Charakterisierung der Photoisomerisierung in Bakteriorhodopsin durch Femtosekunden-Infrarot-Schwingungsspektroskopie

Dissertation

zur Erlangung des Doktorgrades am Fachbereich Physik der Freien Universität Berlin

> vorgelegt von Johannes Herbst

> > Berlin, 2002

1.Gutachter: Professor D. Stehlik
2.Gutachter: Professor N. Schwentner

Disputationstermin: 3. Februar 2003

Kurzfassung

Die Dynamik der Schwingungsbanden der all-trans- nach 13-cis-Isomerisierung des Retinalchromophors in Bakteriorhodopsin (bR) wird erstmals in dem gesamten Spektralbereich von 940 bis 1800 cm⁻¹ mittels eines neu aufgebauten Femtosekunden-Anregungs-Abtast-Absorptionsspektrometers zeitlich aufgelöst. Die durchstimmbaren und breitbandigen Infrarot(IR)-Abtastpulse werden in einem Aufbau erzeugt, der aus einem zweistufigen, optisch parametrischen Verstärker und einer Differenzfrequenzmischung besteht. Zusammen mit den durchstimmbaren, sichtbaren und 100 fs-langen Anregungspulsen erhält man eine Systemantwort von ca. 200 fs (FWHM).

Das Membranprotein Bakteriorhodopsin enthält einen Retinalchromophor, der durch die Photoanregung der all-trans-Konfiguration in die 13-cis-Konfiguration isomerisiert. Die Isomerisierung um die $C_{13}=C_{14}$ -Bindung wird am Schwingungsspektrum der vom π -Elektronensystem entkoppelten C-C-Bindungen am eindeutigsten nachgewiesen. Bisher konnte dieser Prozess auf struktureller Ebene nicht zeitaufgelöst verfolgt werden.

Mit der Femtosekunden-IR-Differenzspektroskopie werden die spektralen Bereiche, in denen die spezifischen C-C-Streckschwingungen (1150 bis 1250 cm⁻¹), die spezifischen C=C-Streckschwingungen (1500 bis 1540 cm⁻¹) und die C=NH-Streckschwingung (1600 bis 1640 cm⁻¹) absorbieren, untersucht und diskutiert. Das zentrale Ergebnis ist, dass bei 1195 cm⁻¹ die für die 13-cis-Konfiguration charakteristische C-C-Streckschwingungsbande mit einer Zeitkonstante von 450 fs entsteht. Im Spektralbereich der C=C-Streckschwingungen wird die Entstehung des J-Zustands bei 1511 cm⁻¹ ebenfalls mit 500 fs und dessen Zerfall mit 3 ps bestimmt. Die Signale um 1620 cm⁻¹ zeigen die aufgrund der Isomerisierung veränderte Umgebung der Schiffschen Base an. Durch die gleiche Zeitkonstante von ~0,5 ps für die Entstehung der 13-cis-Konfiguration und des elektronischen Grundzustands und für den S1-Zerfall ergibt sich, dass diese Prozesse simultan ablaufen. In allen drei Spektralbereichen sind die all-trans-Schwingungsbanden (1200 cm⁻¹; 1529 cm⁻¹; 1640 cm⁻¹) instantan als negative Banden (Bleichbanden) vorhanden und zeigen mit einer Zeitkonstante von 1 bis 2 ps eine deutlich langsamere Wiederentstehung als der S₁-Zerfall. Als Erklärung für diesen Prozess wird die Abkühlung von heißen Schwingungsübergängen im elektronischen Grundzustand vorgeschlagen. Sie erfordert im Reaktionsmodell die Einführung eines Zustands BR* im elektronischen Grundzustand zwischen S1 und BR570. Dem BR*-Zustand werden die heißen Schwingungsbanden von bR-Molekülen mit all-trans-Konfiguration zugeordnet. Die heißen Banden mit dem 13-cis-Chromophor gehören zum J-Zustand. Der Zerfall der heißen Banden und die K-Entstehung verlaufen simultan.

Durch das Protein bR5.12, das einen sterisch geblockten, und deshalb nicht isomerisierenden

Retinalchromophor enthält, wird eine Zuordnung für die spektrale Lage (1570 cm⁻¹) der C=C-Streckschwingung im S₁-Zustand für das native bR getroffen. Der S₁-Zerfall von bR5.12 und der Rückgang in den elektronischen Grundzustand werden global mit 17 ps bestimmt. In den Bereichen der Peptidgerüstabsorption (1550 und 1660 cm⁻¹) wird eine Proteinreaktion mit der Zeitkonstante von 2 ps beobachtet, die ihre Ursache ausschließlich in der elektronischen Anregung des Chromophors hat.

Inhaltsverzeichnis

3.1

Erzeugung des IR-Abtastpulses

gen zur lichtgetriebenen Protonenpumpe Bakteriorhodopsin d der Forschung: Der zeitliche Ablauf der Primärreaktion ttionsmodelle aus der sichtbaren Femtosekunden-Spektroskopie bnisse aus der Schwingungsspektroskopie	5 7 9 13
d der Forschung: Der zeitliche Ablauf der Primärreaktion ctionsmodelle aus der sichtbaren Femtosekunden-Spektroskopie bnisse aus der Schwingungsspektroskopie on und Zielsetzung	7 7 9 13
ctionsmodelle aus der sichtbaren Femtosekunden-Spektroskopie bnisse aus der Schwingungsspektroskopie on und Zielsetzung	7 9 13
bnisse aus der Schwingungsspektroskopie	9 13
on und Zielsetzung	13
	15
EN ZUK FENITUSEKUNDEN-SPEKTKUSKUPIE	15
sche Grundlagen	15
dlagen zur Absorption	16
dlagen der Schwingungsspektroskopie	17
onische Übergänge	17
vingungsmoden	19
k der Femtosekundenpulse	20
ste zweiter Ordnung	22
enanpassungsbedingung	23
metrische Verstärkung und Differenzfrequenzmischung	24
3licht aus Selbst-Phasen-Modulation	26
unden-IR-Spektroskopie	27
10de	27
Titan-Saphir-Laser	
Faseroszillator	
Pulsverstärkung (CPA)	
	sche Grundlagen idlagen zur Absorption idlagen der Schwingungsspektroskopie onische Übergänge vingungsmoden k der Femtosekundenpulse kte zweiter Ordnung enanpassungsbedingung metrische Verstärkung und Differenzfrequenzmischung ßlicht aus Selbst-Phasen-Modulation runden-IR-Spektroskopie ode Titan-Saphir-Laser Faseroszillator Pulsverstärkung (CPA)

3.2	Erzeugung des sichtbaren Anregungspulses	36

32

3.2.1	Überlagerung von Anregungs- und Abtastpuls	. 39
3.3 Det	ektion	40
3.3.1	Datenaufnahme und Verarbeitung	. 40
3.3.2	Charakterisierung der Systemantwort	. 43
3.4 Die	Probenpräparation von Bakteriorhodopsin	44
3.4.1	Der Bakteriorhodopsin-Film	. 44
3.4.2	Die Probe im Spektrometer	. 47
KAPITE	L 4	
ERGEB	NISSE UND DISKUSSION	49
4.1 Ana	alyse der transienten Differenzsignale	49
4.1.1	Die Relaxation induzierter IR-Polarisation: T ₂ -Effekte	50
4.1.2	Analysemethoden der transienten Signale	. 54
4.1.2.1	Global Fit	. 54
4.1.2.2	SVD-Analyse	. 55
4.2 Ent	tstehung des ersten Photozyklusprodukts	57
4.2.1	Spektralbereich der C=C-Streckschwingung	. 58
4.2.1.1	Auswertung mit Global Fit und SVD-Analyse	. 59
4.3 Ent	stehung der 13-cis-Konfiguration	64
4.3.1	Spektralbereich der C-C-Streckschwingung	. 64
4.3.1.1	Auswertung mit Global Fit und SVD-Analyse	. 65
4.4 Ver	ränderte Umgebung der Schiffschen Base (Chromophor-Bindungsstelle)	68
4.4.1	Die Absorption der C=NH-Streckschwingung	. 68

4.5	Verdrillung des Chromophors 7	70
4.5.1	HOOP-Schwingungen	70

4.6	Die	Absorption bei 1550 und 1660 cm ⁻¹	72
4.7	Ges	amtbetrachtung des Spektrums	75
4.7.	1	Das K-Differenzspektrum	76
4.7.	.2	Das J-Differenzspektrum	78
4.7.	2.1	Heiße Schwingungsbanden	80
4.7.	.3	Kinetische Analyse von 1470 bis 1670 cm ⁻¹	83
4.7.	.4	Schwingungsbande des S ₁ -Zustands	84

4.8	Das Protein mit "geblocktem Retinal" (bR5.12)	87
4.8	Die Dynamik im S ₁ -Zustand von bR5.12	
4.8	Der Vergleich von bR5.12 und bR-Wildtyp	91
KAI	TEL 5	
NEU	MODELLVORSTELLUNG ZUR PRIMÄRREAKTION	N 93
5.1	Erweitertes Reaktionsschema	94
5.2	Ausblick	98
ZUS	MMENFASSUNG	100
LIT	RATURVERZEICHNIS	103
ABI	RZUNGSVERZEICHNIS	107
PUF	IKATIONEN	109
DAI	SAGUNG	111
LEF	NSLAUF	113