not simplify the likelihood because the
cluster assignment of each vertex depends on the cluster assignments of all other ver-
tices in the case of the SBM, which is called network interdependency [35, 40]. Thus,
we cannot apply the popular Expectation Maximisation (EM) algorithm [36] for infer-
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2 INTRODUCTION

ence of the SBM [35, 40].

As a solution to solve these difficulties of fast deterministic inference of the SBM, the
application of the Variational EM (VEM) algorithm [62, 55] was proposed in [35]. The
VEM algorithm was expanded to the Variational Bayesian EM (VBEM) algorithm in
[15] and proposed as an inference algorithm for the unweighted, undirected Bayesian
SBM in [50, 72, 73].

The idea of the VBEM inference algorithm is to introduce variational distributions
over the cluster assignments of the vertices and the model parameters. We estimate a
variational bound of the likelihood, which is a functional depending on the variational
distributions.

The variational bound of the VBEM algorithm, also called free energy [50], penalises
the model complexity [15] and the converged free energy is used as a state of the art
model selection criterion for the SBM and other mixture models to determine the opti-
mal number of clusters and cluster assignment [111, 19, 50, 73, 8, 74, 116]. The free
energy is a functional which is optimised dependent on the variational distributions in
an EM like inference algorithm.

The optimisation of the free energy functional of the SBM is a non-convex optimisa-
tion problem, which strongly depends on start values [15, 22, 19, 50, 73].

So, we do not only have to find the global optimum of the free energy for the cluster
assignments of one fixed number of clusters but for all possible numbers of clusters dur-
ing the optimisation of the free energy of the SBM. We take into account this twofold
optimisation problem by combining the inference process for the optimal cluster par-
tition and optimal number of clusters: We start the inference with a cluster partition
where all vertices are assigned to one cluster. Then the vertices of this chosen cluster
is split into two new clusters and optimised. This split is accepted if the free energy
model selection criterion was improved. Our algorithm continues with an optimisation
(refinement) for error correction of the cluster assignments of the vertices of a carefully
chosen cluster. Such an algorithmic approach is also called a divisive algorithm in the
literature [56, 109].

Because we split and optimise the vertices in one cluster or block per step, we called
our algorithm the Blockloading algorithm. Our Blockloading algorithm and its succes-
sors are the first fully divisive algorithms for Variational (Bayesian) EM inference of
the (Poisson) SBM [118, 116].

We saw above that we can only identify a global optimum in the case of the SBM if
we also found the optimal number of clusters. So, we expect to uncover several lo-
cal optima with a number of clusters lower than optimal number of clusters with our
Blockloading algorithm, before the global optimum can be found.We observed in nu-
merical tests and will give examples that some of these local optima are similar in the
sense that with the same number of splits of the 'right’ clusters the global optimum is
identified. We called these local optima favourable local optima.

We focused the algorithmic design of our Blockloading algorithms on efficient splits
and optimisation of those clusters where the identification of such favourable local op-
tima, or values near to it, is likely.

We note that a cluster assignment which corresponds to a favourable local optimum
provides ideal start values for further splits and optimisation of a divisive algorithm to
reach the global optimum.

With the successive splits and refinements of the existing clusters of a cluster assign-
ment which is likely to correspond to a favourable local optimum or state near to it, we
want to find one of the favourable local optima for each number of clusters and thus the
global optimum. Because we check if the converged free energy was improved after
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the optimisation of each cluster (subset), the optimisation process of finding the opti-
mal number of clusters and the optimal cluster assignment is linked, and the optimal
number of clusters is determined automatically by our Blockloading algorithms.

To increase the computational speed of our original Blockloading algorithm, we changed
the way we store clusters which did not improve the model selection criterion anymore.
These efforts resulted in our faster automatic Blockloading and no reset Blockloading
algorithms. For our Blockloading++ algorithm, we introduce an even more sophisti-
cated algorithmic design which focuses even better on splitting and optimising those
clusters where favourable local optima are likely to be discovered. We propose an even
more efficient procedure for the storage of the optimisation results and exploration of
the search tree of clusters to efficiently identify favourable local optima and thus a
global optimum.Thus, our Blockloading++ algorithm combines all our new algorith-
mic features and insights for efficient high quality inference of the SBM.

We proposed the Optimal Gap algorithm to predict during the inference process which
clusters should be chosen for optimisation with our Blockloading algorithm for the
most likely identification of favourable local optima. All our Blockloading algorithms
are based on our BlockVB algorithm for optimised VBEM inference of the cluster as-
signments of subsets of the vertices of the network. For our BlockVB++ algorithm,
which builds upon the BlockVB algorithm, we introduced adaptive informative hyper-
parameters which automatically adapt themselves to the subset of the given network.
Our adaptive informative hyperparameters allow for the use of randomly initialised
start values for the cluster assignments of the vertices which greatly increases the search
space for the start values of the subsets and thus the quality of the results when com-
pared to deterministically initialised start cluster assignments.

Real world networks like earthquake networks often have a large set of sparsely and
irregularly connected vertices, which are called irrelevant in the literature [54]. We
propose the Poisson SBM with irrelevant vertices (SBMIV) which explicitly models
these irrelevant vertices, which are hard to cluster reliably with the normal SBM. For
inference of the Poisson SBMIV we propose the Relevance Blockloading algorithm
building on our previous work. It allows for a multi level identification of irrelevant
vertices. Our Relevance Blockloading algorithm can be employed as a filtering algo-
rithm where the determination of the relevance of vertices is separated from the cluster
assignment. It can also be used as an embedded algorithm where the relevance and
the cluster assignment of vertices are calculated in the same Expectation Step of our
adapted VBEM inference algorithm.

We also introduce a new model selection criterion for the SBMIV, based on the free
energy criterion and our new algorithmic framework. Our new relevance informative
hyperparameters for the identification of the cluster of the irrelevant vertices make the
inference of relevant vertices independent of other algorithms for the initialisation of
start values.

We performed numerical tests of our methods on synthetic networks drawn from an
SBM and an earthquake network to document the outperformance of other existing
methods for inference of the SBM. In those tests, every run of our algorithm performed
substantially better than the best result of the comparable algorithms for solving the
SBM in terms of computational speed and quality of the results. This includes the
Blockmodels package [79] which is the only other state of the art implementation of
variational split-merge algorithms for inference of the SBM we are aware of. We
demonstrated for an earthquake network that our Relevance Blockloading algorithm
for the inference of the SBMIV can reliably identify irrelevant vertices and outper-
forms inference of the normal SBM with respect to the free energy criterion.
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The work in progress on this thesis was published in two technical reports [116, 117].
This thesis contains large parts of these technical reports.
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Chapter 1

Background and Overview

In the introduction we presented an overview of our most important contributions and
insights of this thesis. We continue with an overview of the most important topics,
ordered by chapters, concerning the development of our new algorithms. This includes
a review of important existing inference methods and models for clustering methods
related to the SBM and a discussion of their limitations. Then, we present our contribu-
tions in this thesis in a concise way. We close this chapter with a short summary of the
results of the numerical tests where the superiority of our newly introduced methods
compared to existing methods is documented.

The Stochastic Block Model (SBM) [51, 52, 108, 97, 35, 84, 73] is a well established
and widely used model for the clustering of networks [97, 35, 84, 125, 76]. The topol-
ogy and generation of a network can be analysed with the help of model based clus-
tering. The results of the SBM can be easily interpreted and link prediction of edges
follows easily [97]. Often, only the graph of a network is given without further in-
formation. This is also the case for our main application, the earthquake networks.
Estimation of the SBM consists of exclusively assigning the vertices of the graph to
clusters and inferring the probabilities for the existence of an edge dependent on the
inferred cluster membership of the vertices.

The SBM was shown to be a flexible model in [71] which can identify vertices which
share a common edge connection profile [73]. The SBM can model hubs which are
densely connected with all or most of the vertices in the network [71]. The existence
and importance of hubs in earthquake networks was shown in [1]. It can model sets
of densely linked vertices of the network, often called modules in the literature [71].
It is also possible to model sets of vertices with the SBM which are sparsely linked to
each other but are densely linked to another set vertices, which is called disassortative
linkage behaviour [71].

There are many more models related to the SBM which provide different features like
multiple memberships for vertices [10, 74] or weighted graphs [84]. One can also
model sparsely and irregularly connected vertices as irrelevant [46, 47, 44, 54,74, 117].
The possibility to integrate otherwise known information was presented in [84, 125,
123, 76]. An SBM which corrects for the degree distribution of vertices was proposed
in [65]. The Infinite Relational Model (IRM) [67] can model a potentially infinite num-
ber of clusters according to a statistical process contrary to the SBM where the number
of clusters is fixed. For all these models we face the same basic challenge of reliable
and fast high quality inference we stated at the beginning.

We provide a review of the SBM in chapter 2.

5
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The inference method has to infer the unknown (hidden) cluster assignments of the ver-
tices and to estimate the model parameters of the SBM. This is a difficult task because
the likelihood of the SBM requires the summation over all possible cluster partitions,
which is intractable for bigger networks [35].

Moreover, the cluster assignment of each vertex depends on the cluster assignments of
all other vertices [35, 40] and thus the *The dependency graph of Z [...]" [101] (the
cluster assignments) ’ [...] is a clique.” [101] (fully connected graph). This difficulty
prevents the use of the well established Expectation Maximisation (EM) algorithm
[36], [35, 40].

As one way to overcome this difficulties for the inference of the SBM, the use of the
Variational Expectation Maximisation (VEM) algorithm of [62, 55] was proposed in
[35] for the simple (undirected, unweighted) SBM (Bernoulli SBM) and later adapted
to the directed and weighted SBM with Poisson distributions (Poisson SBM) in [84].
The VEM algorithm was expanded to the Bayesian case with the Variational Bayesian
Expectation Maximisation (VBEM) algorithm in [15]. The VBEM algorithm provides
a tractable variational bound of the intractable likelihood which can be also used as a
state of the art model selection criterion [15] for the SBM [50, 71, 73]. This variational
bound is optimised dependent on a factorised approximating distribution over the hid-
den variables [15].

The VBEM algorithm is convex with respect to each factor of the variational distribu-
tion which leads to monotonic improvement of the variational bound and sure conver-
gence of the algorithm [19, 22]. It was noted in [15, 111, 50] among others, that the
result of the VBEM algorithm can depend on the starting values. This is also true in the
case of the Stochastic Block Model where such examples can easily be found. So the
quality of the result of the VBEM algorithm depends on the choice of the initial cluster
assignments of the vertices and the model parameters [50, 73]. Therefore only conver-
gence to a local optimum is guaranteed by the VBEM algorithm for the SBM, which
shows that it is a non-convex optimisation problem. This is also true for VBEM infer-
ence for other mixture models [111]. Consequently, it is recommended in the literature
[111, 50, 73] to run the VBEM algorithm with different start values and to choose the
best result of these calculations in the hope of finding the global optimum or a solution
near to it. We review the general properties of the EM, VEM and VBEM algorithm in
chapter 3.

A VBEM algorithm for a restricted version of the Bernoulli SBM was proposed in
[50] and for the Bernoulli SBM in [71, 73]. The theory of a general VBEM algorithm
for the Bayesian SBM, restricted to distributions from the exponential family, which
also includes weighted distributions was presented in [8]. An implementation for some
weighted distributions, like the Poisson distribution among others, was provided in [7]
as an accompanying software to [8].

We present our derivation and propositions of the VBEM algorithm for the Bayesian
Poisson SBM following the more general approach of [19, 71] and document the whole
algorithm with all update equations in chapter 4.

The problem of convergence to a local optimum of the VBEM algorithm and other
variational methods is also linked to the problem of model selection of the SBM. Model
selection for the SBM consists of finding the optimal number of clusters, K*, together
with the optimal cluster assignments or cluster partition of the vertices and the model
parameters according to the chosen model selection criterion.
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Model selection criteria like the Akaike Information Criterion (AIC) [11, 19] or the
Bayesian Information Criterion (BIC) [106, 19] cannot be used for model selection
of the SBM because of the computationally intractable likelihood of the SBM as we
saw above [84, 73]. We have to use instead a model selection criteria suitable for the
SBM like the converged variational bound of VBEM (converged free energy / ILvb)
[50, 73], the Integrated Complete Likelihood Criterion (ICL) [18, 35] or the exact In-
tegrated Complete Likelihood Criterion (/CL,y) [29].

For several years until 2014, the following approach, which is also called the batch
approach in the literature [125], was used to apply the VEM and VBEM algorithms for
inference of the SBM with an unknown number of clusters [35, 50, 84, 71, 74]: To find
the best model and the optimal number of clusters of the SBM, K™, using a variational
method, the VBEM algorithm is initialised for different numbers of clusters, K, and
for different initial start values for the cluster assignments of the vertices, Q(‘”“”), to
take into account that the VBEM algorithm converges only to a local optimum.

For all values of the number of clusters, K, under consideration, the converged vari-
ational bound, also called converged free energy [38, 50], of the SBM ([50, 73]) or
another suitable model selection criterion for the SBM is calculated. Then the result
with the optimal converged free energy and its corresponding cluster partition matrix,
Q", and number of clusters, K*, is chosen.

We review the batch algorithm and important state of the art model selection criteria
for the Poisson SBM in chapter 6.

In the algorithmic setup of the batch algorithm, most of the computational time is
used solely for determining the optimal number of clusters and only a fraction of the
time is invested into calculating the optimal cluster assignments of the vertices, Q.
In particular, there is no algorithmic procedure for utilising the information contained
in already calculated cluster partition matrices of the vertices for different numbers of
clusters. These drawbacks of the batch approach and the convergence to only a local
optimum limit the complexity and size of graphs variational methods can handle with
meaningful results.

After research on the VBEM inference of the SBM and the Overlapping Stochastic
Block Model (OSBM), it was even discussed in the outlook of [71] that: ’In future
work, we will investigate Markov chain Monte Carlo techniques as alternative ap-
proaches to estimate the posterior distribution of OSBM. [...] In particular, they appear
to be less dependent on the initialisation of the T matrix than variational approaches.’
[71], where the T matrix denotes the start cluster assignments of the vertices.
Following this suggestion, we have a closer look at Markov chain Monte Carlo (MCMC)
based methods for the inference of models like the SBM. The use of traditional Gibbs
sampling inference, which is a MCMC technique, for the SBM was proposed in [108]
and [97]. It converges theoretically to the true posterior and statistics [62, 97] but con-
vergence is slow in practice and may require a very large number of samples [62].
Therefore the Gibbs sampling inference of [97] is only suitable for networks of up to
two hundred vertices [97, 35, 73].

In the seminal paper [57] (later published as [58]) the application of traditional Gibbs
sampling to a mixture model nearly similar to the SBM was addressed. There it was
noted that: ’Traditional Markov chain Monte Carlo methods for Bayesian mixture
models, such as Gibbs sampling, can become trapped in isolated modes corresponding
to an inappropriate clustering of data points’, [57]. So, the application of traditional
Gibbs sampling inference to a mixture model basically similar to the SBM has in prac-
tice comparable limitations regarding the quality of the results as the application of
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variational methods with the batch algorithm to the SBM.

As a solution the split merge Gibbs sampler was proposed in [57] which replaced the
traditional approach for Gibbs sampling. In the split-merge Gibbs sampler the infer-
ence consists of splitting a randomly chosen existing cluster into two new clusters (split
move) or merging two randomly chosen existing clusters into a new one (merge move).
The split or merge move is then accepted with a certain probability. It was shown
in numerical tests that the split-merge Gibbs sampler outperforms the traditional ap-
proach in terms of quality of the results [57]. This results lead to further research in
the field of split-merge Gibbs sampling and is until today a field of ongoing research
[33, 59, 26, 113].

The split-merge sampler was used as the the basis of an algorithm for inference of the
IRM model in [67] which can at the same time infer the optimal number of clusters and
the cluster assignments [67]. The split-merge sampler of [57] lead to numerous follow
up papers which is until today the basis for the inference of the IRM for example in
[67, 46, 68, 92, 105, 12].

Traditional Gibbs sampling has usually slower convergence than variational methods
like VEM and VBEM [62] and does not scale for large data sets [111]. In addition,
it is more difficult to determine convergence of Gibbs sampling than for variational
methods [62]. This is the reason why variational inference methods were explored as a
faster alternative for MCMC methods in the first place [62, 15, 111, 35, 50, 71].

It was already remarked in [57] that the random selection of the clusters to split or
merge together with dependence on the acceptance probability for the split or merge
move are limitations of their split-merge sampler.

The improvements of the split—-merge Gibbs sampler compared to the traditional Gibbs
sampler for models very similar to the SBM show that split-merge concepts are an op-
tion for the improvement of variational methods, too.

Before we come to split and merge algorithms for variational inference of the SBM, we
have a look at other algorithms, which also use split and merge moves for clustering.
Now, we review split and merge concepts for clustering which are in fact even older
than the split-merge Gibbs sampler of [57] and date at least back to the 1980s [56].
An algorithm which uses split moves is the bisecting K-means algorithm (see e.g.
[109]). The usual inference algorithm for K-means consists of an EM like algorithm
[80, 19] that also converges to a local optimum [19]. Contrary to Gibbs sampling the
K-means algorithm is a deterministic algorithm like variational methods.

In the bisecting K-means algorithm all vertices are placed in one cluster. Then a cluster
is split in each iteration. The best split is chosen, based on a similarity criterion. The
splits of the clusters continue until the desired number of clusters is reached. An op-
tional application of the normal K-means algorithm to the existing cluster assignments
for refinement is possible.

Such an algorithm is called a divisive algorithm in the literature [56]. The bisecting
K-means algorithm was shown to outperform the batch version of K-means [109].
There are also no merge moves like in the split-merge sampler.

Another divisive algorithm for the application of K-means for clustering is the X-means
algorithm [99]. Here the split move is performed for all clusters simultaneously and a
model selection criterion is used to determine the optimal number of the clusters. Then
the normal K-means algorithm is applied to refine the resulting cluster assignments.
The opposite concept are agglomerative clustering algorithms, where all vertices or
small sets of vertices are placed in a cluster [56]. Then these small clusters are merged
and the merge step is accepted if it improves a model selection criterion. Of course,
both steps can be used successively as we have seen in the case of split-merge Gibbs
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sampling. Another example, where such split and merge and refine moves were com-
bined is [32]. The bisecting K-means algorithm was shown in [109] to outperform
agglomerative algorithms of e.g. [56] for documents clustering both in speed and qual-
ity of the results.

An algorithm which uses agglomerative clustering for the Bernoulli SBM combined
with greedy schemes [95, 21, 29], is the the greedyIlCL proposed in [29]. GreedyICL
maximises the /CL,, model selection criterion, also proposed in [29], by calculating
the optimal cluster assignment of each vertex with the other vertices hold fixed. After
convergence of the greedy scheme, the cluster partition is optimised according to an
agglomerative scheme. GreedyICL inference converges to a local optimum and de-
pends on start values [29]. Contrary to the batch algorithm, greedyICL determines the
optimal number of clusters during the optimisation of the cluster assignments. It was
shown to outperform, among others, the batch variational algorithms of [35] and [73].

Another agglomerative algorithm was proposed for the fine gained Stochastic Block
Model [121], which is a variant of the Stochastic Block Model, is the BLOS algorithm.
The BLOS algorithms is based on the EM algorithm and is therefore no variational
method like the VEM or VBEM algorithms. The EM can be applied because of dif-
ferences of the fine gained SBM compared to the SBM [121]. Like in other greedy or
agglomerative clustering the vertices are placed in a number of clusters which by far
exceeds the expected number of optimal clusters. Then the inference, based on merge
moves and optimisation, restricted to the clusters, is performed until convergence [121].
The BLOS algorithm was shown to outperform traditional variational batch algorithms
like the VEM algorithm [35] or the VBEM algorithms of [50, 73].

Online clustering algorithms for the SBM based on the Classification EM (CEM) and
VEM algorithm were proposed in [124, 125, 123]. They can also be applied to a given
network as an offline algorithm for a considerable speed up of the computational time
at the cost of quality of the results, when compared to the batch algorithm [125, 123].
The number of clusters remains fixed throughout the inference process of the online
clustering algorithm like in the case of the batch algorithm. Online clustering is based
on inference of subsets of the data.

Another subset based inference algorithm, the Stochastic Variational Inference (SVI)
algorithm [48], which is based on Stochastic Optimisation [100], was proposed first
for the Mixed-Membership Stochastic Block Model (MMSB) in [42] and then for the
Bernoulli SBM [39]. The SVI algorithm, which is used as an extension to VBEM,
converges to a local optimum in the case of the MMSB and SBM [48, 41] like normal
variational methods. It was shown with numerical tests that the SVI lead to a consid-
erable improvement of the computational speed and quality of the results in case of
the MMSB [42, 41]. In the case of the SBM, there was a clear increase of the compu-
tational speed when compared to the batch algorithm but an overall similar quality of
the results, save for a very large synthetic network where the batch algorithm failed to
converge [39]. The start cluster assignments for the application of the SVI to the SBM
are initialised with the spectral clustering algorithm in [39]. The number of clusters
is kept fixed during the inference process of the SVI algorithm like in the case of the
batch algorithm [39].

We conclude that all approaches which lead to any improvement over the batch ap-
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proach we have mentioned so far restrict the inference process to subsets of the data.
Now, we have a look at improved variational methods for the SBM which at least offer
split or merge options.

Now, we come to algorithms for variational inference of the SBM which use split and
merge moves. We are only aware of two approaches for this kind of algorithm: the
Wmixnet package [75] and its successor the Blockmodels package [79] and our own
Blockloading algorithm and its variants [118, 116, 117].

The Wmixnet software of [75] offers an inference algorithm for different types of the
SBM (e.g. weighted or with covariates) with a split-merge option based on the VEM
algorithm. As the first step of the inference Wmixnet still uses the batch VEM algo-
rithm for fixed numbers of clusters. As a second step, it offers a ’smoothing” option
which includes an ’ascend’ mode for splitting clusters of an existing partition and a
’descend’ mode in which existing clusters are merged. This smoothing option is pro-
posed to check if the algorithm can escape out of ’bad’ local optima.

So the reuse of the existing partition during inference process is still limited when com-
pared to other split merge algorithms existing at the time of [75] like bisecting K-means
[109] or the split-merge Gibbs sampler of [57].

The VEM algorithm which is used in the Wmixnet package is known to be dependent
on a second algorithm to initialise the start cluster assignments [35, 84, 122]. There-
fore Wmixnet relies mainly on the spectral clustering algorithm of [102] to initialise
the start values.

Together with the VEM algorithm the ICL criterion [18, 35] is used for model selection.
It was noted by [84] that the ICL criterion for networks is known to have a tendency
’[...] to underestimate the number of classes in the case of small graphs, [...]" ([73])
because it is an asymptotic model selection criterion.

The first fully divisive and subset optimisation inference algorithm for the SBM, based
on the VBEM algorithm, is to the best of our knowledge, our Blockloading algorithm
[118]. The Blockloading algorithm reuses the existing cluster partition during the infer-
ence process. We also proposed a version for weighted networks among other features
in [116]. We refer to the contributions section for a more detailed description.

The successor of the Wmixnet package [75] is the Blockmodels package, proposed
in [79]. It offers inference solutions for different versions of the SBM like weighted
SBMs or the inclusion of covariates. Contrary to the Wmixnet package it re-uses al-
ready calculated partitions like in [109, 57, 118, 116].

The split steps of the clusters are separated from the merge steps in the Blockmodels
package [79] unlike for example in [57, 118, 116] where the steps are integrated.

Like the Wmixnet package, the Blockmodels package relies on the VEM algorithm to-
gether with the ICL model selection criterion. The Blockmodels package also mainly
uses spectral clustering for the start cluster assignments.

We provide a review of the most important subset based and split-merge concepts
and methods in chapter 7.

Before we proceed with our contributions, we remark that we provide a more detailed
introduction of our Stochastic Block Model with irrelevant vertices (SBMIV) and our
original inference algorithms for the SBMIV in chapters 11, 12 and 13.
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Our Contributions We sum up our main results and contributions of this thesis, or-
dered by chapters:

o Complete and thorough presentation including all proofs and discussion of the VBEM
algorithm for the Bayesian Poisson Stochastic Block Model in chapter 4. The use of
the Poisson distribution allows us to cluster weighted networks.

e Our new BlockVB algorithm provides an optimised way to calculate the cluster as-
signments of subsets of the vertices of the network with respect to the free energy. We
present it in chapter 4.

e Our original fully Bayesian BlockVB++ algorithm which allows optimisation with
randomly initialised cluster assignments of the vertices due to our newly introduced
adaptive informative hyperparameters in chapter 5. So, there is no need for a second
algorithm like Spectral Clustering to initialise the start cluster assignments of the ver-
tices contrary to other state of the art variational methods. Thus we can use randomly
initialised start cluster assignments of the vertices to explore a bigger space of possi-
bilities for the identification of a global optimum.

e We propose our Blockloading algorithm which was, to the best of our knowledge,
the first divisive algorithm for the SBM based on VBEM inference for automatic iden-
tification of the number of clusters, together with integrated error correction, based on
our BlockVB algorithm. We present it in chapter 8.

The Blockloading algorithm was designed for a high quality inference of large and
complicated networks and earthquake networks according to the SBM. Our algorith-
mic design of the Blockloading algorithms is focused on avoiding to get trapped in
unfavourable (bad) local optima during the inference process. It was designed from
the beginning with variational methods in mind. It greatly improves the quality of the
results and the computational speed compared to the traditional batch algorithm and,
to the best of our knowledge, all other implementations of variational inference of the
SBM and thus allows for high quality inference on earthquake networks with varia-
tional methods.

The existing cluster assignment is reused as start values during the inference process.

e In chapter 8, we discuss which local optima are suitable start values and enable
a divisive algorithm like our Blockloading algorithm to identify a possible global opti-
mum. We give our original definition for such local optima and call them ’favourable
local optima’ contrary to the 'unfavourable local optima’ where a divisive algorithm
can get stuck in. Together with our new definition of favourable local optima we define
favourable split and merge moves of a divisive algorithm.

We will see that our Blockloading algorithm ensures by its design that there is a high
chance for identification of all favourable local optima and thus a global optimum.

We will see though, that there is room for improvement of the efficiency of our Block-
loading algorithm.

e We discuss possibilities for the improvement of our Blockloading and propose two
other algorithms, the automatic Blockloading and the no reset Blockloading algorithm
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in chapter 8.

These efforts lead to our even more sophisticated Blockloading++ algorithm which
greatly improves upon the computational speed and efficiency compared to our pre-
viously proposed Blockloading based algorithms. The new algorithmic design of our
Blockloading++ algorithm ensures even better that the inference process focuses on
those vertices and clusters where it is most likely that an improvement of the model
selection criterion can be achieved. At the same time our algorithmic design of our
Blockloading++ algorithm ensures that unfavourable local optima are avoided during
the inference process in the first place, so that the algorithm does not have to escape
out of them.

o In chapter 9, we review the possibility for initialising start values for VBEM in-
ference of the SBM. We review the Largest Gaps (LG) algorithm of [27] and show
how to use it for the initialisation of start values, especially for very large networks.
Our discussion of the LG algorithm leads to the introduction of our Optimal Gap (OG)
algorithm which was designed to be less susceptible to outliers than the LG algorithm
at a slightly increased computational cost. The OG algorithm, which builds on the
same principles as the LG algorithm, is especially built for the identification of possible
favourable splits of subsets of a network. This feature is an add-on to the possibilities
our Blockloading framework offers.

e With numerical tests on synthetic - and earthquake networks in chapter 10 we show
that our Blockloading and Blockloading++ algorithms achieve quality of the results
and computational speed previously unattainable by other state of the art variational
methods we tested for the inference of the SBM.

We compare with the reproduction of a synthetic test of [29] of a network with 10.000
vertices, that our Blockloading algorithm clearly outperforms the greedyICL algorithm
of [29] with a perfect result which is not achieved by the other algorithms tested: the
colsbm algorithm of [85], the vbmod algorithm of [50] and the spectral clustering ver-
sion of [107].

We also show that the the implementation of the Weighted Stochastic Blockmodel [8]
in the WSBM 1.2 package of [7] fails for the inference of this test of this large and
complicated network. We show that the Blockmodels package from [78] (documenta-
tion also in [79]) is not able to return results for such large networks due to too slow
speed.

e We show with a numerical test of a weighted and directed network generated ac-
cording to a Poisson SBM that our Blockloading algorithm achieve perfect results with
respect to the ground truth, too.

e We show with a numerical test of the Southern California earthquake network that
all our Blockloading(++) algorithms outperform the Blockmodels package of [79], the
WSBM 1.2 package of [8, 9] and the traditional batch VBEM algorithm for the Poisson
SBM.

e We show in the same test of the Southern California Earthquake Network that our
Blockloading(++) algorithms provide fast and reliable high quality results with respect
to the model selection criterion. Therefore, our original algorithms are the only meth-
ods, we are aware of, which provide this kind of inference for the earthquake network.
Our new methods are the first to provide insights in the network topology and network
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generation process according to a (weighted) SBM.

e In chapter 12 we present a special SBM with irrelevant vertices (SBMIV), which
explicitly models sparsely and irregularly connected vertices of weighted networks.
We derive a VBEM inference algorithm for the SBMIV and present all update equa-
tions and proofs for it in chapter 13.

o Building upon our Blockloading and Blockloading++ algorithm we propose our Rel-
evance Blockloading algorithm in chapter 13. Our Relevance Blockloading algorithm
is designed for the inference of the SBMIV. The inference with our Relevance Block-
loading algorithm includes early identification and exclusion of the inference process
of noisy and sparsely connected vertices. These vertices could otherwise disturb the
inference process.

e We show with a numerical test of the Southern California Earthquake Network in
chapter 14, that our Relevance Blockloading algorithm successfully identifies sparsely
and irregularly connected vertices. This test also shows that inference of our weighted
SBMIV with our Relevance Blockloading outperforms inference of our Blockloading
algorithm of the Poisson SBM with respect to the free energy model selection criterion.
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Chapter 2

Review of the Stochastic Block
Model

The Stochastic Block Model (SBM) originates from the field of mathematical sociol-
ogy [82, 51, 108, 97]. The SBM can be traced back to [82], which was a deterministic
version of the block model.

Here, we will review the modern version of the Stochastic Block Model (SBM), in-
troduced in [108, 97, 35], which is a flexible model for the generation of networks for
model based clustering.

The SBM is now a widely adapted model which is also used for scientific applications
outside the field of mathematical sociology for model based clustering, like for the
analysis of protein—protein interaction networks [35, 71], ecological networks [84, 75]
or the world wide web [123].

We proposed the application of the SBM for the clustering of the earthquake networks,
introduced in [1], in [118, 116]. We will test the clustering of these earthquake net-
works according to the SBM with our new inference methods in chapter 10.

Our improved inference algorithms of the later chapters will also lead us to the intro-
duction of our new version of the SBM, the Stochastic Block Model with irrelevant
vertices (SBMIV) [117], in chapters 11, 12 and 13.

We recall from chapter 1, that it was shown in [71] that the SBM covers a wide area of
possible connection behaviours in a network, like hubs, assortative and dis-assortative
edge connections and combinations of these. The need of developing viable inference
methods for existing versions of the SBM for complicated and large networks was also
emphasised in recent publications like [29, 42].

Our review of the SBM follows the presentation in [108, 35, 84, 73]. We start our
review with a presentation of the frequentist version of the SBM.

Then the generalisation to the Bayesian version of the SBM [97, 50, 73, 96] is pre-
sented in section 2.2 where conjugate prior distributions for the model parameters are
introduced.

2.1 Generation of the Stochastic Block Model

A graph or network G = (V, E) consists of a set V of N vertices or nodes and a set of
(directed) edges E connecting the vertices. Throughout this thesis, the terms graph and
network are used synonymously. The edges connecting the vertices are given by an

15
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adjacency matrix A. If there is an edge from vertex i to vertex j, it is A;; = 1. If there
is no edge from vertex i to vertex j, itis A;; = 0.

If the network is directed, A;; and A j; have to be considered differently. Thus, it is pos-
sible that A;; = 0 but A;; = 1 holds, so that A;; # A ; follows. In the case of weighted
graphs, it holds that A;; = w;;, w;; € (0,1,2,...), if there is an edge from i to j. It was
remarked in [123] that in [97] dyads, (A; A ) were used to model directed and undi-
rected edges contrary to the edge notation A;; or A ;; used above, which was introduced
in [35]. In this paper we will consider directed graphs unless otherwise stated.

The following Stochastic Block Model (SBM) was introduced in [97, 35, 84] as an
algorithm for generating graphs. We assume that A was generated by the SBM.

The SBM assigns the vertices V of the graph depending on their connection probability
patterns to clusters.

The SBM consists of K clusters. To each vertex i, the SBM assigns a unique cluster
membership. A vertex belongs to cluster k with probability m; with ZkK:1 = 1.

The cluster membership is given by the random variable Z; € R'*K with Z, = 1 if i is
an element of cluster k and Z; = 0 otherwise. Z is the N x K cluster indicator matrix
with matrix rows Z; fori € {1,...,N}. This cluster indicator matrix is also called clus-
ter partition matrix. An edge exists within each cluster k with the probability 6 and
between the clusters k and / with the probability 6;;. So, the SBM is generated in the
following way [50, 116]:

(i) Roll a k — sided dice which has probability p(i € k|Zy = 1) = m; for side k for
each vertex i, to determine the unique cluster membership of the vertex.

(iia) Flip a coin for each pair of vertices. With probability 6y = p(A;; | ZZ;; = 1) there
is an edge from vertex i to j with i € k and j € / and with probability 1 — 6; there is no
edge.

So, the SBM consists of two distributions, the distribution of the cluster assignments:

:Han'k, 2.1

i=1k=

and the distribution for the edge existence dependent on the cluster assignments, Z, and
probabilities for the edge existence, 0:
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Therefore we can sum up the joint probability distribution of the SBM by:
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The results of the clustering are easily interpretable. The prediction of new edges with
this model follows naturally from the estimated parameters. Variants of the SBM for
directed and weighted graphs exist [84, 8, 116]. For example it is possible to replace
the Bernoulli distribution in (12.2) with a Poisson distribution [84]:

A,/

flAij A) = exp (—Ax) - (2.4)

A,]
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Then we can replace (iia) with:

(iib) Draw a realization from f(-;Ay;) for the edge A;; from vertex i to vertex j, with
i € kand j € [. Then, the joint probability distribution for directed and weighted graphs
is then:

. 2.5)
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Using the Poisson distribution also works for unweighted graphs. In the following,
we call this SBM [84] the Poisson SBM contrary to the Bernoulli SBM of [108, 35].
We sum up that the Poisson SBM can model all important networks types: directed,
undirected, weighted and unweighted networks. It is also possible to use other distri-
butions than the Poisson distribution for f(-;A4), like the Gaussian distribution [84].
Henceforward, we will call f(-;-) the edge existence distribution.

Modelling Loops or Self edges A loop or self-edge is an edge which connects the
same edge with itself. We will see in chapter 10, that the self—edges follow from the
construction of earthquake networks to model direct after shocks of earthquakes [1].
The SBM we reviewed above does not allow the use of self-edges. For a way to add
self—edges to the SBM we refer to [123].

We discuss in chapter 10 why we do not use the self edges of the earthquake network.
Self-edges are not used in e.g. [97, 35, 50, 84, 73, 40, 74].

2.2 The Bayesian Stochastic Block Model

The Bayesian version of the Bernoulli SBM was proposed in [108, 97]. For the Bernoulli
SBM we follow the version of [72, 71, 73].

It is possible to set prior distributions over the parameters of the SBM which yields
the Bayesian SBM [97]. Prior distributions are required for two important inference
algorithms of the SBM: Gibbs sampling [97] and the Variational Bayesian Expectation
Maximisation Algorithm (VBEM) [50, 73]. An inference algorithm for the SBM is
used to infer the unknown SBM for a given network. Throughout this thesis we will
use the VBEM algorithm for the Poisson SBM, and in some instances the Bernoulli
SBM, as the basis for our contributions in this thesis. We will provide this inference
algorithm in detail in chapter 4.

A Dirichlet distribution, Dir(7; 80), was set as the conjugate prior distribution to the
parameters 7 of the multinomial distribution and a Beta distribution, Beta(6y;; Oc,?l, ﬁkol)
was set as the conjugate prior distribution on the edge existence parameters, 6;, of the
Bernoulli distribution [97]. The parameters of the conjugate prior distributions, 5% .a°
and ﬁo are called the hyperparameters [50, 72, 73].

Therefore the prior distributions for the Bernoulli SBM are given by [73]:

an(maoz (5{’,...,52)) — Dir(m; 8°), 2.6)
O ~ p (B [ M, Cy) = Beta(Bu iy, G, Yk, 1. @7

To find conjugate prior distributions for the Bayesian Poisson SBM, we use the fact that
the Gamma distribution is the conjugate prior distribution of the Poisson distribution
[19]. Conjugate prior Gamma distributions for the Poisson edge existence distributions
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were also used in the case of the Infinite Relational Model (IRM), which is closely
related to the SBM, in [96] and in the implementation of the Bayesian Poisson SBM in
[7].

The conjugate Gamma distribution for the edge existence rates Ay V(k,) € {1,...,K}?,
is now given by:

A ~ p(A | oy, BY) = Gamma (A oc;?l,li,?,) , Vk, 1. (2.8)

Dependent on the prior distributions we write the joint distribution of the Bayesian
SBM as

N K N K K
p(A.Z,mA|8°,a°, B°K) =TT/ (At TTT T 7 T1 p(Aa)p(m).
itk i=1k=1 Ki=1

2.9

From eqn. (2.9) we see that the joint distribution of the Bayesian Poisson SBM is
dependent on the hyperparameters. This observation leads us to the task of finding
suitable hyperparameters.

Choice of the Hyperparameters The discussion of the choice of hyperparameters
for the edge existence probabilities, 0, or rates, A, is postponed to chapter 5 where
we will link that choice to the approach of our new BlockVB++ algorithm. Our
BlockVB++ algorithm uses our newly introduced informative adaptive hyperparam-
eters.

We will see in chapter 5 and in the numerical tests in chapter 10 that the choice of
hyperparameters is of huge importance for the quality of the results for the inference
of the SBM.

2.3 The restricted Stochastic Block Model

In this section we shortly review the restricted Stochastic Block Model (restricted
SBM) introduced in [50]. The restricted SBM was proposed to model communities or
modules of vertices which are more densely connected to vertices in the same module
than to to other vertices in the network. Alternatively, it can also model dis-assortative
connected clusters, where the vertices of one cluster are sparsely linked to each other
but more densely linked to vertices in other clusters [71]. We will refer to the VBEM
algorithm for inference of the restricted SBM presented in [50] in the later chapters, so
we present the model here.

The restricted SBM is a special case of the undirected Bernoulli SBM. It generates
undirected simple (unweighted) network, which can be extended to the directed case.
There are N vertices and K clusters like in the Bernoulli SBM, but contrary to the
Bernoulli SBM, there are only two connection probabilities: the intra—cluster edge ex-
istence probability, 6;, and the edge existence probability between clusters, 6,,;.

Due to its design, the restricted SBM cannot model hubs which often arise in real
world networks [73]. The design of the restricted SBM leads to a lower order of the
computational costs per iteration for VBEM inference than for the SBM [50, 35, 73].
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2.4 The Erdos—Rényi graph

The famous Erdos—Rényi graph (ER—graph) presented in [98], can be retrieved as a
special case of the Bernoulli SBM for K = 1 cluster, one edge connection probability,
0, and N vertices [35]. Obviously, the ER—graph is a limited model which gave rise
to more complex models in the past which can capture important the properties of real
world networks better [35]. For a further discussion of the relation of the SBM to the
ER—graph we refer to [35].
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Chapter 3

Review of the EM and
Variational EM algorithms

In this section we will review deterministic inference algorithms based on the two step
Expectation Maximisation (EM) algorithm with regard to the Stochastic Block Model
(SBM). We have seen in chapter 2 how to generate a network with a SBM. Now, we
will review the theoretical background for addressing the opposite task of inferring a
SBM of a given network.

First we will introduce some general terminology and then we will explain the general
principles of the most important deterministic algorithms for inference of the SBM.
A review of EM based methods for inference of the SBM was also given e.g. in
[50, 125, 71]. A source for a general overview of EM based algorithms is provided
in [19].

We start with the statement of the likelihood of the SBM [35, 84]. We will see that
marginalisation of the likelihood is only computationally feasible for very small net-
works [35, 50]. Then we review in section 3.2 why the EM algorithm is not a solution
for inference of the SBM either [35]. This realisation will lead us to the topic of net-
work interdependency which prevents the application of the EM algorithm for the SBM
[35, 40].

Thus, a Variational EM algorithm based on [62, 55] was proposed in [35] for the SBM,
making deterministic inference of the SBM for larger networks possible. We will re-
view the general principles of the VEM algorithm in section 3.3.

Finally, building upon the VEM algorithm, we will review the general theory of the
Variational Bayesian EM algorithm [15, 14] in section 3.4. The VBEM algorithm pro-
vides a Bayesian framework for the inference of the posterior distributions over the
model parameters and leads itself naturally to a model selection criterion based on the
approximation of the marginal likelihood [15]. We will see in chapter 6 that this crite-
rion can also be used for inference of the SBM and to determine the unknown number
of clusters of the SBM [50, 73].

The VBEM inference will be the base for all our new inference algorithms we will
introduce in this thesis.

21
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3.1 Likelihood of the Stochastic Block Model

The likelihood of the (undirected) Bernoulli SBM was introduced in [35] using the
framework of [36]. In this framework, the unknown optimal cluster assignments (also
called cluster labels), Z are the latent or hidden variables. The adjacency matrix A is
the given, incomplete— or known data. The set (A,Z) is then called the complete data
set. We use the general formulation of the complete data log—likelihood, proposed in
[84] for directed networks and the distribution f(As;A;;) for possibly valued edges
(see chapter 2). This complete data log—likelihood is given by [84]:

Inp(A,Z) ZZZ,klnnk—i—ZZZ,kZﬂlnf (AatsAij) - (3.1
i#j k1l

It is based on the complete data log-likelihood of the undirected Bernoulli SBM pro-
posed in [35]. It was shown in [35] and [84] that the formulation of the complete data
log—likelihood in eqn. (3.1) holds because of

Inp(A,Z) =Inp(Z)+1np(A|Z) 3.2)
where
Inp(Z) = ZZZiklnnk, (3.3)
Inp(A|Z) = ZZZk anf (AazAij) . (3.4)
i#jk,l

Now, as a first idea for inference, it was considered in [35] to calculate the likelihood
of the observed data by marginalisation:

Inp(A) = Zlnp(Z,A). (3.5)
Z

Unfortunately this summation over all possible cluster assignments leads to high com-
putational costs which render this summation intractable save for very small networks
[35, 50, 84]. The summation over all possible cluster assignments has KV terms
[50, 84], where K is the number of clusters and N the number of vertices of the network.

3.2 The Expectation Maximisation (EM) algorithm

The classical Expectation Maximisation (EM) algorithm [36] was shortly considered
in [35] to avoid the direct calculation of the intractable likelihood of the observed data,
p(A), of the SBM.

The EM algorithm is used to find the model parameters ¥ which maximise the likeli-
hood p(A|¥) without the need for the marginalisation of eqn. 3.5 [19]. We will see
below that the EM algorithm also is intractable in case of the SBM [35, 40].

Now, we shortly review the general principles of the classical EM algorithm following
[19].

(i) As afirst step of the EM algorithm, the model parameters are initialised with, o),
(ii) Then the EM algorithm continues with the Expectation step (E—step), where the
posterior distribution, p(Z|A,®"'?) is calculated.
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The calculation of the conditional distribution p(Z|A,®'?) involves the summation
over all possible cluster assignments in the case of the SBM and is therefore com-
putationally intractable as the likelihood [35, 40]. Moreover, it will be shown below
following [35, 40], that a simplification of the term p(Z|A, 19(01d)) is not possible for
the SBM, because of network interdependency. So, the EM algorithm is not a viable
choice for inference of the SBM.

Nevertheless we state the rest of the EM algorithm because a two step inference pro-
cedure will also be introduced below for the VEM and VBEM algorithm, which are
viable algorithms for the SBM.

(iii) In the Maximisation Step (M-step), the expectation of the complete-data likelihood
with respect to the posterior distribution, which is given by

0(8,8") =Y p(Z|A,9"")Inp(A,Z|D), (3.6)
VA

is maximised to find an update for the model parameters, ),

Bew) = arg max Q(9, ﬁ”ld). (3.7)
{9}

(iv) After the M—step, the convergence of the log-likelihood is checked indirectly by
calculating the difference between ®”/?) and "), If no convergence was reached,
the model parameters are updated, e.g. 9“9 «— ®¥"") and the inference continues
in step (ii).

It was remarked in [93], that the EM algorithm converges to a local optimum for most
models. For a proof that the EM algorithm indeed maximises the observed likelihood,
we refer to e.g. [93, 19, 71].

We stated the classical EM algorithm to motivate the introduction of variational meth-
ods in sections 3.3 and 3.4, where a solution to the intractability of the posterior likeli-
hood, p(Z|A, ), will be introduced.

Network Interdependency The following counterexample was proposed in [35],
where it was shown that the likelihood of the Bernoulli SBM depends on the whole
network and cannot be simplified with respect to neighbourhoods of the vertices.

The neighbourhood, E;, of a vertex, i, are all edges and non—existing edges (non—edges)
with respect to i.The set of edges in a network is denoted by, E.

An undirected Bernoulli SBM with K* = 2 clusters and cluster connection probabilities

611 612 10
6= = , 3.8
(& 62)-(0 ) =
where 0 < ¢t < 1, was considered in [35] for this counter—example.
It is assumed that a network with N = 3 vertices, i, j, kK was generated by this SBM and
that A;; = 1 and A j; = 1 holds.

From these edge connections it is drawn the conclusion that 7, j have to be in the same
cluster because there are no edges connecting the clusters because of 8,; = 61, = 0.
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With the same reasoning it can be seen that vertices i and k have to be in the same
cluster.

We can infer from the existence of the edge A j; = 1 that vertex i could be in both clus-
ters ky and ky with probability greater than zero, so it holds that P(Z;; = 1|E;,Ajx) >0
and P(Z;; = 1|E;,Ajx) > 0. If on the other hand it is assumed that A j = 0 holds with
the other assumptions being the same, we see that P(Z;; = 1|E;,Aj;) = 0. Therefore
the information of the existence of an edge between vertices j and k cannot be left out
for the cluster assignment of vertex i.

This observations shows, that all edges and non—edges have to be considered for the
cluster assignment, P(Z;, = 1|E), and not only the neighbourhood of vertex i, P(Z|E;),
which makes a simplification with respect to the neighbourhoods impossible [35].
This counter example applies to the undirected Bernoulli SBM. We will also treat a
weighted version of the SBM [84] (see chapter 2).

It was shown for the SBM in general in [40], that the cluster assignment of each vertex
depends on the cluster assignments of all other vertices of the network. Therefore, the
graph which describes the dependency of the hidden cluster assignments of the ver-
tices, Z; € {1,...,N} forms a fully connected graph or clique [40].

It was emphasised in [40], that this dependency applies independently from the actual
existence of edges of the observed graph. So, the claim of the impossibility of simpli-
fication of the SBM with respect to the neighbourhood of the vertices applies in any
case.

3.3 Variational Expectation Maximisation

In section 3.2, it was explained that the EM algorithm is computationally unviable for
the inference of the SBM due to the computational intractability of p(Z|A). A solution
for this problem was proposed in [35], where the variational EM strategy of [62] and
[55] was applied to the Bernoulli SBM.

We now explain the general principle of the Variational Expectation Maximisation
(VEM) algorithm following [19, 71, 35]. Again, we denote the observed variables
as A, the hidden variables as Z and the unknown model parameters as 9.

With the help of the VEM algorithm we want to optimise the computationally in-
tractable log—likelihood which was marginalised over the hidden variables, Z,

n(p(A|9))=In (Zp(A,Zz?)) . (3.9)
z

To start the inference, which is otherwise intractable as we have seen in section 3.2,
an arbitrary variational distribution over the hidden variables Z, g(Z), to approximate
p(Z|A) is introduced. Dependent on the variational distribution, g(Z), the following
decomposition of the likelihood dependent can be made:

In(p(A|9)) = Z(q(Z),8) +KL(q() || p(-|A)) (3.10)

21 ( AZ|19)>7 (3.11)

L(q|lp) = Zq (f'&’)ﬂ)), 3.12)

with
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where KL denotes the Kullback-Leibler divergence. For background information of
the KL-divergence see e.g. [19]. We see that the decomposition for In (p(A|9)) in eqn.
3.10 holds by calculating

Zq lnpAZ|19) Zq )Ing(Z (3.13)
—Zq [Inp(Z|A, ﬂ)—lnq(Z)]—i—lnp(Aw) (3.14)
(ZAﬂ’)ﬂ

= Z)|In| ————= Inp(A|9 3.15

La(z) [ (2252 )| +mpiare) a.15

= —KL(qg||p) +1np(A]8), (3.16)

where we used that

Inp(A|9) =1Inp(Z,A|9) —Inp(Z|A, D), (3.17)

holds. It follows from eqn. (3.10) that
Inp(A|9) > Z(q,9), (3.18)

because KL(g||p) > 0and KL(q|| p) = 01is equivalent to g(Z) = p(Z|A,¥). This shows
that .Z (g, ¥) is a lower bound of the likelihood [19, 71].

The factorisation of the variational distribution with respect to the hidden variables,
q9(Z) =T11:4i(Z;), also called mean—field—assumption [55], is used to achieve a tractable
form of £ (q,¥) at the price of an approximation [19, 35, 71]. In [35] it is assumed in
the case of the SBM, that

N
q(Z)=]]#Z:0)) HQ (3.19)
i=1

where ./# (Z;;Q;) is the Multinomial distribution.

Now, the Likelihood is optimised dependent on ¢(Z) and the model parameters ¥ in a
two step algorithm which is reminiscent of the EM—algorithm of section 3.2.

This two step algorithm [35] consists of initialising the start values for the hidden
variables, Z = Z,, and dependent on those start values, point estimates for the model
parameters are optimised in the following M—step

{801} = arg{;r}laxf( )(z ),19(’)>. (3.20)

After the M—step, g(Z) is optimised in the E—step, dependent on the update parameters,
) (t+1) .

{¢")(2)} = arg max .Z(q"(Z), 9" ). (3.21)
fa(2))

The M-and the E-step are repeated until convergence of Z(g,9). We sum up the
VEM algorithm in 1.

The VEM algorithm is a popular algorithm for inference of the SBM and was used e.g.
in [35, 84, 123, 40, 75, 76, 79]. It was shown under some mild assumptions in [25], that
VEM inference for the SBM is consistent. The VEM algorithm converges to a local
optimum in the case of the SBM [25].
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Algorithm 1: Variational Expectation Maximisation (VEM) algorithm [35, 71]

/* Initialisation */

Initialise start values Z

/* Main Loop */

repeat

/* M-step */

B0 «— arg max ¥ (qm(Z),ﬁ(t))
{9}

/* E-step */

¢")(Z) «+— arg max Z (¢ (Z),8*D)

{a(2)}
until convergence of £ (")

The VEM algorithm is dependent on start values. Therefore, these start values have
to be initialised either randomly or with another algorithm. In the case of the SBM, a
random initialisation of start values is not recommended in the literature [84, 75, 76]
and returns poor results in most cases. We will mention and introduce important algo-
rithms for the initialisation of start values, like the k-means or Ascending Hierarchical
Clustering (AHC) algorithm, which are also used for VEM inference of the SBM in
chapter 7.

We have also seen, that the VEM algorithm returns point estimates for the model pa-
rameters which are susceptible to outliers [15].

Algorithms which return point estimates are called frequentist algorithms in the liter-
ature contrary to nonparametric or Bayesian algorithms, where prior distributions are
set over the parameters and the full posterior distribution over the parameters is ap-
proximated [15].

We will review the non—parametric version of the VEM algorithm, the Variational
Bayesian Expectation Maximisation in section 3.4. We will see that the nonparametric
VBEM algorithm provides additional features and advantages compared to the VEM
algorithm. The derivation of the VBEM algorithm will also lead to a model selection
criterion for the SBM.

3.4 Variational Bayesian EM

In section 3.3, we saw that the VEM algorithm is a tractable, deterministic inference
algorithm for the SBM. Nevertheless, we already mentioned some shortcomings of the
VEM algorithm. It returns only point estimates of the parameters, is dependent on
other algorithms for the initialisation of start values and needs a separate model selec-
tion criterion.

The algorithmic framework of the Variational Bayesian Expectation Maximisation (VBEM)
algorithm [15] will provide us with answers to these issues with the VEM algorithm.
The ’Variational Bayes(ian)’ (VB) algorithmic framework was introduced by [15].
The VBEM framework will be the base for all our newly developed inference algo-
rithms for the SBM we will present in this thesis. We will use it for our derivation of
all our propositions for the VBEM inference algorithm for the Poisson SBM in section
4.

For the following presentation of the general VBEM algorithm, we follow [19, 71]. The
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VBEM algorithm was designed for the approximation of the intractable marginalised
log—likelihood given by

Inp(A) =1n (Z/p(A,Z,ﬁ)dt‘)) : (3.22)
Z

This time, it is marginalised not only over the latent variables Z like for the VEM al-
gorithm, but also over the model parameters 9.

An arbitrary variational distribution of the latent variables and model parameters, g(Z, 9),
is introduced, which allows the decomposition of the log-likelihood, In p(A), into the
sum of

Z/q (Z,9)1 (W) do. (3.23)
and
KL(q(-) || p(-|A)) Z/qz ® m( fzﬂﬁ‘; )dﬁ. (3.24)

Combining eqn. (3.35) and (3.36) leads to
Inp(A) = Z(q(Z,8))+ KL (q(-)||p(-|4). (3.25)

The proof of the decomposition in eqn. (3.25) is analogous to those for the VEM
algorithm. Like in section 3.3, it can be seen that Inp(A) > .2 ((¢(Z,¥9)) holds by
using that

q(Z,98) = p(Z,8|A) < KL(q||p) =0 (3.26)

and KL(g||p) > 0. Therefore, .#(g) is a lower bound dependent on the variational dis-
tribution ¢. Optimisation of the variational lower bound, £ (-), with respect to ¢(Z, 9)
is intractable.Therefore, it is assumed that

‘Z(zvﬁ) :CIZ(Z)CIﬂ(ﬂ)v (3.27)

which makes the inference tractable [15]. This assumption which is often called the
mean—field—assumption [55],’[...] makes g approximate but tractable.’[15].

3.4.1 Model Selection criterion

The mean—field—assumption also allows the following re—formulation of the variational
lower bound .Z(g) with respect to ¢(1) which shows that the number of model param-
eters is penalised [15]. We use that p(A,Z,¥) = p(A,Z|9¥)p(¥) holds by the product
rule of probability, this yields

- L (PAZ®)p(B)

i”(q)—;/qz(z)qa(ﬂ)l ( 12(Z)a9 (D) >d19 (3.28)
_ P(A,Z]9) p(¥)
—;/q(z)q(ﬂ) (q(Z T 1,)>d6‘+/ ( 5 )dﬁ (3.29)
v/ P(A.Z|9) N
- L [a@aerm (ZGEE oo —KL@@)lp@).  60)
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If the number of parameters grows, the KL—divergence in eqn.(3.30) increases which
lowers the variational bound, -#(q) [15]. Therefore, the converged variational lower
bound .Z(g) can be applied as a model selection criterion which follows from the
VBEM framework. We refer to section 6.2, where we discuss the application of .Z(q)
as a model selection criterion for the SBM.

3.4.2 Free form optimisation

For the following derivations of the Variational Bayesian EM inference algorithm we
follow [19, 71]. The mean—field factorisation allows for a reformulation of .Z’(-) which
leads to an inference algorithm with respect to the factors ¢.(-) of the variational distri-
bution ¢(-).

For the sake of a concise notation, we set @ = (Z, ). Consequently, the factorisation
of eqn. (3.27) can be rewritten as ¢(®) = [[;¢:(®;). VBEM is a free form optimisa-
tion framework where we do not need to specify the functional form of the variational
distributions in advance [15, 19]. The collection of all hidden variables except the hid-
den variable ®,, is denoted by ©\“. The following derivations are the same if we use
summation or integration of hidden variables.

Using this notation, - (g) is rewritten in the following way:

_ p(A,©)

.,sf(q)_/q(@)m( s )d@) (3.31)
:/<Hq,.(®i)> <lnpA o) Zlnq, i ) (3.32)
= / (Hq, ; >lnp (A,0)dO — /Zlnq, i)d® (3.33)
- / ( / []4.(®) Inp(A @)d(-)\“) de, (3.34)

i#a
/ 74(0,)d0,— ¥ / 4:(©;)In¢;(©;)de;. (3.35)
i#a*
We define
/an «)Inp(A,0)d0, = Eg\. (Inp(A,®)) +const =1nH(A,O,). (3.36)
i#a

Combining eqn. (3.35) with eqn. (3.36) yields

g(q)z/qa(e)(mp(A@)—const )d®, — /qa )1Nge(©.)d0,  (3.37)

-y / 4i(©®:)Ing;(©;)d®; (3.38)
i#a
= —KL(qa(-) | () + ) 7 (i) — const. (3.39)
i#a

It was used in eqn. (3.39), that the entropy of ¢;(-) is given by

H(qp) / 4:(0:)Ing;(©,)de;. (3.40)
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The KL-divergence in eqn. (3.39) being equal to zero is now equivalent to g,(®,) =
P(A,®,). If this equality holds, an optimum of the variational lower bound - (g) with
respect to the factor ¢,(@,) is reached and it follows from eqn. (3.39) that the optimal
variational distribution ¢%(®,) is given by

Ing;(®,) =Inp(A,0,) =E,\.(Inp(A,®)) + const. (3.41)

e\
The constant is calculated by normalisation of g% (A, ®) which yields:
exp (f [Ti2a9a(®a)Inp(A, @))dg\a)
Jexp (f [Tia 9a(©a) lnP(A,@))dG\“) e,

q4(@a) (3.42)

The variational bound, -Z(+) can be optimised with respect to each factor distribution,
qi(+), of the the variational distribution ¢(-).The inference scheme is done factorwise
because each factor, g,(-), depends on the other factors g¢;(-),i # a [19]. This gives rise
for the need of an algorithm with an EM-like inference scheme analogous to those in
sections 3.2 and 3.3 for the EM-and VEM algorithm. A global optimum with respect
to all factors ¢(®) = [, 4:(®;) is not necessarily reached.

In this VBEM algorithm, it is also distinguished between the optimisation with respect
to the latent variables, g;(Z;), in the Expectation step (E-step) and the optimisation of
the variational, factors dependent on the model parameters, ¢;(%;), in the Maximisation
step (M-step). Thus we have ¢(8) = q(Z. 8) = 4z(2)qs(B) = [1:4z,(Z:) [T;q9,(B)
for separate variational distributions dependent on the latent variables and the model
parameters.

The VBEM algorithm starts with the initialisation of the factors g;(-). After the ini-
tialisation of the factors ¢;(-), an EM-like algorithm can be applied to successively
optimise the lower bound .Z(-) with respect to each factor. Then the variational bound
Z(-) is optimised with respect to each factor ¢;(®;) in the E-and M—step.

The variational bound, £ (), is convex with respect to each factor ¢;(-) which leads to
the convergence of the variational bound, .Z(-), for any initialisation of the algorithm
[19]. For a general discussion of convex optimisation [19] referred to [22]. We sum up
the VBEM algorithm in 2.

3.4.3 Conjugate Prior Distributions

The VBEM algorithm allows the use of conjugate prior distributions for the model
parameters [15]. This can be seen using the update equations (3.41) for the optimal
variational distribution, ¢%(%,) [15].

We recall that two distributions are conjugate if a prior distribution, p(®), can be cho-
sen so that

(@) = f(©)p(®) (3.43)

holds [15]. In this case f(®) and g(@®) are from the same family of distributions, for
example the exponential family. In many practical relevant cases f(-), p(-) and g(-) are
from the exponential family. In the case of the Poisson or Bernoulli Stochastic Block
Model, this applies to all distributions [123].

The inclusion of conjugate prior distributions for the model parameters now follows
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from eqn. (3.42) in the following way [15]:

Ing;(®,) = Eg\. [Inp(A, ®)] + const (3.44)
= q4(0,) o< exp (Eg\ [Inp(A,@)]) . (3.45)

In the derivation above, we mentioned that one can distinguish between the latent vari-
ables, Z, which can be for example the hidden cluster assignments of a SBM, and
the model parameters ¥. Prior distributions are set for the model parameters in the
Bayesian inference setting which leads to following reformulation of eqn. (3.45) above:

4:(8,) = exp (E 5., In p(4,Z| 9) p(9)] ) (3.46)
= exp (]E W[Inp(A,Z|®) )e ( o [Inp(B, )]) (3.47)
o< exp (Eﬂ\a Inp(A,Z| O )p (3.48)
If we now set f(8,) =exp (E [lnp(A,Z]9)] ) it follows from eqn. (3.48) that
9a(B7) o< f(Ba)p(Ba), (3.49)

and thus p(¥,) is the conjugate prior distribution to f(1¥,). In chapter 2, conjugate
prior distributions for the model parameters of the Bayesian SBM were set. Therefore,
the VBEM algorithm for conjugate distributions allows the inference for the Bayesian
SBM.

We will present our derivation of the VBEM algorithm for inference of the Bayesian
Poisson SBM together with all propositions in section 4. This derivation is based on
the general VBEM framework we provided in this section.

Algorithm 2: Variational Bayesian Expectation Maximisation (VBEM) algo-
rithm

/* Initialisation */

Initialise start values gz, (Z;)Vi

/* Main Loop */

repeat

/* M-step */

(+1) D D \a
do) " (90) — exp (L2 [ TLid) (Z)TTjpady) (8))In (A, Z,8)d8\") Va
NOnnmmqujU(ﬂa)Va

/* E-step */

a5, (Z4) — exp (Lg0 [ Tlizadl) (2011, (8))In p(A.Z,8)d8) Va
Normalise q(Za )( Z,)Va

until convergence of £ (")




Chapter 4

Variational Bayesian EM for the
Poisson Stochastic Block Model

In chapter 2, we explained how to generate a graph with different types of the Stochas-
tic Block Model (SBM). Now, we want to solve the inverse problem of inferring the
best cluster assignment of the vertices of a given graph according to a Poisson SBM. In
chapter 2 we found that we can cover all important types of networks with a directed
Poisson SBM. We take the case of the directed Bayesian Poisson SBM as an exemplary
"workhorse model” for the new inference algorithms we will present for the SBM in
the following chapters.

We assume that the network is given by its adjacency matrix, A, without any prior
knowledge of the now unknown (hidden) number of clusters K, the cluster assignment,
Z or the model parameters ¥ = (A, 7). This scenario is common for the task of clus-
tering [35, 50, 10, 84, 125, 123, 73, 76, 79] and we will also face it for the clustering
of earthquake networks. The aim of all methods we will present below is to estimate
the optimal number of clusters K, the unknown cluster assignment Z and the model
parameters 19 of the SBM.

We discussed the general Variational Bayesian Expectation Maximisation (VBEM)
framework of [19, 71] and [15, 14] in section 3.4. The use of the VBEM framework
was proposed for the estimation of the restricted undirected Bernoulli SBM (see chap-
ter 2) in [50]. The restricted SBM models is restricted to two different kinds of links:
inter— and intra cluster connections (chapter 2). The use of the converged variational
bound (converged free energy) as a model selection criterion for the restricted SBM
was also proposed in [50].

A VBEM based inference algorithm and model selection criterion for the undirected
Bernoulli SBM of [97], based on the free form optimisation reviewed in section 3.4,
was introduced in [71, 73]. The SBM of [97] models the probabilities for the existence
of edges dependent on the clusters.

The frequentist Variational Expectation Maximisation (VEM) framework of the same
SBM was proposed in [35], and a VEM algorithm for the Poisson SBM and its variants
in [84].

The VBEM inference for the weighted SBM was presented from a general point of
view in [8]. There was an accompanying software package [7] of [8], where the VBEM
batch algorithm for the Poisson SBM was implemented among others. We will com-
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pare our following approach of VBEM inference of the Poisson SBM with this im-
plementation in the numerical test section (chapter 10). There, we will see that our
different algorithmic approach outperforms the implementation of [7].

The derivation in [8] was restricted to distributions from the exponential family. Con-
trary to [8], we will use the algorithmic framework of the more general free form
optimisation of [19, 71] for our derivations, which we reviewed in section 3.4.2, where
we do not make this restriction.

We now present our derivation of the Variational Bayesian EM algorithm for infer-
ence of the directed Bayesian Poisson SBM. We will present all necessary propositions
and update equations for VBEM inference of the Poisson SBM. We will use the VBEM
frame work to provide the free energy model selection criterion for the Poisson SBM.
We will use the Variational Bayesian framework to develop our new BlockVB algo-
rithm which can be restricted to subsets of the vertices of the network in section 4.2.
We will show in chapter 5 that we can use the Bayesian features of the Variational
Bayesian framework to develop our original fully Bayesian BlockVB++ algorithm,
which does not use a second algorithm like K-means or Spectral Clustering to ini-
tialise the start values.

4.1 Propositions and Inference Algorithm

The network is given by the adjacency matrix, A. We do not assume any prior knowl-
edge about the number of clusters, the cluster assignment of vertices or model param-
eters. We want to infer the optimal number of clusters K*. For each vertex i, we want
to calculate the optimal latent cluster membership (latent variable), Z;.

For a fixed number of clusters K, which is specified in advance, we want to infer the
optimal posterior likelihood p(Z,A,®,K|A) of the Poisson SBM.

The approach for this optimisation with the VBEM framework is to approximate the
posterior likelihood with an arbitrary tractable distribution ¢(Z,A,®|K). To achieve
a tractable distribution, we use the mean field assumption for the variational distribu-
tion ¢(Z,8) = q(8)q(Z) = q(7)TIx,q9(Aes) TIY., ¢(Z;). This assumption makes the
VBEM inference approximate [15]. It is the only assumption necessary for this kind of
VBEM inference [19].

‘We follow [50] for a different derivation than in section 3.4.2 of the variational bound of
the marginal log-likelihood, In p(A|K), based on Jensen’s inequality. We obtain a varia-
tional upper bound of the negative log likelihood, —In p(A|K), also called free energy
F [50, 38], by using Jensen’s inequality on the negative marginal log—likelihood:

—In p(A|K) = —an/p(A7Z,19|K)d19
zZ
_ Yy [PAZBIK)

P(A,Z, 9 |K) )
< - /ln< q(Z,9)dv
);’ q4(Z,9) ke
= Flg(2,9)]. @.1)
Therefore, a lower free energy is a better approximation of the marginal likelihood. We
recall, that in section 3.4.2 a lower variational bound was derived.
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Following the VBEM framework of section 3.4.2, the negative log-likelihood —In p(A|K)
can as well be decomposed into

—In p(A|K) =F[q(Z,9)] —KL(q(") | p("|K)) (42)
where
“KL(q(-) || p(-|A)) Z/qZ 81 (’m) o 4.3)

is the negative Kullback-Leibler—divergence (KL—divergence). So, minimising the free
energy with respect to ¢(-) is the same as minimising the negative KL—divergence be-
tween the posterior distribution p(-|A) and the approximating distribution g(+). Equal-
ity is reached, if ¢(-) = p(-|A). Therefore we can now apply the VBEM two step
algorithm of section 3.4.2.

We provide the free energy criterion or converged free energy for the directed Poisson
SBM without self—edges in our Proposition 1, below. The properties and applications
of the free energy model selection criterion for the Poisson SBM are discussed in depth
in chapter 6. There, other model selection criteria for the Poisson SBM are also dis-
cussed and compared to the free energy criterion.

Proposition 1 (Converged Free Energy). The free energy after convergence (negative
Integrated Likelihood variational bound (ILvb)) for the directed Poisson Stochastic
Block Model for K clusters, is given by:

K gk/r(ak[ N K
Flg(Z,9)]=) In +Y Y 0inQy

k,l ﬁ]? klr(a 1) i=1k=1

—Hn( g X 50)) * () >’ 4.4)

where Q is the cluster partition matrix, A the adjacency matrix, = (A, ®) the model

parameters and (&, B, 8,a°, B°,8°) thehyperparameters of the variational- and prior
distributions of the model parameters.

Proof. See appendix B. O

The VBEM algorithm for the Poisson SBM of chapter 2, consists now of the two
following steps [35, 50, 73]:

Maximisation step In the Maximisation Step (M-Step), the free energy F is opti-
mised with respect to the distributions of the parameters ¢(#), with the latent variables
of the cluster memberships ¢(Z) held fixed:

{g"V(®)} = arg min F[¢\")(Z),q4") ()] (4-5)
{a(8)}

We present the update equations for the hyperparameters & and B of the variational
distribution g(A ) in the next Proposition 2.
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Proposition 2. The optimisation of the upper variational bound (free energy) for g(Ay)

Sorallk,1=1,...,K shows, that q(Ay) has the functional form of a Gamma(A; 0y, Brr)
distribution. It has the same functional form as the prior distribution

p(AY) = Gamma(Mq; ), BY). The update equations of the hyperparameters Oy and
B for all k,1 =1,...,K are calculated according to:

N
Oy = Z Qi QjiAij + o), (4.6)
i7]
N
Bu =Y, 0uQji+ By- 4.7
i#]
Proof. See appendix B. [

The functional form of the variational distribution g(7) and the update equations
for thehyperparameters are the same as in [73] and we can use the following proposition
of [73].

Proposition 3 ([73]). The optimisation of the upper bound (free energy) with respect
to q(&) produces a distribution with the same functional form as the prior p(T)

q(m) = Dir(m; 8) (4.8)

where

K
=Y 0u+8. (4.9)
i=1

Expectation step In the Expectation step (E-step), F' is optimised with respect to the
distributions ¢(Z) of the latent variables where the distributions of the model parame-
ters ¢(¥) are held fixed:

{g"(Z)} = arg min F[g")(Z),q"*V(8)]. (4.10)
{a(2)}

We provide the optimal distributions ¢(Z;)Vi and the update equations of E[Zy], V(i,v) €
{1,...,N} x{1,...,K} in the following Proposition 4.

Proposition 4. The optimisation of the free energy (upper variational bound) with
respect to q(Z;)Vi=1,...,N, ¢*(Z;) = arg min F[q(Z),q(®)], shows that q*(Z;) has

4(Z;)
the functional form of a multinomial distribution:
q"(Z;) = A (Z;;1,0; = {Qu,...,Qix})- (4.11)

The update equation for E[Zy] = Qu, V(i,v) € {1,...,N} x{1,...,K} is given by

N K N K
Oy o< exp ( Y Y AuiQuCu+ Y. Y AiQuCro
im1 k=1 i=1 k=1
i#a i#a

N K

=Y Y QuDu+ Gv); 4.12)
i=1 k=1
i

4.13)
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where El [lOg )ka] = ‘I/(avk) - log(ﬁvk) = Cu El [Avk] + El Mkv] = % + % = Dy,

kv
Ex[m] =w(8,)—v(X (XX, 8)) = G, and y(-) is the Digamma function.
Proof. See appendix B. O

We calculate F[g\'*1(Z),q!"*1)(1)] dependent on the distributions of the latent
cluster assignments g*!)(Z) and the model parameters ¢*!) (9) which were returned
by the M—and E-Step. The VBEM algorithm has converged, if

Flg"(Z),q"(8)] - Flg"™(2),4"TV(8) < T (4.14)

holds, where T is a threshold or a maximum of iterations is reached.
We sum up the batch VBEM algorithm for the Poisson SBM in algorithm 3.

Algorithm 3: VBEM batch algorithm for the Poisson SBM
Data: adjacency matrix A, fixed number of clusters K, prior parameters

(ao, ﬁo, 50), maximum number of iterations

/* Initialisation */

Calculate start values Q° with the AHC or other basic clustering algorithm

Calculate parameter updates according to Propositions 2 and 3

/* Main Loop */

repeat

/* E-step:update all matrix entries of Q */

repeat
Calculate Q;, V (i,v) € {1,...,N} x {1,...,K} according to eqn. 4.12 in
Proposition 4

until Q converges or maximum number of iterations

/* M-step */

Update the model parameters A and 7 according to Propositions 2 and 3

until convergence of F [q(-)] or maximum number of iterations

Complexity of the Batch Algorithm In the worst case, where each matrix entry of
A is greater than zero, the complexity of one iteration of the VBEM batch algorithm
for the Poisson SBM is & (KZN ) In most cases though, the adjacency matrix of the
network is sparse.

To achieve a more precise measure of the order of the computational costs of our batch
algorithm which accounts for sparsity of A, we follow [29] and estimate the complexity
dependent on the number of edges, E, of the network.

To calculate E for weighted networks, we define the indicator function for the existence
of an edge between the vertices i, j to be

1, ifA;; >0
Iy =<’ I . 4.15
Aij {07 else (4.15)

It follows that E = Zl}lzl Y'Y | A;j. We have computational costs of & (KZE ) for one
iteration of the VBEM batch algorithm 3.

These costs are the same as for one iteration of the VEM algorithm of [84] for the fre-
quentist version of the Poisson SBM.
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The computational costs of the VEM algorithm of [35] and the VBEM algorithm of
[73] for the simple (unweighted and undirected) Bernoulli SBM are also & (K*E).
The order of the computational costs is the same for directed and undirected networks.
In practice though, even if the order of the computational costs is the same, the com-
putation time for undirected networks is always lower than for the same network with
directed edges, because in the undirected case, we only have to take the upper (or
lower) triangular matrix of the adjacency matrix, A, into account.

Convergence to local optima and dependence on start values The VBEM (and
VEM) batch algorithm for the (restricted) Bernoulli SBM converges only to a local
optimum and thus are dependent on the start values [35, 50, 25, 73]. The same was
found in [84] for the VEM batch algorithm for the Poisson SBM.

The convergence to different local optima, dependent on the start values, of VBEM
inference was also noted in the case of mixture distributions in [111].

We also found in numerical tests, that the VBEM algorithm for the Poisson SBM con-
verged to different local optima of the free energy for different start values. These local
optima were sometimes far away from the global optimum according to the known
ground truth.

We will propose remedies to this behaviour of the batch VBEM algorithm in chapter
8. We will also see in section 8.2.2 that different types of local optima can occur for
VBEM inference of the SBM. There, we will classify these optima as favourable or
unfavourable.

So, it is advisable for the application of the VBEM batch algorithm, Algorithm 3, to
initialise it with different start values and then to choose the best result [50, 73]. One
extreme example is the application of the VBEM framework to time—series analysis
where the algorithm was initialised for several thousand restarts in [81]. Neverthe-
less, even initialisation of the VBEM batch algorithm with a wide range of different
start values gives no guarantee for finding a global optimum of the free energy or a
value near to it. We will give an example in chapter 10, that the initialisation of the
VBEM batch algorithm for the Poisson SBM with many different start values is even
not enough to reach certain values of the free energy. There, we will show that with
our new inference algorithms, we will propose chapter 8, far better values of the free
energy criterion were reached.

To determine the best result of all tests for different numbers of clusters, we need a
model selection criterion. We have also seen in section 3.4 that the free energy after
convergence (Proposition 1) can be used as a model selection criterion. The applica-
tion and properties of the converged free energy and other important model selection
criteria will be discussed in section 6.

4.2 VBEM Subset Algorithm: BlockVB

We prensented the VBEM batch algorithm for the inference of the Poisson SBM at the
beginning of chapter 4. We will review the batch algorithm (algorithm 6) used in the
literature [35, 50, 84, 73] to apply the variational bound of the VBEM algorithm and
other criteria for model selection of the SBM in chapter 6. In this algorithmic frame-
work, all vertices of the network are optimised in one iteration. All these algorithms
are batch algorithms.

To prepare our Blockloading and Blockloading++ algorithms in chapter 8, we now
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propose our original BlockVB algorithm for the Poisson SBM which is optimised for
the application to subsets of vertices of the network. We developed the BlockVB al-
gorithm out of the VBEM batch algorithm 3. Our BlockVB algorithm for the Poisson
SBM is able to restrict the VBEM inference to subsets of the vertices of the network in
a computationally efficient way.

There have also been proposed different approaches for variational subset based meth-
ods for model based clustering like VEM based online clustering [125, 123] or Stochas-
tic Variational Inference (SVI) [42, 39]. For a more detailed review of important exist-
ing subset based (variational) methods for clustering we refer to chapter 7.

We denote the set of vertices which are considered for optimisation with /. We call this
set the active vertices. Let | I| be the number of vertices in /.

To summarise the computational costs in concise way, we denote the number of edges
leaving or pointing to vertices in I by

Er=YTa,;+ Y Iu, (4.16)
iel ;211

where I is the indicator function introduced in section 4. Accordingly, the number of
all vertices in the network is given by E (see section 4).

We assume that we have an existing start partition matrix, Q( , of the cluster assign-
ments from previous calculations. We initialise start values, QI , for the active vertices
in I. To save computational time, we only want to calculate updates in the M— and
E-Step which depend on the active vertices.

In the M—step of algorithm 3, we had to calculate the updates

start)

041 = S + 0, 4.17)

Bu = Sp,, + B (4.18)

8 = S5, + 8, (4.19)

for all Vk, I, where

N

Sey; = Z Qi QjiAij, (4.20)
i#]
N

Sy =Y. QuQji, (4.21)
i#]
N

Ss, = Y Qi (4.22)
i=1

The computational costs of these formulas are & (KZE ) If we restrict the updates in
the M—step to the set / we can save computational costs by calculating:

N N
Sor = 2 3. QaQiuAij+ ) Y QuQiiAij, (4.23)
i=1 jel i€l j¢l
i#j i#j i#j il
N N
Siikz =) 0uQu+), Y Oulj, (4.24)
i=1 jel icl jgI
i#j i#j i#] j=1

iel
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. (old) _ of (old) _ of (old) _ of

for all k,I. Using these formulas, we set Soy | = Sakz’ SBk[ = Sﬁu and Sﬁk = Ssk.

Then we calculate Sf, , Sf;kl and Sgk. Now we can update the model parameters for all
k,l:

04t = Sy — Seen) 8%, + ot (4.26)

_ (old) I 0
ﬁkl = Sﬁkl — Sﬁkl + Sﬁkl + ﬁkl’ 4.27)
8 =S5, — S5+ 55 + 0. (4.28)

Our adjusted update equations for the M—step have computational cost of &'(K2E;)
compared with the original cost of ¢(K?E) of the batch algorithm 4, if Soy and Sg,
are given. Thus, we save computational costs of & (KZ(E —E,)) with our BlockVB
M-step. In the E-step, we only have to update the cluster assignments for the active
vertices, Oy, (i,v) € I x {1,...,K} according to proposition 4. We have computational
costs of & (K 2E1) for all vertices in / whereas the computational costs for the update of
the cluster assignment of all vertices in the network are & (KZE ) Like in the M—step,
we save computational costs of & (K*(E — Ey)).

We calculate the free energy, F' dependent on the updated parameters and variables and
check for convergence of F.

Since we assume like in [29] that the Gamma function I"(+) and the logarithm of the
Gamma function can be calculated approximately in constant time, the computational
costs of our BlockVB algorithm are dominated by the update equations in the M—and
E—step.

We conclude that the computational costs for one iteration of our BlockVB algorithm
are 0 (K*E;) compared to & (K*E) of the batch algorithm 3. We remark that E; << E
holds except for extreme cases. In all our tests we achieved a high increase of speed
with our BlockVB algorithm compared to the VBEM algorithm 3 for all vertices. We
sum up our BlockVB algorithm in algorithm 4.

We propose the BlockVB algorithm for the directed Bernoulli SBM in appendix A
together with all update equations and the free energy model selection criterion.
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Algorithm 4: BlockVB algorithm for the Poisson SBM
Data: adjacency matrix A, index set of vertices for optimisation, /, cluster

partition matrix @, prior parameters (ao, BO, 80), maximum number of

iterations
/* Initialisation */
Calculate Sqy,,Sg,,,Ss,

Calculate S}, , S;?k/ , Sgk

Update the parameters, (&, 8, 8), according to Propositions 2 and 3
/* Main Loop */
repeat
/* E-step:update all matrix entries of Q */
repeat

foreach (i,v) e I x{1,...,K} do

| Calculate Q;, according to eqn. 4.12 in Proposition 4

end
until Q.,Vi € I converges or maximum number of iterations
/* M-step:update the model parameters */
foreach (k,l) € {1,...,K}* do
/* Preparation */

(old) I
Szxk/ \ A Sakl

old I
Sﬁkz — iﬁkl ;
Calculate g, and § B

/* The Actual Update */

old 1
O — Soy, — SSXM ) +8h, + o)

(old) | I 0
Bu < Sg, _Sﬁkl +S i + By

end
foreachk € {1,...,K} do
SO st
k k

Calculate S%
k

O — S5k — Sg]:ld) +S15k + 6]?

end
until convergence of F [q(-)] or maximum number of iterations
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Chapter 5

Fully Bayesian Start Values

We have discussed in sections 3.4 and 4, and seen in the literature review of e.g.
[15, 50, 73] that the VBEM algorithm for the SBM converges to a local optimum
dependent on the start value initialisations of the cluster assignments of the vertices.
Therefore it is recommended in the literature to initialise the VBEM or VEM algo-
rithm with different start values to find the global optimum [50, 84, 73].

The need for an initial cluster assignment of the vertices arises from the EM-like two
step design of the VBEM algorithm. It follows from Algorithm 3 in section 4 (Algo-
rithm 4 in section 4.2) and Proposition 4 that the update equations for each vertex in
the E—step of the VBEM algorithm depend on the current cluster assignments of the
other vertices.

In addition, we have to specify hyperparameters (parameters of the prior distribution)
(a®, B°) for the Gamma or (& 0 n°) for the Beta and 8° for the Dirichlet prior distri-
butions for these algorithms. We also mentioned this in chapter 2, when we reviewed
the Bayesian Poisson SBM.

There are two possibilities which were proposed in the literature to choose the start
cluster partition, Q(” 1) of the vertices. The first possibility is to use a second cluster-
ing algorithm with preferably lower computational costs to calculate the initial cluster
assignments. Popular algorithms which were proposed for this task in the literature are
the Ascending Hierarchical Clustering (AHC) algorithm based on the Ward distance
[89, 35, 84, 71, 74], the K—means algorithm in combination with the AHC algorithm
[73] and the spectral clustering algorithm [39, 75, 79]. We will review the AHC algo-
rithm in section 9.1.

Then dependent on Q(s’“r "), the updates of the model parameters are performed. This
approach is used for the frequentist VEM batch algorithm of the SBM in [35, 84, 75,
79] except with different update equations for the model parameters. We saw during
the review of the VEM algorithm in section 3.3, that there are no prior distributions of
the parameters in the case of the frequentist VEM algorithm.

A similar strategy was proposed for the application of the VBEM algorithm to the
Bernoulli SBM [71, 73] and the Bayesian overlapping SBM (OSBM) [71, 74]: The
initial cluster assignments are calculated with a second algorithm, in this case the AHC
algorithm, and fixed non—informative priors were chosen for the updates of the model
parameters. The idea of non—informative priors is that there should be no or a low
influence of the prior distributions on the inference algorithm [61, 73]. In [71, 73]
non—informative Jeffreys priors [61] were proposed for the Bayesian Bernoulli SBM.
All parameters of the Beta prior distribution of the edge existence probabilities, 8, were
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set to C,?l = %, 77/?/ = %,Vk,l and the hyperparameters of the Dirichlet prior distribution
to 8 = %, Vk [71,73].

We call this approach the mixed approach, because the start values of the Bayesian
VBEM algorithm are initialised with a second algorithm like in the case of the VEM
algorithm.

Random cluster assignments and informative priors Another approach, which
was proposed in [50] for the restricted Bernoulli SBM (review in chapter 2), is to use
a randomly initialised start partition matrix Q'**"") combined with fixed informative
hyperparameters (see definition below) & 0, 1 for the Beta prior distributions of the
edge existence distributions.

The start cluster assignments of the vertices, are generated uniformly at random with
YK Qi = 1 Vk and Qy € [0, 1]. In the software package vbmod [49], which accom-
panied [50], uniform Dirichlet prior distributions are used with 5,? =1, Vk. To model
the assumption that there is a higher probability for the existence of an edge within the
clusters than between the clusters, the hyperparameters were set to C,?k =2, n,?k =1Vk
and ¢ = 1,n) =2 Vk # [ in [50].

In the algorithmic structure of the VBEM inference of vbmod, the model parameters
are initialised with the hyperparameters. Then the E—step for the update of the cluster
assignments is performed at the beginning of the main loop of the algorithm. After-
wards, the M—step for the update of the model parameters follows. The hyperparame-
ters remain fixed throughout the runtime of the vbmod algorithm.

In this algorithmic approach, the hyperparameters influence the inference process and
’[...] act as pseudocounts that augment observed edge counts and occupation numbers.’
[50].

We remark that there are two general strategies for choosing the hyperparameters for
the restricted Bernoulli SBM due to the model design: The edge connections within
the clusters can be more dense or less dense then the edge connections between the
clusters and the hyperparameters can be chosen accordingly.

We note, that we have to consider additional edge connection profiles in the case of
the SBM, like disassortative connection profiles and hub clusters which can occur to-
gether with assortative clusters with different edge existence probabilities in the same
network. Therefore, the informative hyperparameters of the restricted SBM are too
limited for the SBM. We also found during preliminary numerical tests, that such a
choice of priors is unsuitable for the Gamma prior distribution of the Bayesian Poisson
SBM.

Because the combination of informative priors with random cluster assignments of the
vertices is applied without a second, normally non—Bayesian, algorithm, we call this
approach the fully Bayesian approach contrary to the mixed approach which was out-
lined above.

From now on, we will call the hyperparameters of informative prior distributions in-
formative hyperparameters. We note this in the following definition.

Definition 1 (Informative Hyperparameters). Hyperparamters of informative prior dis-
tributions are called informative hyperparameters.

Hyperparameters for Gibbs sampling For the Gibbs sampling algorithm for infer-
ence of the SBM, proposed in [97], conjugate prior distributions for the model pa-
rameters were also used. The ideas for the choice of the hyperparameters of these
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prior distributions are also interesting for VBEM inference. So, we now review the
choice of the informative hyperparameters for the conjugate prior Beta distributions
on the edge existence probabilities 6y;,Vk,l. For the case that within cluster edge
connections are expected to be dense and between cluster connections to be sparse,
G = 18’%, Nk = ;(;’%,Vk and My = 4’(;’%, Cu = 13’% are recommended in [97] as the
hyperparameters of the Beta prior distributions. It is also noted that the number of
vertices per cluster should not differ too much for the use of these informative prior
distributions [97].

For the hyperparameters of the Dirichlet prior distributions on the parameters of the
sizes of the clusters, 7y, hyperparameters 5,? = 100K, Vk were recommended in [97].
It was remarked in [97] that uniform hyperparameters of 5,? = 1,Vk tend to lead to
unequal sizes of the clusters.

Another fully Bayesian approach with a randomly initialised fuzzy start partition ma-
trix and informative priors for the dynamic Bernoulli SBM of [122], was used for a
simulated annealing Gibbs sampler in [122]. Like in [97, 50], the informative hyper-
parameters of the conjugate Beta distributions of the edge existence probabilities, 0,
were optimised for networks where the within cluster connection probability Oy, Vk,
is expected to be higher than the inter cluster connection probability, 6y;,Vk # [. The
authors of [122] found that for these undirected example networks, hyperparameters of
Cgk, Vk € {1,...,K} equal to the number of edges in the network and ngl =10; Vk #1

yielded the best results. They also noted, that only the hyperparameters of § 0 (and less
1°) are important for the inference process and the other hyperparameters can be hold
fixed and non—informative or set to low values which are not meant to influence the
inference process. So, the hyperparameters of the Dirichlet prior distributions were set
to 80 = 1,Vkin [122].

Hyperparameters for Gamma Priors So far we have only reviewed the hyperpa-
rameters for the Bayesian Bernoulli SBM. Now we review choices for the Gamma
prior distributions of the Bayesian Poisson SBM. It is remarked in [96], that By con-
struction, the Gamma distribution is informative.”, [96]. The authors of [96] stated
that the hyperparameters of the Gamma prior distributions for their Infinite Poisson
mixture model (IPM) should have a low influence on the outcome of their Gibbs sam-
pler. Therefore, following the literature, they proposed hyperparameters of og; = B =
0.1, Vk, [ for the Gamma prior distributions on the rate parameters, A.

The IPM model is the weighted version of the Infinite Relational Model (IRM) [67].
The IPM is closely related to the Bayesian Poisson SBM except that the cluster assign-
ments are determined by the Chinese Restaurant Process (CRP) instead of the Multi-
nomial distribution.

In the implementation of the VBEM batch algorithm for the Poisson SBM in the
WSBM software package [7] (downloadable at http://tuvalu.santafe.edu/~aaronc/wsbm/),
which accompanied [8], hyperparameters of oc,?l =0, [5,?1 =0.001, Vk, [ were the default
hyperparameters. In addition, it was recommended by the authors of the WSBM pack-
age to run the algorithm with different values for hyperparameters to determine their
influence. Other hyperparameters suggested in the comments of the source code were
uniform priors oy = By = 0,Vk,l or oy = 1, By = 0.001, Vk, 1.
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Our Approach Contrary to the existing approaches above, we now present our find-
ings concerning the choice of the hyperparameters for our VBEM inference of the
SBM.

We remark that the hyperparameters of all the work presented above remain fixed
throughout the inference process. So, if we use informative priors, the information
or bias which should result from the informative priors has to be known and set up in
advance. For large and complex networks which are a combination of different cluster
connection profiles like densely linked clusters, hub-like clusters, sparsely connected
clusters and so on, it is difficult to come up with an informative prior in advance. Oth-
erwise we have to employ several restarts to try different hyperparameters which would
lead to increased computational costs.

For our BlockVB algorithm in section 4.2, we proposed to limit the inference to subsets
of vertices of networks with the cluster assignments of the other vertices held fixed.
We first discuss our choice for the Gamma prior distributions of the Bayesian Poisson
SBM. Our findings presented for the Gamma prior distributions can also be transferred
to case of the Bayesian Bernoulli SBM which will be discussed below.

Neutral Gamma Priors The choice of hyperparameters for the Gamma prior distri-
bution which have a low influence on the conjugate posterior distribution was discussed
in depth in [69]. The author of [69] introduced the concept of neutral hyperparameters
for the conjugate Gamma and Beta distributions. These neutral hyperparameters for
the conjugate Gamma distribution are given by oy, = %Nk,l and fB;; = 0,Vk,l. Neutral
hyperparameters ’[...] lead to posterior distributions with approximately 50 per cent
probability that the true value is either smaller or larger than the maximum likelihood
estimate.” [69].

If we choose, B = 0,Vk,l, we get an improper prior distribution [69], which leads
to undefined expressions in the case of empty clusters of the VBEM algorithm (see
chapter 6 for a discussion of these empty clusters). So, we have to add a tiny value to
B = 0 to cover the case of empty clusters.

We also noted during numerical tests of earthquake networks that a value for the
B, Vk,l parameters near to zero penalises the emergence of small clusters and thus
has influence in the case of VBEM inference for the Bayesian Poisson SBM. Therefore
we choose B = 0.01,Vk, I as values for the hyperparameters, instead of values closer
to zero or By = 0,Vk, . This choice led to good results in all numerical tests.

We note that our hyperparameters are 'nearly neutral’ when judged by the criteria
which led to the choice of the hyperparameters proposed in [69]. For now we settle
on the choice of og; = %,Vk,l and f; = 0.01,Vk, ! for the nearly neutral hyperparame-
ters of the conjugate Gamma distributions of the Bayesian Poisson SBM.

We use the uniform Dirichlet prior distributions, 6]? = 1,Vk like in the implementa-
tion of vbmod [49, 50]. We also tried Jeffreys Dirichlet hyperparameters used for the
Bernoulli SBM in [73], which did not bring any notable difference in preliminary nu-
merical tests.

Now, that we have found hyperparameters with low impact on the inference process of
the VBEM algorithm for the Poisson SBM, we have acquired two options presented
above for the initialisation of the VBEM algorithm for the Bayesian Poisson SBM:
The mixed approach with a second helper algorithm for the initialisations of the cluster
assignments of the vertices and uninformative priors and on the other hand the random
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initialisations of the start cluster assignments with informative priors.

Both approaches work for earthquake networks as we will see in the numerical tests
in section 10.7. There, we will note that the mixed approach did not allow us to use
every option for the selection of the active cluster in our algorithmic framework of
the Blockloading algorithm 8 equally well. Astoundingly, random initialisations and
nearly neutral hyperparameters can miss some network structures in the case of simple
networks generated with the Poisson SBM. This applies to networks with approxi-
mately equally sized clusters and the same within and inter cluster connection rates or
probabilities. This is also true for the mixed approach, although to a smaller extend.
To find a remedy for this challenge we searched for a way to combine random initiali-
sations of the initial cluster assignments of the vertices with informative priors for the
Poisson and Bernoulli SBM. We present a solution to this challenge in the next section
which will also lead to improved results.

5.1 Adaptive Informative Priors: BlockVB++ Algorithm

Above, we reviewed several approaches for informative priors of a special case of the
Bernoulli SBM. This special case is nearly similar to the problematic case presented
above. Thus we take the existing work as a starting point.

We found that the specific choice of informative priors presented by [122] did not work
for the (directed) Poisson SBM and directed Bernoulli SBM, though. Contrary to the
examples of [97, 50, 122] presented above, we need prior distributions for weighted
and directed networks in case of the Poisson SBM. We have to consider that the infor-
mative priors of [97, 50, 122], we reviewed above, were proposed for the special case
of the SBM that the within cluster connections are more dense than the connections
between the clusters.

Our Blockloading algorithm makes use of our BlockVB algorithm which limits the in-
ference to subsets of the network. Thus, we need informative hyperparameters which
take into account that the cluster assignments of many vertices remains fixed and the
optimisation considers only one existing cluster at once (see chapter 8). The depen-
dence of the VBEM inference process on informative priors is another argument why
we select the existing clusters as subsets for the optimisation in our Blockloading algo-
rithm.

In order to find informative priors for our subset based inference of our BlockVB - and
Blockloading algorithm, we varied the parameter, a?c, of only the active cluster(s) and
kept the values of all other hyperparameters as nearly neutral. The idea of varying only
a?c was inspired by the finding of [122]. We tested these hyperparameters first on a
restricted SBM and then also on the normal SBM as well as earthquake networks. We
increased the values for the parameter, a’., step by step, and used randomly initialised
start cluster assignments.

We found that at a certain threshold value for Ot,?k > T,Vk, the batch algorithm for the
Bayesian Poisson SBM (Algorithm 3) and our Blockloading algorithm of section 8.1
were able to recover the true ground truth (true cluster assignments of the SBM), which
was not possible before with the nearly neutral priors.

This threshold varied for different networks though. Therefore we have still the depen-
dence on the network and fixed priors. Contrary to [122], we did not find a general rule
like setting the hyperparameters Oc,?k, Vk equal to the number of edges in the network.

We now introduce our new concept of priors which are automatically calculated de-
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pending on the inference process. We took the number of edges in the active cluster(s)
c € {l,...,K}, which are given by Sg . = ):gé 1QicQjcA;j in the case of the Bayesian
Poisson SBM, (see the BlockVB algorithm 4), as a starting point to find suitable infor-
mative hyperparameters. If we choose o, = Sg,., the inference leads to the clustering
of all vertices to only one cluster most of the time. Consequently, we found in tests

that we can choose the hyperparameter to be a fraction of S, .. We started with at least
Saa‘ _ ~0
- =0

ccr

Vk and tested several fractions up to go‘i =1=a’.
Qce

In all cases, we set all other hyperparameters of the Gamma prior distribution to nearly
neutral hyperparameters. We measured the quality of the results with the free energy
after convergence of the Poisson SBM of Proposition 1 in section 4.1, which we ap-
plied with nearly neutral hyperparameters oc,?l = % and ﬁ,?l =0.01,Vk,l € {l,...,K}
and uniform Dirichlet priors.

This approach is a fully Bayesian approach with informative hyperparameters and
randomly initialised cluster assignments. We noted during experiments that our fully
Bayesian approach leads to consistently better results for complicated real world net-
works (see also section 10.7) than the mixed approach with non informative hyper-
parameters or randomly initialised cluster assignments and non or neutral informative
hyperparameters. We remark that a higher fraction of Sg,, as the hyperparameter Oc,?k
tends to separate the more densely connected vertices more reliably and tends to lead
to better results. We found in tests that the best all purpose informative hyperparame-
ters are @), = S‘Z"" for the active cluster(s), ¢ € {1,...,K}, and the new cluster in the
Expansion Step. These adaptive informative hyperparameters lead to the best results
for all different types of networks we tested and worked for all tested networks.

The BlockVB++ Algorithm We add our adaptive informative hyperparameters
to our BlockVB algorithm, and start with the initialisation of the parameters before the
main loop. We have two sets of hyperparameters for the conjugate Gamma distribu-
tions, the nearly neutral hyperparameters ( al ) ﬂo'(")) and the adaptive hyperparam-
eters which are calculated depending on the random initial cluster assignments or the
vertices, Q") as explained above.

We proceed with the E—step as explained for the BlockVB algorithm in section 4, which
is now dependent on Q"'“'"). Dependent on Q") the model parameters are also ran-
domly initialised at the beginning of the main loop contrary to the approach in [50] or
[73].

After the E-step, we have updates of the cluster assignments of the subsets of active
vertices, Oy, and thus the active cluster. Depending on the updated values of Q, we
update our adaptive informative hyperparameters o = Zﬁ\; ;QicQjcAij in the newly
introduced prior parameter update step (P—step). Dependent on the updated adaptive
informative hyperparameters and the other hyperparameters, the M—step follows. We
call this new algorithm, which builds upon the BlockVB algorithm, the BlockVB++
algorithm.

We remark that it follows from the definition of our adaptive informative priors, that
they depend on the edges connecting the vertices of the current active clusters. There-
fore, our adaptive informative priors adjust themselves automatically to different within
cluster edge connectivity parameters, Ay, Vk € {1,...,K}. There is no need to perform
a separate optimisation of the hyperparameters of the prior distributions like it was dis-
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cussed in [16] for the VBEM algorithm. The variational bound is also unaffected by
our adaptive informative priors contrary to the prior optimisation proposed in [16].
Superficially, one could guess that our adaptive informative hyperparameters mainly
apply to SBMs where the within cluster connections are more dense then the between
cluster connections. So, we tested our Blockloading for networks with hub clusters,
clusters which were more densely connected within than between the clusters and vice
versa and clusters with irregular connection patterns all in the same network. Our
Blockloading(++) algorithm together with the BlockVB++ algorithm 5 was able to
identify all clusters correctly for all these cases.

We noted in the numerical tests that for the mixed approach or nearly neutral hyper-
parameters and random start values, more iterations for the BlockVB algorithm and
the E—step of the BlockVB algorithm (see section 4.2 and Algorithm 4) were neces-
sary to achieve good results than with our adaptive informative hyperparameters. Our
BlockVB++ algorithm achieved its best result with one or two iterations in the E-step
and five to ten iterations of the whole BlockVB++ algorithm contrary to the BlockVB
algorithm with only nearly neutral hyperparameters which needed double the number
of iterations to achieve their best results. In addition our BlockVB++ algorithm with in-
formative hyperparameters returned noticeably better results with lower computational
costs.

As mentioned above, we found that all cluster selection methods were equally viable
for earthquake networks with our BlockVB++ algorithm contrary to the BlockVB al-
gorithm.

So we have found all purpose informative hyperparameters which let us use the ad-
vantage and flexibility of randomly initialised start cluster assignments of the SBM to-
gether with the Bayesian algorithmic framework with our new P—step for our adaptive
hyperparameters. This lead to noticeably improved results and computational speed
due to fewer iterations as we will see section 10.7.1.

Hyperparameters for the Bayesian Bernoulli SBM We found that the findings
for the informative and adaptive informative hyperparameters transfer to Bayesian
Bernoulli SBM. Here we need hyperparameters for the conjugate Beta prior distri-
butions. For non-informative hyperparameters we followed [73] and choose Jeffreys
non-informative hyperparameters [61], C,?l = 77/91 = %,Vk, l. We found that the advan-
tages of our adaptive informative hyperparameters also transfer to case of the Bayesian
Bernoulli SBM.

We present the BlockVB++ variant for the Bayesian Bernoulli SBM and its informative
priors in appendix A.
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Algorithm 5: BlockVB++ algorithm with adaptive informative priors for the
Poisson SBM
Data: adjacency matrix A, index set of vertices for optimisation, /, active
clusters, cluster partition matrix Q, neutral hyperparameters

(ao’(”) B 0,(n) , 80), maximum number of iterations

/* Initialisation */
Initialise random cluster assignments for the active vertices, Q;
Calculate Sqy,, Sg,,, S5,

I o ol
Calculate Soy S B’ S 5

Set fraction of adaptive priors, f, +— 4

Initialise adaptive informative hyperparameters with a?c =5 }{‘;C ,Veed{l,...,K}

Update the parameters, (¢, B, 8), according to Propositions 2 and 3 dependent
on (ao’("),ﬁo’(")ﬁo) and o,

/* Main Loop */

repeat

/* E-step: wupdate of cluster assignments */
Calculate Q;,, Vi € I according to eqn. 4.12 in Proposition 4

/* Preparation of P-and M-step */
(old)

Sen | — Sy, Vk,1
sl ol g
Bui Bu

Calculate S{%kz and Si?kz for all &,/

/* P-step: update of adaptive informative

hyperparameters */
0 _ S%C_Sgi‘lcd)-i_sl

Qcc

acc - fp

/* M-step:update the model parameters */

Ot +— Sag, — e + %, + ot for all k, 1

(old)
B «— Sp, —Sg, +Sp + By forall k,1

B
SY  SL vk
k k

Calculate S{S ,Vk
k

8 «— S5 — 55"+ Sk + 80,k

until convergence of F [q(-)] or maximum number of iterations




Chapter 6

Model Selection Criteria for the
Stochastic Block Model

We address the task of model selection for the SBM where we want to find the opti-
mal combination of the number of clusters, parameters and cluster assignments of the
vertices. The efficient identification of the optimal number of clusters of the SBM with
respect to a model selection criterion was one of our objectives for the introduction of
our divisive Blockloading algorithms in chapter 8. We will see in chapter 8, that the
choice of the model selection criterion is of importance for our Blockloading algorithm
and its variants.

The values of the inferred cluster assignment, the model parameters and the number of
clusters influence the value of the model selection criterion.

In the context of the Stochastic Block Model (SBM) model selection is the task of find-
ing the optimal number clusters, K* of the SBM. The VBEM algorithm in chapter 4 is
initialised with a fixed number of clusters K.

The optimal (true) number of clusters K* is unknown.

We now review the general application of such a model selection criterion together with
the batch algorithm which was the only way to find the optimal model in the context of
the SBM for several years [35, 50, 123, 84, 73, 74].

Then we will review and present the most important and popular model selection cri-
teria for the SBM. We begin this review in section 6.2 with the explication why the
converged free energy of the Poisson SBM we introduced in Proposition 1 can be used
as a model selection criterion. We continue with the presentation of our new ICL,y
model selection criterion for the Bayesian Poisson SBM in section 6.3. The ICL,, was
first proposed for the Bernoulli SBM in [29] and for the Poisson version among others
of the bipartite Latent Block Model [43] in [120]. To the best of our knowledge the
ICL,, for Poisson SBM was not proposed yet.

Finally, we review the Integrated Classification Likelihood criterion in section 6.4. The
ICL was proposed in [18] and adopted to the Bernoulli SBM in [35] and the Pois-
son SBM in [84]. We discuss the properties of each model selection criterion in the
respective section.

Akaike and Bayesian Information Criterion Two important model selection cri-
teria, the Akaike Information Criterion (AIC) [11, 19] and the Bayesian Information
Criterion (BIC) [106, 19] cannot be applied to the SBM because both criteria depend
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on the likelihood of the observed data, p(A | 9) [84, 71, 73]. It was already mentioned
in section 3.2, that calculation of the log-likelihood of the observed data by marginal-
isation, Inp(A|¥) = YzInp(A,Z|®), leads to a summation over K" terms, which is
the number of all possible cluster assignments, where K is the number of clusters and
N the number of vertices of the network [84]. Likewise, all other model selection crite-
ria which rely on calculation of the term In p(A | 9) are not tractable in the case of the
SBM [84].

Empty Clusters and the VBEM algorithm The VBEM algorithm does not assign
any vertices to unneeded clusters and reassigns vertices from redundant clusters to
other clusters during the optimisation process [14, 31, 50]. These redundant clusters
are returned as empty clusters and can be discarded after convergence of the algorithm.
If vertices were assigned to such a redundant cluster as start values (see also section
4), the VBEM algorithm actively removes these vertices from the superfluous clusters
during the inference process, dependent on these start values [14, 31, 50].

This feature was used in the context of the variational Bayesian EM estimation of mix-
ture distributions in [14, 31, 111, 86]. It was also noted to hold for VBEM inference
of the restricted SBM in [50]. We confirmed during tests, that this feature of VBEM
inference also works for the Bernoulli and Poisson SBM.

An algorithm for model-selection of mixture distributions was designed around this
feature of VBEM inference in [86]. We remark that using this feature of VBEM ex-
clusively for model selection of the SBM increases the computational costs because at
the start of the inference vertices are assigned to clusters which might be found to be
redundant during the inference.

Using this feature for model selection of the SBM is also highly dependent on the
choice of start values for the cluster assignment of the vertices. Therefore, such a
model selection procedure does not work well for bigger and more complex networks
and we will see that there are better algorithms for model selection of the SBM in chap-
ter 8. Nevertheless this feature of the VBEM algorithm supports other ways of model
selection we will present below.

6.1 Model Selection for Batch Algorithms with fixed
number of clusters

The method to use the following model selection criteria together with a batch algo-
rithm for the SBM is always the same (e.g. [35, 50, 123, 84, 73, 74]): The batch al-
gorithm is run for every number of clusters, K, which we guess that might be optimal,
for different initialisations of the start values. Then we choose the result of all these
runs, which yields the best value of our model selection criterion. We need several
initialisations of the algorithm because of the possibility of local optima (see section
4). We sum up this procedure in Algorithm 6.

We mentioned in the introduction, that Algorithm 6 is computationally expensive, es-
pecially if high numbers of clusters are involved. In chapter 8, we will discuss our
Blockloading framework and other methods which are able to avoid these costly re—
initialisations with different cluster sizes.

We denote with Kp,x the highest number of clusters the batch algorithm is initialised
with during the search for an optimum. Under the assumption that the model selec-
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tion criterion can be calculated in linear time, the order of the computational costs
for the VBEM batch algorithm for the undirected Bernoulli SBM was found to be of
O (K3 .<E) [29]. Under the same assumption, we found the order of the computational
costs for Algorithm 6 together with our Poisson VBEM batch algorithm also to be
O (K3 ,<E). The same is true for VEM version of the batch algorithm for the Poisson or
Bernoulli SBM because these algorithms are of the same order as the two algorithms

above as discussed in section 4, [35, 84, 30].

Algorithm 6: Model Selection for the SBM with fixed number of clusters (Batch
algorithm)

/* Initialisation */
Choose number of restarts, R, with different start values and set of number of
clusters for inference, k € {Kj,...,K,}
for r=1to R do
foreach k € {Ki,...,K,} do
Run the batch algorithm 3 with k clusters
Calculate the model selection criterion, .%,, for the result of the run r
end

Result: Optimal number of clusters, K*, and value of model selection criterion,
FX
r*K*

6.2 Model Selection with the converged free energy or
ILvb

We have already seen in section 3.4, that the variational bound, .Z(-), of the the
marginal log-likelihood, Inp(A|K), penalises the model complexity [15]. We pre-
sented the variational bound or free energy, F, for the Bayesian Poisson SBM in chap-
ter 4.

The application of the converged variational bound for model selection of the restricted
Bernoulli SBM was proposed in [50]. It was taken as an upper bound of the negative
log-likelihood, —Inp(A|K), and called free energy because this method originates
from statistical physics [38]. The motivation which lead to the use of the converged
free energy for model selection of the restricted Bernoulli SBM was that the optimisa-
tion problem to find the optimal number of clusters, K*, can be stated as [50]:

K* = arg max p(K |A). 6.1)
K
The VBEM framework allows the optimisation of the variational bound of

_Inp(A|K) = —an/p(A,ﬂ,ZH()dﬂ. 6.2)
.
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Now, it was used in [50], that by Bayes formula (see e.g. [19]) it follows that

p(A|K)p(K)
p(A)
< p(A|K)p(K). (6.4)

If there is no known prior information, p(K), about the number of clusters, it is assumed
that p(K) is a uniform distribution. So, all numbers of clusters, K;, i = K;,,...,K;, are
equally likely. Thus, it follows from eqn. (6.4) that p(K |A) «< p(A|K) [50].
Therefore optimising the likelihood (or evidence) p(A|K) is equivalent to optimising
the posterior p(K | A), if there is no prior information about the number of clusters avail-
able or used [50]. The need for the VBEM method to approximate the marginalised
log-likelihood, In p(A | K) was explained in section 3.4.

It is noted in [50], that this justification for model selection is a general principle which
follows from the theory presented in [66]. This framework is known as Bayes factors
in the literature [66] and was originally proposed in [60].

Using the converged variational bound of the integrated log—likelihoood after conver-
gence of the VBEM algorithm for model selection was also proposed for the Bernoulli
SBM in [71, 73] and for the overlapping SBM in [74]. This model selection criterion
was called Integrated Likelihood variational Bayes (ILvB) in [73].

It was added in [24, 73], that the quality of the approximation of the integrated log—
likelihood, which is given by the Kullback—Leibler divergence (see [19] and section
3.3), is unknown in practice.

The ILvB (converged free energy) is a a non—asymptotic model selection criterion in
contrast to the Integrated Classification Likelihood (ICL) criterion [18], which was also
adapted to the SBM in [35, 84]. We review the ICL criterion for the SBM in section
6.4.

We repeat (see section 3.4), that no Hessian matrix is needed for the converged free
energy in contrast to other model selection criteria [15].

We have seen above, that the free energy was stated for the restricted ([50]) the (nor-
mal) Bernoulli SBM [71, 73] and the overlapping SBM [74]. All these SBM have in
common that they model undirected and unweighted networks.

We have already stated the converged free energy of the Poisson SBM in Proposition 1
as the variational bound after convergence of the VBEM algorithm 3 for the inference
of the Bayesian Poisson SBM. In this section in addition to section 3.4, the explanation
why it can be used as a model selection criterion was added.

We remark, that in our VBEM algorithm for the Poisson SBM of section 4, the free
energy is also the objective function, which is optimised during the inference process
of the VBEM algorithm. The other model selection criteria differ from the objective
function.

We discussed suitable choices for the hyperparameters of the prior distributions of the
Bayesian Poisson SBM which also influence the value of the converged free energy
in chapter 5. Care has to be taken for the choice of the hyperparameters for the free
energy of the Poisson SBM because the gamma prior distributions of the parameters A
are informative by construction [96].

p(K|A) = 6.3)

6.3 Exact Integrated Classification Likelihood Criterion

In this chapter we derive another model selection for the Bayesian Poisson SBM, the
ICL,y. The ICL,, was proposed in [29] for the Bayesian Bernoulli SBM.
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The ICL,, criterion is also the basis for the greedyICL algorithm for optimisation of
the ICL,, for a given graph in [29]. The greedyICL algorithm uses greedy heuristics
introduced in [95] and [21], [29]. We will review the greedyICL algorithm in chapter
7.

Contrary to the free energy (ILvb) model selection criterion or the ICL criterion we
review below, the ICL,, is not an approximation and only assumes factorised prior dis-
tributions. Nevertheless we will now see that the free energy - and ICL criterion are
closely related [29].

We have seen in chapter 4 that the converged free energy (ILvb) is used for the fuzzy
cluster assignments returned by the updates in proposition 4. We recall that fuzzy as-
signments of the vertices give the probability Oy € [0, 1] of the cluster assignment of
vertex i to cluster k. It holds that ZkK:1 O = 1.

We can also use the free energy (ILvb) criterion for a hard clustering of the vertices,
where each vertex is assigned to exactly one cluster with probability one. In this case,
the entropy term, Zﬁvzl le QixInQ;y, of eqn. (4.4) is equal to zero. The ILvb with the
entropy term equal to zero is similar to the exact Integrated Classification Likelihood
Criterion (ICL,,), which was introduced in [29].

The derivation of the ICL,, differs from the derivation of the free energy (ILvb). This
was shown in [29] for the Bernoulli SBM.

We also show this in our proof of the ICL,, for the Poisson SBM in Proposition 5 be-
low.

The free energy (ILvb) model selection criterion is an approximation of the negative
marginal log-likelihood, —In p(A|K). On the contrary, the ICL,, is no approximation
with a variational bound, but an analytical model selection criterion for the SBM [29].
It takes the cluster indicator matrix Z, which is a hard cluster assignment, and the num-
ber of clusters K as the input.

We present the ICL,, in Proposition 5. The ICL,, model selection criterion of the Pois-
son version of the Latent Block Model (LBM) [43] for bipartite networks was stated in
[120] without a proof.

Like the Variational Bayesian approximation in chapter 4, the ICL,, builds on the
Bayesian framework of the Poisson SBM [73, 96], we reviewed in section 2.2. We
use the same prior distribution as in section 2.2 or chapter 4.

Proposition 5. Let the cluster indicator matrix Z, the number of clusters K and the
adjacency matrix A be given. Under the assumption that the factorisation p(A, ) =
p(A)p(m) holds, the ICL,, of the Poisson Stochastic Block Model of eqn. 2.5 is given
by

Bi'T(o) 1
a) N ZyZ;
0N (g ) (Aig!) s 42

r (Zszl 5k) HkK=1 F(51?)
11 , 6.5
! <r<2516,?>n51r<6k> ©2)

K
ICLi[Z, K] =Inp(A,Z|K) =) In
k,l

where I'(+) is the Gamma function. The parameters Oy, By and & forallk,1=1,... K
are calculated according to O =Y. ; ZyZ i Ajj + oc,?l Yk, 1, B = YiziZZj+ ﬁ,?l Vk,1
and 8 = YN | Zy + 8 Vk. The parameters oy, B and 8 are the hyperparameters.
Proof. We assume factorized prior distributions p(4) = HkIf ; Gamma(Ay; o)), BY)
and p(®) = Dir(m; 8 = (8,...,8)). Thus, the integrated complete data log likeli-
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hood can written in the following way [18, 29]:
Inp(A,Z|K) = In (/ 4z, 7:|K)d7:d),> 6.6)
x,

=in( [ pA1ZA.K)p(AIK)GA [ p(@|mK)p(xiK)dx)  (67)
=Inp(A|Z,K) +Inp(Z|K). (6.8)

In the following, we use the abbreviations

o =Y ZuZjAij+ o) Yk, 1, (6.9)
i#]

Bu =Y. ZuZj + By k.1, (6.10)
i£]
N

& =Y Zi+ 8 k. (6.11)

i=1

The term p(A|Z, K) is together with eqn. (2.5):
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In [29] it was shown that the term p(Z|K) is

p(Z|K) = / p(Z|7,K)p(x|K)dT (6.16)
K
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K
= % for § € RK. We take the negative

logarithm of Eqn. (6.15) and eqn. (6.19) together with eqn. (6.8), this yields eqn.
(6.5). O

where we used the abbreviation C(8)

Every time we will use the free energy or ILvb criterion in this thesis one can also
use the ICL,,. Of course fuzzy cluster assignments, Q, have to be transformed to hard
clustering, Z. We describe this transformation in chapter 8. This comes at a slightly
increased computational cost.

Non-informative priors of [61] are used for the ICL,, of the Bernoulli SBM in [29].
The discussion of low influence hyperparameters for the prior distributions over the
model parameters in chapter 5 also applies to ICL,, of the Poisson SBM.

It is remarked in [29], that a Stirling approximation of the Gamma function of the ICL,,
of the Bernoulli SBM shows that the ICL,, penalises model complexity. The same is
true for the Gamma function used of our ICL,, criterion for the Poisson SBM in eqn.
6.5.

6.4 Integrated Classification Likelihood Criterion

The Integrated Classification Likelihood (ICL) criterion was introduced in [18] for
the model selection of mixture distributions. The ICL criterion was shown to be less
likely to overestimate the number of clusters, K, in mixture inference problems than
the Bayesian Information Criterion (BIC) [18]. The ICL was adapted to the Bernoulli
SBM in [35] to determine the optimal number of clusters with a VEM batch algorithm.
Building upon [35], the ICL criterion for the directed Poisson SBM was proposed in
[84]. We follow the presentation of [35], [18], [84] and [29].

We recall that the free energy is an approximation of the marginal log-likelihood (in-
tegrated observed-data likelihood), p(A|K) [73]. The principle idea of the ICL for the
SBM is to approximate the integrated likelihood of the complete data, (A,Z), (inte-
grated classification likelihood) which is given by [18, 35]:

P(A.ZIK) = [ p(A.ZI9.K)p(8]K)d. (6.20)

The term p(¥|K) in eqn. 6.20 is the prior distribution over the model parameters 9.
We have seen above that this likelihood is intractable and has to be approximated.

The derivation of of the ICL is based on a Lemma of [18]: If we assume that p(A, &T|K) =
p(A|K)p(m|K) holds, it follows that Inp(A,Z|K) = Inp(Z|K) + Inp(A|Z,K). The
proof of this Lemma was repeated in equations 6.6 to 6.8 in Proposition 5.

To find a tractable expression for the term Inp(Z|K), a Dirichlet prior distribution is
set for p(@|K), with Jeffreys priors, §0 = % Vk, and the same calculation as in the
equations 6.16 to 6.19 of the proof of Proposition 5 is done [18, 35]. Thus, the ICL is
a Bayesian model selection criterion [35].Then the Stirling approximation in the limit
of large N, where N is the number of vertices of the network, is used. This leads to
[35, 84]:

Inp(Z|K) zm’?xp(Z\it,K)—(KT_l)ln(N). (6.21)
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This expression was derived in [35] in the case of the Bernoulli SBM but is the same for
other versions of the SBM with the Multinomial distribution for the cluster assignments
like e.g. the Poisson SBM of [84].

For the term Inp(A|Z,K), a BIC-like Laplace approximation is used [18, 35] which
leads to [18, 35, 29]

K2
——1In

In p(A|Z.K) ~ max p(A|Z,A.K) — = In(N (¥ ~ 1), 6.22)

For a detailed derivation of these two approximations we refer to [18] and [35].

The ICL is used with the frequentist VEM point estimators of the model parame-

ters in [35] and [84]. These VEM estimators, D= (ft,i), for the model parameters
¥ = (m,A) of the Poisson SBM are given by [84]:

. 1 ¥
o= ; Qix Vk, (6.23)
and
R i Aii0n 0
By = L@t Vk,1, (6.24)
Yizj Qi Qji

where Q is the estimated cluster assignment returned by the chosen inference algorithm
A
. . A
and A the adjacency matrix of the network. We define f(A;;,Ax) = A‘;_’/_! exp (—Ay) to
be the Poisson distribution. It was remarked in [18] that also Bayesian or other param-
eter estimates can be used instead of the of the VEM estimators stated above.

The combination of eqn. 6.21 and 6.22 leads to the ICL criterion for the directed
Poisson SBM which is now given by [84, 29]:

K—-1

ICL(Q.K) = max Inp (A,Q|{9,K) - %1@ In(N(N 1)) — n(N) (625
s 1
=YY Oulnfe+Y Y QuQjiIn f(Aij, Ay) — EKZIU(N(N— 1))

ik i)kl

k-1 In(N). (6.26)

2

The term —JK*In(N(N — 1)) — £-1 In(N) is a penalty for model complexity and simi-
lar to term used in the BIC [84]. The ICL is an asymptotic model selection criterion in
contrast to the converged free energy in section 6.2 or the ICL,, in section 6.3. It was
remarked in [84], that the ICL could underestimate the number of clusters for small
synthetic (generated with the SBM) graphs with N = 50 vertices but worked almost
always for synthetic graphs with more than N = 100 vertices.

The same observation was found in [73] where the converged free energy/ILvb of the
Bernoulli SBM was compared to the ICL for the Bernoulli SBM in tests of small graphs
with N = 50 vertices which were generated by the Bernoulli SBM. The converged free
energy/ILvb outperformed the ICL in those tests in [73]. It was remarked in [30] based
on [18, 84] that ’[...] analyses based on the ICL tend to miss certain important struc-
tures present in the data because of the use of (asymptotic) approximations.” [30].
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This result is explained in [73] by the different approaches of the two model selection
criteria. It is remarked that ’[...] ILvb approximates the marginal likelihood, which
is known to focus on density estimation only.” [73] and that the "ICL approximates
the integrated complete-data likelihood and is known to focus on cluster analysis view
since it favours well- separated clusters.” [73].

The ICL is a widely used model selection criterion for the SBM [35, 124, 84, 123]
and is also used in the software package Wmixnet [75] and its successor the Block-
models package [79] which is a state of the art implementation of a split-merge VEM
algorithm for different versions of the SBM.

We also remark that we do not need any hyperparameters of the priors of the model
parameters, A, for the ICL criterion for the Poisson SBM, if we use the frequentist es-
timators given in eqn. 6.24. This is an advantage when compared to the free energy or
ICL,, criterion for the Bayesian Poisson SBM which both rely on Bayesian estimators
for the parameters. As mentioned above, we discuss the choice of these hyperparam-
eters for the Gamma prior distributions of A in chapter 5. We have to be careful with
the choice of these hyperparameters of the priors in the case of the free energy or the
ICL,, because the Gamma distribution is informative by construction [96].
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Chapter 7

Review of Split-Merge concepts
for clustering

The idea of restricting the optimisation process of a clustering algorithm to subsets
of the vertices of the network is a recurrent one in the literature. This restriction to
subsets is often combined with a split-merge (or split—join) algorithm where a model
selection criterion or cost function is optimised through splitting and merging as well
as optimising subsets of the network. Now, we will review selected past work where
such algorithms were proposed.

Based on [56] and [123], we first introduce some terminology to distinguish different
types of divisive and agglomerative algorithms. For the sake of convenience we also
recall important facts about split, merge and subset algorithms from the introduction of
the thesis and chapter 1.

The following discussion of algorithms assumes that the optimal number of clusters is
unknown, that the cluster assignment is exclusive and that the optimal assignment of
the vertices to the unknown number of clusters is hidden. Therefore these algorithms
are exclusive, unsupervised classification (clustering) algorithms [56].

If the inference process starts with all vertices in one cluster and there is a split proposal
to split an existing cluster into two or more new clusters to improve a model selection
criterion, this algorithm is called a divisive algorithm [56]. The inference of a a divi-
sive algorithm stops if no further improvement of the model selection is achieved with
a split or merge step or the desired maximum number of clusters was reached. Such a
procedure was used for example for the bisecting K-means [109] or X-means algorithm
[99]. It can also be considered to split several clusters simultaneously [99]. Of course
a divisive algorithmic scheme can be applied to an existing partition of more than one
cluster (e.g. [109, 57, 75, 118]).

The opposite strategy consists of considering each vertex as a separate cluster and then
to start to merge clusters to optimise a model selection criterion. Such an approach is
called agglomerative clustering. Again, the agglomerative algorithm can also be ap-
plied to any more than two clusters [29, 121].

Both, agglomerative and divisive clustering algorithms are hierarchical clustering al-
gorithms [56]. The inference process of hierarchical clustering algorithms can be vi-
sualised by a tree like structure called dendrogram [123]. The root of the dendrogram
is the starting cluster of the divisive algorithm to which all vertices are assigned. The
leafs of the dendrogram are the single vertex clusters or the initial cluster partition be-
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fore the application of the merge steps of the agglomerative algorithm.

Agglomerative and divisive clustering can be combined into a split-merge hierarchical
algorithm [32, 57, 79].

It was noted in [99] that we also need to specify a criterion to choose the cluster or clus-
ters we want to split. The same is true when we select vertices or clusters to merge in
the agglomerative case. This choice is often performed randomly in the case of merge
steps [57, 89] but there also exist algorithms with more sophisticated criteria [103].
Split and merge algorithms focus naturally on subsets of the data. There are also al-
gorithms which optimise subsets of the data and keep the number of clusters fixed like
the Stochastic Variational Inference (SVI) algorithm [48, 41].

We limit the following concise review of split, merge and subset based methods to the
general properties of the chosen inference algorithm and focus on the split and merge
algorithm of these methods.

7.1 Variational Subset Based Inference for Clustering

7.1.1 Online clustering for variational algorithms

The computational limitations of the variational batch algorithm for inference of the
SBM for large networks were addressed with an online clustering strategy for the Clas-
sification EM [124] and the VEM algorithm, [125, 123]. Online strategies are used
to calculate the optimal cluster assignments of newly added vertices of a growing net-
work, where the existing cluster assignment of the old (existing) vertices stays fixed.
Once a cluster assignment of a vertex is calculated it stays the same until the end of the
inference process [124, 125, 123].

Online clustering can also be used to considerably lower the computational costs of the
inference process of a fixed network. To apply online clustering to a fixed network, the
inference process is started with a low number vertices and then the remaining vertices
are added vertex by vertex to the network and their cluster assignments are calculated
according to the online clustering algorithm. It was shown in [125] that such a proce-
dure can lead to a considerable computational speed up of the inference process when
compared to the variational batch algorithm. This speed up comes at the cost of a lower
quality of the results for some networks [125]. The online algorithm is initialised with
a fixed number of clusters before the start of the inference process like the batch algo-
rithm [125]. The variational algorithm is also notable for limiting the inference process
to subsets of the network. We remark is that the online algorithms in [124, 125, 123] are
frequentist algorithms contrary to our Bayesian BlockVB and BlockVB++ algorithms.

7.1.2 Stochastic Variational Inference

To improve upon the variational batch algorithm, the concept of Stochastic Variational
Inference (SVI) [48], which is based on Stochastic Optimisation [100], was proposed
first for the Mixed-Membership Stochastic Block Model (MMSB) [42, 41] and then
for the Bernoulli SBM [39]. The idea of SVI is to limit the inference to subsets of the
data and to optimise a noisy approximation of the variational bound which provably
converges to a local optimum of non-convex optimisation problems [48], which is the
case for the MMSB or SBM [41] and to the optimum in case of convex optimisation
problems [100, 48].

It was shown with numerical examples in [41] that the use of SVI for the inference on
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the MMSB lead to a much faster convergence and better quality of the results than the
application of the batch approach. In the case of the Bernoulli SBM in [39], it was also
shown to have a much faster convergence than the traditional batch algorithm without
SVI for very large synthetic networks, although it did not necessarily lead to a better
quality of the results for large networks. It was concluded in [39] regarding the quality
of the results of SVI, that: *Our experiments make it clear that our stochastic algorithm
is able to perform at least as well as the traditional batch algorithm.” [39].

The application of the SVI inference to the SBM in [39] still depends on the Spectral
Clustering (or a second algorithm for the start cluster initialisation) together with an
online version of K-means to initialise the start values for the cluster assignments of
the vertices, to achieve its speed of convergence. It was noted that the SVI inference
algorithm ’[...], instead of initializing our methods entirely randomly, which tended
to yield bad results, we instead initialize using a simpler algorithm run for a brief time
(spectral clustering from Section 2)’ [39].

The SVI algorithm is only applied to a fixed number of clusters in [39] and does not
reuse cluster assignments previously determined for lower number of clusters. So the
main critic of the batch approach of wasting computational resources to find the opti-
mal number of clusters, also applies to the SVI algorithm for the SBM.

There is also additional user input needed to determine the step size of the SVI algo-
rithm and the user defined size of the subsets [48, 41, 39]. Different schemes were
proposed to sample these vertices for SVI inference of the Bernoulli SBM in [39].
There, most of the time, a subset of vertices and all edges of each vertex of a fixed
user defined size is sampled uniformly at random from the network. The size of these
subsets, called ’batch size’, is shown to strongly influence the speed of convergence
and quality of the results in [39]. There is also an influence of the step size of the SVI
inference on quality and computational speed in [39]. This step size has also to be
determined to an extent by trial and error [41, 39].

7.2 Divisive Algorithms

We now review several exemplary divisive algorithms like bisecting K-means ([109])
or X-means [99] which use the K-means algorithm for inference. The bisecting K-
means algorithm in the version of [109] (or [110]) is an example for a divisive al-
gorithm with a model selection criterion and splits according to the model selection
criterion. A bisecting algorithm which uses a model selection and simultaneous splits
of the clusters together with K-means inference was proposed in [99]. Both algorithms,
the bisecting K-means and the X-means algorithm are notable because they combine a
divisive scheme with subsequent refinements of the cluster assignments with the batch
(normal) K-means algorithms.

The classic K-means algorithm [83, 80] (see also [19]) is a batch algorithm which is
run for a fixed number of clusters, K. There are several versions of the K—means algo-
rithm, when we refer to the K-means algorithm we mean the popular approach of [80]
in the version of [19] adopted to networks in e.g. [89].

It is also of interest for us, because it was applied to initialise start values for the cluster
assignments of the vertices in model based clustering e.g. in [89, 73, 29].

The basic K-means algorithm consists of the random choice of K data points (ver-
tices in the case of networks) called centroids. Then the following two step algorithm
is applied until convergence [99, 19]:
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(i) Assign each data point to the centroid with the smallest distance (e.g. Euclidean
distance). Each centroid corresponds to a cluster.

(ii) Re-calculate the new centroids of each cluster depending on the data points which
were assigned to it in (i).

Convergence of K-means is reached if there is no change in step (i). The inference
of the K-means algorithm has an EM-like structure which consists of the E-step and
the M—step [19]. K-means only converges to a local optimum and is recommended to
be run for different start values as explained for the batch algorithm (see chapter 4)
[99]. Therefore we face a comparable problem as for variational methods of possibly
many "bad’ local optima.

7.2.1 Bisecting K-means

This review of the bisecting K—means algorithm is based on [109, 110].

Split and join (merge) steps of the clusters to refine an existing cluster assignment re-
turned by the algorithm K-means were proposed in [32] at the beginning of the 1990s.
These split and join steps were also used in [70] together with incremental update of
the centroids. The application of the K-means algorithm restricted to randomly sam-
pled subsets as a refinement of the existing cluster assignments was proposed in [23].
The maximum number of clusters Knax is chosen in advance. At the beginning of the
algorithm all vertices or data points are assigned to one cluster. Then this cluster is split
into two new clusters with the help of the K-means algorithm. The biggest cluster of
all existing clusters is split with the help of the K-means algorithm. Then the following
bisecting K-means algorithm is applied [110, 109]:

(i) Choose the cluster to split.

(ii) Split the chosen cluster into two new clusters with the help of the K-means algo-
rithm.

(iii) Repeat step (ii) a user defined number of times and pick the best of these splits
according to a cluster similarity criterion.

(iv)Steps (i), (ii) and (iii) are iterated until the chosen number of clusters, Kpax, 18
reached.

The bisecting K-means is a good example for a divisive algorithm. We note that step
(ii) uses several trial splits and chooses the best one according to model selection cri-
terion.

The strategy for choosing the cluster to split was also discussed in [110]. There it was
concluded that choosing the largest cluster, the cluster with the smallest cluster simi-
larity or a combination of both methods did not lead to any significant differences of
the results in several tests. Consequently, the largest cluster was always chosen in the
tests to split.

For optional refinement of the cluster assignment, Qp;sect, returned by the bisecting
K-means algorithm it is proposed in [110] to apply the normal K-means algorithms to
Qpisect- It was noted in [110] that a refinement for the algorithm was also proposed in
[32,23,70].
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The bisecting K-means algorithm was shown in [110] to outperform agglomerative al-
gorithms of e.g. [56] for documents clustering both in speed and quality of the results.

7.2.2 X-means

We review the X-means algorithm, which was introduced in [99], together with its dis-
cussion of concepts for split algorithms also presented in [99].

A maximum number of clusters Kpax is specified for the X-means algorithm. It is as-
sumed that an existing partition with K clusters exists which was returned by the batch
K-means algorithm. Now, K—means is run until convergence in order to split each
existing cluster into two new clusters. During all those runs, the applications of the
K-means algorithm is restricted to the vertices (data points) of each existing cluster.
After convergence of these runs, the BIC model selection criterion is calculated re-
stricted to the data points of each original (parent) cluster, to decide separately if the
newly split cluster (child cluster) should be kept or not.

So, the X-means algorithm consists of the following steps [99]:

(i) Run the normal K-means with the existing cluster partition as the input. This is
called the improve-params step.

(i) Split each existing cluster into two new cluster by applying the K-means algo-
rithm restricted to the data points in each cluster. This is called the improve-structure
step.

(iii) Check if the maximum number of clusters was reached. Otherwise, continue with

).

It was remarked in [99], that X-means covers all 2X possible configurations to split
an existing cluster partition.

Moreover it was found in [99] that restricting the splits of each cluster to only two new
clusters helps to avoid local optima the K—means algorithm could get trapped in, if the
split proposals would involve more than two clusters.

Obviously, X-means determines the number of clusters during the inference process
[99] although there is a user defined maximum number of clusters. To accelerate the
inference of the improve structure operations it was also recommended to store the
clusters which were not split and which did not receive any new data points (vertices)
during the K-means in the improve—parameter step. These ’inactive’ clusters need not
be revisited in the subsequent iterations of the algorithm.

We remark, that the improve-structure operations (step (ii)) are not an option for a
split algorithm for inference of the Stochastic Block Model, because the inference and
model selection is restricted to subsets of the network which would be a violation of
network interdependency of the counter example of [35, 101]. We reviewed network
interdependency of the SBM in section 3.2.

Two other possible split operations were considered in [99].

The first alternative was to split one existing cluster and then to check if the split pro-
posal improved the model selection criterion like e.g. in the bisecting K-means algo-
rithm. For such an algorithm, which would be the bisecting K-means we reviewed in
section 7.2.1, there would be &'(Kpnax) splitting operations where K, is the maximum
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number of cluster during the inference process [99]. Such an algorithm would demand
a strategy for choosing the next cluster to split [99] but no strategy to choose the next
clusters was given in [99]. The other idea was to split half (or another percentage)
of the parent clusters and then to decide with respect to the model selection criterion
whether to keep all splits or to keep none of them. This idea was dismissed with the
argument that some optimal splits might be missed due to a large number of none opti-
mal splits [99]. There would be again the need for a criterion or heuristic to choose the
clusters to split.

7.2.3 Discussion of bisecting K-means and X-means

We remark, that the X-means algorithm and the bisecting K-means algorithm both
refine the existing cluster assignments in their refinements and do not limit the refine-
ment to subsets of the data. The X-means algorithms applies the refinement (improve-
params) of the existing cluster assignments in succession with the split step (improve-
structure).

Bisecting K-means and X-means have both a user defined maximum number of clus-
ters and do not solely rely on the model selection to determine the optimal number of
clusters. In the case of bisecting K-means, the bisecting steps concentrate solely on
the biggest cluster. We note, that this might be very suboptimal with respect to the
model selection criterion because all other clusters are not considered for bisection in
the bisecting K-means algorithm.

This is especially problematic, if the biggest cluster according to the true clustering re-
sult (ground truth) should not be split but rather one of the smaller clusters. Examples
of such situations can be easily constructed for larger networks. In such an example,
more than half of the data points or vertices could be assigned to one constructed clus-
ter and the remaining vertices to several smaller clusters.

We will see in the discussion of our own Blockloading algorithm in chapter 8, that the
favourable bisections steps should not only concentrate on the biggest cluster because
important structure of the clustering results could be missed.

We will introduce a procedure for cluster selection which avoids such situations, when
we introduce our Blockloading algorithm in chapter 8. Our procedure will ensure that
every existing cluster is considered for bisection and optimisation and not only the
biggest or otherwise chosen cluster.

In the section 7.4.1, we will review Split-merge algorithm for Gibbs sampling to the
Infinite Relational Model (IRM) where split and merge moves are randomly mixed in
succession.

7.3 Agglomerative Algorithms

A good example of an agglomerative algorithm is the Ascending Hierarchical Clus-
tering (AHC) algorithm in the version of [8§9]. The AHC algorithm is used for initial-
ising the cluster assignments of the vertices for variational EM inference, for example
in [84], [73], [29]. We will also use the the AHC algorithm to initialise start values
of the VBEM batch algorithm for the Poisson SBM and our BlockVB algorithm of
section 4.2. We will provide a detailed review of the AHC algorithm together with a
description how to use it for start value initialisation for variational EM inference of
the SBM in section 9.1. There we will see that the AHC algorithm first assigns each
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vertex to a cluster and than starts merging the nearest clusters according to the Ward
distance.

We continue this section with a review of the greedyICL algorithm of [29] which com-
bines an agglomerative approach with greedy optimisation also proposed in [95].

7.3.1 Greedy Inference and agglomerative Clustering: greedylCL

An algorithm which is not based on variational methods but lead to a significant im-
provement of the speed and quality of the inference of the Bernoulli SBM, compared
to the variational batch algorithm, was the GreedyICL algorithm of [29]. In addition,
a new model selection criterion for the Bernoulli SBM, the exact Integrated Complete
Likelihood criterion (ICL,y), was proposed, which is a non-asymptotic and analytical
model selection criterion for the SBM [29]. The GreedyICL algorithm is based on
greedy schemes of [95, 21, 29]. The greedyICL algorithm is of interest as a benchmark
algorithm because it was shown to outperform some of the established variational batch
algorithms for the Bernoulli SBM ([501],[35]) among other inference algorithms for the
SBM.

The greedy inference is combined with an agglomerative clustering algorithm [56,
123].

The GreedyICL algorithm places each vertex in a cluster of its own or uses a clus-
ter assignment of the vertices with far more clusters than the expected optimal number
of clusters. The initial cluster assignment is either done randomly or with a second fast
algorithm like K-means which is only run for some iterations [29]. Then the algorithm
selects a vertex at random and merges it with each other existing cluster in search of
a lower ICL,y. The cluster assignment with the optimal value of the ICL,, of all these
merge moves is then chosen as the new cluster for this vertex. If otherwise no lower
value of the model selection criterion, /CL,,, could be found the vertex keeps its as-
signment and is stored as converged. If a cluster has no vertices left after a merge move,
it is deleted. The merge moves of the greedy inference continue until no improvement
with a merge move of any non-converged vertex was possible.

If there was any improvement by a greedy merge move, the set of converged vertices
is emptied and another greedy iteration starts for all vertices of the network.

The greedy algorithm is converged, if there was no improvement for any vertex in the
iteration of the greedy algorithm.

It is recommended to apply an agglomerative algorithm to the cluster partition, Q(&reedy),
which was returned by the greedy algorithm [29]. Therefore merge moves are applied
to the clusters of the cluster partition, Q(’b’”"dy ), to improve the model selection crite-
rion ICL,, once more.

It was noted that the quality of the results and the speed of convergence of the greedy-
ICL algorithm are better if an algorithm like K-means is used for the start cluster as-
signments. Moreover, we saw above that divisive clustering outperformed agglomera-
tive clustering in the case of documents clustering algorithms [109].
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7.4 Split-Merge Algorithms

7.4.1 Split-Merge Gibbs sampler

We review in a concise way the general procedure of the Restricted split-merge Gibbs
(RGSM) sampler which was proposed in the [57] and the Sequentially-Allocated Merge-
Split (SAMS) sampler of [33]. The example mixture model used in [57] is closely
related to the SBM. The RGSM Split-Merge sampler is the basis for state of the art
inference of the Infinite Relational Model (IRM) [67, 68, 46, 92, 105, 12]. The in-
ference of the IRM which was proposed in [67] is based on the restricted split—-merge
Gibbs sampler of the latent cluster assignments proposed [57] to infer the otherwise
intractable likelihood. The intractability of the likelihood is analogous to the challenge
of network interdependency [35, 101] we discussed in section 3.2.

Gibbs sampling belongs to the Markov Chain Monte Carlo (MCMC) methods [19].
Its use was also proposed for the inference of small SBMs (up to 200 vertices) in
[97, 35, 73].

Gibbs sampling theoretically converges to the true statistics of the posterior [62, 97].
In practice, it can be more difficult to register the convergence of Gibbs sampling when
compared the variational algorithms [62]. Convergence of Gibbs sampling is also
slower than of variational algorithms [62]. The basic version of Gibbs sampling in-
ference consists of sampling one hidden cluster assignment and holding the other fixed
[97, 92]. For bigger or complex networks, the basic Gibbs Sampler often stays in bad
local optima, regardless of the number of iterations of the sampling [57]. The result is
a suboptimal clustering of the vertices. Thus the size and complexity of networks (or
mixtures) traditional Gibbs sampling can handle with good results is limited [57].
This situation is familiar from a perspective of a VBEM or VEM user where we also
have to deal with the convergence to a local optimum.

As a solution to these shortcomings of the traditional Gibbs sampler, the Restricted
Gibbs split-merge (RGSM) sampler was introduced in [57]. The idea of the RGSM
sampler is to combine split and merge moves in succession with regular Gibbs sam-
pling for the whole cluster partition. The cluster wise inference proposed in the RGSM
helps to avoid bad local optima and facilitates the identification of additional clusters
[57].

We will now review the general principles of this split-merge sampler. The general
procedure of the split-merge Gibbs sampler of [57, 33] in the version of [46] is:

(i) Draw two vertices (data points), i;,i,, uniformly at random from the set of all ver-
tices (data points) {1,...,N}.

old)

(i) If i1,ir € k99 are assigned to the same cluster, k) form two new clusters,

k) k) and assign iy to k") and iy to k"), Then randomly (or according to a
chosen probability) assign all remaining vertices of k(°/) to the new clusters kg”ew) and
kénew) )

(iii) If otherwise ij € k(lold) and i) € ké"ld) holds, e.g. the two vertices are assigned

to two different clusters, merge the two clusters £\’ k") into a new cluster k("e).

(iv) The split or merge move in (ii) or (iii) is accepted according to the acceptance
probability. This can be the Metropolis-Hastings acceptance probability [57, 33].
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After each split-merge step of the RGSM sampler of [57] or the Sequentially-Allocated
Merge-Split (SAMS) sampler of [33] it is recommended in [57, 33] to run the normal
Gibbs sampler for the whole existing cluster partition. These runs of the traditional
Gibbs sampler are comparable to the refinement proposed for e.g. the bisecting K-
means or the X-means algorithm we reviewed in section 7.2. It was noted in [57] that
the runs of the normal Gibbs sampler increased the quality of the results.

In [57], the vertices were randomly assigned to the new clusters ki"ew),kgnew) in step
(ii). Gibbs sampling restricted to the vertices of the new clusters k&new),kénew) in step

(ii), was used for further improvement because of these random assignments.
As an improvement of the computational efficiency of the split merge sampler, the ver-
tices were assigned with the allocation probability in [33] to the new clusters in step

(ii). Then the restricted Gibbs sampler is applied to the vertices in the two new clusters,

k(new) k(new)
1 oK
The RGSM sampler of [57] was shown in numerical tests to outperform the traditional

Gibbs sampler with respect to the quality of the results and could achieve results pre-
viously unattainable by the traditional Gibbs sampler. It was also remarked in [57] that
there is potential for improvement of the split-merger Gibbs sampler because of the
random choice of the clusters to split or merge. It was also noted that the randomly
chosen vertices i; and i; in step (ii) cannot change their cluster during the split step.
This task was addressed for example in [113].

The split-merge Gibbs sampler for mixture distributions is a field of ongoing research
and improvement [59, 26, 113]. In the next section we finally see how the idea of
split-merge procedures was applied for Variational EM inference of the SBM.

7.4.2 Variational Split-Merge algorithms for the Stochastic Block
Model

We have seen in the previous sections that split—-merge algorithms outperformed batch
algorithms for clustering and greatly improved the overall performance of different
clustering algorithms. To the best of our knowledge there exist only two algorithms
which employ Variational EM (VEM) or Variational Bayesian EM (VBEM) meth-
ods in combination with split—-merge moves for inference of the SBM: There are the
Wmixnet [75, 76] (later: Blockmodels [79]) software package which builds on the
VEM algorithm and our own Blockloading algorithm [118, 116] which uses the Varia-
tional Bayesian EM based BlockVB and BlockVB algorithm (Algorithm 4).

We will also present in chapter 8 the successor algorithm of our Blockloading algo-
rithm which we called the Blockloading++ algorithm a greatly enhanced divisive split
and refine algorithm.

Review of the Wmixnet package We now review the Wmixnet software package
with special regard to the split-merge options Wmixnet offers to further optimise an
existing partition. Our review is based on the software documentation in [75, 76]. Un-
fortunately, no pseudocode or in depth documentation is given in [75, 76] about the
split—-merge features of that package.

The Wmixnet package uses the Variational EM algorithm of [35, 84] which was ex-
plained in section 3.3) for inference of the SBM. It was explained in section 3.3, that the
VEM algorithm is a frequentist algorithm which returns point estimates for the model
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parameters. The VEM algorithm depends on start values for the cluster partition The
default clustering algorithm for start values is the Absolute Eigenvalues Spectral Clus-
tering algorithm [102]. This Spectral Clustering algorithm was shown to be consistent
for the undirected Bernoulli SBM in [102]. The ICL criterion for the SBM of [35, 84],
which was reviewed in section 6.4, is used for model selection. Clustering algorithms
for directed and undirected as well as weighted Stochastic Block Models are offered,
among others for the frequentist Bernoulli and Poisson SBM.

Wmixnet first calculates cluster partitions for different numbers of clusters with a VEM
batch algorithm like in [35, 84]. In addition, a split-merge option for these returned
partitions is offered to further improve the value of the ICL model selection criterion.
So the Wmixnet package combines the batch algorithm with an additional split-merge
option. The optimal number of clusters, K*, together with the optimal value of the
model selection criterion, is by default calculated with the batch algorithm for model
selection which was reviewed in Algorithm 6. The split option is called the the as-
cend mode where existing clusters are split and the merge option, called descend mode
where existing clusters are merged to further improve the ICL criterion. We deduced
from the documentation of Wmixnet [75] that the ascend mode and the descend mode
are performed separately.

We conclude that the Wmixnet package is by default no full-fledged divisive algorithm
but can considered as a batch algorithm with split-merge option.

The Blockloading algorithm Our Blockloading algorithm[118, 116] is a fully divi-
sive algorithm where all vertices are assigned to the same cluster and the inference,
based on our optimised VBEM subset algorithm, BlockVB, we presented in Algorithm
4 in chapter 4, consists of alternating between an Expansion Step where a cluster is split
to optimise the free energy model selection criterion (section 4.1) and the Refinement
Step where a cluster of the existing partition is optimised with respect to the existing
partition. So the expansion and the refinement of the partition are applied in succession
for the same cluster contrary to Wmixnet. In the Blockloading algorithm, we proposed
several criteria for choosing the cluster to expand or refine.

The Blockloading algorithm was first developed for the Bayesian Bernoulli SBM [118]
and later adopted and expanded for the Bayesian Poisson SBM [116]. Contrary to
Wmixnet, the Blockloading algorithm does not apply the batch algorithm and the
model selection for the batch algorithm, given in Algorithm 6, at all. All vertices
are assigned to the same cluster at the beginning of each inference step. Thus, the
existing partition also provides most of the start values for further the next Expansion
and Refinement Steps. So, start values are only needed for a subset of vertices of the
network. We will present the Blockloading in detail in chapter 8§ and postpone the
further discussion of the motivation and the advantages of our Blockloading algorithm
to this chapter. We will also present a greatly improved Blockloading++ algorithmic
framework in chapter 8.

Review of the Blockmodels package The successor of the Wmixnet package is the
Blockmodels package [79] which uses optimised C++ code and the Armadillo package
for matrix computations and other time critical parts of the inference. It can be down-
loaded from https://cran.r-project.org/web/packages/blockmodels/index.html.

Like Wmixnet, it is based on the VEM inference algorithm and the ICL model selection
for different Stochastic Block Models. According to the documentation of Blockmod-
els [79, 77], Blockmodels uses user defined input of the number of clusters. In addition,
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the user can also define the number of split and merge steps in the ascend and descend
mode.

The default number split steps in the ascend mode is two times the number of clusters,
K, at the beginning of the inference. The Blockmodels package still offers the Absolute
Eigenvalues Spectral Clustering algorithm for the initialisation of the start values. Ac-
cording to [79], Blockmodels also offers the option to re-use existing cluster partitions
of lower numbers of clusters as start values for the inference of cluster partitions with
a higher number of clusters. This is a feature which we already proposed in [118, 116]
in the context of variational inference of the SBM, and which we identified as one of
the strengths of our Blockloading algorithm.

The ascend and descend modes are applied separately en bloc in the Blockmodels pack-
age [79]. We verified this from reading the state messages during the inference process
when we ran the program. So, first the cluster partition is expanded for the number
of user specified iterations dependent on the current number of clusters in the ascend
mode and afterwards dependent on the number of clusters which then exists, the merge
steps are performed. It is remarked in [79], that ’oversplitting” might occur during
the ascend mode which means that some splits of clusters are non-optimal and some
clusters should be merged again afterwards in the descend mode. So, the inference of
the Blockmodels package accepts sub—optimal (unfavourable (see section 8.2.2) clus-
ter partitions during the inference process. Thus, unfavourable local optima are not
avoided.

We will compare our Blockloading(++) algorithm with the Blockmodels package with
numerical tests and especially with regard to the clustering of earthquake networks in
chapter 10.

7.4.3 Discussion of Merge and Refinement Steps

If the expansion and merge steps are performed separately there exists the danger of
oversplitting [79] the clusters and consequently overfitting the model. This separate
application of split and merge steps means that in a first step there are only split pro-
posals for the existing clusters until the maximum of iterations or convergence of the
model selection criterion. Then in a following second step there are only merge steps
performed until the maximum number of iterations or there are no clusters left to be
merged. It makes sense to employ merge moves to correct for over splitting with the
result of a too high non optimal number of clusters.

If we therefore use such an ascend—descend approach we would accept over splitting
which means that the cluster partition is expanded to an unfavourable (suboptimal) lo-
cal optimum. We refer to section 8.2.2 for our definition of favourable and unfavourable
local optima. We have already mentioned that it is not easy and sometimes virtually
impossible for the inference algorithm (also VEM and VBEM) to escape out of un-
favourable local optima.

So, if we accept over splitting, we accept automatically that the inference process has
to escape from a suboptimal cluster partition to approach the global optimum again.
Contrary to such a separated split-merge approach, we take the different approach of
preventing the inference process of moving to such a unfavourable state in the first
place.

Our concept includes Expansion and Refinement steps which are applied each to the
active cluster in succession in a nested way to keep the inference near the global opti-
mum for a given number of clusters. In fact we want the inference process to be at or
near the global optimum for a given number of clusters.



70 CHAPTER 7. REVIEW OF SPLIT-MERGE CONCEPTS FOR CLUSTERING




Chapter 8

The Blockloading Algorithms

In this chapter, we propose our Blockloading algorithm which is a divisive cluster-
ing algorithm which expands and refines the clusters (blocks) of the Stochastic Block
Model (SBM). With our Blockloading algorithm we expand and refine the cluster par-
tition in an integrated, nested way by alternating between expansion and refinement of
the cluster partition.

We have reviewed the general principles of divisive and agglomerative algorithms in
chapter 7. There we reviewed several algorithms which build upon these ideas, like
split, merge and split-merge algorithms.

We proposed the Bayesian BlockVB algorithm (see Algorithm 4) and the BlockVB++
algorithm (see Algorithm 5) which uses our newly introduced informative adaptive
priors for an optimised VBEM based optimisation of the free energy (ILvb) model
selection criterion of section 6.2 for subsets of the network. The preparation of our
BlockVB++ algorithm allows us the fully Bayesian inference of subsets of the vertices
of the network we need for our Blockloading algorithm.

We will introduce and discuss several variants and enhancements of the Blockloading,
algorithm, we proposed in [118, 116], in the sections below. These efforts will lead us
to our greatly improved Blockloading++ algorithmic framework.

Contrary to the existing variational EM inference of the Wmixnet and the Blockmod-
els package [75, 79] for the SBM, our Blockloading algorithm is a nested algorithm
where the refinement and and expansion of the partition are performed in an alternat-
ing way. This algorithmic approach greatly reduces the risk of ’over splitting” which
is a problem which can occur if split moves and merge or refinement moves are per-
formed separately like in the Blockmodels package [79].

We have seen in the discussion of the Blockmodels package [79] in section 7.4.2 that
only a limited number of restarts, based on the current number of clusters is performed.
We will show in section 8.2.2 that such a procedure carries the risk of missing clusters
and thus important structures of the network. In contrast to limited restarts, our Block-
loading algorithm and its derivatives ensure that each identifiable local optimum and
each cluster is found before convergence is registered. We achieve this by introduc-
ing several different novel procedures to store if a cluster could be split or refined to
achieve a better value of a chosen model selection criterion. If a cluster consists of
several clusters according to the ground truth or global optimum, the inference process
of our Blockloading algorithm concentrates on finding all local optima in the first visit
of each existing cluster of the network.

Moreover, a limited number of visits for each cluster cannot assure convergence with
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respect to network interdependency of the SBM we discussed in section 3.2 and [35,
40]. By network interdependency the graph of hidden cluster assignments forms a
clique (fully connected graph) [40]. Therefore the change of the cluster assignments of
any vertices in a cluster can affect the optimal cluster assignments of different vertices
in a different cluster [35, 40]. To take this effect into account we have to visit each
cluster until there was no change in any cluster to rule out that the cluster partition is
suboptimal. We will show that our new algorithmic approach aims to prevent to get
stuck in unfavourable local optima which are far away from the global optimum of the
model selection criterion.

We start the optimisation with all vertices of the graph in one cluster and calculate the
free energy F (ILvb). Therefore our Blockloading algorithm is a divisive algorithm.
This cluster is divided into two clusters in search for a lower converged free energy F .
We continue to alternately divide and optimise (refine) chosen clusters by using a vari-
ant of the VBEM algorithm. This variant for the optimization of the vertices belonging
to one cluster is called the BlockVB algorithm.

The BlockVB algorithm for the Bernoulli SBM is given in appendix A and for the
Poisson SBM it was introduced in section 4.2 and Algorithm 4.

The merits of starting with all vertices in one cluster and to proceed by expanding and
refining clusters are discussed below in section 8.1 and also in section 8.2. One obvious
advantage of this bottom up approach is, that the number of clusters according to the
model selection criterion is determined automatically.

An at least equally important advantage is, that the restriction of the optimisation to
subsets leads to a high improvement of the results because of the improved quality of
the start values.

8.1 The Blockloading algorithm

Now, we propose our Blockloading algorithm. The following sections contain revised
parts of our technical report [116]. We changed some parts of the following presenta-
tion of our Blockloading algorithm in comparison to [116], to allow the reuse of the
definitions and concepts for the presentation of our newly added Blockloading++ algo-
rithm. The way our Blockloading algorithm works is unaffected by these changes.

We will discuss the concepts and thoughts which lead to our Blockloading algorithm
in section 8.2. We will see there that we can build a divisive inference framework upon
our Blockloading algorithm. This discussion will provide us with new ideas we will
use to introduce our greatly improved Blockloading++ algorithm.

We start the Blockloading algorithm with the initialisation step. The input for the
Blockloading algorithm is the adjacency matrix of the network, A, the choice of hyper-
parameters (see chapter 5) or the initialisation algorithm for the start values, and the
number of iterations for the VBEM algorithm (see chapter 4).

Initialisation of Blockloading We calculate the converged free energy, F, for K = 1
clusters, i.e. all vertices are assigned to the same cluster, clini) So, the start partition
matrix, Q(”‘” !),is an N x 1-matrix with all entries equal to one. We only need a single
M-step of the VBEM batch algorithm (see Algorithm 3) to calculate the model param-
eters of the SBM for the free energy, F'. We use equations (A.4), (A.5), (A.6) together
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with eqn. (A.16) for the calculation of F' of the Bernoulli SBM and Propositions 2, 3
and 1 for the Poisson SBM.

Tk(le r)esult, the converged free energy F for K = 1, is stored as the reference free energy,
F ref .

Now we check if a lower (better) converged free energy then F (ef) can be achieved for
a partition matrix with K = 2 clusters. We initialise a N X 2—partition matrix, Q<S’“’ f,
for the VBEM batch algorithm (algorithm 3 in section 4).

There are several algorithms for initialising "), We explain the most widely used
of these algorithms like the K-means algorithm in chapter 7 or the Ascending Hierar-
chical Clustering (AHC) algorithm in chapter 9. Most of these algorithms assign each
vertex to exactly one cluster which is called hard clustering or hard assignment in the
literature [84]. We give the definition of hard clustering below.

If we use our fully Bayesian BlockVB++ algorithm (see algorithm 5) instead, we do not
need such a second algorithm. We randomly initialise the cluster assignment of the ver-

tices in the N x 2-matrix Q/*""), which has normalised matrix rows ¥X_, lefm”) =1.
For our fully Bayesian BlockVB++ algorithm, the hyperparameters or our new adap-
tive informative hyperparameters play the role of start values (see chapter 5).

Either way, we run our VBEM algorithm with the start values Q") for K = 2 clus-
ters.

The VBEM algorithm returns the converged free energy F ("), the cluster partition
matrix Q") and the model parameters 9" If Flria) < F(ref) polds, QU7 is
stored as the new reference partition matrix QUef ). Similarly, F(¢/) is overwritten by
Ftria)  the model parameters are updated with B9 and the number of clusters is set
to KUref) =2,

Otherwise, if the split was not accepted, we can try different start values. If this does
not improve the reference free energy F (ef) we conclude that the optimal cluster as-
signment is given by (7).

We use the results of the Initialisation step, which returned a cluster assignments of
K =2 clusters, as start values for the following refinement and subdivision of the ex-
isting clusters. Now, we give a short overview of the main steps of our Blockloading
algorithm and explain the steps in detail below. We recall from the introduction of the
chapter that our Blockloading algorithm is an integrated algorithm where optimisation
and expansion of the cluster partition are performed in succession.

Optimisation in our Blockloading algorithm is restricted to the vertices of one cluster
and the assignments of all other vertices are kept fixed. We call the cluster chosen for
optimisation the active cluster. The vertices which are not in the active cluster play the
role of start values.

In the following main loop of the algorithm we will pick one of the two clusters and
try to optimise the reference partition, Q(”’f ), with our BLockVB or BlockVB++ algo-
rithm restricted to the vertices in the active cluster where the cluster assignments of the
other vertices are kept fixed. We called this procedure the Refinement step.
Afterwards, we determine a cluster and try to split it in into two new clusters to improve
the reference free energy F (ref) in our Expansion step. We remark that the assignment
of the vertices which are not in the active cluster stay fixed but play the role of start
values for the optimisation. We use either our BlockVB or BlockVB++ algorithm for
this optimisation.

At the end of the main loop we check for Convergence of the Blockloading algorithm.
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Overview of the algorithm We sum up the main steps of the
Blockloading algorithm:

Input.—Adjacency matrix A, model type
Result—Cluster partition matrix Q(’ */), number of clusters K%/ and parameters ©"¢/).
(i) Blockloading Initialisation.

Main Loop.

(ii) Refinement Step.

(iii) Expansion Step.

(iv) Check for Convergence of all clusters.

The Initialisation Step and the overview show, that the Blockloading algorithm is a
divisive algorithm.

Now, we formalise and describe all steps in the order of occurrence. We start this
formalisation by noting the terminology concerning the active cluster in the following
definition.

Definition 2 (Active Cluster and Active Vertices). The cluster which is chosen for
optimisation with the inference algorithm is called the active cluster, clactive)  The
vertices which are assigned to clactive) qre called the active vertices. The set of indices
of the active vertices is given by 1(¢1ve),

To pick a cluster to optimise, we first need to know which vertex belongs to which
cluster. The partition matrix Q(r"f ) which is returned by the VBEM inference algo-
rithm is a fuzzy partition which gives the probabilities that a vertex belongs to one of

the clusters. We transform the fuzzy clustering into a hard clustering.

Hard Clustering As explained in Section 4, the partition matrix Q"¢/) returns a
probability for the cluster assignment of each vertex (fuzzy clustering). In the follow-
ing paragraphs we use the concept of cluster dependent optimisation of the existing
partition matrix. To be able to optimise the vertices in one cluster, we first have to
determine which vertices belong to which of the clusters. We transform all vertices i
of @"¢/) into a hard clustering by transforming each matrix row

0= (leref),...,Qggf)) Vi€ {1,...N} according to

1, ifQ;j= max Q;;
ngard): TS T S S (8.1)

0, else

We note that the transformation to hard clustering can be performed incrementally
because only the cluster assignments of subsets change during our Blockloading algo-
rithm. Now, we know which vertex i belongs to the active cluster and can identify the
vertices in the active cluster, clactive)

We still need a cluster selection method to choose the active cluster. Due to our use of
the model based clustering approach with the SBM, we can not only use the informa-
tion which is contained in the the cluster partition Q(mf ) but also the model parameters
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8e/) We choose the active cluster with the cluster selection method. There are sev-
eral ways to choose the active cluster we will discuss in section 8.3 below. We choose
the active cluster each time we want to optimise a subset of the vertices based on the
cluster membership. We call this the Cluster Selection step. We note this terminology
in the following Definition 3.

Definition 3 (Cluster Selection Step). In the Cluster Selection step we choose the active
cluster and thus the active vertices with the help of the cluster selection method.

Choice of the active cluster As the default cluster selection method, we choose the
cluster with the highest number of vertices as the active cluster. We calculate the num-
ber of vertices in one cluster, n; according to:

& (ref)
=Y oy (8.2)
k=1

active)

The active cluster c! is therefore a = max ny.

k=1,....K
Such a cluster selection method was also used in e.g. [109] for the bisecting k-means al-
gorithm. We will discuss in section 8.3, that this choice of the cluster selection method
minimises the computational burden because we need fewer updates of the clusters be-
fore convergence is reached. We use the method of selecting the biggest cluster only
under the assumption, that we have no (or no cheap to calculate) method to infer which
clusters are worth optimising.

If we would have a computationally cheap criterion to find out which clusters could
be split or refined to improve the reference free energy, F ("), we could also choose
the clusters according to this criterion. We propose the usage of Largest Gaps algo-
rithm [27] or our newly introduced [116] Optimal Gap algorithm in the discussion of
the choice of the active cluster in section 8.3.

Thus, we will have indeed a good idea of clusters which hold potential for optimisa-
tion. Both algorithms can be calculated in linear time before we use our more precise
BlockVB++ algorithm.

For some graphs with a high variance of vertex degrees, we can choose to focus the in-
ference on the most densely connected cluster first. The densely connected clusters can
be identified with the help of the model parameters, 3 We propose this approach to
exclude sparsely and irregular connected clusters from the optimisation process which
otherwise can harm an optimal inference process. We will provide a more the detailed
explanation of different cluster selection methods in section 8.3 below.

After this formal treatment of the choice active cluster we now proceed with the de-
scription of the main loop.

Main Loop of the Blockloading algorithm The Main Loop of Blockloading begins
with the Refinement Step of the active cluster, clactive)

Refinement Step In the Refinement step we want to improve the reference free en-
ergy, Fe/) by optimising the vertices in the active cluster ¢(“¢). We can apply an
infinite number of Refinement steps to an existing reference cluster partition, Q<ref).
To use our BlockVB (see Algorithm 4) or our fully Bayesian BlockVB++ algorithm
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(Algorithm 5), we randomly initialise the cluster assignments of the vertices in (@)

We initialise the cluster assignment of each vertex i € ¢(@) in Q) with a nor-
malised 1 x K("*/)—random vector. These random start values are inserted into Q<’ef )
for all vertices in ¢(@7¢)_ All vertices i ¢ c(%“/™¢) remain the same as in Q). This
yields the start partition matrix, @Q'“""), for the Refinement step.

We restrict the use of informative hyperparameters for our BlockVB++ algorithm (see
Algorithm 5) to the inter cluster connections of the K "¢/) clusters and use non—informative
or neutral hyperparameters for all other clusters.

We apply our BlockVB algorithm with non—informative or neutral priors (see section
4) for all clusters.

We remark that it is also possible to apply a start value algorithm of chapter 7 or 9 for
the start cluster assignment of the vertices in the active cluster. This did not yield any
improvement compared to random start values in our tests.

We run our BlockVB algorithm or our BlockVB++ algorithm for all vertices i € ¢(4<! ive)
with the cluster partition matrix 0""9) and K(r¢f) clusters as the input. BlockVB(++)
returns the fuzzy cluster assignment of the vertices Q(t rial) the free energy, F (trial) apd
the model parameters, 8 After the convergence of our BlockVB(++) algorithm
we proceed with the evaluation of the results of the Refinement Step.

Before we describe the evaluation of the Refinement step, we first introduce our so-
lution for storing clusters which we do not consider as choice for the active cluster for
the Refinement or Expansion step in the inference process any longer.

Number of converged clusters If the application of the Expansion Step to the ac-
tive cluster, c(“C’ive>, did not improve the reference free energy, F (ref 7, we increase the
number of converged clusters, %', by one. Otherwise, if there is an improvement in
either the Refinement step or the Expansion step we set 4’ = 0 after this step. We call
this procedure the reset of the number of converged clusters. The number of converged
clusters guides the choice of the active cluster and plays the role of the *'memory’ of
the Blockloading algorithm, as we will show in the next paragraph.

Cluster Selection Step In the Cluster Selection Step we choose the active cluster,
clactive) “according to the cluster selection method. We apply the cluster selection
method to generate a list of the clusters of the hard clustered reference cluster parti-
tion, @/ "4) 1n this cluster selection list, the clusters are ordered according to the
cluster selection method. For example, if we decided to use the cluster sizes for the
cluster selection method, we list the clusters in descending order on the list dependent
on the cluster sizes.

Now, we use the information of the number of converged clusters, 4" and choose the
(14 %)-th cluster on the cluster selection list as the new active cluster.

Evaluation of the Refinement Step We evaluate the outcome of the Refinement Step
with respect to the converged free energy. Before this evaluation, we remove clusters
which were emptied during the Refinement step according to VBEM. We explained the
occurrence empty clusters in the context of VBEM inference in chapter 6.

If Frial) < plref) holds, we update the reference free energy, F("/), the cluster parti-
tion matrix, Q(’ef ) and the model parameters, ol

We set the number of converged clusters, &, to zero. We perform the Cluster Selection
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step (see above) to choose the active cluster, clactive)

If the result is otherwise F("@)) > F(ref) we keep the old reference values.

We remark that the Refinement Step can potentially change already converged clusters
because additional vertices might be assigned to them in the Refinement Step. This is
the reason why we choose to reset the 4 after each successful Refinement Step.

We also reset € after each successful Expansion step. This reset of € also leads to a
frequent revisit of every cluster in complex networks like earthquake networks. This
feature of our Blockloading algorithm increases the chance that all favourable local
optima are identified.

Moreover, the change in the cluster assignment of the vertices i € 1(¢/¢) can affect the
cluster assignment of the vertices i ¢ [ (active) 100, because of network interdependency
(see [35, 40] and section 3.2). Therefore, all clusters have to be updated until conver-
gence is reached.

The Refinement Step is an error correction feature of the Blockloading algorithm
which is already used during the calculation process. With the Refinement Step we
want to prevent the algorithm from wrongly splitting too many clusters (also called
oversplitting [79]). We proceed to the Expansion Step where we try to split the active
cluster into two new clusters to improve upon the reference free energy F (ref).

Expansion Step We want to improve the reference free energy, F (ref), by finding a
cluster assignment of the active vertices, i € clact ive), to two new clusters.

To prepare the split of the active cluster, we have to initialise start values for the active
vertices, i € 1(""¢)  We assign these start values by initialising a cluster partition of
K = 2 clusters for the active vertices, i € Jlactive) " 1f we use our BlockVB algorithm
with non informative hyperparameters (see section 4.2) we can initialise this partition
with a start value algorithm from chapter 7.

If we use our fully Bayesian BlockVB++ algorithm with informative priors or our adap-

tive informative priors, we randomly initialise normalise 1 x 2—vectors for all vertices
= I(aclive).

We store the active vertices of Q) for possible later use and use Q\el) ag @Utart),
Then we set all matrix rows i € 1(/¥¢) from Q'*'") to zero and add an additional col-

umn of zeros to @'“"") making it an N x (K("*/) + 1)-matrix. Thus we get two empty

clusters ksamve) and kgsmrl) in Q%" The start values, which were initialised above,

are inserted into the rows i € 1(@) of Q") We use our adaptive informative or

fixed informative hyperparameters for the inter cluster connections of the active clus-
(active) (start)

ters k; and k, .

We run our BlockVB or BlockVB++ algorithm with Q)| K(ref) 4 1 and the active

vertices, (“"”V“), as the input. This run of the BlockVB(++) algorithm returns the trial

free energy, F (")), the trial cluster partition Q")) and the model parameters ¥ """,

Evaluation of the Expansion Step We remove empty clusters like we did in the
Refinement step. Now, we evaluate if the reference free energy was improved in the
Expansion Step. If F (trial) — F(ref) holds, the reference values F(7¢/) Q("’f ) and 9"/
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are updated with the results of the Expansion Step. We reset the number of converged
clusters, €, to zero.

We proceed with the Cluster Selection Step and apply the cluster selection method
dependent on the new reference values to choose clactive)

If otherwise F(7ial) > F (ref) holds, we increment the number of converged clusters,
%, by one. The increased number of converged clusters, ¥, may be high enough to
fulfil our convergence criterion of our whole Blockloading algorithm so we check for
the convergence.

Convergence Step If (¥ +1) > K/ holds, all clusters have converged and the
current reference values are returned as the result of our Blockloading algorithm.

If our Blockloading algorithm has not converged, we perform the Cluster Selection
step and proceed with another iteration of the main loop.

We sum up the our Blockloading algorithm in Algorithm 7.

The Blockloading algorithm may also be used to calculate a partition with no more
than a predetermined number of clusters by skipping the Expansion step every time the
desired number of clusters is reached.

Using the Expansion Step cluster by cluster, the occurrence of empty columns in the
matrix Q(’ef ) is minimised. This saves computational time which would be otherwise
wasted for non optimal columns.

The Blockloading algorithm allows the restart with a given partition matrix Q for fur-
ther improvement.

We remark that other clustering algorithms in combination with a model selection cri-
terion can be used within the algorithmic framework of our Blockloading algorithm
instead of our BlockVB(++) algorithm and the free energy model selection criterion.
We refer to chapter 6 for a review and presentation of other suitable model selection
criteria for the Poisson SBM, like the ICL or ICL,, criterion.

We note that we can use several different (random) initialisations of the start values
for the same Initialisation, Refinement or Expansion step. Then we choose the best
converged free energy of all those trials, F(7#:best) "and compare it with the reference
free energy, F (ef) in the evaluation of each respective step.

Complexity of the Blockloading algorithm It is difficult to state the order of com-
plexity of the Blockloading algorithm because the number of clusters changes during
the inference process. We recall from our complexity evaluation of the BlockVB (sec-
tion 4.2) and the BlockVB++ algorithm (section 5.1) that both algorithms have com-
putational costs of the order ¢'(K2E;) where K is the number of clusters and E; the
number of edges of all vertices with index i € I.

We found in chapter 4 that the computational costs of one iteration of the batch algo-
rithm was of the order ¢ (K°E), where E denotes the number of edges in the network.
The computational costs for model selection with the VBEM batch algorithm were of
the order 0'(K> E) with Kpax being highest number of clusters.

Thus, the computational complexity of the the Blockloading Initialisation step is of the
order O(E).

The biggest clusters with the most edges during the run time of the algorithm normally
occur at the beginning of the inference process, when the number of clusters is small.
We also expect from our experience from computational tests, that the second biggest
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Algorithm 7: Blockloading Algorithm

Data: adjacency matrix A; number of iterations of the Expansion Step,
ng; number of vertices N
Result: partition matrix @; number of clusters K; free energy F'; model
parameters ¥

/* Initialisation */
Initialisation Step
Cluster Selection Step
repeat
Refinement Step
if FUe/) > F(ria) then /* check if Refinement Step improved F
*/

converged =0

update cluster partition and parameters

Cluster Selection Step
end
Expansion Step
if FUef) > F(ria) then /* check if the Expansion Step improved
F x/
converged =0
update cluster partition and parameters
Cluster Selection Step

else
converged «— converged + 1
/* Convergence Step */
if converged +1 > K¢/) then
| break
end
Cluster Selection Step

end
until convergence of all clusters
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cluster with respect to the number of edges occurs after the initialisation step and so
on. This fact positively influences the order of computational complexity of the Block-
loading algorithm when compared to the batch algorithm.

Moreover, if the number of clusters grows we expect the cluster sizes to decrease. We
denote with Ej max cony the number of edges of the biggest cluster of Q(r ef) after con-
vergence. If the number of clusters is low, the order of computational costs for one
iteration of the Blockloading algorithm is approximately & (Kr%laxELmaX,Cﬂm’) In addi-
tion we assume that K("¢/) ~ Kmax Which from our experience with numerical tests is
justified. In addition, we observed that the number of clusters was near K (ef) most of
the time during the inference process. Then the computational costs of one iteration of
the Blockloading algorithm are approximately of the order & (K(2r¢ f E} max.conv)-

We will see in the numerical tests in chapter 10 that the total number of Refinement
and Expansion steps which are needed until convergence are the deciding factor for the
run time of our Blockloading algorithm. These number of Refinement and Expansion
steps is also heavily influenced by the cluster selection method.

To achieve a significantly lower computational cost was one of our main motivation for
the introduction of our more advanced versions of our Blockloading algorithms in sec-
tions 8.5, 8.6 and 8.7. The number of the Refinement and Expansion steps is also one
of the most important topics of the following discussion of our Blockloading algorithm
in section 8.2 which will lead to the development of our Blockloading++ algorithm in
section 8.7.

8.2 Discussion of the Blockloading algorithm

8.2.1 Convergence to local optima

We recall that the Variational (Bayesian) EM algorithm for the SBM converges to a
local optimum [50, 84, 73, 76]. This well known fact leads to the recommendation to
use several restarts of the inference with different start values [50, 73]. This is also true
for our BlockVB and BlockVB++ algorithms for the Poisson SBM.

If the VBEM inference algorithm converges to a certain cluster assignment matrix to-
gether with the model parameters for certain start values, we consider this as a local
optimum. Therefore, we can only say in retrospect that a certain cluster assignment
corresponds to a local optimum according to our VBEM inference algorithm.This lo-
cal optimum can but does not have to be also a global optimum.

We observed in many numerical tests, that the VBEM inference did find the (known)
global optimum of the SBM for certain networks for all or nearly or even all different
start values we used for initialising the algorithm. On the other hand, there were other
networks where especially the VBEM batch algorithm was highly dependent on the
choice of the start values with widely varying results. So the quality and reliability of
the SBM inference also depends on the network.

We will propose our classification of different local optima with respect to our Block-
loading algorithm below in section 8.2.2.
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8.2.2 Favourable and unfavourable local optima of exclusive clus-
ter assignments

The experience from of our numerical tests shows that there is wide space of possible
of cluster assignments our VBEM inference for the Poisson SBM can converge to. This
also applies to the BlockVB and BlockVB++ algorithms.

Sometimes there is a known ground truth of the cluster assignments which corresponds
to the global optimum of the chosen model selection criterion.

For all networks which we generated with the SBM, the global optimum with respect
to the chosen model selection criterion corresponding to the ground truth was only
reached if the correct number of clusters was identified by the inference algorithm.
According to these two observations we will now assume that the global optimum of
the chosen model selection criterion coincides with the existing ground truth of the
cluster assignments. We also assume that the global optimum of an estimated cluster
assignments can only be reached if the correct number of clusters with respect to that
global optimum was identified by the inference algorithm.

Our Blockloading algorithms returned very similar results in numerical tests with earth-
quake networks, where we do not know if there is a ground truth, and the global opti-
mum of the model selection criterion is unknown. So, we considered the best result as
a proxy for the unknown global optimum.

Therefore, our assumptions above about the ground truth and the global optimum as
well as the number of clusters make sense for earthquake networks, too.

Our Blockloading algorithm is a divisive clustering algorithm where we start the infer-
ence process with all vertices in the same cluster. Then, we apply our nested split and
refine procedure, we proposed in section 8.1.

We assume that the optimal number of clusters is bigger than one. Then by construc-
tion, our Blockloading algorithm will identify several local optima before it can con-
verge to the global optimum. During tests we found that there are different kinds of
local optima which can occur during the inference process of the Blockloading algo-
rithm.

We concluded that there are local optima which are ’favourable’ in the sense that a
convergence of the Blockloading algorithm to the global optimum followed from the
visits of these favourable optima during the inference process. On the contrary, we
also observed ’unfavourable’ local optima where the Blockloading algorithm in rare
cases could get stuck. Such unfavourable local optima were also the motivation for the
introduction of our Refinement step for escaping out of this unfavourable local optima.
So, these unfavourable local optima are harmful for finding the global optimum.

The term ’bad local optimum’ was used in [75, 76] in a different way to describe a
local optimum of VEM inference of the SBM with the Wmixnet package where the
values of the ICL model selection criterion were not convex with respect to the number
of clusters. The term ’bad local optimum’ was also used in [75, 76] to describe the
situation that the absolute value of the ICL criterion did not increase with the number
of clusters.

Another role plays the classification of split and merge moves. In [113] examples were
shown for smart splits (or merges) which lead to ’plausible’ clusters (correct splits
according to the ground truth) and dumb splits (or merges) which were performed at
random and not necessarily lead to the splits or merges of the correct clusters. These
splits and merges were used in the Smart-Dumb/Dumb-Smart Gibbs sampler of [113].
We take a different viewpoint and asked first which kind of local optima favour the
convergence to the global optimum with respect to our divisive Blockloading algo-
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rithm. Now, we want to clarify which local optima favour a subsequent convergence
of our Blockloading algorithm (or a split-merge or split-refine algorithm) to the global
optimum and which do not. We will give a formal definition of a favourable and un-
favourable local optimum below after some examples. Our main idea is, that a global
optimum can be reached by performing correct splits, with respect to the ground truth,
to a cluster partition which is a favourable local optimum. Our definition is a general
one and applies to all clustering algorithm with exclusive cluster assignments of the
vertices.

We take the perspective of a pure split merge inference algorithm for our definition of
favourable and unfavourable local optima.

Example cluster assignment with global optimum of the known ground truth We
present our description of favourable and unfavourable local optima for clustering with
the Stochastic Block Model with the help of an example. This example can be gen-
eralised to other clustering algorithms with exclusive assignments of the vertices to
clusters.

Let a network with N = 10 vertices V = {v,v2,...,vi0} be given. We assume that
the right cluster assignment Z which corresponds to the global optimum according to
the ground truth or model selection criterion is given by

ki ={vi,v2,v3}, (8.3)
ky = {v4,vs,v6}, (8.4)
k3 = {V7,Vg}, (8.5)
ky = {vo,vi0}. (8.6)

Examples of favourable and unfavourable local optima We see that the following
cluster assignment, Q, of the vertices, V, is of course no global optimum. We denote
a cluster which was estimated by the inference algorithm by k;:

ki = ki, (8.7)
ko = ko, (8.8)
k3 = k3 Uky. (8.9)

Nevertheless, the assignment Q; comes close to the global optimum in the sense that a
simple split of cluster IA<3 to the clusters k3 and k4 would be sufficient to reach the global
optimum.

Another example where the global optimum could be found by multiple splits is given
by:

ki =k Uk, (8.10)
ko = k3 Uky. (8.11)
On the other hand, this is not the case for the the cluster assignment Q,
ki = ki, (8.12)
ko = ko U{vo}, (8.13)

ks = ks U{vio}. (8.14)
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To transform the local optlmum 0, into the global optimum we would need for exam-
ple two splits of clusters k and k3 and one merge or refinement step to reach the cluster
assignment corresponding to the global optimum. The cluster k4 of the ground truth
was wrongly split with respect to the ground truth, which is also called over splitting
[79]. Moreover, the parts of ks were wrongly merged with the clusters k, and k3. The
danger of over splitting was one motivation for us to design the Blockloading algorithm
as a nested algorithm, where expansion and refinement of the cluster assignments are
performed in succession.

All cases we have seen of the good local optima have in common that the global opti-
mum could be reached by splits of existing clusters of the estimated cluster assignment.
Thus, we call these local optima favourable and define them in the following Definition
4.

Definition 4 (Favourable local optimum). From an (estimated) cluster assignment, Q
which corresponds to a favourable local optimum, the global optimum, with respect to
the ground truth, can be reached by correctly splitting the existing clusters of Q.

The opposite of a favourable local optimum is an unfavourable local optimum,
where a cluster was at least wrongly split with respect to the ground truth.

Definition 5 (Unfavourable local optimum). In the case of an unfavourable local op-
timum, at least one cluster was wrongly split with respect to the ground truth.

In the case of unfavourable local optima, a cluster can also have been wrongly split
and than merged with the wrong clusters according to the ground truth (see the exam-
ple above).

Similarity of favourable local optima We assume that there are more than two clus-
ters according to the ground truth. Then, a global optimum can be reached, by cor-
rectly splitting the right clusters, starting from different favourable local optima. But
favourable local optima with the same number of clusters are similar in the sense that
a global optimum can be reached by the same number of correct splits.

Up to now, we have used the term local optimum with respect to the estimated cluster
assignment of all vertices like in the examples of @, or @,. Now we want to restrict
our notion what is a favourable and unfavourable local optimum to subsets. Such a
subset could be a cluster of a local optimum which consists of several merged clusters
according to the ground truth, like cluster k3 in example Q. If this cluster is split into
the true clusters k3 and k4 according to the ground truth, it would be a favourable local
optimum with respect to the subset of cluster ks of partition Q.

Moreover, a favourable local optimum with respect to a subset can also be reached
from an unfavourable local optimum as we see from the following cluster assignment

Oy

ki =k Uk, (8.15)
ky = ks, (8.16)
ks = {vio}, (8.17)

kg = {vo}. (8.18)
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We see that a split of cluster k; of @, leads to a favourable local optimum with respect
to the subset of the clusters k; Uk».
We now propose a definition of a favourable local optimum with respect to a subset:

Definition 6 (Favourable local optimum with respect to a subset of the cluster assign-
ment). A favourable local optimum with respect to a subset can be transformed with
split moves to a cluster assignment of this subset which is identical with the same clus-
ter assignment for this subset as for a global optimum.

We will call it a favourable split move to emphasise the connection to our definition
of a favourable local optimum and give a our definition of a favourable split below.
We also propose a favourable merge move, which would mean the merger of the clus-
ters k3 and k4 of the example above. Such a merger could also be reached by one of
our Refinement steps for the cluster k3 or k4. We note both expressions in the following
definitions.

Definition 7 (Favourable merge move). A favourable merge move leads to favourable
local optimum with respect to a subset of the cluster assignment.

Definition 8 (Favourable split move). A favourable split move leads to a favourable
local optimum with respect to a subset of the cluster assignment.

8.2.3 Well separateness of clusters in the SBM

For the moment we assume for our discussion of favourable network properties that
there is known a known ground truth of the given network which was generated ac-
cording to a known SBM. We assume that this SBM has K* = 2 clusters according to
the ground truth. We further assume that the solution equal to the known ground truth
constitutes also the global optimum of the model selection criterion.

These assumptions make sense, if the network was indeed generated by a ’not too ex-
treme’ SBM.

We now want to define what 'not too extreme’ means. When we analyse the pa-
rameters of the SBM, A, which govern the existence of edges and the weight of the
edges in weighted networks, we see that there are more clearly defined differences be-
tween two clusters in some networks than others. For the Bayesian Poisson SBM, the
edge rate parameters which govern the existence of edges in the network are given by
Afkl ~ Gamma(ockl, ﬁkl), Vk, 1.

By definition of the SBM, the clusters, k,k’, are considered different if Ay # Ay, or
M # Ay for at least one pair (k,1), (K'I) € {1,...,K}? holds. This is generalisation to
directed (and possibly weighted) networks of Assumption 1 from [25].

Of course, the more densely connected regions of the network are thus more well sep-
arated from each other and easier to identify during the clustering process than clusters
with a low expected edge existence. So, cluster which have a lot of different pairs of
edge rate parameters are also better separated.

Besides of the edge connection parameters, A, we also have to consider the number of
vertices per cluster. Even if the edge rate parameters differ, but not by a wide margin,
two clusters can be easier identified to be different if there are many vertices per clus-
ters.

This observation is also linked to the topic of identifiability of the SBM which was
discussed in [25] for the directed Bernoulli SBM. This is also the principle idea of the
Largest Gaps (LG) algorithm proposed by [27] (see also [108] for the case of two clus-
ters). The LG algorithm uses the distances between the ordered summed degrees of the
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vertices.

So we have a well separated SBM with K = 2 clusters, if at least, without restriction
of generality, there exists a pair (k',) so that 4y << Ay or A4y << A holds and
the clusters have at least a certain number or vertices. (According to the identification
proposition of [25].)

The expression *well separated’ for different clusters was also used in [103] for the
discussion of cluster selection methods for the bisection K-means algorithm.

Now we assume that each of the two clusters of the SBM has a minimum number of
vertices per clusters and that A;; << Ay and Aj2 << Ay1 holds. In this case, we expect
from our experience with numerical tests that our fully Bayesian BlockVB++ algo-
rithm will converge to the global optimum of the model selection criterion for (nearly)
all randomly initialised start values.

In a next step, we add a third cluster to the SBM and keep the other properties we as-
sumed above. This third cluster can be well separated from the other two clusters or it
could have a similar connection profile to one of the existing clusters. If the third clus-
ter, k3, is well separated, we expect to find the next, favourable local optimum without
problems and independently of the start values. Because of the well separation of clus-
ter, k3, it holds that that at least for one i € {1,...,3} that A3; or A;3 is clearly bigger or
smaller than the existing Ay with k,1 € 1,2.

If the newly added cluster k3 is not well separated we have without restriction of gen-
erality that 13,' ~ l],’ and lj} ~ )L,’] .

Of course we do not know in advance which clusters are well separated and which are
not. We will discuss below, that the LG algorithm allows a good guess of the existence
of local optima for certain networks. It even allows the correct identification of bigger
clusters under some assumptions we will review below.

8.2.4 Restricting the Expansion step to two new clusters

If we restrict the Expansion step to two clusters, we aim to find one favourable local
optima which separates two or more clusters. For the example above, we expect to find
during the split to two clusters a well separated favourable local optimum [116]. More-
over, if we have successfully uncovered one favourable local optimum, we can use the
resulting cluster assignment as start values for the next Expansion or Refinement step.
If we now assume that all clusters are well separated, we found that it does not matter
in which order the local optima are uncovered during the run of our Blockloading al-
gorithm.

We found during numerical tests that the order of the cluster choice is especially not
important for the quality of the result (with respect to the model selection criterion),
if use our fully Bayesian BlockVB++ algorithm with our adaptive informative priors
regardless of the well separateness of the network.

From experience with the numerical tests we know that it is far easier to find one
favourable local optimum per Expansion step than two or more at once. We showed
that this also follows from the general nature of the SBM and the VBEM algorithm.
In addition, it allows to reuse already correctly identified favourable local optima to
approximate the true global optimum. We remark that the step by step identification of
local optima is unaffected by network interdependency because we do not restrict the
likelihood or the variational bound of the likelihood (free energy). On the contrary, we
expect an easier identification of not well separated clusters with the help of already
correctly identified favourable local optima (well separated clusters). This is also the
reason why we restrict the refinement to one cluster at once: It limits the possible num-
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ber of local optima which are involved for the active vertices so that we can achieve an
increased precision of the optimisation.

8.3 Different methods for choosing the active cluster

Now that we know the how different local optima and well separateness influence the
inference process of the Blockloading algorithm, we use these insights to discuss the
cluster selection methods.

We recall how the application of the cluster selection method of the the active cluster,
clactive) wworks for all cluster selection methods. Dependent on the available informa-
tion which includes the adjacency matrix, A, the reference cluster partition, Q(’ef ), and
the model parameters, s ), we apply the cluster selection method, which produces
an ordered list of the existing clusters according to the chosen selection method.

We choose the (14 %)—th cluster on this list (where € is the number of converged
clusters) as the new cluster, clactive) We recall that for € = 0 we choose the first entry
on the cluster selection list. This is true after a successful Refinement or Expansion
step and at the beginning of the main loop of the Blockloading algorithm.

The cluster selection method affects several objectives we have for our Blockloading
algorithm. We want to minimise the number of unsuccessful Refinement or Expansion
steps which did not improve the reference free energy, F (/). Therefore we want to
choose a cluster which can be split or refined for a maximum improvement of F(¢/)_ In
the end we want to achieve the best possible value for (ref) . To meet these objectives,
we have to take into account that some clusters are better separated than others (see
above). Clusters which are well separated offer a favourable local optima which can be
more easily identified.

We consider two cases for the choice of the active clusters:

(i) We have a method, which has a significantly lower computational costs than our
BlockVB(++) algorithm, to determine the existence of possible favourable local op-
tima in the clusters.

(i1) We have no prior information about the existence of favourable local optima.

(iii)) We have additional objectives which influence the inference process, for exam-
ple the exclusion of irregularly or sparsely linked clusters or the overall speed.

We now propose three possibilities for the cluster selection method of the active cluster:

(i) Choose of the most densely linked clusters on the cluster selection list (max—prob—
method).

(i1) Choose the cluster with the most vertices on the cluster selection list (max—size—
method).

(iii) Choose the cluster with the largest gaps according to the LG algorithm. We expect
this cluster to offer the highest potential to hold favourable local optima (max—gap—
method).
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We start our discussion with the Max—Prob—method which selects the most densely
linked cluster of the cluster selection list.

8.3.1 Max-Probabilities—method

We find the most densely linked cluster with the help of the expectation value of
the distribution of the edge existence probability parameters, 6, in the case of the
Bernoulli SBM and the edge existence rates, A, in the case of the Poisson SBM. In
the case of the Bayesian Bernoulli SBM, the parameters are distributed according to
6 ~ Beta(&ir, Mir). The expectation value of each parameter can be calculated accord-

ing to E[0y] = 7 [19].

The edge rate parameters for the Bayesian Poisson SBM are distributed according to
Ax ~ Gamma( oy, Byy) (see chapter 2) and the expectation value can be calculated ac-
cording to E[A] = % [19].

We use these expectation values of the edge parameters to calculate the densely linked
clusters with the help of Zsz(rff) (B[] +E[Ag]) VI =1,...,KUeh),

The summed edge connection parameters account for the density of the cluster connec-
tions.

We introduced the Max—Probabilities—method with the objective to identify the well
separated clusters first during the inference process of the Blockloading algorithm.

An additional feature of the Max—Probabilities—method is that we can impose a thresh-
old on the linkage density to exclude sparsely and irregularly connected vertices. Such
vertices constitute a vast majority of the vertices of earthquake networks [1].

Threshold for sparsely linked clusters We impose the user defined threshold T'

on the summed cluster connection parameters. If ZkKSﬁ (E[Me] +E[Ak]) < T, we

can skip the Expansion and Refinement Step for the cluster c. The max-probabilities
method avoids this cluster with sparsely connected vertices.

The exclusion of sparsely connected vertices from the active clusters in the first iter-
ations with the max-probability-strategy allows to impose a threshold 7 on the edge
existence probabilities for clusters we consider for optimisation. These vertices are
hard to assign to a cluster and it might be useful to classify them as outliers.

Then, after the convergence of all other clusters k; # k,, we can try to split the cluster of
outliers in a separate Expansion Step. This allows us to check if any of the two result-
ing new clusters kg, k» has summed connection probabilities higher than the threshold
T. In addition, we can try different start value partition matrices for the same active
cluster in the Expansion and Refinement Step, which also decreases the probability to
get trapped in an unfavourable local optimum. Otherwise, this cluster can be left out
of the Refinement and Expansion Step.

We will also introduce in chapter 12.2 our new Stochastic Block Model with Irrele-
vant Vertices (SBMIV) which models outliers explicitly contrary to the normal SBM.
Then in chapter 13 we will introduce a new VBEM based Relevance BlockVB algo-
rithm together with our new Relevance Blockloading algorithm for inference of the
SBMIV. Our new VBEM inference of the SBMIV will need no user specification of
the threshold, 7.
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8.3.2 Max-Size-method

We explained how to find the cluster with the most vertices above in section 8 when
we introduced our Blockloading algorithm. Choosing the largest cluster as the active
cluster was also proposed as a cluster selection method for the bisecting K—means al-
gorithm in [109, 110] and discussed in [103]. We assume that the network is well
separated with respect to our chosen SBM, so that the favourable local optima of the
unknown ground truth are found in the first try of the expansion step. Under this as-
sumption, we can even skip the Refinement step. In addition, we assume that we have
no prior knowledge of the distribution of the favourable local optima or the clusters
and thus assume that all clusters of the ground truth to have approximately the same
expected number of vertices per cluster.

Under these assumptions, we expect that the highest number of favourable local optima
is located in the biggest cluster which occurs during the inference process.

We also found that this max—size—method needs only K"¢/) — 1 iterations to split all
clusters and another K("¢/) iterations to determine convergence.

Under the same assumptions as above, the max—probabilities—method tends to select
the smallest cluster, which leads to to 3K (ref) _ 1 iterations until convergence of all
clusters. If one cluster per Expansion step is split, we see that we need &' (K (ref )) iter-
ations until convergence with both strategies. This was also remarked in [99] without
stating the above assumptions.

So, if we do not have, want to or can gain any side information about the existence of
the local optima, the max—size—method is expected to be the fastest method.

We also have to consider the resets of the number of converged clusters after a suc-
cessful refinement or Expansion step of the Blockloading algorithm which also greatly
affects the number of steps until convergence. We discuss these resets in section 8.4.

8.3.3 Optimal-Gap cluster selection method

We can use the the Largest Gaps (LG) algorithm, proposed in [27], to determine the
potential number of favourable local optima with respect to a cluster. We will review
the LG algorithm and also propose its use for finding start values for the SBM in section
9.2.

There, we will propose our original Optimal Gap algorithm which builds upon the
same principles as the LG algorithm but is more robust against outliers. Therefore, we
postpone our description of the Optimal-Gap method to chapter 9.

8.4 Jump Backs: Reset of the number of converged clus-
ters

In this section we discuss the reset of the number of converged clusters, &, to zero
after each successful Refinement or Expansion step of our Blockloading algorithm. If
the number of converged clusters, %, is set back to zero the inference process of our
Blockloading algorithm starts anew with the first cluster on the cluster selection list,
which was returned by the cluster selection method.

This algorithmic design ensures a high number of revisits of the same, already opti-
mised and converged clusters.

The reset of the number of converged clusters after each successful Refinement or



CHAPTER 8. THE BLOCKLOADING ALGORITHMS 89

Expansion step ensures that every favourable local optimum is found with a high prob-
ability before the convergence of the algorithm.

We introduced this algorithmic feature to ensure a thorough optimisation of compli-
cated networks, especially earthquake networks through many revisits of already con-
verged clusters. For small to medium sized networks of approximately thousand to two
thousand vertices this strategy achieves a viable computational speed.

When we use the max—size—method for choosing the active cluster, frequent resets of
the number of converged clusters can lead to many unsuccessful revisits of the biggest
clusters of the network. This is obviously computationally unfavourable.

If, on the other hand, we use the max—probabilities—method we visit each densely
linked cluster if we have split one of biggest clusters successfully. These visits of
the densely linked (normally smaller clusters) might be very suboptimal if most of the
remaining favourable local optima and favourable split and merge moves are located
in the biggest clusters. We have seen in the discussion of the choices for the cluster
selection method above, that we often encountered this scenario.

Regardless of the cluster selection method, we always face the problem that the first
clusters on the cluster selection list do not offer any favourable split moves any longer
and are thus have converged with respect to the ground truth. A revisit of one these
clusters obviously wastes computation time. It is now our objective to avoid these
costly revisits. If we want to find an algorithmic improvement of our Blockloading al-
gorithm for faster computational speed with the same or preferably better quality of the
results this is a good starting point for improvements. Of course, we want to keep our
algorithmic design of the Blockloading algorithm which is able to find all favourable
local optima before the convergence of the algorithm.

In the following discussion, we will use the Refinement and Expansion Step explained
in section 8.1 as building blocks to modify the way we:

(i) choose the active cluster
(ii) when and how the active cluster is chosen

(iii) introduce a memory for clusters which did not yield an improvement of the free
energy beyond the number of converged clusters

(iv) reduce the amount of jump backs (resets) after a successful Refinement or Ex-
pansion step.

In the next section we develop an extended algorithmic framework which builds upon
our Blockloading algorithm and uses most of the parts of it.

8.5 Automatic Blockloading

To improve our Blockloading algorithm we want to avoid useless revisits of clusters
which do not offer favourable splits or refinements. The first idea to lower the number
of Refinement and Expansion steps is to remove the reset of the number of converged
clusters, €, to zero after each successful Refinement or Expansion step. Instead of this
reset, we propose an automatic increase of the number of converged clusters from & to
% + 1 at the end of the main loop after the Refinement and Expansion step.

So, we increment the variable % regardless of the success of the previous Refinement
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or the Expansion step. Therefore, we named this variant of our Blockloading algorithm
the automatic Blockloading algorithm

This algorithmic design leads to a faster cycling through the clusters. Of course we
might miss some favourable local optima because the inference process proceeded to
other clusters before having the chance to find every favourable local optimum,
which was ensured by the resets of 4’ in our Blockloading algorithm.

We illustrate this fact with the following example: Assume that we use the max—size
cluster selection method. Thus, after the initialisation step we choose the largest cluster
as the active cluster, clactive) e agsume that ¢(%7¢) could be split several times be-
cause it consists of several favourable local optima with respect to the cluster, clactive)
If we automatically increase the number of converged clusters after each iteration of
the main loop, we would not select this cluster again during the run time of the algo-
rithm. Moreover, we will only find one of those favourable local optima with respect to
this cluster in one iteration of the main loop. Thus we would miss some local optima
necessary to reach the global optimum, or with other words, the algorithmic design
can prevent the identification of a global optimum. To find a remedy to this situation,
we introduce restarts of the main loop after the convergence of all clusters. This gives
us a chance to discover all favourable local optima in the situation we described above.

Restart free energy We store the reference free energy, F("¢/), after the Initialisation
step as F' (restart) - A fter convergence of all clusters, so that (¢ + 1) > K (ref) holds, we
check if F(ref) < Frestart) polds, e.g. the reference energy was improved after the last
restart. If F("/) was improved we set the number of converged clusters back to zero,
e.g. ¢ =0. If on the other hand F("/) was not improved since the last restart the
automatic Blocklaoding algorithm has converged.

Of course we can also impose a maximum limit of restarts to cut the computational
costs.

The convergence requirements of the automatic Blockloading algorithm now demand
the convergence of all clusters like in section 8.1 and our newly introduced convergence
of the restart free energy, F (") We sum up the whole automatic Blockloading al-
gorithm in Algorithm 8.

With the algorithmic design of automatic Blockloading we still have the problem, that
many clusters could be visited without an improvement of the reference free energy,
when most of the local optima are concentrated in a few clusters. We address this
problem by introducing an algorithm which we called no reset Blockloading.

8.6 No Reset Blockloading algorithm

We build upon our previous discussion of the Blockloading and the automatic Block-
loading algorithm. This time we want to ensure that the inference process can concen-
trate on those clusters where favourable local optima are located. We want to avoid that
the inference process proceeds to other clusters prematurely.

Refinement Success Variable We achieve this objective with our newly introduced
success variable, ., which links the Refinement and the Expansion step. The success
variable is evaluated at the end of the main loop and stores if the Refinement step was
successful, e.g. if F (trial)  p(ref) holds, which in turn influences the incrementation
of the number of converged clusters, 4. We do not perform a cluster selection step
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Algorithm 8: Automatic Blockloading Algorithm

Data: adjacency matrix A; number of iterations of the Expansion Step,
ng; number of vertices N
Result: partition matrix Q; number of clusters K; free energy F'; model
parameters 1
/* Initialisation */
Initialisation Step
Cluster Selection Step
F(restart) - F(ref)
repeat
Refinement Step
if FUef) > Flrid) then /* check if Refinement Step improved
Flef)  xy
‘ update cluster partition and parameters
end
Expansion Step
if FUef) > F(ia) then /* check if the Expansion Step improved
Flef)  xy
‘ update cluster partition and parameters

end
converged «— converged + 1
/* Convergence Step */
if converged +1 > K (ef) then

if FUref) < plrestart) then /* check if FUeta)yuqsimproved */

‘ Flrestart) . p(ref)
else
‘ break

end
end
Cluster Selection Step

until convergence of all clusters and F"f)
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after the Refinement step and we do not reset the number of converged clusters, %,
regardless of the success.

If Flrial) < F(ref) holds, we also update the reference values, F("¢f) QUef) and 9/,

We proceed with the Expansion step, we introduced in section 8, to split the active
cluster, clact ”’e>, into two new clusters in search of an improved value of F (ref),

Contrary to the automatic Blockloading algorithm, we check if F (ref) was improved
in the Refinement or Expansion step or in both steps with the help of the refinement
success variable. If F("f) was improved in either step, we do not increment the num-
ber of converged clusters, % and just set the refinement success variable back to zero.
After the Cluster Selection Step another iteration of the main loop follows.

If no improvement of F (ref) was reached in the last iteration of the main loop, we in-
crement the number of converged clusters from % to ¢ + 1.

We keep the restart mechanic we introduced for the automatic Blockloading algorithm.
We also check for the convergence in the same way as for the automatic Blockloading
algorithm.

We sum up our whole no reset Blockloading algorithm in Algorithm 9.

With the algorithmic design of the no reset Blockloading algorithm, the inference algo-
rithm has one chance to find all local optima before moving on. For some networks this
might be not enough. We introduce our Blockoading++ algorithm which allows for a
user defined number of retries for identifying all favourable local optima with respect
to an existing cluster. At the same time, the Blockloading++ algorithm only allows
limited resets of the number of converged clusters.

Thus, our Blockloading++ will strike a balance between avoiding too many costly com-
plete resets of the number of converged clusters and on the other hand allowing for
multiple tries to find all local optima on the first try.

8.7 The Blockloading++ algorithm

We now use the insights of our discussion of the Blockloading algorithm in section 8.2
together with the algorithmic ideas we newly introduced in sections 8.1, 8.5 and 8.6, to
develop our greatly improved Blockloading++ algorithm. We will see in the numerical
tests in chapter 10 that the Blockloading algorithm spends the majority of its runtime
applying the Expansion or Refinement step without an improvement of the reference
free energy, F(ef),

We explained in the preceeding sections that, the main reason for this waste of com-
putational time are the frequent resets of the number of converged clusters, &, after
each successful Refinement or Expansion step. Every time there is a reset of % to zero,
the Blockloading algorithm will restart at the very beginning of the cluster selection
list. Our solution that we will propose as a remedy to this behaviour, will lead us to a
greatly improved approach for the treatment of resets after a successful Refinement or
Expansion step. We propose a refined approach for the storage of the converged clus-
ters and selection of the active cluster. This approach uses concepts and builds upon
the Blockloading variants we introduced in the last sections 8.1 to 8.6. We now present
our Blockloading++ algorithm in the order of its algorithmic steps.

For this presentation, we use the terminology and algorithmic steps we introduced in
sections 8.1 to 8.6. This includes the restart free energy, F(""@") from section 8.5 and
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Algorithm 9: No Reset Blockloading Algorithm

Data: adjacency matrix A; number of iterations of the Expansion Step,
ng; number of vertices N
Result: partition matrix @; number of clusters K; free energy F'; model
parameters ¥

/* Initialisation */
Initialisation Step
Cluster Selection Step
F(restart) «— F(ref)
success <— 0
repeat
Refinement Step
if FUef) > F(rial) then /x check if Refinement Step improved F
*/

success = 1

update cluster partition and parameters
end
Expansion Step
if FUef) > F(ria) then /* check if the Expansion Step improved
F x/
update cluster partition and parameters
Cluster Selection Step
/* set success back to zero */
success=0

else
if success = 0 then
converged «— converged + 1

/* Convergence Step */
if converged +1 > K¢/) then
if Flref) < Flrestart) ¢hen /% check if Flrestart) oo

improved */

‘ [ (restart) -« F(ref)
else

‘ return

end

end

Cluster Selection Step
else

success=0

Cluster Selection Step

end

end
until convergence of all clusters
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the refinement success variable, ., from section 8.6.

New variables for a smarter selection of the active cluster We also introduce sev-
eral new variables for an even smarter selection of the active cluster, this includes our
new shift variable, S, the track variable T and a barrier variable %4. These variables
will affect how we perform the cluster selection and determine the convergence of our
Blockloading++ algorithm.

The shift variable shifts the cluster selection on the cluster selection. Therefore jump
backs on this list after resets of 4 are limited when compared to our Blockloading
algorithm. The track variable will keep track how often a cluster was chosen as the
active cluster without an improvement of the model selection criterion in either in the
Refinement step or in the Expansion step. Each time this happens, the track variable is
increased.

If the track variable grows bigger than the barrier variable, the shift variable is increased
and the track variable is set back to zero.

This newly introduce selection process is able to limit the complete restarts on the clus-
ter selection list.

These new variables for a smarter inference process lead to the introduction of the
Cluster Selection and Convergence step++.

Initialisation Step We start our Blockloading++ algorithm with the same Initialisa-
tion step as the Blockloading algorithm. So, all vertices are assigned to the same cluster
at the beginning and we calculate the reference free energy, F (ref) . Then, we choose
the active cluster, c(“"”ve), according to the cluster selection method and try to improve
F(ref) by a split of ¢{@¥e) into two new clusters.

We evaluate the outcome of this split with respect to F("¢/).

If this split was successful, we proceed with our new Cluster Selection Step++ (see be-
low) where we apply the chosen cluster selection method, dependent on the number of
converged clusters, %, and the newly introduced shift variable, S, to choose the active

cluster, clactive),

Initialisation of the restart free energy Before we enter the main loop, we store
the current reference value of F("/) after a successful Initialisation step in the restart
free energy, F (’”‘“”), which will be later used to decide if the inference continues after
preliminary convergence of all clusters. We recall that we introduced the restart free
energy in section 8.5 together with the introduction of our automatic Blockloading al-
gorithm.

Cluster Selection Step++ We choose the active cluster ¢(*/*¢) according to our clus-
ter selection method. We proposed several cluster selection methods in section 8.1. We
recall that the choice of ¢(@“'*¢) also depends on the number of converged clusters, %
In the Blockloading algorithm, we first sort all current clusters of the reference clus-
ter assignment, Q(’ ef), according to the cluster selection method in descending order.
Then we choose, dependent on the value of ¢, the active cluster as the (1 + % )-th-
cluster of this list.
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We introduce the new shift variable, S, which shifts our choice of the active cluster
on this list. Contrary to the Blockloading algorithm, we choose the (1 + % +S)-th—
cluster as the new active cluster c(@ctive) Therefore, our shift variable, S, prevents total
jump backs to the very beginning of the cluster selection list. This shift variable is only
incremented until its reinitialisation at a restart. In the reinitialisation in the Conver-
gence step++ below, S is set back to zero.

Algorithm 10: Cluster Selection Step++
Data: number of converged clusters, €, shift variable, S

build ordered list of clusters according to cluster selection method
choose the (1+ % + S)-th cluster on this list

We now generalise this method for an improved handling of cluster resets. Contrary to
the total resets of the number of converged clusters in the Blockloading algorithm we
now provide an improved reset mechanism dependent on the shift variable, so that we
do not jump back to the first cluster on the cluster selection list.

If we applied the Refinement and the Expansion to an active cluster without an im-
provement of F"*/) in either step, we increment our newly introduced track variable,
T, which keeps track of entirely unsuccessful iterations of the main loop. Then we
check if the track variable, T grew bigger than the fixed barrier variable, . Our
barrier variable, 4, prevents a premature increment of the shift variable, S.

Main Loop After this initialisation we enter the main loop. The algorithmic frame-
work of alternating between Refinement and Expansion steps remains the same for the
Blockloading++ as for the Blockloading algorithm. As we explained above, the Block-
loading++ algorithm uses an improved memory for the clusters which did not yield an
improved reference free energy, F"*/), in the Refinement or Expansion step.

We start the main loop with the Refinement step, we explained in section 8.1.

New Evaluation to the Refinement step The evaluation of the Refinement step of
our Blockloading++ algorithm differs from the procedure of the Blockloading algo-
rithm. Our new idea for this improved evaluation is to link the evaluation of the Re-
finement with the Expansion step and thus to prevent too many resets of the number
converged clusters to zero. For this purpose, we introduced our refinement success
variable, ., in section 8.6, which stores if the Refinement step was successful. The
refinement success variable influences the reset of the number of converged clusters,
@ . 1t is evaluated in the new Convergence step++ below.

Like for the no reset Blockloading algorithm, we do not apply the cluster selection
step after the Refinement step and we do not reset the number of converged clusters,
€, regardless of the success in the Refinement step.

If Flrial) < p(ref) holds, we also update the reference values, F (/) QU¢/) and 9 /),
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We proceed with the Expansion step, we introduced for the Blockloading algorithm
in section 8.1, to split the active cluster, c(”c”ve), into two new clusters in search of an
improved value of F("¢/).

New Evaluation of the Expansion step If F (trial)  p(ref) holds, we update the ref-
erence values, F¢/), @U¢/) and 8¢/) once more.

Then we perform our new Cluster Selection step++ where we choose the new active
cluster dependent on the number of converged clusters, ¢ and the shift variable, S.

If FUe/) was not improved, we first check if the preceding Refinement step was suc-
cessful with the help of the refinement success variable .7

If the Refinement step was successful, e.g. . = 1, we set ./ = 0, and perform the
Cluster Selection step++ before another iteration of the main loop follows.

Otherwise, if the Refinement step was also not successful, we increment the number of
converged clusters, ¢, by one. We also increment the track variable, T, by one.

In the case that neither the Refinement step nor the Expansion step did yield an im-
provement of F("¢/), we check for convergence in our new Convergence Step-++.

Convergence Step++ We check for the convergence of Blockloading++ dependent
on the number of converged clusters, ¢, and the shift variable, S. If (1+% +.%) >
K(¢f) holds, all clusters have converged.

We check if we should reset all memory variables for another run of the main loop or
if the maximum number of restarts, Zmax, was reached.

If Zmax Was not reached, we compare the reference free energy, F (ref '), with the restart
free energy F (restart) If the reference free energy was improved during the current run
of the main loop, we update F("5@"") and set the memory variables back to zero, e.g.
% =0,S=0and T = 0. We increment the number of restarts by one.

We sum up our Convergence step++ in Algorithm 11.

Check for increase of the shift variable If Blockloading++ did not converge we
check if the shift variable, S, should be increased. This is the case, if the track variable,
T, is now bigger than the fixed barrier variable, %. So, if T > 2 holds, we increment
the shift variable, S, by one and set the track variable, T, back to zero. Then we proceed
with the Cluster Selection Step++ for the choice of ¢(@ive).

Another run of the main loop follows.

We sum up the whole Blockloading++ algorithm in Algorithm 12.

Discussion of the shift and converged variables We recall, that every time the track
variable, T grows bigger than the fixed barrier variable, 4, the shift variable, S, is
increased by one. The number of converged clusters, %, is set to zero after each suc-
cessful Expansion step whereas the track variable, T, keeps its value. Contrary to €,
the track variable is set back to zero each time it grew bigger than the barrier variable
2. Both, the track variable T and the number of converged clusters, %, are increased
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Algorithm 11: Convergence Step++

if (S+% +1) > KU*/) then
/* check if maximum number of restarts, Zmax, is reached
*/
if Z > %nax then
‘ break
end
if Flref)  pl(resiart) then

[ (restart) P Flref)
/* reset of converged clusters, shift and track
variable */
¢ =0
S=0
T=0
RH — (Z+1)

else

‘ break
end

end

if the Refinement and the Expansion did not improve the reference free energy, F' (ref),
This way our track variable keeps track of these unsuccessful iterations of the main
loop. This is the reason why we introduced the track variable, T, in addition to the
number of converged clusters, %

This approach ensures that a growing number of converged clusters leads to a grow-
ing shift variable. It leads to a limited jump back on the cluster selection list when the
number of converged clusters is set to zero. Our new procedure for the cluster selection
with the variables T, S, ¢ and % ensures that the inference process of Blockloading++
focuses on the current neighbourhood of the cluster selection list. We will see that this
procedure hugely increases our chances of finding an active cluster where favourable
optima are located. We also have a faster cycling through all clusters contrary to the
Blockloading algorithm which takes the network interdependency (see section 3.2) bet-
ter into account.

It also leads to a much faster run time of the Blockloading++ algorithm and reduces the
absolute number of Refinement and Expansion steps. We will give examples for this in
the numerical experiments in chapter 10.

We will see in chapter 10, that application of the Blockloading++ algorithm leads to a
hugely improved runtime compared to the Blockloading algorithm with an improved
quality of the results measured by the free energy.

Complexity of Blockloading++ The order of the computational costs we stated for
our Blockloading algorithm at the end of section 8.1 also applies to our Blockloading++
algorithm. We saw already in section 8.1 during our discussion of the complexity of
our Blockloading algorithm, that it is more important to achieve a minimal number of
Refinement and Expansion step without a drop in the quality of the results.

This can be only analysed in numerical experiments. Our aim with the theoretical
analysis of the Blockloading algorithm and our new algorithmic design of our Block-
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loading++ algorithm was to achieve this objective. We verify in chapter 10 that our
Blockloading++ algorithm has indeed a much faster run time for a complicated net-
work than the Blockloading algorithm.
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Algorithm 12: Blockloading++ Algorithm

Data: adjacency matrix, A ; barrier variable, %8; maximum number of restarts,

%max
Result: partition matrix @; number of clusters K; free energy F'; model
parameters ¥
/* Initialisation
Initialisation Step
Cluster Selection Step++
F(restart) P F(ref)
/* Main Loop
repeat
/* Optimise existing cluster partition
Refinement Step
if FUef) > F(rial) then /+ Evaluation of the Refinement Step
update F(¢/), Q¢f) and 9/
Cluster Selection Step++
1 <— success
end
/* Split active cluster into two new clusters
Expansion Step
if FUef) > F(rid) then /x Evaluation of the Expansion Step
/* update reference free energy, parameters and
cluster partition
update Flref), Q(ref) and 8¢/
/* reset of number of converged clusters
0+—%
Cluster Selection Step++
else
if success=0 then
C— (F+1)
/* check for convergence
Convergence Step++
/* continue if no convergence was reached
track +— (track+1)
if track > barrier then
shift <— (shift+1)
0 <— track
end
Cluster Selection Step++
else
0 <— success
Cluster Selection Step++

end

end
until until convergence of F"¢/), maximum number of restarts

*/

*/

*/

*/

*/

*/

*/

*/
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Chapter 9

Start Value Considerations

The VBEM Algorithm for inference of the SBM converges to a local optimum [50, 73,
8, 116]. Thus, the choice of the start partition matrix Q(“”” ) affects the outcome of the
VBEM algorithm. This is also true for our BlockVB and BlockVB++ algorithms for
the optimisation of subsets.

In the numerical tests we saw that it takes more iterations of the VBEM algorithm to
converge for a start partition matrix which assigns most of the vertices non optimal
clusters. This is especially true if we use non-informative or neutral hyperparameters
in our BlockVB algorithm.

We also noted during numerical tests, that a start partition matrix which assigns a lot of
vertices to a non optimal cluster also often converges to a value of the free energy, F,
which is far away from a global optimum. For our Blockloading and Blockloading++
algorithms, we need start values for the Expansion and Refinement Step. The initial-
isation with a second algorithm, like the Ascending Hierarchical Clustering algorithm
[89, 88] below, is only necessary, if we use the BlockVB algorithm.

We will also review the Largest Gaps (LG) algorithm introduced in [27]. We will in-
troduce variant of the LG algorithm for directed networks.

The possibility for application of the LG algorithm for finding start values for infer-
ence of the SBM was mentioned in the outlook of [27]. We will show how to find these
start values for inference of the SBM with our directed version of the LG algorithm for
VBEM inference.

Nevertheless, the LG algorithm can lead to very suboptimal results for small and real
world networks because of the possibility of outliers [27].

We will introduce our original Optimal Gap algorithm which builds upon the LG algo-
rithm, where we apply the principle of the LG algorithm to propose a divisive algorithm
which is designed to be more robust against outliers than the LG algorithm.

In addition, we will show how the LG algorithm can be used to find the centres of
K-means inference for the SBM.

We recall that our BlockVB++ algorithm is used by default with randomly initialised
start values to expand the choice of possible start values.

So, the algorithms for finding start values are meant for the use with our BlockVB al-
gorithm and nearly neutral hyperparameters of chapter 5.

The LG algorithm or our original Optimal Gaps (OG) algorithm can be used for prior
division of very large networks.

Under some assumptions, our Optimal-Gap cluster selection method can identify clus-
ters where favourable local optima with respect to that cluster are located.

101
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9.1 Ascending Hierarchical Clustering algorithm

To select a start partition matrix for variational EM inference of the SBM, the use of
an Ascending Hierarchical Clustering Algorithm (AHC) was proposed in the literature
(see e.g. [89], [84], [73], [29]). We review the AHC Algorithm explained in the tech-
nical documentation of the mixnet package [89, 88]. The AHC algorithm is a good
example of an agglomerative algorithm. We will explain below how to use the AHC
algorithm for initialising start values for our Blockloading algorithm.

We follow [89] for the review of the AHC algorithm. For this review we need defini-
tions for the distance between vertices and clusters.

The distance between two vertices i and j of a directed graph is defined as:

(A —Ap) + (A — Arj)? = |14 — Aj] 1% 9.1)

M=

d(ivj) =
k

The distance between two clusters is calculated with the help of the barycentres [89].
The barycentres of cluster g for rows and columns, (g;r , g;) , with n, being the number
of vertices in cluster g are given by:

YieqAik
g;ri — ﬂ, 9.2)
ng
A
= YieqAk , ©93)
ng

for all vertices i € {1,...,N}. The distance between two clusters is defined as the Ward
distance between the barycentres:

ngny

A(g,1) = P
q

(lgf =g 1P +1g; — & 1I7) - (9.4)

Now, we can recall the AHC algorithm of [89] with some minor changes:

(i) Initialisation: Calculate the distance, A, between the clusters (eqn. (9.4)). In the
first iteration, vertices are considered as clusters, and the distance d(-,-) is used instead.
(i) Merging Step: Merge two clusters if their distance A is the smallest. If two dis-
tances are equal, choose randomly two clusters for merging. The label of the new
cluster is the smallest of the two previous labels.

(iii) Calculate the distance between groups.

(iv) Iterate (i), (ii) and (iii) until the desired number of clusters, K, is reached.

The AHC algorithm is slow, except for small graphs. It was proposed in [89] to limit
the AHC algorithm to a subgraph G**?) with ny < N vertices of the original graph. Af-
ter convergence of the AHC for the ng vertices, the other vertices i ¢ Gub) are placed
in the clusters with the nearest barycentres.

Another strategy proposed in [89] is to run the K-means algorithm for a user specified
number Ny, of regularly ordered centres. The centres are Np,x vertices of the graph.
Then K-means algorithm is run until no change of the centres occurs. We shortly re-
viewed K-means in chapter 7. The resulting clusters are used as input for the AHC
algorithm. This initialisation strategy was also used in [73]. We will use it for tests
with the VBEM batch algorithm for the Poisson SBM in chapter 10.

Now, we will explain how we use the AHC algorithm for initialising the start values of
our Blockloading algorithm. We want to find the start partition matrix in the Expansion
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step in section 8.1. We run the AHC algorithm for all vertices in the active cluster, until
we reach K = 2 clusters. We use the AHC algorithm only together with our BlockVB
algorithm.

After the first iterations of Blockloading, the number of vertices in the active cluster
is small enough for most of the clusters, so that we can run the AHC without prior
preparation through the K-means algorithm.

We initialise the start partition matrix in the Refinement step in section 8.1 with the
AHC algorithm in the following way:

(i) Calculate the barycentres (eqn. (9.2) and (9.3)) of the existing clusters including
the active cluster.
(ii) Find the shortest distance d(-,-) for each vertex in the active cluster to one of the
barycentres. Place the vertex in these clusters of the start partition matrix Q(S””’) of the
Refinement Step.

We also used a second way to initialise the start partition matrix 0" for the Re-
finement step with random entries:

(i) Find all vertices i in the active cluster a.
ref) ¢ RIXK fj € q to zero.

(iii) For each matrix row i € a, draw a randomly initialized vector QE
YK Qledom) — 1 and QU™ ¢ (0,1)Vk=1,...,K.

(iv) Set 0" = @™ vii ¢ g,

(i) Set all entries of the matrix rows QE
random) __ .
with

The initialisation with random start values is our default method for all tests and al-
gorithms.

The AHC Algorithm provides no procedure for choosing the centres of the K-means
preparation. We will address this issue in the next section 9.2. We will propose ways
to find the centres (seeds) of K-means based on the properties of the SBM.

9.2 Review and application of the Largest Gaps Algo-
rithm

We need a computationally viable algorithm to choose the centres of the K-means
algorithm for large graphs with many clusters. Other ways tho find the centres of k-
means in advance were proposed in [103, 13]. This algorithm should provide a fast
approximation of the clusters of the SBM. If we choose the centres for K—means or the
subnetwork of the AHC randomly, we might end up with many (or in extreme cases
all) centres coming from one cluster. The result is a suboptimal initialisation of the
start value partition matrix. In the following we will show how to lower the probability
of such a scenario.

For the case of the undirected Bernoulli SBM with K = 2 clusters, an algorithm was
introduced in [108] which can find the latent cluster assignments of the vertices of the
SBM for graphs of N = 30 vertices or more. This algorithm uses the summed degrees
of all vertices of the graph. The algorithm was expanded in [27] to the case of more
than two clusters and provided an asymptotic criterion for model selection. It was
called the Largest Gaps algorithm (LG algorithm).
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We expand the LG algorithm to the directed Bernoulli SBM and the directed Poisson

SBM. We calculate the degree DEdir)
(in)

i

of vertex i for directed graphs as the arithmetic

(ottt):

mean of the in—degree D; ' and the out—degree D

. N .
Dl(m) _ ZAij; D(out) _ ZAij; D(dzr) _

1

(D(out) +D§in))« (9.5)

i

N[ —

Now, we define the probability 5,(:1”) = % ():lK:l O1(6k + le)) for all clusters k € {1,...,K}.

Then the degree ngir) is a binomial distributed random variable conditionally on Z; =

1 with parameters (N — l,g,idir)). It is 5,5dir> €1[0,1].

Equivalently, we define for the Poisson SBM

Ak =% (K, & (A +Aw)) for all clusters k € {1,...,K}. Then, the degree Dfd”)
is a Poisson distributed random variable, conditionally on Zy = 1 with parameter
Ak. It is assumed, that for all clusters k,[ € {1,...,K}, the separation assumption
k#1 :>§k #El holds [27]. We propose a similar assumption for the Poisson SBM:
k#1= Ar# A forall k,l e {1,...,K}.

The smallest gap between the 0 (1) is defined as in [27]: § = m;n|§q —0,|. It was

r

shown in [27] that a larger gap is to be expected between Verticesqof different clusters

for the Bernoulli SBM. This leads to the LG algorithm. Now we repeat the LG algo-
rithm of [27]:

(i) Calculate the vertex degrees (D;);—1,... n. Norm the degrees to T; = NDjl .
(i) Sort the T;, i = {1,...,N} in ascending order:

T <--- <. 9.6)

(iii) Calculate the N — 1 gaps, G, =T+ — T;Vie {1,...,N—1}.
(iv) Find the indices of the K — 1 largest gaps G,-j: i1 < --- <ig_1, such that for all
ke{l,...,K—1}andforall i € V\{iy,...,ix_1}

Ty, — Ty > Tt — T ©.7)

k+1

(iv) Setting iy = 0 and ix = N, each index i is assigned to a cluster: i — k with
i1 <i<ig.

The calculation of the LG algorithm is very efficient and runs in linear time [27].

‘We use the vector (Dl(d") ),-:1,_._,1\; as the input for the directed Bernoulli SBM. The con-
sistency of the LG algorithm was proved for the undirected Bernoulli SBM in [27].
With similar arguments the consistency of the LG algorithm for the directed Bernoulli
SBM holds. The proof of the consistency of the LG algorithm in [27] is based on Ho-
effding’s inequality which only holds for bounded random variables. So, we cannot
prove the consistency of the LG algorithm with the help of Hoeffding’s inequality in
the case of the Poisson SBM.

The vector of ordered degrees d = (D;);=1,...y is called the ordering vector in [108].
The ordered vertex numbers are stored in the vector s.

We found that the gaps provide a grid for choosing the Nnyax seeds of the AHC algo-
rithm of Section 9.1. Alternatively, we portioned the vector s into k equally spaced
intervals and choose a centre randomly from each interval. We use the LG algorithm
to find the start partition matrix in the Expansion step of the Blockloading algorithm in
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section 8.1.
Of course, the LG algorithm can be limited to the vertices in the active cluster.

LG algorithm for very large networks We want to use the LG algorithm for large
graphs, in the first few iterations of Blockloading without the AHC algorithm to save
computational time. Therefore we could simply choose the largest gap lmaN lG,-,

i=1,...,
and divide the vertices accordingly. Often, the active cluster is divided into two new
clusters several times, before an optimum of /CL,, or the converged free energy (see
chapter 6) is reached. Choosing the largest gap will not necessarily yield the highest
decrease of the free energy criterion.
Moreover, it was pointed out in [27] that the LG algorithm is suspect to outliers for
smaller networks or real world networks. It was noted in [27] that the LG algorithm
was not robust with respect to outliers because every normalised degree has the same
weight. One outlier vertex can lead to very suboptimal results, where most of the ver-
tices are assigned to a suboptimal cluster [27].
We found this especially important for earthquake networks, where are many vertices
which are strongly connected to all other vertices (hubs) [1]. These hubs have the
largest gaps by a wide margin with respect to the other vertices. Picking the gaps be-
tween is often not the best choice according to the free energy model selection criterion,
though.

9.2.1 Optimal Gap algorithm

We propose a new algorithm for finding the optimal division of the active cluster in the
Expansion step. We called this algorithm the Optimal Gap (OG) algorithm. Our OG
algorithm can be also used for the initialisation of start values in the Expansion step.
Like the LG algorithm, it uses the sequence of summed and normalised vertex degrees
of the network. To increase the robustness of our OG algorithm in contrast to the LG al-
gorithm, we pick the largest gaps and test which split of the cluster assignment into two
new clusters according to the chosen gaps results in the best value of the free energy
model selection criterion. Then the the OG algorithm is repeated for the new cluster
assignment. Therefore the OG algorithm can be used as a divisive algorithm. It was
noted in [27], that the LG algorithm can also be applied in a divisive fashion.

Our OG algorithm can detect the outlier vertices we mentioned above, if the improve-
ment of the model selection criterion is suboptimal when compared to the other chosen
gaps.

Now, we present the Optimal Gap algorithm (OG algorithm):

(i) Specify a number of gaps n, < n,. Find the n, largest gaps G, , ... s Gy -
(ii) For G,-j divide the vertices according to (iv) of the LG algorithm in two clusters.
(iii) Form a start partition matrix Qf-;‘m where the active cluster is divided according to
Gi,.

J
(iv) Calculate ICL;; for Qf-;‘"l.
(v) Find min ICLex,.j.

J

(vi) Repeat steps (i) to (v) until no increase of the model selection can be found or the
chosen number of clusters is reached.
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We choose the start partition matrix ngm") corresponding to min /CLy,;. Thus, we
j

have a provably good approximation of the partition matrix near a favourable local
optimum (see section 8.2.2), with our start value partition matrix Ql(mm) for K =2

opt

clusters. We avoid outliers by calculating the decrease of the ICL,, for several gaps n,
and not just the largest gap. We remark, that if we apply the OG algorithm repeatedly
until the convergence of the free energy criterion is reached, this constitutes a cluster-
ing algorithm of its own.

The value of the gaps &, = |§q —0,|, Vq # r varies in most networks. When we run
the Blockloading algorithm (or VBEM in general) for low number of clusters K, we
observed that the clusters with the highest J,, tend to be found found first. This can
explained by the different degrees of well separateness of the clusters. We discussed
well-separateness of the clusters in section 8.2.3. The measure J,,,Vq,r of the gaps is
another way to infer the well-separateness of the clusters in the network, if the optimal
cluster assignment is unknown. The results of the VBEM inference of the SBM also
tend to be better if the values of the gaps are high.

Optimal-Gap cluster selection method We note that a different method was pro-
posed as a cluster selection method for the bisecting K-means algorithm (chapter 7) in
[103]. Three methods for the selection of the active cluster were discussed in [103]:
Picking the largest cluster, splitting all clusters like in [99] and picking the cluster
where the variance of all vertices with respect to the K-means centres was lowest. It
was found in [103], that the method of selecting the cluster with the lowest variance of
the vertices yielded the best results.

Contrary to the approach in [103], the LG algorithm and our OG algorithm make use
of the summed degrees of the vertices. The LG algorithm or our OG algorithm can be
used to predict the number of possible favourable splits which can be performed with
respect to a chosen cluster.

To achieve this, we compared the gaps which are found within the existing clusters.
The gaps we need for these algorithms are only calculated once (point (iii) of the LG
algorithm above), at the beginning of the inference process. Then we can reuse them
as often as we want.

Optimal-Gap method with Largest Gaps algorithm We select the cluster of all
unconverged clusters on the cluster selection list which has the largest gap according
to the LG algorithm.

Optimal-Gap method with Optimal Gap algorithm To exclude outliers which can
lead to a biased cluster selection, we use our OG algorithm above. We choose the ng
largest gaps and calculate the /CL,, model selection criterion. Then we choose the
cluster as the new active cluster, where the ICL,, criterion was improved the most.

In numerical tests, we found the OG algorithm to be less affected by outliers in real
world networks than the LG algorithm.

Both methods can be used to predict if a favourable split of a cluster could be per-
formed in the Expansion step. Such a split would lead to a favourable local optimum
with respect to active cluster chosen with the Optimal-Gap method.
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We conclude that the sequence of gaps between the normalised summed vertex degrees
provide a valuable hint where these favourable splits could be found.
We sum up the Optimal-Gap cluster selection method:

(i) Pick the ng largest gaps of the summed degrees of the vertices which arise be-
tween vertices in the same not converged clusters.

(ii) Calculate for each gap, 8ij» the resulting value of the model selection criterion, in
this case the ICLeX[j or free energy criterion, if the respective cluster is split into two
new cluster according to the chosen gap.

(iii) Choose the gap and split which lead to the best value of the max

(iv) The cluster j where the optimal gap is located, is chosen as the new active cluster.

Start value initialisation with the Optimal Gap algorithm Now, we show how the
OG algorithm can be used for the Optimal-Gap cluster selection method of section
8.3. We use the optimal gap which was determined by the OG algorithm to apply this
cluster selection method. The vertices of the active cluster are assigned according to
this optimal gap to the two new clusters.

If we use the start value initialisation of the LG or the OG algorithm with the same
number of gaps, ng, the Blockloading(++) algorithm will return only one result because
VBEM inference is deterministic with respect to the start values which are always the
same in this case.

We recall from above, that this procedure can be repeated in a divisive fashion, for very
large networks, like for the LG algorithm [27].
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Chapter 10

Numerical Experiments

In the preceding chapters we introduced several original algorithms for estimating the
Bayesian Poisson Stochastic Block Model (SBM) for a given directed or undirected
network. We note that the methods we proposed for the Bayesian Poisson SBM trans-
fer to other types of the SBM too, like the Bayesian Bernoulli SBM. We introduced
our new BlockVB and BlockVB++ VBEM algorithms for inference of subsets of the
Bayesian Poisson SBM in section 4.2 and chapter 5. We explained how to use our new
adaptive informative priors for the fully Bayesian BlockVB++ inference algorithm in
chapter 5.

We introduced our new Blockloading algorithm and derived from it the automatic and
the no-reset Blockloading algorithms. We used the insights from the discussion of
the Blockloading algorithm and its derivatives to develop our even more sophisticated
Blockloading++ algorithm.

Now we test and compare all those methods.

For this comparison in the numerical tests we now derive our main criteria and objec-
tives to compare our different algorithms.

All our algorithms which are based on our Blockloading algorithm as well as the batch
VBEM inference (algorithm 3) seek to optimise the free energy (ILvb) model selec-
tion criterion of the Bayesian Bernoulli or Poisson SBM (chapter 6). Therefore we can
compare all our methods dependent on the returned converged free energy. This leads
to the first criterion we want to answer with the help of the numerical tests:

e Which of our newly introduced algorithms returns the best value of the free
energy model selection criterion?

We have seen that the VBEM inference for the SBM depends on the start value assign-
ments of the vertices due to the general algorithmic VBEM framework. One motivation
for the introduction of our new Blockloading methods were the unsatisfactory prelimi-
nary results of the existing batch algorithm approach for VBEM inference for the SBM
especially for complicated networks like earthquake networks. Of course in addition to
achieving the best values for the model selection criterion we prefer algorithms which
return the same or nearly the same converged free energy and cluster assignments
of the vertices for different start values. To measure this reliability of the different
algorithms we compare the returned cluster assignments of the vertices with the help
of the Normalised Mutual Information (NMI) criterion [112]. The NMI criterion will
be reviewed in section 10.2. This leads us to the second criterion for our tests:

109
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e Which method is the most reliable method when compared to the best returned
cluster assignments of the vertices in all tests, Q(’ef )2

The technique to measure the reliability of the algorithms by comparing the returned
cluster partitions for different start value initialisations when no ground truth is known
was also used in [12, 45, 116]. Here and in the case of [116] we used the best of all re-
sults as a proxy for the ground truth. We also compare the number of returned number
of clusters for different runs of the same algorithm to judge the reliability with respect
to finding the optimal number of clusters.

We also compare the run time of all algorithms. We found that finding reliably the
best value of the model selection criterion to be the most important objectives for our
algorithms. Nevertheless, we need an acceptable run time of each of the algorithms.
Therefore we note our third criterion:

o Which method has the fastest computational speed?

The run time of the algorithm is the deciding criterion if the other criteria are about
the same for two or more methods.

Using these criteria and selected synthetic and earthquake networks, we want to find the
best version of our Blockloading or Blockloading++ algorithm we proposed in chapter
8 for the Bayesian Poisson SBM.

We will also compare the results or Blockloading(++) algorithms to the classic batch
algorithm of section 4. We provide the detailed specifications of our tested versions of
the Blockloading(++) algorithm in section 10.3.

10.1 Comparison to implementations of other algorithms
for the inference of the SBM

We will compare our overall best performing Blockloading or Blockloading++ algo-
rithm of the tests to the implementations of selected state of the art inference algorithms
for the SBM.

Direct comparisons with downloaded software includes the blockmodels’ package
(https://cran.r-project.org/web/packages/blockmodels) [ 78] of [77], the only other state
of the art implementation of a Variational EM based inference algorithm for the SBM
based on split merge concepts we are aware of. The blockmodels package is imple-
mented in R and its computationally intensive parts in C++. It can be run in parallel.
We used the R-package R.matlab (https://github.com/HenrikBengtsson/R.matlab) [17]
to transfer data from R to Matlab and vice versa.

We also tested the VBEM batch algorithm for the inference of the weighted SBM
(WSBM) of [8], which was implemented in the WSBM 1.2 package
(http://tuvalu.santafe.edu/~aaronc/wsbm/) [7]. The WSBM 1.2 package is implemented
in Matlab and its computationally demanding parts in mex-C++.

For an indirect comparison with additional methods, we reproduced a test proposed in
[30] of a network generated by a large and complex Bernoulli SBM with N = 10000
vertices. Results for this test were given in [30] for the following methods the greedy-
ICL algorithm presented in [30], the colsbm algorithm of [85], the vbmod algorithm
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of [50] and the spectral clustering version of [107]. We compare our Blockload-
ing(++) methods with these given results in section 10.4.1.

10.2 Comparison of cluster assignments

In this section we give a short review of the Normalised Mutual Information (NMI)
criterion which is widely used in the literature, e.g. in [34, 84, 73, 30, 12], to compare
the cluster assignments of two exclusive partitions of vertices of a network. This short
review of the NMI follows closely the presentation of [112]. For more information
about the NMI we refer to [112].

Let there be two possibly different exclusive cluster assignments of the vertices of an
network, V, which are given by W = {wy,wy,...,wg} and M = {m,my,...,mg}. The
first step for the comparison of these two cluster assignments is to set up the contin-
gency table. The entries, n;j,(i,j) € {1,...,R} x {1,...,S}, of the R x S contingency
table are the number of vertices which are assigned to the cluster w; and to the cluster
mj, so it holds that |w; Nm;j| = n;;.

Now, to prepare the calculation of the information theoretic quantities needed for
the calculation of the NMI, we calculate the sums, ZJC-:1 nij = a;,Vi € {1,...,R} and
Yinij=bj,je{l,...,C}. Itholds that Y}, ¥ njj = N, where N is the number of
vertices in the network.

The entropy of the partition W is now given by [112]

H(W):f;%ln (%) (10.1)

The entropy measures how many bits are needed on average to encode the partition W
[112]. The Mutual Information between the partitions W and M is defined to be [112]

WM =Y Y i 10.2
( ? )_ZZNH a,-bj : ( )

i=1j=1 e

The Mutual Information measures the information which is shared between the par-
titions M and W [112]. The Mutual Information is normalised to account for the
possibility of different numbers of clusters of the partitions [30]. One possibility to
normalise the Mutual Information is given by [112]:

21(W, M)
max (H(W), H(M))

NMI(W. M) = €0, 1]. (10.3)

The NMI measures how much information two cluster assignments share [112]. A
NMI(W.M) of 1 means that both partitions M and W are identical. The NMI is zero
when no information about W can be inferred from M [112].

10.3 Overview of Methods for inference of the Bayesian
Poisson SBM

Based on our Blockloading and Blockloading++ framework and our BlockVB and
BlockVB++ VBEM inference algorithms, we consider the most interesting and rep-
resentative combinations of the options our framework offers. We give an overview of
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the methods based on our methods we want to test. To find the best inference algorithm
for the Bayesian Poisson SBM, based on the criteria we described in the introduction of
this chapter, we have to make a choice for each of three algorithmic parts of our Block-
loading(++) which constitute one algorithmic method: The Blockloading(++) method,
the cluster selection method and the VBEM inference algorithm.

We note that there are many more input specifications with respect to our algorithmic
framework, which we presented in the past chapters. These specifications, like the
number of iterations or the choice of the hyperparameters or different model selection
criteria, could also be compared against each other. Of course it is impossible to imple-
ment and test all algorithmic combinations which possibly arise from our framework in
a reasonable amount of time. For all of these inputs we had to make some preliminary
choices. These choices are partly inspired by preliminary numerical tests we performed
during the development of these methods. We do not think that these choices decisively
affect the outcome with respect to the main criteria for the comparison of the algorith-
mic design choices we stated at the beginning of this chapter. To keep the presentation
concise we take our workhorse model’ the Poisson SBM as a representative example
for nearly all our experiments. It allows the application to networks with any combina-
tions of weighted, unweighted, directed or undirected edges. Most networks fall into
one or several of these categories.

For the test of an unweighted Bernoulli SBM in section 10.4, we will also use our
Bernoulli BlockVB algorithm of appendix A.

All our methods were implemented in Matlab and computationally intensive parts in
mex-C.

Options of the Blockloading(++) framework We have to choose one of the algo-
rithms which are based on our Blockloading and Blockloading++ framework that we
proposed in chapter 8. There, we proposed the Blockloading algorithm (algorithm 7)
and based on the Blockloading algorithm the automatic Blockloading algorithm (algo-
rithm 8) and the no reset Blockloading algorithm (algorithm 9). Building upon these
algorithms we proposed our more sophisticated Blockloading++ algorithm (algorithm
12).

We need to choose the cluster selection method to use one of our Blockloading(++)
algorithms.

Cluster Selection method We presented several possibilities for the cluster selection
method in chapter 8, which selects the active cluster out of all not converged clusters.
There, we showed that the concept of the maximum probabilities (max—prob, MP)
method which starts with the most densely connected clusters could be used to min-
imise the influence of sparsely connected clusters on the inference process. On the
other hand we discussed in chapter 8 that the strategy of starting the inference with the
clusters with the most vertices first (max—size method) could be favourable to achieve
a lower number of iterations. Therefore, these two strategies seem to be interesting
choices. We use both strategies in combination with the Blockloading and the Block-
loading++ framework.

The two opposite strategies for choosing the smaller clusters first (min—size method,
MS) is in most cases redundant to the max—probabilities method and the strategy of
selecting the sparsely connected clusters (min—prob method) is in most cases similar to
the (max—size method). We remark that one can construct cases where this similarity
does not apply.
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Method Abbreviation Full Name of Method

Bl Blockloading

aBI automatic Blockloading

nrBl1 no Reset Blockloading
Bl++ Blockloading++

Sta BlockVB and start values

Bay BlockVB++ and adaptive priors
MS maximum Cluster Size

MP maximum Probabilities

Table 10.1: Overview of the abbreviations of algorithmic parts

We designed our Optimal-Gap cluster selection for very large networks. For the net-
works we will test below, we do not use the Optimal Gap method because these net-
works are small enough to be handled with either the max-size or max-density clus-
ter selection method. We will postpone the test of the Optimal Gap cluster selection
method to later work, where we expect a larger difference of the results.

Options for the VBEM inference algorithm In addition we have to choose the
VBEM inference algorithm for subsets of the vertices of the network. We proposed
the BlockVB algorithm (algorithm 4 in chapter 4.2) which we use with nearly neutral
hyperparameters for the prior distributions (see chapter 5) together with a separate al-
gorithm for initialising start values.

In this thesis, we use the Ascending Hierarchical Clustering algorithm we reviewed in
section 9.1 as the separate algorithm for the start value initialisation but other algo-
rithms like K-means can also be used.

Building upon the BlockVB algorithm we presented our original fully Bayesian BlockVB++
algorithm in chapter 5 (algorithm 5), which is applied with adaptive informative hyper-
parameters and random cluster assignments instead of start values assignments with a
second helper algorithm like the AHC algorithm. The BlockVB algorithm was also
used in [116]. We apply both algorithms with ten iterations for the main loop of the
algorithm and two iterations of the E—step.

Free Energy and Hyperparameters For comparison of our different algorithms,
we should obviously take exactly the same hyperparameters for the (converged) free
energy in all tests. We stated and discussed the choice of our default prior hyper pa-
rameters for the free energy in chapter 5.

Abbreviations of algorithms and methods We sum up the abbreviations of all al-
gorithms in table 10.1. The abbreviations of all methods we will test below are stated
in table 10.2. These methods consist of different algorithmic parts. The abbreviation
Bl++ Bay MS refers for example to our Blockloading++ algorithm together with our
BlockVB++ algorithm and maximum size cluster selection method.
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Method Blockloading VBEM inference cluster selection method
BI Sta MS Blockloading Block VB start values max cluster size
BI Sta MP Blockloading Block VB start values maximum probabilities
Bl Bay MP  Blockloading BlockVB++ adaptive priors  maximum probabilities
Bl Bay MS  Blockloading BlockVB++ adaptive priors max cluster size
aBl Bay MS  automatic Blockloading BlockVB++ adaptive priors max cluster size
nrBl Bay MS  no Reset Blockloading ~ BlockVB++ adaptive priors max cluster size
Bl++ StaMP  Blockloading++ Block VB start values maximum probabilities
Bl++ Bay MP  Blockloading++ BlockVB++ adaptive priors ~ maximum probabilities
Bl++ Bay MS  Blockloading++ BlockVB++ adaptive priors max cluster size

Table 10.2: Overview of all tested combinations of our algorithmic methods based on
the Blockloading algorithm and their abbreviations.

Specifications of the Batch VBEM algorithm The batch algorithm for finding the
optimal number of clusters and converged free energy (algorithm 6, chapter 6) can be
considered until the year 2013 as the state of the art algorithm for the application of
Variational (Bayesian) EM methods to the SBM [35, 50, 84, 73].

We apply the VBEM batch algorithm (algorithm 3, chapter 4) with twenty iterations
of the main loop and five iterations of the E—step. As explained in chapter 6, we have
to choose different numbers of clusters Ki,...,K;. For each current number clusters,
K;, we restart the batch algorithm 30 times with different start values for the cluster
assignments of the vertices.

Following [73], we use a combination of the K-means algorithm (see e.g. [19]) and
the AHC algorithm (section 9.1) for initialising start values for the cluster assignments
of the vertices. The K-means algorithm is initialised with twice the number of the
current number of clusters and run for forty iterations. Then we use the resulting cluster
assignments as the input for the AHC algorithm, which is run until the number of
clusters we want is reached.
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10.4 Synthetic Networks

10.4.1 Comparison with existing methods

We compare our Blockloading and BlockVB algorithms for the Bernoulli SBM, we
propose in appendix A, with existing methods. We reproduced a test performed in
[30] for large graphs with a complex structure. The greedylCL algorithm presented
in [30], the colsbm algorithm of [85], the vbmod algorithm of [50] and the spectral
clustering algorithm in the version of [107] were tested in [30]. The greedICL uses
greedy optimisation, the colsbm a collapsed Gibbs Sampler and the vbmod algorithm
uses a VBEM batch algorithm for the restricted SBM [30].

The test networks are generated with the Bernoulli SBM of chapter 2. There are N =
10000 vertices, K = 50 clusters. The probabilities for the cluster assignments are given
by the vector 8§ = (1/50,...,1/50) € R1>39, The probabilities for the existence of an
edge are generated according to

le:{ 20+ (1=2)e, ik 1 (104

U,ifk=1

with Z ~ Bernoulli(0, 1), the uniform distribution U ~ % (0.45) and € = 0.01.

In [30], the greedyICL algorithm was applied to 20 simulated graphs. There, it was
found that the greedyICL algorithm outperformed the other algorithms with an average
NMI of 0.88 between the real cluster partition and the calculated one. The greedyICL
returned K = 80 clusters most of the time and the colsbm algorithm more than 240
clusters [30]. The spectral clustering algorithm was initialised with the correct number
of clusters according to the ground truth [30].

We applied our Blockloading algorithm for the Bernoulli SBM to 20 simulated graphs.
We used the AHC algorithm of Section 9.1 with a subnetwork for the Expansion Step
and a random sub matrix for the Refinement Step. The active cluster was chosen as the
cluster with the most vertices (max-size-method) (see section 8.3.2).

We found that our Blockloading algorithm identified the correct number of clusters,
K =50 and the correct partition with a NMI of 1.0 (each vertex was placed in the cor-
rect cluster) for each of the 20 runs.

We also tested the WSBM 1.2 package [7] and the Blockmodels package [78]. The
WSBM 1.2 package, which we initialised with Bernoulli or Poisson distributions for
K =50 clusters, crashed. The Blockmodels package initialised for the Bernoulli SBM
took more than two ours to perform the first split to two clusters, and we cancelled the
test.

We conclude that our Blockloading algorithm outperforms the other algorithms men-
tioned above in this test. We summarise the test results in table 10.3. The Blockloading
algorithm is the only algorithm of the mentioned algorithms in this Section, which is
able to identify the correct number of clusters and to achieve the maximum NMI score.

10.4.2 Large and complex Poisson SBM

In order to test the Blockloading algorithm for the Poisson SBM we constructed the
following example graph which was generated as explained in chapter 2. Each gener-
ated graph has N = 10000 vertices and K = 50 clusters. The vector of the Multinomial
distribution is given by & = (1/50,...,1/50) € R*3°. We draw Z ~ Bernoulli(0.2)
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method mean of NMI

Blockloading 1.0
greedyICL 0.88
spectral clustering  0.71
colsbm 0.67
vbmod 0.66

Table 10.3: Comparison of other clustering algorithms with our Blockloading (B1 Sta
MS (Bernoulli version)) algorithm for complex network with N = 10000 vertices gen-
erated by Bernoulli SBM. All test results except for Blockloading reproduced from
[30]. Mean value of NMI for twenty tests.

and set € = 1. The rates of the edge weights Ay, within the clusters are set in ascending
order to (0.1,0.2,...,1,1.5,2,...,21) € R*3% We set the parameters A;. according
to

/lkl:{ Zht (1= Z)e,ifk#1 (105)

A, ifk =1

The generated graph has an asymmetric structure and varying edge weights.

Again, we used the AHC algorithm for the Expansion step and the random initializa-
tion for the Refinement Step.

We generated 20 realisations of the graph and ran the Blockloading algorithm for the
Poisson SBM. We found that Blockloading returned the correct number of clusters for
each test. We calculated a NMI of 1.0 for each comparison between the calculated
partition matrix Q and the true partition matrix Q;, .-

This example shows, that our Blockloading algorithm is able to reliably calculate cor-
rect results for large weighted graphs with complex structure.
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10.5 Earthquake Networks

The earthquake network (EN) was introduced by S. Abe and N. Suzuki in 2004 to
model the spatiotemporal time series of earthquakes [1]. We first review the construc-
tion of the earthquake network. Then we will discuss several properties and applica-
tions for the earthquake network given in the literature. The main focus of this thesis
is that we will analyse the earthquake network from the perspective of model based
clustering with the Poisson Stochastic Block Model (SBM), introduced in chapter 2. It
was shown in ([1, 2, 3]) that important statistical properties of earthquake activity are
inherited by the EN.

In section 10.5.1 we review how to construct the earthquake network.

10.5.1 Construction of the Earthquake Network

The earthquake network (EN) is constructed for a chosen geographical area and time
span. A grid of squares is placed on the area of interest. According to this grid, we can
construct cubicle cells to include depth information.

When we construct the square grid, we have to take into account the curvature of the
earth surface and therefore need a projection of the curved geographic area of interest.
Such an approach takes the departure into account.

There are several ways to choose a projection method to account for the departure. The
authors of e.g. [6] used Mercator coordinates of a sphere to approximate the surface of
earth. We use Universal transverse Mercator (UTM) coordinates of the WGS 84 ellip-
soid following [63]. To calculate the UTM coordinates with high precision, we used
the accompanying software of [63]. We downloaded this software, called Geographic
Lib [64], at https://sourceforge.net/projects/geographiclib/files/distrib/ .

The earthquake network unfolds in the following way [1]:

(i) Place a vertex in the first cubicle cell where an earthquake occurs the first time
during the observation interval.

(ii) Place a second vertex in the cubicle cell where the next time seismic activity occurs
and place a (directed) edge between the last two vertices of seismic activity pointing to
the latest vertex of activity.

(iii) If seismic activity occurs in direct succession in the same cell, place a self edge
(also called tad pole or loop) connecting the vertex in the cell with itself.

(iv) Continue until the end of the chosen time span.

The placement of a self-edge according to (iii) models a direct after shock [1]. By
construction, multi—edges are possible if earthquakes arise in direct succession in two
cubicle cells/vertices already linked by an edge. We observed that multi—edges arise
very often in the earthquake networks we analysed. We treat all multi-edges which
connect two vertices in the same direction as one weighted edge. So, the earthquake
network is by construction a directed and weighted network with self—edges.

The only parameter which has to be set in advance besides the geographic area and the
observation time span is the side length of the cubicle cells [2].

In order to allow the application of methods which can only be applied to undirected
networks without weights and self edges, these features of the earthquake network were
removed in e.g. [2]. Thus, the clustering coefficient for networks introduced in [114]
could be applied to a simple earthquake network without loops, edge directions and
edge weights in [2]. The same applies to application of the modularity measure of [94]
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Figure 10.1: Schematic description of the construction of the earthquake network in-
troduced in [1]. First, we put a grid of cells on the area of interest (left side). Second,
we place a vertex in the first cell where seismic activity occurs at the start of obser-
vation interval (middle). Third, we place a second vertex where the next time seismic
activity occurs and place an edge between the last two vertices of seismic activity. If
there is seismic activity between existing vertices, we place an edge between those two
vertices. This continues until the end of observation.

to earthquake networks where loops, edge directions and weights were removed for
finding communities in [5].

We mentioned in chapter 2, that we would need additional terms for the SBM to model
loops [123]. Inference algorithms for the SBM are normally discussed and stated for
the SBM without loops in the literature [97, 35, 72, 84, 40, 8]. Tests and benchmarks
for inference of the SBM are also applied to networks without loops in the literature
[35, 84, 73, 40, 8]. So, the application of the SBM without loops allows for the com-
parison with other inference algorithms and their implementations presented in the
literature. Therefore, we opted to remove the loops of all networks.

Magnitude of Completeness The magnitude of completeness, M., is an important
concept to ensure with probability one that no seismic event of a magnitude larger or
equal than the magnitude of completeness was missed during the time interval of obser-
vation for a given data set [90, 53]. Determining the correct magnitude of completeness
for given earthquake data is an essential and mandatory first step before we can start
further analysis of the data [90]. It is noted in [90] that finding the right magnitude of
completeness with one of the state of the art methods is not a trivial task. If we choose
the M, too high we would unnecessarily exclude events from our investigation and if
otherwise M. is chosen too low, the data would be biased [90].

Contrary to e.g. [1, 2, 6, 3], where the concept of the magnitude of completeness is
not used for the construction of the earthquake network, we will only include data ac-
cording to the magnitude of completeness for the construction of all our earthquake
networks.

10.6 Southern California Earthquake Network

The earthquake catalogs of the Southern California Earthquake Data Center (SCEDC)[104]
is an often used data base for the construction of an earthquake network e.g. in [1, 2,
3, 6]. We downloaded the catalog data from (http://scedc.caltech.edu/) [104]. We con-
structed the earthquake network of the Southern California area (32s, 37n; 122w, 114w),
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for the time interval from January 1, 1984 to December 31, 2015 (see section 10.5.1).
The authors of the studies [1, 2, 3, 6] also constructed the earthquake network for the
time interval from January 1, 1984 onwards. The choice of the start of the time interval
beginning from January 1, 1984 was explained in [3] with an incompleteness of the
data for the year 1983. It was remarked in [2] that the ’typical size of a fault’ is 5 km
and therefore the minimum size of the cubicles should be at least 5 km. We chose a
side length of 10km for the cubicle cells.

This results in 4256 cubicle cells per depth level.

In the recent study of [53], which is also downloadable from the SCEDC website
(http://www.scedc.caltech.edu), the magnitude of completeness for the Southern Cali-
fornia Seismic Network (SCSN) earthquake catalog was found to be M, = 3.25 for all
local events in the catalog beginning with the start of recording in 1932 and M, = 1.8
for all data from 1981 onwards. Other events which were recorded in the SCSN cat-
alog like artificial quarry blasts or sonic booms were excluded from the study in [53].
Therefore we also only included local events in the construction of our earthquake net-
work of Southern California.

So, we only used local events with a magnitude M > 1.8 on the Richter Scale for the
construction of the SCEN. There occurred a total of 143918 earthquakes which meet
these criteria in the chosen time interval for the construction of the network.

The resulting adjacency matrix of the network has N = 3163 vertices and 68654 edges.
We did not include unconnected vertices, which model regions without earthquake ac-
tivity during the observation time, into the construction of the network. We removed all
self—edges which model direct aftershocks from the network by setting the diagonal of
the adjacency matrix to zero. The maximum edge edge weight is 222 and the minimum
1. The network is directed by construction. The maximum depth of an event during the
observation time is 29.9 km. Therefore we have three depth levels in our earthquake
network.

We start our tests with the SCEN in the next section 10.7.

10.7 Methods for inference of the Poisson SBM for the
Southern California Earthquake Network

Literature about the application of clustering methods to the earthquake networks of
[1] is scarce. The application of clustering according to the modularity measure of
[94] to earthquake networks, where edge weights, edge directions and loops were re-
moved, was proposed in [4]. Calculating the modularity measure aims at finding the
most densely connected vertices in the network, called communities [94]. Contrary to
being able to only find communities with the modularity measure of [94], the Stochas-
tic Block Model cannot only identify densely connected vertices as clusters but also
heterogeneous structures of the network [71]. We recall that the SBM clusters vertices
according to the same edge connection behaviour, which also includes hubs, disassor-
tative and assortative mixing [71]. The existence of hubs in earthquake networks was
shown to be the consequence of big earthquakes (mainshocks) in [1]. These hubs were
considered to be important parts of the earthquake network [1].

We recall that our main objective in this thesis was to find a computationally viable
way for high quality estimation of the SBM for a given earthquake network. To the
best of our knowledge, the estimation of the SBM for the analysis of earthquake net-
works of [1] or the estimation of model of comparable complexity has never been done
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Figure 10.2: Map of the Southern California area under consideration for the construc-
tion of the earthquake network. All earthquakes from 1982 to 2011 marked with a red
dot. Map was drawn with the Generic Mapping Tools (GMT) [115]. Earthquake data
provided by [104].
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or proposed before. In the next section we show the results of the application of our
new estimation algorithms for the Poisson SBM to the Southern California earthquake
network of section 10.6.

10.7.1 Test of Blockloading(++) methods

We now want to find the best of our methods based on the Blockloading, Blockload-
ing++, BlockVB and BlockVB++ algorithms for the Poisson SBM. For the tests in this
section, we use the directed and weighted earthquake network of the Southern Cali-
fornia area which we presented above in section 10.6. We stated the main test criteria
at the beginning of this chapter. We described the methods we want to test in section
10.3.

We did 30 runs of each algorithm. All our algorithms we will test now are listed in
table 10.2.

We used the same machine with an Intel i5 3570K CPU with four 3.4 Ghz cores for all
tests in this section.

We start our evaluation of the tests of the SCEN of section 10.6 with the first criterion.

Evaluation of Model Selection Criterion The best result (lowest converged free en-
ergy) of all algorithms and tests was returned by our Blockloading++ algorithm with
fully Bayesian BlockVB++ inference algorithm and maximum cluster size selection
method (Bl++ Bay MS) with a converged free energy of F("¢/) = 179924 and an opti-
mal number of clusters of K("¢/) = 56. The run time of this best run was 2 minutes and
38 seconds.

The highest converged free energy of all test runs (worst result) was returned by the
Blockloading algorithm with the BlockVB inference algorithm and maximum size
cluster selection method (Bl Sta MS). It returned a converged free energy of F (ref) =
183932 and K("*/) = 44 clusters.

We present a detailed graphical presentation with the help of a box plot of the results
of the converged free energy for all tests and methods in figure 10.3.

We remark that even the worst result of all test runs based on our Blockloading(++)
algorithms returns a clearly better value of the free energy than the VBEM batch algo-
rithm as we will see in section 10.7.2 below.

Reliability We calculate the Normalise Mutual Information (see section 10.2) of the
cluster assignment of the best result, Q<ref), according to the free energy criterion,
compared to all other cluster assignments to assess the reliability of the different algo-
rithms. We present the results of the reliability measured this way in figure 10.4.

All our Blockloading and Blockloading++ algorithms achieved an NMI of bigger than
0.8 compared to the best result. Our best performing method in this regard is again our
Bl++ Bay MS algorithm with a NMI bigger than 0.9 for all initialisations. Therefore
our Bl++ Bay MS algorithm is the most reliable of all tested methods.

Number of Clusters An overview of the number of clusters returned in all tests is
given in figure 10.5. Finding approximately the same number of clusters for different
initialisations is also an important criterion when we assess the reliability of our al-
gorithmic methods. The optimal number of clusters of all test runs, according to the
free energy models selection criterion, is K("¢/) = 56. All methods which employ the
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Figure 10.3: Boxplot of the converged free energy of different Blockloading and Block-
loading++ algorithms applied to the Poisson Stochastic Block Model for the Southern
California earthquake network from 1984 to 2015 with edge weights, edge directions
and without loops. The full names of all abbreviations are given in tables 10.1 and 10.2
in section 10.3. The best result (lowest converged free energy), marked by the red line,
was returned by the Blockloading++ algorithm with BlockVB++ inference and max
cluster size method (Bl++ Bay MS), with a converged free energy of F (ref) = 179924,



CHAPTER 10. NUMERICAL EXPERIMENTS 123

1.0 —f o c s c e c ecec s e sc ee s e e e se e e se s e e soe 3e 3.e 3e 3.e 3e 3 e e R R R R R S

0.4 —

NMI of cluster assignment compared to best result
|

! ! ! ! ! ! ! ! !
Bl Sta MS Bl Sta MP Bl Bay MP Bl Bay MS Bl++ Sta MP  Bl++ Bay MP  Bl++ Bay MS  aBl Bay MS nrBl Bay MS

Method

Figure 10.4: Boxplot of the Normalised Mutual Information (NMI) of all cluster as-
signments compared to the reference cluster assignment, Q(ref ). The cluster assign-
ment matrix Q(’ef ) yields the best converged free energy, F("/). A NMI of 1.0 signals
similar cluster assignments and is the best possible value of the NMI. The full names
of all abbreviations are given in tables 10.1 and 10.2 in section 10.3. All Blockloading
methods have an NMI better than 0.8. The best method, the Blockloading++ algorithm
with BlockVB++ maximum size selection method (Bl++ Bay MS) reaches a NMI of at
least 0.9. The reference cluster assignment, Q(’ef >, reaches a NMI of 1.0 by definition,
and is marked by the red line.
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Figure 10.5: Boxplot of the number of clusters, K, returned by different Blockload-
ing(++) based methods.The full names of all abbreviations are given in tables 10.1 and
10.2 in section 10.3. The optimal number of clusters, K (ref) — 56 of the best result of
all tests according to the free energy model selection criterion is marked with a red line.
We see that all fully Bayesian BlockVB++ based methods return a number of clusters,
K, which is close to the optimal number of clusters, K (ref)

fully Bayesian BlockVB++ inference algorithm with our adaptive informative prior pa-
rameters return cluster numbers around the optimal number of clusters with K = 52 to
K = 58 clusters. Therefore, we conclude that our BlockVB++ algorithm increases the
reliability of finding the optimal number of clusters when compared to the traditional
start value approach.

Run Time Our last main criterion was the run time of our different algorithms. Here
the results are clearly divided between the use of our Blockloading and our more so-
phisticated Blockloading++ algorithm. The fastest run time of 2 minutes and 5 seconds
was achieved by the Blockloading++ algorithm with BlockVB inference and maximum
probability cluster selection method (Bl++ Sta MP). As stated above, the computational
time of the best result, measured by the free energy model selection criterion, which
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was returned by the Bl++ Bay MS method, took 2 minutes and 38 seconds. Nearly
all runs of our more sophisticated automatic Blockloading, no reset Blockloading and
Blockloading++ based methods were faster than ten minutes.

On the contrary, the run time of all our methods based on the Blockloading algorithm
took ca. 15 to 55 minutes. The fastest median run time of a Blockloading based
method was more than 27 minutes. On the contrary the slowest median run time of
a Blockloading++ based method was ca. 6.5 minutes and the fastest median run time
of the Blockloading was under 4 minutes. Therefore our advanced Blockloading++
algorithms offer an at least fivefold increase when compared to the Blockloading based
methods.

All results of the run time are presented in figure 10.6. We conclude that our efforts to
improve our Blockloading to the Blockloading++ algorithm yield a dramatic increase
of the computational speed.

We take an in-depth look at the results returned by the Blockloading and Blockload-
ing++ algorithm to find out where this high increase of speed with better results for
the free energy model selection criterion comes from. We recorded the value of the re-
turned free energy and the reference free energy after each Refinement and Expansion
step. We will analyse these records below.

Speed of Convergence and the Number of Iterations When we stated the order of
the computational costs of our Blockloading algorithm in section 8.1, we claimed that
the run time needed for our Blockloading algorithm and its variants mainly depends on
the number of Expansion and Refinement steps until convergence. The Expansion and
Refinement are each performed once per iteration of the main loop in all algorithms we
presented in chapter 8.

We documented the number of iterations of the main loop for all test runs and present
the results in figure 10.7.

There we can see that the total number of iterations of the main loop needed until con-
vergence is clearly linked to the run time we presented in figure 10.6. We see that there
is clear gap of the number iterations needed for Blockloading based methods compared
to automatic, no reset or Blockloading++ based methods.

The highest number of iterations needed being 6886 for the Bl Bay MS method and the
lowest 346 for the Bl++ Sta MP method. The best run or our Bl++ Bay MS method
needed a total of 437 iterations.

We conclude that we successfully decreased the number of iterations and therefore the
total number of Expansion and Refinement steps with the introduction of our Block-
loading++ algorithm while at the same time increasing the quality of the best results.
We recorded the value of the converged free energy after each Refinement and Ex-
pansion step for all tested methods. The results of the best run of each method, with
respect to the free energy criterion, is presented in figure 10.8. So, this figure shows
exemplarily the speed of convergence of our different methods.

It shows once more the difference in speed of the convergence of the free energy
between methods based on the Blockloading algorithm and methods based on the
automatic- and no-reset Blockloading and the Blockloading++ algorithm. We also see
that the Blockloading algorithm spends a lot of Expansion and Refinement steps for an
only slight improvement of the free energy towards the end of run time. Contrary to
these slight increases, the Blockloading++ algorithm has a much faster improvement
of the free energy and spends a lot less time for slight improvements of the free energy
towards the end of the run time. This was to be expected of our preceding analysis of
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Figure 10.6: Boxplot of the run time of the tested Blockloading(++) methods. The full
names of all abbreviations are given in tables 10.1 and 10.2 in section 10.3. We see
that there is clear gap of the computational speed between methods which are based
on our Blockloading algorithm and our more sophisticated Blockloading++ algorithm.
Nearly all methods based on the Blockloading++ algorithm achieve run times of less
than ten minutes, with the fastest run time being ca. 2, marked with a red line, and
the longest 11 minutes, whereas the run time of methods based on the Blockloading
algorithm require a run time of ca. 15 to 55 minutes.
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the results we presented above.

Conclusion of Blockloading and Blockloading++ tests for Southern California
Earthquake Network We have tested several configurations of our methods based
on our Blockloading, automatic Blockloading, no reset Blockloading and Blockload-
ing++ algorithm. Our most important criterion was the best value of the free energy
model selection criterion which could be achieved by the method. This was achieved
by the Blockloading++ algorithm with BlockVB++ inference and maximum size clus-
ter selection method (Bl++ Bay MS) with a value of F("¢/) = 179924 and K("¢/) = 56
clusters and a run time of 2 minutes and 38 seconds which is close the overall fastest
run time of all tested algorithms. This method had also the highest reliability when
measured by the NMI calculated in comparison to the best result of all tests measured
by the free energy. All returned numbers of clusters by this method were very close to
the optimal number of clusters. In addition, the run time of the Bl++ Bay MS method
is one of the fastest of all tested methods.

We will see below that all tested methods we proposed in chapter 8 brought a dramatic
increase in quality of the results, reliability and computational speed when compared
to the batch algorithm.

The fully Bayesian BlockVB++ algorithm with adaptive informative hyperparameters
returns better results than the BlockVB algorithm with separate initialisation of the start
values in combination with both the Blockloading algorithm and the Blockloading++
algorithm.

The dramatic increase in computational speed of our Blockloading++ algorithm com-
pared to our Blockloading algorithm shows that our analysis, discussion and efforts in
sections 8.2 to 8.7 were successful.

An additional advantage of Blockloading++ is that the max-size cluster selection method
has become viable for complicated real world networks contrary to the Blockloading
algorithm. In fact, the max-size cluster selection method in combination with Block-
loading++ returned even better results than maximum probability method. This finding
is in contrast to Blockloading algorithm where the opposite holds.

These tests show that it is justified to choose the Bl++ Bay MS method as our new ref-
erence algorithm for further tests and comparisons with the batch algorithm and other
methods.

10.7.2 Comparison of Blockloading++ and Batch Algorithm for
the Poisson SBM

We stated above that the batch algorithm (algorithm 6) can be considered the state of
the art algorithm for the application of V(B)EM inference to the SBM until ca. the
year 2013. We initialised the VBEM batch algorithm (see chapter 4 and algorithm 3)
for 1 to 60 clusters for the SCEN. We gave the specifications of the algorithm in section
10.3. The batch algorithm is initialised with a fixed number of clusters contrary to the
Blockloading algorithms. We present the returned values of the converged free energy
per fixed cluster of the batch algorithm in figure 10.13.

The best result returned by our VBEM batch algorithm was a converged free energy
of Flbestbatch) — 186735 and K = 47 clusters. The run time of all 30 initialisations per
cluster was a total of 1083 minutes or 18 hours and 5 minutes. The run time of our
reference Blockloading++ was only 2 minute and 38 seconds for the best run on the
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Figure 10.7: Boxplot of the performed iterations of the main loop until convergence
of our Blockloading and Blockloading++ algorithms for the SCEN. The full names of
all abbreviations are given in tables 10.1 and 10.2 in section 10.3. We see that there
is clear gap of the required number of iterations of the main loop until convergence
between the Blockloading algorithm and its more advanced variants. The minimum
number of iterations is marked with the red line and was achieved by the Bl++ Sta MP
method. The highest number of iterations was performed by the Bl Bay MP algorithm.
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Figure 10.8: Plot of the speed of convergence measured by the total number of Expan-
sion and Refinement steps of the best result, measured by the free energy criterion, of
all test runs and all tested methods for the SCEN. The full names of all abbreviations
are given in tables 10.1 and 10.2 in section 10.3. It can be seen that methods based on
the automatic Blockloading (aBL), no-reset Blockloading (nrBl) and Blockloading++
algorithm (Bl++) converge much more rapidly than methods based on the Blockloading
algorithm (B1).
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Figure 10.9: Color grid of the best result of the Clustering with the Blockloading++
BlockVB++ Maximum size algorithm of the Southern California Earthquake Network
1984 to 2015, see section 10.6. Geographic regions and depth levels with the same
cluster memberships are marked in the same colour. Color codes chosen dependent on
the connection intensity. Several hub clusters of the network, found by our Blockload-
ing++ method, are coloured in dark red in the map.
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Figure 10.10: Color Grid of clustering of best result of Southern California Earthquake
Network for a depth of 20 to 30 km. See description of figure 10.9 for explanation.
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Figure 10.11: Dot—dot representation of the adjacency matrix of the Southern Cali-
fornia Earthquake Network. The adjacency matrix, which includes 3163 vertices, is
ordered according to the number of vertices per cluster. The clustering is the best result
of the Blockloading++ (Bl++ Bay MS) algorithm for the Poisson SBM. The first 16 of
the 56 clusters are separated with black lines.
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Figure 10.12: Dot—dot representation of an excerpt without the biggest three clusters of
the adjacency matrix of the Southern California Earthquake Network. The clustering is
the best result of the Blockloading++ (Bl++ Bay MS) algorithm for the Poisson SBM.
The adjacency matrix, which includes 622 vertices, is ordered according to the number
of vertices in each cluster in descending order. The first 43 clusters shown are separated
with black lines.
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VBEM batch Bl++ Bay MS
free energy criterion 186735 179925
AFUef) 6811 0
Run Time 18 h 5 min (1083 min) 2 min 38 sec
NMI w.r.t. best partition 0.86 (D)
Optimal Number of clusters 47 56

Table 10.4: Comparison of the best results returned by our VBEM batch algorithm for
the Poisson SBM and our Blockloading++ algorithm with BlockVB++ inference and
maximum size cluster selection method (Bl++ Bay MS).

same machine. So, our reference Blockloading++ algorithm provides a 433-fold speed
increase, when compared to the batch algorithm.

We remark that the worst result returned by our reference Blockloading++ algorithm
with BlockVB++ inference and max-sizes cluster selection method, was a converged
free energy of F = 181037 and the best result returned by a method based on the
Blockloading++ algorithm a converged free energy F("/) = 179924 and K("¢/) = 56.
Therefore we have a difference of the best converged free energy of the batch and the
Blockloading++ algorithm of, AF("¢f) = f(best.batch) _ p(ref) — 6811, The worst result
of all Blockloading algorithm was a converged free energy of F = 183932 which is
still clearly better than the best result returned by the batch algorithm. We sum up the
different result in table 10.4.

10.7.3 Comparison with the Blockmodels and WSBM package

We use the Southern California Earthquake Network (SCEN), we introduced in section
10.6, as an example to compare our Blockloading++ algorithm with our BlockVB++
inference and maximum size cluster selection method (Bl++ Bay MS) with the VEM
based split-merge inference implementation of the Poisson SBM which is provided by
the Blockmodels package [77, 79, 78].

We reviewed the Blockmodels package in section 7.4.2.

We also tested the WSBM 1.2 package [7] which implements the algorithms of [8].
The WSBM 1.2 package is implemented in Matlab and its computationally demanding
parts in mex-C++. We initialised the WSBM 1.2 package, which implements a batch
VBEM algorithm for the Poisson distribution with K = 55 clusters. After more than 48
hours run time and 18 iterations, it failed to converge and we cancelled the test.

The Blockmodels package is a state of the art split-merge inference software based on
the Variational EM algorithm (section 3.3) and was published in 2015. We used the
default settings for inference with the Blockmodels package. This includes a number
of clusters which has no preset limit of the number of clusters at the beginning of the
inference process. For each number of clusters, the Blockmodels package uses 5 re-
initialisations with different start values.

The Blockmodels package is implemented in the 'R’ statistics environment and ANSI
C++ for the time critical parts. We ran all tests in this subsection on the same machine,
an Intel Core 17 processor with 4 physical cores and 2.6 GHz. The Blockmodels soft-
ware package provides parallelised inference. The default settings of the Blockmodels
package include the use of 8 cores (threads).

On the contrary, our implementation of our Blockloading++ algorithm is not explic-
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Figure 10.13: Box plot of the converged free energy per cluster returned by the Batch
VBEM algorithm for the Bayesian Poisson SBM of the directed Southern California
Earthquake Network with edge weights. We performed 30 initialisations per number
of clusters. For specifications of the VBEM batch algorithm we refer to section 10.3.
Results for 5 to 60 clusters are shown. Tests for 1 to 4 clusters are not shown here and
yielded a higher (worse) converged free energy than the results presented in the figure.
The best converged free energy of F' = 186735 was returned for K = 47 clusters and is
marked with the red line.
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itly parallelised. Parallelisation of our Blockloading++ algorithm would be possible,
though. We implemented our Blockloading++ algorithm in Matlab and C.

We recall from section 7.4.2 that the Blockmodels package optimises the ICL model
selection criterion for the Poisson SBM during its split-merge inference process. We
reviewed the ICL criterion for the Poisson SBM (Poisson ICL) in section 6.4.

The Blockmodels package provides different possibilities for setting the maximum
number of clusters. We used the default setting where no prior limit on the poten-
tial number of clusters is set. Therefore, Blockmodels explored possible numbers of
clusters from K = 1 to K = 50 in search of an optimum of the ICL criterion. For each
number of clusters, except for K = 1, Blockmodels used 5 re-initialisations with dif-
ferent start values. The best result returned by our tests with the Blockmodels package
had an optimal number of K®M) = 33 with an ICL value of ICL®™) = —300916. We
recall that a higher value of the ICL criterion signals the better model according to the
ICL criterion.

The computational time of the Blockmodels test until convergence was 2 days and 10
hours (3480 min).

A direct comparison with the best result of our Blockloading++ algorithm in section
10.7 is not viable because we did not optimise the Poisson ICL criterion but the free
energy of the Poisson SBM during the inference process. We discussed the differ-
ences between the approaches of the free energy and the ICL criterion for the SBM in
chapter 6. So, we saw no use in calculating the free energy of the best result of the
Blockmodels package or the Poisson ICL criterion of the best result of our Blockload-
ing++ algorithm.

In order to allow a viable comparison, we implemented the Poisson ICL criterion for
our Blockloading++ algorithm (BI++ Bay MS version) and ran a new test of our Block-
loading++ algorithm where the Poisson ICL criterion was optimised instead of the
Poisson free energy (see also section 8.1).

We noticed during cross validation that there were slight differences in the outcome of
the ICL calculation for the same cluster partition with the Blockmodels package and
our implementation. Therefore, we calculated all values of the ICL criterion shown
here with the Blockmodels package. This includes the cluster assignment Q<BL++)
which was returned by our Blockloading++ algorithm optimising the ICL criterion.
This test run of our Blockloading++ algorithm took a computational time of 2 minutes
and 16 seconds. Our Blockoading++ algorithm returned a value of the ICL criterion of
ICLBL++) = —295748, which is better than the best result returned by the Blockmod-
els package. This amounts to a difference of AICL("/) = 5168 between the two results
of the two tested algorithms.

Our Blockloading++ algorithm returned an optimal number of clusters according to the
ICL criterion of KBL++) = 37 clusters.

There is a striking difference between the run time of the Blockmodels package and
our Blockloading++ algorithm. Even if we count the use of 5 re-initialisations of the
Blockmodels package per number of clusters with different start values as five different
tests, our Blockloading++ algorithm is still definitely faster.

The maximum number of clusters which was searched for an optimum by the Block-
models package was K = 50 clusters. This is much higher than the optimal number
of clusters K = 33 finally found by the Blockmodels package. The maximum number
of clusters which is searched by the Blockmodels package depends on the exploration
factor, which has to be provided by the user. We used the default value of 1.5. This
means that up to 1.5 times of the highest number of current clusters is searched during
the inference process. On the contrary, our Blockloading++ algorithm avoided higher
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Blockmodels [79] Blockloading++ (Bl++ Bay MS)
ICL criterion (Blockmodels) -300916 -295748
AICLUe) 5168 (0)
Run Time 2 days 10 h (3480 min) 2 min 16 sec
NMI of both partitions 0.82 0.82
Optimal Number of clusters 33 37

Table 10.5: Comparison of the best results returned by the Blockmodels package [79]
for the Poisson SBM and our Blockloading++ algorithm with BlockVB++ inference
and maximum size cluster selection method (Bl++ Bay MS) which was optimised for
the ICL criterion of the Poisson SBM (section 6.4. Higher values of the ICL criterion
are better. Values in brackets follow by definition. The ICL criterion was calculated
with the Blockmodels [79] package for both results.

number of clusters which are far away from the eventual optimal result of K (BL++) = 37
clusters.

In addition, we recall from section 10.7, that our Blockloading++ provided an infer-
ence of more than K = 50 clusters in search of the optimal converged free energy for
the same network in under 10 minutes.

The long run time of the Blockmodels package for this test is the reason why we per-
formed only one test run.

This test shows, that our Blockloading++ algorithm for the Poisson SBM clearly out-
performed the Blockmodels package in terms of computational speed and quality of
the results. We sum up the results of both tests in table 10.5.

10.7.4 Comparison of the Free Energy and ICL Criterion for the
Southern California Earthquake Network

We discussed the difference of the objectives of the converged free energy and the ICL
model selection criterion in chapter 6. Now, we compare the optimal cluster assign-
ments which were returned by our Blockloading++ algorithm when optimising the ICL
criterion, Q(ref ’i"l), and the free energy criterion, Q(ref o ,m))’ for the Southern California
earthquake network (SCEN) with the Normalised Mutual Information (NMI) criterion.
We recall from section 10.7, that the best result according to the converged free energy
had K = 56 clusters and a converged free energy of F (ref) = 179924. We sum up the
results in table 10.6. Despite the clear difference in the number of clusters according to
the ICL criterion or the free energy, the shared information by the two cluster partitions
QUe/:fre¢) according to the free energy criterion and Q¢/"°!) has a rather high NMI of
0.91.

Nevertheless, the ICL seems to miss some clusters which was also observed in [73] in
numerical tests of the ICL criterion for the Bernoulli SBM.

10.8 Link Prediction and Weight Correlation of
the Southern California Earthquake Network

Link prediction is used to judge how well the clustering result of a network or a
network model fits to the data and can also be used to compare different methods
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Blockloading++ with free energy  Blockloading++ with ICL

ICL criterion (Blockmodels) -310062 -295748
AICLUe) 5168 (0)
converged free energy 179924 185630
AF(ref) 0) 5706
Run Time 2 min 38 sec 2 min 16 sec
NMI of both partitions 0.91 0.91
Optimal Number of clusters 56 37

Table 10.6: Comparison of the best results according to the converged free energy
and the ICL criterion optimised by our Blockloading++ algorithm with BlockVB++
inference and maximume-size cluster selection method for the Poisson SBM (Bl++ Bay
MS) of the Southern California Earthquake Network (SCEN). Higher values of the ICL
criterion and lower values of the converged free energy are better. Values in brackets
follow by definition. The ICL criterion was calculated with the Blockmodels [79]
package for both results.

[92, 119, 105, 28]. We apply link prediction and weight correlation to the case of the
Southern California Earthquake Network (SCEN), according to the Poisson SBM. As
we saw above, the SCEN was difficult to cluster reliably due to its complexity and size.
We follow the approach of link prediction in [92] which was implemented in [91].
The main idea of evaluation of this model based cluster assignments through link pre-
diction is to delete a given percentage of the edges of the network uniform at random
[91]. The same percentage number of non-links or non existing edges is also treated
as missing [92]. Then the estimated model is used to predict the probabilities for the
existence or non-existence to the previously deleted edges [92]. Based on the proba-
bilities returned by the estimated model, the Area Under Curve (AUC) of the Receiver
Operating Characteristic (ROC) is calculated to evaluate the result. An introduction to
the AUC criterion is provided in [37].

Our Tests We delete edges from the adjacency matrix A uniformly at random, with
the help of software provided by [91], to produce a test set of edges for link prediction.
These deleted links and the non-edges treated as missing are also called "held-out’ links
or edges [105]. We choose 2.5 percent to 90 percent of the edges and non-edges of the
network as the test set in order to produce different test matrices.

The result is a test adjacency matrix, A" of the network with a differing percentage
of deleted edges for each test. We produce two types of test adjacency matrices: For
one adjacency matrix, A”*""), we keep the edge weights and for the other matrix,
Alestumw) - we replace them with unweighted edges. Then we run our Blockloading-++
algorithm with max-size-cluster selection method and BlockVB++ algorithm (Bl++
MS Bay) for both adjacency matrices, A7) and AU*"*™)  We run five tests per
percentage number of deleted edges. For each test, we generate a new set of held-out
edges.

The inference of the Poisson SBM returns the cluster partition matrices, Q, and the
model parameters, (¢, B), for the Gamma distribution on the rate parameters, 4, of the
Poisson SBM.

In the case of the unweighted graph, we calculate the expectation value of the rate
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parameters, E[A;] = % Vk,l, as an estimator for the probabilities of the edge existence
of the held out links. Then, we calculate the AUC with the software [91]. We present
the results, coloured in blue, of the AUC in figure 10.14. There we see that for all
percentage numbers of deleted links, the AUC is above 0.93 on average, where the best
possible value of the AUC is 1.0.

In the case of the weighted network, we first estimate the cluster assignments, Q",
according to the Poisson SBM with our Blockloading++ algorithm. Then we remove
the edge weights of the adjacency matrix and recalculate the parameters for (", ")
dependent on Q" with the help Proposition 2 in section 4.1. Then we calculate the

estimator for the probabilities according to E[A)]] = % We use these probabilities to
kl

calculate the AUC with the help of [91]. The results are shown in green colour in figure
10.14. We see that up to 80 percent removed edges, the AUC is higher than 0.9 and for
90 percent removed higher than 0.89 on average for five tests.

Weight Correlation In the case of the weighted networks, we also calculate the cor-
relation between the estimated weights of the held-out edges according to the expecta-
tion values of the rate parameters E[A,] (see above) and the true weights of the network.
We deleted weights and edges to generate the held-out data. This test was proposed in
[119]. We remark that we generated the held-out weights with [91] in the same way
as above. In [119] edges were deleted. We present the result for the SCEN in figure
10.15. There, we see that for up to 20 percent of the deleted weights, the correlation is
higher than 0.71 on average for five tests.
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Figure 10.14: Value of the Area Under Curve (AUC) of the Receiver Operating Char-
acteristic (ROC) of link prediction of the Southern California Earthquake Network.
The highest possible value of the AUC is 1.0. We estimated the Poisson SBM with the
Blockloading++ algorithm for the weighted (blue) and unweighted (green) adjacency
matrix. The weights of the weighted graph were removed before calculating the esti-
mators for the probabilities of edge existence of the weighted network. Average results
of five tests for different percentage number of deleted edges is shown.
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Figure 10.15: Weight Correlation of predicted weights according to the Poisson SBM
for the weighted Southern California Earthquake Network. Estimation was performed
five times with the Blockloading++ algorithm (Bl++ MS Bay) for different percentages
of deleted edges of the true network.
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Chapter 11

Introduction to the Stochastic
Block Model with irrelevant

Vertices and its VBEM
Inference

Networks arise in different scientific areas like Protein—Protein interaction networks in
Biology [87, 35] or actor based networks in Sociology [108, 97, 126]. The Stochastic
Block Model (SBM) [97, 35, 84] is a well established and widely used model for the
clustering of networks. In the SBM, the vertices of the network are grouped in clusters
(or blocks) based on the edge connection profile of the vertices. The results of the SBM
are easily interpretable [108, 97].

Often real world networks are given without a known ground truth of the cluster as-
signment of vertices. In this situation, the task is to infer the optimal hidden cluster
assignment of vertices together with the optimal number of clusters and the optimal
parameters of the model.

The analysis of the statistics of many real world networks shows, that most of the ver-
tices are sparsely and irregularly connected to other vertices of the network [71]. If the
network is weighted, e.g. the edges of the network have different weights, there can
also be a huge variance of possible weights. Networks which exhibit such a connec-
tion behaviour usually have a heavy tails or scale free distribution of vertex degrees
[71]. If these edge connection properties are present in a network for many vertices,
the process of inferring a SBM for the network is difficult to impossible because the
huge component of irregularly and sparsely connected vertices cannot be clustered with
clear results according to a SBM. In the literature , these vertices are called irrelevant
or noisy vertices [44, 54]. Moreover, the irrelevant vertices can disturb the inference
process of the relevant vertices which can be clustered according to a SBM [116]. So,
we would prefer to identify these irregular vertices before or during the inference pro-
cess to avoid biased results.

All these observations also apply to our main application the earthquake networks in-
troduced in [1]. Examples of the scale free distribution of the vertex degrees of earth-
quake networks as well as the highly varying intensity of edge connections were shown
to hold for the earthquake networks which were analysed in [1, 6].
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The normal SBM offers no dedicated mechanism to model the irrelevant vertices. The
best we can hope for is to group these vertices in one cluster and keep them in this clus-
ter during the optimisation. This requires an inference mechanism which locks these
vertices into one cluster. An inference algorithm which has this property for the SBM
was proposed in [116] and chapter 8 with our Blockloading algorithm. Nevertheless,
the irrelevant vertices are not modelled explicitly by the SBM and the danger of over—
or under fitting the number of clusters remains, which can lead to inferior results.

We propose the weighted Poisson Stochastic Block Model with Irrelevant Vertices (SB-
MIV) to address these limitations of the SBM. The SBMIV builds upon the Subset In-
finite Relationals Model (SIRM) introduced by [54]. The SIRM is an extension of the
Infinite Relational Model (IRM) introduced by [67] as a variant of the SBM with an
unlimited number of clusters. The SIRM builds upon work presented in [47], [46] and
[44], [54]. Vertices with irregular and sparse edge connections, which are hard to clus-
ter according to the IRM, are considered as irrelevant in the SIRM, whereas vertices
which could be clustered according to the IRM are considered as relevant. A hidden
variable R; is introduced for each vertex, with R; = 1 if the vertex is relevant and R; =0
if it is irrelevant. The edge connections of the irrelevant vertices with all other vertices
of the network are generated with the same parameter which is distributed according to
a Beta prior distribution. The SIRM is a model for networks with undirected and un-
weighted (simple) edges. The edge connection probabilities of the SIRM are modelled
according to a Bernoulli distribution like for the Bernoulli SBM in chapter 2. Con-
trary to the SBM, a Chinese Restaurant (CRP) Prior [20] is set for the proportions of
the number of vertices in the clusters of the IRM. It was noted in [54], that the use of
the CRP prior for the proportions of clusters sizes in the IRM favours the emergence
of minute clusters and can also lead to biased results of the cluster assignments when
irrelevant vertices are present in the network. Contrary to the IRM, non—informative
priors are set on the size proportions in the Bayesian variant of the SBM [73, 116]
which does not lead to such a bias.

For inference of the SIRM, a Gibbs Sampling algorithm was proposed by [54], which
samples the cluster and relevance assignments of the vertices together.

We adopt an extension of our Blockloading algorithm for inference of the SBMIV
which we call Relevance Blockloading. The Blockloading algorithm builds on an
adopted Variational Bayesian Expectation Maximization (VBEM) algorithm and it was
shown in [116] that it outperforms Spectral Clustering of [107], collapsed Gibbs Sam-
pling of [85] and greedy algorithms [29]. In addition, we provided tests our Block-
loading algorithms for an earthquake network in chapter 10, where the outperformance
of the blockmodels package [79, 78], a state of the art implementation of a Variational
EM split-merge inference algorithm for the SBM, was shown.

We propose an algorithmic framework which allows the use of the Integrated Like-
lihood Variational Bayes (ILVB) or free energy criterion for the SBM of [50, 73],
which we discussed in section 6.2 in chapter 6 for the Bayesian Poisson SBM, as a
model selection criterion for the optimal cluster assignment of the vertices and num-
ber of clusters of the SBMIV. Our Relevance Blockloading algorithm offers a fully
Bayesian inference process based on the use of our relevance informative hyperparam-
eters, which is independent of other algorithms for finding a start cluster assignment of
the vertices. The Relevance Blockloading algorithm uses our Relevance BlockVB al-
gorithm which provides VBEM inference for the SBMIV building upon our BlockVB
algorithm of section 4.2. We propose an original way for the choice of informative
priors on the relevance assignment of the vertices, which allows us to calculate the
relevance of vertices in the first iteration of the algorithm. This procedure for finding
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the relevant vertices as a first step is only dependent on the choice of the informative
hyperparameters and will yield the same result when initialised with the same infor-
mative priors. So, for this filtering of vertices restarts with different initial relevance
assignments are unnecessary. An approach for the selection of relevant features with
informative priors in a Variational Bayesian framework was also proposed in [44].

In the literature, it is differentiated between three main algorithmic frameworks for de-
termining the relevant vertices [44]: There is the filtering approach where the inference
of the relevance of the vertices is calculated in a separate step from the assignment of
relevant vertices to the clusters. Second there are embedded algorithms where the rel-
evance classification and the cluster assignment are combined in one step. The subset
clustering methods of [46, 44, 54] are examples of such an embedded method. Lastly,
there are wrapper methods which are feature selection algorithms which ’[...] wrap
feature search around the learning algorithms that will ultimately be applied, and uti-
lize the learned results to select the features.” [44].

We will propose both a filtering and an embedded variant of our Relevance Blockload-
ing algorithm and compare them in numerical tests. Both of our algorithmic variants
allow for a step by step expansion of the number of relevant vertices in a network
partition which is growing during the inference process. This algorithmic procedures
makes the Relevance Blockloading algorithm more efficient than previous variational
methods.

We developed the SBMIV and its Relevance Blockloading inference framework with
special regard to the model based clustering of Earthquake Networks.

Earthquake Networks, which were introduced in [1], are an example of the aforemen-
tioned real world networks with no known ground truth but a large number of sparsely
and irregular connected vertices which renders the reliable inference with a model
based clustering approach difficult.
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Chapter 12

The Stochastic Block Model
with irrelevant Vertices

12.1 Review of the Poisson Stochastic Block Model

We shortly recall the main facts about the Poisson SBM [84] from our review in chapter
2 where also more background information of the Bayesian Poisson SBM is presented.
A graph G = (V,E) consists of a set V of N vertices or vertices and a set of (directed)
edges E connecting the vertices. The edges connecting the vertices are given by an
adjacency matrix A. If there is an edge from vertex i to vertex j it is A;; = w, where
we (0,1,2,...) is a discrete valued weight. If there is no edge from vertex i to vertex
J»itis A;; = 0. Here, we will consider directed and weighted graphs unless otherwise
stated.

The following Stochastic Block Model (SBM) was introduced in [84] as an algorithm
for generating graphs and builds on the simple edge version of the SBM of [108]. We
assume that A was generated by the SBM. The SBM assigns the vertices V of the graph
depending on their connection probability patterns to clusters. The SBM consists of K
clusters. To each vertex i, the SBM assigns a unique cluster membership. A vertex
belongs to cluster k with probability 7w, with Zle 7. = 1. The cluster membership is
given by the random variable Z; € R'*X, with Z; = 1 if i is an element of cluster k
and Z;, = 0 otherwise. Z is the N x K cluster indicator matrix with matrix rows Z; for
i €{l,...,N}. An edge exists within each cluster k with a weight according to the rate
Ak and between cluster k and [ with the rate A;;. So, the weighted Poisson SBM is
generated in the following way [50, 116]:

(i) Roll a k — sided dice with p(i € k|Zy = 1) = m for side k for each vertex i, to deter-
mine the unique cluster membership of the vertex.

(ii) Draw a realization from
Ay

Fio) = Yo

exp (—Au), (12.1)

for the edge A;; from vertex i to vertex j, withi € kand j € [.
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Then, the joint probability distribution for directed graphs is:

N K
p(AZ, ) HHfA,,,),k, wZi TTTT = (12.2)

i#j k|l i=1k=1

The results of the clustering are easily interpretable. Variants of the SBM for simple
graphs exist [52, 108]. For example it is possible to replace the Poisson distribution
in (12.2) with a Bernoulli distribution [108, 35]. Using the Poisson distribution also
works for unweigthed graphs. In the following, we call this SBM the Poisson SBM
contrary to the Bernoulli SBM of [108, 35].

12.2 The Stochastic Block Model with Irrelevant Ver-
tices

We propose the weighted Stochastic Block Model with irrelevant vertices (SBMIV).
We build on the Subset Infinite Relational Model (SIRM) proposed in [54] for networks
with simple (undirected and unweighted) edges. Contrary to the SIRM, we use the
Poisson distribution to generate weighted and directed edges in the SBMIV like for the
Poisson SBM of [84].

We consider a network with N vertices. Following [54], each vertex i is considered
relevant with the probability of ¢; € [0,1]. Thus, the relevance, R, of the vertices is
generated according to

ofi(1— ;)R (12.3)

::]2

p(R|®) =

i=1

If R; = 1, the cluster membership Z; of vertex i is determined acceding to

p(Z|7,R) H (H nRZ"> . (12.4)

Otherwise the vertex is not considered as cluster able and there is no cluster assignment
for that vertex. The cluster membership is a Z; € RK*! vector. For all pairs of vertices
(i,j) € {1,...,N}%, where R; = 1 and R; = 1 holds, we generate the edges between
those vertices dependent on their cluster assignments, Z; and Z, according to

A Zth_/lR R_
p(A|Z,R,A) HH (A y )) : (12.5)

'J k.l
i#j

If one vertex is or both vertices of the vertex pair (i, j) are irrelevant, the edges con-
necting this pair of vertices are generated with the same rate 7. So, it follows that

N y (1-RiR;)
p(AIR,Y) =T] (YA exp(y)) : (12.6)

ij Aij !
i#j
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These considerations lead to the joint probability distribution of the SBMIV, for better
readability we define ¥ = (A, 7):

N K AA RiZyR;Zj N K
PAZR .07 =]]TI ( Ak.].;> exp (—RiR;ZuZjhu) | [ ] (H n,fizi">
o i=1 \k=1

ij k=1
i#]

ﬁ((:;j>(l_RiRj>exp( 1-RiR)) )ﬂ( (1-)0-R)).

i£j i=1
(12.7)

In the case of an undirected network, the product over all i, j is replaced with the prod-
uct over i < j . We generate a network according to the SBMIV in the following way
(cf. [50, 116]):

Generation of weighted SBM with irrelevant vertices (i) Flip a biased coin for
each vertex i € {1,...,N}. With the probability ¢; the vertex is considered relevant,
R; = 1, and otherwise irrelevant, R; = 0.

(ii) Roll a K-sided dice with p(i € k|Zy = 1,R; = 1) = m; for side k for each ver-
tex i to determine the exclusive cluster assignment of the vertex.

(iii) Draw a realisation from f(-;Ay) for the edge A;; from vertex i to vertex j for
all relevant vertices (R; = 1 and R; = 1) and cluster memberships i € k, j € [.

(iv) For all vertices 7, j with R; =R; =0, R, =1 and R; =0 or R; =0 and R; =1,
A
draw realisation from g(;y) = % exp (—7) for the edge A;;.
ij*
The increased flexibility of the SBM concerning the proportions of the cluster sizes
compared to the IRM and SIRM of [54] also applies to SBMIV. In the next section, we
will address the Bayesian view of the SBMIV.

12.3 The Bayesian SBMIV

To prepare the inference with Variational Bayesian EM methods, we state the Bayesian
view of the SBMIV. The idea of the Bayesian treatment of the SBM is to set prior
distributions for unknown parameters of the SBMIV, ® = (A, 7, ¢,7). Therefore, the
model parameters are treated as random variables. For the simple edge Bernoulli SBM,
this idea was used in [108, 73] with conjugate prior distributions. The SIRM is also a
Bayesian model [54] which allows for the use of conjugate priors. Like in the SIRM,
we place a Beta(¢;; Cio, n?) prior distribution on the parameters ¢; which are conjugate
to the Bernoulli distribution. Following [97, 50, 73], a Dirichlet Dir(7; 80) prior distri-
bution, which is conjugate to the Multinomial distribution of the cluster assignments,
is place on the parameter 7.

We place a Gamma(Ay; o), B))) prior distribution, which is conjugate to the Pois-
son distribution, on the parameters Ay, like we did for the Poisson SBM in chapter
2 [96, 116]. We introduce a Gamma(7y; 0679 , B}(,) ) prior distribution over the rate of the
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irrelevant edges, 7. We sum up the Bayesian treatment of the WSBMIV as:

¢; ~ Beta(¢i; §',n/) = p(91), (12.8)
7 ~ Dir(w; 8°) = p(x), (12.9)
¥ ~ Gamma(y; (xy,ﬁy) = p(y), (12.10)
Ak ~ Gamma(Ay; Ock,,ﬁ )= p(Au). (12.11)

The model generation of the Bayesian SBMIV is the same as in section 12.2, except
that the model parameters have to be drawn from their respective prior distributions
first, before generating the relevance assignment in (i), the cluster assignment in (ii)
and the edges in steps (iii) and (iv).

Now, we can state the joint probability distribution of the Poisson SBMIV

=

p(A,Z.R,5,0,7|8°,a°,B°,8°1°, 0, BY) = p(m)p(y) (Am (dh)

(i1

X ﬁ ((Z;;)U ~RiR, )exp(—(l —RiRj)’}/)> H ((PiRi(l _ q)i)(lfR,.)) .
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>< i
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(12.12)

The introduction of the prior distributions over the parameters of the Bayesian Poisson
SBMIV allows us the application of our new adaptive informative hyperparameters
we introduced in chapter 5 for the VBEM inference of the Bayesian Poisson SBM. In
chapter 13 below, we will introduce our new relevance hyperparameters for the prior
distributions of those model parameters of the SBMIV which affect the relevance of
each vertex. There, we will see that our relevance hyperparameters together with our
new algorithmic approach are essential for the inference of the relevance of the vertices.



Chapter 13

Inference of the SBMIV

13.1 Variational Bayesian EM Inference

In the previous sections (12.2, 12.3), we explained the generation of a network accord-
ing to the Poisson SBMIV. Now, we treat the inverse problem of clustering a given
network according to the SBMIV. For a network given by the adjacency matrix A, we
want to infer the latent variables Z and R and the unknown parameters @ = (A, 7,7, ¢)
of the SBMIV.

We use the Variational Bayesian Expectation Maximisation (VBEM) framework of
[15, 19, 50, 71, 73] to optimise the latent variables and unknown parameters of the
negative log-likelihood of the SBMIV, —Inp(A|K). We reviewed the general VBEM
framework in section 3.4 in chapter 3.

In the following, we will propose an original VBEM algorithm for the inference of our
Poisson SBMIV. The aim of our VBEM algorithm is to approximate the intractable
negative log-marginal-likelihood of the SBMIYV,

—Inp(AK) = Z/p(A,@,Z,R)d@, (13.1)
ZR

with a tractable distribution ¢(-). Then, an upper variational bound of —Inp(A|K),
also called free energy [38, 50], dependent on the variational distribution ¢(Z, R, ®) is
derived with Jensen’s inequality [38, 19, 50] .

To achieve a tractable variational distribution ¢(-) for the solution of the log-likelihood
of the SBMIV, we use the mean—field assumption of [19, 50, 73] for the inference of
our SBMIV in the following way:

2

N

K
4(Z,R.0) = q(7)q( H i) [ Ta() H q(R;). (13.2)
i=1 ki I

i=1 i:

We do not have to assume a functional form for the variational distributions ¢(+) but can
infer the functional form of each distribution ¢(-) from the optimisation of the upper
bound [19]. We calculate the variational bound of the negative log-likelihood, where

151
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we omit K for the sake of brevity, in the following way:

—In p(A|K) = —an/p(A,Z,R,)L,n,(b,}/)d@) (13.3)
ZR
B " p(A,Z,R,0O)
—-ny / T2 Re) DIR(@)I® (134
B ‘n p(A,Z,R O)
< zz;'e/l (q(Z,R,G)) )q(Z7R,®)d® (13.5)
— F(¢(Z,R,®)). (13.6)

We provide the free energy of the SBMIV after convergence (converged free energy) in
Proposition 12 in appendix C.1 below. Now, we optimise the free energy (variational
bound) dependent on the variational distributions ¢(-). The VBEM algorithm has an
EM-like structure for the optimisation of the variational bound F with respect to the
variational distribution ¢(-). The VBEM algorithm consists of two main steps: In the
Expectation Step (E—step), the latent variables are optimised. In the Maximisation Step
(M-step), the parameters @ are updated.

In the case of the SBMIV, we want to infer two different types of latent variables R
and Z. Each variable Z; depends on the variable R; in the SBMIV. The same situation
applies to the SIRM of [54], where a Gibbs sampling approach was proposed in which
the variables R; and Z; are sampled together [54].

We propose an original algorithm to solve the SBMIV with the VBEM framework. We
start with the M—step and calculate the optimal update of g(®) = g(A, 7,9, 7) at step
1, where we keep ¢)(Z) and ¢")(R) fixed:

{41(@)} = arg min F (¢)(2),4") (R),q"(©)). (13.7)
{9(@)}
We provide the update equations for the variational distributions of the parameters
q" ‘H)(@) in the following Propositions. We begin with the optimisation of the free
energy with respect to the distributions g(¢;) Vi.

Proposition 6. The optimisation of the variational bound F [q(Z,R,®)] with respect to
q(¢;)Vi=1,... N shows, that q(¢;) has the functional form of a Beta(¢;; §;, n;) distri-
bution. It has the same functional form as the prior distribution p(¢;) = Beta(¢;; &2, n?).
The update equations of the hyperparameters § and 1 are given by:

Gi=pi+ ¢} (13.8)
ni=(1-pi)+n7, (13.9)
where p is the relevance assignment.
Proof. See appendix C.1. O

Proposition 7. The optimisation of the variational bound F [q(Z,R,®)] with respect to
q(m) shows, that q(&) has the functional form of a Dirichlet Dir(%; 8) distribution. It
has the same functional form as the prior distribution p(ft) = Dir(; 80). The update
equations for the hyperparameters, & k € {1,...,K} are given by:

N
& =Y piQu+8, (13.10)
i=1

where Q is the cluster partition matrix and p the relevance assignment.
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Proof. See appendix C.1. O

Proposition 8. The optimisation of the free energy (upper variational bound) F[q(Z,R,0)]
with respect to q(y) shows, that q(y) has the functional form of a Gamma(y; o, By) dis-
tribution. It has the same functional form as the prior distribution p(y) = Gamma(y; 063, ﬁ)(,))
The update equations of the hyperparameters oy and By are given by:

N
oy =Y (1—-pipj)Aij + oy, (13.11)

iJ
i#]
N

By=Y.(1-pip;)+By. (13.12)
f;j

where P is the relevance assignment.

Proof. See appendix C.1. O

Proposition 9. The optimisation of the free energy (upper variational bound) F[q(Z,R,©))]
with respect to q(Ay) for all (k,1) € {1,...,K}* shows, that q(Ay) has the functional
Sform of a Gamma(Xy; 04y, Bry) distribution. It has the same functional form as the
prior distribution p(Ay) = Gamma(Ay; Oc,?l7 ﬁ,?l) The update equations of the hyper-
parameters 0y and By, ¥(k,1) = {1,...,K}?, are given by:

N
o = Y PiP;QuQiAij + o, (13.13)
i#]
S 0
Bu =Y. pip;QuQji + By (13.14)
i#J
where Q is the cluster partition matrix and p the relevance assignment.
Proof. See appendix C.1. O

These Propositions show, that the variational distributions ¢(-) have the same func-
tional form as the prior distributions p(-) of section 12.3 .
We continue the optimisation of the free energy with respect to the latent variables in
the E-step. The optimisation of the free energy with respect to ¢(Z;) in Propostion 10
shows, that ¢(Z;) has the functional form of a Multinomial distribution for each vertex
i
Proposition 10. The optimisation of the free energy (upper variational bound) with
respect 1o q(Z;);Vi=1,...,N, {¢*(Z;)} = arg min F (¢(Z),q(R),q(®)), shows that

{a(zi)}
q*(Z;) has the functional form of a multinomial distribution:
q (Z;) = A (Zi:1,Q; = {01, ...,Qix})- (13.15)

The update equation for E(Zy) = Qu, V(i,k) € {1,...,N} x {1,...,K} is given by:

Q < exp ( Z ZptpathAazE 11‘1 )qu Z ZP:PanquE(ln ;qu)

iza ¥ ita
N K
~ Y Y. pupiQig (E(Ag) +E(Ag)) + paE(In nv)), (13.16)
1 g=1

i=
i#a
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where B(In,s) = W(ay) —In(B0). E(R.) = pur BlAy) = %, E(in,) = w(5,) ~
v(X (XX, 8)) and w(-) is the Digamma function.

Proof. See appendix C.1. O

The cluster assignment is a fuzzy—update in eqn. 13.16, where a probability Q. €
[0,1] is given for the cluster membership of vertex a in cluster k. We show in the next
Proposition that the variational distribution ¢(R;) has the functional form of a Bernoulli
Ber(R;; p;) distribution.

Proposition 11. The optimisation of the free energy (upper variational bound) with

respect to q(R;);Vi=1,...,N, {g*(R;)} = arg min F (¢(Z),q(R),q(®)), shows that
{a(Ri)}

q* (R;) has the functional form of a Bernoulli distribution:

q*(R;) = Ber(R;; pi). (13.17)

The update equation for BE(R;) = p;,Vi € {1,...,N} is given by:

1
ps= T+exp(—Ua) (13.18)
a
with
N K N K
Us=Y Y 0i0iqgQuAiaE(InAg) + Y Y piQi QugAaiE(In Ay

=1 g, =1 g,
i#a i#a

'MZ
Ma

N K
ZzsztqQalE( ql) thllQaq )vlq ln'}’ sz za+Aaz

=1 gl =1 gl iZa
i#a i#a i=1
N K
+2E(y) Y. pi+E(In¢,) —E(In(1—94)) + Y QugE(Inm,), (13.19)

where E(log Av) = (oti) —log(Buk), ]E(M )= 5% E(Iny) = y(oy) —In(By), E(Zi) =
O, E(my) = (&) —w(X (X &) ) E(In¢a) = w(la) = w(La+Ma), E(In(1 -
02)) =w(N,) — w(&+n,) and y(-) is the ngammafuncnon
Proof. See appendix C.1. O

The update of the relevance assignment of vertex a, p, in eqn. 13.18, is also a
fuzzy—update like the update of the cluster assignment, Qu;Vk € {1,...,K}, above,
which gives us the expected value of the relevance assignment of vertex 7, p;. The
fuzziness of p poses a problem for the update equation of the cluster assignment (eqn.
13.16), because it can lead to a bias.

We introduce the following rule to get a hard assignment of the relevance of vertex i
dependent on p;: If p; > 0.5 holds, we set p; = 1 and otherwise we set p; = 0. This
rule is inspired by the Classification EM algorithm (CEM algorithm) of [124], where
such a hard clustering is also used.

If we want to optimise the relevance assignment, R;, and cluster assignment, Z;, of
vertex i, we have to deal with two cases: The first case is, that i is relevant and therefore
pi = 1 holds. In the case of p; = 1, we can use the update equation for the cluster
assignment of relevant vertices eqn. 13.16 of Proposition 10 for the update of Q; in a
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straightforward way.

If on the other hand p; = 0 holds, we have to be careful with the update of Q;. In this
case, it follows that Q;;, = %, Vk € {1,...,K} which also gives biased results for the
update of @, with Va # i. It also affects the update of p;, which is given in eqn. 13.18
and 13.19 of Proposition 11. Moreover, from the perspective of the SBMIV (section
12.2), irrelevant vertices are not assigned to any cluster. This leads us to the conclusion
that we should set O =0, Vk € {1,...,K}.

If we set the cluster partition matrix entries of the irrelevant vertices to zero, we can
see that the update of p; only depends on the last for terms of eqn. 13.19. Thus, the
update is dominated by the term E() g’éa pi(Aig +Agi). We found in numerical tests,
that this leads automatically to the update p; = 1, which is obviously wrong. So, we
propose to calculate a cluster assignment Q;;; VI € {1,...,K} for the purpose of finding
an unbiased relevance update first. There are different possibilities to assign the vertex
i to a cluster in the case of p; = 0. We could set p; = 1 and calculate the updates of
Oi;Vl € {1,...,K} according to eqn. 13.16 in Proposition 10. But with this approach,
we would merge the irrelevant vertex i with relevant vertices in a relevant cluster. This
irrelevant vertex and those relevant vertices were separated in previous iterations of the
algorithm. Nevertheless this approach worked for all tests.

Our numerical tests showed us, that a better way is to limit the optimisation of the
cluster assignment to the assignment to irrelevant status or to a newly introduced extra
cluster. We provide the details in section 13.3.3. We conclude that this approach fits
best to the aims of our SBMIV model, and it returned the best results in numerical tests.
So, in all cases, we calculate or set a preliminary cluster assignment of the vertex which
is currently optimised to get a relevance assignment. With this algorithmic approach,
we can update p; without the bias of missing terms because of Q;; = 0;VI € {1,...,K}
or biased cluster assignments because of Q;; = %;Vl € {1,...,K}. If the update yields
p; =1, we keep the updated cluster assignment Q7, on the other hand, if p; = 0 holds,
weset Q5 =0;vl e {1,...,K}.

We conclude that we have to begin with the update of the cluster assignment Q,,, with
pg set to one in all cases, and then we can proceed with the update of p, dependent
on the outcome of the update of Q,,. After these two updates, we adjust Q,: If p7 =1
holds we keep the update of @, if otherwise p; =0 we set Q% = 0;Vl € {1,...,K}.
This way, the update of p, is unbiased by missing terms of Q, in the case of p, = 0.
With these preparations we can state the E—step of the SBMIV, which consists of two
parts: The optimisation with respect to the cluster assignment of vertex i

{q"*V(Z:)} = arg min F (q(’) (Z)7q<t)(R)7q(’“)(®)) : (13.20)
{a(zi)}
and the relevance assignment of vertex i, given by
(4" (R)} =arg min F (41,4 (R),4"+)(®)). (13.21)
q(R;

Our VBEM algorithm now consists of the iterations of the update equations 13.7, 13.20
and 13.21 in the E- and M-step until the maximum number of iterations is reached or
the free energy has converged,

Flq"(2).4" (R).q"(©)] = Flg"""(Z),q"*(R),d"V(8)] < T.  (13.22)

where T is a predefined threshold.



156 CHAPTER 13. INFERENCE OF THE SBMIV

We conclude that the VBEM inference algorithm for the SBMIV we presented above is
an embedded algorithm, because the inference of the relevance and cluster assignment
of each vertex is calculated together in the E—step ([44]).

The Propositions we proposed above together with our VBEM algorithm for the SB-
MIV are for a batch algorithm. We saw in the previous chapters of this thesis, that
we should rather employ an inference approach which is restricted to subsets like our
combination of our Blockloading algorithm of chapter 8 together with our BlockVB or
BlockVB++ algorithms (see sections 4.2, 5.1).

13.1.1 Relevance BlockVB algorithm

We provide our Relevance BlockVB algorithm for the SBMIV which is a VBEM
algorithm optimised for subsets in appendix C.2. Our Relevance BlockVB algorithm
provides an embedded inference algorithm which we described in the last section. We
call this version the embedded Relevance BlockVB algorithm.

Moreover, we also provide a the filtering Relevance BlockVB algorithm in appendix
C.2. Our Blockloading framework from chapter 8 together with the filtering version
of our Relevance BlockVB algorithm allows us to calculate the relevant vertices in a
separate filtering step, where we skip the calculation of the assignment to the relevant
clusters. Then, we continue the inference of the cluster assignment for the relevant
vertices and skip the inference for the irrelevant vertices. Thus, the cluster assignments
of the relevant vertices and the determination of the relevancy of the vertices are per-
formed in separate steps. This is a filtering algorithm where the inference of relevance
and cluster assignment of the vertices are separated [44]. We will describe both in-
ference schemes in detail in appendix C.2 below. We will show how we can use our
Blockloading framework together with both algorithmic approaches in section 13.3 be-
low.

In order to start the inference process of the VBEM in the M-step (or alternatively
in the E—step), we need a hard assignment of the relevance, p;, for each vertex i and
a fuzzy or hard cluster assignment, Q;, for each relevant vertex i. We can also use
randomly initialised assignments. In this case, we need appropriate informative hyper-
parameters for the prior distributions. The quality of the results is highly dependent on
a good choice of these start values. We will address the issue of finding informative
hyperparameters for the relevance assignments in section 13.3.2 below.

We can use our adaptive informative hyperparameters, we introduced in chapter 5, to-
gether with randomly initialised start values for the cluster assignments of the relevant
vertices. We call this algorithmic variant the Relevance BlockVB++ algorithm.

13.2 Review of the Blockloading algorithm for the SB-
MIV

We have shown with our numerical experiments in chapter 10, that the divisive ap-
proach with subset based optimisation of our Blockloading algorithms greatly outper-
forms the batch algorithm, we reviewed in chapter 4 and section 6.1. For a review of
other important subset optimisation and split-merge inference algorithms for cluster-
ing, we refer to chapter 7.
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So, we also need a divisive algorithm which provides optimisation of subsets for opti-
mised inference of the SBMIV in addition to the general VBEM inference algorithm
of the SBMIV we proposed in section 13.1 above.

We will propose our Relevance Blockloading algorithm for the SBMIV in section 13.3.
It will provide such a divisive algorithmic approach with subset optimisation. The Rel-
evance Blockloading algorithm is based on our Blockloading algorithm [118, 116].
For a detailed discussion of the Blockloading algorithm and its properties we refer to
chapter 8. For convenience, we shortly recall the Blockloading algorithm and its ter-
minology before the introduction of the Relevance Blockloading algorithm.

We start with a cluster partition where all vertices are in one cluster and calculate the
reference free energy, F’ (ref) of this cluster. The free energy after convergence [50] or
Integrated variational Bayes (ILvB) [73] is a model selection criterion for the optimal
number of clusters and cluster assignments of the vertices of the SBM. We reviewed
important model selection criteria in chapter 6.

We expand the cluster partition matrix to two clusters by applying the VBEM BlockVB
algorithm for the Poisson SBM, we presented in chapter 4, to two clusters. If the con-
verged free energy of the resulting partition, F ") is lower than F "), e.g. improves
F(rel) we update the reference cluster partition matrix and the parameters with the new
results for two clusters.

After the initialisation of the algorithm, we choose the active cluster of the reference
partition. The choice of the active cluster can affect the outcome of the calculation
for networks with sparsely connected vertices [116] (and chapter 10), if the BlockVB
algorithm is used. We discussed the max-probabilities-method in section 8.3, which

lets us select the cluster mlafo:lE(lla) +YX Ea) = XK, % +Y5, %7 vl €
l#a a [#a T4

{1,...,K} =1, as the active cluster. For other ways to select the active clusters and
an in depth discussion, we refer to section 8.3.

When we employ the max—probabilities—method, sparsely connected vertices are grouped
in one cluster for the first iterations of the Blockloading algorithm [116]. The result is,
that sparsely connected vertices with low edge weights are kept in one extra cluster of
the SBM. This property of the Blockloading algorithm leads easily to an adaption of
the Blockloading inference scheme to the SBMIV, where this extra cluster of sparsely
connected vertices is modelled explicitly.

In the Refinement Step, we check if vertices of the active cluster can be assigned to
other clusters of the existing reference partition to improve the converged free energy.
A detailed description of the Refinement Step can be found in section 8.1.

After the Refinement Step, we determine the active cluster again. We then try to split
the active cluster into two new clusters to lower the reference free energy, like in the
initialisation of the algorithm. If no improvement in either the Expansion or the Re-
finement Step was reached for all clusters of the existing partition, the Blockloading
algorithm has converged. We sum up the Blockloading algorithm in the following
overview:

Blockloading algorithm:

Input.—Adjacency matrix A, model type.

Result—Cluster partition matrix Q<r"f ), number of clusters K (") and parameters 8l
(i) Blockloading Initialisation.

Main Loop.
(ii) Refinement Step.
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(iii) Expansion Step.
(iv) Check for Convergence of all clusters.

One of the advantages of Blockloading compared to other variational inference meth-
ods for the SBM is, that the existing optimal partition for lower number of clusters
beginning with one cluster is reused as start value partition in the following iterations
of expansion and refinement. Therefore local optima are inferred one by one by the
algorithm. An additional reason for the greatly improved performance is our algorith-
mic design of the Blockloading algorithm which focuses the inference on the efficient
identification of all favourable local optima and thus a global optimum. We defined
favourable local optima in Definition 4 in section 8.2.2. We also provided examples for
favourable local optima in section 8.2.2.

13.3 The Relevance Blockloading Algorithm

In order to expand our Blockloading algorithm to the SBMIV, we need a model selec-
tion criterion to evaluate the outcome of the calculation of the Initialisation, Expansion
and Refinement Step.

There exist three well established model selection criteria for the normal Poisson SBM:
The asymptotic Integrated-completed-likelihood (ICL) of [18, 35, 84], the variational
Integrated Likelihood variational Bayes (ILvb) criterion of [50, 73] and the non—-asymptotic
exact ICL of [29]. We also discussed these model selection criteria for the Poisson
SBM in chapter 6.

The ILvb is the value of the free energy of the SBM with non-informative priors after
convergence [73]. Then the optimal number of clusters is chosen for the result with the
optimal value of the free energy after convergence. We also tried this approach with the
free energy of the SBMIV of Proposition 12 in appendix C.1. We found in numerical
tests that this approach gives biased results and leads to results where all vertices are
considered irrelevant.

In these tests, we noticed that a model selection criterion for the SBMIV has to take into
account, that vertices can enter or leave the relevant part of the cluster partition during
the inference process. This fluctuation of vertices between relevant and irrelevant state
also affects the calculation of the variational bound of the SBMIV and renders it incon-
sistent as a model selection criterion for the SBMIV.

We will also need an algorithm to initialise the cluster of irrelevant vertices for our
VBEM algorithm of the SBMIV. This initialisation should be done early in the infer-
ence process to save computational time. We present the Initialisation of the Relevance
Blockloading algorithm in section 13.3.2.

After the convergence of the Blockloading algorithm for the clusters of relevant vertices
of the SBMIV, we check if the set of relevant vertices can be increased by changing the
status of irrelevant vertices to relevant.

We propose the Relevance Expansion Step in section 13.3.2 for the Relevance Block-
loading algorithm, where we check if the cluster of irrelevant vertices can be divided
into an additional relevant cluster and an irrelevant cluster with a diminished number
of vertices.
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13.3.1 Model Selection for the SBMIV

We explained above that we can not use the converged free energy of the SBMIV be-
cause the optimal value of this converged free energy corresponds to a partition where
all vertices are considered as irrelevant. We found an original way to use the ILvb (free
energy) of [50, 73] for the vertex partitions returned by the VBEM inference with the
Blockloading algorithm.

We consider the set of irrelevant vertices, p; = 0;Vi € {1,...,N} as a special clus-
ter and build the combined cluster partition matrix with the cluster assignments of
the relevant vertices and a vector % which indicates the irrelevant vertices with %; =
1—p;i;Vie{1,...,N}. This combined cluster partition matrix is a Q) € RV*KUe 41
matrix.

Then we calculate the Poisson free energy (ILvb) of Proposition 1 in section 4.1 for the
co(mb)ined cluster partition matrix Q<C>. This free energy is the reference free energy,
Flre f .

The Blockloading framework is now used to check for the possibility of Refinement
and Expansion of the combined cluster partition Q(c) measured by the converged free
energy of the combined cluster partition. This is also true if we do the Expansion Step
of the cluster of the irrelevant vertices (see section 13.3.2). Before we do the Expansion
step for the cluster of irrelevant vertices, we calculate the converged free energy of the
current combined partition, Q(C). Then we expand the cluster of the irrelevant vertices
if possible with the help of the embedded BlockVB algorithm of appendix C.2. We
conclude that the irrelevant vertices influence the model selection criterion, if we use
this procedure.

13.3.2 Initialisation and Relevance Hyperparameters

We need start values for the expected relevance assignments of the vertices, p, and a
start cluster assignment of the relevant vertices Q*'*"). In section 8.3.1, we explained
that by starting the optimisation with the clusters with the overall highest density of
edge connections first, we can lock sparsely and irregularly connected vertices within
one cluster. So, this maximum-probabilities method, excludes vertices which we ex-
pect to be irrelevant according to the SBMIV. In section 10.7.1, the max-probabilities
method lead to the best results for the tested earthquake network if we applied the
Blockloading algorithm together with the BlockVB algorithm.

We want to transfer this approach to the inference algorithm of the SBMIV and there-
fore exclude irrelevant vertices at the beginning of the inference process, preferably in
the first iteration of the inference algorithm.

We start the Blockloading algorithm with all vertices in one cluster and all vertices are
set to relevant, e.g. p; = 1;Vi € {1,...,N}. We calculate the reference free energy,
FUef) of this partition, which for this case is the Poisson free energy (ILvb) in Propo-
sition 1, section 4.1.

We recall that we aim to identify sparsely connected vertices with an uniform con-
nection to the relevant part of the network. These irrelevant vertices are modelled
by a SBM where the irrelevant vertices are connected with the same rate to all other
vertices of the network (see section 12.2). We set special hyperparameters for the
Gamma(¥, Oc)?, [379 ) prior distribution to model this specific edge connection profile we
assume of irrelevant vertices. We note that informative priors to set the variance of
a Beta distribution for identifying relevant local and global features in a Variational
Bayesian framework were used in [44] for their feature selection algorithm.
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Sparsely and irregularly connected vertices in the earthquake network we will present
in section 14 have of course some variance of the probabilities of the edge existence.
Therefore, we set the first hyperparameter to 0579 =1. A Gamma(y; 1, ﬁ?)—distribution
has the form of an exponential distribution [19], which covers a wide range of possible
values for the parameter y. To link this Gamma prior distribution to the constant rate
parameter of the irrelevant part of the SBMIV, we calculate the parameter B;,) so that
the expectation value of 7y, E[y], is equal to the expected value of the same parameter
for an SBM with all vertices in one cluster. So, we calculate the SBM with all vertices
in one cluster which yields the parameters of the edge rate, agg and Bgg, which we
calculate according to Proposition 2.

The Poisson SBM with all vertices in one cluster is a special case of the Erd6s—Rényi—
Graph (ER-Graph) [98], so we gave the parameters the suffix ER. With the help of
these two parameters we see that

1 ogr

By Ber

_ Ber

0
:By—a—ER.

(13.23)

Thus, we have a ¥ ~ Gamma(y; 1, %)—prior—distribution which has the form of an

exponential distribution and it holds that E[y] = QLE;‘;

Now that we have calculated the prior distributions for the irrelevant vertices, we can
run our Relevance BlockVB algorithm for the SBMIV (see appendix C.2) for all ver-
tices set to relevant and and all vertices in one cluster with the relevance hyperparame-
ters (l , ﬁ;,)) calculated above.

We note that because all vertices are in one cluster we do not need to calculate a clus-
ter assignment during the E-step. Our relevance hyperparameters play the role of start
values. We refer also to chapter 5 for a discussion of informative hyperparameters for
the SBM.

The Relevance Initialisation returns the relevant vertices, which are grouped together
in one cluster, and the irrelevant vertices.

Now, we calculate the converged free energy, F"@!) of the combined cluster partition
matrix, Q') € R¥*2 which we introduced in section 13.3.1. If F(ial) < p(ref) polds,
we apply the Blockloading algorithm (section 8.1) to the relevant vertices returned by
our Relevance BlockVB algorithm.

Another algorithmic approach is to apply the normal BlockVB algorithm for the Pois-
son SBM of section 4.2, to the active clusters of the relevant vertices. This algorithmic
variant leads to the Filtering Relevance Blockloading algorithm we will introduce
below.

We emphasise that we do not need repeated initialisations for different start values with
this initialisation approach. We remark that this is a tremendous advantage compared
to all other variational algorithms we are aware of, which all need repeated initialisa-
tions with different start values to some extent. This is especially important for large
networks. We sum up our initialisation in the following algorithm:

Relevance Initialisation
Input.—Adjacency matrix A. Cluster partition matrix with all vertices in one cluster.
Result-Initialisation of relevant and irrelevant vertices.

(i) Calculate the hyperparameters for all vertices assigned to one cluster.
(ii) Calculate the relevance hyperparameters.



CHAPTER 13. INFERENCE OF THE SBMIV 161

(iii) Apply the Relevance BlockVB algorithm of appendix C.2 with the relevance hy-
perparameters.

We always calculate the reference free energy, F (ref) | and the trial free energy, F (srial)
of the combined partition matrix, Q) € R¥N*K"+1 When the Blockloading algo-
rithm for the relevant vertices has converged, we can check if the set of relevant ver-
tices can be expanded. To do this we use our newly introduced Relevance Expansion
Step in section 13.3.3.

13.3.3 Relevance Expansion Step and Convergence

After the convergence of all active clusters with relevant vertices we proceed by setting
the irrelevant vertices to active. For the expansion of the set of relevant vertices, we
use the same framework as in the Relevance Initialisation Step with some adaptions.
The main idea stays the same of setting back all vertices back to relevant status and
grouping them in a new cluster.

Relevance Expansion Step We build the combined partition matrix, Q(C), and set
all vertices to relevant. Then we use the current reference parameters of the irrelevant

cluster, ((x}(,ref ) , ﬁ;,ref )) , returned by the last iteration of the Blockloading inference for

the relevant vertices, to determine the relevance hyperparameters following eqn. 13.23.
We set all vertices in the irrelevant clusters to active and start the inference with the Rel-
evance BlockVB algorithm for the combined partition matrix, Q(c), and the relevance
hyperparameters.

We only set irrelevant vertices to the added irrelevant cluster of the combined cluster
partition matrix, Q(C), in the E-step. We do not perform a full optimisation of the clus-
ter partition matrix in the E-Step.

We found in numerical tests, that this procedure has better separation properties which
means that less vertices are re—labeled from relevant to irrelevant, than by doing a full
optimisation with respect to all relevant clusters.

A full E-step where all vertices in the active cluster could be assigned to any of the rel-
evant clusters can lead to the merging of clusters which were separated in the iterations
before.

Convergence Like in the initialisation step, we calculate the trial free energy, F ")

c)

for the returned combined trial cluster partition matrix, Qg il

) If the reference free en-
ergy was improved, e.g. if F("¢!) < F(ref) holds, we update all parameters and hidden
variables, (p(’ ef), Q(”-f ),@)(mf )>. Then we restart the Relevance Blockloading algo-

rithm for the now updated set of relevant vertices.

We remark, that a relevant vertex may be found as irrelevant during the optimisation of
relevant clusters, following the embedded E—Step of section 13.1, but a vertex can only
enter the set of relevant vertices from irrelevant status during the Relevance Expansion
Step where the set of irrelevant vertices is active.

If otherwise F(/rial) >F (ref) holds, the Relevance Blockloading algorithm has con-
verged. We sum up the whole Embedded Relevance Algorithm:
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Embedded Relevance Blockloading Algorithm

Input —Adjacency matrix A.

Result—Cluster partition matrix, Q(ref ), number of clusters, K (ref ), parameters, eref)
and the relevance assignment of vertices, p.

(i) Relevance Initialisation Step.

Main Loop.

(ii) Embedded Refinement Step with Relevance BlockVB for active cluster.
(iii) Embedded Expansion Step with Relevance BlockVB for active cluster.
(iv) Check for Convergence of relevant clusters.

(v) Relevance Expansion Step.

(vi) Check for Convergence of the irrelevant cluster.

For the Embedded Relevance Blockloading algorithm we use the Relevance BlockVB
algorithm presented in appendix C.2 in all cases. The irrelevant vertices do not influ-
ence the inference process of the cluster assignment of the relevant vertices at all. This
feature of Embedded Relevance Blockloading is comparable to the Gibbs sampling
procedure in [54]. So we say that the ERB is an algorithm without noise influence.

Filtering Relevance Blockloading Algorithm For the filtering variant of the Rel-
evance Blockloading algorithm, we replace steps (if) and (@ii) of the Embedded Rel-
evance Blockloading algorithm above with the BlockVB Refinement and Expansion
Step proposed in section 4.2. We can also use our BlockVB++ of section 5.1 instead.
We sum up the Filtering Relevance Blockloading (FRB) algorithm:

Filtering Relevance Blockloading Algorithm

Input.—Adjacency matrix A.

Result—Cluster partition matrix, Q(’ef ), number of clusters, K("f), parameters, elef)
and the relevance assignment of vertices, p.

(i) Relevance Initialisation Step with Relevance BlockVB.

Main Loop.

(ii) Refinement Step with BlockVB or BlockVB++ for relevant active cluster.
(iii) Expansion Step with BlockVB or BlockVB++ for relevant active cluster.
(iv) Check for Convergence of relevant clusters.

(v) Relevance Expansion Step with Filtering variant of Relevance BlockVB.
(vi) Check for Convergence of the irrelevant cluster.

The Refinement and Expansion Step for the relevant vertices of the FRB algorithm are
applied to the combined cluster partition matrix Q<C>. The difference to the Blockload-
ing algorithm is, that the cluster of irrelevant vertices is only active in the Relevance
Expansion Step (RE-Step).

We remark, that in the Refinement Step, vertices can leave the set of relevant vertices
and become irrelevant but a vertex can only become relevant in the RE-Step. The
presence of the irrelevant vertices in a separate cluster influences the inference process
for the relevant vertices. This feature separates our FRB algorithm from the algorithm
proposed in [54]. Therefore the FRB is an algorithm with noise influence.
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We will compare both the Filtering and the Embedded Relevance Blockloading algo-
rithm with numerical tests in section 14.

13.3.4 Successive Filtering with the Relevance BlockVB Algorithm

The Relevance Expansion Step of section 13.3.3 can be applied to a given adjacency
matrix of a network repeatedly without inference of the relevant clusters of the model.
We propose the following filtering procedure to cluster a network independently of dif-
ferent start values. We call this algorithm the Successive Filtering algorithm. It allows
us to divide the cluster partition matrix into different macro—clusters consisting of sev-
eral clusters which then can be further refined and expanded in parallel.

For a given adjacency matrix, we start with the Relevance Initialisation Step of section
13.3.2, where we start with a cluster partition of all vertices assigned to one cluster and
set to relevant. We proceed by calculating the reference free energy, F("/), and the
relevance hyperparameters. The Relevance Expansion Step (RE-Step) yields a cluster
of relevant vertices and the cluster of irrelevant vertices. We calculate the trial free
energy of the combined cluster partition matrix.

As described in section 13.3.2, we check if the trial free energy, F/ , is lower than
the reference free energy, F("¢/). If the F("¢/) could be improved, we apply the Rele-
vance Expansion Step to the new cluster of irrelevant vertices. We continue this proce-
dure as long as F("*/) can be improved.

This algorithm does not need several re—initialisation with different vertices and con-
verges very fast. It provides us with separated parts of the network. With the help of
this algorithm we can extract subnetworks which consist of clusters with homogeneous
connection profiles when compared to the rest of the network. On each of the returned
subnetwork we perform the Relevance Expansion Step (RE-Step).

(trial)
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Chapter 14

Numerical Experiments of the
SBMIV

14.1 Earthquake Network

The earthquake network, which was introduced in [1], maps the spatial and temporal
succession of earthquakes of a chosen region to a network. We recall our short expo-
sition of the construction of the earthquake network and some important facts about
the dataset of [104]. Important statistical properties of earthquake catalogue data are
inherited by the earthquake network [1, 3].

One important finding presented in [1, 3] is, that the degree distribution of the vertices
of the earthquake networks under survey follows a heavy tails or scale free distribution.
This also applies to earthquake network of the Southern California area, we will use as
an example below [1, 3]. The consequence is, that the majority of vertices is sparsely
and irregularly connected to other vertices of networks. There is a huge variance of the
edge weights connecting the vertices. In [116] we estimated the Poisson SBM for the
network of the Southern California Area (details presented below) with our Blockload-
ing algorithm.

The earthquake network is constructed for a chosen geographical area and time span.
A square grid is put on the area of interest [4]. The earthquake network unfolds in the
following way:

(i) Place a vertex in the first square where seismic activity occurs at the start of the
observation interval.

(it) Place a second vertex where the next time seismic activity occurs and place a (di-
rected) edge between the last two vertices of seismic activity pointing to the latest
vertex of activity.

(iii) Continue until the end of observation.

We constructed the earthquake network of the Southern California area (32s, 37n; 122w, 114w)
for the time interval from January 1, 1984 to December 31, 2013. We chose a square
length of 10km for the grid and did not include depth information of the earthquake
catalog contrary to [1]. This results in 4256 squares. We used the earthquake catalogue

data from the Southern California Earthquake Data Center (SCEDC) [104].

Earthquake catalogues have a minimum magnitude of completeness (see e.g. [90] or
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Table 14.1: Results of the Fully Bayesian (BlockVB++ algorithm) Filtering Relevance
Blockloading algorithm with noise influence for the Poisson SBMIV for the weighted
earthquake network. Normalised Mutual Information (NMI) calculated in comparison
to the best result of all tests for the combined matrix Q° and for the irrelevant vertices
(IV). Results were ordered according to the difference to the reference free energy
AF,,r. Number of clusters K. Best result of all tests performed on the earthquake
network in the first entry of the left side.

AFf 0

NMIQ® 1

NMIIV 1 094 092 095 093 089 092 091 095 0.89
52

K

61 88 92 133 172 210 302 406 480
094 093 093 08 092 093 091 093 094

50 51 52 50 51 51 50 51 50

no.of IV 1051 1049 1053 1053 1103 1059 1068 1064 1051 1063

[53]). The earthquake catalogue is expected to list every earthquake with magnitude
equal or higher than the magnitude of completeness [90]. It was shown in [53] that the
SCEDC catalogue is complete for a magnitude of M > 1.8 on the Richter Scale from
January 1, 1984 onwards. We used only earthquakes with magnitude M > 1.8 for the
construction of the earthquake network.

We set the entries on the diagonal of the adjacency matrix of the earthquake network
to zero. We discussed the removal of loops in section 10.6. These entries represent
aftershocks in the earthquake network. The resulting adjacency matrix of the earth-
quake network has N = 2324 vertices and 58718 edges. The highest edge weight of
the earthquake network was 240 and the lowest 1 (and 0 if there is no edge between the
two vertices).

We evaluate and compare the numerical tests with the same principles as in [116]. So,
in order to compare the values of the converged free energy F in the following tests,
we take the best of all values of the converged free energy F, F.r, and calculate the
difference AF,,r = F — F,,y > 0. We compare the converged free energy of all tests and
algorithms with the overall best converged free energy Fr';‘}"t of all tests by calculating

AFbest =F— Fbest
ref ref *

To compare different cluster partitions Q and Q, we use the Normalised Mutual Infor-

mation (NMI) (e.g. [112]). A NMI(Q,,0) of 1 means that both partitions Q and Q,,

are identical. The NMI is zero, when no information about Q can be deduced from Q.

We reviewed the NMI in section 10.2.

We tested the three versions of our Relevance Blockloading algorithm for the SB-
MIV presented in section 13.3: The Filtering Relevance Blockloading algorithm with
noise influence and the BlockVB algorithm for the relevant vertices, the fully Bayesian
Filtering Relevance Blockloading algorithm with the BlockVB++ algorithm and the
Embedded Relevance Blockloading algorithm without noise influence and the BlockVB
algorithm.

All algorithms were initialised for ten times with different start values. We used the
relevance priors in all algorithms for the Initialisation and the Relevance Expansion
Step presented in section 13.3.2.

The best result, measured by the converged free energy of the combined partition ma-
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Table 14.2: Results of the Filtering Relevance Blockloading algorithm (BlockVB ver-
sion) with noise influence for the Poisson SBMIV for the weighted earthquake network.
Normalised Mutual Information (NMI) calculated in comparison to the best result of
all tests for the combined matrix Q¢ and for the irrelevant vertices (IV). Results were
ordered according to the difference to the reference free energy AF,.r. The difference
of the converged free energy of each test, F, when compared to the best reference free
energy of all experiments, Frbeif’ Jfor the test of the earthquake network is denoted by

AFr(ebm). A positive difference signals a suboptimal value of the converged free energy

F of the test. Number of clusters K.

AF.r 0 130 272 299 301 333 523 537 617 635
AFr’Z,j;” 36 166 308 335 337 369 559 573 654 672
NMI Q¢ 1 094 095 093 093 09 095 096 094 095
NMI IV 1 093 093 094 093 09 095 096 094 095
NMIbest Q¢ 095 094 093 094 092 093 092 093 093 092
NMlIbestIV 091 094 094 095 095 09 092 095 093 0.89
K 49 47 47 46 45 48 45 45 46 45
no. of IV 1020 1039 1034 1038 1040 1016 1024 1037 1030 1010

Table 14.3: Results of the Embedded Relevance Blockloading algorithm without noise

influence for the Poisson SBMIV for the weighted earthquake network. Normalised

Mutual Information (NMI) calculated in comparison to the best result of all tests for

the combined matrix Q¢ and for the irrelevant vertices (IV). Results were ordered ac-

cording to the difference to the reference free energy AfF,.r. The difference of the

converged free energy of each test, F', when compared to the best reference free energy

of all experiments, FrZ?-S’ , for the test of the earthquake network is denoted by AFribfm)

A positive difference signals a suboptimal value of the converged free energy F' of the

test. Number of clusters K.
AF.r 0 134 175 242 382 412 438 687 875 1026
AFrfff“" 287 422 462 529 670 699 726 974 1162 1313
NMI Q¢ 1 0.83 0.81 082 0.77 0.82 095 038 0.77  0.93
NMI IV 1 0.66 04 07 04 0.66 095 0.65 04 0.95
NMIbest Q¢ 082 085 0.79 085 0.8 0.83 0.82 0.84 0.78 0.81
NMlIbestIV 063 0.76 056 073 0.56 077 064 0.77 0.56 0.63
K 50 48 49 47 47 47 47 47 46 46
no. of IV 837 1023 1350 997 1348 1025 841 1034 1345 834
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Table 14.4: Results of the Blockloading algorithm with non—informative priors for
the Poisson SBM (BlockVB algorithm) applied to the weighted earthquake network.
Normalised Mutual Information (NMI) calculated in comparison to the best result of all
tests for the combined matrix Q¢ and for the proxy cluster of irrelevant vertices (proxy
IV). Results were ordered according to the difference to the reference free energy AF.r.
The difference of the free energy of each test, F', when compared to the best reference
free energy of all experiments, F| r’;‘;;"’ ,for the test of the earthquake network is denoted by
AFrIZef". A positive difference signals a suboptimal value of the converged free energy F
of the test. Number of clusters K. Comparison with the relevance matrix, AF,, s and the
combined matrix of the best result of all tests measured by the converged free energy.

AF, ¢ 0 20 132 163 198 228 276 304 346 517
AFrZ;S’ 322 342 454 486 520 550 598 626 668 839
NMI Q¢ 1 095 091 09 091 092 092 081 092 092
NMI proxy IV 1 096 097 095 091 094 099 063 098 0098

NMI best Q° 0.8 08 084 08 08 08 085 087 084 0.5
NMI best IV 076 078 078 078 081 0.79 0.77 0.75 0.76 0.76

K

46 46 46 48 48 48 48 45 44 46

no. of proxy IV 1157 1144 1149 1146 1120 1140 1156 931 1161 1163

trix, Q("), was returned by the fully Bayesian version of the Filtering Relevance Block-
loading algorithm with the BlockVB++ algorithm with a converged free energy of
Fr’;‘}“ = 133414 and K,y = 52 clusters. We introduced the fully Bayesian BlockVB++
algorithm in chapter 5. The results of the tests for this algorithm are presented in table
14.1.

We calculated the Normalised Mutual Information (NMI) in comparison to the best re-
sult of all tests for each algorithm for the combined cluster partition matrix, Q("). This
measure shows how reliably an algorithm finds the same combined cluster partition for
different start values.

In order to calculate the reliability of the inference of the relevant and irrelevant ver-
tices we build a partition matrix where all relevant vertices are assigned to one column
of the matrix and the irrelevant vertices to the other column. Then we compare this rel-
evance partition matrix with the relevance partition matrix of the best result, restricted
to each tested algorithm, by calculating the NMI of theses matrices.

We repeat these calculations of the NMI with respect to the overall best result, Fr’;?’ s
measured by the free energy, of all tested algorithms for the earthquake network.

A close second best result was returned by the Filtering Relevance Blockloading algo-
rithm without noise influence and the BlockVB algorithm (section 4.2) for the relevant
part of the model with a converged free energy of F,.r = 133449 (AF,Z?’ = 36) and
K = 49 clusters. The variance of the converged free energy for this test was higher
than for the Filtering Relevance Blockloading algorithm with BlockVB++. The high-
est difference of the converged free energy of Filtering Relevance Blockloading with
BlockVB was AF,,r = 672 and with K =45 clusters.

In tables 14.1 and 14.2 we can see that the difference of the converged free energy
AF,,y differs less for the fully Bayesian version of the Filtering Relevance algorithm
(table 14.1), but that in general all results of both algorithms have a high degree of
similarity. The mixed approach version seems to be bit more reliable whereas the fully
Bayesian version returns the best results of all tests measured by the converged free
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energy with non-informative priors. Both algorithms identify mostly the same vertices
as irrelevant.

The results of the Embedded Relevance Blockloading algorithm without noise influ-
ence are less reliable than the those of the Filtering Blockloading algorithms measured
by the similarity of the combined cluster partition matrices, relevance partition matri-
ces and AF,.¢. The best converged free energy of the Embedded Relevance algorithm
was AFrIfo’ = 287 with K = 50 clusters and the worst AFrl;;“ = 1313 with K = 46 clus-
ters. We also see in table 14.3 that the Embedded Relevance algorithm returns vastly
differing numbers of irrelevant vertices. The combined cluster partition matrices re-
turned by the Embedded Relevance algorithm have a sub par NMI of the reliability and
the overall best result of all algorithms.

These results show, that for the Variational Bayesian Blockloading algorithm the Filter-
ing approach works better contrary to the findings for the Gibbs Sampling algorithm of
[54]. In [54] the Gibbs Sampler was applied to the closely related SIRM in [54], where
the joint sampling of the relevant clusters and the relevance assignment were proposed
as the best inference method for such a model with irrelevant vertices.

For comparison, we state the results for the normal Blockloading algorithm with the
mixed approach (BlockVB algorithm) for the Poisson SBM in table 14.4. We remark
that these results differ to those presented in [116] because we repeated the tests with an
updated version of our code and we found a minor bug in our code for the calculation
of the NMI. The Blockloading algorithm for the SBM does not explicitly model irrel-
evant vertices. We take the cluster with the lowest summed expected edge existence
rates (see section 8.3.2) as a proxy for the irrelevant vertices. In all tests, this proxy
cluster of irrelevant vertices also was the cluster with the highest number of vertices.
This observation and the built—in noise suppression with the max-prob-strategy for the
choice of the active cluster presented in section 8.3.1, justify the choice of these clus-
ters as a proxy for the cluster of irrelevant vertices.

The best result of the Blockloading algorithm for the Poisson SBM was AF}Z‘}S’ =322

and K = 46 clusters and the worst result was AFr{’f?’ = 839 also with K = 46 clusters.
The Blockloading algorithm for the Poisson SBM is reliable but less so than the Fil-
tering Blockloading algorithm with non—informative priors (BlockVB algorithm). We
show in table 14.4 that the proxy relevance cluster of the normal Blockloading algo-
rithm has a similarity of less than NMI = 0.8 (with one exception) for all results. In
comparison, the relevance clusters returned by the Filtering Blockloading algorithm
have, with one exception, similarities of the proxy relevance partitions higher than
NMI=0.9.

We conclude that the best choice for an inference algorithm for the SBMIV of all tested
algorithms is the fully Bayesian Filtering Relevance Blockloading algorithm with noise
influence which also improves on the results of the Blockloading algorithm of [116]
(repeated and extended in table 14.4) for the the normal SBM. The Filtering Rele-
vance Blockloading algorithm with non-informative priors for the relevant clusters is
also a viable choice and takes a close second place with respect to the the quality of
the best results and a first with respect to general reliability. Both Filtering Relevance
Blockloading algorithms, the fully Bayesian (BlockVB++) - and the non-informative
BlockVB version, clearly return better results than the Blockloading algorithm for the
normal Poisson SBM of [116].
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Summary

The aim of this thesis was the development of new algorithms for the analysis of large and complex
networks with applications to earthquake networks. Earthquake networks are directed and weighted
networks which model the temporal and spatial succession of earthquakes. The mapping of the in-
terdependency between the vertices of the networks representing the location of the earthquake and
the temporal succession and occurrence of earthquakes through edges between the vertices leads to a
considerable complexity. Assigning (clustering) the vertices with similar edge connection profiles to
the same class (cluster) opens the possibility of a better understanding of the generation and topology
of the network.

One model offering such a cluster assignment is the Stochastic Block Model with Poisson distributions
(SBM). It is a special feature of the SBM to consider the possible interdependence of each vertex to all
other vertices of the network and thus capturing the complexity of the network. This network interde-
pendency is a major challenge for the inference of a specific SBM for a given network. The application
of the Variational Bayesian EM (VBEM) algorithm was proposed as an option for the solution to this
problem some years ago. The estimation of the SBM with the VBEM algorithm leads to a non-convex
optimisation problem. The objective is to find the optimal number of clusters and assignments of the
vertices to the clusters corresponding to a global optimum of the model selection criterion. In order to
solve this optimisation problem existing VBEM algorithms often only allow the separate initialisation
for different numbers of clusters. Using this batch approach, the optimisation has to be performed
each time with respect to all vertices in the network and for each number of clusters. For earthquake
networks or comparable large and complex networks this approach leads to unsatisfactory results with
respect to quality and computation time.

At this point the present thesis comes in. A new type of algorithms for VBEM inference, called the
Blockloading algorithms, is proposed. These algorithms combine the search of the optimal cluster
assignment of the vertices and the number of clusters according to the model selection criterion in a
divisive algorithm. Starting with the assignment of all vertices to a single cluster the search for an op-
timum is performed by splitting and refining the existing clusters. As this optimisation only involves
subsets, two new, especially adapted VBEM algorithms, the BlockVB and BlockVB++ algorithms,
were developed to meet this objective. The design of the Blockloading algorithms follows the ob-
servation, that the successful search for a global optimum with means of a divisive algorithm can be
performed by the identification of several favourable local optima. These local optima are similar in
the sense that by correctly splitting the right clusters they can be transformed into a global optimum.
The Blockloading, automatic Blockloading, no reset Blockloading and Blockloading++ algorithms
were designed with regard to this observation which lead to an efficient algorithmic design which was
optimised for finding favourable local optima.

As large and complex networks often exhibit irregularly and sparsely connected vertices the Stochastic
Block Model with irrelevant Vertices (SBMIV) was developed which explicitly models these irrelevant
vertices. Building on our Blockloading algorithms, the Relevance Blockloading algorithm together
with the Relevance BlockVB EM algorithm was introduced for the estimation of the SBMIV. Nu-
merical tests of the newly developed methods were performed on synthetic networks, generated by the
SBM, and an earthquake network. The newly developed Blockloading algorithms reached a previously
unattained quality of the results and computation time for the clustering of the earthquake network and
the synthetic networks when compared to comparable methods for the estimation of the SBM. It was
demonstrated for an earthquake network that inference with the Relevance Blockloading algorithm can
reliably identify irrelevant vertices. This estimation lead to an even better value of the model selection
criterion than the inference of the comparable Poisson SBM which demonstrates the superiority of this
approach.
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Zusammenfassung

Ziel der Arbeit war die Entwicklung neuer Algorithmen zur Analyse von groen und komplexen Netzwerken mit
Anwendung auf Erdbebennetzwerke. Erdbebennetzwerke sind gerichtete und gewichtete Netzwerke, welche die
zeitliche und rdumliche Abfolge von Erdbeben abbilden. Die Abbildung der wechselseitigen Abhéingigkeit zwis-
chen den Knoten des Netzwerks, welche den Ort des Erdbebens beschreiben, und der zeitlichen Abfolge und dem
Auftreten von Erdbeben durch Kanten zwischen den Knoten fiihrt zu erheblicher Komplexitit. Um die Entste-
hung und Topologie des Netzwerks besser zu verstehen, bietet sich das Zusammenfassen (Clustern) von Knoten mit
dhnlichen Kantenverbindungsprofilen in derselben Klasse (Cluster) an.

Ein Modell fiir solche Zusammenfassungen ist das Stochastische Block Modell mit Poisson Verteilungen (SBM).
Das SBM hat die Besonderheit, dass es die mogliche wechselseitige Abhéngigkeit von jedem Knoten zu allen an-
deren Knoten beriicksichtigt, und so die Komplexitit des Netzwerks erfasst. Diese wechselseitige Abhingigkeit
ist gleichzeitig eine besondere Herausforderung fiir ein Losungsverfahren zur Schétzung des konkreten SBMs fiir
ein gegebenes Netzwerk. Vor einigen Jahren wurde der Variational Bayesian EM (VBEM) Algorithmus als Op-
tion zur Losung dieses Problems vorgestellt. Die Schitzung eines SBM mit dem VBEM Algorithmus fiihrt auf ein
nicht-konvexes Optimierungsproblem. Dabei ist die optimale Anzahl der Cluster und Zuordnung der Knoten zu
den Clustern zu finden, die einem globalen Optimum des Modellauswahlkriteriums entsprechen. Zur Losung dieses
Optimierungsproblems erlaubten bisherige VBEM Algorithmen allerdings hiufig nur die getrennte Anwendung fiir
verschiedene Anzahlen von Clustern. Dabei wird die Optimierung jedesmal in Abhdngigkeit von allen Knoten des
gesamten Netzwerks und fiir jede Clusterzahl neu durchgefiihrt. Dieses Vorgehen fiihrt jedoch fiir Erdbebennetzw-
erke oder vergleichbar grole und komplexe Netzwerke zu unzureichenden Ergebnissen in Bezug auf die Qualitéit und
Rechengeschwindigkeit.

Genau an dieser Stelle setzt die vorliegende Arbeit an. Es wird eine neue Art von Algorithmen zur Anwendung
von VBEM Algorithmen, sogenannte Blockloading Algorithmen vorgestellt, welche die Suche nach der optimalen
Clusterzuordnung der Knoten und der Anzahl der Cluster gemif3 des Modellauswahlkriteriums in einem Unterteilun-
galgorithmus kombinieren. Ausgehend von der Zuordnung aller Knoten zu einem einzigen Cluster wird ein Optimum
durch das Aufteilen und Verfeinern der bestehenden Cluster gesucht. Da in dieser Optimierung nur Teilmengen der
Knoten beriicksichtigt werden, wurden mit den BlockVB und BlockVB++ Algorithmen zwei neue, dafiir speziell
angepasste VBEM Algorithmen entwickelt. Das Design der Blockloading Algorithmen folgt der Beobachtung, dass
die erfolgreiche Suche nach einem globalen Optimum mit einem Unterteilungsalgorithmus durch die Identifizierung
mehrerer giinstiger lokaler Optima erfolgen kann. Diese lokalen Optima sind sich in dem Sinne #hnlich, dass sie alle
durch das richtige Aufteilen der richtigen Cluster in ein globales Optimum iiberfiihrt werden kénnen. Mit den Block-
loading, automatic Blockloading, no reset Blockloading und Blockloading++ Algorithmen wird diese Beobachtung
durch ein effizientes algorithmisches Design beriicksichtigt, welches fiir das Auffinden geeigneter lokaler Optima
optimiert wurde.

Da komplexe und grofle Netzwerke hdufig unregelmiBig und wenig verbundene Knoten aufweisen, wurde zusitzlich
das Stochastische Block Modell mit irrelevanten Knoten (SBMIV) entwickelt, welches irrelevante Knoten geson-
dert zu berticksichtigen erlaubt. Aufbauend auf den Blockloading und BlockVB Algorithmen wurde der Relevance
Blockloading Algorithmus mit dem Relevance BlockVB EM Algorithmus zur Schétzung des SBMIV vorgestellt.
Anhand von synthetischen Netzwerken, die mit dem SBM erzeugt wurden, und einem Erdbebennetzwerk wurden
numerische Tests der entwickelten Methoden durchgefiihrt. Im Vergleich zu vergleichbaren Berechnungsmethoden
zur Schitzung des SBMs waren die neu entwickelten Blockloading Algorithmen in der Lage, sowohl das Erdbeben-
netzwerk als auch die synthetische Netzwerke in bisher nicht erreichter Qualitdt und Geschwindigkeit zu clustern.
Anhand des Erdbebennetzwerks konnte zusétzlich gezeigt werden, dass der neue Relevance Blockloading Algo-
rithmus bei der Schitzung eines SBMIV zuverlassig irrelevante Knoten identifizieren kann. Dies fiihrte sogar zu
einem besseren Wert des Modellauswahlkriteriums als die Schitzung des vergleichbaren Poisson-SBM, was die
Uberlegenheit dieses Ansatzes demonstriert.
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Appendix A

Bernoulli BlockVB and
BlockVB++ Algorithm

We propose our BlockVB and BlockVB++ algorithms for optimised inference of sub-
sets of the vertices of a network according to the directed and unweighted Bernoulli
SBM. Both algorithms work analogously to the BlockVB (see section 4.2) and BlockVB++
(see section 5.1) for the Poisson SBM.

start) “active Cluster ¢ and adjacency matrix A.

Input: Start partition matrix Q(
Initialisation: Find indices I of vertices in the active cluster, i € c.

Initialise the prior hyper parameters ot = 1/2, B = 1/2V/(k,1) € {1,...,K}? for the
Beta prior distributions and 6,9 = 1Vk € {1,...,K} for the Dirichlet prior distribution
with non informative prior hyper parametes [61, 50, 73].

To save computational time in the (Maximisation Step) M—Step, we prepare the update
formulas dependent on the vertices in the active cluster, i € I: Sq,, = Zﬁ\; ;1 QixQjyAij,

gy =X, QuQjy(1—Ayj), S5, = XLy Qi

If BlockVB++ is used:
Set fraction of the adaptive prior parameters: f, = 4. Initialise adaptive informative

0 _ Sacc

prior hyper parameters, 0. = 7o
Jp

Calculate

N N
S{sz =Y ) 0uQiAij+ Y. Y QuQjiAij, (A.])
i=1 jel i€l j¢l
i#] i i#j j=1
N N
Sfsz =YY 0uQu(1-Ai))+ Y. Y 0a0Q;i(1-A4A)), (A.2)
i=1 jel i€l j¢I
i#] it i#j j=1
S5, = Y. Qi (A3)
i€l
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Calculate the update of the parameters Vk, [:

041 = Sopy + 0, (A.4)

Bu = Sp,, + B, (A.5)
N

&=y Qu+8. (A.6)
i=1

(A7)

Main Loop: Until convergence of the free energy F [¢(-)] or the maximum number of
iterations:

Expectation Step: Until convergence of the matrix entries Q;,, V(I,v) € I x {1,...,K}.
Update of the matrix entries Qy,, V(I,v) € I x {1,...,K}:

K K
Opoexp|—Y Y 4,0,C,—Y Y A4,0,Cn+DyY 0 | (A.8)
=1l y=1uef sl
J J J

where C,, = V/(ﬁvy) - W(avy) and D,y = V’(ﬁvy) - W(ﬁy\)) - ‘I’(O‘vy + BV)’) - W(ayv +
Byv) and y(-) is the Digamma function (see e.g. [19]).

Normalise the entries O}, = Qi/ (Zszl Qik) Vk of the matrix row i.

Check for convergence of the matrix entries Qi, V(i,k) € I x {1,...,K}.

M-Step: Update of the parameters of the variational distributions.
Prepare the updates of the parameters dependent on the active vertices i € I:

Sgd =S, (A9)
dota oI
Sﬁ]d = Sﬁk17 (A.10)
ngd =S5 . (A.11)
Calculate S¢, , S, and S§, forall (k,/) € {1,...,K}? like in the equations A.1, A.2 and
A.3 above.

If BlockVB++ is used: Update of the adaptive informative prior hyper parameters anal-
ogously to the BlockVB++ algorithm (Algorithm 5) of the Poisson SBM in section 5.1.

Do the updates of the parameters oy;, B and O Vk, I

Qs = g — SG4 +Sh + ), (A.12)

Bu = Sp, — S§ + S, + B (A.13)
Iy I 0

6k:S5k_S6,:d+S5k+6k' (A.14)

(A.15)
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Convergence: Calculate the free energy F:

(XX, 8)11k, (8
F[Q.a,B.8]=In <FEZK_1 6)9)) ,’f=]1 r((&j)
+Zl < a"”ﬁ"y)>+ifQixan,~x. (A.16)
( xwﬁxy) i=1x=1

Check for the convergence of F.
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Appendix B

Proofs and Propositions for
VBEM inference of the Poisson
Stochastic Block Model

Proof of Proposition 4.
Proof. The terms of the upper bound F dependent on g(Z) are:

Flq(Z)] = —Ezzallnp(A,Z, A, 7)] + Ez[Ing(Z)] + const. (B.1)
=—-Ezallnp(A|Z,A)] — Ez z[In p(Z| )] + Ez[Ing(Z)] 4 const. (B.2)

K N
— Bz | Y Y (~ ZuZiAiy (w(ag) —n(By) +ZiaZi ( 7 ) )

E, (i qﬁl Z, (waq) (Y (,_i a,) ))) 1E, (l_ q(zl->1nq<zi>>

+ const.. (B.3)

™=

1

Variational Bayesian optimisation of F with respect to ¢(Z,) yields:

= =1 i=1
v=1 ql:#a

K K N
IHQ(Za) o< Z Za (Z Z QiqAainq + Qiinvav - Qiquq + Gv) . (B4)

Taking the exponential of eqn. (B.4) yields:

N K
-Y Y 0D+ G)) (B.5)

After normalisation, eqn. (B.5) shows that g(Z,) has the functional form of a Multino-
mial 4 (Z,;1,0, = {Qu,...,0uk}) distribution. O
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Proof of Proposition 2 which provides the functional form of the variational dis-
tribution g(A,;) Vg, and the update equations for the hyperparameters (0, By1) Vg, 1.

Proof. The terms of the upper bound F dependent on A are:

Flg(A)]=—Ez3 [Inp(A|Z,A)] —E, [Inp(A)] +Ey [Ing(A)] + const. (B.6)

K N
= Z;, Y. (= QigQuAiEs [InAg] + QigQiEp [Ag1] )
K

—E, [Inp(A)]+Ey, [Ing(A)] + const. (B.7)

Terms which do not depend on A, will be absorbed into the constant. Optimisation of
F according to the Variational Bayesian framework with respect to g(4,;) leads to:

N
Ing(Ag) =Y (QigQjiAijIn Ay — QigQjiAqr) + oty In(Bg) — InT(at))

5

A
hy

+(0‘21 —1)InAy —Bgl/lql—i—const.. (B.8)

We take the exponential of eqn. (B.8) and absorb terms not dependent on Aql into the
constant. It follows that

N N
a(hg) o< exp (L Qi@+ — 1) Indg = (Y 0@yt + BN At ). (B)

o ,
i#] i#j

After normalisation of equation (B.9) we see that q(lql) has the functional form of a
Gamma():l’.‘; 10w QiAij+ o), Y QaQji + By) distribution. -

Proof of Proposition 1 of the free energy of the Poisson SBM.
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Proof. The free energy (variational upper bound) is given by:

2/1 < Azzllnn)>q(z,),,n)dld7r (B.10)
=-Ezaz [1HP(A|Z A)]—Ey z[Inp(Z|m)] —Ey [Inp(A)]
—Egz[Inp(x +2Ez (Ing(Z;)] +Ex [Ing(m)] + Ey [Ing(A)]  (B.1D)

i=1

K N
= ZZ quleAu (aql) - ln(Bql)) + qule (B ) )
al i ql

K
+Z;—(0631 — D)(y(0) = In(By)) +In (T(a) )

q,
+Ba (ZZ) — oy In(B9)) + 0t In(Byr) — In (T(0ty1))
+ (0t — 1) (w(ogr) —In(Byr)) — Byt (g:;)

K N X
St (1)

g=1li=1 P

K K ©
tum ~ L (6~ ( q)‘W(Z&))
! 7= =1

Mw

In(I°(8,))

wlr(£a))

K N K
2(5 —1) (‘If(&;)—llf(Z 51)) +Y Y 0ulnQq. (B.12)
i=1 i=1k=1

q=1

1

We plug the update equations of Propositions 2 and 3 for oy, fBi; and & Vk,l € {1,...,K}
into eqn. B.12. This yields equation 4.4 of Proposition 1 in chapter 4.
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Appendix C

Appendix: Stochastic Block
Model with irrelevant Vertices

C.1 Proofs and Propositions

Proof of Proposition 6 in section 4:

Proof. The terms of the upper variational bound F dependent on g(¢) are:

Flg(¢)] =—Erg¢[Inp(R|¢)] —Ey(Inp(9)) +Eg(Ing(¢)) + const.. (C.D
N
=- ; (PiEg(Ing;) + (1 — pi)Eg (In(1—¢;)))
—Ey(Inp(9))+Ey(Ing(¢)) + const.. (C2)

We use Variational Bayesian optimisation of F with respect to g(¢;) and absorb all
terms which do not depend on ¢; into the constant. This yields:

Ing(¢;) =(&’ = 1)In(¢:) + (0 = 1)In(1 = ¢;) + pilng;
+ (1 —p;)In(1 — ¢;) + const.. (C3)

We take the exponential of eqn. (C.3) and it follows that
q(9r) <exp ((pi+ &’ — 1) Ingi+ (1 —p;) +n = 1)In(1=¢)) . (C4)

Equation C.4 shows that g(¢;) has the functional form of a
Beta(p;+ ¢, (1—p;)+n?) Beta distribution, so after normalisation it holds that g(¢;) =
Beta(¢;; §;, 1;), where

G=pi+&, (C.5)
ni=(1—pi)+n). (C.6)
for Vi€ {1,...,N}. O

Proof of Proposition 7 in section 4:
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Proof. The terms of the free energy F which depend on ¢(7) are:

Flg(m)] = —Ezg z[ln p(Z|7,R)] — Ez[In p(7)] + Ex[Ing(m)] 4 const. (C.7)

K N
=— Z Zp,-QinE,,[lnﬂq] —Egz[lnp(m)] +Ex[lng(x)]+const..  (C.8)
g=1i=1

Variational Bayesian optimisation of the Free Energy F with respect to ¢(7r) and ab-
sorbing terms which do not depend on 7 into the constant yields:

K N K
Ing(m) =Y Y piQiglnm,+ Y (8) —1)Inm, + const. (C.9)
g=1i=1 g=1
K N
= g(m)<exp | Y Y (piQig+68)—1)Inm, | . (C.10)
g=1i=1

Normalisation of eqn. (C.10) shows that g(7) has the functional form of a Dir(x; 8)
Dirichlet distribution with the update equations

N

S =Y piQu+8; Vke{l,... K}, (C.11)

i=1

for the hyper parameters. O
Proof of Proposition 8 in section 4:

Proof. The terms of the upper bound F' dependent on ¢(7) are:

N

Flam) =Y (= (1= pipsAy)Ey(Iny) + (1= pip) By (7))
i
—Ey(Inp(y))+Ey(Ing(y)) + const.. (C.12)

We use the Variational Bayesian framework for the optimisation of F* with respect to
q(7v) and absorb terms which are independent of 7 into const.. This yields:

N

Ing(y) =}, ((1 = pip)AijIn(y) — (1= pip;)y+ (o — D)n(y) - B?y) +const..
i
(C.13)
We take the exponential of eqn. (C.13). Thus, it follows that
- 0 . 0
g)e<exp [ [ | X (1-pipp)ay | +oy =1 [In(y)— | X (1—pipj)+B; | v

7 7

(C.14)

Equation C.14 shows that ¢(y) has the functional form of a
Gamma(Y; (1 —pip))Aij+0f, X ; (1—pip;)+ By) distribution.
oy

i#j
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Proof of Proposition 9 in section 4:
Proof. We collect the terms of the upper bound F dependent on g(A):
Flg(A)]=—Ezgra,[Inp(A|Z,R,A,7)]+Ey[Ing(4)]

—E, [Inp(A)] + const. (C.15)
K N
=YY (= PiQigp;QiAijEx [InAg] + pip;QigQiiEa [Aqi] )
q,l iJj
i
—E, [Inp(A)]+Ey, [Ing(A)] + const.. (C.16)

We apply Variational Bayesian optimisation to F with respect to g(A,;) and absorb
terms not dependent on A into const.. This yields:

N
Ing(Ay) = Z (Pip;QigQiAijIn Ay — Pip;QiqQiiAq)
— (o In(Bg) +1InT(0)) + (g, — 1)InAg — B Agr) +const..  (C.17)

We take the exponential of eqn. (C.17) and see that

N N
q(Aqr) o< exp (( Y 0ipjQigQiAij + o — 1) InAgy — (Y pip;jQig Qi + ﬁ;)l)/lql> :
ij i,j

i i)
(C.18)
Equation (C.18) shows that g(4,;) has the functional form of a
Gamma(Zgéj Pip;jOiQjiAij + a,?,, Xgéj pPipjQiQji + ﬁ,?l) distribution.
O
Proof of Proposition 10 in section 4:
Proof. We collect the terms of the free energy F' which depend on ¢(Z):
Flg(Z)]=—Ezre[lnp(A,Z,R,A,y,%,9)| +Ez[Ing(Z)] + const. (C.19)
=—EzrayInp(A|Z,RA,7)] —Egy[Inp(R|§)] - Ez g z[ln p(Z|7, R)]
+Ez[lng(Z)] + const. (C.20)
N K N K
=Ez ( =Y. ) PipiZigZAiE(nAg) + Y Y pip i ZuZ i E(Aq)
ii gl i gl
i i
N K N
-Y Y piZiE(In 717,,)) +Ez ( Y 4(z) lnq(Z,-)> + const.. (C.21)
i=1g=1 i=1

We apply Variational Bayesian optimisation to F with respect to ¢(Z,) and absorb
terms independent of Z, into const.. This yields:

K N K N K
IHQ(Za) = Z Zay ( Z papiQiqAai]E(ln aqu) + Z Z papiQiinaE<1n quv)
v=1 1

i=1 g— =1 g—1
i#uq i#aq

N K
— Y'Y pupiQig (E(Ag) +E(Agy)) + PuE(In nv)) +const.. (C.22)

i=1 g—1
;#a 4
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We take the exponential of eqn. C.22 which leads to:

o(22) <ox0 (320 (L X @it (wicky) ~10(5)) + 1 3 popi@it(wicir) -1,

1 1
#a = :#a =

£ Eano (G5 ) en(vo-vE (L))

e

(C.23)

where y(+) is the Digamma function. After normalisation of eqn. C.23, we see that
q(Z,) has the functional form of a 4 (Z;;1,0, = {Qui,. - .,Qak }) Multinomial distri-
bution. O

Proof of Proposition 11 in section 4:

Proof. The terms of the upper bound F dependent on g(R) are:

Flq(R)] = —Ezre[lnp(A,Z,R,A,y,%,¢)]+ Eg[lng(R)] + const. (C.24)
=—Ezra,[Inp(A|Z,R,A,7)] —Egy[Inp(R|$)] —Ez g z[Inp(Z|7,R)]
+Eg[lng(R)] + const. (C.25)

K N
=Er [Z Y (—RiR;QigQ;iAijE[In Ag] + RiRQigQiE[Aq1))

q,l iJj

i#]
N
— | X (1 -RiRj)A;;E[Iny] — (1 - RiR;)E[y]
7
i

+Z ~RE[In¢;] — (1 —R;)E[In(1 — ¢;)]

=1

i

q(R;)Ing(R ))—i—const (C.26)

™M=

R/QiE[In nq]] +Eg (

\\Mz

1

Variational optimisation of F with respect to ¢(R,) leads to:

=

K
ng(Ra) =Ra[ | L ¥ PiQiaQuiicBn Agt) ~ PiQiqQuE ()
q,l

1
a

bl

N K
+ Z piQilQanaiE(ln lql) - piQilQaqE(Aql)

i=1
i’;éa 2

N N

=Y Pi(Aia +Au)E(Iny) +2E(y) ) pi + E(Ing,)
i=1 i=1
i#a i#a

K
—E[In(1-¢,)]+ ¥ QugE(In nq)} +const.. (C.27)
g=1
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To see that, by eqn.(C.27), g(R,) has the functional form of the logarithm of a Bernoulli
Ber(R,; p,) distribution, we use the following observation [74]:

InBer(R4;pq) = Ralnp,+ (1 —Ry)In(1—p,) = R, 1In (1 Pap ) +const., (C.28)
— Fa
now we set U, = In (%) which leads to
exp(Ua)(1 = pa) = pu = —————— (C.29)
Pa = €Xp Pa Pa = T+exp(—Ua)’ .
So, we set
N K
a= ZZP quQalAzaE lnkql) piQtialE(Aql)
B
N K
+ Zzp QleanazE lnlql) piQilQaqEOlql)
il
N N
- Z Pi (Aia +Aai)]E(ln ')/) + ZE(Y) Z pi+ E(ln ¢a)
;7:&414 i;a
K
—E[n(1 - ¢,)]+ Y QugE(In7,) (C.30)
qg=1
which gives us together with eqn. (C.29) the optimal update, p;. [

Proposition 12. The free energy after convergence (Integrated Likelihood variational
bound) for the Poisson Stochastic Block Model with irrelevant vertices for K clusters,
is given by

F[q(Z,R,0)] = i<1 (r? jrnlr,,) r(rcocojgln, )>

— a%In(BY) + InT(02) + ayIn(By) — InT(cy)

K
Z 9 In(Bg) +InT(ey) + Y oty In(Byr) — InT(ctyr)
q.l
—1n<r<25§>>+21n +1n<l"<25q>>—iln(r(3q))
= g=1 q=1
+ Z ZQ,qan,q (C.31)

g=li=

where Q is the cluster partition matrix, A the adjacency matrix, R the relevant vertices,
© = (4,7,7,9) the model parameters and ¥ = (@, B, 8,0y, B, §i, i) the hyper pa-
rameters.
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Proof.

p(A,Z,R,©)
(Z,R,0)] In (22422 7 R ©)de C32
Fla( ZZR/ (Pney ) azR® (€32)

=-Ezrellnp(A|Z,R,A,7)] —Ezr ¢[Inp(Z|7,R)] — Ex[Inp(4)]
—Ey[lnp(y)] = Ez[Inp(x)] —Eg ¢ [In p(R|)] — Eg[In p(¢)]
N

+ Y Ez[lng(Z)] 4+ Ex[lng(m)] + Eg [Ing(¢)]
i=1

FERIng(A)] +Byling() €3
K N
ZZ < piP;QigQiAij (W(0tg) —In(By)) + pip;Qig Qi ( ))
2 P

K

+ L= (e~ D(wlog) ~In(B) +In (T(a))
g,

K

+ Z < 5, ) Olgz ln(ﬁz?l) + 0ty In(Byr) —In (Do)

K

2= 1) (vt) =)~ B (g:)

N
- (Z(l —pipj)Aij (w(oy) —In(By)) — (1 pmg;)

ij
i#]

—oyln(By) +1nT (o) — (e — 1) (w(ay) —In(By)) - ﬁy%j

+
™=
—~

—pi(W(&) = w(&+ ) = (1= p) (y(mi) — w(&i+)) )

(&' =1 (w(&) - (Ci+nf))+(17?—1)(llf(ni)—w(€i+ni))>

A~ 1
™M=

=

Il
-

(G = D) (w(G) —w(&G+m)+ (i = 1) (w(ni) — w(&i + m)))

-

Il
_

—~
—
=

(C(& +nf)) = In(T(E)) — In(T(n?)))

-

(In(T(Gi +m:)) — In(I'(&)) — In(T(1:)))
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s )+ £9)
e e fon )

K K
i <r (Z 5)) - ¥ n(r(a,)
=1 q=

f 8 —1) ( )—W(iﬁl>>+i§Qikanik. (C.34)

i=1k=1

Ma
Mz

1i

q

Ma

+

We insert the update equations for the hyper parameters 9 = (@, B, 8, ay, B, &, n;) of
Propositions 6, 7, 8 and 9 into eqn. (C.34). This yields eqn. (C.31).
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C.2 Relevance BlockVB algorithm: Filtering or Em-
bedded Algorithm

There are two variants for the application of our Relevance BlockVB algorithm: We
can choose the Filtering Relevance BlockVB algorithm where the update is determined
between the cluster of irrelevant vertices and the expansion cluster of the relevant par-
tition and the cluster of the irrelevant vertices.

The other option is the Embedded Relevance BlockVB algorithm, where the each ver-
tex, regardless if it is relevant or not is assigned, to one of the relevant clusters or the
cluster of the irrelevant vertices in the E-step.

In addition, we can use the Relevance BlockVB algorithm with the adaptive informa-
tive hyperparameters, we introduced in chapter 5, analogous to our BlockVB++ algo-
rithm of section 5.1.

Input: Combined cluster partition matrix Q(C), adjacency matrix A, vector of rele-
vant vertices p, input for relevance hyperparameters: otgg and Bgg, indices of active
vertices I.

Initialisation: Set neutral [69] hyperparameters, we discussed in chapter 5, for the
Gamma(Ay; 0y, Bry) distributions: O‘/?l = %; B,?l =0.01Vk,le{l,....,K}.

Set non informative priors of the Dirichlet prior distribution of cluster assignments:
8)=1,vke{l,...,K} [61,50].

Set the informative relevance hyperparameters (RP), (a$ , [3}9), (section 13.3.2) for the
Gamma(Yy; oy, By) distributions of the irrelevant cluster:

oy =1; (C.35)
By = : (C.36)

ogp )

Ber
Set non informative hyperparameters [61] for the distribution of relevant and irrelevant
vertices:

&= %Vie {1,...,N}, (C.37)
n = %Vie {1,...,N}. (C.38)

Prepare M-Step: Calculate Vk,[:

N N
S = X X PiPiQuQiidij + Y, ) PipjQuQjiAij, (C.39)
i 7 14
N N
Sk, = L Y. PipiQuCi+ Y Y. pipjQulii, (C.40)
i=1 jel icl gl
#i it i#j j=1
Sf;k =Y piQu, (C.41)
iel

for optimised updates of the parameters with respect to the subset of vertices i € [ in
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the M-step below.
Initialise the hyper parameters of the variational distributions:

N

Saiy = Y, PiP;Q1QuAij, (C42)
i#]
N

Sg, = Y. PiPjQuQji, (C.43)
i#]
N

Ss, = Y PiQik, (C.44)
i=1

and

Ot = Soy, + 04 (C.45)

B = Sp,, +Ba (C.46)

& = S5, + 6. (CA7)

Initialise parameters for the edge connections of the irrelevant vertices:

N

Say = Z(l —Pip;j)Aij, (C.48)
i

Oy = Sq, + 01y, (C.49)
N

S, = X (1-pip)), (C.50)
i

By =Sg,+By- (C.51)

Initialise parameters for the Beta(¢;; ;,7;) Vi, distributions of relevant and irrelevant
vertices Vi:

G=pitof, (C.52)
ni=1-pi+pB>. (C.53)

Main Loop: Until convergence of F' or maximum number of iterations.
Repeat: Update all active vertices, Va € I.
E-Step for Q:

Embedded E-Step:
Set active vertex a to relevant (p, = 1) and calculate cluster assignment of a for all

v={l,....K}:

N K N K
Qs <exp (LY. pipaQigAaB(In hy) + L L piPuQiAiB(In )
e ¥ sl
N K
- Z} Zl PaPiQiq (E(Avg) +E(Aq)) + paE(In nv)). (C.54)
ita T
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Normalise all updated matrix rows.

Filtering E-Step:
Alternative to Embedded E-step. Set matrix entry of expansion cluster of Q° to 1.

E-Step for p: Calculate relevance assignment of vertex a:

Mz
M=

N K
U, = Z ZpthqQalAmE lnqu) piQilQanai]E(lnAql)
=1 g, =1 g,
i#a i#a
N K N K N
Z Zp quQal]E( ql) Z Z QllQaq (llq) - E(ln }/) Zpi(Aia +Aai)
=lgl Elgl iza
i#a i#a i=1
N K
+2E(y) Y. pi+E(In6,) —E(In(1— 64)) + Y QugE[Inm,] (C.55)
B i
and
1
= C.56
P = T exp(—Ua) (€50
Round pj. Set
1, ifpr>0.
p;:{’ ifps 2 0.5 (C.57)
0, else

Update the relevant entries of the partition matrix Q: Set matrix row a to zero if p} =

M-Step: We prepare the update of the parameters of the distributions of the relevant
old old old

vertices by setting SE;“ ) = = Sh.» gk ) = S;?k/ and S(( ) = S{sk Vk,1.

Then we calculate S{Xk[, Sékl and Sgk Yk, like in equatlons C.39,C.40 and C41.

Now we can update the model parameters for all &,/ restricted to the vertices in 1,

analogous to our BlockVB algorithm in section 4.2:

041 = gy — Seer) 81, + ot (C.58)
Bu = Sg, — S5+l + B, (C.59)
8 =S5, — S5+ 55 + 0. (C.60)

We update the parameters of the irrelevant vertices:

N

oy =Y (1-pipj)Aij+ a3, (C.61)
#j
N

By=Y.(1-pip;)+By. (C.62)
i;jj

G=pi+&, Vi={1,...,N}, (C.63)

ni=1-pi+n’, Vi={1,...,N}. (C.64)
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Convergence: Check for the convergence of the variational upper bound, F[¢(Z,R,®)]:

CH-H:) —In F(CP""‘”P)
2R 6)] Zl ( c,>+r<n,>> : <F(C,°)+F(n?)>
- ln(ﬁy)—f—lnl“(a )—i—ayln(ﬁ’y)—lnl"(ocy)

Z lln q, )+1InT (e, ql JrZthlln By) —InT ()
q,!

—1n(r<25§>>+21n ) +1In (F(é@))-ém(r@))

+ Z Z QigIn Qjg- (C.65)

g=li=

Repeat until convergence of the upper variational bound or until the maximum number
of iterations is reached.
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