
Chapter 10

Generalizing the Instructor
Extraction

A variation of the instructor video segmentation approach presented in the pre-
vious chapter can also be applied to a variety of other problems where a fore-
ground object has to be extracted in an image or video. This generalization of
the instructor extraction approach solves many of the open problems described
in the last chapter. I have released it as an open-source segmentation frame-
work under the name Simple Interactive Object Extraction (SIOX) [48]. SIOX
has been integrated into several open-source image and video manipulation ap-
plications. This chapter describes SIOX, compares it with related approaches,
and presents some details of the integration of the method as a cut-out tool in
different image and video manipulation applications. Further information can
be found in [Friedland et al., 2005b], [Friedland et al., 2005e], [Friedland et al.,
2006a], and [Friedland et al., 2006b].

10.1 The State of the Art

Many popular image manipulation programs contain semi-automatic object ex-
traction tools. The most popular tool for extracting foreground semi-automatic-
ally in image manipulation programs is Magic Wand. Magic Wand starts with
a small user-specified region. The algorithm then performs a region growing by
absorbing connected pixels such that all selected pixels fall within some user-
adjustable tolerance of the color statistics of the specified region. For natural
images, finding the correct tolerance threshold is often problematic. The meth-
ods works well for images which contain few colors, such as drawings. For
“natural” images that contain many colors, such as photographs, the results are
unusable or the interaction required is far from being feasible. In practice, it is
better to use non-automatic tools, for example a path tool, to extract an object
from a photograph by hand rather than to use Magic Wand.

Intelligent Scissors [Mortensen and Barrett, 1999] can be used to select con-
tiguous areas of similar color in a fashion similar to Magic Wand. Intelligent
Scissors creates a selection boundary by assisting the user to create a set of
connected line segments around the object. Clicking with the mouse creates
nodes that are joined using curve shapes that attempt to follow color weights.
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Figure 10.1: A sample comparison (horse image from [14]) between Corel’s
Knockout 2 and SIOX as implemented in GIMP (see Section 10.3). Upper row:
Knockout 2 requires the user to specify the outer region (red) and an inner region
(green). The tool then tries to classify the unknown pixels between the two strokes.
Kockout’s output is shown in the right picture. Bottom row: SIOX requires the
selection of a region of interest and optionally a very coarse grain specification of
known foreground. The segmentation result is shown in the right picture.

Although the method works even with sub-pixel accuracy, a satisfactory seg-
mentation is only achieved with very simple photographs that have clear edges.

Bayes Matting [Chuang Y.-Y. and R., 2001] gets a shrinked shape of the
object and a subset of the background as input. The user uses a brush to
coarsely redraw the shape of the input with the brush stroke having to contain
both foreground and background. The algorithm then tries to compute opacity
values over the pixels marked with the brush. The main disadvantage is that
for complicated objects the user must specify quite detailed shape information
for the algorithm to work properly. Knockout-2 is a proprietary plug-in for
Photoshop [Corel Corporation, 2002]. According to [Chuang Y.-Y. and R.,
2001] the results are sometimes similar, sometimes of less quality than Bayes
Matting. Adobe’s Photoshop contains a tool called Extract. It requires a little
less user interaction. Instead of two strokes, only one thick brush strokes has
to be drawn by the user, which has to cover the edge of the object. Extract
gives similar results to Knockout-2 [Trinkwalder, 2006]. Figure 10.1 shows a
comparison of interaction and results between SIOX and Knockout 2.

GrowCut [Vezhnevets and Konouchine, 2005] is a very recent algorithm
based on a cellular automaton. The classification of a pixel is partly deter-
mined by the classification of its neighbors. Doing this over many iterations,
the selection will become more and more stable. Due to the large number of
iterations required, this process takes more than a minute even for moderate
complex screen-resolution images that are far from the high resolutions of mod-
ern digital cameras for example.
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Grabcut [Rother et al., 2004] is a two step approach. The first step is au-
tomatic segmentation that relies on the work of Graph Cut [Boykov and Jolly,
2001]. The second step is manual post-editing. The idea of automatic classifi-
cation is reduced to building a graph where each pixel is a node with outgoing
edges to each of the 8 neighboring pixels. The edges are weighted such that a
max-flow/min-cut problem computes the segmentation. The user only selects
the region of interest. Grabcut ’s manual post-processing tools include a so-called
background brush, a foreground brush, and a matting brush to smooth borders
or re-edit classification errors manually. In terms of robustness, Grabcut sur-
passes all the algorithms mentioned earlier but can only select one object at a
time. The algorithm minimizes a global cost function which cannot distinguish
between fine local details and noise. It therefore fails for highly detailed regions
and noisy pictures (compare Figure 10.14).

GrabCut was extended by [Li et al., 2005] and [Wang et al., 2005] who
present semi-automatic video cut-out tools that are far from being realtime
capable. To accelerate the interactive refinement, [Wang et al., 2005] cluster the
pixels by a hierarchical mean shift into 2D regions, which in turn, are combined
by motion estimation to 3D regions. After a manual specification of known
background, the GrabCut algorithm generates a contour, which is further refined
by reconstructing a 3D-contour mesh. The whole process is reported to be
computationally quite expensive: more than 22 seconds per frame.

10.2 Algorithm Description

Like the instructor extraction approach in Chapter 9, SIOX separates foreground
objects from background based on their color characteristics. Consequently, it
requires color images and the assumption that the foreground objects are suffi-
ciently perceptually different from the background. Fortunately, digital cameras
typically try to optimize color variance resulting in perceptual dissimilarity of
different objects [Adams et al., 1998]. Of course, there is no unique definition
of “foreground” or “object” because the semantics ultimately depends on the
understanding of the individual who is perceiving the image. Inside the scope
of the algorithm, SIOX defines foreground to be a set of spatially connected
pixels that are “of interest to the user”. The rest of the image is considered
background. The user has to specify at least a superset of the foreground.

The input for the SIOX algorithm is a color image or a video-frame in
CIELAB space and an initial confidence matrix Mi. A confidence matrix is
a matrix of the same dimensions as the image. Each element of the matrix
contains a floating point number that lies in the interval [0, 1] and corresponds
to one pixel in the image. A value of 0 means the corresponding image pixel
belongs to the background, a value of 1 means the corresponding image pixel
belongs to the foreground. Any value between 0 and 1 describes a certain ten-
dency that the corresponding pixel belongs to either foreground or background,
with 0.5 expressing no tendency. In the following, confidence values of 1 mean
known foreground, values of 0 known background, and values of 0.5 unknown.
This notion of a confidence matrix has a few advantages. The confidence matrix
along with the original picture can easily be passed between different processing
steps or be serialized. Its elements can easily be interpreted as probabilities
or as values of a gray-scale image. The latter interpretation allows to apply
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Figure 10.2: The original image (source [Martin et al., 2001]), a user-provided
rectangular selection (red: region of interest, green: known foreground), and
the corresponding confidence matrix (black: known background; gray: unknown;
white: known foreground). Figure 10.4 shows the segmentation result.

standard image operations, such as convolutions or morphological operators,
without having to touch the original picture. The confidence values can directly
be mapped to transparency values. The input confidence matrix for SIOX may
contain known foreground, known background, and unknown elements (defined
by the confidence values 1.0, 0.0, and 0.5). It must, however, at least con-
tain known background. Mi is either specified by the user or generated by an
automatic classifier. The steps of the algorithm are as follows:

1. Create color signatures SB and SF . SB represents the specified known
background and SF the known foreground (either it has been specified or
the signature is calculated as a difference signature between the signature
of the entire image and SB).

2. Classify each unknown pixel of the image as foreground or background
using a nearest-neighbor search in SF and SB . This produces a new
confidence matrix Mo.

3. Filter out noise by applying erode/dilate and blur on the matrix Mo to
remove artifacts and optionally close holes up to a specific size.

4. Find the connected components with high confidence in Mo which are
large enough or correspond to user markings. Set the values of all other
connected components to 0.

5. Apply the confidence matrix Mo to the image. This is usually done by
mapping the elements of Mo directly to the transparency values of the
pixels contained in the image.

As defined above, the algorithm computes a separation of one (possibly dis-
connected) foreground object from the background. However, a straightforward
extension of the algorithm also allows for multi-labeling, that is the separation
of the image into several different objects and background. An example of such
an approach is described in Section 10.5. Figure 10.2 shows a sample input for
the algorithm and the corresponding confidence matrix.

10.2.1 Construction of Color Signatures

As already defined in the previous chapter, a color signature is a set of repre-
sentative colors, not necessarily a subset of the input colors. A color signature
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(a) Original image (b) All colors (c) KD-tree signa-
ture

(d) Array signa-
ture

Figure 10.3: In (b), all colors from (a) are visualized as points in CIELAB space,
(c) shows the color signature resulting from the tree clustering algorithm, (d)
shows the signature from the faster array-based algorithm described in [Friedland
et al., 2006b]. The array-based clustering is faster, but the segmentation result is
worse.

is constructed by clustering a set of pixels into equally-sized clusters. The cen-
troids of the clusters are defined to be the representative colors.

The algorithm for creating a color signature from a set of pixels has already
been described in Section 9.5.3: Given a set of color pixels, all colors are re-
garded as points in a d-dimensional color space. This color space is subdivided
recursively, starting with the whole space. In step i, the points in the current
box B of the subdivision are projected onto the axis a along dimension i mod d.
The two extreme projections p, q are determined, and if ‖p − q‖ is larger than
a given threshold li mod d, B is split into two with a plane orthogonal to a at
p+q
2 . This is done until all boxes have at least one dimension that is smaller

than the threshold for that dimension. As described in Section 10.7, the triple
(0.64, 1.28, 2.56) for the box width in dimension i was found to be a good set of
threshold values using genetic algorithms.

In a second pass, all center points of the boxes resulting from pass one are
taken and are used as input points for the same algorithm. To improve noise
robustness, only the center points of such boxes B are considered that contain
at least t points for a fixed threshold t. These points are representative points
and therefore become part of the signature. A good value for t is the number of
specified pixels divided by 1000 (again, see Section 10.7). As already observed
by [Rubner et al., 2000], this clustering method produces a good distribution
and a representative signature with few points.

For applications where speed is a major issue and quality a minor problem,
such as high-resolution video segmentation with high frame rates, an alternative
color segmentation algorithm can be used that is much simpler and almost an
order of magnitude faster [Friedland et al., 2006b]. The dynamic splitting rule
from the kd-trees is then exchanged by a fixed discretization of the color space.
This can be realized as a simple three-dimensional array. This does not only
allow very fast access to every cell but also allows incremental updates when
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Figure 10.4: The result of the color classification before (left) and after post-
processing (right). The original image and the user selection is shown in Fig-
ure 10.2.

new foreground or background is selected without the need to rebuild the entire
signature.

The signatures resulting from clustering typically contain only a few hun-
dred points or less, which makes the subsequent steps very fast. To compare
different clustering techniques, one can look at the clusters they create as shown
in Figure 10.3. The discretized CIELAB space yields a very regular signature
compared to the kd-tree approach due to its array implementation which allows
further geometric optimizations. However, this clustering gives slightly worse
segmentation results (see 10.7).

A color signature is built for the set of pixels having confidence 0 and an-
other one is built for the pixels of confidence 1. If the confidence matrix does
not contain any pixels with confidence 1, the foreground signature is found by
color signature subtraction which is defined as follows. Two color signatures S1

and S2 are subtracted into a resulting signature R = S1\S2 by comparing the
representative colors contained in S1 and S2 using the Euclidean distance. For
each element in S2, the element in S1 with minimum distance is marked. R is a
subset of S1 that contains only those representative colors of S1 that have not
been marked. S2 must not contain more elements than S1. In order to build
a foreground signature when only known background is given, the background
signature is subtracted from the signature of the entire image (which has always
the same or a higher cardinality).

10.2.2 Classification of Unknown Pixels

The pixels with confidence value 0.5 are classified using nearest neighbor search.
If the Euclidian distance of a pixel’s color is closer to an element of the fore-
ground signature than to all elements of the background signature, it is classi-
fied as foreground, otherwise it is classified as background. If a color has equal
minimal distances to both signatures, the pixel is considered foreground. The
reason for this is a practical one: In image editing tools it is usually easier to
erase wrongly classified foreground than to reconstruct wrongly classified back-
ground. However, in natural images, such as photographs, this case has a very
low probability.
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10.2.3 Post-processing

As already explained in Section 9.5.4, the pure foreground/background classi-
fication based on the distances to the color signatures will usually select some
individual pixels in the background with a foreground color and vice versa, re-
sulting in tiny holes in the foreground object. Again, the wrongly classified
background pixels are eliminated by a standard “erode” filter operation while
the tiny holes are filled by a standard “dilate” operation [Gonzalez and Woods,
2002] directly performed on the confidence matrix. A breadth-first search on
the confidence matrix is performed to identify all spatially connected regions
that were classified as foreground. Either the biggest region or all regions with
an area greater than a threshold are considered the final foreground object(s).
The user can specify a smoothness factor to define how much smoothing should
be applied to the confidence matrix. More smoothing reduces small classifica-
tion errors. Less smoothing is appropriate for high-frequency object boundaries,
for clouds or drawings. The values of the confidence matrix are directly used
as transparency values (also known as α values) for each corresponding pixel.
Figure 10.4 shows a sample result before and after post-processing.

10.3 Segmentation of Still Images

For still image object extraction, the user specifies the known background and
known foreground regions manually. In the following, the user-specified regions
are called trimap. As explained above, the known foreground is optional, but
it improves the robustness of the segmentation. To provide this information,
the user makes several selections with the mouse. The outer region of the first
selected area specifies the known background while the inner region defines a
superset of the foreground, i. e., the unknown region. Using additional selec-
tions, the user may specify one or more known foreground regions or additional
background regions to refine the region of interest. Internally, the trimap is
mapped into a confidence matrix.

Using this interaction style, SIOX has been integrated into the core of the
open-source project GIMP (GNU Image Manipulation Program) [21]. Fig-
ure 10.5 shows the user interaction necessary to create the initial confidence
matrix as implemented in GIMP version 2.3.9. A freehand selection tool is used
to specify the region of interest (Figure 10.5 a and b). It contains all foreground
objects to be extracted and as few background as possible. The pixels outside
the region of interest form the known background while the inner region defines
a superset of the foreground, i. e., the unknown region. The known background
is visualized as dark area.

The user then uses a foreground brush to mark representative foreground
regions (Figure 10.5 c). Internally, this input is mapped into a confidence ma-
trix, where each element of the matrix corresponds to a pixel in the image. The
values of the elements lie in the interval [0, 1] where a value of 0 specifies known
background, a value of 0.5 specifies unknown, and a value of 1 specifies known
foreground. Once the mouse button has been released, the selection is shown
to the user. The selection can be refined by either adding further foreground
markings or by adding background markings using the background brush (Fig-
ure 10.5 d). Pressing the “Enter” key results in the creation of the final selection
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(a) User loads an image and chooses the fore-
ground extraction tool...

(b) selects region of interest...

(c) specifies representative foreground re-
gions...

(d) optionally refines the result...

(e) and is provided with a tight selection. (f) The object can now be handled indepen-
dently.

Figure 10.5: User interaction to provide initial confidence matrix in the image-
editing program GIMP. SIOX has been integrated as a core feature in GIMP since
version 2.3.3 (seagull image from [14]).
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Figure 10.6: An illustration of the basic idea of the Detail Refinement Brush:
Spill colors can be detected by the ratio of the distances to the closest represen-
tative foreground color f and the closest representative background color b.

mask (Figure 10.5 e). The object can then be manipulated independently (Fig-
ure 10.5 f).

10.4 Sub-pixel Refinement

In most cases, a pixel-accurate object extraction gives satisfying results. Some-
times, however, a single pixel contains parts of the foreground as well as parts of
the background. The resulting color of the pixel is a mixture of the foreground
and the background. For this reason, images containing highly structured tex-
tures, such as hair or fine tree branches, look sloppy if they are classified only
with pixel resolution. Sub-pixel accuracy is also needed to remove spill colors
that result from motion blur or image filters that smooth borders.

Fortunately, color signatures provide an adequate model, and a simple exten-
sion of the algorithm allows to cope with this issue. Figure 10.6 illustrates the
idea. Let c be a certain CIELAB color in the picture. Let f be the closest repre-
sentative color to c in the foreground signature and b the closest representative
color to c in the background signature. Let c’ be the orthogonal projection of c
onto the segment fb. The point c’ splits fb into the two segments fc′ and c′b.
Checking if the ratio ‖fc′‖

‖c′b‖ comes closer to 1 than a threshold t allows to detect
whether a color c is likely to be a mixture between foreground and background.
In other words, if the Euclidian distances between c and f and between c and b
are very similar or equal, then c is assumed to be a mixture between foreground
and background. Of course, for sensible results, the angle spanned by f, c, b
must not be too small, or a more suitable pair of points f, b has to be found.

However, this method fails for colors that are inherently a mixture of many
colors, for example white. Although their nearest neighbor clearly classifies them
as part of the background or foreground, these colors are very often inherently
detected as mixture colors because there are also many close representatives
in the antagonist signature. Another question is how to set the threshold t,
i. e., how to define “close enough to 1”. These two questions make it hard
to implement a full-automatic solution that would allow for the detection of
mixture colors. In practice, a semi-automatic solution was favored and was
called Detail Refinement Brush (DRB). The Detail Refinement Brush is offered
to the user as a simple interactive drawing tool. Using coarse strokes, the brush
is used to refine regions where the results achieved by the automatic, pixel-
accurate segmentation are not satisfying. With the user specifying the regions
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(a) Antialiased border with
spill colors

(b) Brush interaction (c) Result

(d) Highly detailed texture
with spill colors

(e) Brush interaction (f) Result

(g) Highly detailed texture
where too many pixels were
classified as background

(h) Brush interaction (i) Result

Figure 10.7: Sample results for the Detail Refinement Brush. The image in
the left column show the result after SIOX, the middle column shows the user
interaction with the DRB, and the right column the results. Spill colors can be
removed in subtract mode (red), pixel omissions in highly textured regions can be
repaired using add mode (blue).

to search for mixed colors, the risk that a wrong detection destroys already
approved segmentation results is lowered. In addition to the brush, the user
is provided with a slider that enables the adjustment of the threshold t. The
brush has two different modes: add and subtract. Add re-adds wrongly classified
foreground. Subtract is used to remove spill colors at borders or from highly
detailed textures.

The brush affects the confidence conf(p) of a pixel p with color c in the
following way (f and b being the closest representiative color in foreground and
background signature, respectively):

conf(p) =

{
1−min(‖c−f‖

‖c−b‖ , 1) in subtract mode
min( ‖c−b‖

‖c−f‖ , 1) in add mode
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Figure 10.8: Simultaneously extracting multiple objects of the same color struc-
ture using SIOX can save time. From left to right: Original image (source: [14]),
user selection (blue: known background, green: known foreground), and final
result.

If conf(p) is smaller or equal to the user-defined threshold, the pixel con-
fidence value is directly mapped to the opacity value of the given pixel. Fig-
ure 10.7 a, d, g show some sample results after automatic object extraction.
The manual brush interaction illustrates Figure 10.7 b, e, h. The refined results
are shown in Figure 10.7 c, f, i.

I also experimented with complete removal of the background tone from the
pixel’s color but this turned out to be too aggressive. The perceptual result of
mixing two or more colors is non-linear and an “un-mixing” would require a
more accurate color model.

10.5 Extraction of Multiple Objects

The extraction of multiple objects (also often referred to as multi-labeling) of
uniform color structure and size has already been described in Section 10.2:
Instead of defining the biggest connected component as the final result in the
post-processing step, one allows for multiple objects that have at least a certain
size. In practice, this can easily be implemented by providing the user with a
checkbox that disables or enables multi-object extraction and a slider that allows
to adjust the minimum allowed object size. In order to facilitate usage, the SIOX
implementation in GIMP provides only a checkbox: If the extraction of several
objects is enabled, all those connected foreground components are considered
objects of interest that have at least one quarter of the size of the biggest
connected component. Figure 10.8 shows some examples of the extraction of
multiple objects with similar color structures.

Of course, it is also possible to extract multiple objects of different color
structure using repeated extractions of single objects. Graph-based segmenta-
tion approaches, such as Grabcut (see Section 10.1), have to rely on repeated
extractions in order to implement multi-labeling because they seek a minimal-
cut. Using SIOX, the extraction of multiple objects of differing color structure
in a single step only requires the creation of a color signature for each object.
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An example where the extraction of several objects in a single step is desirable
is given in the next section.

10.6 Video Segmentation

Figure 10.9: The user specifies known foreground and known background for the
first frame in a scene (above). SIOX segments it and reuses the color signatures
for automatic segmentation of subsequent frames (below).

For object extraction in videos, the confidence matrix can be either specified
by the user or can be learned from motion statistics. If the matrix is specified by
the user, the approach is similar to the one described in Section 10.3, with the
exception that color signatures can be reused in consecutive frames. Since many
colors are identical in consecutive frames, a hash table allows for very efficient
classification of the non-background pixels in each frame. However, when the
displayed scene changes too much, the segmentation has to be stopped and a
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Figure 10.10: Original video images (left), color classification using the tra-
ditional strategy by [Gunnarsson et al., 2005] (middle), and result using SIOX
(right). The gray regions define known background, the white regions are unclas-
sified, all other colors mark a certain object. No post-processing step is applied
because the result is already sufficient for the subsequent robot-control processing
steps.

new manual selection has to be performed. Fortunately, many heuristics exist
for scene change detection (see for example [Zabih et al., 1995, Aoki et al.,
1996, Feng et al., 2005]). I experimented with observing the hit/miss rate of
the hash table for each frame, which results in a robust detection of most scene
changes.

If background and foreground signatures have been build, the current Java
reference implementation easily processes a 640×480 video at 30 frames per sec-
ond. Figure 10.9 shows a sample object extraction in a video. The videos were
extracted using a manual specification of known background and foreground in
the first frame. For fully automatic object extraction, any known method may
be used that is able to provide at least a subset of the background and prefer-
ably also a subset of the foreground so that color signatures can be computed
without manual interaction. A specialized approach used for instructor segmen-
tation is described in Section 9.5.2. A hardware-based approach is presented
in Chapter 11. Of course, the instructor can also be extracted using a manual
specification of foreground and background samples. In fact, this provides a
more robust and motion-independent lecturer extraction.

Of course, multi-object extraction as described in Section 10.5 is also possible
in videos. The following experiment presents a practical video segmentation
application where the extraction of several objects in a single step is desirable:
object tracking in robotic soccer. Robocup [57] is a competition of autonomous
robots playing soccer in a color-coded environment. Each class of objects seen
by the robots is associated with a unique color. A robot’s vision relies on the
classification to identify and discriminate various objects on the field which in
turn is very important for its behavior and finally for the success of the entire
soccer team. The canonical approach used by many Robocup participants is
to perform a color calibration by either manually [Gunnarsson et al., 2005]
or automatically [Mayer et al., 2002] selecting representative regions of each
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Figure 10.11: From left to right: The original image from the benchmark,
the original lasso selection as provided by [35], a user-specified trimap used for
benchmarking SIOX, and the ground-truth provided in the benchmark dataset.
SIOX has been benchmarked with the user-specified trimaps because they are
more realistic and the lasso trimaps are not suitable for SIOX because they do
not select representative colors.

object in several video frames and feed them into a classifier. A look-up table
is then built in which each color is associated with a class. [Gunnarsson et al.,
2005] proposes to fill the color table by a computational intensive process that
automatically identifies regions of the various objects by shape and marks their
colors correspondingly. This is done in non-time-critical moments so that during
the actual game, a simple look-up suffices to classify each object.

The perceived color, however, depends on several factors such as lighting
conditions (which may change over time), camera settings, and shadows or
reflections cast by surrounding objects. Filling the look-up table exclusively with
marked colors only yields satisfactory results when several dozens of frames have
been processed this way. However, the abstraction mechanism provided by color
signatures allows for a satisfying classification even with a small initial region
classification. Using either the user-selected regions or an automatic output of
a geometric pre-classifier, a color signature is generated for each object class:
goal1, goal2, ball, playing field, robots, and residual objects.

Figure 10.10 illustrates the difference in the results between the method
described by [Gunnarsson et al., 2005] and SIOX. In the first frame, sample
regions were assigned to their respective classes manually. The experiment
indicates that SIOX is also useful for real-time tracking of multiple objects,
at least in an environment where the colors are deliberately chosen to be easily
distinguishable.

10.7 Evaluation

Unfortunately, showing that a certain image or video-processing method works
is often reduced to publishing results achieved on a small pre-selected set of
sample pictures. Until now, this dissertation has done likewise. Even though
this often suffices to demonstrate that a certain idea may be applicable for a
special problem domain, this kind of “proof by example” does not guarantee
that the image or video-processing approach yields satisfying results in general.
On the other hand, proving mathematically that a certain image-processing
method works is often impossible because both the problem and the output
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Figure 10.12: Per-image error measurement from applying SIOX on the bench-
mark dataset provided by [35]. Please refer to the text for a detailed description.

are not mathematically well defined. In practice, there is almost no image or
video-processing method that does not fail in certain special cases. As already
discussed in Section 9.2.2, this is especially a problem for object extraction
methods. Because the processing of the human brain that enables vision is not
yet understood researchers are forced to rely on heuristic approaches.

This section presents my experiments to provide evidence that SIOX gives
satisfying results for a large set of images and is therefore a generalization of
the instructor extraction problem. However, it is impossible to provide an un-
deniable proof because object extraction is not yet mathematically definable.

10.7.1 Benchmarking and Tuning of Thresholds

In [Blake et al., 2004] a database of 50 images plus the corresponding ground
truth to be used for benchmarking foreground extraction approaches is pre-
sented. The benchmark data set is available on the Internet [35] and also in-
cludes 20 images from the Berkeley Image Segmentation Benchmark Database
[Martin et al., 2001]. The data set contains color images, a pixel-accurate ground
truth, and user-specified trimaps. I chose comparison with this database because
the solutions presented in [Blake et al., 2004] are commonly considered to be
very successful methods for foreground extraction.

The trimaps, however, are not optimal inputs for the algorithm presented
here because the specified known foreground is not always a representative color
sample of the entire foreground. Furthermore, creating such a trimap would be
too cumbersome for the user, as it already contains quite detailed shape infor-
mation. The benchmark therefore does not represent the results a user could
provide. For this reason, I created an additional set of trimaps better suited
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Color Space Worst Image Error Total Error
CIELAB 15.4% 3.6%

RGB 97.0% 11.8%
HSI 54.4% 5.2%
YUV 34.7% 4.74%

Table 10.1: Average and worst-case classification results for different color
spaces. Details of the experiment are explained in the text.

for testing the approach. I asked several independent users to draw appropriate
rectangles for the region of interest and known foreground in each of the im-
ages. These trimaps may still be suboptimal but it is assumed here that they
represent the typical input of a user. Using a rough freehand selection instead
of a rectangular area, for example, would improve the segmentation result of
those images where the smallest possible rectangle already covers almost the
entire picture. Figure 10.11 shows an example of an image in correspondence
with both types of trimaps and the ground truth.

Unfortunately, it is difficult, maybe impossible, to create a generally valid
error measure. Assuming such a perceptually accurate error measure for fore-
ground extraction approaches would exist. The entire task would be reduced to
minimizing this error function. Because I want to create comparable results, I
stick to the error measurement defined in [Blake et al., 2004], which is defined
as:

ε =
no. misclassified pixels

no. of pixels in unclassified region
In low-contrast regions, a true boundary cannot be observed using pixel-accurate
segmentation (see Section 10.4). This results in the ground truth database
containing unclassified pixels. For comparability, these pixels are excluded from
the number of misclassified pixels as in [Blake et al., 2004].

As discussed in Sections 9.5.3 and 10.2.1, the results of the SIOX algorithm
depend on the setting of the thresholds for the box width dimensions for each
cluster in CIELAB space as well as the abstraction threshold for the removal of
clusters that contain too few pixels. Therefore, the purpose of running SIOX on
the benchmark data set is two-fold: Besides comparing the segmentation results
with other algorithms, the benchmark also helps to find the optimal values
for the four parameters. I tuned the parameters manually and used a genetic
algorithm [47] to verify the result. As already mentioned in Sections 9.5.3 and
10.2.1, the triple (0.64, 1.28, 2.56) for the box width in dimension i seems to be
optimal for the cluster size. The best value for the abstraction threshold seems
to be 0.01, i. e. the number of specified pixels divided by 1000. The results
presented in the following were generated using these values for the parameters.

If only the background signature is given and the foreground signature has
to be calculated by color signature subtraction, the overall error is 11.32 %. The
overall error when applying the lasso trimaps provided by the database is 8.75 %.
As already mentioned, the lasso selections are not optimal for the segmentation
algorithm presented here. Figure 10.12 shows the result for the additional set
of trimaps based on rectangular user selections1. The overall error is 3.59 %

1Throughout this dissertation, the benchmark images are always listed in the same order.
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Abstraction Worst Image Error Total Error
Algorithm as proposed 15.4% 3.6%
No abstraction at all 40.2% 8.8%

No relevance threshold 44.3% 9.9%

Table 10.2: Using color signatures as an abstraction mechanism does not only
improve the speed of the segmentation, it also improves the results. The details
of the experiment are explained in the text.

and the segmentations subjectively appear much better. This indicates that the
robustness of the algorithm is significantly improved with the user providing
a foreground sample. Appendix G presents the benchmark images along with
their segmentation results. Using the alternative clustering method described
in Section 10.2.1, the error is 4.21%.

The best-case average error rate on the database for the GrabCut underlying
algorithm is reported as 7.9% [Blake et al., 2004].2 Using different trimaps for
classification results in a higher number of pixels to classify. One could object
that a higher number of pixels to classify contains more pixels that are easier to
classify and thus may beautify the error rate because there is no focus on the
critical boundary pixels. This may be true for algorithms that seek an accurate
boundary by growing from some center of the picture, or by shrinking a lasso.
The algorithm proposed here makes no distinction between critical and non-
critical pixels: In the color classification step, every pixel has an equal chance
of being misclassified no matter where in the image it is located. Having more
pixels to classify therefore makes the test even harder.

10.7.2 Testing Assumptions

The benchmark offers the possibility to check some of the basic assumptions un-
derlying SIOX presented in the preceding chapters. The following experiments
have been conducted to provide evidence that the keystones of the theoretical
derivation for the SIOX algorithm hold.

CIELAB vs RGB vs HSI vs YUV

In order to test the impact of using CIELAB as the underlying color space,
the algorithm was also applied to the benchmark images using YUV, HSI, and
RGB. The parameters were again tuned using genetic algorithms. Otherwise
the algorithm remained completely unchanged. Although there is no guarantee
that the genetic algorithm found the optimal constants in each case (and did
not get stuck in a local minimum of the fitness function), looking at both the
average error and also the worst-case error reveals a clear evidence. CIELAB
proves to be better than all other color spaces. Although YUV comes close
on average, CIELAB shows a significantly smaller worst-case error. Table 10.1
summarizes the average and worst-case results. Of course, a small worst-case
error is very important for a generic image manipulation tool.

2At the time of writing of this dissertation, a per-image error measurement has not been
published.
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Figure 10.13: Cutting out an object with a fairly complex shape from this
high-resolution image (2592× 1944 pixels) takes about 6 seconds in GIMP v2.3.9
(Pentium 4 3GHz, 2GB RAM). Further refinement steps would take about 2-
3 seconds per interaction.

Need for Abstraction

Section 9.5.3 discusses that color signatures provide an important means of
abstraction. Without this abstraction, noise and outliers make segmentation
difficult. On the other hand, too much abstraction makes segmentation impos-
sible. The right trade-off between abstraction and accuracy is tuned with the
constants that have been found as described in the previous section. Table 10.2
shows the results of two benchmark experiments to provide evidence that the ab-
straction mechanism provided by color signatures does not only improve speed
but also improves accuracy.

Without the clustering performed to create the color signatures, the segmen-
tation is not only several orders of magnitude slower because more comparisons
have to be made, the result is also worse. If the unknown pixels are directly com-
pared with each pixel of the background and foreground sample, the resulting
classification error more than doubles to 8.8 % (worst result: 40.2 %).

As described in Section 9.5.3, an abstraction threshold removes clusters that
represent only very few pixels in the picture. This is especially useful for re-
moving a few wrongly specified known foreground or known background pixels.
These appear frequently in human-generated trimaps. If the clustering is per-
formed for creating the representative colors but clusters that contain only a few
pixels are not removed, the classification error increases to 9.9 % (worst result:
44.3%).

10.7.3 Other Means of Evaluation

The benchmark provides some evidence of the robustness of the SIOX algorithm,
expecially because the pictures were not selected by me. However, the results
are only partly significant because the images in the data set did not contain
any images with highly detailed textures where sub-pixel accuracy would be
a requirement. Furthermore, these regions were excluded from the test. The
benchmark did not test interactive refinement by the user and it did not con-
tain any noisy or blurry images. Finally, videos where not part of the data
set. SIOX has been implemented into the core of the open-source image manip-
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(a) Original

(b) GrabCut (c) SIOX

Figure 10.14: Extracting multiple objects from a noisy image (source: [14]).
Graph-Cut-based approaches like [Rother et al., 2004] are usually only capable of
extracting one object at a time and have difficulty segmenting noisy images.

ulation program GIMP. In February 2006, an early GIMP implementation of
SIOX was tested by the editorial staff of c’t magazine [Trinkwalder, 2006]. The
magazine compared SIOX to GrabCut and KnockOut. Although the tested
implementation did not yet include the Detail Refinement Brush and multi-
ple object extraction, the magazine positively mentioned SIOX’s capability to
extract objects with highly complex shapes. The main concern of the maga-
zine was that, compared to the two other commercial tools, the implementation
had not yet been optimized for speed and the extraction of an object from a
5 megapixel image took too long to process. Since the publication of the article,
many technical optimizations had been done by the open-source community (see
Appendix A for a list of particular names) and the extraction of the object from
the 5 megapixel photograph shown in Figure 10.13 takes about 6 seconds on a
3-GHz Pentium 4. Further refinement steps, which can partially reuse already
calculated data, take about 2-3 seconds per interaction.

The inclusion of the algorithm into GIMP also resulted in a huge amount
of user feedback, mainly in newsgroups, blogs, and mailing lists. This feedback
allows to extract a few rules of thumb for as to which image properties increase
the chance of an instantly perfect segmentation result:

• The better the foreground object is distinguishable from the background,
the easier the segmentation.
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Figure 10.15: If color signatures overlap heavily, the result is bad segmentation.
The original (taken from [14]) has very smooth transitions making it hard even for
a human to find the exact boundaries (left). The automatic segmentation result
has clearly visible dents and holes which have to be eliminated by user interaction
(right).

• The better the foreground and background selections, the better the seg-
mentation result. The user must make sure the entire object is inside the
region of interest and the foreground samples are representative and do
not contain any background. Ideally, the foreground samples should con-
tain all the colors that the foreground object contains. Of course, finding
such a set of samples is often cumbersome or even impossible. For animals
and persons the following rules of thumb seem to hold:

– Animals: The user should select at least the face, a large part of the
body, and every special feature that a specific animal might have.

– Human beings: The user should select a part of the face, the hair,
and different parts of the clothes he or she wears. Skin is difficult to
extract because of reflections, so as much skin as possible should be
selected.

• High color variance: With the color spectrum being wide, the chance that
background and foreground share the same colors is decreased. If the
color spectrum of an image is very narrow, colors are shared by different
objects.

• Good contrast: If the object boundaries are unclear, segmentation is often
not accurate and manual refinement is required. The higher the number
of mixture colors, the lower the chance for fast and accurate segmentation.

A summarizing rule of thumb could be deduced stating that if a picture was
taken to show a particular object – like a portrait foto of a human being, an
animal, or any other particular item – SIOX will most probably be able to
extract it.

10.8 Limits of the Approach

The benchmark as well as the experiences of many users indicate that the pre-
sented algorithm performs well on a number of difficult pictures where it is even
difficult to construct an accurate ground truth. The classification copes well
with noise although the computation needs considerably more time for noisy
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Figure 10.16: The SIOX algorithm is currently being adopted for several open-
source applications. This screenshot was provided by Brecht van Lommel and
shows a SIOX implementation in Blender.

input. Figure 10.14 shows the result of classifying a noisy image with SIOX and
using a graph-cut-based algorithm. However, looking at the resulting pictures
also discloses some weaknesses. The segmentation depends heavily on the user
provided trimap. The user has to select a region of interest that does contain the
whole foreground object. Failing to do so will give unsatisfying results. Difficult
images require a wise selection of representative foreground. Therefore, the user
must have at least a little knowledge of what could be representative. If two very
similar objects exist on the picture, where only one of them is to be considered
foreground, the segmentation mostly gives bad results. The reason is that most
of the colors of the foreground are then considered background because many
similar colors exist on the second object. The only workaround is to include
both objects in the region of interest and to provide good foreground samples.
Still, this method may fail when the unwanted similar object is bigger than the
wanted one. When SIOX is integrated into an image manipulation application
this problem can be avoided easily by combining SIOX with other operations,
for example by cropping the image prior to using SIOX. Foreground objects that
are connected with objects of the same color structure (for example, two people
embracing each other) are almost impossible to extract using SIOX. Most of the
misclassified pixels in the benchmark result from objects that are close to the
foreground object, both in color structure and in location. The same applies to
shadows and reflections.

Still another problem is the use of the standard observer and the D65 refer-
ence white. Pictures taken with different illumination conditions are segmented
poorly. Especially underwater scenes are awkward to segment, because of the
natural color quantization underwater [Richardson, 2000]. For these pictures, a
different model would have to be used3. As already explained in Chapter 9, the

3In the case of underwater photography, this model would have to depend on the depth
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Figure 10.17: This image is a screenshot of a running Inkscape v0.44pre3 pro-
vided by Bob Jamison. Inkscape provides SIOX in combination with bitmap
tracing. This allows users to vectorize only certain objects in an image.

most critical drawback of the approach is color dependence. Although many
photos are well separable by color, the algorithm cannot deal well with camou-
flage. If the foreground and background share many identical shades of similar
colors, the algorithm might give a result with parts missing or incorrectly classi-
fied foreground, as can be seen in Figure 10.15. Gray-scale pictures or pictures
that have already been color quantized give bad results (for example GIF images
or videos encoded with a codec that performs color reduction). Although SIOX
also works for drawings, the postprocessing steps blur their edges. Computer-
created drawings with a few colors are better segmented by using Magic Wand.

Future enhancements may include an automatic adaption of the clustering
strategy according to the color distribution of the image and a further improve-
ment of the algorithm taking into account the first derivative of the picture.
The implementation of CIELAB’s different observers and illumination models
may improve segmentation of underwater scenes, space images, or pictures taken
at night. I also experimented with the integration of color-distribution-based
methods and with the SCIELAB space [Zhang et al., 1997]. Automatically ap-
plying the DRB to detected spill-color regions on the boundary is a matter of
further research, but in the end there will always be cases where a computer
cannot distinguish between detail and noise without additional user interaction
or information about the content.

where the picture was taken.
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10.9 Conclusion

This chapter illustrated that a generalization of E-Chalk’s instructor extraction
approach solves problems that currently cannot be addressed by state-of-the-
art solutions, mostly relying on graph-cut algorithms. Using graph-cut-based
approaches, recovering the boundary of an object can be impractical and some-
times even impossible. Highly detailed textures, such as hair or trees with
branches, prevent object extraction from being reduced to finding a simple cut.
Especially in the case of videos, there may be fuzzy edges, for example due to
interlace effects, noise, or motion blur. Changing the way the confidence matrix
is generated, the core of the algorithm can be used for a variety of applications.
The generated color signatures can further be used to cope with highly detailed
textures even with sub-pixel accuracy. The presented approach can be applied
to a variety of other problems where a foreground object should be tracked,
extracted, and/or identified. SIOX has already been put into practical use in
GIMP, an open-source image manipulation program.

Since the release of an open-source reference implementation in Java [48],
implementations of SIOX are currently also being integrated into Krita (part of
KOffice) [29], Inkscape [27], and Blender [71]. Figures 10.16 and 10.17 show pre-
liminary screenshots from Blender and Inkscape. The next chapter will present
yet another application of the algorithm, namely the use of SIOX in combination
with a 3D camera.
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