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Abstract
This thesis is an interdisciplinary work in the field of scientific visualization
as part of computer science and the field of fluid mechanics. It is focussed
on the analysis of time-dependent, two-dimensional flow fields. In this set-
ting, the search for relevant structures – often called features – is one of the
main topics. In my thesis, I am concerned with the extraction of Lagrangian
coherent structures (LCSs). While this concept is one of the most discussed
in the literature, there exists no commonly accepted definition. For instance,
some researchers associate LCSs with vortices and others with distinguished
manifolds of particle divergence and convergence. Due to the vague notion of
LCSs, their extraction is split into different domain-specific and algorithmic
challenges: What quantities are useful for identifying these features? How can
these structures be robustly extracted? How can they be tracked efficiently
over time? What are appropriate measures that enable a spatiotemporal filter-
ing of the extracted features? I contribute to the above-mentioned questions by
investigating the finite-time Lyapunov exponent (FTLE) and the acceleration.
The FLTE measures the separation and convergence of particles. Structures

visible in the FTLE field are a popular realization of LCSs. In this thesis,
an alternative algorithm for computing the FTLE field is given based on the
Jacobian of the flow field. In addition, a critical review of the FTLE approach
shows problems regarding the applicability to complex flow configurations.
Using the acceleration, I begin with transferring the concept of critical points

of velocity field topology to time-dependent flow fields. This concept does
only reveal significant structures for stationary flow fields. I show that fea-
tures defined as minima of the acceleration magnitude serve as time-dependent
counterparts of these points. These minima are introduced in this thesis as
Lagrangian equilibrium points (LEPs). Similar to the centers of standard ve-
locity field topology, a subset of the LEPs represents vortices. Within the
concept of LEPs, I present three major contributions. At first, I introduce a
hierarchy that is based on a spatiotemporal importance measure. It consists
of the lifetime of the features and will be later on combined with homological
persistence. The second contribution is the robust extraction of the LEPs and
their evolution. I present an approach to extract a vortex merge graph. An
existing tracking approach is adapted to the underlying physics while staying
compatible with homological persistence, which enables a noise resilient ex-
traction. Last, I present an approach to robustly extract vortex regions and
their evolution. Employing the same robust combinatorial tools as for the
vortex merge graph, I show how vortex regions can also be based on the accel-
eration magnitude. I also investigate the resulting vortex merge graph and the
associated vortex regions based on the acceleration magnitude and compare
the acceleration to other vortex related quantities.



Zusammenfassung
Diese Dissertation stellt eine interdisziplinäre Arbeit in den Bereichen der
wissenschaftlichen Visualisierung als Teil der Informatik und der Strömungs-
mechanik mit dem Fokus der Analyse von zeitabhängigen zweidimensionalen
Strömungsfeldern dar. Dabei spielt die Extraktion relevanter Strukturen – fea-
tures genannt – eine wichtige Rolle. In dieser Arbeit geht es vorrangig um die
Extraktion von Lagrangian coherent structures (LCSs). Für diese Strukturen
gibt es keine allgemein akzeptierte Definition, obwohl sie zu den meistdisku-
tierten in der Fachliteratur gehören. Sie werden teilweise mit Wirbeln aber
auch mit Partikeldivergenz assoziiert. Aufgrund der vagen Vorstellung von
LCSs sind bei der Extraktion sowohl anwendungsspezifische als auch algo-
rithmische Fragestellungen zu bearbeiten: Was sind vernünftige Größen zur
Identifizierung dieser Strukturen? Wie kann man diese robust extrahieren?
Wie kann man sie effizient über die Zeit verfolgen? Was sind geeignete Maße,
die eine Hierarchie der extrahierten Strukturen bilden? Ich trage zur Beantwor-
tung dieser Fragen bei, indem ich den finite-time Lyapunov exponent (FTLE)
und die Beschleunigung eines Strömungsfeldes analysiere.
FTLE misst die Separation und Konvergenz von Partikeln. Strukturen,

die im FTLE-Feld sichtbar werden, sind eine vielgenutzte Realisierung von
LCSs. In dieser Arbeit wird eine alternative Berechnungsmethode für FTLE
vorgestellt, die auf der Jacobi-Matrix basiert. Im Anschluss wird FTLE im
Hinblick auf komplexe Strömungsdaten kritisch hinterfragt.
Unter Nutzung der Beschleunigung, übertrage ich das Konzept kritischer

Punkte der Strömungsfeldtopologie auf zeitabhängige Felder. Dieses zeigt
nur für stationäre Felder signifikante Strukturen. Ich zeige, dass Minima der
Beschleunigungsmagnitude als zeitabhängige Gegenstücke dieser Punkte di-
enen. Sie werden in dieser Arbeit als Lagrangian equilibrium points (LEPs)
eingeführt. Ähnlich wie die Rotationszentren in der Strömungstopologie, ent-
spricht eine Untermenge der LEPs Wirbelzentren. Innerhalb dieses Konzepts
enthält diese Arbeit drei Hauptresultate. Als Erstes stelle ich eine Hierarchie
der LEPs vor, welche aus der Lebensdauer der Strukturen besteht und später
um ein räumliches Wichtigkeitsmaß ergänzt wird. Der zweite Beitrag ist die
robuste Extraktion der LEPs und ihrer zeitlichen Entwicklung. Ich präsen-
tiere einen Ansatz um einen vortex merge graph zu extrahieren. Dabei wird
ein bereits bestehender Ansatz auf die zugrundeliegende Physik angepasst,
wobei die Methode weiterhin kompatibel zu homologischer Persistenz bleibt.
Dies ermöglicht eine Extraktion trotz topologischem Rauschen. Als letzten
Beitrag zeige ich, wie man Wirbelregionen basierend auf der Beschleunigung
extrahieren kann. Ihre zeitliche Verfolgung wird ebenfalls ermöglicht. Dabei
werden dieselben robusten Werkzeuge benutzt, die auch bei der Extraktion der
LEPs Anwendung finden. Abschliessend werden sowohl der resultierende vor-
tex merge graph als auch die Wirbelregionen analysiert. Beschleunigung wird
dabei auch mit anderen Größen verglichen, die Wirbelaktivität markieren.
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Chapter 1

Introduction

Visual data analysis provides tools that support researchers in understand-
ing complex data with the goal of solving questions in various scientific areas.
The topic of this thesis belongs to the field of data analysis in fluid mechan-
ics. There, the scientific interests involve a wide range of questions, such as
analysis, optimization, and control of flows. Fluid flow researchers try to solve
these problems by designing appropriate experiments or simulating different
flow configurations (CFD). Due to sophisticated experiments, recording, and
increasing computational power, the complexity of the resulting data sets is
growing. Here, tools are needed that make the large amount of data manage-
able by focussing on the aspects of the flow the researchers are interested in.
This includes conceptual and algorithmic challenges, which are investigated
by researchers in data visualization as part of computer science in cooperation
with the domain experts of fluid mechanics.
One possibility is to provide appropriate direct visualizations to give insight

to the intricate flow structures that occur in these data sets. Many visual-
ization techniques for different kinds of flow fields have been proposed in the
recent years, cf. Section 3.1. Examples of these flow visualization techniques
are line integral convolution (LIC), stream line computation and visualization,
or image based methods such as GPU-LIC. Unfortunately, the increasing com-
plexity of the data sets complicates an analysis using only flow visualization.
Besides such a direct visualization, the reduction of the raw flow data to

an essential set of inherent structures is a promising approach. Thereby, the
researchers can focus on the aspects of the flow field they are interested in.
The structures are characterized as well-defined geometric objects, i.e., a point,
line, surface, or volume, which are also called features. They can be extracted
in several ways, e.g., as extremal structures or as iso contours of a given scalar
field. An appropriate visualization of the extracted structures improves the in-
terpretation of the flow fields. For instance, Schlichting’s book ‘Boundary layer
theory ’ [Sch79] and the Journal of Fluid Mechanics contain many masterpieces
of hand-crafted principle flow sketches that reveal the main flow characteris-

1



1. Introduction

Feature 
Identification

Mathematical 
definition VisualizationAlgorithmic 

realization

Figure 1.1 A feature-based analysis of flow fields consists of four steps: (i) identifi-
cation the feature of interest, (ii) an appropriate and precise mathematical definition,
(iii) an efficient and robust algorithmic realization, and (iv) a sensible visualization
of the features in context of the flow field

tics in a single picture. Examples of interesting features are stagnation points,
vortex cores, or vortex regions.
The extraction of features consists of four steps, see Figure 1.1. At first, the

structures that are of interest have to be identified. This includes questions
such as which structures reveal properties of the flow behavior the researchers
want to investigate. Therefore, this step can only be done in cooperation with
the domain experts. After the identification, a precise mathematical definition
has to be found in the second step. Here, it has to be decided which quantity is
used to extract the features. Sometimes, it is also necessary to investigate new
measures derived from the flow field. In addition, it has to be chosen which of
the inherent structures of the feature identifier field represent the feature, e.g.,
minimal points. In the third step, the analytical concept has to be realized
as an algorithm. The complexity of the data sets often demand efficient and
robust realizations, i.e., the algorithms are fast enough to analyze the data in
short time and can handle inaccuracies in the data that naturally occur due
to measurement or numerical problems. Often, an unsupervised automatic
extraction of the features is another request to the algorithm. In the last step,
an appropriate visualization has to be found. The extracted features have to
be brought into a context with the flow configurations.
In this thesis, the focus lies on the feature-based analysis of time-dependent,

two-dimensional flows. While many practical applications already involve
three-dimensional fields, two-dimensional flows are still an active research
area [Tab02, BM10, CKL10]. This especially includes important basic re-
search questions. For these problems, the results of the two-dimensional case,
which is often easier to understand and interpret, can be transferred to the
higher-dimensional problems. An example is turbulence, for which the two-
dimensional case is a basis for investigating the three-dimensional questions.
We base our feature extraction on the concept of Lagrangian coherent struc-

tures (LCSs). Over the past decades, this concept is one of the most discussed
in the literature in the field of fluid mechanics – especially in basic research.
Despite many efforts to characterize them, there is still no commonly accepted
definition. Typically, two features are related to this concept: vortices and
distinguished manifolds of particle divergence and convergence. Due to the
vague notion of LCSs, different domain-specific and algorithmic challenges are

2



Figure 1.2 Simultaneous visualization of convergence (blue) and separation (red)
of particles. The computation is done with the localized FTLE method that is intro-
duced in Section 4.2.

investigated:

• Which quantity is a good identifier for time-dependent fea-
tures? – For time-dependent flow fields, the flow behavior is determined
by particles that live in the spatiotemporal domain. It is therefore impor-
tant that the temporal dependence of the features is explicitly considered
in the feature definition.

• How can the features be extracted robustly? – In the case of
simulated and measured data, it is necessary to deal with inaccuracies
in the data values. In the case of derivatives, which are the basis of
many feature identifiers, this noise is even amplified. Therefore, robust
methods are required to extract structures from these fields.

• How can the features be tracked efficiently? – Another interest-
ing aspect in time-dependent data sets is the evolution of the features.
An appropriate tracking algorithm has to be found. As for the feature
extraction, the tracking method has to deal with noisy data sets, too.

• What are appropriate measures enabling a spatiotemporal fil-
tering of the features? – Large and complex data sets typically con-
tain a vast amount of structures. A hierarchy enables a distillation of
important features. Thereby, it has to be defined what important means.

The concepts and algorithms presented in this thesis contribute to these ques-
tions. The focus therefore lies on the first three steps of the pipeline shown in
Figure 1.1. New tools for an appropriate visualization of the extracted features
are subsidiary elements of this thesis.

3



1. Introduction

We investigate LCSs using the finite-time Lyapunov exponent (FTLE). The
FTLE measures the convergence and separation of infinitesimally close parti-
cles over a given finite time period. Typically, ridges of the FTLE field are
used to characterize the LCSs. We present the history of LCSs and their con-
nection to FTLE. A critical review of the FTLE approach shows the problems
regarding the applicability to complex flow configurations.
The standard algorithm [Hal01a] for the computation of the FTLE field is

based on the flow map, which maps end points of path lines to their starting
positions. The maximal separation of close particles is then measured by the
spectral norm of the gradient of this field. This assumes that the flow map’s
dependence on the variation of start positions can roughly be approximated
by a linear mapping. This assumption is only reasonable for small values of
advection times and a very high sampling density. We introduce an alternative
algorithm for computing the FTLE field. It is shown how the FTLE can be
based on the Jacobian of the flow field, which measures the local separation.
The method is therefore called localized FTLE. We compare the new method
to the existing approach with respect to visual differences, robustness against
noise, and efficiency. In addition to the new approach, a fast implementation
is presented.
In an analysis of the FTLE, we will see that there are limitations using

this approach to extract LCSs. Another structure that is often connected to
LCSs are vortices. These play a fundamental role for the understanding and
analysis of complex fluid flows. Researchers are interested in the location, size,
and strength of vortices as well as their temporal development and interaction.
This interest is driven by questions such as: What causes new vortices to arise
or dissolve, to grow or shrink, to merge or split? In this thesis, different tools
are developed to extract and analyze vortices and their region of influence.
While many approaches to extract vortices start with a physical consid-

eration of the flow, we approach this topic from the perspective of vector
field topology. There, vortex cores can be defined as centers in the velocity
field. This approach is successful for steady fields. Unfortunately, the concept
of fixed points does not reveal significant structures in time-dependent flow
fields and we therefore introduce a time-dependent counterpart. It is based on
carefully selected requirements such as choosing a Lagrangian viewpoint or a
Galilean invariant feature identifier. We show that the acceleration magnitude
fulfills these requirements. The features are defined as minima of the accel-
eration magnitude field and are called Lagrangian equilibrium points (LEPs).
Similar to the centers in the steady velocity field, a subset of the LEPs rep-
resents vortices – the remaining LEPs represent saddles. They can be distin-
guished using the Jacobian of the flow field.
Our new concept of critical points is then extended by the following contri-

butions

4



Figure 1.3 Using the acceleration magnitude, the methods that are introduced in
Chapter 5 are able to extract the vortex core lines and their regions of influence. The
image shows the extraction exemplary for a data set of a cavity.

• Concept for long-living LEPs – We emphasize the Lagrangian view-
point by averaging the acceleration magnitude along path lines. The
length of the integration is determined by the time the particle fulfills
a minimality condition in the acceleration magnitude field. This intro-
duces the concept of lifetime of features. The minima of the resulting
field are weighted by this lifetime measure, which leads to the distillation
of long-living features.

• Extraction of a vortex merge graph – In the next step, the ana-
lytical concept is realized using an extraction method that is resilient
against noise. While the features are linked to path lines for the ana-
lytical concept, this restriction is dropped and the LEPs are extracted
directly. Using analytical examples, it is shown that a subset of the
LEPs represents vortex cores. Robust combinatorial tools are employed
that are compatible with homological persistence simplification to ex-
tract the minima. This enables the analysis of complex data sets con-
taining noise. The evolution of the structures is given by a combinatorial
tracking approach, which we adapt to the underlying physics. Applying
this algorithm, a ‘vortex merge graph’ results. The lifetime criterion is
enhanced by a spatial importance measure, i.e., homological persistence.
Thus, our algorithms can handle feature-rich flow fields by filtering out
spatiotemporally important structures.

• Extraction of associated vortex regions – Investigating the topol-
ogy of the acceleration magnitude, we observe that the minima depicting

5



1. Introduction

vortex cores are surrounded by a particularly pronounced ridge. While
the location of the vortex cores in a data set is defined by a subset of
the LEPs, their regions of influence is therefore defined as the associ-
ated basin. We present an efficient algorithm to extract and track these
basins. This is based on the same combinatorial tools for scalar field
topology as the extraction of the vortex core lines. We therefore present
a unified extraction framework for vortex cores and regions using the
acceleration. A result of this framework for the data set of a cavity is
shown in Figure 1.3.

Finally, the vortex merge graph and the associated vortex regions based on
the acceleration magnitude are investigated. Different other flow quantities
are statistically analyzed along the graph and the regions. This validates the
extracted structures and reveals interesting results such as the dependence of
the exact temporal positions of merge events on the type of feature identifier.
The remainder of this thesis is structured as follows. The mathematical,

algorithmic, and physical foundation is given in Chapter 2. We begin with
the notation and a brief explanation of the mathematical concepts that are
needed to understand our approaches. Afterwards, basic algorithms for com-
binatorial topology extraction are explained, since the extraction of the LEPs,
the tracking of the vortex cores, and the extraction of the vortex regions are
based on scalar field topology. Then, basic physical concepts are explained
that help to interpret the physical meaning of FTLE and acceleration. In
Chapter 3, an overview of the related work of this thesis is given. We present
approaches to visualize flow fields, to extract features in these, and to com-
pute trajectories of critical points. The contributions of this thesis are then
presented in Chapter 4 and Chapter 5. We begin with the FTLE and present
the ideas mentioned above. Next, the concept of LEPs is introduced and the
algorithms for the extraction of the vortex core lines and vortex regions are
presented. This thesis is concluded with Chapter 6, where we discuss known
limitations of the presented approaches. Potential remedies and future work
are presented.
The work presented in this thesis has been previously published in peer-

reviewed international conference proceedings, journals, and books [KPH+09,
KHNH11, KWP+10, KPH+10, HKH11, KRHH11, KHH11, KHNH12].
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Chapter 2

Foundation

In this chapter, the mathematical, algorithmic, and physical foundation is
given that is needed in Chapter 4 and 5. In Section 2.1, the notation and
definitions for scalar, vector and tensor fields are introduced. In addition, the
associated topology is explained. In this thesis, extensive use of scalar field
topology and critical points tracking is made. The basic algorithms are given in
Section 2.2. To understand the physical meaning of the feature definitions that
are discussed, elementary terms of fluid mechanics are presented in Section 2.3.

2.1 Basic mathematical definitions and notations
In this section, the mathematical notation used in this thesis is briefly intro-
duced. We assume that the reader is familiar with vector calculus [MT03] and
therefore recall only the basic terms.
In this thesis, we will refer to scalars and scalar-valued functions with non-

bold symbols, e.g., x and s(x), and to vectors and vector-valued functions with
bold symbols, e.g., x and v(x). A tensor is always written as an upper-case
symbol, e.g., T(x). The spatial coordinates in two or three dimensions are
given by x = (x, y) = (x1, x2) or x = (x, y, z) = (x1, x2, x3), respectively. The
temporal parameter is referred to as t.

2.1.1 Scalar fields

Amap that assigns a scalar value to each point in a space is called a scalar field .
The values can be real- or complex-valued. In the following, a scalar field s(x)
given on a d-dimensional domain D ⊆ Rd, is a real-valued function s : D → R.
Temporally changing fields s(x, t) are given by s : D × I → R, I ⊆ R. In this
thesis, we will mainly deal with two-dimensional scalar fields (d = 2) and the
temporal interval will be finite.
For a smooth scalar field s, the first order spatial derivative is the gradient . It

denotes the direction and amount of the steepest ascent in the field. It is given
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2. Foundation

by ∇s = ( ∂s
∂x1

, · · · , ∂s∂xd ), where ∂
∂xi

denotes the partial derivative by the i-th
component. We sometimes refer to the partial derivatives by an abbreviated
form, e.g., for a two-dimensional field, the gradient is denoted by∇s = (sx, sy).
The Hessian Hs =

(
∂2s

∂xi∂xj

)
i,j

is the second order spatial derivate.

2.1.2 Vector fields

On a given d-dimensional domain D ⊆ Rd, a map that assigns each point in
a space a vector is called a vector field v : D → Rd. For a d-dimensional
image space, v consists of d scalar functions that determine the value of each
component v = (v1, · · · , vd). For fields with two- or three-dimensional image
spaces, the components are typically referred to as v = (u, v) or v = (u, v, w),
respectively. Similar to the definition of scalar fields, temporally changing
vector fields v(x, t) are given by v : D × I → Rd, I ⊆ R.
The first order derivate of a vector field v : D ⊆ Rd → Rd is the Jacobian.

It consists of all first derivatives of the components of the vector function
Jv =

(
∂vi
∂xj

)
i,j
. Sometimes, we write also ∇v = Jv and call this the velocity

gradient tensor. It can be decomposed into a symmetric part Sv = 1
2

(
Jv + JTv

)
and an anti-symmetric part Ωv = 1

2

(
Jv − JTv

)
.

The divergence of a vector field is given by div(v) = ∇·v = trace(Jv), where
the trace of a matrix is the sum of its eigenvalues. For a three-dimensional
vector field, its point-wise rotation or curl is defined by curl(v) = ∇ × v =(
∂w
∂y − ∂v

∂z ,
∂u
∂z − ∂w

∂x ,
∂v
∂x − ∂u

∂y

)
. The direction of the curl vector relates to the

axis of the locally strongest rotation. The rotation plane is perpendicular to the
vector. The amount of rotation is described by the magnitude of the vector.
For two-dimensional fields, the curl reduces to a scalar function curl(v) =
∂v
∂x− ∂u

∂y . In the field of fluid dynamics, the curl is often referred to as vorticity .
Note that scalar fields give rise to gradient fields. For simply connected

domains, these vector fields are curl-free, i.e., curl(v) = 0.

Feature curves. In time-dependent vector fields, there exist four types of
feature curves: stream lines, path lines, streak lines and time lines. If the field
does not change in time, the definitions of the first three types of lines yield
the same curves – the stream lines. Note that the stream line is the only curve
that lives in the spatial domain and can therefore be computed by using just
one time step of the vector field.
Let v(x, t) be a time-dependent vector field. For a fixed t0, a stream line

originating at x0 is defined as the solution of the ordinary differential equa-
tion (ODE)

d

dτ
x(τ) = v(x, t0) with x(0) = x0. (2.1)

8
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This stream line is a parameterized curve C(τ) of the vector field. At each τ ,
the curve C is tangent to the vector at (x, t0). The existence and uniqueness
of the solution of this equation is guaranteed if the conditions of the theo-
rem of Picard-Lindelöf [CL84] are fulfilled. Therefore, v has to be Lipschitz-
continuous in x. If the solution exists, the stream line itself is unique. Stream
lines cannot intersect.
The next type of integral line is the path line. It is the solution of a similar

equation
d

dτ
x = v(x, t0 + τ) with x(t0) = x0. (2.2)

Note that in contrast to the equation for a stream line, this equation is not
autonomous – it depends on τ . However, path lines can be defined as tangent
curves of a vector field which yields an autonomous differential equation. To
do so, we extend the vector field by one dimension

v′(x, t) =

(
v(x, t)

1

)
. (2.3)

Now, path lines are the solution of

d

dτ
x = v′(x, t) with x(t0) =

(
x0

t0

)
. (2.4)

The curve that is the solution of this equation lives in a d + 1-dimensional
spatiotemporal domain. Interestingly, the stream lines of the vector field are
also given by this equation, if we slightly change the definition of v′:

v′(x, t) =

(
v(x, t)

0

)
. (2.5)

By interpreting the vector field as an advection field, both of these lines rep-
resent the evolution of a single infinitesimally small and massless particle. In
contrast, streak and time lines show the evolution of multiple particles.
Streak lines consist of all points that originated from a common source lo-

cation at different times. A single line is generated by choosing one point in
a time-dependent flow field and continuously advect the line originating from
this point by the vector field. Recently, Weinkauf et al. [WT10] have shown
that streak lines can be alternatively computed as tangent curves of a derived
vector field, which is defined as

q(x, t, τ) =

(∇φτt (x))−1 · ∂φ
τ
t (x)
∂t + v(x, t),

0
−1

 (2.6)

where φτt (x) = φ(x, t, τ) is the flow map φ : D → D. Its value is the location
of the particle at (x, t) after advection time τ . The field q(x, t, τ) is called the
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(a) T = 0 (b) T = 0.4 (c) T = 0.8

(d) T = 1 (e) T = 1.2 (f) T = 1.4

Figure 2.1 Different feature curves in a simple time-dependent two-dimensional
vector field, cf. Equation (2.7). The stream lines are depicted by Line Integral
Convolution (LIC). A path line is shown as a red, a streak line as yellow, and a time
line as a blue curve. Note that the time line is cropped by the boundary of the data
set ([0, 1.2]× [0, 1]). While the time and streak line change over time, the part of the
path line that is already computed holds its location.

streak line vector field . The parameter τ is the advection time of a point on
the streak line. For details, we refer to [WT10].
The last type of lines are time lines. While a streak line describes a curve

of advected points originating from a single source location, time lines are
curves advected by the flow – there is not a common source point, but a line of
connected points. They can be interpreted as the advancing front of multiple
path lines. The best analog in the real world for these lines is a yarn thrown
into a river.
To get a better insight into the behavior of these different curves, Figure 2.1

shows the evolution of these lines for a simple vector field

v(x, t) =

(
cos t
sin t

)
. (2.7)

None of the depicted curves coincides with another line. The start and end
points of the streak and path line are the same, and the start point of the time
line is always located at the end point of the path line.
Recently, a unified notion of tangent curves in time-dependent vector fields

was proposed by Weinkauf et al. [WTH12].
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2.1.3 Tensor fields

A tensor is a multi-linear map, i.e., a map that is linear in each argument.
There exist tensors of different orders. For instance, tensors of order 0 are
scalar values, and tensors of order 1 are vectors. Thus, similar to interpreting
a scalar as a vector, scalar and vectors can be interpreted as tensors. However,
in this thesis, if we speak of tensors, we mean tensors of order 2. For a given
basis, a tensor can be written as an n × n matrix. Using this interpretation,
tensors are also linear maps T : Rn → Rn. A tensor field T(x, t) is then
defined as a map that assigns each point in a space such a map T ∈ Rn×n.
In this thesis, a tensor will occur as a derivative of a scalar or vector field.

In fact, the Hessian, cf. Section 2.1.1, and the Jacobian, cf. Section 2.1.2, are
tensors as defined above.

2.1.4 Two-dimensional scalar and vector field topology

Figure 2.2 Topological features of a two-dimensional scalar function represented as
a height field. The color is determined by the scalar value – blue corresponds to low
values and red to high values. The topology consists of minima (blue), saddles (yel-
low), and maxima (red), and the minima lines (blue) and maxima lines (red) that
separate the basins.

Vector field topology was introduced to the flow community by Tobak and
Peake [TP82]. Helman and Hesselink [HH89, HH91] transferred the ideas to
the visualization community a few years later. Afterwards, many extensions
such as simplification and tracking algorithms have been published. We refer
to the survey paper [LHZP07] and the references therein.
In this section, the first order topological features of scalar and vector fields

are introduced. Since a scalar field can be interpreted as a gradient vector field,
the topological features coincide. Their topology consists of critical points and
separatrices. An example of the topology of a scalar function is shown in
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Figure 2.2. For vector fields, attracting and repelling orbits are an additional
part of the topology.

Critical points. Let v(x) be an arbitrary vector field on a domain D. A
critical point p is a point in the domain for which the vector field is zero –
v(p) = 0. In this thesis, we only consider first order critical points, i.e., at
these points the Jacobian matrix has full rank. Other points are called higher
order critical points.
To classify the critical points, one can use the limit sets of stream lines. Let

v(x) be a non divergence-free (div(v) 6= 0), two-dimensional vector field and
C(τ) be a stream line in this vector field. The α-limit set of the stream line
C is defined by{

a ∈ D : ∃(tn)∞n=0 ⊂ R, tn → −∞, lim
n→∞

C(tn)→ a
}
, (2.8)

and its ω-limit set{
a ∈ D : ∃(tn)∞n=0 ⊂ R, tn →∞, lim

n→∞
C(tn)→ a

}
. (2.9)

If there exists an open neighborhood U ⊂ D of a critical point p, for which
the α-limit sets of all stream lines in U only consist of p, then p is called
a source. Vice versa, if the ω-limit sets of all stream lines of U consist only
of p, then this point is called a sink . The sources and sinks of a vector
field can furthermore be split up into classes of rotational behavior. If the
stream lines in the neighborhood of p show rotational behavior, the sources
and sinks are called repelling and attracting foci , respectively. If there is no
such behavior, the sources and sinks are called repelling and attracting nodes.
This classification does not cover all critical points. The remaining critical
points are called saddles.
For divergence-free vector fields, only saddles and centers exist. The saddles

are the points, where no rotational flow behavior is shown, and the centers are
the critical points that are enclosed by rotational stream line behavior.
It can be shown that the above classification can be completely based on the

eigenvalues of the Jacobian of the vector field. Let λ1, λ2 be these eigenvalues.
Furthermore, let Re(λ) be the real and Im(λ) be the imaginary part of the
eigenvalue λ. Then the first order critical points can be classified by

Source (repelling) : 0 < Re(λ1) ≤ Re(λ2)
Saddle : Re(λ1) < 0 < Re(λ2)
Sink (attracting) : Re(λ1) ≤ Re(λ2) < 0
Center (Im 6= 0) : Re(λ1) = Re(λ2) = 0.

(2.10)

For the sources and sinks, the foci and nodes are distinguished by:
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Saddle Repelling node Repelling focus
Re(λ1) < 0 < Re(λ2) 0 < Re(λ1) ≤ Re(λ2) 0 < Re(λ1) ≤ Re(λ2)

Im(λ1) = Im(λ2) = 0 Im(λ1) = Im(λ2) = 0 Im(λ1) = −Im(λ2) 6= 0

Center Attracting focus Attracting node
Re(λ1) = Re(λ2) = 0 Re(λ1) ≤ Re(λ2) < 0 Re(λ1) ≤ Re(λ2) < 0

Im(λ1) = −Im(λ2) 6= 0 Im(λ1) = −Im(λ2) 6= 0 Im(λ1) = Im(λ2) = 0

Figure 2.3 Different types of critical points of a vector field. The classification is
done by the eigenvalues λ1, λ2 of the Jacobian of the vector field.

Foci : Im(λ1) = −Im(λ2) 6= 0
Nodes : Im(λ1) = Im(λ2) = 0.

(2.11)

If the eigenvalues of the Jacobian have an imaginary part, the stream lines in
a neighborhood of the critical point show rotational behavior. An overview of
the different types of critical points in a vector field and their classification is
given in Figure 2.3. A simple vector field and its critical points are shown in
Figure 2.4.
Since a scalar field can be interpreted as a gradient field, the definition of the

critical points can be transferred. Note that a gradient field has no rotation
and the imaginary part of the eigenvalues of the Jacobian is therefore zero.
Thus, the critical points of a scalar field are sources, saddles, and sinks. They
are typically called minima, saddles, and maxima, respectively. In Figure 2.2,
all types of these critical points are shown.

Boundary switch points. For bounded domains, there is another type of
distinguished points. Let I ⊂ ∂D (O ⊂ ∂D) be the part of the boundary
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Figure 2.4 Critical points of a simple vector field. The vector field is depicted by
LIC. The color of the critical points is determined by their classification as depicted
in Figure 2.3.

of D, where the vector field points into (out of) the domain. The points
on the boundary of the domain, where the inflow (p ∈ I) changes to an
outflow (p ∈ O) are called boundary switch points. For details, we refer to
Scheuermann [Sch99] or Weinkauf [Wei08].

Periodic Orbits. In an arbitrary vector field, there can be closed stream
lines of attracting or repelling behavior. These are called attracting and re-
pelling periodic orbits. They can also be characterized as α- and ω-limit sets.
Note that in the case of orbits, the limit sets do not only contain a single point,
but an entire line. They can only occur in vector fields and not in scalar fields.
A periodic orbit is called isolated periodic orbit if it has an open neighborhood
that does not contain any other periodic orbit. An example of this type of
structures is shown in Figure 2.5.

Events in time-dependent vector fields. Let v(x, t) be a time-dependent
two-dimensional vector field. While the vector field smoothly changes in time,
the location of the critical points also changes. There are four types of events
that can occur: an entry or exit event, a Hopf bifurcation, and a fold bifurca-
tion. A good description is given in the thesis of Tricoche [Tri02].
If a critical point enters or leaves the domain, this event is called entry or

exit . If a critical point changes its type from a sink to a source, or vice versa,
this event is called a Hopf bifurcation. For one moment in time, the type of
the critical point will be a center. In that case, the eigenvalues of the Jacobian
are purely imaginary. The last event is the fold bifurcation, which occurs
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Figure 2.5 Isolated periodic orbits of a vector field. Attracting periodic orbits are
shown in red, and repelling ones in blue. The stream line behavior is depicted by
LIC.

when critical points are born or die. A birth or death event always produces
or destroys not only one, but two critical points. In two-dimensional vector
fields, for a sink or a source, always a saddle has to be created or destroyed.

Separatrices. In a two-dimensional, non divergence-free vector field, sepa-
ratrices are stream lines that separate the field into regions of common stream
line behavior, i.e., stream lines in one region share their source and destination.
These destinations can be sources and sinks, inflow or outflow components of
the boundary or periodic orbits.
Separatrices can be defined in the following way: First, we consider all limit

sets of stream lines in the vector field. The α-limit sets consist of the set
of all sources CI , the set of all connected components of the inflow domain
of the boundary {Ii : i = 1, ..., n}, and the set of all repelling periodic orbits{
P Ii : i = 1, ..., k

}
. On the other hand, the ω-limit sets consist of the set of

all sinks CO, the set of all connected components of the outflow domain of
the boundary {Oi : i = 1, ..., n}, and the set of all attracting periodic orbits{
POi : i = 1, ..., k

}
. Now, we define an α-basin of an element of the α-limit

set a as the set of all points p, for which a stream line starting at a point p
has a as its α-limit set. The ω-basins are defined by analogy. Note that the
joint set of all α-basins covers the whole domain and the basins do not overlap
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Figure 2.6 Separatrices of the vector field shown in Figure 2.4.

each other. This is also true for the ω-basins. Now, let {Mi ⊂ D : i = 1, ..., l}
be a set of subsets of the domain D in the way that all points p ∈ Mi share
the same inflow and outflow basin. The boundary of each Mi excluding the
associated α- and ω-limit set defines the separatrices. For details, we refer to
Scheuermann et al. [SHJK00].
While the above definition is based on α- and ω-limit sets, the separatrices

can also be defined using the saddles and the boundary switch points. A
streamline is computed in forward and backward direction of the eigenvectors
of the Jacobian at these points. For a two-dimensional vector field, at each
saddle point, there are four such separatrices. Two are connected to sinks
and the other two are connected to sources. This definition also holds for
divergence-free vector fields, but here the separatrices connect the saddles.
The separatrices of the vector field of Figure 2.4 are shown in Figure 2.6.
By interpreting a scalar field as a gradient vector field, one can define sepa-

ratrices in the same way as for arbitrary vector fields. Fo scalar field topology,
the separatrices that are connected from a saddle to a minimum (maximum)
are called minimum (maximum) lines. These lines are also shown in the ex-
ample in Figure 2.2.
Note that for the definition of extremal structures in scalar fields, the notion

of ridges and valleys comes into play [Ebe96]. They are defined based on the
Hessian of the scalar field. These structures are not always the same curves as
the separatrices. There are scalar fields for which not all ridges or valleys are
separatrices and vice versa. In this thesis, we will only use separatrices – even
if we speak of ridges or valleys.
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2.2 Algorithmic background

In this section, basic algorithms are presented to extract the topology of a
scalar field and track the critical points over time.

2.2.1 Combinatorial methods to extract scalar field topology

Morse theory [Mil63] relates the topology of the domain to the extremal struc-
ture of a given scalar function on this domain. On the other hand, tools devel-
oped from Morse theory can be used to compute the extremal structure of a
scalar function. We will use algorithms that are based on the discrete notion
of Morse theory that was introduced by Forman [For01] for cell complexes. He
defined a discrete version of a vector field, which is called combinatorial vector
field [For98a]. Based on this work, extraction algorithms for the topological
skeleton of a discrete vector field were proposed.
Lewiner [Lew05] presented the first implementation of Formans theory. With

a focus on the extraction of the extremal structures of scalar fields, he used a
computational realization of the combinatorial vector field using hyper graphs
and hyper forests. Guylassy et al. [GNP+06, GNPH07, GBHP08, Gyu08,
GBPH11] proposed several efficient algorithms for the extraction of critical
points of scalar fields – mainly in three dimensions. They do not compute
the combinatorial vector field directly, but the Morse-Smale complex [Sma61],
which represents the extremal skeleton of a given scalar function. King et
al. [KKM05] presented an algorithm to compute the Morse-Smale complex
from a given point data set.
Mostly, the implementation of combinatorial vector fields comes with a sim-

plification strategy. The number of critical points can be thereby reduced until
the minimum amount of critical points for a given domains is reached. For a
sensible reduction of the critical points – often called cancellation –, the con-
cept of homological persistence as introduced by Edelsbrunner [EHZ01, EH08]
is used. We will describe this concept in the last part of this section.
In this thesis, we will make use of a recent algorithmic approach done by

Reininghaus et al. [Rei12, RGH+10]. Note that we will follow the notation and
definitions of his thesis in the remainder of this section. While the methods
are able to extract scalar and vector field topology, we only need the extremal
structure of a scalar field. Therefore, we only describe the algorithms based
on the combinatorial gradient field, which is a special case of a combinatorial
vector field. The difference is that a gradient field cannot contain periodic
orbits. We will introduce the basic concepts, but for details, we refer to the
mentioned publications. Note that we speak of gradient fields in the remainder
of this section, but the actual field is typically a scalar field.
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Figure 2.7 A combinatorial gradient field is a matching on a given graph. The
matched edges in the images are indicated by the dashed lines (a). A critical point
is an unmatched node (b). A separatrix is an alternating path in the graph that
connects two critical points (c).

Combinatorial gradient fields. Using the approach of [Rei12], the com-
binatorial representation of a gradient field consists of two components: the
representation of the domain as a graph and the representation of the gradient
vector field as a matching on this graph. For the sake of simplicity, the defini-
tion in this section will be done assuming that the grid of the original data is
a simplicial complex, e.g., a triangulation. The same structures can be defined
for arbitrary complexes using polygons as basic structural elements, e.g., the
data can be given on a rectilinear grid. Then, the grid is a cell complex and
the combinatorial vector field is defined on a cell graph.
Let S be a two-dimensional simplicial complex and Sd be the simplices of

dimension d. An associated simplicial graph GS = (N,E, φ, ψ) consists of the
associated nodes N and edges E and two functions that evaluate the dimension
of a node (φ) or an edge (ψ). First, for every d-dimensional simplex s ∈ Sd, a
node is inserted to the simplicial graph with the same dimension d. An edge
(a, b) is inserted in the graph, if a is in the boundary of b in the simplicial
complex S. The dimension of this edge is given by the dimension of a. The
dimension is also called layer . To define a gradient field on this graph, each
node has to be assigned a scalar value. For the nodes of layer zero, a scalar
value is typically given by the original scalar field associated to the gradient
field. For the other nodes, the maximum value of the lower layered nodes
in their boundary is used. Figure 2.8 depicts a simplicial graph for a given
triangulation.
A combinatorial vector or gradient field is now defined by a matching on

this graph. In detail, a matching is a subset V of the edges E of the graph
GS in the way that each two elements of V are disjoint, see Figure 2.7. A
combinatorial stream line in this discrete representation of the vector field is
defined as an alternating path with respect to the matching. An abstract
algorithm to trace the stream lines of layer p starting at a node u is given in
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(a) Triangulation (b) Simplicial Graph

Figure 2.8 Construction of a simplicial graph based (right) on a triangulation (left).
Each point, edge and face in the triangulation corresponds to a node in the graph.
The layer of the node is determined by the dimension of the simplex. Here blue
spheres represent nodes of layer 0, yellow spheres nodes of layer 1, and red spheres
represent nodes of layer 2. The edges in the graph are determined by the connectivity
in the triangulation.

Algorithm 2.1: Combinatorial Streamline Integrator: traceLine(...)
Input: GS = (N,E, φ, ψ), V ⊂ E, u ∈ N , p = 0, 1
Output: Combinatorial p-streamline that starts in u
1: loop
2: Line.append( u )
3: if there exists w: {u,w} = `p ∈ V then
4: u ← w
5: V ← V c

6: else
7: return

Algorithm 2.1. Thereby V c denotes the complement of V in E.
The topological features defined in Section 2.1.4 can be easily transferred.

A critical point in this vector field is a node of the graph that is not contained
in any pair of the matching. The type of the point is defined by its layer. For
two-dimensional fields, minima have layer 0, saddles have layer 1 and maxima
have layer 2. A separatrix is defined as a combinatorial stream line connecting
critical points. Again, the type of the separatrix is defined by the layer. An
overview of the topological features is given in Figure 2.7.

Construction of the matching and cancellation. The matching needs
to be determined in a way that the resulting combinatorial gradient field re-

19



2. Foundation

sembles the original field best. Reininghaus et al. [Rei12, RGH+10] imple-
mented an approximation algorithm for this problem. They begin with an
empty matching. Then, a sequence of augmentation paths is computed. An
augmentation means that the matched edges along the augmenting path be-
come unmatched and vice versa. Choosing the correct set of augmentation
paths results in a matching that resembles the scalar field best. To further
reduce the topological complexity of the combinatorial gradient field, Rein-
inghaus et al. [RGH+10] augment the matching beyond the exact extremal
structure of the scalar function. As a notation, for a matching M and an
augmenting path s, the augmented matching is denoted as M 4 s.
The main problem in choosing the augmentation paths is to make sure

that an augmentation of an existing valid matching, i.e., a Morse match-
ing [For98b], results in another valid matching. Here, Forman’s cancellation
theorem [For98b] helps to fulfill this condition: If two unmatched nodes are
connected by exactly one separatrix s in a Morse matching M , then M 4 s is
also a Morse matching. Thus, it is sensible to choose the separatrices as the
augmentation paths. Augmenting a matching along a separatrix removes a
pair of critical points: a minimum and a saddle, or a maximum and a saddle.
This is the reason why an augmentation is also called cancellation.

Algorithm 2.2: Generate Matching Sequence
Input: G = (N,E, φ, ψ), ω
Output: AugPaths, Vkn
1: M ← ∅, AugPaths← ∅, heap← ∅
2: for all u ∈ N and p = 1 do
3: (path, weight)← getMaxUniqueSeparatrix(G,ω,M, u1)
4: heap.push(u,weight)
5: while heap 6= ∅ do
6: (u,weight)← heap.pop()
7: (path, weight)← getMinUniqueSeparatrix(G,ω,M, u)
8: (nextNode, nextWeight)← heap.top()
9: if weight ≤ nextWeight then
10: M ←M 4 path
11: if weight > 0 then
12: AugPaths.push(path)
13: else if weight <∞ then
14: heap.push(u,weight)
15: Vkn ←M

The details of the construction of the matching sequence are given in Algo-
rithm 2.2 [Rei12]. It makes use of the function getMinUniqueSeparatrix(...),
which iterates over all four separatrices of a given saddle and returns the aug-
menting path s with the lowest weight. The weight is defined as the value of
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the higher-layered critical node minus the value of the lower layered critical
node. The function also tests the uniqueness condition as mentioned above.
Unique means that the minimum or maximum that is connected to the saddle
can only be reached by this separatrix outgoing from the saddle. If no such
separatrix exists, an empty augmenting path is returned by the function with
the weight ∞. Note that as long as augmenting paths with negative weight
exist, the matching that represents the correct extremal structure of the scalar
function has not been reached yet. Augmenting paths with positive weight fur-
ther reduce the topological complexity of the extremal structure. Therefore,
first the negative paths have to be processed before the positive ones. The
first matching for which no valid path with a negative weight exists is called
initial matching .
Algorithm 2.2 is run in the following way. First, we begin with an empty

matching, no augmenting paths and an empty min-heap (Line 1). Now, all
saddles of the grid are added to the heap with the weight of their minimum
unique separatrix (Lines 2 - 4). While the heap is not empty, the following is
done: The saddle with the lowest weight in the heap is taken (Line 6). Then,
the current weight returned by getMinUniqueSeparatrix(...) is computed for
this saddle (Line 7). Note that augmentations can change the weights of the
saddles in the heap. According to Reininghaus [Rei12], it is sufficient to check
if the next element in the heap has a higher weight (Lines 8 and 9). If this
is true, the saddle is still valid and the associated separatrix can be used as
an augmentation path (Line 10). If the weight of the augmentation path is
positive, we already reduce the complexity of the extremal structure of the
scalar field. We therefore want to save the augmenting path (Lines 11 and
12). If the augmenting path was not valid anymore, the saddle is reinserted
to the heap, if it still has a valid separatrix (Lines 13 and 14). The resulting
matching is saved at the end (Line 15).
Note that after the initial matching is constructed, a hierarchy of the ex-

tremal structure of the scalar function is given by the order of the augmenting
paths. It was shown by Dey et al. [DLL+10] that this hierarchy is similar
to the hierarchy introduced to the critical points by homological persistence,
which is described in the next section.
Alternatively, Reininghaus et al. employ an approach of Robins et al. [RWS11]

to construct the initial matching. Here, the construction of the initial matching
is parallelized. Thus, the computation can be done fast on current multi-core
platforms. In addition, the resulting unmatched nodes of the initial match-
ing are guaranteed to be critical. After constructing the initial matching, the
above algorithm to construct the hierarchy is still employed.

Homological persistence. An importance measure for critical points is
defined by persistence. Loosely speaking, it measures the resistance of a critical
point against perturbation of the data values in its neighborhood. The measure

21



2. Foundation

x1 x2 x3 x4

f(x4)

f(x1)

f(x2)

f(x3)

Figure 2.9 Pairing induced by homological persistence for a one-dimensional scalar
function. At the maximum in the center, two components of the sub-level sets of
the function merge. There, the maximum is paired with the minimum of the two
components that has the highest value. The other two critical points will be paired
afterwards, when the other maximum is reached.

Figure 2.10 Critical points of a scalar function. To the function a small amount
of noise is added that grows towards the boundary. The color is determined by
the classification as in Figure 2.3. The size of the critical points is determined by
the persistence value. The algorithm extracted 37957 critical points. Homological
persistence classifies most of them as unimportant.
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was proposed by Edelsbrunner et al. [EHZ01, EH08]. Its computation is related
to the notion of sub-level sets and Betti numbers. We will briefly introduce
these concepts – without giving a formal definition, since details would need
an explanation of homology groups. For details, we refer to [EHZ01] for the
persistence measure and to [Hat02] for an introduction to homology theory.
In two dimensions, the Betti numbers indicate the number of connected

components (β0) or the number of holes in a surface (β1). For instance, a disk
has β0 = 1 and β1 = 0. Another example is a two-dimensional surface that
looks like the digit 8. It has β0 = 1, but β1 = 2.
For a given function f : D → R and a given value t, the sub-level set St ⊆ D

is defined as
St(f) = f−1 ((−∞, t]) (2.12)

It consists of all point of D for which the function value of f is smaller than t.
After introducing these two ideas, we can now define homological persistence

of critical points. Let f : R2 → R be a two-dimensional scalar function.
Furthermore, let β0(f, t) and β1(f, t) be the two relevant Betti numbers of the
sub-level set St(f) for a given t. With increasing t, these Betti numbers change.
Homological persistence measures these changes. There are four events in
two-dimensional fields: First, a new connected component in the sub-level
set can be born. This happens at a minimum. Furthermore, two connected
components can merge, which occurs when the parameter t passes the value
of a saddle. Third, a new hole can also be born at a saddle. Last, a hole in a
connected component can die. This occurs at a maximum.
The persistence value of the critical points is thereby determined in the

following way: A new-born connected component is labeled with the associated
minimum. At a saddle, two connected components merge that are labeled with
two different minima. The persistence value for the saddle and the minimum
with the higher function value is defined as their height difference. The merged
component is labeled with the remaining minimum. A maximum is paired with
the saddle with the highest function value and, again, their persistence value
is defined as their height difference. Note that this informal explanation of
persistence does not hold in three dimensions.
In Figure 2.9, an example of a one-dimensional function and the pairing is

given. While here only minima and maxima exist, persistence is defined in
a similar way as for two-dimensional fields. The critical points in the center
are paired first and the outer two afterwards. A two-dimensional example of
the critical points of a scalar function weighted with persistence is shown in
Figure 2.10.
The changing Betti numbers of the sub-level sets can be interpreted as time-

dependent functions. Thus, by the pairing of the critical points, some kind of
lifetime is induced. This explains the name persistence for the importance
measure.
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Figure 2.11 Combinatorial feature flow fields. Left: Two subsequent combinatorial
gradient fields V0 and V1. Middle: Forward tracking field V[0,1]. Right: Backward
tracking field V[1,0]. The minima (blue) in V0 and in V1 are tracked as there is a
combinatorial 0-streamline (transparent) in V[0,1] and a combinatorial 0-streamline in
V[1,0] that connect these points.

2.2.2 Combinatorial feature flow fields (CFFF)

Using combinatorial gradient fields, Reininghaus et al. [RKWH12] proposed a
method to efficiently track the critical points in two-dimensional scalar fields.
Their method is based on the mathematical foundation proposed by King et
al. [KKM08]. In this thesis, we will use and adapt their approach to track
minima in time-dependent scalar fields. The relevant algorithms are discussed
in the following.

Tracking fields. The approach is based on two fields that represent the
combinatorial flow of the critical points from one to the next time slice and
vice versa. The method is called combinatorial feature flow fields (CFFF ).
The individual fields are called forward and backward tracking field. They
are based on the combinatorial gradient fields of the scalar field. For the sake
of simplicity, we assume that the simplicial graph GS = (N,E, φ, ψ) of these
gradient fields is the same for all slices of the gradient field, i.e., the grid the
data is given on is the same for all time-slices and only the data values change
over time.
Let (Vt)t=0,1,2,...,T be the sequence of combinatorial gradient fields for which

the critical points shall be tracked. We assume T = 1 for now. The forward
and backward tracking field is now defined as a combinatorial gradient field of
a complex S × [0, 1]. The graph GS×[0,1] can thereby be constructed from the
simplicial graph GS . Note that S × [0, 1] is a cell complex, but no simplicial
complex. GS×[0,1] is therefore a cell graph. To construct this cell graph, we
start with three copies G1

S , G
2
S , and G

3
S . Then, for each node of G1

S an edge
to the corresponding node of G2

S is added. The same is done for G2
S and G3

S .
The layer of each node in G2

S is increased by one.
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Figure 2.12 Pipeline of the combinatorial feature flow fields approach.

Now, the forward tracking field is defined by a matching on this graph.
Thereby, the matching on G1

S and G2
S is determined by the matching of V0,

i.e., the matching of the earlier time slice. The matching on G3
S is defined by

the matching on V1. Furthermore, all links that connect a critical point of
V0 to a node in G2

S are added to the matching. This defines a combinatorial
gradient field, as was shown in [KKM08].
Iteratively, the forward tracking field can be defined for the whole sequence

(Vt)t=0,1,2,...,T . If the tracking field is given for V[0,k], then the field for V[0,k+1]

is constructed as the union of V[0,k] and V[k,k+1]. The backward tracking field
is given by reversing the sequence (VT )k=0,1,2,...,T . An example for a forward
and backward tracking field is given in Figure 2.11.
Using the approach of King et al. [KKM08], two critical points of two adja-

cent time slices are connected to each other, if they are connected by stream-
lines in both the forward and backward tracking field. We will call these
connections unique tracking . The lines connecting critical points are called
critical lines. Note that the only critical points of the resulting forward track-
ing field exist in VT and in V0 for the backward tracking field. However, the
critical points are extracted in the original combinatorial gradient fields. Just
their evolution is computed in the combinatorial feature flow fields. Note that
this evolution can also be computed on the combinatorial gradient fields that
are simplified by homological persistence.

Efficient computation. Using the above mentioned definition, Reininghaus
et al. [RKWH12] proposed an efficient implementation to track the critical
points. First of all, an out-of-core algorithms is proposed. Only two combina-
torial gradient fields are needed to track the critical points form one to another
time slice. In addition, they show that it is not necessary to compute the ac-
tual combinatorial feature flow fields. The tracking of the minima can be done
by tracing stream lines in the two-dimensional combinatorial gradient fields.
The maxima can be extracted in a similar way by switching the combinatorial
gradient fields and the direction of the stream line computation. The saddle
tracking is given by appropriately intersection of the separatrices of the saddles
in the adjacent time slices. Note that the tracking of saddles and maxima is
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Algorithm 2.3: Main CFFF algorithm
Input: S, (ft)t=0,1,...,T , σ
Output: All critical lines in V[0,T ]

1: GS ← constructCellGraph(S)
2: for t = 0 to T − 1 do
3: Vt ← CGF(GS , ft, σ)
4: Vt+1 ← CGF(GS , ft+1, σ)
5: lines ← lines ∪ trackMin(GS , Vt, Vt+1)

Algorithm 2.4: Minimum tracking algorithm: trackMin(...)
Input: GS = (N,E, φ, ψ), Vt ⊂ E, Vt+1 ⊂ E
Output: All critical min lines in V(t,t+1)

1: for all u /∈ N(Vt) and p = 0 do
2: Line ← traceLine(GS , Vt+1, u, 0)
3: w ← Line.last()
4: Line ← traceLine(GS , Vt, w, 0)
5: if Line.last() = u then
6: MinCritLines.append( {u,w} )

not needed in this thesis. We refer to [RKWH12] for details and a reasoning
of the simplification of the tracking.
The algorithmic approach for tracking the minima is given in the follow-

ing. The main pipeline is shown in Figure 2.12. An abstract implementation
is outlined in Algorithm 2.3 that computes the tracking of a time-varying
function(ft)t=0,1,...,T on a grid S. Note that with the parameter σ, the per-
sistence threshold for the simplification of the combinatorial gradient fields is
determined.
First, since the simplicial graph is the same for all time slices, this one is

constructed (Line 1). From a stack of time slices of a scalar function, for
two adjacent slices, the combinatorial gradient fields are now defined as the
matching (Line 3 and 4). To the set of critical lines, the tracked minima lines
are added (Line 5).
To track the minima lines, Algorithm 2.1 is used to compute the stream lines.

Algorithm 2.4 shows the general approach. The input is a simplicial graph
GS and two matchings Vt andVt+1 that represent the adjacent combinatorial
gradient fields. The tracking is computed in a loop that goes over all nodes u
that are not in the matching Vt and have layer p = 0 (Line 1). These nodes
are minima. Given a minimum u in Vt, a combinatorial stream line is started
at this node in the combinatorial gradient field Vt+1 that ends in a minimum
w (Line 2 and 3). Then a new stream line is started form the node w in the
combinatorial gradient field Vt (Line 4). If this stream line ends in u, the
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minima u and w are connected (Line 5 and 6).

Integrated persistence. Reininghaus et al. [RKWH12] introduced an im-
portance measure for the critical lines in addition to the efficient computation.
Each critical point in each time slice has a persistence value as described in
Section 2.2.1. The importance measure is then defined as the sum of the per-
sistence values of the critical points that make up the line. The value is divided
by T , i.e., the number of time steps. This is necessary, since different temporal
resolutions for the same temporal interval would result in different importance
measures otherwise. The measure is called integrated persistence.
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2.3 Physical concepts
While arbitrary vector fields occur in many applications, we focus on vec-
tor fields that describe flow fields, i.e., they have a physical meaning: they
capture the motion of a substance. The flow fields that we are interested in
obey a physical law: the Navier-Stokes equations. We will derive these in Sec-
tion 2.3.1. Afterwards, we introduce two physical concepts that are important
for the understanding of the physical meaning of the feature identifier that will
be used in Chapter 5.

2.3.1 Navier-Stokes equations

In this section, we will derive the basic equations that describe the motion
of Newtonian fluids. We will deduce these in three dimensions. While the
derivation might change, the equations are also valid in two dimensions. Fur-
thermore, we will assume that all functions are that smooth that the derivatives
exits and that integrals are finite. The derivation is based on the mathematical
introduction to fluid dynamics by Chorin and Marsden [CM93]. All details are
given in the first chapter of that book. In this section, just a brief excerpt is
given.
Assume a fluid given in a domain D ⊆ R3. Let S be a surface in this

domain and v(x, t) be the vector field that describes the motion of this fluid.
This motion is controlled by two forces: pressure and stress. The pressure
p(x, t) is a force acting on the surface S into the direction of a chosen unit
normal n. If S is a shear layer in the fluid, where particles above the surface
have a significantly different velocity as the particles below the surface, a high
amount of diffusion occurs, i.e., the particles interact with each other. Faster
particles transfer momentum across the surface and slower particles slow down
the faster ones. It can be said that there is stress along the surface. This is
expressed by the stress tensor σ(x, t).
For the definition of σ, three assumptions are made: First, σ linearly depends

on the velocity gradient tensor ∇v. Second, if the fluid undergoes a rigid
body rotation, this should have no effect on the diffusion of momentum. By
interpreting σ as an operator, it has therefore to obey

σ(U · ∇v ·U−1) = U · σ(∇v) ·U−1, (2.13)

where U is an orthogonal matrix. Last, the balance of angular momentum
should be obeyed by σ, which leads to σ being symmetric. Note that these
assumptions approximate real particle motion.
It can be shown that the only way σ can fulfill this assumption is by:

σ = λ(div v)I + 2µSv = 2µ

[
Sv −

1

3
(div v)I

]
+ ζ(div v)I, (2.14)
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where I is the identity, Sv the symmetric part of ∇v, and ζ = λ+ 2
3µ. Thereby,

µ is typically called the first coefficient of viscosity and ζ the second coefficient
of viscosity .
On the surface S, we can now describe the force acting on the surface as

force on S per unit area = −p(x, t)n + σ(x, t) · n. (2.15)

Newton’s second law (force = mass × acceleration) states that for any portion
of fluid Wt, the change of its motion is proportional to the forces acting on the
fluid. This is called balance of momentum. In its integral form it is written as

d

dt

∫
Wt

ρvdV = −
∫
∂Wt

(pn− σ · n) dA, (2.16)

where ρ(x, t) is the mass density.
The transport theorem states

d

dt

∫
Wt

ρvdV =

∫
Wt

ρ
Dv

Dt
dV. (2.17)

For a vector field v, D
Dt = ∂

∂t + (v · ∇) is called the material derivative. In
addition to the transport theorem, we use the divergence theorem that states∫

Wt

div vdV =

∫
∂Wt

v · ndA. (2.18)

For a scalar field s, the divergence theorem yields∫
Wt

∇sdV =

∫
∂Wt

sndA. (2.19)

Thus, Equation (2.16) can be written as∫
Wt

ρ
Dv

Dt
dV =

∫
Wt

−∇p+ div (σ) dV. (2.20)

Now, we have to compute div(σ). Using vector and tensor calculus operations
and assuming a Cartesian coordinate system, we get

div(σ) = div (λ(div v)I + 2µSv)

= (λ+ µ)∇ div v + µ∆v, (2.21)

where ∆v = ∇ (div v) − curl (curl(v)) is the vector Laplacian. In (three-
dimensional) Cartesian coordinates, it can be written as ∆ =

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
applied to each component of the vector field. Note that we could write the
above derivation for each vector component. This way, we would not need to
use the divergence of a tensor.
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Equation (2.20) can now be written as∫
Wt

ρ
Dv

Dt
dV =

∫
Wt

−∇p+ (λ+ µ)∇ div v + µ∆vdV (2.22)

Since the equation holds for every portion of fluid Wt, we get

ρ
Dv

Dt
= −∇p+ (λ+ µ)∇ div v + µ∆v. (2.23)

Together with the continuity equation

∂ρ

∂t
+ div(ρv) = 0, (2.24)

these equations are called Navier-Stokes equation. They describe the motion
of particles in a Newtonian fluid. Sometimes another term that acts as a force
f is added to the right side of Equation (2.23). For instance, this term can
represent the gravitational force.
In this thesis, we will deal with fluids that are incompressible. This means

that ρ = ρ0 is constant. It follows from the continuity equation, that the field
is divergence free. The incompressible Navier-Stokes equations are

Dv

Dt
= − 1

ρ0
∇p+ ν∆v + f,

div v = 0. (2.25)

where ν = µ
ρ0

is the kinematic viscosity .

2.3.2 Eulerian vs. Lagrangian viewpoints

A flow field can be observed in two different ways. First, the dynamic proper-
ties can be assigned to fixed coordinates in space and time. This is the Eulerian
viewpoint . The flow is described as a field. Second, the Lagrangian viewpoint
assigns the dynamic properties to moving fluid parcels. The equations are
given for this specific particle. However, both viewpoints are equivalent and the
equations can be transformed into each other. For details, we refer the reader
to the book of Panton [Pan05] and the lecture notes of McDonough [McD87].
An example to understand the difference can be given by the measurement

of wind on the earth. It is possible to build a grid of weather stations at fixed
positions on a continent. They will measure the wind vectors at the points
(x, t). The resulting data is an Eulerian representation of the wind vector field
on earth v(x, t). Another way to measure weather is by a registering balloon.
It is released at a certain position and is advected by the flow. It follows the
path line of a certain particle X. The data captured by the balloon is given
in the Lagrangian representation. For a sequence of successive positions, the
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velocity is given by the temporal derivative of the position x of the balloon at
time t

v(X, t) =
∂x

∂t
(X, t). (2.26)

An important derivative in this setting is the material derivative as introduced
in the last section:

D

Dt
=

∂

∂t
+ (v · ∇). (2.27)

It is sometimes also called substantial derivative or Lagrangian derivative. It
measures the change of a quantity along the path line over time. Thus, it links
the Lagrangian view to the Eulerian view: for a given quantity f(x, t) – scalar
or vector valued –, the material derivative

Df

Dt
(x, t) =

∂f

∂t
+ v · ∇f (2.28)

defines a scalar or vector field that can be evaluated at each position in space
and time. However, the values are directly linked to certain particles.

2.3.3 Galilean invariance

Using the Eulerian viewpoint, a flow field has to be evaluated in a certain
frame of reference, which is a given coordinate system in which the field is
described. Typically, there is no distinguished frame of reference.
The different coordinate systems of the frame of references can be trans-

formed into each other. An important subset of the possible transformations
are Galilean transformations. The observer changes his viewpoint in the new
coordinate system S′ with a relative constant, non-accelerated velocity to the
original viewpoint in the coordinate system S. Let u be this constant rela-
tive motion of the frames of references, i.e., (x′, t′) = (x − ut, t) whereby x′

and x represent the spatial coordinates with respect to S′ and S, respectively.
Note that for a Galilean transformation t = t′. Furthermore, let v be the flow
field with respect to the frame of reference S and v′ be the transformed flow
field with respect to the frame of reference S′. Then the two flow fields are
transformed into each other by v′ = v−u, which is a Galilean transformation.
Now, a scalar, vector, or tensor field derived from the flow field is called

Galilean invariant if its values do not change under a Galilean transformation.
For instance, the velocity is changed under a Galilean transformation as can
be seen above. It is therefore not Galilean invariant. On the other side, the
Jacobian of a flow field is Galilean invariant, since its entries do not change
by a Galilean transformation – the derivatives do not reflect a change of the
velocity function by a constant vector.
Even though the velocity is one component of the material derivative, it is

anyway Galilean invariant, which is shown in the following. For an arbitrary
function f ′(x′, t′) with respect to S′, its value is given by the function value
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f(x′ + ut′, t′) of a function f in S. Computing its temporal derivative, we get
∂f ′

∂t′ = ∂f
∂t + (u · ∇f). Since f was arbitrary, we get for the material derivative

in S′

D

Dt′
=

∂

∂t′
+ (v′ · ∇′)

=
∂

∂t
+ (u · ∇) + ((v − u) · ∇)

=
∂

∂t
+ (v · ∇)

=
D

Dt
(2.29)

Note that despite changing the frames of reference ∇ = ∇′. Thus, the material
derivative of a quantity is the same in both frames of reference and is Galilean
invariant.
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Chapter 3

Related work

In the last chapter, the foundation and its related work was given. In this
chapter, we present other work that is related to the topics in this thesis,
i.e., vector field visualization, feature extraction in and exploration of time-
dependent flow fields. Since this thesis is also concerned with feature tracking,
we will briefly summarize publications on this topic in the last section of this
chapter.

3.1 Vector fields – visualization
While it is possible to depict a vector field by arrows, this simple visualization
cannot represent the whole complexity of flow fields. In this thesis, we therefore
apply different techniques to visualize two-dimensional time-dependent flow
fields. One class of algorithms uses textures to visualize two-dimensional flow
fields. A good overview of these dense visualization techniques is given in
the publication of Laramee et al. [LHD+04]. A prominent example of these
methods is Line Integral Convolution (LIC). It was first introduced by Cabral
and Leedom [CL93]. LIC blurs a noise texture along the stream lines of a
vector field. A fast algorithm was given by Stalling and Hege [SH95]. They
reuse parts of the stream lines for an efficient computation of LIC.
While LIC gives a dense representation of the fields, sometimes the actual

stream lines result in a better representation of the flow field. To cover all
interesting structures, e.g., the critical points, a sensible seeding of the stream
lines has to be applied. We apply an approach that was presented by Rosanwo
et al. [RPP+09], which is based on vector field topology as proposed by Verma
et al. [VKP00]. An overview of topology based flow visualization is given
by Hauser et al. [HLD02]. Partition-based techniques were summarized by
Salzbrunn et al. [SJWS08].
To visualize three-dimensional or two-dimensional time-dependent flows,

LIC is not appropriate. Here, the direct rendering of stream lines is useful.
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Unfortunately, the three dimensional depth of the individual lines can be mis-
interpreted. Zöckler et al. [ZSH96] presented an approach to add illumination
to stream lines. This approach was later enhanced by Mallo et al. [MPSS05].
Sometimes, it is not sufficient to depict the evolution of particles, but the

development of lines. This results in the computation of stream, streak or path
surfaces. A good overview of methods computing geometric representations of
flow is given by McLoughlin et al. [MLP+10].
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3.2 Vector fields – feature extraction and exploration

To analyze flow data sets, it is possible to reduce the data to a set of inter-
esting structures – often called features. In the context of flow visualization,
the focus lies on mainly two types of structures in the recent years: vortices
and Lagrangian coherent structures as identified by the finite-time Lyapunov
exponent. A vast amount of publications deals with different aspects of the
definition, extraction, and interpretation of these structures. These are pre-
sented in the following.

3.2.1 Vortices

The definition and extraction of vortices in fluid flows is topic of many pub-
lications in the fields of fluid mechanics and flow visualization. Despite the
importance of flow structures, there is still no unique mathematical definition
of a vortex. Rather, the different kinds of applications entail different needs for
appropriate vortex definitions. For a good overview, we refer to Post et al. and
Fuchs et al. [Pos03, FKS+10]. In addition, methods to analyze time-dependent
vector fields have been proposed. There are many promising approaches; we
refer to Pobitzer et al. [PPF+10] for an extensive overview of the recent pub-
lications.
Vortices can be extracted analyzing the geometric properties of trajectories

of particles. For instance, Sadarjoen et al. [SP00] proposed an approach using
stream line curvature to locate vortices.
Alternatively, vortices can be extracted as extremal structures of a scalar

field derived from the velocity as done in this thesis. Such quantities are vor-
ticity, pressure, helicity, or normalized helicity. Hunt [Hun87] presented the
Q-criterion. For two-dimensional flow fields, the quantity was derived inde-
pendently by Okubo [Oku70] and Weiss [Wei91]. Jeong and Hussain proposed
the λ2 value [JH95]. Recently, Haller proposed a feature identifier that is ro-
tation invariant [Hal05]. These quantities build the analytic foundation for
the extraction of vortical structures. Elaborated algorithms enable the extrac-
tion of vortices in complex flows. Stegmaier et al. [SRE05] extract vortices in
a three-dimensional steady flow field based on the λ2-criterion. They intro-
duce a vortex browser to select and compare different kinds of vortices in a
dataset. Schneider et al. [SWC+08] apply a contour tree extraction algorithm
to different derived quantities such as λ2 and pressure. They extract vortices
as iso-surfaces of these quantities. Their framework is able to find similari-
ties between different features and it is applied to various three-dimensional
steady flows. Sahner et al. [SWTH07] used the Okubo-Weiss criterion to ex-
tract vortex and strain skeletons in three dimensional flows. Schafhitzel et
al. [SBV+11] recently proposed a visualization and tracking system based on
the λ2 measure. In principle, every algorithm that is able to track extremal
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structures in scalar fields is able to extract vortex core lines. Due to their
wider applicability, these methods are presented separately in Section 3.3.
Different methods employ the parallel vectors operator as introduced by

Peikert et al. [PR00] to compute vortex core lines. Theisel et al. [TSW+05]
generalize the use of the parallel vectors operator to track vortex core lines.
Weinkauf et al.[WSTH07] also used the parallel vectors operator to extract
cores of swirling particle motion. This extraction approach was also used by
Fuchs et al. [FPH+08] for unsteady flow vortices.
Most of the methods mentioned above are based either on streamlines or

the Jacobian matrix. They are well-suited for analysis of single time-slices
but not for characteristics of unsteady flow fields. Thus, more attention has
been paid to methods based on path line analysis, representing the Lagrangian
point of view. Theisel et al. [TWHS05] have presented an extension of stream
line topology to path lines. Salzbrunn et al. [SGSM08] proposed a framework
based on path line predicates. A Boolean function decides if a path line, con-
stricted to the data domain, exhibits a certain property of interest. Fuchs
et al. [FPS+08] accumulate Eulerian quantities along path lines to add a La-
grangian view. Similarly, Shi et al. [STW+08] explore the dynamical process
of a flow by averaging the kinetic energy and momentum along path lines.

3.2.2 Vortex regions

Often, not only the vortex core line, but also its region of influence is of interest.
Extraction techniques for these vortex regions can be divided in the following
categories:
First, there are approaches that use an indicator function related to vortical

activity. Here, the above mentioned vortex-related quantities can be used. A
vortex region can be defined through a threshold that distinguishes the influ-
ence region of the vortex from the rest of the domain. Iso-surface extraction
can be used to visualize the region boundary. As a drawback, using iso-surface
extraction, it is not possible to distinguish between nearby vortices, if their
regions partially merge. Moreover, one has to choose a global threshold pa-
rameter, which is quite arbitrary, since there is only an intuitive notion of vor-
tex activity for the mentioned quantities. Since some of the quantities define
vortex strength, there may be no threshold value to extract the regions of both
strong and weak vortices. As a remedy, Schneider et al. [SWC+08] proposed
an extraction algorithm for vortex regions (based on λ2) using the contour
tree for the selection of the geometry. An exploratory technique to visualize
time-dependent vortices in three-dimensions was introduced by Tikhonova et
al. [TCM10].
The second class of definitions of vortex regions uses the combination of a

vortex indicator function and a geometrical extraction algorithm. Here, vor-
tex regions are typically extracted for previously defined vortex core lines by
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sending out a fan of rays from the center. The rays are cut, if a certain cri-
terion is met on the ray. The resulting regions are restricted to star-shaped
geometries seen from the vortex core. These are not arbitrary star-shaped re-
gions. Banks and Singer [BS95] introduced this method to construct a vortex
hull as a series of connected contour lines. The contour line that connects
the endpoints of the rays is the outer boundary of the vortex in that plane.
They used a pressure threshold to mark the boundary of a vortex region in-
duced by the length of the rays. Bauer et al. [BPSS02] used a threshold of the
absolute value of the imaginary part of the complex eigenvalues of the Jaco-
bian instead of the pressure threshold. Furthermore, Stegmaier et al. [SRE05]
used a threshold of λ2 to determine the termination of the rays. Garth et
al. [GTS+04a] searched for local maxima of the tangential velocity component
using the Rankine vortex model as a basis for their definition. Jankun-Kelly
et al. [JKJTM06] build an approach to robustly extract vortices based on lo-
cal extrema of different scalar fields. They extract three-dimensional vortices
using a predictor-corrector method and k-means clustering to find the correct
extremal structures. The corresponding vortex regions are also based on the
maximum tangential velocity. Note that their extracted vortex regions depend
on the frame of reference, since velocity is Galilean variant.
The third category consists of approaches that use a purely geometric def-

inition of vortex regions. Sadarjoen and Post [SP99] searched for streamlines
with a winding angle of 2π. They restricted their definition to streamlines for
which the distance of start end endpoint is “close”. A clustering of streamlines
belonging to the same vortex result in an elliptical representation of the vor-
tex regions. Reinders et al. [RSVP02] extended the approach to 3D. Petz et
al. [PKPH09] defined vortex regions searching for closed streamlines in rotated
version of the vector field. They were able to build a hierarchy of these regions.
All these approaches are not Galilean invariant, since they use streamlines that
depend on the chosen frame of reference.

3.2.3 Finite-time Lyapunov exponent

In Chapter 4, we will discuss an approach to Lagrangian coherent struc-
tures (LCSs) by Haller [Hal01a, Hal02] called finite-time Lyapunov expo-
nent (FTLE). FTLE measures the maximum separation of close-by particles
of a time-dependent flow field after a fixed, finite particle advection time. We
give details on LCSs and FTLE in Section 4.1. While we also introduce further
publications in the field of fluid mechanics there, some approaches to FTLE
that were brought up in the visualization community will be discussed in the
following.
Many papers have been published dealing with efficient and robust compu-

tation of the FTLE fields based on the flow map and the extraction of their
ridges. Sadlo et al. [SP07] present a ridge extraction algorithm with filtered
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adaptive mesh refinement. Garth et al. [GGTH07] propose an adaptive refine-
ment algorithm utilizing the coherence of particle paths to generate smooth
approximations of the FTLE field. An approach to extract the FTLE ridges
by grid advection has been introduced by Sadlo et al. [SRP11].
In addition, the physical meaning of FTLE was investigated. Sadlo et

al. [SW10] analyzed the connection of FTLE to a time-dependent version of
vector field topology. While Shadded [Sha06] has found that along FTLE
ridges there is a small amount of material transport, Germer et al. [GOPT11]
introduced an approach to extract structures from the FTLE field without any
material transport. They therefore use level sets instead of ridges. Pobitzer et
al. [PPF+11] filtered FTLE structures that are due to shear in the flow. Fuchs
et al. [FSP12] investigated scale-space approaches for FTLE ridges.
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3.3 Tracking algorithms to compute trajectories of
critical points

In this section, we give a brief overview of the existing methods to track features
in time-dependent data sets.
Originally, the concept of tracking is located in the field of computer vision.

Here, objects in images are traced, e.g., the movement of a person in a video.
A good overview of the methods in this area is given in [YJS06]. In the area
of visual data analysis, the tracking of features in different data sets is more
common. The algorithms can thereby be divided into three classes depending
on the treatment of the temporal dimension [Pos03].
First, one can extract the features in each slice individually and then employ

a correspondence algorithm that matches the features of one time slice with
the features of the next one. The advantage of these methods is that no
temporal interpolation is needed. On the other hand, the detection of events
such as bifurcations is complicated. These have to be evaluated implicitly using
an appropriate event function. A common approach to match the features
is to use distance metrics based on the domain and attribute space. Using
application specific attributes, appropriate heuristics can be used to fit the
algorithm to the given sort of data. Examples of such attributes are the size
of the features or their shape. For instance, Caban et al. [CJR07] use texture
characteristics for their tracking approach. Using distance metrics, features
are typically matched, if their distance is below a certain threshold. Examples
of these algorithms are given in [SSZC94, RPS99, LBM+06, dLvL01]. While
these approaches use Euclidean distances, the feature overlap can also be used
as shown by Silver et al. [SW97]. A similar approach based on the contour tree
was introduced by Sohn et al. [SB06]. Instead of using local metrics, a global
approach might improve the correspondence resulting in a best matching as
proposed by Ji et al. [Ji06]. Another improvement is to use motion prediction
as done by Reinders et al. [RSVP02]. Last, the position of the features of the
current time step can be used as a initial guess for the next time step. This
results in a progressive tracking approach as proposed by Bajaj et al. [BSS02].
Instead of treating each time slice independently, it is possible to consider

the temporal as another spatial dimension. The features are extracted in the
space-time. Note that this increases the dimension of the feature extraction by
one, which can complicate the algorithm or increase the computational costs.
For instance, a two-dimensional time-dependent scalar field can be interpreted
as a three-dimensional scalar field. Here, three-dimensional scalar field topol-
ogy would extract the time-dependent features. After the tracking, typically
an event analysis is done. Weigle et al. [WB98] and Ji et al. [JSW03] proposed
methods to extract the iso surface in space-time. Weber et al. [WBD+11] and
Bremer et al. [BWP+10] introduced methods to do the topological event anal-
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ysis based on the Reed-Graph of the surface resulting from sweeping contours.
For time-dependent two- and three-dimensional flow fields, topology tracking
has been performed by Tricoche et al. [TWSH02] and Garth et al.[GTS04b].
Their method is applicable to vector field that are composed of space-time cells
in which the values are only linearly interpolated. This has the advantage that
the events are restricted to the boundary of that cells and the entry and exit
points of the critical points has only to be found on that boundary. Using a
parallel vector test on each cell, Bauer et al. [BPSS02] introduced a method
to track vortex core lines. While giving accurate results, these methods are
sensitive to noisy data and a high feature density. To reduce the number
of extracted features and events, a common practice is to delete short living
features. A combinatorial approach to track critical points is based on the
definition of Jacobi sets as proposed by Edelsbrunner et al. [EH04]. It consists
of Jacobi edges, which are extracted from a spatiotemporal simplicial complex
assuming a linear interpolant. The decision whether an edge belongs to the
Jacobi curve involves the topological analysis of the lower link of vertices and
edges of the simplicial complex. While providing a nice theoretical framework,
the resulting Jacobi curves of real data sets are often very complex and hard
to analyze. Based on this work it is also possible to track the evolution of the
Reeb graph of a scalar function [EHM+08].
The algorithms in the third class consider space-time in a combination of

the aforementioned types. They consider the temporal as an extra dimension,
but these algorithms do not look at each time slice individually. In contrast,
the Feature Flow Fields (FFFs) approach introduced by Theisel et al. [TS03]
extracts the tracked critical points by tracing a tangent curve in a derived
field of the scalar (gradient) or vector field. A combinatorial method that is
similar to the notion of FFFs has been proposed by King et al. [KKM08]. This
approach gives the mathematical foundation of the efficient version of Rein-
inghaus et al. [RKWH12] for two-dimensional scalar fields. Both are presented
in Section 2.2.2.

40



Chapter 4

Flow analysis based on the
finite-time Lyapunov
exponent

In this chapter, we discuss an approach to Lagrangian coherent structures
(LCS) that uses the finite-time Lyapunov exponent (FTLE). The FTLE mea-
sures the separation of infinitesimally close particles for an advection time T .
Integrating path lines in the backwards direction, the FTLE also determines
the convergence of particles. To distinguish the resulting fields, the forward
FTLE is written as FTLE+ and the backwards FTLE as FTLE− in the re-
mainder of this chapter.
In Section 4.1, the idea of LCSs in the context of the FTLE is given. The

computation method based on flow maps is also described. Afterwards, in
Section 4.2, a new computation method is proposed that links the FTLE to
a single path line. This method is called localized FTLE (L-FTLE). How far
the concept of FTLE is applicable to complex flow behavior is discussed in
Section 4.3.

4.1 Lagrangian coherent structures in the context of
FTLE

The concept of Lagrangian coherent structures (LCSs) plays a fundamental
role in the analysis of time-dependent flow fields. The idea of coherent struc-
tures (CSs) developed about fifty years ago in the context of semi- or fully
turbulent flows [Hus83]. One of the first observations of such large-scale struc-
tures was made by Roshko and Brown [BR74] at a turbulent plane mixing
layer using shadowgraphs. Before CSs were found, it was assumed that turbu-
lent flows are only determined by chaotic particle motion where structures of
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different scales arise, dissolve, and affect each other. The analysis of the vast
amount of structures was restricted to statistical methods. Today, there is a
general consensus that besides the chaotic motion of particles, there are coher-
ent structures exhibiting a more coarse and orderly flow behavior. The finding
that turbulent flow is not purely chaotic but embodies orderly structures had
a deep impact on fluid mechanics.
However, despite their importance, there is no commonly accepted math-

ematical definition of coherent structures. Moreover, Hussain [Hus86] states
that “in principle, concepts like coherent structures are best left implicit”. On
the other side, the extraction of CSs is a fundamental goal in the analysis
of complex flow fields. As a result, a variety of individual interpretations
and more or less formal definitions of CSs have been proposed, from a Eu-
lerian as well as Lagrangian point of view. Examples are the definitions by
Michalke [Hus86] or Farge [FSK98], both proposing a “coherence function”.
Others give more conceptual definitions. Yule [Yul81] suggests that coherent
structures should follow three requirements: (i) being repetitive, (ii) survive
distances larger than structure size, (iii) significantly contribute to the kinetic
energy. While Hussain considers these conditions, at least partly, as “unnec-
essary and unrealistic”, he defines coherent structures as “connected turbulent
fluid mass with instantaneously phase-correlated vorticity over its spatial ex-
tent” [Hus83]. Farge states that “the only definition of a coherent structure
that seems objective is a locally meta-stable state, such that, in the reference
frame associated with the coherent structure, the nonlinearity of Navier Stokes
equations becomes negligible” [FSK98].
In the past ten years, an approach to LCSs by Haller became quite popular.

He proposes a concept of distinguished material lines or surfaces in the flow
field [Hal00]. To extract these structures, he refers to the finite-time Lyapunov
exponent (FTLE) [Hal01a]. Haller has suggested characterizing LCSs as ex-
tremal structures of both the forward and backward FTLE field. Later on,
he has relativized this view presenting an example where FTLE ridges do not
necessary mark LCSs [Hal02]. But still, FTLE ridges represent LCSs in a wide
range of configurations and are used in many applications [PD10]. Shadden
even defines LCSs as ridges in the FTLE [SLM05, Sha06] fields.

4.1.1 Flowmap FTLE (F-FTLE)

The FTLE is based on the Lyapunov exponent (LE), which originates in the
theory of dynamical systems. The LE measures the rate of separation of
infinitesimally close trajectories exhibiting exponential behavior with time, cf.
Nese [Nes89]. It is defined as limt→∞

1
t ln δ(t)

δ(0) , where δ(t) is the deviation of
the trajectories at time t. It is constant along a trajectory and measures the
predictability of a dynamical system.
In general, flow data is only available for a finite-time interval and does not
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follow a periodic pattern. This makes LE not applicable. Thus, the LE is
only computed for a finite advection time of particles T . With FTLE, this
concept has been introduced to flow analysis by Haller [Hal01a]. He proposed
to compute the FTLE using the flow map of a vector field. In the following,
this method is described.
Let v : Rd × I → Rd be a d-dimensional, time-dependent flow field. The

advection of a particle with the flow for a time T can be described using the
flow map

φ : Rd × I × I ′ → Rd. (4.1)

It maps a particle at position x0 and time t0 onto its advected position
φ(x0, t0, T ) = φTt0(x0) at time T . The gradient of the flow map

∇φTt0 : Rd → Rd×d (4.2)

characterizes the local flow deformation of a particle neighborhood. Maximum
stretching of nearby particles is given by the spectral norm ||.||λ of ∇φTt0 . Flow
map FTLE (F-FTLE) is defined as the normalized maximal separation

F-FTLE+(x0, t0, T ) =
1

T
ln(||∇φ(x0, t0, T )||λ). (4.3)

In practice, the flow map is mostly computed by sampling particles on regular
grids. This introduces a hidden parameter δx, the spatial sampling distance
of nearby particles. During advection, nearby particles might separate far-off,
and do not measure the local separation rate accurately. Thus, δx is a crucial
parameter for the computation of FTLE.

4.1.2 Concepts for Lagrangian coherent structures

Despite the efforts to define LCSs, there is still no consensus. However, in
all of the above mentioned characterizations, there are common ideas of what
LCSs should look like. In the following, two notions are briefly described and
their relation to FTLE is discussed.

Material lines. Many discussions pursue the idea that temporally devel-
oping flow features should be close to material lines. Such features result in
structures building a kind of material barrier, minimizing crossflow. These
lines are distinguished material lines in the flow. Haller defines a material
line as a “smooth curve of fluid particles advected by the velocity field” and
describes them as finite-time invariant manifolds [Hal01a]. In terms of integral
lines, material lines correspond to time lines in a flow field. Material lines can
be interpreted as transport barrier – similar to the separatrices of the vector
field topology of steady flow fields. As mentioned above, Haller proposed to
define LCSs boundaries as distinguished material lines advected with the flow.
As an example, he refers to hyperbolic repelling material lines. Using the
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FTLE fields as indicators for these distinguished material lines, Shadden has
shown that the resulting structures are approximately advected by the flow
with negligible fluxes across the structures [SLM05]. This puts FTLE into
context with material lines.

Path line features. The second common idea is that the LCSs should be
connected to particle motion. Thereby, a cluster of path lines is marked to be
the support of the LCSs. Salzbrunn et al. [SGSM08] proposed a framework
based on predicates to select path lines. A Boolean function decides if a path
line, constricted to the data domain, exhibits a certain property of interest.
Thereby, two groups of predicates can be distinguished. The first group con-
siders the path line as a geometric entity. The second group relies on properties
derived from the flow like vorticity. This framework is very general. Many path
line based approaches, including material surfaces, can be subsumed under this
concept. Note that methods that do not investigate the entire available path
line, but only a finite-time interval T , do not strictly follow this idea of path
line predicates. Typically, the computation of FTLE utilizes the flow map.
Since this involves the integration of multiple path lines, it does not strictly fit
into the framework of path line predicates. In Section 4.2, another variant of
the FTLE computation is given – called localized FTLE (L-FTLE). It bases the
computation on the local separation generated by the Jacobian along a single
path line. This approach comes closer to the concept of path line predicates.
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4.2 Localized FTLE
Since the introduction of FTLE, many papers have been published dealing
with efficient and robust computation of the FTLE fields, cf. Chapter 3.2.3.
All these approaches base the computation of the FTLE on the flow map (F-
FTLE). However, this method has two main limitations. First, for the com-
putation of a single FTLE value, four path lines have to be traced and their
initial distance δx has to be set, which introduces a parameter. Second, the
separation is not measured for the evolution of a single particle. For long
integration times, far away separation events can have an influence on the re-
sulting FTLE value that do not really correspond to the flow behavior in the
vicinity of a single particle. Sometimes, renormalization is used. If the FTLE
is thereby computed for a certain position using the flow map, the four path
lines traced to compute the FTLE are restarted at the original path line. The
intermediate flow map gradients are accumulated. However, this complicates
the implementation.
To overcome the limitations, the localized FTLE method is introduced in

the following. It is based on the integration of the Jacobian matrix J along
a path line. Given a flow field v, the Jacobian of v is a generator of separa-
tion. Its symmetrical part quantifies the separation along the path line. In
addition to the definition, a fast implementation of the L-FTLE is given that
efficiently reuses FTLE values of previous time steps following an idea similar
to FastLIC [SH95]. Afterwards, the results are discussed and compared to the
existing FTLE method.

4.2.1 Definition

Consider a pathline p(t) = p(x0, t0, t) for a particle started at space-time
location (x0, t0). The deviation of trajectories of infinitesimally close particles
started at (x0 + δ0, t0), with δ0 → 0, is given by the differential equation

δ̇(t) = Jv(p(t), t0 + t)δ(t). (4.4)

Solving the differential equation yields

δ(t) = exp

(∫ t

0
Jv(p(τ), t0 + τ)dτ

)
δ0. (4.5)

Given a finite time span T , the matrix

ΨT (p) = exp

(∫ T

0
Jv(p(t), t0 + t)dt

)
(4.6)

expresses the mapping of a neighborhood at the starting point p(0) onto its
deviations at the end point p(T ). Compared to the flow map approach, this
matrix corresponds to the gradient of the flow map. Defining a temporal
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discretization of the pathline T = ∆t ·N , where ∆t is the length of one time
step and N the number of steps, Equation (4.6) can be approximated as

ΨT (p) '
N−1∏
i=0

exp (Jv(p(i∆t), t0 + i∆t) ·∆t) . (4.7)

L-FTLE is now defined as the largest separation of this mapping. It is com-
puted as

L-FTLE+(x0, t0, T ) =
1

T
ln(||ΨT (p)||λ), (4.8)

where ||.||λ represents the spectral norm of the resulting matrix.
The exponential of the matrix in Equation (4.4) can be solved analytically

using the eigenvalues and eigenvectors of Jv = ∇v. For a two-dimensional
vector field and a matrix with complex eigenvalues λ0, λ1, the exponential is

exp (Jv ·∆t) = S

(
exp(λ0∆t) 0

0 exp(λ1∆t)

)
S−1, (4.9)

with S ∈ C2×2 is the coordinate transform into the eigenspace. Alternatively,
for small ∆t, the first order approximation of the exponential yields

exp (Jv ·∆t) ≈ 1 + Jv ·∆t. (4.10)

4.2.2 Implementation and optimization

We implemented the new localized L-FTLE method and the flow map based
F-FTLE method. Path lines are computed with a Runge-Kutta integration
scheme of fourth order precision with step size control (RK4-3). A small
tolerance was chosen for the step size control of the integrator, such that the
FTLE results do not exhibit discretization errors.
The flow map for F-FTLE is computed on a regular grid. For each grid

node, a path line is advected for the time T , and the destination is stored at
the grid location. Central differences are used for gradient reconstruction of
the flow map. Re-normalization is not performed. Grid resolution determines
the sampling distance δx of nearby path lines.
Localized FTLE is computed directly for each path line. During path line

integration, the Jacobian matrix of the velocity field is sampled at equidis-
tant time steps ∆t along the path line. Separation is accumulated with
Equation (4.7), by either using Equation (4.9) or the approximation Equa-
tion (4.10). Gradients of the velocity field are computed consistently to the
interpolation scheme of the underlying data. In the case of a time-dependent
two-dimensional vector field on a triangular grid that is linearly interpolated,
gradients are constant per triangle and linear between two time steps.
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Figure 4.1 The path line started at the first time slice in (0, 1) yields results for
the grid points (1, 1), (2, 2) and (3, 2). Small black dots on the path line indicate the
sampling of the Jacobian with distance ∆t. δx and δt denote the grid resolution. A
new path line is started at (2, 0) as none of the previous path lines get close-by to
that grid point.

Fast L-FTLE. With Fast L-FTLE , we adapted the idea of FastLIC [SH95]
to speed up L-FTLE computation for a sequence of time steps. Separation is
re-used, by further accumulating the separation at the head, and retracting it
at the tail of a path line. The separation of a moving active time interval T
gives the L-FTLE values at passing locations.
Fast L-FTLE computation, see Figure 4.1, is done on a regular grid in the

space-time domain, with spatial and temporal sampling distance δx and δt,
determined by the grid resolution. Path lines are traced for all grid nodes
of the first time slice, resulting in L-FTLE separation values for grid nodes
that are touched by these path lines. Afterwards, additional path lines are
traced until L-FTLE values are obtained for all grid nodes. A nearest neighbor
interpolation was chosen for obtaining L-FTLE values on grid points.

4.2.3 Results

To evaluate the L-FTLE method and compare it to F-FTLE, it is applied to
two different data sets: the cylinder data set, cf. Appendix A.4, and the cavity
data set, cf. Appendix A.6.
Figure 4.2 depicts L-FTLE results in forward and backward time for T = 3

(3 periods) of the cylinder data set using a two-dimensional transfer function
as proposed in [GLT+07]. Convergent regions with high values of L-FTLE−

are colored blue, high values of L-FTLE+ are colored red. Ridge structures
and crossing points are clearly visible.

47



4. Flow analysis based on the finite-time Lyapunov exponent

Figure 4.2 Simultaneous visualization of forward (red) and backward (blue)
L-FTLE, integration time T = 3 periods.

Figure 4.3 L-FTLE−. Integration time varied in steps of 0.5 from T = 0.5 (top
left) to T = 3 (bottom right).

Parameter Analysis. The computation of the FTLE field depends mainly
on two parameters. The first parameter is the integration time T , which is a
structural parameter that is inherent to the definition of FTLE. Changes in
the results due to this parameter are part of the concept and have already been
discussed in other papers dealing with FTLE, e.g., by Garth et al. [GLT+07].
The second parameter ∆t, a discretization parameter, should not have a strong
influence on the result.
The influence of the integration length T to FTLE is depicted for L-FTLE−

in Figure 4.3, showing the cylinder data set. The integration length is varied
between 0.5 and 3 periods. The longer the integration time, the more pro-

48



4.2. Localized FTLE

T 0.1 0.25 0.5

F
−
F
T
L
E

A B C

L
−
F
T
L
E

D E F

F
−
F
T
L
E
N

G H I

L
−
F
T
L
E
N

J K L

Table 4.1 Comparison of F-FTLE and L-FTLE. The effect of noise (label:N ) is
depicted in the pictures for different integration times T . The data set is a cavity
flow field. The noisy version is generated by adding a Gaussian noise to the vector
directions.

nounced are the FTLE structures. Centers of spiraling motion are deducible.
L-FTLE+ results of the cavity data set for different integration times are de-
picted in Table 4.1 D,E,F. Three main vortices are surrounded by ridges of
high separation. Ridge structures get sharper for larger integration times.
In Figure 4.4, a comparison of different sampling distances ∆t for an inte-

gration time T = 1 of the cylinder data set is shown. ∆t was set to 1/120,
1/30 and 1/3. The thin white line in the images mark a cutting line, the values
of L-FTLE+ along the lines are depicted as profiles in Figure 4.5. Path line
accuracy is not affected by the parameter and equal for the comparison. No
difference can be seen between the two top images. The third image shows two
converging black lines of low separation in the marked section. The profiles in
Figure 4.5 reveal this more clearly. Only at a very coarse sampling distance of
∆t = 1/3 notable differences can be observed. Even then, the global structure
of the profile matches the fine-sampled profiles very well.
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(a) ∆t = 1/120

(b) ∆t = 1/30

(c) ∆t = 1/3

Figure 4.4 Comparison of L-FTLE+ for integration time T = 1. The Jacobian of
the vector field was sampled in steps of 1/120, 1/30 and 1/3. Even for very large
sampling distances, the resulting separation fields look surprisingly alike. Accuracy of
path line integration was in all cases identical. The perpendicular white lines denote
the position of a cutting line used for the comparison in Figure 4.5.
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Figure 4.5 Comparison of Forward FTLE along a line as indicated in Figure 4.4 –
the x axis from left to right corresponds to the lines from top to bottom. In addition
to the images, sampling distances of T/60, T/30 and T/6 are depicted.

(a) L-FTLE− (b) F-FTLE−

Figure 4.6 Comparison of L-FTLE− to F-FTLE− for T = 2 using the cylinder data
set. In both cases, the grid resolution are the same and one path line is started per
pixel. Apart from a slight blurring in (b), the results are identical. Blurring is due to
the gradient approximation by central differences.

Comparison. As basis for the comparison of L-FTLE to the standard ap-
proach based on the flow map, both FTLE methods are implemented using
the same path line integrator. For the F-FTLE computation, a central differ-
ences approach has been used to approximate the gradient of the flow map.
The results are visualized applying the identical transfer function as shown
in Figure 4.6 for FTLE−. The resulting structures as well as the magnitude
of separation are surprisingly similar for both cases. Hardly any differences
can be noticed. The features from the L-FTLE approach are slightly sharper,
which seems to be a consequence of the gradient reconstruction.
A comparison of F-FTLE+ and L-FTLE+ for different grid resolutions is

presented in Figure 4.7. The flow map for F-FTLE is computed on a regular

51



4. Flow analysis based on the finite-time Lyapunov exponent

Figure 4.7 Comparison of F-FTLE+ (left column) and L-FTLE+ (right column)
for different resolutions. Result resolutions are 120×80 (first row), 210×140 (second
row) and 300× 200 (third row). Integration time is T = 3.

grid. Thus, the sampling distance of adjacent grid nodes determines the dis-
tance of neighboring path lines and thus the accuracy of the resulting FTLE
field. In contrast, the accuracy of the L-FTLE approach is determined by ac-
curacy of the computation of the Jacobian independently from the sampling
density. This leads to differences in the results especially in regions of high
field frequencies, i.e., at sharp ridge structures of the separation. For lower res-
olutions, the F-FTLE approach results in a smoothed version of the original
field. In Figure 4.7, this is reflected by the fact that the maximum separation
values decreases with decreasing resolution for the F-FTLE approach, whereas
it stays constant for the L-FTLE approach.
For the cavity data set, the results of the two methods are presented in

Table 4.1. F-FTLE+ results are shown in the first row, L-FTLE+ in the
second row. Nearly the same structures are obtained for both algorithms, but
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Algorithm L-FTLE F-FTLE
basic fast

R T ∆t
1003 2 0.02 2 : 40 0 : 14 1 : 05
503 2 0.02 0 : 20 0 : 04 0 : 08
1003 1 0.02 1 : 33 0 : 15 0 : 35
1003 2 0.01 4 : 02 0 : 22 1 : 13

Table 4.2 Comparison of the basic and accelerated L-FTLE implementation. The
main parameters were investigated as there are the resolution R (two spatial and
one temporal component), the time span T and the sampling parameter ∆t. The
accelerated implementation has a speedup factor of 8 on average.

slight differences are observable. L-FTLE reveals some structures of strong
separation for T = 0.25 and T = 0.5; with F-FTLE features do not emerge
that clearly.
The performance of both approaches is compared in Table 4.2. The flow

map approach is faster than basic implementation of the L-FTLE approach
which has to evaluate the local separation at many sample points along the
path line on an unstructured grid. On average, the new approach is a factor of
3 slower for the example. The Fast L-FTLE approach, however, outperforms
the flow map FTLE implementation by a factor of 3.

L-FTLE Performance. Without exploiting the temporal coherence of L-
FTLE, by advecting path lines for each time slice of the result individually, the
runtime of implementation takes about 2 minutes and 40 seconds for computing
the L-FTLE for 100 time slices on a 1002 grid for the cylinder data set with T =
2 and ∆t = 0.02 on standard hardware. Point location on the unstructured
grid of the cylinder data set during path line tracing is one of the dominant
tasks.
The same computation done with the accelerated Fast L-FTLE implemen-

tation takes only 14 seconds, a speedup factor of 11. A more detailed compar-
ison is given in Table 4.2. On average, the accelerated implementation yields
a speedup factor of 8. It can be seen that the parameter ∆t has no influence
on the acceleration factor. On the other side, the number of calculated path
lines that is determined by the resolution has a clear impact as well as the
length of each path line T . The implementation reuses separation values on
a path line, no segment of a path line is computed twice. In Figure 4.8, a
result for the cylinder data set computed with the accelerated implementation
is depicted. Compared to the non-accelerated implementation, some artifacts
due to nearest neighbor interpolation are visible, but the structures are nearly
the same.
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(a) L-FTLE−

(b) Fast L-FTLE−

Figure 4.8 Comparison of the basic and the accelerated implementation of the L-
FTLE approach. The resolution is 150 × 100 with T = 1. Nearly no differences
can be observed, only a few artifacts arise due to the nearest neighbor approach for
interpolation to grid points.
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4.2. Localized FTLE

(a) Without noise

(b) With noise

Figure 4.9 The two images show one time slice of the cavity data set with and
without noise. The noisy data set is generated by adding Gaussian noise to each
vector component.

The L-FTLE approach needs only slightly more memory than the standard
approach, since the intermediate values for one path line have to be saved, if
the data set fits completely into the memory.

Noise. To analyze the sensitivity of the different approaches with respect to
noise, we added Gaussian noise to the cavity data set. The noise is added to
the two spatial components independently. We chose Gaussian noise, since it
arises in the flow measurement using the PIV method [FCS04].
The influence of noise to the vector field is depicted in a time slice in Fig-

ure 4.9. The effect is apparent in areas of low velocity by highly curved stream-
lines in the LIC image. The macro structure of the velocity field is unaffected.
The comparison matrix in Table 4.1 shows the impact of the noise to both
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Figure 4.10 (a) Influence of the F-
FTLE seeding distance to the separa-
tion. Depicted is the integration time
T vs. separation for the start point de-
picted in (b). If the seeding distance
for F-FTLE is chosen too large (1/50 of
cylinder diameter), separation measure
is not local. By decreasing the seed-
ing distance to 1/10000, the separation
converges towards the L-FTLE value.
(b) Path lines of advected particles.
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Figure 4.11 L-FTLE+ plotted against
T for steady vector fields v. Sam-
pling distance is equal to T , thus
Equation (4.10) (red) and Equa-
tion (4.9) (blue) are only evaluated
once for each value. The approxima-
tion diverges rapidly from the exact so-
lution and is only valid for very small
sampling distances.

approaches, respectively. As expected, F-FTLE and L-FTLE are both af-
fected by the addition of noise. While for both methods the most prominent
separation features are still visible, the introduced structures exhibit differ-
ent characteristics, c.f. Table 4.1 H and K. While F-FTLE introduces many
ridge-like structures, L-FTLE patterns are smoother with weaker structure.

4.2.4 Discussion

The structures resulting from L-FTLE are in many aspects very similar to the
structures obtained with F-FTLE. The new definition of L-FTLE is not de-
pendent on a sampling density parameter and does not need re-normalization
steps during path line integration, as needed for the commonly used F-FLTE
definition. In F-FTLE, the sampling density parameter can have a large influ-
ence to the separation measure as exemplified in Figure 4.10. The separation
measure of L-FTLE is local by construction and not dependent on such a
parameter.
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4.2. Localized FTLE

Despite the different approach to compute the separation for a flow field, the
new algorithm shows the same resulting structures as the standard approach.
The L-FTLE approach computes a separation value with only one path line.
For the standard algorithm, at least four path lines have to be traced. Thus,
for a given number of path lines the new algorithm leads to a better resolution
in the resulting field. Moreover, the seeding distance δx of the path lines is
a parameter of the standard FTLE algorithm, which is not needed L-FTLE.
Since L-FTLE incorporates the separation on the whole path line, the sepa-
ration and later merging of particles within the interval T can be detected by
the algorithm. As the particles merge on the path line, F-FTLE is insensitive
regarding this behavior.
Images computed with the fast L-FTLE algorithm show nearly the same

structures as those computed with the basic algorithm. Only a few artifacts
arise due to the nearest neighbor interpolation for mapping to grid points.
The resulting values are therefore not wrong, but only mapped to a slightly
wrong position. The average acceleration factor of 8 outweighs this slight
incorrectness.
As seen in the results section, the dependency of the L-FTLE approach on

the sampling parameter ∆t is not critical. Even if with a coarse sampling, the
results are still good. The sampling parameter ∆t influences also the evalua-
tion of Equation (4.9) or its approximation in Equation (4.10). A comparison
of the impact of the approximation is depicted in Figure 4.11. In the diagrams,
L-FTLE+ is plotted against the integration time T . Sampling distances are
set to ∆t = T , such that the exponential is evaluated only once. The ap-
proximation of Equation (4.10) diverges rapidly in first order from the correct
separation values using Equation (4.9). Thus, in all the presented examples,
Equation (4.9) was chosen. The parameter T shows the expected effects on
the results.
The analysis of the standard and the new approach regarding noise sensitiv-

ity shows, that the macro structures are still visible both approaches, but tiny
structures vanish or cannot be distinguished from the noise. The flow map ap-
proach shows fine blurry line-like structures that cannot be distinguished from
tiny FTLE features. The structures altogether are much more blurry than in
the non-noisy data. In contrast, the localized approach shows more block-like
structures that differ from typical features of the separation field. Thus, the
user can distinguish between noise artifacts and real structures.
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4. Flow analysis based on the finite-time Lyapunov exponent

4.3 Analysis of FTLE
In Section 4.1, we have seen that LCSs are sometimes characterized by ma-
terial lines. To yield proper material lines, it is typically stated that the
integration time T of the FTLE has to be increased. It is assumed that longer
integration times capture more of the time-dependent motion and neglect the
instantaneous motion. Thereby the snapshot flow behavior is considered to
not showing the correct flow behavior, e.g., standard vector field topology is
not applicable to time-dependent flows. In this section, we want to analyze,
if this assumption is correct. The motivating questions are: 1. What does
the FTLE actually show? 2. Do longer integration times yield more accurate
results? 3. How far is the FTLE applicable to complex time-dependent flow
behavior?
To answer these question, we apply the FTLE to an analytic example, i.e.,

a data set of Stuart vortices, a simple flow configuration, i.e., the flow behind
a circular cylinder, and a complex flow, i.e., a semi-turbulent jet.
Note that we use the L-FTLE approach as presented in the last section in

the remainder. However, we did the same computations with F-FTLE and the
results were visually comparable.

Averaged stretching. L-FTLE considers the deformation of the neighbor-
hood of a particle over a finite time T . In addition to this measure, we are also
interested in the averaged separation a particle experiences, independent from
its direction. This corresponds to the average of the instantaneous maximum
separation. In the discretized version, we therefore use the L-FTLE computed
only for one time step ∆t and define

S∆t(x, t) =
1

∆t
ln (|| exp(Jv(x, t)∆t)) ||λ). (4.11)

This measure is averaged along the path line for a finite time interval T = ∆t·N

IT (x0, t0) =
1

T

N∑
k=0

S∆t(p(x0, t0, k∆t), t0 + k ·∆t) ·∆t. (4.12)

We call this new measure averaged stretching .

4.3.1 Stuart vortices

The Stuart vortex is an analytical, periodic vortex model, cf. Appendix A.2.
We use a dataset resulting from a sampling to a regular grid.
To analyze the dataset, we computed the forward L-FTLE for different in-

tegration times T , see Figure 4.12. Red indicates high FTLE values and white
low values. The blue regions indicate areas, where the FTLE cannot be com-
puted due to the dataset boundary. As expected, the increasing integration
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Figure 4.12 Forward L-FTLE of the Stuart vortex dataset for T =
1, 2, 5, 10, and 15, where one period corresponds to T = π (from left top to bot-
tom right). The image bottom right is the result of averaging the images for
T = 10, 11, and 12. The colormap is the same for all images – white color corre-
sponds to low and red to high FTLE values. With the increasing integration time
the features become more crisp and detailed, partially resulting from an structure
advection along trajectories.

time leads to more and crisper details in the visualization. The elliptical Stuart
vortices are clearly highlighted.
Besides, one can make following observations: After a few periods a stable

ridge bounding the vortices is emerging. This matches the statement by Green
et al. [GRH07] that the location of the ridge indicating the boundary of the
vortex does not change with increasing time. In contrast, the inner regions
become clearer and sharper, but also change in position and frequency. The
location of these FTLE-ridges depends on the integration time and does not
converge for increasing integration time T . The high FTLE values result from
‘separation events’ far away in spatiotemporal domain, which are advected
with the flow. The significance of such features for flow analysis is not clear
and should not be interpreted as LCS.
In order to filter out the stable ridges, representing LCS, we propose to

average the FTLE fields belonging to different integration times. The result
for an average of integration times T = 10, 11, and 12 is shown at the bottom
right of Figure 4.12. The high FTLE values within the vortex vanish and the
region boundaries stay visible.

59



4. Flow analysis based on the finite-time Lyapunov exponent

Figure 4.13 Analysis of the local separation along three path lines. The colormap
is the same as in Figure 4.12. The local separation is depicted by glyphs deformed
by the Jacobian matrix. While the FTLE value is high in the outer regions and low
in the center, the local separation shows strong values along the center path line and
lower values along the outer path lines.

Next, we focus on the white regions in the center of the vortices indicating
no separation. Here, the FTLE value changes from red (high separation) for
small T to white (low separation) after a few integration periods. In the cen-
ter, the locally strong separation vanishes. To understand this behavior, we
have seeded three path lines, one in the vortex center and two on the vortex
boundary on the FTLE ridge. Along the path line, the instantaneous defor-
mation induced by the Jacobian exp(Jv(x, t)∆t) is visualized using glyphs,
see Figure 4.13. In the left figure, the seeding points are displayed including
the first glyph. The right image shows the path lines and the glyphs in a
three-dimensional visualization, where time is used as third dimension. The
integration time for the FTLE and the path lines is T = 10, which corresponds
to approximately three periods of the dataset. The color of the glyphs is deter-
mined by the maximum local separation as defined in Equation (4.11). Blue
represents high and white low values. It can be seen that the path line in the
center exhibits a constantly high local separation, which is always higher than
the local separation along the other two path lines. Moreover, the separation
points always in the same direction on the center path line. Thus, it might be
surprising at first sight that the FTLE value vanishes. Closer inspection shows
that this results from the rotational part of the Jacobian, which is not visual-
ized in this representation. Keeping this in mind, it cannot be concluded that
low FTLE values mean that the particle does not experience high separation.
FTLE shows a combination of both flow components – rotation and stretch.
A feature identifier that measures the local separation a particle experiences

has been introduced by Equation (4.12). Figure 4.14 displays the result for
integration times of T = 1, 5, 10, and15. Red marks high and white low average
separation. Again blue regions represent seedings where the path lines left the
domain. These visualizations illustrate that the average separation is high in
the entire vortex region with maximal values in the center and at the boundary
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Figure 4.14 Forward averaged stretching values of the Stuart vortex dataset for
T = 1, 5, 10 and 15 (from left top to bottom right). With increasing integration
times, the separation in the vortex centers does not vanish in contrast to the values
of the L-FTLE measure.

of the vortices. The averaged separation value converges towards its final value
after a few time periods.
To put it in a nutshell, we can make the following observations when ana-

lyzing this dataset:
1. The locations of FTLE ridges do not necessarily indicate boundaries of

LCS. One has to distinguish two kinds of structures. First, there are struc-
tures that stabilize after some integration periods. The corresponding path
lines experience periodic ‘separation events’ and represent the actual bound-
aries of LCS. Second, there are structures with no definite position, where one
‘separation event’ is transported along path lines. It is to expect that for an
integration time approaching infinity, it will become arbitrary dense and will
fade out.
2. Low FTLE values do not necessarily mean that there is no separation

along the path line. Therefore, it is meaningful to analyze the local separation
in addition to FTLE.

4.3.2 Cylinder dataset

The second data set analyzed is the flow behind a circular cylinder, cf. Ap-
pendix A.4.
To analyze the contribution of the advection of separation to the final FTLE

image, we compare the FTLE results, see Figure 4.16, with a simple visual-
ization using dye-advection, see Figure 4.15. The dye is injected into the
time-dependent flow in front of the cylinder. Advection results in a streak
line visualization with very similar patterns to backwards FTLE. Thus, if lo-
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Figure 4.15 Visualization of time-dependent dye-advection combined with image-
based flow visualization. The dye is advected along streaklines. The typical pattern
of backward FTLE can be recognized in the advected dye.

Figure 4.16 L-FTLE computed for the cylinder dataset computed for two shedding
periods. White color corresponds to low and blue to high FTLE values.

cal separation takes place constantly at one position – as it is the case for
this dataset at the cylinder, FTLE mainly transports this high separation val-
ues just as streak lines transport the stationary dye. The apparent feature
originates mainly from the local separation at the cylinder.

4.3.3 Turbulent jet

The last data set is a complex flow configuration, cf. Appendix A.8, of a jet.
It consists of 6000 time steps – we used steps 5000−5500 for our computation,
which corresponds to a temporal interval of length 50. From this dataset, the
center slices are extracted resulting in a two-dimensional unsteady dataset.
In Figure 4.17, the forward and backward FTLE computed in the unsteady
two-dimensional dataset for a length of T = 5 are displayed.
The discovery of the existence of large-scale structures, so-called coherent

structures, superimposing a chaotic background-flow was a big breakthrough in
turbulent flow research. Under this perspective, it is interesting to have a look
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Figure 4.17 Forward (red) and backward (blue) FTLE for the two-dimensional
time-dependent dataset of a jet for the integration time T = 5. The colormap was
introduced by Garth et al. [GGTH07].

at how well FTLE copes with turbulent data. Figure 4.17 shows the forward
and backward FTLE structures extracted from the jet dataset. There is a
vast amount of structures visible, in particular multiple crossings of forward
and backward FTLE. Even though the explicit physical interpretation of this
slicing is not clear, it is sufficient to demonstrate the complexity of the emerging
structures, which we leave without interpretation at this point.

4.3.4 Discussion

In the analysis, we experienced that the FTLE does not always behave as
it was expected at first sight. However, the FTLE field and its extremal
structures can be considered as one successful realization of LCSs. It high-
lights interesting flow structures in many applications. But one should also be
aware that, even in non-turbulent flow fields, there are structures that cannot
be represented by FTLE. It is important to interpret the results carefully to
avoid misconceptions. There are also examples where similar features can be
obtained with much simpler, less computationally expensive methods. As Ex-
ample 4.3.2 shows, there can be a close connection to streak lines. In addition,
increasing integration time does not always improve the results. Regarding
complex flow configurations, the FTLE does not always yield the coarse struc-
tures of a flow configuration. There is not yet a satisfying interpretation of
FTLE ridges for complex and especially for non-periodic data sets.
Finally, we conclude that FTLE is one realization of LCSs but does not cover

all aspects of LCSs. There are still problems with the amount of structures.
The interpretation is not always simple. To approach these problems, we
therefore introduce another feature concept based on the acceleration in the
next chapter.
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Chapter 5

Flow analysis based on the
particle acceleration

In the last chapter, we encountered problems using FTLE to extract features of
time-dependent flow fields. First, the interpretation is not always clear. Espe-
cially, for complex flow fields, the physical meaning of the resulting structures
can be questionable. Second, the density of the features complicates the analy-
sis of complex flow fields. Third, FTLE is a concept for distinguished material
lines of two-dimensional flows. On the contrary, for instance, a vortex core is
a point structure in these flows. Thus, the FTLE reveals such structures at
most only implicitly.
In this chapter, a new feature concept based on the material acceleration

of a flow field is introduced in Section 5.1. For these structures, the physical
interpretation is much simpler. The feature extraction is based on scalar field
topology. To deal with feature-rich flow fields, a hierarchy of the features based
on an importance measure is proposed. The first component of this measure is
the lifetime resulting in the extraction of the long-living features as discussed
in Section 5.2. In Section 5.3, it is shown how robust tools can be employed to
extract vortex core lines based on the acceleration. This enables us to deal with
complex flow fields. In addition, the feature hierarchy based on the lifetime
is extended by a spatial feature importance measure. In Section 5.4, it is
demonstrated that the associated vortex regions can be extracted in the same
topological setting. Last, in Section 5.5, the resulting features are analyzed.

5.1 Lagrangian equilibrium points
In this section, a new set of feature points for time-dependent flow fields is
introduced. First, we will determine requirements for the new feature identifier,
cf. Section 5.1.1. Afterwards, we will show that the minima of the acceleration
magnitude fulfill these specification, cf. Section 5.1.2. The relation to vortices
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of the newly defined features is given, cf. Section 5.1.3, and their meaning in
two dimensions is reconsidered, cf. Section 5.1.4. Additionally, the definition
is evaluated using selected analytic illustrating examples, cf. Section 5.1.5.

5.1.1 Requirements

In the following, we will deduce three requirements for the new feature def-
inition. We will thereby focus on the successful concept of standard vector
field topology, cf. Section 2.1.4. Topological analysis of velocity fields has been
successfully applied for examination of flow fields with a distinguished frame
of reference. However, its applicability to general flow fields is limited. The
location of the velocity zeros as feature points depends on the chosen frame
of reference – even the existence of a velocity zero depends on the frame of
reference. We therefore want to find an alternative feature concept, which
generalizes the snapshot topology in a local sense and overcomes the above-
mentioned limitations.

R1 – Correspondence to velocity field topology. The concept of stan-
dard vector field topology or velocity field topology, respectively, is successful
for steady flow fields. Thereby, we consider a vector field as steady, if there
is a distinguished frame of reference for which the vector field is stationary,
i.e., it does not change in time. These flow fields consist of frozen convective
structures. They satisfy Taylor’s hypothesis [Tay38]. If the flow field is steady,
we examine its velocity field in exact this distinguished frame of reference. For
incompressible steady flows, the velocity field then shows the exact position
of centers, which correspond to vortex cores, and saddles. This concept is not
applicable to unsteady flow fields, since there is no such distinguished frame
of reference. Anyhow, we want our new feature definition to coincide with
velocity field topology for steady flow fields. In addition to the set of feature
points that should be the same, we require that the classification of the points
is preserved. Note that this contradicts Haller’s definition of an objective vor-
tex [Hal05]. In his paper, the features have to be invariant under rotational
transformation. Thereby, saddles become centers and vice versa; thus, their
classification is changed.

R2 – Galilean invariance. A Galilean invariant feature identifier reveals
the same structures when changing the frame of reference. For general time
varying flows, the feature points are invariant under the change of the frame
of reference. Thus, Galilean invariance is a desired property.
In the following, we will have a closer look on the meaning of a Galilean

transformation for the purpose of getting a better understanding of Galilean
invariance and frames of references. Let v(x, t) be a time-dependent vector
field on a finite spatial domain D ⊂ R2 with a single convecting center from
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(a) Convecting center (b) Distinguished frame of reference

Figure 5.1 A convective center in the original (a) and transformed (b) frame of ref-
erence. By choosing an appropriate Galilean transformation, the actual flow behavior
of the center is revealed.

t

x

(a) Original frame of reference

t

x

(b) Sheared frame of reference

Figure 5.2 Considering time as an additional dimension helps to understand
Galilean invariance. In fact, a Galilean transformation corresponds to a shear of
the temporal dimension. On the left side, the bounding box in the frame of reference
of the convective center of Figure 5.1 (a) is shown. On the right side, a shear in time
results in a stationary data set. The white line represents the vortex core line in time.

left to right. The fixed point of the center lies on the x-axis. The instanta-
neous velocity field is shown in Figure 5.1 (a). Fortunately, this flow field has a
distinguished frame of reference for which the velocity field is stationary. The
frame of reference just has to move with the center itself – a Galilean transfor-
mation. The corresponding velocity field is shown in Figure 5.1 (b). While the
flow behavior itself was not changed by the transformation, the visual output
has changed.
The effect is easier to understand if we consider the time of the flow field as
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a third dimension. In Figure 5.2 (a), the core line of the center is shown in the
original frame of reference. If we now change the frame of reference to get the
output of Figure 5.1 (b), this corresponds to a shear of the temporal domain,
see Figure 5.2 (b). The new frame of reference moves with the center. The
spatial origin therefore shifts outside the finite domain D. This interpretation
of a Galilean transformation shows why the flow behavior stays the same,
while the visual output changes. Keep in mind that in this spatiotemporal
representation of the two-dimensional time-dependent vector field each vector
consists of three components v = (u, v, 1). Using the stream line field to
visualize the flow, we only look at projections of these velocity vectors into the
spatial domain. A Galilean transformation thereby changes this projection.
Galilean invariance means that the feature identifier does not depend on this
projection. Note that using this interpretation, it is immediately clear that
the material derivative has to be Galilean invariant.
In the above example, we used an actually steady field to explain the impact

of a Galilean transformation. On the other side, arbitrary time-dependent
flow fields do not necessarily consist of structures with a common convective
motion. Even more, each feature in the flow field might have its own motion,
which is naturally influenced by the other structures. However, the above
interpretation is still possible locally.

R3 – Lagrangian viewpoint. To guarantee a physically sensible feature
identifier, we want to focus on particle motion. We therefore require that our
feature definition incorporates a Lagrangian viewpoint on the flow.

5.1.2 Definition

In the last section, we defined three requirements for our new feature identifier:
(i) correspondence to velocity field topology, (ii) Galilean invariance and (iii)
Lagrangian viewpoint. The definition of the feature identifier has to be done
using a Eulerian viewpoint. As already stated in Section 2.3, the material
derivative links the Lagrangian to the Eulerian viewpoint. In addition, it
was also shown that quantities based on the material derivative are Galilean
invariant. The need to have similar features as vector field topology suggests
that we should use the material derivative of the flow field itself. This quantity
is called the material acceleration;

a(x, t) =
Dv

Dt
(x, t) =

∂v

∂t
(x, t) + (v(x, t) · ∇)v(x, t). (5.1)

We now define that a minimum of the magnitude of the material acceleration
‖a‖ is called Lagrangian equilibrium point (LEP). This point can be classified
on the basis of the Jacobian of the velocity field, ∇v. An LEP is called saddle-
like if its eigenvalues are real and center-like if its eigenvalues are complex.
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In the following, it is shown that this definition satisfies requirement R1.
Let x0 be a zero of the stationary velocity field

v(x0) ≡ 0. (5.2)

This implies that the material acceleration

a|x0 = (∂tv + v · ∇v) |x0 = 0 (5.3)

vanishes at x0. Summarizing, LEPs as minima of the acceleration magnitude
are a superset of acceleration zeros and these zeros are a superset of the critical
points of the velocity field. Hence, LEPs can be considered a generalization of
the critical points of the velocity fields. In addition, these points can exhibit
vortex- as well as saddle-like behavior, depending on the eigenvalues of the
velocity Jacobian.

5.1.3 Interpretation as a vortex indicator

Another perspective onto the acceleration minima is given by their relation to
the pressure gradient via the incompressible Navier-Stokes equation:

a(x, t) = − 1

ρ0
∇p(x, t) + ν∆v(x, t),

div v(x, t) = 0,
(5.4)

where p is the pressure of the flow field, ρ0 and ν are the density and kinematic
viscosity of the fluid, respectively, and ∆ is the spatial Laplacian operator, cf.
Section 2.3.1. For ideal flows, the equations reduce to the Euler equation:

a(x, t) = − 1

ρ0
∇p(x, t),

div v(x, t) = 0.
(5.5)

Then, local extrema of the pressure field, which are zero points of the pressure
gradient coincide with zeros of the acceleration field. In this case, the above
defined LEPs form a superset of local extrema of the pressure field. Since
pressure minima are often associated with vortices, the LEP are also be related
to these structures.

5.1.4 Considerations in two dimensions

For steady flow fields, we have seen that the features corresponding to the
critical points of vector field topology are zeros of the acceleration. We defined
our features of interest as minima of the acceleration magnitude. We therefore
choose to use scalar field topology instead of vector field topology. In addition,
our definition encompasses a wider range of features – including the zeros. We
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made our choice due to the following reasons: (i) Minima of the acceleration
magnitude represent distinguished structures in the flow field. They reveal an
equilibrium of the particle motion. (ii) We are confident that the minima or
minima lines of the acceleration magnitude in a three dimensional field have
similar properties as discussed for two-dimensional fields in this chapter. The
definition of the LEPs can therefore be transferred. (iii) Defining features
as minima of a certain quantity eases an extraction of the structures since
robust methods for the extraction of scalar field topology can be utilized. The
robust extraction of zeros in the context of vector field topology is much more
complicated. (iv) The magnitude of the acceleration reveals more interesting
structures. For instance, we will see that vortex regions can be defined in the
context of the acceleration magnitude.
Note that Goto et al. [GV06] have independently chosen to define their

feature points as zeros of the acceleration. Actually, we will often deal with
minima of the acceleration magnitude that are zeros in the examples shown in
this chapter. This is illustrated by the following example. Imagine a moving
vortex that changes direction and speed. This vortex is therefore accelerated.
Its region of influence can be characterized by centripetal acceleration which
induces the rotational flow behavior. In two dimensional flows, the center of
the centripetal acceleration has to be a critical point in the acceleration vector
field. Its magnitude is therefore zero. Note that the this consideration does
also not hold in three dimensions. Furthermore, a vortex may not always be
characterized by centripetal acceleration. There might be structures that one
would define as vortices that do not have zero acceleration within their region
of influence, but a minimum in the acceleration magnitude.
In a nutshell, the definition of the LEPs as minima of the acceleration mag-

nitude is a concept that is transferrable to three dimensions. In the context
of scalar field topology, more interesting information about the acceleration is
revealed. For complex data set, the utilization of scalar field topology makes
the extraction of the LEPs possible in the first place.

5.1.5 Analytic illustrating examples

In this section, two two-dimensional incompressible flows are considered: the
Stuart solution of the inviscid mixing layer and the Oseen vortex pair. These
analytical examples illustrate that local minima of the total acceleration mag-
nitude are sensible time-dependent counterparts of critical points of standard
velocity field topology and good indicators of vortices and saddles.

Stuart solution of the mixing layer. The first data set considered is a
simple version of a shear layer, cf. Appendix A.2.
First, we want to reconsider the effect of Galilean transformations. The

Stuart vortices are depicted in Figure 5.3 as streamlines using planar line
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Figure 5.3 Stuart vortices in various convecting frames. The mean velocity profile is
shown at the left. The Stuart vortices are indicated by visualizing the instantaneous
velocity field using line integral convolution. The coloring is determined by vorticity;
more intense red corresponds to higher vorticity.
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integral convolution (LIC) [CL93, SH95]. The top picture shows the well-
known cat eyes in a periodic sequence of centers (vortices) and saddles for a
vortex-fixed frame of reference (uc = 0). For this configuration, the flow field
is stationary. The middle picture depicts the same structures but in a frame
of reference moving to the left with the lower stream at velocity (−0.7, 0), or,
equivalently, the vortices moving to the right at uc = 0.7. Thus, the data set is
now time-dependent. The centers and saddles are displaced towards the slower
stream. The bottom picture illustrates the same flow with a frame of reference
moving at velocity (−1.5, 0), i.e., uc = 1.5. Now, no zeros are observed.
These pictures illustrate that velocity field topology strongly depends on the

frame of reference as discussed above. In case of the Stuart solution, one might
argue that the frame of reference convecting with the structures is the most
natural one. However, the convection velocity of a jet and many other flows
depend on the stream-wise position, i.e., generally no single natural frame
of reference exists for topological considerations. In a nutshell, velocity field
topology is not applicable to time-dependent flow fields.

x

y

||a||

Figure 5.4 The acceleration field of convecting Stuart vortices. The coloring at
the bottom is determined by the vorticity. The height field shows the acceleration
magnitude and the curves represent integral lines of the acceleration vector field.

Figure 5.4 illustrates the acceleration field. In this image, it can be seen
that the saddles and centers of a stationary Stuart solution are not only zeros
of the velocity field but also zeros of the material acceleration field. Note
that the zeros of the acceleration field and the local minima of the acceleration
magnitude coincide in this example. In general, the latter quantity is a superset
of the first. Furthermore, a subset of the minima of the acceleration magnitude
also represents vortex cores as is verified by the vorticity magnitude depicted
as red coloring at the bottom of Figure 5.4.
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Oseen vortex pair. Now, we consider a pair of two co-rotating Oseen vor-
tices, cf. Appendix A.1. In this example, rc is chosen as 0.5 and Γ as 2π. The
distance of the vortex to the center is chosen as R = 1/

√
2. The data set is

instationary.

0 x

y

rc�rc

0

�rc

rc

Figure 5.5 Depiction of two co-rotating Oseen vortices by their instantaneous
streamlines using line integral convolution. The color-coding is determined by the
acceleration magnitude; more intense red encodes higher values. The minima of
the acceleration magnitude are marked by red spheres. For comparison, the criti-
cal points of standard velocity field topology (blue spheres) and the maxima of the
vorticity (green spheres) are added.

Figure 5.5 illustrates the Oseen vortex pair. Here, the instantaneous stream-
lines can be inferred from the planar LIC. Blue circles mark the corresponding
critical points of the velocity field. Regions of large acceleration are marked by
red. The minima (zeros) of the acceleration field are denoted by red circles. It
should be noted that the maxima of the vorticity (indicated by green circles)
are much closer to the minima (zeros) of the acceleration than to the zeros
of the velocities. Thus, the minima of the acceleration magnitude correspond
more to the vortex cores than the velocity field topology does. This differ-
ence is insignificant for frozen vortices but increases with increasing angular
rotation. Hence, the difference is correlated with the radial acceleration of the
vortex motion. Only a non-inertial co-rotating frame of reference minimizes
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the difference between vorticity maximum and the center of the velocity field.
For the saddles, the critical point found by vector field topology still coincides
with the minimum of the acceleration magnitude.
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5.2 Long-living features
In this section, a method to extract long-living counterparts of critical points
of velocity field topology is introduced. The features are based on the concept
of LEPs.

5.2.1 Motivation

In real-world datasets, the high density of features often complicates a proper
analysis. An appropriate filter mechanism differentiating between important
and unimportant structures can ease this problem. Since fluid flow researchers
are mainly interested in long-living structures, the lifetime of features is a
meaningful filter criterion. In the following, special attention is paid to par-
ticles that carry the minimality property of ‖a‖ for at least a small period of
time. The proposed feature extraction approach makes use of the ‘feature life-
time’ in two ways: (i) Considering and averaging the acceleration magnitude
along path lines over a lifetime interval reinforces the Lagrangian perspective of
the approach. (ii) An explicit feature lifetime filter selecting particles that stay
in a feature state a certain time period enables the extraction of long-living
features.

5.2.2 Feature extraction technique

As noted in Section 2.3.2, the center of a Lagrangian point of view is the behav-
ior of particles, represented by path lines and the evolution of flow properties
along these lines. Thereby, each path line is identified by its initial position
x0 at time t0 and the corresponding trajectory p(t,x0, t0) = p depending on
the time parameter t.
In the following, we introduce a new approach to extract a feature F based

on the observation of a scalar feature identifier f(x, t) along a path line p.
Therefore, the contribution of a path line to a certain feature is measured using
a feature importance IF ; it is defined as the average of the feature identifier
over some feature time span [tmin(x0, t0), tmax(x0, t0)]

IF (x0, t0) =
1

tmax(x0, t0)− tmin(x0, t0)

∫ tmax(x0,t0)

tmin(x0,t0)
f (p(t,x0, t0), t)2 dt.

(5.6)
The choice of the parameters tmax(x0, t0) and tmin(x0, t0) is crucial, since

they describe the time range of influence to the local value. They are deter-
mined by the time a path line exhibits a certain feature state. Thus, they
depend on the feature considered and are derived for each path line segment.
The feature lifetime is defined as

TF (x0, t0) = tmax(x0, t0)− tmin(x0, t0). (5.7)
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Figure 5.6 (a) The minimality of the acceleration can be measured by the Laplacian
of the scalar field ‖a‖, which can be computed by central differences. (b) Definition
of a feature’s lifetime along a path line. The parameter tmin is determined by the
acceleration threshold and tmax by the maximum lifetime window.

More specifically, for LEPs, the feature identifier is the acceleration magni-
tude a(x, t) = ‖a(x, t)‖. The lifetime parameters tmin(x0, t0) and tmax(x0, t0)
are based on three quantities: acceleration magnitude a, a minimality measure
of the acceleration Ca, and a maximum lifetime window τ . To measure the
minimality the differences of a(x0, t0) at neighboring points are averaged in
the four main directions: Ca = 1/4

∑4
i=1 ∆i, where ∆i, i = 1, .., 4 are defined

in Figure 5.6(a). Ca > Cthreshold indicates that a particle has low acceleration
compared to its neighbors.
A maximum lifetime window [t0 − τ, t0 + τ ] restricts the values of tmax and

tmin. Since saddle and vortex regions exhibit different characteristic behavior,
the parameter τ can be chosen for each of these structures separately. In
the following, the Jacobian matrix is used to distinguish between saddles and
vortex-like features.
As described in Figure 5.6 (b), the lifetime parameters are defined as

tmin(x0, t0) = min(t′ ∈ [t0 − τ, t0] | ∀t ∈
[
t′, t0

]
:

a(p(t,x0, t0), t) ≤ athreshold and (5.8)
Ca(p(t,x0, t0), t0) ≥ Cthreshold),

and

tmax(x0, t0) = max(t′ ∈ [t0, t0 + τ ] | ∀t ∈
[
t0, t

′] :

a(p(t,x0, t0), t) ≤ athreshold and (5.9)
Ca(p(t,x0, t0), t0) ≥ Cthreshold).

If one of the criteria is not fulfilled at particle position x0 and time t0, the
feature lifetime is defined as zero and tmax(x0, t0) = tmin(x0, t0) = t0; fur-
thermore, the acceleration is not averaged over the lifetime and the resulting
importance value is set to the square of the local acceleration magnitude.
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5.2. Long-living features

Figure 5.7 The path line of a particle seeded in one time-slice is displayed. The
time is represented as third dimension. The relative behavior of the flow field in the
neighborhood of this particle at a later point in time is displayed on a surrounding cir-
cular disk. The acceleration magnitude is color coded in the line integral convolution
(LIC) images of the flow field.

Subsequently, feature candidates are extracted by searching minima in the
resulting scalar importance field IF . Finally, a filtering with the extracted
lifetime distinguishes important and unimportant features.

5.2.3 Implementation

The input to the algorithm is a 2D vector field defined on a sample grid. The
algorithm consists of three main steps: integration of the acceleration values,
extraction of the minimum points and filtering of these points with the lifetime.

Integration. The first step is the determination of the lifetime parameters,
according to Equations (5.7), (5.8) and (5.9). A suitable threshold value for a
is extracted by analyzing the acceleration characteristics of the first time-slice
of the dataset. In the remainder of this section, it is simply set to ten percent
of the maximum value. The threshold Ca has to be set a little above zero, to
avoid setting a long lifetime for regions with low acceleration at all.
For each discrete point (x0, t0), a backward search in time on the trajectory

p determines tmin(x0, t0). The lifetime criteria at each sample step on p is
tested until either one of the thresholds is violated, or the maximum time
window or the domain boundary is reached. Then, the feature importance is
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(a) (b)

spheres (lifetime): heightfields:

Figure 5.8 Illustration of the averaged LEP concept for two co-rotating Oseen
vortices. The color-coded heightfield represents: (a) integrated acceleration, (b) and
lifetime for the last time step.

computed according to Equation (5.6). For numerical integration, a Runge-
Kutta integrator RK4(3) with adaptive step-size control is used. After the
starting point tmin for the forward integration is found, the accumulation of
the acceleration magnitude along p is started. The integration is terminated
if one of the lifetime criteria is not fulfilled. Note that the integration is done
at least until t0 is passed. Then, the resulting values are normalized by the
factor 1/TF (x0, t0) and both lifetime TF (x0, t0) and importance measure IF
are stored as scalar fields.

Extraction. Feature candidates are extracted by searching local minima in
the importance field I using a discrete neighbor analysis. Alternatively, other
methods like the watershed transformation [Soi99] could be used for locating
local minima.

Filtering. After these initial feature candidates are found, the lifetime filter
is applied. Using a threshold for lifetime, it is now possible to emphasize
long-living structures. The threshold can be chosen separately for saddles and
centers to account for the different lifetime characteristics.

5.2.4 Visualization

All results in this paper are visualized in a volume spanned by two spatial co-
ordinates and time. The extracted feature points are illustrated using spheres.
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(a) (b)

spheres (lifetime): heightfield (||a||):
Figure 5.9 (a) Extraction of features for a motion of six Oseen vortices. Since
particles leave the saddles regions quickly, the saddles do not emerge as prominently
as the vortex cores. The integration windows of 0.3 in each direction are too large
for particles passing through the saddle in the center. In comparison, all other long-
living structures such as the vortex cores are extracted effectively. The height field
represents the integrated acceleration. (b) Visualization of the feature lifetime. The
illuminated path line segments show the interval of the lifetime used for the integration
of the acceleration. Path lines seeded in vortex-like feature points are long centerlines,
while path lines seeded in saddle-like feature points diverge rapidly.

The spheres are scaled and colored according to the associated lifetime, choos-
ing a color table where high lifetime values are marked red, see Figure 5.8 and
Figure 5.9 (a). In some images, illuminated path line segments are seeded in
the extracted feature points to get a more intuitive notion of the lifetime. The
path lines are terminated after exceeding their feature lifetime, as shown in
Figure 5.9 (b). Color-coding is the same as for the spheres. The scalar fields
used for the feature extraction can be added as height field for one time step.
To understand the local flow structure, it is helpful to observe not only sin-

gle path lines but also the behavior of bundles. Such an exploratory analysis
is facilitated by the possibility to select a point of interest in the LIC im-
age. For this location, the path line is displayed together with a moving disk
representing the flow relative to this path line, see Figure 5.7.

5.2.5 Results

To evaluate its effectiveness, the proposed method has been applied to two
different datasets. The first dataset represents a pair of co-rotating Oseen
vortices, cf. Appendix A.1, similar to the one used in the last section. Note
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(a) (b)

Q or λ2:

Figure 5.10 Comparison of (a) λ2 and (b) Q with the proposed Lagrangian equi-
librium points. The extracted feature points include the vortex cores marked by high
values of Q or low values of λ2. In addition the saddle between the two vortices is
detected.

that for this data set, the parameter rc was set to 0.25. This moves the minima
of the acceleration magnitude towards the critical points of the velocity field
topology. A more complex flow field is generated by the interplay of six moving
Oseen vortices, cf. Appendix A.1. Both datasets are given for a temporal
bounding box of [−1.0, 1.0]. The maximum lifetime window τ for integration
is set to 0.3 in each direction. The extraction process takes a couple of minutes
on standard hardware using non-optimized software.
For both datasets, it can be seen in Figure 5.8 (a) and Figure 5.9 (a) that the

integrated acceleration is low at vortex centers and saddle points. While the
lifetime is high for all features of interest in the co-rotating case, the lifetime
only marks centers clearly in the complex field. The structures extracted are
displayed as spheres, using the lifetime to define color and size. Due to the
finite time window, the lifetime is low at the beginning, grows and then drops
off to the end.
After applying the lifetime filter, vortices are marked as important, but

interesting saddles are also removed. This is a consequence of the fact that
particles stay longer in the vicinity of centers than in the vicinity of saddles.
The illuminated path line segments in Figure 5.9 (b) indicate the interval
used for the integration. Path lines seeded in vortex-like features form long
centerlines due to the strong rotation within the vortex. In contrast, path line
segments seeded in saddle-like structures diverge. This is consistent with the
observation that interesting saddles are removed.
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(a) (b)

(c)

lifetime - spheres:

Figure 5.11 Motion of six Oseen vortices: (a) All features before filtering; (b)
Applying the lifetime filter filters the short-living out. (c) Employing a shorter life-
time window also saddles are extracted.

Since vortex cores are extracted, Figure 5.10 shows a comparison with stan-
dard vortex indicators such as λ2 and Q. The values of λ2 and Q are color-
coded in the LIC texture and in the spheres. The minima of λ2 or the maxima
ofQ reveal nearly the same structures as our approach. With λ2 orQ, however,
separating structures such as saddles cannot be extracted.
The ability of the approach to filter out short-living features is illustrated

in Figure 5.11. The chosen time window determines the maximal lifetime. All
features with higher lifetime cannot be differentiated. Choosing a time window
of length 1.0, only three long-living vortices remain.
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5. Flow analysis based on the particle acceleration

Distinguishing between saddle and vortex regions by using the Jacobian
leads to the results depicted in Figure 5.11 (c). In the example the lifetime for
vortex-like regions is 0.6 and for saddle-like regions 0.1. With this differentia-
tion all salient features including saddles are visible.

5.2.6 Discussion

The proposed method enables a Galilean invariant extraction of long-living
structures, based on the concept of Lagrangian equilibrium points. It thereby
consists of two properties: (i) the Lagrangian averaging that binds features
to path lines; (ii) the life time that provides an importance measure for the
features.
The method is still based upon two major thresholds athreshold and τ . While

the first parameter determines whether a particle carries a feature, the second
parameter represents a characteristic feature lifetime and depends on the scale
of feature lifetimes in the given dataset. Both parameters are chosen heuristi-
cally. They should be eliminated.
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5.3 The vortex merge graph

The approach introduced in the last section binds features to path lines by
averaging the acceleration magnitude along the path lines. This introduces two
major limitations: (i) it is not inherently clear that features are linked to path
lines; especially in the case of as saddle point, it is obvious that particles only
stay in the vicinity of the feature for a short time span; (ii) the averaging yields
high computational costs for each time slice; while an efficient implementation
is possible, still a lot of path lines have to be traced.
In this section, we propose an alternative point of view that considers fea-

tures as spatiotemporal entities detached from single particles. The idea is
also based on using the acceleration magnitude as a local feature identifier
F(x, t). Instead of averaging the scalar values along the path line, the accel-
eration magnitude field is examined for a fixed time step, i.e., by extracting
the LEPs instantaneous. The temporal development of these features is no
longer related to a particle trajectory and has to be tracked by other means.
There are several concepts and algorithms available to solve similar tasks, e.g.,
Feature Flow Fields (FFF) [TS03, WTvGP10] or the tracking of vector field
singularities [TWSH02, GTS04b].
For our approach, we will use the combinatorial tracking approach by Rein-

inghaus et al. [RKWH12] as described in Section 2.2.2. The approach is chosen,
since it deals with noisy data sets. We use the acceleration as a feature iden-
tifier that is based on derivatives of the velocity field. Typically, derivatives
amplify the noise in the data. Thereby, the more complex the data set is, the
more noise is a problem. Reininghaus et al. have shown that analytically de-
fined tracking methods such as FFF cannot handle such data sets, but CFFF
can. In addition, the paper proposes an importance measure for the tracked
critical lines that combines persistence as a spatial feature strength with the
idea of feature lifetime as introduced in the last section. It serves as an filter
criterion to distinguish important from salient features.
We will use this new approach to extract vortices in time-dependent flows. It

was already stated that a subset of the minima of the acceleration magnitude
is related to vortex cores and this subset can be found using the Jacobian of
the velocity field. We confirm this notion by analyzing the minima of the accel-
eration magnitude using different flow data sets in Section 5.3.1. Afterwards,
the approach of Reininghaus et al. is adapted to the underlying physics. The
original approach is not able to extract mergers and splits. In two-dimensional
flows, mergers of vortices are common events. By interpreting the tracking
fields introduced by CFFF as a graph, we determine an appropriate sub graph
that represents the vortex merge graph, cf. Section 5.3.3. Afterwards, the
results are shown in Section 5.3.4 and discussed in Section 5.3.5.
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5.3.1 LEP as vortex cores

By the Euler equation, a subset of the LEPs is related to vortices. The Ja-
cobian matrix thereby distinguishes rotational from saddle-like flow behavior.
In the following, we examine the correlation of the rotational LEP to other
vortex related criteria. Thereby, we will use vorticity ω = curl(v) as intro-
duced in Section 2.1.2. The second quantity is the Okubo-Weiss parameter
Q = ‖Ωv‖2 − ‖Sv‖2 [Oku70, Wei91]. It was also independently proposed by
Hunt [Hun87]. This parameter employs the velocity Jacobian Jv = ∇v and
compares the norm of the symmetric shear tensor Sv = 1

2

(
Jv + JTv

)
with the

norm of the anti-symmetric one Ωv = 1
2

(
Jv − JTv

)
. In the center of a radially

symmetric vortex, Q = ‖ω‖2 > 0, since ‖Sv‖ vanishes and ‖Ωv‖ becomes
the norm of the vorticity ‖ω‖. At a saddle point Q = −‖Sv‖2 < 0. Hence,
maxima of Q can be associated with vortex centers and minima with saddles.
The third quantity is λ2, which is the second eigenvalue of S2

v + Ω2
v [JH95]. It

is only related to vortices. Its minima are often used as vortex cores. Q and
λ2 are generally considered to provide synonymous information in the case of
vortices. In two dimensions, it is easy to see that in areas of rotational flow
behavior, Q = −2 · λ2. The last used flow quantity is the absolute value of
the imaginary part of the Jacobian Jv = ∇v. This quantity characterizes the
angular frequency of revolution of a neighboring particles. Hence, its maxima
also indicate vortex centers. The investigation is done using two data sets of
free shear flows. First, a periodic vortex shedding behind a circular cylinder,
cf. Appendix A.5, and the data set of a mixing layer, cf. Appendix A.7.

Cylinder. Figure 5.12 shows five vorticity related quantities of a cylinder
wake snapshot. In each subfigure, we marked the features indicated by the
quantity that are related to vortices by yellow balls. The vorticity field indi-
cates the separating shear-layers rolling up in a staggered array of alternating
vortices. The extrema reveal the known fact that the ratio between the trans-
verse of vortex displacement and the wavelength slightly increases downstream
with vortex diffusion. The second subfigure shows the Q-measure and the third
subfigure λ2. As already stated, they have similar characteristics. The fourth
subfigure shows the imaginary part of the eigenvalues of the Jacobian. Finally,
the magnitude of the material acceleration field is depicted. The minima, i.e.,
Lagrangian equilibrium points, mark vortex centers and saddles – we depicted
both structures. It can be seen that the features coincide with the vortex cores
identified by the other criteria. Note that the correct subset can thereby be
determined by the Jacobian which corresponds to the field shown in the fourth
image.

Mixing Layer. In contrast to the space- and time-periodic Stuart solu-
tion, cf. Appendix A.2, the mixing layer generally shows several vortex pairing
events. In Figure 5.13, the distance between vortex LEPs (marked by balls)
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Figure 5.12 Visualization of a cylinder wake snapshot. Five vorticity-related quan-
tities are depicted by color maps (red: positive values, blue: negative, gray: zero):
(1) vorticity; (2) Okubo-Weiss parameter; (3) λ2; (4) absolute value of the imaginary
part of the eigenvalues of the velocity Jacobian – corresponds to the angular veloc-
ity; (5) material acceleration magnitude. The yellow spheres represent the extremal
points typically used as features for the respective quantity.
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Figure 5.13 Visualization of a mixing layer snapshot. Comparison of vorticity
(top), pressure (middle) and acceleration (bottom). The color scheme is blue (red)
for negative (positive) values. The yellow spheres represent pronounced vortex LEPs.

are seen to increase in stream-wise direction as result of vortex merging. Fur-
thermore, the locations of the LEPs (bottom) nicely correlate with the local
maxima of the vorticity (top), and the local minima of the pressure (middle).
For the acceleration magnitude, we just depict the minima that are related to
rotational flow behavior.
In a nutshell, these two flow data sets have shown that there is a correlation

between the LEP and vortex cores induced by other flow criteria. In the
following, we will show how to robustly extract the points and their temporal
evolution.

5.3.2 Persistence as a natural spatial importance measure

The first step to extract vortex core lines in time-dependent fluid flows is to
determine the set of feature points in each time slice. Since we deal with
complex data sets, noise is a problem of every quantity that is based on the
derivatives of the flow fields – as the acceleration magnitude is such a quantity.
In the combinatorial framework that is employed, homological persistence is
used to filter out the LEPs that are not generated by noise. It has to be
made sure that this cancellation of critical points does not discard LEPs that
are related to the actual vortex cores. Fortunately, in the case of vortices,
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4
(a) Two co-rotating Oseen vortices

(b) Lundgren vortex: a non-circular vortex model

Figure 5.14 Acceleration magnitude for two vortex models displayed as colored
height field over the flow domain. The topology of the acceleration magnitude is
displayed by blue (minima), yellow (saddles), and red (maxima) spheres and the cor-
responding extremal lines; minima and maxima lines are shown as blue and red lines,
respectively. In both cases the minima, representing the vortex core, are surrounded
by clearly pronounced ridges.
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Figure 5.15 Persistence distribution of the data set in Figure 5.16. The number
of critical points after persistence-based filtering is plotted against the persistence
threshold level.

the LEPs are surrounded by a particular pronounced ridge. Two examples
are shown in Figure 5.14 for the data set of two co-rotating Oseen vortices,
cf. Appendix A.1, and the data set of a Lundgren vortex, cf. Appendix A.3.
The persistence value of the minimum in this basin will be determined by the
height difference to its associated ridge. This value is high compared to the
persistence of the noise-related minima. Therefore, homological persistence is
a sensible measure to filter out noisy topological structures in the acceleration
magnitude. In Figure 5.16, the remaining minima at different persistence
thresholds are shown for the data set of a jet, cf. Appendix A.9. It can be
seen that at different persistence levels the minima related to vortices still
stay untouched. The amount of remaining critical points compared to the
employed persistence threshold is shown in Figure 5.15.
In addition to the noise cancellation, the height of the ridge is determined

by the strength of the centripetal acceleration of the vortex. We assume that
this is a good measure for the importance of the vortex. Thus, we can also use
homological persistence as a spatial importance for vortices.

5.3.3 Extraction and implementation of the vortex merge graph

The focus of the original CFFF approach lies on noise resilient extraction of
critical lines using homological persistence as spatial importance measure, cf.
Section 2.2.1. Since the spatial importance of one of the critical points be-
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Figure 5.16 Persistence-based visualization of a jet snapshot. Visualization of the
snapshot for persistence threshold levels of 0%, 0.5% and 2% of the maximum (from
top to bottom). The color field represents the acceleration magnitude – with a color
map that ranges from white (zero) to red (positive). The yellow balls represent LEPs
filtered by their homological persistence with respect to the specified threshold levels.
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comes arbitrarily small as they approach a merge or split point, CFFF, as
originally proposed, cannot handle splits and merges of critical lines. In the
following, a modification of the method of Reininghaus et al. is described that
computes also the merge and split events, while maintaining its ability to han-
dle noise. It considers only minima and maxima, i.e., neglects saddle points,
which simplifies the integration of merge and split events. The modification
is done to enable the extraction of vortex core lines, for which mergers are
common events. The result is therefore called a vortex merge graph. Note
that in principle the modified CFFF approach is also able to extract vortex
core lines using arbitrary vortex related quantities. For example, if we would
use vorticity as feature identifier, all minima and maxima could be tracked
separately to built the graph.
For the case of minima or maxima, the basic idea of CFFF is to trace stream

lines in two adjacent combinatorial gradient fields. Thereby, two minima or
maxima are connected, if the stream lines in each others gradient field uniquely
connect these points. Note that a stream line ends or starts at a minimum or
maximum, respectively, if it starts in its basin. Therefore, another interpre-
tation of the CFFF approach is that two minima or maxima of adjacent time
slices are connected, if they fall in the topological basin of each other.

Computation. The basis of the tracking algorithm is the combinatorial gra-
dient field simplified by homological persistence as described in Section 2.2.1.
Let Ct be the set of critical points at time step t extracted from this field. The
CFFF approach defines two functions: forward tracking Ft : Ct → Ct+1 and
backward tracking Bt : Ct → Ct−1. They assign a critical point c1 ∈ Ct to
another critical point c2 in the next or previous time step, respectively, if c1

falls into the basin of c2. Two critical points c1, c2 of subsequent time steps are
called uniquely tracked, if Ft(c1) = c2 and Bt+1(c2) = c1. CFFF considers only
such unique tracking lines; the resulting set of lines therefore cannot contain
mergers and splits. To allow for mergers, we drop the uniqueness tracking con-
dition. Instead, we extract both the forward and backward tracking functions
F and B for all time steps resulting in tracking graph.
For tracking of vortices in 2D flow fields, we are interested in minima of the

acceleration magnitude field – the LEPs. A classification of the minima using
the Jacobian of the velocity field is applied previous to the tracking. Thereby,
we only track minima associated to rotational flow behavior. From the relevant
set of extremal points, at first, the unique tracking graph is extracted resulting
in core lines M . To compute the mergers, the following condition is tested for
each end point of a line et ∈M :

∃T > 0 : Ft+T (...Ft+1(Ft(et))) ∈M. (5.10)

Loosely speaking, it is tested if the repeated evaluation of the forward tracking
of the end point hits another tracked core line. If such a T is found, the line
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Figure 5.17 Tracked vortices of the cylinder wake in an x-t-view. Red (blue) marks
positive (negative) rotation the vortices.

given by Ft+T (...Ft+1(Ft(et))) is added to the result. To extract the split
points, the above mentioned approach can be used by replacing end by start
points and the forward by the backward tracking field. This is not needed for
2D flows, since split events do not occur in 2D flows in theory. The tracking
graph is a merge tree.

Implementation of the tracking graph. Note that the forward and back-
ward tracking represent discrete functions – they are given for each critical
point in each time slice. Thus, the tracking functions for all time steps can be
interpreted as a single directed graph containing both backward and forward
tracking. This representation eases the implementation, since known efficient
graph algorithms can be used for the evaluation.
To store the graph efficiently, the following requirements have been identi-
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Figure 5.18 Plots of two quantities along the tracked vortices, namely their stream-
wise velocity component v (top) and their transverse displacement yv (bottom). Note
that each figure contains the history of many vortex evolutions from roll-up to con-
vection out of the domain. Hence, several lines can be seen in each curve.

fied: (i) each critical point should be stored only once; (ii) the edges have to
be stored including their direction; (iii) the implementation should allow a fast
depth search in the graph to trace the connections between the unique vortex
core lines; (iv) adding edges should be possible fast, but there is no need for
a fast operation to remove them; (v) the coordinates and types of the critical
points have to be stored. Note that each critical point can be identified by
its time value and a unique identifier in the time slice – we call this a global
identifier of a critical point .
Due to these requirements, we choose to assign each critical point a con-

secutive identifier in the tracking graph – two data structures map the global
identifiers to the local ones and vice versa. Each edge is stored as a directed
pair of node identifiers. For each node, the associated edges are stores dis-
tinguishing between ingoing and outgoing edges. In addition, the coordinates
and types of the critical points are stored in two additional data structures.

Integrated persistence as a spatiotemporal importance measure. In
Section 5.2, we introduced the concept of feature lifetime as an importance
measure for critical points. While leading to much simpler results, this fil-
ter method is purely based on temporal measures. It ignores pronounced
short-lived features, which can play a significant role for the flow. Therefore,
the temporal importance measure as given by the feature lifetime should be
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Figure 5.19 Spatiotemporal evolution of the mixing layer vortices. The top figure
shows the acceleration magnitude field and LEPs at the final considered time. The
bottom figure marks the tracked LEPs over approximately 5 downwash times. Nu-
merous vortex merging events can be identified. The size and coloring of the vortex
skeleton is determined by vorticity – more intense blue corresponds to lower vorticity.
Note that the vorticity is negative everywhere.
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combined with a spatial feature strength. The CFFF approach allows for a
straightforward incorporation of homological persistence as a spatial impor-
tance measure for feature lines. In [RKWH12], the spatiotemporal importance
measure is defined by integrating persistence along the feature line, i.e., by
accumulating all persistence values on the line, cf. Section 2.2.2. Since the
measure is not normalized, the lifetime of the feature is inherently represented
by this measure – longer living features are more important if all structures
have the same spatial strength. Using this importance measure, it is possible
to filter out short-living weak features. Note that the importance measure is
only defined on the unique vortex core lines. Thus, each vortex core is analyzed
independently.

5.3.4 Results

As results of the above approach to extract vortex core lines, three free shear
flows are investigated: the cylinder wake, the mixing layer, and the planar jet.
These configurations represent different levels of spatiotemporal complexity
from the periodic wake to the broadband dynamics and vortex pairing of the
mixing layer and jet. The first two flows share a pronounced uniform far-
wake convection velocity, while the jet structures move slower with stream-wise
distance.
We investigate the LEPs for the wake, cf. Section 5.3.4, and analyze the vor-

tex merging of the mixing layer, cf. Section 5.3.4, and employ the persistence-
filter of LEPs for the jet, cf. Section 5.3.4.

Cylinder wake. Starting point is a periodic vortex shedding behind a circu-
lar cylinder, cf. Appendix A.5. This data set can be interpreted as benchmark
problem – the occurring structures are well studied in the field fluid mechanics.
Note that this data set contains no merge events.
Based on the tracked LEPs, Figure 5.17 shows the spatial-temporal vortex

evolution. In the far-wake, a uniformly convecting von Kármán vortex street is
observed. In the near-wake, the convection speed is significantly slower. This
aspect is highlighted in Figure 5.18 (first subfigure). The stream-wise velocity
of each vortex v (as part of v = (u, v)), is a monotonically increasing function
from 0.03 to about 0.85. The asymptote corresponds to the literature value
[Wil96], which validates the extraction of the vortex core lines based on the
acceleration magnitude. The transverse spreading of the vortex street, noted
in Figure 5.12, is quantified in the following subfigure with the transverse
location yv.
It should be noted that tracked LEPs can be seen as markers of coherent

structures. The LEP-based framework provides a convenient means for deter-
mining convection velocities and evolution of spatial extensions. The following
investigations of the mixing layer and the jet flow emphasize this aspect.
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Figure 5.20 Spatiotemporal evolution of the vortex skeleton of the jet. The size
and coloring of the vortex lines are determined by our spatiotemporal importance
measure. The links between the individual vortices are shown as white gray lines.
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Figure 5.21 Close-up view of the vortex skeleton of the jet flow. The gray lines
represent the extracted and filtered vortex cores. A few lines are visually highlighted
by red coloring; they show a pronounced vortex merging event and the origin of the
merged vortices. The acceleration is visualized by the blue volume rendering and the
color coding in the front and back plane. For comparison, iso-lines of the vorticity
are added to the front plane.

Mixing layer. The second investigated shear flow is a mixing layer, cf. Ap-
pendix A.7.
The vortex merging events are shown in Figure 5.19. Upstream, many vor-

tices are formed. In stream-wise direction, numerous merging events can be
identified, approximately 2 successive vortex mergers in the domain shown.
Not all crossing of x, t-curves mark mergers since vortex pairs may rotate
around their center before eventual merging. The figure strongly suggests a
nearly constant stream-wise convection velocity, as expected from literature
results and contrary to the cylinder wake dynamics.

Planar jet. Finally, the spatiotemporal evolution of the planar jet is inves-
tigated, cf. Appendix A.9.
The spatiotemporal evolution of the vortex skeleton of the jet is visualized
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in Figure 5.20 in a similar manner as the wake, see Figure 5.17, and the
mixing-layer, see Figure 5.19. Clearly, vortex merging events and a stream-wise
decreasing convection velocity can be identified. In particular, some strong
vortices remain for a long time near the exit. The importance of the vortices is
indicated by the size of the lines. A three-dimensional close-up view is shown
in Figure 5.21.

5.3.5 Discussion

In this section, a framework to robustly extract vortex merge graphs in two-
dimensional time-dependent flow fields has been proposed. The extraction
of the LEPs is resilient to noise due to the utilization of robust tools that
employ homological persistence. The CFFF tracking approach was successfully
adapted to extract merge events. The results emphasize the relevance of the
LEPs as vortex cores. The core lines have been identified for three different
data sets of growing complexity. Thereby, the extracted structures show the
expected physical properties. In addition, the importance measure allows for
a hierarchy of the vortex core lines. In Section 5.5, we will further investigate
the extracted core lines and compare them with core lines extracted from other
vortex-related quantities. Thereby, the same tracking frame work introduced
in this section can be used.
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5.4 Vortex regions
As stated in Section 5.1, analyzing the acceleration magnitude field, it can
be observed that vortex-like minima are enclosed by pronounced ridges that
bound the basins of the minima. In this section, such a basin is used to define
the region of influence of a vortex, i.e., the vortex region. This provides a
basis for a consistent treatment of vortices: While a vortex core is defined as a
minimum, the corresponding basin, bounded by maximum lines, is interpreted
as the associated vortex region, cf. Section 5.4.1.
In contrast to previous work, this novel definition of a vortex region combines

the following three advantages:

1. It is Galilean invariant. The definition of the vortex regions is solely
based on the acceleration, which is Galilean invariant. This is an essential
property when dealing with time-dependent flows.

2. It allows for vortex regions of arbitrary shape. Using scalar field topology
as the basis for the definition of vortex regions, the extraction algorithm
is not restricted to star- or convex-shaped geometries.

3. It does not require any threshold or iso-value. This enables an unsuper-
vised extraction of vortex regions in complex time-dependent datasets.
This is important, e.g., for analyzing very large data sets.

The method is described in detail in Section 5.4.2 and Section 5.4.3. In
Section 5.4.4, it is evaluated using model systems from computational fluid
dynamics. The results are compared to other definitions of vortex regions and
ridges of the finite time Lyapunov exponent (FTLE) field.

5.4.1 Motivation

Figure 5.22 This image shows one time slice of the cylinder dataset. Color represents
the acceleration magnitude overlaid by its critical points and maxima lines connecting
maxima with saddles. The topological skeleton is used to extract vortex regions
defined as the region containing a vortex-like minimum bounded by maxima lines.
The minima lines (blue) connecting minima with saddles are only displayed for the
highlighted region.

98



5.4. Vortex regions

In this section we motivate our definition of vortex regions for two-dimensional
flow fields.
In Figure 5.14, we observed for the Oseen as well as for the Lundgren vortex

that the minima of the acceleration magnitude field corresponding to vortex
cores are enclosed by pronounced ridges. This is a typical structure that can
also be found in other flows, e.g., in the flow behind a circular cylinder, as
shown in Figure 5.22. This observation leads to the new definition of a vor-
tex region as the area containing a vortex-like minimum of the acceleration
bounded by the corresponding ridge.
In terms of topology, the region is given by the basin of the minimum. It is

bounded by the associated maxima lines, which separate the minimum from
other minima in the field. This definition of the vortex region is parameter-
free. Due to its topological foundation, the boundary of the regions can be
arbitrarily shaped. Note that for each minimum in the topology one such
region exists. Thus, it is important to restrict the definition to minima that
were extracted using the already mentioned Jacobian filter criterion.
Note that the notion of vortex regions is inherently vague. For arbitrary vor-

tices, the region of rotational flow behavior can be infinite, as in the example
of the Oseen vortex. Thus, each definition of vortex regions has to settle on
criteria which respect a certain perspective. Our definition of a vortex region
is driven by the following conditions:

– being formulated in consistency with vortex cores;
– being independent from any threshold value;
– allowing vortex regions of arbitrary shape;
– being Galilean invariant;
– reflecting Lagrangian particle motion.

The latter two criteria are inferred from the definition of the LEP as the
regions are based on the same quantity.

5.4.2 Algorithm

In this section, we describe how we can robustly extract the vortex regions
proposed in Section 5.4.1. In the following, the algorithmic pipeline as shown
in Figure 5.23 is briefly summarized.
The input of the method is of a two-dimensional, time-dependent vector

field. The first step is to compute the magnitude of the acceleration of this field,
from which minima are extracted. The Jacobian filter classifies the minima into
vortex- and saddle-like. The remaining minima are then tracked as described
in Section 5.3. For each time step, the vortex regions, i.e., the associated basins
of the minima, are determined using the combinatorial algorithmic framework
as for the minima extraction. Finally, a triangulated surface is generated,
which connects the individual boundary lines using an advancing front scheme
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Figure 5.23 Overview of the vortex region extraction pipeline; (i) as input, a time-
dependent vector field is used; (ii) The acceleration magnitude and its topology is
computed using robust algorithms; the minima representing vortex cores are tracked
over time; (iii) the individual vortex regions for each slice are computed; (iv) the
tracking is used to connect the region boundaries.

in a post-processing step.
Note that the simplification using homological persistence is essential in our

context, since a topological over-segmentation would not result in the correct
vortex regions. In addition, in the vicinity of merge points, the topological
basins depend more strongly on the persistence threshold than along other
parts of the merge graph. There, their shape might change considerably from
one time step to another. We therefore only extract vortex regions along the
unique vortex core lines. Along these lines, the importance measure is given
which can be transferred to the vortex regions.

Vortex region extraction. The vortex regions are defined as the associated
basins to the acceleration minima and as such are also part of the scalar field
topology. Thus, they can be extracted using the same framework as for the
minima computation as presented in Section 2.2. The topological skeleton,
i.e., the critical points and separatrices, contains all necessary information to
extract the basins.
Given the vortex cores represented by minima and the topological skeletons

in each time step, Algorithm 5.1 illustrates the general approach. For each
point of each time-dependent vortex core line (Lines 1,2), we fetch the asso-
ciated topological skeleton (Line 3). We then determine the boundary of its
associated basin (Line 4) and append these lines to the vortex core line (Line
5). Finally, we build a surface from the vortex region lines using a simple
advancing front approach that is not further described here (Line 6).
The main step, the extraction of the boundary of the basin, is given in

Algorithm 5.2. The essential parts of the topological skeleton needed are the
saddles connected to the current minimum (line 1) and the maximum lines
starting in these saddles (line 2,3). This fact is illustrated in Figure 5.22.
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Algorithm 5.1: Main vortex region algorithm
Input: Vortex core lines C, Topological skeletons T
Output: VortexRegions R

R = getVortexRegions(C,T )
1: for all L ∈ C do
2: for all P ∈ L do
3: S ← getSkeleton(P , T )
4: B ← getBasinBoundary(P , S)
5: L.append(B)
6: L.VortexRegions ← TriangulateRegions(L)

Algorithm 5.2: Find basin boundary for a single minimum
Input: Minimum P , Topological skeleton T
Output: Basin boundary of minimum B

B = getBasinBoundary(P , S)
1: connSaddles ← getConnectedSaddle(P , T )
2: for all saddle ∈ connSaddles do
3: maxLines ← getMaxLinesOfSaddle(saddle,T )

There, one basin boundary is highlighted as white line. Note that the minima
lines (blue) connecting the minima with the saddles are only displayed for the
highlighted region.

5.4.3 Implementation details

To achieve a good reproducibility of the results, this section presents three
implementation aspects.
We employ the combinatorial framework described Section 2.2.1. In this

framework, the extraction of the saddles connected to the minima is quite
simple. The maxima lines are then extracted by integrating a combinatorial
streamline, cf. Algorithm 2.1.
Note that the maxima lines in a combinatorial gradient vector field can share

edges in the simplicial graph, or cell graph, respectively. To get the boundary
without these artifacts, we need to discard these parts of the maxima lines.
Therefore, we remove the points of the lines that are present twice in one
vortex region.
As the combinatorial streamlines can only follow the edges of the given cell

graph, the resulting vortex regions are not smooth enough for an efficient visual
perception of the generated surfaces. Therefore, we apply a smoothing step to
the resulting boundary lines before we construct the surface. For a depiction
of this post processing step, we refer to Figure 5.24.
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Figure 5.24 Individual vortex region boundaries for the dataset of two co-rotating
Oseen vortices. Due to the combinatorial approach for the region extraction, a post-
processing of the extracted vortex region boundary is necessary to achieve a good
visual quality.

Figure 5.25 Tracked vortex regions of the Oseen dataset. At the bottom, the
acceleration is shown. The vortices are indicated by their cores (white lines) and the
boundary of the regions (blue).

5.4.4 Results

We apply our algorithm for extracting vortex regions to three different datasets.
Since all flows considered in this section are planar and non-stationary, we de-
pict time as third dimension.
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Figure 5.26 Plot of the forward (red) and backward (blue) FTLE and the accelera-
tion magnitude (green) for a cut in the domain of the Oseen dataset as shown in the
image. The values are sampled on the line shown in the center image. The parameter
rc of the Oseen vortex is also shown (black lines).

Co-rotating Oseen vortices. In Figure 5.25, the first data set is shown
– a model example of two co-rotating Oseen vortices, cf. Appendix A.1. At
the bottom, the acceleration magnitude is encoded in color. Thereby, red
indicates high and blue low acceleration. There are two blue pipes emanating
from the bottom slice that show the evolution of the circular region. Within
the transparent pipes, the tracked vortex core lines can be seen. The regions
are correctly tracked over the complete time the core lines exist.
To analyze the relation of the parameter rc in the definition of two co-

rotating Oseen vortices, cf. Appendix A.1, with the size of our vortex regions,
we plotted the acceleration magnitude (green) along a cut on one slice of the
dataset, see Figure 5.26. Additionally, the forward (red) and backward (blue)
FTLE values along this line are shown. FTLE is computed for one sixth of a
period of the dataset. While the maxima of the acceleration are closer to the
vortex center c than the parameter rc, the maxima of the FTLE are further
away.

Cylinder dataset. The next dataset analyzed is the cylinder data set, cf.
Appendix A.4. In Figure 5.27, the vortex regions are depicted for nine shedding
periods. The extracted surfaces are colored by the acceleration magnitude.
Time is again chosen as third dimension. Red coloring represents high values
and blue low values of the acceleration magnitude. The vortices detach from
the cylinder as weak features. Their spatial importance is growing quickly
and attenuates in the flow. As can be seen, the regions do not represent a
single value of the acceleration. Thus, iso-surface extraction cannot be used
to determine the region boundaries.
In Figure 5.28, a comparison of different definitions of vortex regions is
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Figure 5.27 Tracked vortex regions of the cylinder dataset colored by the accel-
eration magnitude. Red coloring represents high values and blue low values. Due
to the different scalar values on the surface, these regions cannot be determined by
iso-surface extraction. The white rings enclosing the vortex regions refer to the time
slice shown in Figure 5.28 (a) and Figure 5.30 (c).

shown. The minima of the acceleration magnitude (red) and the critical points
of vector field topology (green) are depicted in each image. To extract the
critical points, an appropriate frame of reference was chosen that reveals the
typical pattern of the von-Kármán vortex street. Note that directly behind
the cylinder the locations of the critical points and the vortex cores differ very
much. The revealing frame of reference is not correctly chosen for these points.
It depends on the velocity of the vortices, which are slower directly behind the
cylinder. Figure 5.28 (a) shows the result of our method. The coloring of
the slice is determined by the acceleration magnitude. It can be seen that
the region boundary cannot be determined by an iso-value. Furthermore, the
regions get larger with growing distance to the cylinder. Figure 5.28 (b) and (c)
show iso-values of different scalar quantities that are used to identify vortices.
All these quantities are Galilean invariant. First, vorticity is shown. While
the size of the outer regions stays nearly constant, the inner regions shrink
with growing distance to the cylinder. Directly behind the cylinder, regions
of different vortices merge. The second quantity used to identify vortex-like
behavior is λ2. The third quantity is vortex strength as introduced by Bauer
et al. [BPSS02]. This is magnitude of the imaginary part of the complex
eigenvalues of the Jacobian matrix. As stated in Section 5.1, this quantity
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(a) Our Method

(b) Vorticity Iso-lines

(c) λ2 Iso-lines [SRE05]

(d) Angular Velocity [BPSS02]

(e) Tangential Velocity Maximum [GTS+04a]

(f) Streamline-based [PKPH09]

Figure 5.28 Comparison of different definitions of vortex regions, computed for the
cylinder dataset. The coloring of the slices is determined by the quantity the regions
are based on. In all figures, the critical points (green) of vector field topology are
depicted. The red points are the minima of the acceleration magnitude representing
vortex cores.
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Figure 5.29 Time-dependent vortex core lines (red) and their associated vortex
regions (blue) extracted for the dataset of a cavity. The acceleration is depicted as
volume rendering. Additionally, two kinds of path lines are depicted: the first ones
are seeded directly at the extracted vortex core lines and the other are seeded in the
vicinity.

corresponds to the angular velocity. Both quantities, λ2 and vortex strength,
show comparable results in size and shape. The size of the outer regions stays
constant when moving down the flow and the inner regions shrink. Thus the
impression of the development of the vortices strongly depends on the chosen
iso-value.
In contrast to the first four definitions, the regions in Figure 5.28 (e) and (f)

depend on the chosen frame of reference as well as on the critical points of the
vector field topology. The first method searches for the maximum tangential
velocity on a fan of rays send out from a critical point. The resulting regions are
therefore restricted to star-shaped geometries. Surprisingly, the regions have
nearly the same shape and size as the outer regions in Figure 5.28 (e) and (d).
In Figure 5.28 (f), the regions are determined by searching closed streamlines
in rotated versions of the vector field. The image shows the largest boundaries
that can be found beginning at the critical points. The shape of these regions
differs most from the other results. Their size stays constant after some initial
growth.

Flow over a cavity. A more complex model is the flow over a cavity, cf.
Appendix A.6. In Figure 5.29, the flow over the cavity (yellow) moves from
left to right and time is represented by the third dimension pointing from back
to front. This is again a periodic data set of which one period is shown. The
acceleration magnitude field is displayed by volume rendering (blue). Path
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(a) Oseen (b) Cavity

(c) Cylinder

Figure 5.30 Forward (red) and backward (blue) FTLE for the Oseen (a), Cavity (b),
and Cylinder (c) datasets. For the Oseen vortex pair, the FTLE was computed for the
sixth part of a period; the FTLE was calculated for the fifth part of a period for the
cavity; and for the cylinder the FTLE was computed for two shedding periods. The
vortex regions for these datasets are depicted additionally. A correlation especially
between the ridges of the backward FTLE and the vortex regions can be seen.

lines, seeded in the vicinity of the extracted vortex core lines (red), exhibit
typical vortex behavior, swirling around the tracked minima of the accelera-
tion. The thickness of the core lines encodes their spatiotemporal importance,
i.e., the integrated persistence, cf. Section 5.3.3. For a good visual perception,
we focused on the three most important vortex core lines. The blue surfaces
indicates the boundaries of the vortex regions extracted with our method. It
can been observed that the region of the central vortex core line is growing as
the vortex detaches from the leading edge and moves through the cavity over
the trailing edge.

Comparison to FTLE. In Figure 5.30, the computed localized finite-time
Lyapunov exponent (L-FTLE) for the different datasets is shown, cf. Sec-
tion 4.2. In the image, the blue coloring shows backward FTLE that corre-
sponds to convergence of particles and the red coloring depicts forward FTLE
that corresponds to separation. The vortex regions extracted from the accel-
eration magnitude of this slice are added to the image. In Figure 5.30 (a),
the ridges of both forward and backward FTLE of the co-rotating Oseen vor-

107



5. Flow analysis based on the particle acceleration

tices enclose the vortex region. While the shape of the extracted vortex region
boundary is similar, the size is smaller. This can also be seen in the plot
shown in Figure 5.26. The same observation can be made for the cavity in
Figure 5.30 (b). Here, especially the backward FTLE ridges (blue) correspond
to the shape of the extracted vortex regions. In Figure 5.30 (c), the ridges of
the backward FTLE (blue) are similar to the shape as well as the size of the
regions.

Performance. Note that, given the vortex core lines and the individual
combinatorial gradient vector fields, the running time for the extraction of the
vortex regions is insignificant. The time to compute the results shown in this
paper is therefore given by the time of the vortex core line extraction. For a
detailed running time analysis of the combinatorial feature flow field method,
we refer to [RKWH12].

5.4.5 Discussion

In this section, a novel vortex region definition based on the extremal structures
of the magnitude of the acceleration is proposed.
From a theoretical perspective, this definition has three important proper-

ties. First, it is independent from the chosen frame of reference of the underly-
ing vector field, since it is based on the acceleration. Furthermore, the vortex
regions are not restricted to star- or convex-shaped geometries. Finally, it does
not depend on a user specified parameter such as a threshold or an iso-value.
From a practical perspective, the proposed definition allows for an efficient

and robust algorithmic treatment as was demonstrated in Section 5.4.4. Even
if the acceleration magnitude contains a lot of spurious structures as in the
dataset shown in Figure 5.29, we are able to reliably extract the vortex cores
and corresponding vortex regions.
The definition of vortex regions based on the topological skeleton of the

acceleration magnitude can in principle be transferred to three dimensions –
analogue to the definition of the vortex cores.
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5.5 Statistical analysis
After using the acceleration as an identifier for vortex core lines in Section 5.3
and their regions of influence in Section 5.4, we now want to analyze the
behavior of other vortex related quantities along the vortex merge graph and
within the vortex regions. We will therefore reuse the quantities of Section 5.3.1
that are related to vortices such as pressure, Q, vorticity ω, or λ2.
Exemplary, we will extract vortex core lines using vorticity and λ2 with the

same tools as described in Section 5.3 and compare these graphs to the one
coming from the acceleration magnitude. The extracted vortex core lines based
on these quantities are similar but not identical. The differences are becoming
more pronounced for strongly unsteady fields. This is mainly a consequence of
the fact, that the acceleration considers the temporal change of the flow while
the others are purely based on one time-step.
The goal of the analysis is to understand their relations and differences also

concerning merge events and their point in time. Our employed framework
consists of different parts. We provide tools to select substructures in the
vortex skeleton. An abstract representation of the graph helps to focus on
the quantities detached from its the geometric embedding. Scatter plots and
parallel coordinates support the exploration of different flow quantities along
the vortex core lines. Box plots are used express their distribution in the vortex
regions of a connected vortex substructure.

5.5.1 Explorative tools

The various definitions of vortex cores and vortex regions motivate a thorough
analysis of the differences and similarities of the resulting structures. The
availability of explicit merge and split graphs for different measures provides a
good basis for this. The following analysis considers scalar feature identifiers
along extracted core lines and for vortex regions.

Analysis of Vortex Core lines. The analysis of the vortex core lines con-
sists of two components: First, different quantities sampled along these lines
are visualized. Second, subsets of the merge graph are interactively selected
for further inspection. The approach also supports the brush-and-link concept.
Visualization – We provide two options to explore quantities along the merge
graph. Parallel coordinates provide a first insight into the correlation of dif-
ferent scalar measures of interest. The quantities are sampled along the merge
graph. Due to the high temporal resolution it suffices to display the informa-
tion for every n-th point on the graph. This reduces visual clutter and removes
redundant information. To provide a better visual perception, areas of high
line density are darkened by rendering the lines of the parallel coordinates as
glow lines. This is done by rendering each line li as a stripe with width d and
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decaying opacity from the centerline to its boundary in a subtractive color
model. In detail, let p be the current pixel, Oli,p be the opacity of line li at
pixel p, Cli,p be the color of line li at pixel p, and CB be the background color,
which is white in our case. The color Cp of pixel p is then:

Cp = CB −
N∑
i=1

Cli,p ·Oli,p (5.11)

Note that only lines with a maximum distance d to p have to be considered.
The rendering of the glow lines as stripes is done using the approach of Merhof
et al. [MSE+06]. The use of glow lines results in smooth parallel coordinates
by composing the individual lines. An example is depicted in Figure 5.31.
The second exploration technique reveals correlations between quantities by

use of scatter plots.
Selection – In both of these plots, the user can select interesting structures.
The selection is highlighted in the spatial representation of the graph. In ad-
dition, the user can select vortex structures by picking a point on the vortex
merge tree. All substructures that belong to the selected tree are extracted
from the graph and segmented into individual vortices. The subgraph is there-
fore split into segments that contain no merge event. For each selected sub-
structure, the above mentioned visualization tools can be applied. An abstract
representation of the tree additionally provides a good basis for comparison of
vortex graphs based on different feature identifiers.

Analysis of Vortex Vicinity. For the vortex regions associated to the se-
lected subgraphs or the whole vortex merge graph, we provide the following
analysis tools: First, the different flow quantities are visualized on the circu-
lar area enclosing the vortex regions. This gives the user a first impression
of their behavior. To indicate their correlation along the vortex regions, we
make use of the parallel coordinates and scatter plots mentioned above. It is
thereby possible to represent the quantities for a set of regions sampled along
the selected graph or an individual region.
To get an idea of the distribution of the scalar values in regions along a

selected subgraph a further statistical analysis is of interest. For this purpose
a more complex tool is provided. Its interface, depicted in Figure 5.37, consists
of three parts: At the top, an abstract representation of the vortex graph is
given. Time is thereby represented by the x-direction. Each segment of the
vortex merge graph is a toggle to select this structure in the plots. An optional
coloring of the buttons links the segments to their spatial representation and
the corresponding plots. In the second part, different plots of the quantities can
be shown. Again, the x-axis represents the time and the y-axis the values of a
single quantity. Mean, median, minimum and maximum values and percentiles
are visualized by lines and box plots. The third part of the user interface
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(a) Vortex skeleton of the Mixing Layer
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(b) Vortex skeleton of the jet
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(c) Single region of the mixing layer

Figure 5.31 Parallel coordinate plot of a set of sample points on the vortex skeleton
of the mixing layer (a), and the jet (b), and a single representative region of the mixing
layer (c). The color of the lines is chosen by the vortex strength measure (a,b), or
the distance to the vortex core the region is associated to (c). For a better visual
perception the quantities are scaled, shifted and mirrored – as indicated by the gray
bars. For all plots, vorticity, λ2, Q and the vortex strength measure show very similar
behavior and, thus, contain redundant information.
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t

Figure 5.32 Vortex merge graph of the mixing layer dataset extracted from the
acceleration magnitude. The time goes from left to right and the flow from bottom
to top. Both, radius and color of the depicted vortex cores depend on the vorticity
magnitude: low and high vorticity correspond to blue/thin and red/thick, respec-
tively.

optionally shows the area of the associated vortex region. This helps to identify
correspondence between the development of a quantity and the size of the
vortex region.

5.5.2 Results

The data set that is considered for our analysis is a two-dimensional mixing
layer, cf. Appendix A.7.
Figure 5.32 shows the vortex merge graph of this data set that is extracted

using the acceleration magnitude as a feature identifier. The tracking result is
the same as in Figure 5.19. In this figure, a selected subgraph is depicted that
serves as a reference for the further analysis.
To investigate the behavior of other flow quantities on the merge graph,

these quantities are sampled along the complete vortex skeleton and plotted as
parallel coordinates in Figure 5.31 (a). The coloring of the lines is determined
by the vortex strength measure. The coordinate axes were scaled to provide a
good visual perception of the correspondences. The acceleration magnitude is
zero along the vortex core lines. As expected, vorticity, Q, λ2, and the vortex
strength measure exhibit very similar behavior on the lines. In Figure 5.31 (b),
we validated this correspondence with the data set of a jet, cf. Appendix A.9.
The merge graph for this data set was already shown in Figure 5.21. Due to
the strong correlation of theses quantities, we restrict the further analysis to
vorticity, pressure, λ2 and the acceleration magnitude.
To investigate the expected merge behavior, we analyzed more quantities

on a circular disk before, during and after a merge event. Since Q and the
vortex strength measure correlate with λ2 in two-dimensional flows, we omitted
these quantities. Together with the relative velocity and the pressure, the
results are shown in Table 5.1. We added the vortex regions identified by the
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Pre-merged Just merged Merged

Acc.

Rel. Velo.

Vort.

λ2

Press.

Table 5.1 Comparison of different quantities at different stages of a merge event.
Note that for the relative velocity, the correct frame of reference is only indicated for
one vortex.
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Figure 5.33 Vortex cores extracted from different feature identifiers: λ2 (first, bot-
tom red), vorticity (second, bottom blue) and acceleration magnitude (third, bottom
grey). The location of these vortex cores is depicted in Figure 5.32. The color of the
top vortex graphs depends on the time. The merge points in time differ significantly
between acceleration and the other two quantities. Vorticity and λ2 coincide most of
the time.

acceleration as white lines. It can be seen that vorticity and λ2 still reveal two
clearly distinguishable extremal values, while the pressure and the acceleration
magnitude just show a single vortex. The time of the merge events of the
vortices is different for these quantities. This seems to be a typical difference
of these two feature identifiers – we checked this behavior for other merge
events and data sets. Note that there is no common frame of reference for the
two merging vortices as indicated by the relative velocity.
In a next step, we compare vortex cores resulting from different scalar mea-

sures. From the set of merging vortex cores, we picked one vortex at the end
of the data set and computed all connected vortices that merge onto this vor-
tex. The results based on acceleration minima, λ2, and vorticity are shown in
Figure 5.33. Three interesting observations can be made: First, it is confirmed
that in the acceleration magnitude the vortex core lines merge earlier than in
the other two quantities. The core lines differ significantly between these two
types of quantities. Second, outside the merge windows, all three vortex core
lines coincide completely. While this behavior is expected for vorticity and
λ2, we did not await this for the acceleration magnitude. Third, at the merge
windows, the vortex core lines of vorticity and λ2 coincide until the actual
merge event. There, the core lines differ slightly. This could be an effect of the
persistence simplification. Note that it is not possible to use the same persis-
tence threshold for different quantities. Thus, due to these different thresholds,
the extremal points that represent the vortex core line are cancelled earlier in
the one quantity than in the other. Thus, the merge is detected earlier. In
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Pressure
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Figure 5.34 Scatter plot of the pressure compared to the vorticity (top) and the
acceleration (bottom) sampled along the vortex merge graph extracted from the ac-
celeration magnitude (top) and the vorticity (bottom). The coloring indicates time.

addition, for vorticity and λ2 split after the merge event in contrast to the core
lines extracted from the acceleration magnitude, which is represented by the
L-shaped core lines.
To compare the vorticity with the acceleration magnitude, we plotted the

different quantities along the selected vortex cores of Figure 5.33 as scatter
plots against the pressure in Figure 5.34. The coloring of the points is deter-
mined by the time. To the top image, we added a scatter plot of the same
quantities on a vortex region in the middle of the graph. While in both images
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Figure 5.35 Scatter plot of the mean of the vorticity in a vortex region compared
to its size. The measures are sampled along the merge graph identified by the accel-
eration magnitude. The coloring indicates the time.

the pressure decreases with time, the other quantities show different behavior.
In the top image, the vorticity increases with time and is nearly constant after
the last vortex merge. During the merge events, there is a chaotic behavior
of the vorticity. The black dots indicating the behavior on a representative
vortex region reveal that the vorticity and the pressure are significantly higher
within the region than at the vortex core. Note that vorticity is negative here.
As a next step, we analyze the behavior of vorticity in the vortex region.

We plotted the mean value of the vorticity against the square root of the area
of the associated vortex region along the vortex merge graph identified by the
acceleration magnitude as selected in Figure 5.33. The resulting scatter plot,
see Figure 5.35, suggests a linear correspondence between these measures.
Finally, we used our analysis tools with the two selected merge graphs.

Figure 5.36 shows the plot of a sampling of the acceleration magnitude on
a circular disk along the vorticity graph. We removed the L-shaped vortex
cores from the vorticity graph for these images, since they would result in
an confusing segmentation. Figure 5.37 shows the plot of the sampling of
the vorticity on the vortex regions along the acceleration graph. Comparing
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Figure 5.36 Analysis of the vortex merge graph indicated by the vorticity. The
acceleration magnitude in a circular region of size 17 is sampled along the graph and
indicated by box plots at the bottom. In addition, the mean value of the acceleration
is shown as a thick line. The coloring at the bottom corresponds to the color of the
segments of the merge graph at the top.
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Figure 5.37 Analysis of the vortex merge graph indicated by the acceleration mag-
nitude. The vorticity is sampled in the vortex regions along the graph and indicated
by box plots in the center. In addition, the mean value of the voriticity is shown as
a thick line. The coloring at the bottom corresponds to the color of the segments of
the merge graph at the top. The area of the vortex regions is plotted at the bottom.
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the abstract merge graphs in the top of both images, the different temporal
merge points can be seen again. Outside the influence of a vortex merge, the
mean of the vorticity and the area of the vortex region stay relatively constant
along the acceleration graph. The minimal values of the vorticity increase
a bit. Within the merge window, both the mean of the vorticity and the
area increase drastically. Along the vorticity merge graph, the mean of the
acceleration constantly grows, but stays nearly constant after the last merge.
The minimum value is always zero.

5.5.3 Discussion

In this section, we compared the vortex merge graphs extracted from the accel-
eration magnitude with the ones extracted form vorticity and λ2. We selected
appropriate statistical tools that revealed interesting properties: First, the
exact moment in time of a merge event depends on the type of the vortex
identifier. Second, outside the vortex merge window, the vortex cores of the
different quantities typically coincide. Third, there are vortex cores that merge
in the one quantity, but not in the other. Fourth, some of the feature identifiers
show very similar behavior along vortices.
Regarding the usability of the acceleration magnitude as a vortex identi-

fier, we found that it typically corresponds to other identifiers. However, at
the merge points, the behavior is significantly different to vorticity and λ2.
There, the acceleration magnitude correlates more with pressure. The regions
extracted using acceleration again correspond well with different vortex iden-
tifiers. Even for vorticity and λ2 in a merge window, the shape of the vortex
region is similar to the shape of the iso contours of these quantities.

119





Chapter 6

Conclusion and outlook

In this thesis, we have described methods to analyze two-dimensional time-de-
pendent flow fields. In this setting, the search for Lagrangian coherent struc-
tures (LCSs) plays a fundamental role. Thereby, LCSs are typically related
to vortices on the one hand, or distinguished manifolds of particle divergence
and convergence on the other hand. We have contributed concepts and algo-
rithms for both of these structures. Ridges of FTLE fields are typically used
to identify LCS. We have provided a new computation method and analyzed
the applicability of FTLE to complex flow fields. In the case of vortices, we
have introduced robust algorithms to extract them and their regions of influ-
ence based on the acceleration magnitude. These approaches also include a
hierarchy for the resulting structures. Thus, with the tools that are provided
in this thesis, we are able to extract LCSs by either FTLE or LEPs. Using the
acceleration magnitude to define vortex regions, we have also encountered an
interesting connection between the vortex regions and the FTLE ridges.
Another focus of recent work in the field of flow visualization is the transfer of

velocity field topology to time-dependent flow fields. While ridges of the FTLE
field are interpreted as time-dependent counterparts of the separatrices, we
have introduced the concept of Lagrangian equilibrium points (LEPs), which
serve as time-dependent counterparts of the critical points. Again, both main
parts of this thesis, i.e., FTLE and LEPs, contribute to this topic. In addition,
with the localized FTLE and the concept of long-living features, we have based
both concepts on local feature identifiers, which unifies the extraction of a
time-dependent version of the topology.
With the presented concepts and algorithms, we have contributed to the

field of scientific visualization as well as to the field of fluid mechanics. The
algorithmic aspects include the fast implementation of L-FTLE, the extraction
of the vortex merge graph and the vortex regions. The tools enable an efficient
analysis of time-dependent flow fields. The physical aspects of this thesis entail
the analysis of FTLE, the concept of LEPs, their spatiotemporal hierarchy, and
their statistical analysis. They build the basis for a sensible extraction of flow
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features.
In the following, we will summarize the individual contributions in detail

and characterize open problems.

Finite-time Lyapunov exponent. We began the investigation of LCSs
with an introduction to this topic. We have seen that the concept of LCSs
is elusive. It is hard to find a commonly accepted definition. With FTLE,
Haller gave a well-defined framework to detect LCSs in time-dependent flow
fields. We have introduced a new computation method for the FTLE field. In
contrast to the flow map approach, which also highlights separation due to far
away effects that are not linked to the trajectory of a particle, the new local
approach based on the Jacobian focusses on the separation along the trajectory
of a single particle. In addition to the new computation method for FTLE,
a fast algorithm has been presented that is based on the idea of reusing path
line segments. While we have only dealt with two-dimensional flows in this
thesis, the localized FTLE method can be transferred to three-dimensional
flows in a straightforward way. Recently, Kuhn et al. [KRWT12] proposed
benchmark examples for analyzing different FTLE methods. In their results,
they stated that our new approach yields better results than the classical
version, in particular for long integration times and high resolutions of the
FTLE field. In the analysis of Section 4.3, we have seen that FTLE still
has problems with the analysis of complex flow fields. While the FTLE can
be considered as a good realization of LCSs, the amount of structures often
complicates a proper analysis of the underlying flow.
While we have achieved forthcomings in the analysis of time-dependent fields

using the FTLE, there are still open and challenging questions. Regarding the
methods presented in this thesis, we identified the following.

• The localized FTLE method relies on the Jacobian of the vector field.
While we did not experience any problems using derivatives based on
finite differences, a higher order interpolation could improve the calcula-
tion accuracy.

• The performance of the L-FTLE approach might be improved by using
adaptive grids. The FTLE only has to be computed there, where large
values occur. Thereby approaches of Sadlo et al. [SP07] or Garth et
al. [GGTH07] can be transferred. Since the computation of L-FTLE is
based on tracing a single path line, the implementation is less difficult.

• The L-FTLE approach samples the Jacobian along a path line in dis-
crete steps with distance ∆t. This parameter should be chosen as large
as possible while still showing accurate results. An adaptive choice in
combination with the adaptive integration of the path line could improve
the performance.
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• The FTLE does not discriminate between separation that occurs due
to actual path line divergence or due to shear. Pobitzer et al. [PPF+11]
investigated an approach to differentiate between these effects when using
the flow map to compute the FTLE. They therefore analyzed the shear
behavior along the trajectory of the particle the FTLE is computed for.
Since L-FTLE is based on the computation of a single path line per value,
we think that a combination of both approaches yields a more consistent
method.

• We have seen that the FTLE is hard to interpret for complex data sets,
since it results a lot of in-differentiable structures. A hierarchy for FTLE
ridges might help to handle the large amount of detected features. As
a first step, separatrix persistence as proposed by Weinkauf and Gün-
ther [WG09] has been applied to a data set of a cylinder [KWP+10]. It
should be investigated if this concept can be combined with a feature life-
time similar to the concept of integrated persistence used as a hierarchy
for vortex core lines.

Acceleration. A new set of features has been defined as minima of the ac-
celeration magnitude. Besides incorporating a Lagrangian viewpoint, they ex-
hibit a certain kind of equilibrium for particles. We therefore call this concept
Lagrangian equilibrium points. Independently, Goto and Vassilicos [GV06]
proposed to use zeros points of the acceleration vector field (ZAPs). In ad-
dition to defining these points in a vector field context, which complicates a
robust extraction, the minima of the acceleration entail a wider range of fea-
tures. Elaborate methods of scalar field topology can be applied. The concept
is easily transferable to three-dimensional flows. There, it is not clear if zeros
of the acceleration either occur or represent a set of interesting features.
We were able to show that the LEPs can be used as time-dependent coun-

terparts of the critical points – representing centers as well as saddles. Note
that ridges of the FTLE field are often used as time-dependent counterparts
of separatrices of velocity field topology, e.g., cf. Sadlo et al. [SW10]. There-
fore, these concepts complement each other and they can be interpreted a first
building block of a finite time version of velocity field topology.
A subset of the LEPs corresponds to vortex cores. Their regions of influence

can be extracted in the same topological context. We have employed robust
methods to extract the vortex core lines and vortex regions in time-dependent
flow fields. A statistical analysis has revealed that the acceleration is a good
observable to extract vortices, but also some differences to known quantities
were disclosed.
Note that there is no commonly accepted mathematical definition of a vortex

and not even a set of axioms such a definition should obey. Hence, which
of the vortex indicators is correct cannot be said. Due to the large variety
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of applications and research questions in engineering and fluid flow research,
a single definition might be unwanted. The algorithmic and analysis tools
presented in this thesis can also be applied to other quantities. They allow to
analyze the different outcomes due to different vortex indicators and, maybe,
help to select the appropriate one depending on the application.
As future work, there are some ideas that could be investigated to improve

the methods presented in this thesis. These entail conceptual as well as algo-
rithmic questions:

• For the classification of the LEPs, we have been using the Jacobian in
analogy to the classification of the critical points of velocity field topol-
ogy. However, we have seen that Lagrangian quantities such as accelera-
tion show different behavior than pure spatial quantities, e.g., λ2 as based
on the Jacobian. Thus, a classification that incorporates the temporal
domain might result in a more consistent extraction.

• We have focussed on a subset of the LEPs that represent vortices. Similar
approaches could be developed for saddle points.

• The definition of the vortex core lines and their associated regions based
on the topological skeleton of the acceleration magnitude can in princi-
ple be transferred to three dimensions. It seems sensible that in three
dimensions vortex core lines are described by the minima lines of the
acceleration magnitude and the vortex cores regions are given by the
associated basins of the minima. Anyhow, the topological framework to
track these structures in three dimensional flows has to be investigated
in the context of CFFF.

• We have defined an importance measure for the unique vortex core lines.
This makes it possible to differentiate between individual vortex core
lines. Spatially important and long-living features can be distilled. At
the merge windows, no importance measure is defined. A single measure
for all connected components of a vortex may be interesting.

• Currently, one limitation of the CFFF approach is that the persistence
threshold has to be chosen before the actual tracking. This makes persis-
tence a potentially problematic parameter. If the persistence threshold
of the vortex merge graph could be chosen after the tracking, this would
improve an interactive analysis of the vortex structures.

• The persistence threshold has a deep impact on the shape of the re-
gions at the vortex merge windows. A further investigation of the vortex
regions is needed at these points.

• As stated by Reininghaus et al. [Rei12], the geometrical embedding of the
combinatorial stream lines does not always follow the actual analytically
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defined stream lines of a given data set. For combinatorial scalar field
topology, the stream lines are alright, if the ridge is well pronounced,
which is the case for the boundaries of the vortex regions described in
Section 5.4. Therefore, this limitation is not that problematic. However,
an improvement of the geometrical embedding would improve the shape
of the vortex regions – especially for data sets given on regular grids.

• In Section 5.4, we have seen that the vortex regions based on the acceler-
ation magnitude correspond quite well to ridges of the backward FTLE
field. An investigation of this correlation could improve the understand-
ing of both quantities.
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Appendix A

Data sets

Several flow data sets are used to evaluate the different feature definitions and
algorithms proposed in this thesis. An overview of the data sets and their
generation is given in the following.

A.1 Oseen vortices
The Oseen vortex models a free vortex, i.e., the tangential velocity behaves
inverse to the distance from the center. It decays due to viscosity. The velocity
VΘ in the circumferential direction θ is given by

VΘ(r) =
Γ

2π

1− e−( r
rc

)2

r
, (A.1)

where r is the spatial coordinate with origin in the center of the vortex, rc is
a parameter determining the core radius and the parameter Γ the circulation
contained in the vortex. For further information we refer to Rom-Kedar et
al. [RKLW90] or Noack et al. [NMTB04].
We used two data sets based on a mixing of Oseen vortices. Note that the

velocity of the individual vortices is induced by the other vortices in the flow.
This corresponds to the law of Biot-Savart.

Two co-rotating Oseen vortices

The first data set is a pair of two co-rotating Oseen vortices. In this data set,
rc is typically chosen as 0.5 and Γ as 2π. They rotate around the origin at
constant distance R = 1/

√
2 with uniform angular velocity Ω. Let xi = (xi, yi),

i = 1, 2 be the centers of the two vortices. Then,

x1 = R cos Ωt, y1 = R sin Ωt,

x2 = −R cos Ωt, y2 = −R sin Ωt. (A.2)
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The velocity of each vortex corresponds to the induced velocity, cf. Equa-
tion (A.1), i.e. RΩ = uθ(2R).

Mixing of six Oseen vortices

This data set is described by an random mixing of six Oseen vortices. Their
core radius is chosen in that way that they interact with each other.

A.2 Stuart vortices
The analytic Stuart vortex model represents a two-dimensional time-dependent
flow with elliptical convecting vortices moving from left to right with the
medium velocity of the flow field. The model can be interpreted as a sim-
ple streamwise periodic version of a shear layer, i.e. the velocity is lower in the
upper half than in the lower half [Stu67]. The flow is analytically defined as

u(x, t) =
sinh(2 x2)

cosh(2 x2)− 0.25 · cos(2(x1 − t))
+ uc

(A.3)

v(x, t) = − 0.25 · sin(2(x1 − t))
cosh(2 x2)− 0.25 · cos(2(x1 − t))

,

where uc represents the convection velocity. If not stated otherwise, it is set
to uc = 1. It is a periodic flow with a temporal period of T = π.

A.3 Lundgren vortex
The Lundgren vortex model [Lun82] is an example for a non-circular basic vor-
tex. It also is a solution of the Navier-Stokes equations. Lundgren has shown
that solutions of the two-dimensional Navier-Stokes equations can be lifted to
three dimensions using the Lundgren transformation. In his publication, he
used this vortex as an example. I thank Oliver Kamps (University of Münster)
for providing this data set

A.4 Cylinder I
The first cylinder data set is a time-dependent two-dimensional CFD sim-
ulation of the von-Kármán vortex street [NSA+08, Wil96], the flow behind
a cylinder with Re = 100. This is well above the critical value for vortex
shedding at 47 [Zeb87, Jac87] and well below the critical value for transition-
related instabilities around 180 [ZFN+95, Wil96]. The data set consists of 32
time steps. The flow is periodic, allowing a temporal unbounded evaluation of
the field.
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A.5 Cylinder II
The second cylinder data set is also a time-dependent two-dimensional CFD
data set showing the von-Kármán vortex street. This flow is simulated with
a finite-element method solver with third-order accuracy in space and time,
like in [NAM+03]. The rectangular computational domain (x, y) ∈ [−10, 30]×
[−15, 15] without the disk K1/2(0) for the cylinder is discretized by 277,576
triangular elements. The resolution of this data set is much finer than the
above one. The numerical time step is 0.1, which also corresponds to the
sampling frequency for the snapshots.

A.6 Cavity
The cavity data set is a time-dependent simulation of the flow over a two-
dimensional cavity [CSD03] using the compressible Navier-Stokes equations.
It consists of 1000 time steps and is nearly periodic.

A.7 Mixing layer
The mixing layer data set represents a shear flow with a velocity ratio between
upper and lower stream of 3:1 [CSB98, NPT+04, NPM05]. The inflow is
described by a tanh profile with a stochastic perturbation. The Reynolds
number based on maximum velocity and vorticity thickness is 500. The flow
is computed with a compact finite-difference scheme of 6th order accuracy in
space and 3rd oder accuracy in time. The computational domain (x, y) ∈
[0, 140] × [−28, 28] is discretized on a 960 × 384 grid. The sampling time for
the employed snapshots is ∆t = 0.05 corresponding 1/10 of the computational
time step.

A.8 Jet I
This data set represents a turbulent, non-periodic flow [LMC05, CDB+98]. It
is generated from a three-dimensional time dependent large eddy simulation
of a jet. It consists of about 6000 time steps.

A.9 Jet II
The second jet data set is a two-dimensional time-dependent flow. It shows
a number of vortex mergers leading to a reduction of the characteristic fre-
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A. Data sets

quency. The convection velocity of these vortices is not constant but decreases
in streamwise direction.
All quantities are normalized with the jet width Dj and maximum jet ve-

locity Uj . The flow is a weakly compressible isothermal 2D jet with a Mach
number of Maj = 0.1 and a Reynolds number of Rej = DjUj/ν∞ = 500. The
inflow velocity profile is given by a hyperbolic tangent profile like in [Fre01]:

u(r) = U∞ +
(Uj − U∞)

2

[
1− tanh

[
b

(
r

r0
− r0

r

)]]
. (A.4)

Here, a uniform 1% co-flow U∞ = 0.01Uj is added to avoid vortices with
arbitrarily long residence time in the computational domain. The slope of the
tanh profile is characterized by b = ro/4δθ and the momentum thickness of the
shear layer is δθ = 0.05ro. The initial mean temperature was calculated with
the Crocco-Busemann relation, and the mean initial pressure was constant.
The natural transition to unsteadiness is promoted by adding disturbances

in a region in the early jet development near the inflow boundary xo = −0.5 :

v(x, y) = v(x, y) + αUce
− (x−xo)2

λ2x (f1(y) + f2(y)) (A.5)

Here,

f1(y) = ε1e
− (y−y1)

2

λ2y , f2(y) = ε2e
− (y−y2)

2

λ2y , (A.6)

where Uc = 0.5, α = 0.008, y1 = 0.5, y2 = −0.5, λx = 0.1, λy = 0.1 and
−1 ≤ ε1, ε2 ≤ 1 are random numbers.
The flow is defined in a rectangular domain (x, y) ∈ [0, 20] × [−7, 7]. The

adjacent sponge zone extends to [−1.5, 25] × [−10, 10]. The whole domain is
discretized on a non-uniform Cartesian with 2 449 points in x-direction and
598 points in y-direction. The compressible Navier-Stokes equation is solved
by mean of a (2,4) conservative finite-difference scheme based on MacCor-
mack’s predictor-corrector method [GT76] with block-decomposition and MPI
parallelization. The system may be closed by the thermodynamic relations for
an ideal gas. Details of the equations, boundary conditions and solver can be
inferred from [CDC+11].
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Appendix B

Gallery of fluid motion

The Gallery of fluid motion is an annual contest organized by the Division
of Fluid Dynamics (DFD) of the American Physical Society (APS). There,
researchers exhibit outstanding visualizations and photographs of computa-
tional and experimental data sets. Every year, a few of these submission are
awarded.
During the development of the work presented in this thesis, three prominent

visualizations were submitted to this contest. By this means, we were able
to arouse interest in our work in the community of fluid mechanics. In the
following, the three submissions are depicted.
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B. Gallery of fluid motion

B.1 Lagrangian feature extraction of the cylinder
wake

Awarded

We extract Lagrangian features of the 2-D von Kármán vortex street behind
a circular cylinder. The temporal convergence and separation of particles is
monitored over two shedding periods. This behavior is quantified by the dis-
tance of nearby particles during this time window. The Finite Time Lyapunov
Exponent (FTLE) [Hal01b] measures the logarithm of the maximum distance
of these nearby particles. We compute the FTLE based on the first variational
form [KPH+09], i.e., integrating a locally linear flow.
In the image, red coloring indicates regions of particle divergence in for-

ward time. Blue regions show convergence (divergence in backward time).
The height of the grey surface represents the maximum of both correspond-
ing FTLE values. The direction of the flow field is indicated by lines on the
surface.
The intersections of both curves mark high separation on the one side and

high convergence on the other side. These points are interpreted as a La-
grangian version of saddle points from topology [Hal01a]. Furthermore, the
ridges of the FTLE build attractive and separating invariant manifold “arms”
that mark domains of particle attraction and separation. Thus, the mixing of
the von Kármán vortex street is characterized by the Lagrangian saddle points
and the corresponding domains.
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B.2. Flow over a cavity – evolution of the vortex skeleton

B.2 Flow over a cavity – evolution of the vortex
skeleton

We consider a numerical simulation of a weakly compressible 2D flow over a
cavity atMa = 0.36 (courtesy: M. Samimy). The flow over the cavity (yellow)
is from left to right, the time is represented by the third dimension. Focus is
placed on the temporal evolution of the vortices. These vortices (blue vortex
cores) are identified as minima of the acceleration magnitude following feature
extraction concept of finite-time topology [KHNH11]. The spiraling curves rep-
resent fluid particle paths in the vortical regions. The volumetric smoke-like
regions indicate a range of large acceleration magnitudes. The vortices origi-
nate at the leading edge and move through the cavity over the trailing edge.
The halo of each vortex consists of spiraling particles with large acceleration
values.
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B. Gallery of fluid motion

B.3 Incompressible jet – temporal evolution of the
vortex skeleton

Jens Kasten, Jan Reininghaus, Ingrid Hotz, Hans-Christian Hege (Zuse Institute Berlin), 
Guillaume Daviller, Pierre Comte, Bernd R. Noack (Institute Pprime Poitiers)

Incompressible Jet - Temporal Evolution of the Vortex Skeleton

A viscous two-dimensional jet flow is visualized employing a direct numerical simulation at Reynolds number 500 and Ma=0.1. The flow direction is from left to right. 
The time is represented by the third dimension pointing towards the viewer. Our focus is the extraction of the vortex skeleton including  vortex mergers in time. The 
evolution of the vortex skeleton is depicted by gray lines. A successive merger of three vortices is emphasized by the thick red curves. The vortex cores are identified 
by local minima of the material acceleration magnitude and positive Q-values (Kasten et al. 2011 TopoInVis). Regions of significant particle acceleration are indicated 
by the blue smoke. In the front plane, this acceleraton magnitude is color-coded, red regions denoting higher values than blue ones. In addition, vorticity iso-levels 
are added, demonstrating that vorticity maxima and acceleration minima effectively coincide.

Time

A viscous two-dimensional jet flow is visualized employing a direct numerical
simulation at Reynolds number 500 and Ma = 0.1. The flow direction is from
left to right. The time is represented by the third dimension pointing towards
the viewer. Our focus is the extraction of the vortex skeleton including vortex
mergers in time. The evolution of the vortex skeleton is depicted by gray lines.
A successive merger of three vortices is emphasized by the thick red curves.
The vortex cores are identified by local minima of the material acceleration
magnitude and positive Q-values [KHNH11]. Regions of significant particle
acceleration are indicated by the blue smoke. In the front plane, this acceler-
ation magnitude is color-coded, red regions denoting higher values than blue
ones. In addition, vorticity iso-levels are added, demonstrating that vorticity
maxima and acceleration minima effectively coincide.
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