
Chapter 4

Server Architecture

A software system that is to automatically integrate different types of con-
tent streams also needs an architecture that fundamentally supports this. This
chapter provides a conceptual overview of the architectural approach of the
E-Chalk Server system. Further details can be found in [Friedland and Pauls,
2004], [Friedland and Pauls, 2005a], [Friedland and Pauls, 2005b], and Ap-
pendix B.

4.1 Preliminary Considerations

As could be seen in the discussions of the previous chapter, schools and univer-
sities are a heterogeneous playground. A software system that wants to achieve
sustained success in more than a few institutions has to be able to survive in
an environment consisting of different software and hardware configurations. It
should be able to adapt to different software ideologies (e. g., it should not inter-
fere with political discussions about operating systems). The software has to fit
into the existing hardware infrastructure and should readily combine with other
multimedia applications. Structural modifications, such as the addition of new
media, changes in technical formats, upgrades to new hardware, or functional
enhancements should not cause tremendous administrative overhead. A teacher
must be able to step into the classroom and start lecturing as usual. Reliability
should also be considered. It is important to be able to continue working when
individual parts of the system fail, at least on the level of switch-over and/or
backup facilities.

In the beginning, E-Chalk basically consisted of three monolithic servers.
The chalkboard simulation and server, the audio server, and the video server.
The three servers were started simultaneously by the E-Chalk Startup Wizard
(see [Friedland et al., 2002]), a GUI wizard that is shown on startup to handle the
configuration of the E-Chalk server before the beginning of a lecture. Figure 4.1
illustrates the setup.

As E-Chalk was being used in more and more universities, the heterogenity of
different university hardware and software prerequisites required more and more
special solutions. A common case was the following: After the initial introduc-
tion of some lecture recording system, professors wanted to do chalkboard-based
lectures while the students and the infrastructure of the university had been

29

30 CHAPTER 4. SERVER ARCHITECTURE

Figure 4.1: An overview of the old architecture of the E-Chalk server: The
E-Chalk Startup Wizard starts the monolithic audio, video, and board servers.

optimized to a lecture recording system that only supported slide-show presen-
tations. E-Chalk had to fit into already established software configurations and
work flows in different departments and subject areas. For example, E-Chalk
had to be combined with other universities’ lecture recording systems or with
commercial Internet broadcasting systems. Users wanted to use different codecs
than those that were built into the system. The early monolithic architecture
did not allow proper integration into many different systems. Any update of
the software system did not only require a manual patch of the source code,
it also required a complete re-installation by the administrators of the “client
university”. Lectures, archived in different formats than the built-in E-Chalk
formats, could not be edited using Exymen. Last but not least, E-Chalk is a
research project and thus constantly underlies changes. This forced us to create
an architecture that would be able to provide us with both system stability and
the possibility of a rapid integration of new ideas.

Even though most commercial multimedia streaming systems provide exten-
sibility through an SDK (see Section 2.3), these are not only complicated to use
but also too specialized and proprietary. A common subset, like a compatibil-
ity layer, is missing. Updates of codecs often force the customers to re-install
certain components (sometimes they do not even know about). Introducing a
new medium results in administration work and also in an update of clients and
associated tools, see for example [Bacher et al., 1997].

This chapter presents a system called SOPA: Self-Organizing Processing
and Streaming Architecture that was build as a reaction to these different de-
mands [Friedland and Pauls, 2005b]. The system eases the development pains
of applications in need for an extensible streaming and processing layer while
decreasing administrative maintainance workload. It tries to provide a round-up
solution that serves as an extensible framework for managing software compo-
nents (sometimes also called plug-ins). The system allows the synchronization
of different independent streams, such as slides and video streams and proposes
a format-independent notion to describe the handling of a concrete content, for
example, to convert from one multimedia format into another. SOPA encour-
ages the development of compatible codecs and filters in a community, makes

4.2. EXISTING MULTIMEDIA ARCHITECTURES 31

it easy for system administrators to use and to search for available codes, and
supports changing the server configuration when a client connects instead of
requiring the client to download a plug-in. Exymen also builds on SOPA, which
allows it to edit content that was created with newly introduced codecs.

4.2 Existing Multimedia Architectures

Although none of the following architectural approaches could be directly used
as a bottom layer architecture for E-Chalk, many concepts of E-Chalk’s server
architecture had already been introduced in a similar way before. This sec-
tion therefore provides a short survey on the existing solutions for multimedia
systems and explains their differences to SOPA.

Indiva [Ooi et al., 2000] stands for INfrastructre for DIstributed Video and
Audio and is based on the Open Mash project. It is a middleware layer for a uni-
fied set of abstractions and operations for hardware devices, software processes,
and media data in a distributed audio and video environment. These abstrac-
tions use a file system metaphor to access resources and high-level commands
to simplify the development of Internet webcast and distributed collaboration
control applications. It uses soft-state protocols for communication between in-
dividual processes. Indiva focuses very much on distributed programming. The
smallest elements Indiva handles are processes, not classes. The configuration is
simply static and there are no automatic stream synchronization mechanisms.

MacOS X’s audio core by Apple contains a package called Audio Toolbox
[Apple Inc, 2001]. Inside the toolbox, one can find the AUGraph SDK. An
AUGraph is a high-level representation of a set of so-called AudioUnits, along
with the connections between them. AudioUnits are used to generate, process,
receive, or otherwise manipulate streams of audio. They are building blocks
that may be used isolated or connected together to form the audio signal graph.
Information to and from AudioUnits is passed via properties. AudioUnits are
identified by a string-based, proprietary, hierarchic identification mechanism.
One can use the API to construct arbitrary signal paths through which audio
may be processed, i. e., a modular routing system. The API deals with large
numbers of AudioUnits and their relationships. AudioGraphs allow realtime
routing changes, that means connections can be created and broken while audio
is being processed. The API is restricted to audio and – although available in
Java – can only be used on Mac OS X. The AuGraph SDK has no concept for
self configuration or distributed programming.

Microsoft Direct Show [31] is a component architecture for multimedia strea-
ming and processing which is part of Direct X which is a support package
for the Windows operating systems. Direct Show features dynamic assembly
of stream processing graphs. However, Direct Show contains no layer on the
administrative end, i. e., assembly has to be done in source code. DirectShow is
not platform independent and does not feature a remote discovery mechanism
for components.

Sun Microsystems delivers a quite general and platform independent frame-
work that hides the implementation details of several media formats: the Java
Media Framework (JMF) [84]. JMF is a Java API that supports capture, play-
back, streaming and transcoding of audio, video, and other time-based media.
It also provides a plug-in architecture that enables developers to support custom

32 CHAPTER 4. SERVER ARCHITECTURE

data sources and sinks, effect plug-ins, and codecs. The architecture is deduced
from the properties and technological restrictions of the supported hardware and
the implemented formats. Although their plug-in loading mechanism can load
classes at runtime, they do not offer package dependency checking or automatic
updating, as one would expect from a well-defined component management. It
is therefore not suitable as a base for a dynamically configurable system.

The demands discussed above are very similar to the problems that have to
be solved by the manufacturers of digital TV set-top boxes. The difference being
that the software inside a set-top box can often rely on predefined hardware.
HAVi [80] stands for Home Audio Video Interoperability and is a standard for
networking home entertainment devices defined by several major electronics
companies. It specifically focuses on the transfer of digital audio/video (AV)
content between HAVi devices, as well as the processing (rendering, record, play
back) of this content by these devices. HAVi provides a Java API for stream
management and device control. However, HAVi is targeted at consumers home
audio/video network and dictates the use of Firewire (IEEE-STD-1394-1995)
as a transport mechanism. It aims towards connecting hardware devices and
is a protocol layer on top of IEEE 1394. Standards similar to HAVi also exist
from ISO (International Organization for Standardization) and ETSI (European
Telecomunication Standards Institute). ETSI standardized an open middleware
system called Multimedia Home Platform (MHP) which is part of the Digital
Video Broadcasting (DVB) specifications [72]. ISO’s Home Electronic System
(HES) aims to “standardize software and hardware so that manufacturers might
offer one version of a product that could operate on a variety of home automation
networks” [Milutinovic, 2002].

Although not specifically a multimedia architecture, a related component-
assembly system is Gravity [R.S. Hall and H. Cervantes, 2003]. Gravity is a
research project investigating the dynamic assembly of applications and the im-
pact of building applications from components that exhibit dynamic availabil-
ity, i. e., components may appear or disappear at any time. Gravity provides
a graphical design environment for building applications using drag-and-drop
techniques. Using Gravity, an application is assembled dynamically and the
end user is able to switch between design and execution modes at any time.
The architecture presented here is driven by the same idea, but specializes on
stream processing. Gravity, however, implements automatic service binding,
meaning that additional meta-data is used in order to specify dependencies of
a service. The service binder makes sure that component dependencies are sat-
isfied and binds the services provided by the components automatically to the
application. The architecture presented here relies on a model, where services
are bound upon user request. For this reason, Gravity cannot directly be used
because it does not have a means of specifying dependencies dynamically by the
user.

4.3 Architecture Overview

In the proposed architecture, the end-user application is built on top of a
component-assembly mechanism, which in turn uses a component framework
as a plug-in mechanism and a component search-engine as a means of deploy-
ment-mechanism. Figure 4.2 shows both, the general model of the architectural

4.4. JAVA AS EXECUTION PLATFORM 33

Figure 4.2: Conceptual diagram of the proposed service-oriented architecture
for multimedia applications (left), concrete implementation in the E-Chalk server
system (right).

approach described here and E-Chalk’s server architecture. The architecture is
based on an execution platform – the operating system or a virtual machine.
The component framework provides mechanisms for installing, updating, and
deleting components. It also takes care of component dependencies and manages
their lifecyles. E-Chalk uses the Java Virtual Machine by Sun Microsystems as
execution platform. The Java Virtual Machine runs on a variety of hardware
and operating systems and therefore provides platform independence at the
price of a slight memory and execution performance overhead. On top of the
virtual machine, Oscar is used as a component-management framework. Oscar
is an open-source implementation of the OSGi standard [3]. Oscar manages the
installation, update, and removal of special Java archives, so-called Bundles.
Oscar also handles the lifecycle of Bundles as well as dependencies between
them. Bundles can be searched in the Internet using Eureka, an Apple Bon-
jour -based component-discovery and deployment engine. SOPA manages the
assembly of a set of specialized Bundles, so-called media nodes, to form one or
more media graphs. A media graph connects different codecs, filters, or other
stream-processing units in order to perform a certain operation. On top of the
processing graphs, E-Chalk’s Startup Wizard as well as the board application
control the life cycle of the entire system. In the following sections, E-Chalk’s
concrete implementation will serve as an example of how the approach can solve
several of the problems discussed in Section 4.1.

4.4 Java as Execution Platform

A thorough discussion of why Java may be favored against a native implemen-
tation would go well beyond the scope of this dissertation. This section only
provides a brief summary of the relevant experiences that played a role when
developing the E-Chalk system. The decision to use the Java Virtual Machine as
the primary execution platform for E-Chalk was made very early in the project.
The primary reason, back in the beginning of the project, was platform indepen-
dence. Java allows to run the system on any available machine in the university.
E-Chalk’s capability to run on Windows, Linux, Mac OS, Mac OS X, or Sun OS

34 CHAPTER 4. SERVER ARCHITECTURE

was actually one of the main reasons why other educational institutions found
it easy to try out the system. A second important reason for using Java was the
possibility to have one rendering engine for both the board server and the board
client. The board client could be written as a Java Applet and the board server
as a Java application. The same code is used for displaying content in the class-
room and in the Web Browser [Raffel, 2000]. This approach did not only save
development work, it also helped to minimize differences between the classroom
view and the remote view. Slight differences due to varying hardware prop-
erties (such as screen resolution) and different virtual machine versions might
still be perceived, though. Some computer scientist might object to using the
Java Virtual Machine as an execution platform because of its poor performance
– especially when it comes to audio and video processing. The Java developer
community has been discussing and comparing the execution speed of Java pro-
grams versus native programs for several years now. The actual numbers vary,
but even older articles (see for example [Prechelt, 2000, Shirazi, 2003,Mathew
et al., 1999], [46, 52]) agree, that the speed penalty and memory overhead are
tolerable when weighed against programming productivity. A disadvantage of
using a platform-independent virtual machine is that special features of a cer-
tain system cannot be utilized. A platform-independent virtual machine can
only implement a common subset of the functionality of the platforms it sup-
ports. Special features, like using the pressure sensitivity of digitizer tablets, are
for example not part of the Java Virtual Machine. To get around this problem,
native code had to be used sometimes and encapsulated using the so-called Java
Native Interface (JNI). Of course, native code has to be implemented individ-
ually for all targeted platforms. Java is a pure object-oriented language and
supports dynamic class loading. This feature allowed to implement many of the
board’s dynamic functionalities, like integrating third-party Applets or Chalk-
lets. It has also spawned many implementations of component-management
frameworks. Last but not least, Java binaries are rather small. None of the
components described in this chapter is larger than 1 MB. The next section will
introduce Oscar, a component-management framework that was used as the
underlying layer in E-Chalk.

4.5 The Component Framework

Component orientation is becoming increasingly popular in modern applications
and is being more and more discussed for multimedia architectures [Nahrstedt
and Balke, 2004, Nahrstedt and Balke, 2005]. The concept of a component is
broad and includes plug-ins or other units of modularization. In this text, a soft-
ware component is defined as “a binary unit of composition with contractually
specified interfaces and explicit context dependencies only” [C. Szyperski, 1998].
The notion of component orientation is strongly connected to the idea of object
orientation. Compositions of components are usually created by an actor (ei-
ther the user or another software program) that instantiates some components
through a managing framework. The instances are then appropriately connected
to each other by this actor. Component models and frameworks include the
Component Object Model (COM) [Box, 1998], Java-Beans [Sun Microsystems
Inc, 1997], Enterprise Java Beans (EJB) [Sun Microsystems Inc, 2000], the
Corba Component Model (CCM) [Object Management Group (OMG), 1999],

4.5. THE COMPONENT FRAMEWORK 35

the OSGi standard, Jini [83], and Avalon [4]. EJB and CCM support non-
functional aspects such as persistence, transactions, and distribution. OSGi,
Jini, and Avalon are so-called service-oriented platforms. Service orientation
shares the component-orientation idea in that applications are assembled from
independent building blocks. However, the essential building blocks are not
components but the services they are providing. In other words, a component
can provide more than one service. A service is a functionality that is contrac-
tually defined in a service description, for example as a Java Interface. The
idea of service orientation is that application assembly is based only on these
service descriptions and the actual components are located and integrated into
the application later, either prior to or during execution of the program. A
more detailed discussion of component- and service-oriented programming can
be found in [Cervantes and Hall, 2004].

The OSGi specification defines a framework that is an execution environ-
ment for services. Compared to related specifications the core framework is
very small. The specification does not refer to too many concepts and the OSGi
initiative is also trying to keep it compact since it is still being targeted to
restricted environments, such as embedded devices. Implementations are there-
fore kept small and efficient. OSGi can, however, be used in other domains, for
example, as a support-infrastructure underlying the Eclipse IDE [The Eclipse
Foundation, 2003]. Even before Eclipse, Exymen had introduced the use of
the OSGi specification on the desktop for building an extensible multimedia
editing application [Friedland, 2002a]. Both Exymen and E-Chalk are imple-
mented on top of the Open Service Container Architecture (Oscar) [Hall and
Cervantes, 2004] [23], an Open-Source implementation of the OSGi specifica-
tion [The Open Services Gateway Initiative, 2003], that has recently been re-
named to Felix. However, the approaches are not limited to this particular OSGi
framework implementation and should also be deployable to any other standard
OSGi framework.

Oscar was created with the goal to provide a compliant and completely open
OSGi framework implementation. Work on the Oscar project started in Decem-
ber 2000 by Richard S. Hall. Technically, the OSGi service framework can be
seen as a custom, dynamic Java class loader and a service registry that is glob-
ally accessible within a single Java Virtual Machine. The custom class loader
maintains a set of dynamically changing Bundles that share classes and resources
with each other and interact via services published in the global service registry.
Oscar is almost fully compliant with the OSGi specification release 1 and 2 and
largely compliant with release 3. The OSGi specification is a document that
contains more than 600 pages [The Open Services Gateway Initiative, 2003],
therefore the next paragraph will summarize only the most important facts
that are relevant to E-Chalk.

The OSGi framework defines a unit of modularization, called a Bundle.
Physically, a Bundle is a Java JAR file that groups together all classes, to-
gether with their resources (native libraries, icons, help files), into a component.
Archive attributes, among them the dependencies on other Bundles, are de-
scribed in the JAR file’s Manifest. Every Bundle contains a Java class that
inherits from org.osgi.BundleActivator. A BundleActivator provides two
methods: start() and stop(). The framework provides dynamic deployment
mechanisms for Bundles, including installation, removal, update, and activation.
Figure 4.3 shows that a Bundle can be in one of the following states:

36 CHAPTER 4. SERVER ARCHITECTURE

Figure 4.3: A state diagram of the life-cycle management provided by Oscar.
Drawing after [The Open Services Gateway Initiative, 2003]

• active - the Bundle is now running,

• installed - the Bundle is installed but not yet resolved,

• resolved - the Bundle is resolved and is able to be started,

• starting - the Bundle is in the process of starting,

• stopping - the Bundle is in the process of stopping, or

• uninstalled - the Bundle is uninstalled and may not be used.

Oscar mainly provides the following operations to manage Bundles:

• Install a Bundle from a URL. The Bundle is downloaded and archived
in a local repository. The Bundle enters installed state.

• Start a Bundle. If all dependencies of the installed Bundle can be re-
solved, the start() method of the Bundle is called and the Bundle enters
the active state.

• Stop a Bundle. The stop() method of the Bundle is called and the Bundle
changes to the resolved state.

• Uninstall a Bundle. This stops the Bundle and tags it as uninstalled.
The Bundle is removed at the next refresh.

• Update a Bundle. This puts a new JAR file in place without refreshing it.
The Bundle enters the installed state.

4.6. COMPONENT DISCOVERY 37

• Refresh a Bundle. Refresh causes all Bundles that depend on installed
or uninstalled Bundles to stop. Oscar resolves any updated Bundles and
then restarts them all, if possible, effectively creating new instances for
every dependent Bundle.

After a Bundle is installed, it can be activated if all of its Java package de-
pendencies are satisfied. Bundles can export and/or import Java packages to
and/or from each other. The OSGi framework automatically manages package
dependencies of locally installed Bundles. After a Bundle is activated it is able
to provide service implementations or use the service implementations of other
Bundles within the framework. A service is a Java interface with externally spec-
ified semantics. This separation between interface and implementation allows
for the creation of any number of implementations for a given service. When
a component implements a service, the service object is placed in the service
registry provided by the OSGi framework so that other Bundles can discover
it. When a Bundle uses a services, this creates an instance-level dependency on
a provider of that service. When the top-level application (e. g. E-Chalk) is
exited, the states of all Bundles are saved and restored at the next startup. This
decreases start-up time by avoiding to resolve all Bundles again. Bundles can be
uninstalled or updated while the application is running without ever requiring
a restart of the application.

Using the diagram in Figure 4.3, one can see what happens if Bundle A is
uninstalled while it is needed by another Bundle B: Bundle A stays physically
where it is stored until the next refresh operation. At the refresh operation,
A is deleted and B is stopped. Stopped Bundles cannot be used, but are still
installed. If the user installs an update of Bundle A that B can use, B enters the
resolved state and can be used again after the next refresh. A refresh command
is invoked automatically after every install command by the SOPA framework.

4.6 Component Discovery

The OSGi specification allows the installation of Bundles from any URL. How-
ever, it is not able to remotely discover Bundles. In order to be able to query
and locate Bundles and the services they are providing from remote locations,
E-Chalk integrates the Eureka system.

Eureka [Pauls, 2003, Pauls and Hall, 2004] is a network-based resource-
discovery service to support deployment and run-time integration of compo-
nents into extensible systems. Eureka is based on Apple Inc’s Bonjour Network-
ing [5] technology, formerly named Rendezvous. Bonjour is an open protocol
that enables automatic discovery of computers, devices, and services in ad-hoc,
IP-based networks. The DNS/Bonjour infrastructure has features that fit well
with the requirements of a component- or service-discovery service. For exam-
ple, clients of a DNS/Bonjour-based resource-discovery services only produce
network traffic when they actually make a query and they do not need to know
the specific server that hosts a given component to discover it. Domain names
under which components are registered provide an implicit scoping effect (e. g., a
query for components under the scope inf.fu-berlin.de produces a list of all
components available in the computer science department of the Freie Univer-
sität Berlin). A scope hosted by a server can be either open or closed. An open

38 CHAPTER 4. SERVER ARCHITECTURE

scope allows arbitrary providers to publish their components into that scope.
A closed scope requires a user name and password. To submit a component,
meta-data and an URL from which the component archive file is accessible is
provided to Eureka. The developer may also submit the component archive file
itself. Then, the Eureka server will store it in its component repository and use
its own HTTP server to make the submitted component accessible.

Eureka also provides a garbage-collection mechanism for component meta-
data. A Eureka server periodically checks whether all components referenced by
the meta-data in its associated DNS server are accessible via their given URL.
If a component cannot be accessed, its meta-data is removed from the server.

The E-Chalk server system uses the scope sopa.inf.fu-berlin.de. This
results in each service being referenced as 〈eurekaid〉.sopa.inf.fu-berlin.de.
The identifier 〈eurekaid〉 is generated by Eureka – with the exception of www,
which is reserved for the website of the project. The meta-data for media nodes
are automatically generated by the SOPA framework and consist mainly of a
set of Java properties. The publishing and unpublishing of nodes is reduced to
specifying a download URL and a node name (see Appendix B).

4.7 Component Assembly

The SOPA framework is based on Oscar and Eureka. It uses them to achieve
its goals and provides several services on top of it. The next sections provide a
detailed explanation of the SOPA framework as integrated into E-Chalk.

4.7.1 Processing Nodes

Building a graph that combines individual filtering units for stream processing
appears in many systems and can be considered canonical (see Section 4.2). The
basic units in SOPA are called media nodes. There are six basic types of nodes:
generic, sources, targets, forks, mixers, and pipes. The conceptual difference
between them is the semantics which is determined by the number of inputs
and outputs.

• Source nodes have one outgoing edge and no incoming edges. A source
node generates data or gets its data from anywhere outside the graph.
This node is typically used for accessing sound devices, video cards, or for
file readers.

• Target nodes only have one incoming edge and no outgoing edges. A target
node acts as a sink: It takes the incoming data and writes it somewhere.
This node is typically used for playback or for file writers.

• Pipe nodes inherit the properties from source nodes and target nodes.
They have one incoming edge and one outgoing edge. This type of node
is the most frequently used because it can be used to implement filters,
converters, measuring devices, and many more.

• Fork nodes are pipe nodes that have two or more outgoing edges. They are
helpful to branch the data flow in oder to have several processing chains
for the same input.

4.7. COMPONENT ASSEMBLY 39

• Mixer nodes unify two or more incoming processing branches into one.
Consequently, they have several incoming edges and only one outgoing
edge.

• Generic nodes have neither incoming nor outgoing edges. However, they
can communicate with the rest of the nodes in the graph via events.
Generic nodes are meant to be extended for different purposes. Their
typical use is as a receptor that captures information from outside the
graph and reacts by rebuilding the graph as necessary.

Technically, the nodes are defined as abstract classes inside the SOPA frame-
work. The developer has to define the final semantics of each node by inheriting
from one of the six superclasses. To use the framework, a developer has to
learn only a limited number of concepts in order to create his or her own nodes.
Appendix B shows the overhead required for implementing a PipeNode. Since
the node acts as target and as a source, the methods of both types of nodes
have to be overwritten. On other words, the overhead doubles for this type of
node. Nevertheless, no more than ten methods have to be implemented by the
developer, most of them being one-liners.

The framework already defines a set of standard nodes. Standard nodes
include testing methods and default implementations for frequently-used func-
tions. Examples include a pipe node that introduces bitwise noise into any
stream that is passed through, a bandwidth delimiter, a traffic-measurement
pipe, a compression pipe node that applies ZIP compression on any byte stream,
a buffer pipe that caches any incoming data before it is passed through, a file-
reading source, a source node that generates zeros as output, or a file-writing
target. Several predefined nodes are useful for component assembly. The so-
called IdentityPipe just outputs the incoming data, the BlackHoleTarget is
a target node that discards all incoming data, the GenericFork copies any in-
coming data to all the outputs ports, and the GenericMixer node mixes the
multiple incoming content into a single sequence on a first-in, first-out basis.

Every class that inherits from MediaNode is a service as defined by the OSGi
standard. This way, Oscar actually takes care of the component administration
but is hidden to developers that do not want to fiddle with the OSGi system.
Every node has a name and a version that identifies it uniquely. It comes
along with a set of properties as well as a preference-ordered list of processable
formats. The formats are described using a FormatDescriptor as explained in
Section 4.7.4. Every node class provides methods that describe the properties
needed for graph assembly. There is no need to create any extra file that contains
meta-data for a particular node.

Nodes are configured via Java properties. SOPA features a central property
management system that builds upon Oscar’s property management which in
turn builds on Java’s property management. Properties can be made persistent
and can quickly be restored upon a restart of the system. The E-Chalk Startup
Wizard also generates property files that are read in by SOPA. Any node’s
parameters, for example filenames or sampling rates, are set this way. Nodes
communicate via property change events: Whenever a property changes, the
property manager notifies all nodes. There are several predefined properties
for certain events. Properties are set, for example, when new media nodes are
initialized or new processing paths are started.

40 CHAPTER 4. SERVER ARCHITECTURE

Figure 4.4: A screenshot of a visualized media graph inside SOPA’s graphical
node composition editor. The visualization is updated at runtime as the graph is
updated. The editor can read and write XML graph serializations independent of
the framework. The visualization shows a typical processing graph in the E-Chalk
system containing independent audio and video paths.

At any time a node is in one of three states: constructed, initialized, or run-
ning. In the constructed state a node is constructed by first instantiating the
class and then calling the start() method as required by OSGi. Unlike the
OSGi standard, in SOPA a service can be instantiated multiple times. This al-
lows to use several instances of the same node in different locations of the graph.
In the initialized state a node is initialized after the graph has been resolved
and is to be started. During initialization, a node has to prepare everything
for the immediate receive of data. This state is introduced for synchroniza-
tion. Section 4.7.5 explains synchronization in detail. Finally, in the running
state pipes, targets, mixers, and forks immediately receive data from their pre-
decessing nodes. If stop() is called on a media node, the node goes back to
the initialized state. This saves object disposal and construction (rather costly
operations in Java), since a node may be reused in another graph location.

4.7.2 The Processing Graph

Component assembly is performed by arranging the media nodes into one or
more directed acyclic graphs. In reality, the framework is able to handle several
unconnected graphs at once, but for simplicity this text will refer to them as
“the graph”. The actual assembly and resolution algorithm of the graph is
described in Section 4.7.3. Multimedia PC hardware, such as sound or video
cards, mostly enforces a push paradigm (hard disks, however, are accessed using
a pull paradigm). For this reason, data is flowing from a source node to a target
node with the source nodes pushing the data.

The media graph can be created and changed in two ways. A media node can
use the methods provided by the framework, or the framework itself can load a
serialized version of the graph. The framework can load or serialize the structure
of the graph at any time. The serialization is stored in a simple XML format

4.7. COMPONENT ASSEMBLY 41

(see Appendix B). Additionally, the framework provides a graphical editor for
visualizing and building graph descriptions (Figure 4.4 shows a screenshot) and
a command-line console for developers. The shell gives access to Oscar and
Eureka functionalities such as installing and publishing Bundles as well as to a
few Java debugging features. Upon startup of the framework, the initial graph
is always loaded from the XML description.

Each node is described by a temporary label (that can be chosen freely, or
is assigned randomly by the framework), its type, and an LDAP query [Howes,
1996]. The framework searches for nodes matching the LDAP query, first locally
in Oscar’s Bundle repository and then remotely using Eureka. The specifica-
tion of nodes using LDAP queries allows incomplete descriptions which enables
system administrators to only specify the important properties and to include
wildcards. Appendix B shows the grammar of the LDAP query language. The
following listing shows some sample node descriptions.

<service label="source"
match="(&(&(author=Friedland)(version>=1))(outputs=*RGB*))"
type="&source;">

target="display">
</service>
<service label="display"

match="(&(&author=Friedland)(version>=1))(name=TVPipe))"
type="&pipe;"
target="sink">

</service>
<service label="sink"

match="(name=BlackHoleTarget)"
type="⌖">

</service>

To deploy a running media graph, it suffices to copy an XML graph de-
scription, the framework itself, and optionally a few property files. Usually a
Bundle repository is also included, so that the end user is not required to have
an Internet connection already at startup. Media nodes can be removed or re-
placed dynamically at any time if they are not in the running state. However,
forks and mixers can handle new connections even when in the running state.
Therefore an active path can be connected to by connecting a media node to
a fork or a mixer. A media graph is in one of three states: defined, resolved,
or active. In the defined state the graph only consists of node descriptions. In
the resolved state the graph is resolved as described in Section 4.7.3. When
a graph is resolved, at least one path exists from a source to a target, where
all LDAP queries have been evaluated to match certain media nodes and the
input and output formats have been set to each media node in such a way that
they build a processing chain. If a media graph description led to a resolved
graph, then the active state is reached by first initializing all non-sources of valid
paths. Then the sources are activated in order to start delivering data. If there
is an error during initialization of a node and there are still alternatives that
also match the LDAP query, they replace the erroneous node. When running,
sources continously push the stream of data through the pipes to the target. A
path of the media graph is deactivated by stopping its source. An event is then
propagated saying that no further data is available, which makes the remaining
nodes of the path shut down, too. After all activated paths have shut down, the
media graph gets back to the resolved state.

42 CHAPTER 4. SERVER ARCHITECTURE

4.7.3 Resolving the Media Graph

The graph resolution algorithm is the core of the framework. Because of this
importance, developers might want to change its behavior. SOPA’s graph res-
olution algorithm can therefore easily be exchanged by third-party developers
who want to provide their own resolution. Apart from a class that implements
an interface with the new resolution method, a new resolution algorithm might
also need its own serialization, which can easily be changed by creating a new
XML DTD (and providing the methods for reading and writing the serializa-
tion). Several different resolution algorithms have been implemented. One of
the question was whether the connecting edges have to be specified manually
by the user. In the end, the following method seemed to be the most practical
one. It became the default behavior in the E-Chalk system. The DTD shown in
Appendix B is used by this resolution method, it has been extended for better
user editability, see Section 4.9. In the beginning, the graph consists only of
a set of connected node descriptions. The graph is then resolved in two main
steps.

In the first step, the SOPA framework tries to match the LDAP queries.
The query is matched to the properties that each media node propagates. Media
nodes are searched locally and in the Internet using Eureka. If no node is found,
the regarding path cannot be resolved. If several nodes are found they are stored
as a list of alternatives considered in the next step.

In the second step, a list of media nodes belongs to each node description.
The framework now tries to create a processing chain by substituting each node
description by the media node that matches best concerning its input and output
format. Since the format list is preference ordered, best fit is defined as the
minimum index in the list. The source’s output format and the target’s input
format is considered more important than the format preferences of other nodes.
If there is an ambiguity, newer versions of media nodes are preferred.

Technically, the following steps are preformed during resolution. The input
is a serialization of the graph that already contains all edges.

1. Count the incoming and outgoing edges of all node descriptions. If a
specified node type does not match the incoming or outgoing edges: throw
the description out and notify the user.

2. Use union-find to separate unconnected graphs. The following steps are
performed for each connected set of nodes.

3. Try to match each LDAP query using the properties defined in the system
and by the nodes, both locally and in the defined Eureka search scopes.

4. Associate each set of matching nodes to the node description.

5. Find a path from a source to a target such that:

• The sum of all preference-ordered format list indeces of each node’s
used format is minimal. The index numbers of the source node and
the target node are each weighted twice.

• If there is ambiguity, use the media node that has a higher version
number.

4.7. COMPONENT ASSEMBLY 43

• If there is still ambiguity, use the node that was found first (these
are usually the local ones).

6. Test whether the path from source to target is complete. If yes, tag all
nodes in the path as startable.

4.7.4 Identifying Media Formats

Data can only be exchanged between two nodes if they speak the same lan-
guage, that is, if they work on data in the same format. Sometimes, it suffices
to describe a format using basic data types. For example, a node that uses ZIP
compression on any incoming data can work on a byte-per-byte basis. Usu-
ally, however, nodes need to exchange a more differentiated description of the
structure of the data they have to deal with. The degree of provided detail
and the way this structural information must itself be structured is difficult to
standardize because it depends heavily on the format per se and how it is to be
handled. In the end, if a totally different, new media format is to be handled,
a group of node developers will have to agree on an appropriate description.

In SOPA, media formats are distinguished by so-called format descriptors.
Format descriptors are actually Java Interfaces that provide get and set methods
for certain format properties. The mechanism has already been established in
Exymen, [Friedland, 2002a] discusses it in detail. The SOPA framework provides
several default implementations of format and content descriptors. Examples
include a generic descriptor for byte streams, a descriptor for uncompressed
video formats and a descriptor for raw audio formats. Each descriptor supplies
several standard methods typically used to describe media content such as the
average frame rate, the duration of an individual frame, the name, time and
space coordinates of a frame, and a so-called FormatID. Exymen uses FormatIDs
as a mechanism to uniquely identify media formats, because file extensions
are ambiguous and unreliable. Magic bytes in headers are not always used
by formats and sometimes it is unclear how to read them since they tend to
be machine-dependent (for example, Little and Big Endian representations).
MIME types [Freed and Borenstein, 1996b] contain too few information because
their primary intention is to define a mapping between format and application,
not the classification of format types. Exymen’s FormatIDs group compatible
formats on the SDK/API level. Formats that are basically different but are
handled by the same SDK/API are given the same ID. For example, a node that
uses Microsoft’s Windows Media SDK [34] can handle all audio codecs supported
by the Audio Codec Manager (ACM). A lists of the FormatIDs defined so far is
available at [76].

4.7.5 Synchronization

When different media are to be processed in parallel they need to be synchro-
nized in most cases. If content flows continuously at a constant data rate,
synchronization is trivial since at any point in the stream the time-position is
clear. Given a certain stream position, any time position in the past or in the fu-
ture can be easily extrapolated. When started at the same time, a video stream
and an audio stream directly grabbed from a camera and a sound card can be
easily kept in sync this way. Whenever there is a time difference, one stream

44 CHAPTER 4. SERVER ARCHITECTURE

can either wait or skip bytes. However, if bit rates vary or a medium delivers
event-based data, such as strokes from a chalkboard, one cannot easily get and
interpolate the time-position of a stream at any time. It is particularly impos-
sible to predict any future time position. Since components may be combined
freely, node developers are, of course, not required to handle synchronization on
their own.

The first type of synchronization has already been described in Section 4.7.2.
When the media graph is activated, all non-sources are initialized first. Then
the sources are activated in order to start delivering data. This is done in order
to be able to handle all possible errors as soon as possible and to achieve a
rather simultaneous start. Deactivation works the other way round: First all
sources are stopped, then an event is propagated saying that no further data
is available. Thus the remaining nodes can process the remaining data before
they shut down.

In addition, the SOPA framework provides a content-independent synchro-
nization scheme that works on a node-to-node level. Several nodes can be
grouped together into a synchronization group. Nodes can be added or removed
from a synchronization group at runtime. The synchronization mechanism pro-
vided by SOPA has been derived from the well-known barrier synchronization
scheme, which is described in detail in [Tanenbaum and van Steen, 2002]: “A
barrier is a synchronization mechanism that prevents any process from start-
ing phase n+1 of a program until all processes have finished phase n. When a
process arrives at a barrier, it must wait until all other processes get there as
well.”

SOPA deals with threads instead of processes and extends the notion of a
barrier in two aspects.

1. Instead of a fixed number of barriers, the mechanism assumes an infinite
number of barriers and all barriers are ordered and identified by a natural
number.

2. A thread is only blocked by barriers of the same synchronization group
and only if other threads define themselves dependent on it at a certain
barrier.

In the framework this new mechanism is called Progress-Constrained Threads
since it offers a notion for threads to dynamically depend on other threads’ pro-
gress. Each Progress-Constrained Thread implements a special interface and
registers to a central Clearance Manager. Each Progress-Constrained Thread
implements a method which allows the Clearance Manager with get the depen-
dencies of this thread on any other threads at a certain barrier. Threads have to
request permission for progress by requesting to proceed over the next barrier
at the Clearance Manager. The Clearance Manager asks all registered threads
of a synchronization group for dependencies on other threads at this barrier. If
a requesting thread depends on another, it is blocked until that other thread
requests the same or a higher barrier. To avoid deadlocks, the Clearance Man-
ager forces the requested barrier numbers to be monotonously increasing. The
dependencies have to be constant for a certain barrier, but may change at later
barriers. That means, if a certain barrier has been requested by a thread (and
thus marked as reached), the synchronization group cannot be changed for this
barrier or any previous barrier.

4.8. LIMITS OF THE APPROACH 45

Any set of media nodes can be grouped into a synchronization group, for
example in the XML graph description. When a node is put into a synchro-
nization group, the framework automatically registers the media nodes with the
Clearance Manager. By default, the system associates barriers with time stamps
using a granularity of 10ms. The path to an ancestor node is blocked while a
given media node has processed more data than the others according to the
time stamps. However, other behavior can easily be implemented by overriding
the dependency-definition method. Nodes have to decide for themselves what
to do while blocked: Either they discard the incoming data, or they accumulate
it in a buffer for later flushing.

The following practical example illustrates the approach: Let us assume
that we want to synchronize an audio track with a pipe that presents a GUI
with a pause button. The pause pipe overrides the default behavior so that
only when the button is pressed it reports itself dependent on any node in the
synchronization group. The audio stream is then blocked until the pause mode
is released and the pipe requests progress again.

4.7.6 Top-Level Application

The SOPA framework is integrated into the E-Chalk system and is invisible
to the user. As described in [Knipping, 2005] in Section 3.10.1, any Java ap-
plication that implements the de.echalk.util.Launchable interface can be
started by the E-Chalk Startup Wizard. The framework is started and stopped
by a wrapper class that implements the interface. Property files are generated
by the E-Chalk Startup Wizard and an initial serialization of a video and an
audio graph is deployed with the E-Chalk system. In addition to the functions
discussed here, the framework also provides some minor features that are not
discussed in detail here. Examples include an error and debug message manage-
ment and a node update management. The update management is configured
to determine when new versions of a node should be favored over ones already
downloaded in the local repository during graph resolution. Usually update
policies are defined inside the LDAP queries, but using the update manager
they can also be enforced or forbidden. Further information on the details of
the system can be found in the SOPA’s developer documentation [17].

4.8 Limits of the Approach

The presented architectural approach facilitates the maintenance and configu-
ration of streaming and processing components which are usually organized in
graphs. The validity of the approach has been time-tested since its integration
into the official E-Chalk distribution in the beginning of 2003. Still, several
issues remain unimplemented or unsolved. This section discusses some of them.

The resolution algorithm depicted here works well with several dozen nodes.
It was never intended nor tested for a system with more than a hundred nodes
in one graph. Apart from efficiency problems concerning the graph resolution,
the realtime performance of the sum of filters in a media graph is not guar-
anteed. Up to now the system installs components on demand without any
knowledge of how much CPU time is consumed. Therefore, the combination
of certain components may go beyond the limits of the underlying computer

46 CHAPTER 4. SERVER ARCHITECTURE

system. The result would be a denial of service. One solution is to let each
developer implement a benchmark for their components which returns a value
relative to components that come along with the framework. On the very first
run of SOPA, a large benchmark using built-in components would be run to
figure out what the underlying system is able to handle. When running, SOPA
would refuse to integrate further components into the graph if the sum of the
benchmark results of the already integrated components exceeds the maximum.
One problem of this approach is that CPU time consumption may depend on
the semantics of concrete content.

Security is a concern in any environment that supports the execution of ar-
bitrary dynamically downloaded code. From the point of view of safety, the
environment must be protected from dynamically integrated components caus-
ing harm (such as deleted files) to the underlying resources. From the point of
view of privacy, the environment must be protected from components snooping
or spying, such as inventorying all services being used. The OSGi framework
actually provides a technique for dealing with security, namely it executes dy-
namically integrated components within a security sandbox. The sandbox is
used to prevent unauthorized access to the underlying resources and to control
the visibility of other installed services and resources. External rules enable the
creation of security policies that can assign default access rights to dynamically
integrated components, as well as assigning different levels of rights to com-
ponents from known sources using a public-key cryptography approach. The
approach, however, is rarely used because of performance problems. The most
difficult aspect of security is finding mechanisms that are very simple or support
automated decision making, since the typical end-user is not very knowledgeable
about security-related issues. End-user involvement in security-related decisions
should be kept to a minimum to avoid confusion and mistakes.

Due to the generic approach of components that provide their functionality
by means of services, the most important thing that a node developer has to
do is to define proper service contracts in the form of properties describing the
node. An inherent problem that occurs when arbitrary parties want to share
their component implementations is that all service contracts must be under-
stood by everybody and must provide enough semantic to describe the service
in all contexts and all purposes. SOPA reduces this problem by restricting
the context to a specific domain, namely multimedia signal processing. Due to
this restriction, the syntactic interface descriptions enforced by the architecture,
combined with the meta-data encouraged by the framework plus a few proper-
ties, are sufficient in most practical cases. In theory, however, it is very easy
to describe the same component with totally different service contracts. The
result is that components that could fit into a particular position of the graph
might not be considered because service contracts are incompatible.

4.9 Practical Usage Examples

The following section presents a few practical scenarios that illustrate the use-
fulness of the architectural approach discussed in the preceeding Chapter. The
SOPA framework was integrated into E-Chalk in 2003. Since then, about a
hundred nodes have been developed for both experimental and productive use.
Both the audio system presented in this dissertation and the video system have

4.9. PRACTICAL USAGE EXAMPLES 47

Figure 4.5: A screenshot of the audio panel of the E-Chalk Startup Wizard. The
wizard outputs property files that directly affect the graph assembly.

been created using the framework and have been in use for several years now.
Some of the presented advantages result from mere component orientation, oth-
ers results from the functionality of remote component discovery, a third class
might result from automatic graph resolution. In the end, the combination of
the features discussed earlier offers even more opportunities.

As discussed in Chapter 2 of [Knipping, 2005], E-Chalk is mainly configured
through the E-Chalk Startup Wizard. Figure 4.5 shows a screenshot. The
output of the Startup Wizard consists of Java property files. Property files
are actually hash tables that map a unique key encoded as a string to any
value. Before SOPA had been integrated into the E-Chalk system, each property
value resulted in a case distinction somewhere in the Java code. Using the
LDAP queries, many of these case distinctions are now handled by the graph
resolution. In order to promote this feature, LDAP queries can also be used
for case distinctions. Nodes that contain disabled functionality are just not
considered any more. The following code snippet illustrates this functionality
for the VU-Meter checkbox:

<on match="(!(audio.tools.vumeter=true))">
<service label="audioprocessors2"

match="(name=BlackHoleTarget)"
type="⌖">

</service>
</on>

<on match="(audio.tools.vumeter=true)">
<service label="audioprocessors2"

match="(name=VU-Meter)"
type="&pipe;"
target="audiosink">

</service>
<service label="audiosink"

match="(name=BlackHoleTarget)"
type="⌖">

</service>

48 CHAPTER 4. SERVER ARCHITECTURE

As can be seen from the DTD shown in Appendix B, the standard XML
serialization is extended for user editability. Several commands that are usu-
ally part of the LDAP queries have been externalized and have their own XML
tags. This helps system administrators to edit the file directly. This attribute
turned out to be a useful feature when supporting users: They can individu-
alize the processing graph according to their needs. By developing new nodes,
the functionality of E-Chalk can be extended using the SOPA framework and
without fiddling with any E-Chalk source code. These extension capabilities
go beyond traditional plug-in extensibility since even basic functionality can be
exchanged.1 But not only third-party development is made easier: Students
in our department found it useful to be able to integrate their own extensions
directly into the system. The integration of Eureka into the framework, for
example, facilitates deployment of updates and customized nodes. Assume an
educational institution has several installations of E-Chalk that have been indi-
vidually customized by a dedicated developer. The institution can now define
its own scope in Eureka and deploy the newly developed nodes individually to
all installations in the institution. Scopes can be defined so that experimental
nodes are not searched for E-Chalk installations in productive environments.
Nodes provided by the E-Chalk developers can still be searched in the home
scope sopa.inf.fu-berlin.de. The institution just extends the search domain
to include their own institution.

The audio expert system presented in Chapter 7 guides the user through a
systematic setup and test of the sound equipment. The result is a modified ini-
tial XML media graph description that contain a set of filtering services needed
for pre- and postprocessing audio recordings. During the lecture recording, the
system monitors and controls important parts of the sound hardware. This ex-
ample shows, that using SOPA, machines can also easily alter the configuration
of processing graphs, not only users and system administrators.

Both the configurability using XML and the possibility of reusing compo-
nents facilitates fast prototyping and debugging of filter processing chains. For
example, many of the experiments on the instructor extraction presented in
Chapter 9 where conducted in a testing environment that allows to discover
and execute media nodes. It was used to test experimental video nodes frame
by frame. Figure 4.6 shows a screenshot.

In a typical live streaming scenario, a fork node connecting to different codec
nodes can be used to convert a media stream into different formats. A receptor
service (for example a generic node) receives the incoming connection request.
It then assembles a media graph containing converter nodes that convert the
format of the captured media to the format playable by the client software.
Instead of forcing the user to install the right plug-in, the server adapts itself
to the needs of the user.

Exymen shares the local repository with E-Chalk. Since the format descrip-
tion mechanisms in SOPA and Exymen are identical, a plug-in could easily be
developed that acts as a wrapper between Exymen’s plug-in API and SOPA’s
API. The plug-in enables Exymen to import and export any media format as
soon as a conversion path can be built between the requested import format and
a format Exymen can edit. For exporting, conversion pipes must exist for the

1One of the examples where this extensibility was appreciated were requests by researchers
of the University of Regensburg, who wanted to combine E-Chalk lectures with RealVideo.

4.10. CONCLUSION 49

Figure 4.6: A screenshot of the testing environment for rapid prototyping and
debugging of video nodes on a frame-by-frame basis.

currently edited format and the requested output format. This way, Exymen
adapts itself automatically to newly introduced streaming formats in E-Chalk.

4.10 Conclusion

The SOPA framework manages multimedia processing and streaming compo-
nents organized in a flow graph. Based on state-of-the-art solutions for compo-
nent-based software development, the system simplifies the assembly of multi-
media streaming applications and associated tools. Components are discovered
from interconnected remote repositories and integrated autonomously during
runtime. Stream synchronization is handled format-independently. Most parts
of the E-Chalk server system, namely the audio system and the video system are
based on the SOPA framework. The next chapter describes the implementation
of the client system.

50 CHAPTER 4. SERVER ARCHITECTURE

