Diffusion and Fluctuations during CO Oxidation on Pd Supported Nanoparticles: A Combined Experiments and Simulations study

Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.)

eingericht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin

vorlegt von

M.S. Mathias Laurin aus Dijon, Frankreich

Dezember, 2005

- 1. Gutachter: Prof. Dr. H.-J. Freund
- 2. Gutachter: Prof. Dr. K. Christmann

Disputation am 5. Dezember 2005

Acknowledgements

This dissertation presents the results of three years of work at the Fritz-Haber-Institut, Berlin (FHI), which would not have been possible without support. I am therefore grateful to the following people:

- **Prof. Dr. Hans-Joachim Freund** has given me the opportunity to complete this work in the best possible conditions at the FHI.
- **Prof. Dr. Jörg Libuda** is acknowledged for his invaluable scientific knowledge, help and support throughout my Ph.D.
- Dr. Viktor Johánek has taught me the usage of the molecular-beam apparatus. He has also taken a large part in the experiments. And Dr. Jens Hoffmann has originally programmed the so-called "homogeneous mean field model."
- **Prof. Dr. Bengt Kasemo** and **Dr. Ann W. Grant** from the Chalmers University of Technology (Göteborg, Sweden) have provided the lithographically prepared sample, they are also acknowledged for helpful discussions. And **Dr. Gisella Weinberg** (FHI) has kindly provided SEM images of the sample after reaction.
- **Prof. Dr. Claude Henry** (CRMCN–CNRS, Marseille, France) has taken part to the experiments and is acknowledged for helpful discussions. **Carsten Beta** (FHI) is acknowledged for helpful discussions.
- Jens Hartmann is acknowledged for his technical knowledge and for his support solving technical issues on the apparatus.
- I am also thankful to all Professors and Doctors at the International Max Planck Research School for Complex Surfaces in Materials Science who have spent some of their time giving high-end lectures.
- Colleagues and friends from the HU and the FHI (dpts. AC and CP), the Polish crowd and the people I met during my Ph.D. and, though not directly related to my work, have made life somewhat easier.
- Last but not least, I would like to thank **Géraldine Laurent** and **Gayatri Mhaskar** for killing the routine from time to time.

Financial support was provided by the Max Planck Society, the Deutsche Forschungsgemeinschaft and the Competence Center for Catalysis at Chalmers, supported by the Swedish Energy Administration, Chalmers, and its member companies: AB Volvo, Johnson Matthey CSD, Saab Automobile Powertrain AB, Persorp AB, MTC AB, Eka Chemicals, and the Swedish Space Administration.

Zusammenfassung

These In dieser Arbeit wird ein neuer Ansatz, bestehend aus einer Kombination von Molekularstrahlexperimenten und numerischer Modellierung, zur Erforschung der Kinetik trägerfixierter Katalysatoren vorgestellt und damit die folgenden grundlegenden Phänomene der heterogenen Katalyse diskutiert: (i) Oberflächendiffusion unter Reaktionsbedingungen, (ii) Zusammenhänge zwischen Oberflächendiffusion und kinetischen Bistabilitäten und (iii) Einfluss spontaner Fluktuationen auf kinetische Bistabilitäten.

Obwohl heterogene Katalysatoren in vielen industriellen Prozessen eine herausragende Bedeutung haben, sind die zugrunde liegenden Vorgänge auf atomarer Ebene oft völlig unklar. Dies hängt mit der hohen Komplexität realer Katalysatoren und den damit verbundenen experimentellen Schwierigkeiten bei der Untersuchung solcher Systeme zusammen. In dieser Arbeit werden daher mehrere neue Ansätze vorgeschlagen, mit denen durch die Kombination von Molekularstahlexperimenten mit numerischer Modellierung die Untersuchung fundamentaler Prozesse der Katalyse wie die Zusammenhänge zwischen Oberflächendiffusion und spontanen Fluktuationen mit kinetischen Bistabilitäten ermöglicht wird.

Zuerst wurden die geschwindigkeitsbestimmenden Schritte (rate-determining step, RDS) der CO-Oxidation auf der Oberfläche von Pd-Katalysatoren für verschiedene Temperaturen und experimentelle Bedingungen berechnet. Es hat sich hierbei gezeigt, dass unter allen Bedingungen die Aktivität des Katalysators durch die Geschwindigkeit der CO-Adsorption bestimmt wird. Anschließend wurde der Einfluss der Pd-Partikelgröße untersucht. Hierzu wurden Modellkatalysatoren mit verschiedenen Partikelgrößen verwendet, die durch PVD und EBL präpariert wurden. Mittels winkelaufgelöster Massenspektrometrie und eines Reaktions-Diffusions-Modells (RD) war es möglich, die Oberflächendiffusion des adsorbierten Sauerstoffs und den Einfluss der lokalen Reaktionskinetik auf die globale Reaktionskinetik für verschiedene experimentelle Bedingungen im Temperaturbereich zwischen 440 und 490 K zu betrachten. Zusätzlich konnten Zusammenhänge zwischen Katalysatorträger, lokaler Desorption der Produkte, Partikelmorphologie und Reaktionskinetik im Detail untersucht werden. Weiterhin wurde der Einfluß der Oberflächendiffusion auf kinetische Bistabilitäten studiert und gezeigt, dass in diesem System das Umschalten zwischen beiden bistabilen Reaktionspunkten trotz großer Unterschiede der lokalen Reaktionsgeschwindigkeiten und der Oberflächenbedeckung auf den Partikeln immer synchron auf dem gesamten Partikel stattfindet. Dies ist mit der schnellen Oberflächendiffusion von adsorbiertem CO verknüpft, dessen Oberflächenbedeckung unter allen Bedingungen den geschwindigkeitsbestimmenden Schritt kontrolliert. Schließlich wurden die Bistabilitäten selbst genauer untersucht. Zwei verschiedene Modelle wurden hierbei verwendet: ein heterogenes Oberflächenmodel, welches Kantenplätze und Stufen der Partikel explizit berücksichtigt, und ein stochastisches Modell, welches spontane Fluktuationen annimmt. Es konnte gezeigt werden, dass nur durch die Kombination der beiden Modelle die Molekularstrahlexperimente quantitativ reproduziert werden können. Das bedeutet, dass zwei konkurrierende Größeneffekte berücksichtigt werden müssen, um die experimentellen Ergebnisse verstehen zu können.

Abstract

Thesis This work proposes new methods, combining experiments and modeling, to study three fundamental aspects of the kinetics of heterogeneous catalytic reactions on supported catalysts: (i) diffusion under reaction conditions, (ii) the interplay between diffusion and kinetic bistability and (iii) the effect of spontaneous fluctuations on a kinetic bistability.

Heterogeneous catalysis has an outstanding economical impact. However, the relevant phenomena at the atomic scale remain largely unclear. One reason for this lack of understanding is the complexity of the materials as well as of the reactions occurring at the surface. Another reason is often the lack of suitable experiments to address these difficulties. We therefore propose a series of new approaches concerning the study of diffusion under reaction conditions, the interplay between diffusion and kinetic bistability and the effect of spontaneous fluctuations on a kinetic bistability, always combining molecular beam experiments and modeling.

In a first step, the rate-determining steps (RDSs) of CO oxidation on Pd catalysts are calculated for a large temperature range and different experimental conditions. We find that under all conditions, CO_{ad} governs the activity. We then concentrate on size effects. For that, three different samples prepared by PVD and EBL are used. Angle-resolved mass spectrometry and a reaction-diffusion (RD) model enable us to follow the diffusion of O_{ad} under reaction conditions and to determine the relevance of local reaction rates on the overall kinetics, for different experimental conditions and surface temperatures between 440 and 490 K. Other parameters such as the influence of the support, the local desorption of products and the morphology of the particle are investigated in detail. We then propose to study the influence of diffusion on a kinetic bistability. We find that, in the present case and despite the large gradient in reaction rate and coverage, switching of the bistability is synchronized over the whole particle. We attribute this phenomenon to the fast diffusion of CO_{ad}, on which the RDS depends under all conditions. Finally, we concentrate on the bistability. Two models are elaborated: an heterogeneous surface model, which takes edge and step sites into account and a stochastic model, which takes spontaneous fluctuations into account. It is found that only a combination of both models can reproduce the experiments quantitatively. Id est, two concurrent size effects have to be taken into account simultaneously in order to understand the experimental results.

Contents

Acknowledgements									
Zι	Zusammenfassung								
\mathbf{A}	Abstract 5								
A	crony	ms	11						
N	omen	clature	12						
1	Het	rogeneous catalysis	13						
	1.1	Kinetics	13						
	1.2	Size effects	14						
		1.2.1 Genuine size effects	14						
		1.2.2 Geometric effects	15						
		1.2.3 Electronic effects	15						
		1.2.4 Support effects	15						
	1.3	CO oxidation	16						
	1.4	Organization of the dissertation	17						
		1.4.1 Experimental perspective	17						
		1.4.2 Theoretical perspective	17						
2	\mathbf{Exp}	erimental	19						
	2.1	Molecular beam apparatus	19						
		2.1.1 Molecular beams	19						
		2.1.2 Mass spectrometry	22						
	2.2	Sample preparation	23						
		2.2.1 Physical vapor deposition	23						
		2.2.2 Electron beam lithography	24						
3	Stea	dy state and rate-determining step	27						
	3.1	CO_2 production at steady state as a function of x_{CO} and T	27						
	3.2	Establishment of the homogeneous mean field model	28						
		3.2.1 Surface phenomena	29						
		3.2.2 Rate equations (HoMF)	31						

		3.2.3 Validation of the model	31
	3.3	Rate-determining step	32
		3.3.1 Degree of rate control	33
		3.3.2 Determination of the RDS	34
	3.4	Summary	36
4	Diff	fusion under reaction conditions	39
-	4.1	Experimental	39
		4.1.1 Geometry of the beams	39
		4.1.2 Elaboration of the angle resolved experiments	40
	4.2	Size, x_{CO} and T dependence \ldots	40
		4.2.1 Experiments	40
		4.2.2 Simulations with the homogeneous mean field model	42
	4.3	Establishment of the reaction–diffusion model	45
		4.3.1 Reaction–diffusion scheme	45
		4.3.2 Validation of the model	49
	4.4	Simulations with the reaction–diffusion model	50
		4.4.1 Influence of $x_{\rm CO}$	50
		4.4.2 Influence of the surface diffusion rate	51
		4.4.3 Influence of T	53
		4.4.4 Influence of backscattering from the support	54
		4.4.5 Influence of the local angle distribution of $CO_2 \ldots \ldots \ldots \ldots$	56
	4.5	Summary	57
5	Diff	fusion and bistability	59
	5.1	Global reaction rates at steady state	59
	5.2	Local reaction rates at steady state	61
		5.2.1 Experiments \ldots	61
		5.2.2 Simulations	61
	5.3	Global reaction rates under transient conditions	63
		5.3.1 Experiments \ldots	63
		5.3.2 Simulations	64
	5.4	Summary	67
6	Bist	tability and stochastic phenomena	69
	6.1	Global reaction rates under transient conditions	69
	6.2	Establishment of the heterogeneous mean field model	72
		6.2.1 Heterogeneous surface	72
		6.2.2 Validation of the model	73
	6.3	Simulations with the heterogeneous mean field model	73
	6.4	Establishment of the stochastic model	74
		6.4.1 Establishment of the master equation	74
		6.4.2 Establishment of the stochastic model	75
	6.5	Simulations with the stochastic model	77

6.6	Summary	78			
Out 7.1 7.2 7.3	look: Applicability of the methods to other systemsDiffusion under reaction conditionsDiffusion and bistabilityBistability and stochastic phenomena	79 79 80 80			
bliog	raphy	83			
Curriculum vitae 92					
ıblica	tions	94			
Prog A.1 A.2 A.3	grams Heterogeneous surface mean field model Reaction-diffusion model A.2.1 Reaction-diffusion model A.2.2 Simulation of the experimental data Stochastic model A.3.1 Euler algorithm A.3.2 Dickman algorithm A.3.3	95 117 126 128 128 135 138			
	6.6 Out] 7.1 7.2 7.3 bliog urricu iblica A.1 A.2 A.3	6.6 Summary Image: Summary Outlook: Applicability of the methods to other systems 7.1 Diffusion under reaction conditions 7.2 Diffusion and bistability 7.3 Bistability and stochastic phenomena bliography mriculum vitae ublications Programs A.1 Heterogeneous surface mean field model A.2 Reaction-diffusion model A.2.1 Reaction-diffusion model A.2.2 Simulation of the experimental data A.3 Stochastic model A.3.1 Euler algorithm A.3.2 Dickman algorithm			

Acronyms

AFM	atomic force microscopy
AI	angle integrated
AR	angle resolved
DRC	degree of rate control
EB	effusive beam
EBL	electron beam lithography
FEM	field electron microscopy
FHI	Fritz-Haber-Institut, Berlin
${\rm HeMF}$	heterogeneous mean field model
HF	homogeneous flux
HoMF	homogeneous mean field model
IS	inhibition step
LH	Langmuir-Hinshelwood
MB	molecular beam
MC	Monte Carlo
ME	master equation
MF	mean field
ODE	ordinary differential equation
PVD	physical vapor deposition
QMS	quadrupole mass spectrometer
RD	reaction-diffusion
RDS	rate-determining step
SEM	scattering electron microscopy
SM	stochastic model
SSB	supersonic beam
STM	scanning tunneling microscopy
TOF	turnover frequency
UHV	ultrahigh vacuum
XPS	X-ray photoemission spectroscopy

Nomenclature

a	minor axis (spheroid)
α	angle, elevation from the $[xz]$ plane
β	parameter (MF)
c	major axis (spheroid)
C_T	parameter (MF)
χ	defect density
Δt	time step
\mathcal{D}	diffusion coefficient
F_i	flux
E_{j}	activation energy
L_i	diffusion length
M_{i}	net population change
\mathcal{M}	molecular mass
N_i	population, number of atoms
$ u_j$	preexponential factor
p	pressure
P	probability
ϕ	colatitude
r	radius
R	gas constant
${\mathcal R}$	reaction rate
S_i	sticking coefficient
t	time
T	surface temperature
$ au_i$	residence time
θ	equatorial angle
Θ_i	coverage
w_j	propensity function
W_j	rate per site
$x_{\rm CO}$	fraction of CO in the reactant flux
$X_{\mathrm{rc},j}$	degree of rate control