Charakterisierung der Photoisomerisierung in Bakteriorhodopsin durch Femtosekunden-Infrarot-Schwingungsspektroskopie

Dissertation

zur Erlangung des Doktorgrades am Fachbereich Physik der Freien Universität Berlin

vorgelegt von
Johannes Herbst

Berlin, 2002

1.Gutachter: Professor D. Stehlik

2.Gutachter: Professor N. Schwentner

Disputationstermin: 3. Februar 2003

Kurzfassung

Die Dynamik der Schwingungsbanden der all-trans- nach 13-cis-Isomerisierung des Retinalchromophors in Bakteriorhodopsin (bR) wird erstmals in dem gesamten Spektralbereich von 940 bis 1800 cm⁻¹ mittels eines neu aufgebauten Femtosekunden-Anregungs-Abtast-Absorptionsspektrometers zeitlich aufgelöst. Die durchstimmbaren und breitbandigen Infrarot(IR)-Abtastpulse werden in einem Aufbau erzeugt, der aus einem zweistufigen, optisch parametrischen Verstärker und einer Differenzfrequenzmischung besteht. Zusammen mit den durchstimmbaren, sichtbaren und 100 fs-langen Anregungspulsen erhält man eine Systemantwort von ca. 200 fs (FWHM).

Das Membranprotein Bakteriorhodopsin enthält einen Retinalchromophor, der durch die Photoanregung der all-trans-Konfiguration in die 13-cis-Konfiguration isomerisiert. Die Isomerisierung um die C_{13} = C_{14} -Bindung wird am Schwingungsspektrum der vom π -Elektronensystem entkoppelten C-C-Bindungen am eindeutigsten nachgewiesen. Bisher konnte dieser Prozess auf struktureller Ebene nicht zeitaufgelöst verfolgt werden.

Mit der Femtosekunden-IR-Differenzspektroskopie werden die spektralen Bereiche, in denen die spezifischen C-C-Streckschwingungen (1150 bis 1250 cm⁻¹), die spezifischen C=C-Streckschwingungen (1500 bis 1540 cm⁻¹) und die C=NH-Streckschwingung (1600 bis 1640 cm⁻¹) absorbieren, untersucht und diskutiert. Das zentrale Ergebnis ist, dass bei 1195 cm⁻¹ die für die 13-cis-Konfiguration charakteristische C-C-Streckschwingungsbande mit einer Zeitkonstante von 450 fs entsteht. Im Spektralbereich der C=C-Streckschwingungen wird die Entstehung des J-Zustands bei 1511 cm⁻¹ ebenfalls mit 500 fs und dessen Zerfall mit 3 ps bestimmt. Die Signale um 1620 cm⁻¹ zeigen die aufgrund der Isomerisierung veränderte Umgebung der Schiffschen Base an. Durch die gleiche Zeitkonstante von ~0,5 ps für die Entstehung der 13-cis-Konfiguration und des elektronischen Grundzustands und für den S₁-Zerfall ergibt sich, dass diese Prozesse simultan ablaufen. In allen drei Spektralbereichen sind die all-trans-Schwingungsbanden (1200 cm⁻¹; 1529 cm⁻¹; 1640 cm⁻¹) instantan als negative Banden (Bleichbanden) vorhanden und zeigen mit einer Zeitkonstante von 1 bis 2 ps eine deutlich langsamere Wiederentstehung als der S₁-Zerfall. Als Erklärung für diesen Prozess wird die Abkühlung von heißen Schwingungsübergängen im elektronischen Grundzustand vorgeschlagen. Sie erfordert im Reaktionsmodell die Einführung eines Zustands BR* im elektronischen Grundzustand zwischen S₁ und BR₅₇₀. Dem BR*-Zustand werden die heißen Schwingungsbanden von bR-Molekülen mit all-trans-Konfiguration zugeordnet. Die heißen Banden mit dem 13-cis-Chromophor gehören zum J-Zustand. Der Zerfall der heißen Banden und die K-Entstehung verlaufen simultan.

Durch das Protein bR5.12, das einen sterisch geblockten, und deshalb nicht isomerisierenden

Retinalchromophor enthält, wird eine Zuordnung für die spektrale Lage (1570 cm $^{-1}$) der C=C-Streckschwingung im S_1 -Zustand für das native bR getroffen. Der S_1 -Zerfall von bR5.12 und der Rückgang in den elektronischen Grundzustand werden global mit 17 ps bestimmt. In den Bereichen der Peptidgerüstabsorption (1550 und 1660 cm $^{-1}$) wird eine Proteinreaktion mit der Zeitkonstante von 2 ps beobachtet, die ihre Ursache ausschließlich in der elektronischen Anregung des Chromophors hat.

Inhaltsverzeichnis

KAP	EL 1	
EIN	TUNG	1
1.1	undlagen zur lichtgetriebenen Protonenpumpe Bakteriorhodopsin	n 5
1.1	Stand der Forschung: Der zeitliche Ablauf der Primärreaktion	7
1.1	Reaktionsmodelle aus der sichtbaren Femtosekunden-Spektroskopie	e7
1.1	Ergebnisse aus der Schwingungsspektroskopie	9
1.2	otivation und Zielsetzung	13
KAP	EL 2	
GRU	LAGEN ZUR FEMTOSEKUNDEN-SPEKTROSKOPII	E 15
2.1	eoretische Grundlagen	15
2.1	Grundlagen zur Absorption	16
2.1	Grundlagen der Schwingungsspektroskopie	17
2.1	Vibronische Übergänge	17
2.1	Schwingungsmoden	19
2.1	Optik der Femtosekundenpulse	20
2.1	Effekte zweiter Ordnung	22
2.1	Phasenanpassungsbedingung	23
2.1	Parametrische Verstärkung und Differenzfrequenzmischung	24
2.1	Weißlicht aus Selbst-Phasen-Modulation	26
2.2	mtosekunden-IR-Spektroskopie	27
2.2	Methode	27
2.2	Der Titan-Saphir-Laser	28
2.2	Der Faseroszillator	28
2.2	Die Pulsverstärkung (CPA)	29
KAP	EL 3	
AUF	U DES FEMTOSEKUNDEN-IR-SPEKTROMETERS	31
3.1	zeugung des IR-Abtastpulses	32
3.2	zeugung des sichtbaren Anregungspulses	36

3.2	2.1	Überlagerung von Anregungs- und Abtastpuls	39
3.3	Det	tektion	40
3.3	3.1	Datenaufnahme und Verarbeitung	40
3.3	3.2	Charakterisierung der Systemantwort	43
3.4	Die	Probenpräparation von Bakteriorhodopsin	44
3.4	4. 1	Der Bakteriorhodopsin-Film	44
3.4	1.2	Die Probe im Spektrometer	47
KAl	PITE	CL 4	
ER(GEBI	NISSE UND DISKUSSION	49
4.1	An	alyse der transienten Differenzsignale	49
4.1	1.1	Die Relaxation induzierter IR-Polarisation: T ₂ -Effekte	50
4.1	1.2	Analysemethoden der transienten Signale	54
4.1	1.2.1	Global Fit	54
4.1	1.2.2	SVD-Analyse	55
4.2	En	tstehung des ersten Photozyklusprodukts	57
4.2	2.1	Spektralbereich der C=C-Streckschwingung	58
4.2	2.1.1	Auswertung mit Global Fit und SVD-Analyse	59
4.3	En	tstehung der 13-cis-Konfiguration	64
4.3	3.1	Spektralbereich der C-C-Streckschwingung	64
4.3	3.1.1	Auswertung mit Global Fit und SVD-Analyse	65
4.4	Vei	ränderte Umgebung der Schiffschen Base (Chromophor-Bindungsstelle)	
4.4	1.1	Die Absorption der C=NH-Streckschwingung	68
4.5		rdrillung des Chromophors	70
4.5	5.1	HOOP-Schwingungen	70
4.6	Die	Absorption bei 1550 und 1660 cm ⁻¹	72
4.7	Ges	samtbetrachtung des Spektrums	75
4.7	7.1	Das K-Differenzspektrum	76
4.7	7.2	Das J-Differenzspektrum	78
4.7	7.2.1	Heiße Schwingungsbanden	
4.7	7.3	Kinetische Analyse von 1470 bis 1670 cm ⁻¹	83
4.7	7.4	Schwingungsbande des S ₁ -Zustands	84

4.8 Das	s Protein mit "geblocktem Retinal" (bR5.12)	87
4.8.1	Die Dynamik im S ₁ -Zustand von bR5.12	89
4.8.2	Der Vergleich von bR5.12 und bR-Wildtyp	91
KAPITE	ZL 5	
NEUE M	IODELLVORSTELLUNG ZUR PRIMÄRREAKTION	93
5.1 Erv	veitertes Reaktionsschema	94
5.2 Aus	sblick	98
ZUSAM	MENFASSUNG	100
LITERA	TURVERZEICHNIS	103
ABKÜR	ZUNGSVERZEICHNIS	107
PUBLIK	ATIONEN	109
DANKS	AGUNG	111
LEBENS	SLAUF	113