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Chapter 1
Introduction

In this thesis we address the general question of how the genome’s sequence in-
fluences various elements involved in gene regulation. To this end, we employ
methods from the field of machine learning and pattern recognition, to identify

patterns in DNA that are associated with genomic methylation and enhancers.

We begin with an overview of the biological background (Chapter 2) that mo-
tivates the problems that are addressed later in the thesis, and also explains the
experimental techniques whose data we rely on. Chapter 3 describes machine
learning in general as well as the major topics within the field of machine learn-
ing that are relevant to this thesis, with a focus on machine learning on DNA
sequences. The chapter contains an overview of several machine learning methods
that are commonly applied to biological problems involving biological sequences,

including those used in this thesis.

Chapter 4 presents the problem of predicting non-methylated regions of the
genome using DNA sequence. This study came about because of the develop-
ment of new experimental methods for measuring DNA methylation genome-wide.
These methods shifted the focus from CpG islands (CpG-rich regions of DNA se-
quence in the genome which were used as a proxy for non-methylated regions) to
experimentally determined non-methylated islands (NMIs). Using the data from
these new experiments, we use machine learning methods to directly learn the
sequence features that are indicative of non-methylated regions in several species
and tissues. Specifically, we use a supervised learning called a support vector ma-
chine, along with several kernels that are specifically designed for sequential data

like DNA sequences.

In Chapter 5 we present the problem of predicting genomic regulatory regions
called enhancers. A fundamental step in addressing this problem is identifying a
reliable set of known enhancers that we can train our models on. We demonstrate

that several experimental methods that are all assumed to be predictive of enhancer
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regions do not agree with each other, and therefore we use a small set of enhancers
that are identified by three separate experimental methods as our starting point.
This small set motivates us to use semi-supervised learning techniques, and we
combine ChIP-seq data and DNA sequence features as input to the predictive

model.



Chapter 2
Biological Background

From the largest whale to the tiniest bacteria, the countless different species on
the planet can at first glance seem like they couldn’t be more different from each
other. Despite these superficial differences, the surprising fact is how similar all
of these organisms are at the cellular level. The basic mechanisms and building
blocks required for life are shared among all species, and the study and better
understanding of these fundamental mechanisms in any organism increases our
understanding of all living things.

Many of the fundamental mechanisms required for life depend on just a few
important types of molecules: DNA, which makes up our genome, proteins, which
form most of the cell’s mass and carry out a vast array of cellular functions, and
RNA, a temporary copy of portions of the genome that can act as an intermediary
between the genome and proteins or can itself be functional (see Figure 2.1).
Despite the critical role these molecules play there is still much that we don’t

know about how they function and interact with each other.

2.1 The genome

The most important molecule for any living organism is its genome, a sequence
of discrete chemical units forming a structure known as DNA, or deoxyribonu-
cleic acid. This molecule contains the information required for an organism to
survive and reproduce, and is physical means of passing this information from an
organism to its offspring. The building blocks that make up the genome are called
nucleotides, four chemicals which comprise the alphabet that is used to spell out
the genome: adenine (A), cytosine (C), guanine (G) and thymine (T). Individual
nucleotides are joined together along a chemical backbone made up of deoxyri-
bose, and sequences of these nucleotides spell out different functional regions of

the genome. These functional regions include genes, as well as requlatory regions.
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Figure 2.1: The central dogma of molecular biology. DNA is
replicated when the cell divides and creates two daughter cells. During
transcription, DNA is read and copied into RNA. Translation is the
process of synthesizing a protein based on the sequence of an mRNA
molecule. From Wikimedia Commons, 2016a.

The genes encode proteins as well as functional RNAs, or ribonucleic acids, which
together carry out most of the important functions in the cell. Regulatory regions

such as enhancers and insulators modulate the activity of genes.

An organism’s genome is contained inside the nucleus of every one of its cells,
with a couple of rare exceptions such as mature red blood cells. Despite the fact
that these cells may form tissues with drastically different functions and appear-
ances, the genome in all cells of an organism is the same. Another way of saying
this is that cells can have different phenotypes (observable characteristics), but the
same genotype (genome sequence). It only through tightly controlling the activity
of genes and proteins through many mechanisms that different cell types can be

created and maintained.



2.1. THE GENOME 5

2.1.1 Transcription and translation

Transcription and translation are the processes which take the information encoded
by a gene and produce a functional molecule from it, either a protein or functional
RNA. Transcription involves creating a temporary copy of the gene, and requires
a protein complex, called RNA polymerase, to read the nucleotides that make up
the gene and create a copy of these nucleotides in a new molecule called RNA. This
RNA is a similar molecule to DNA with three exceptions: it has a different chemical
backbone (ribose instead of deoxyribose), it is a single stranded molecule instead
of a double stranded molecule, and it has a slightly different alphabet consisting
of adenine (A), cytosine (C), guanine (G) and uracil (U). RNA can itself have a
function (such as microRNAs and IncRNAs), or if it is a messenger RNA (mRNA)
it can be further read and translated into a protein. This translation is performed
by the ribosome, a complex made up of proteins as well as RNA (ribosomal RNA
or rRNA). The ribosome reads the sequence of the mRNA and translates it into
a sequence of protein building blocks called amino acids, and this chain of amino
acids folds to form a functional protein which can then carry out some role in the

cell.

2.1.2 Transcriptional regulation

Transcriptional requlation is one of the most important processes involved in defin-
ing the identity and function of cells. Because the genome is identical between all
cells, and the basic machinery required for transcription is available in nearly all
cells, phenotypic differences are primarily achieved by controlling which genes are
transcribed as well as the rate of this transcription. Through this regulation, dif-
ferent cells can specialize to perform different tasks and form distinct tissues such
as a muscle, neuron, or kidney. Even small changes in this transcriptional control
can increase the risk of diseases such as cancer, diabetes, autoimmune diseases
and neurological disorders (Lee and Young, 2013), which makes the study of tran-
scriptional regulation important not just to further our understanding of the basic
mechanisms of life, but also for the diagnosis and treatment of disease. Despite
this importance, there are still many aspects the mechanisms of transcriptional

regulation that are poorly understood, and the analysis presented in this thesis
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are intended to advance our knowledge of the topic.

2.1.3 Transcription factors

Transcription factors (TFs) are proteins that physically interact with DNA in
a sequence-specific manner to regulate transcription. TFs function alone or in
complex with other proteins to promote or repress the binding of RNA polymerase,
and can bind directly upstream of the transcription start site (promoter proximal),
or in other regions (called cis-regulatory regions) which can be distant from the
gene being regulated. Since some of these transcription factors are only present
and active in a subset of cells, they are able to regulate the transcription of genes
in a cell type-specific manner, and therefore have a strong influence on cellular

phenotypes.

2.1.4 Enhancers

Enhancers are cis-regulatory regions that are not promoter proximal and that can
boost gene expression of distal genes when activated. Enhancers function by loop-
ing to the promoter that they regulate, and are activated by sequence specific
transcription factors, which create an environment permissive to transcription. It
is common that multiple enhancers regulate a gene, and they do not necessarily
regulate the closest gene, in some cases acting over several megabases. One such
example is an enhancer of the Shh gene, which is over 1 megabase away from the
gene’s promoter (Amano et al., 2009). Some enhancers also generate short tran-
scripts, called enhancer RNAs or eRNAs (Kim et al., 2010), though the functional
role of these transcripts, if any, is not known. Nevertheless, the importance of
regulatory elements like enhancers in human disease was suggested years ago by
the observation in many genome-wide association studies that causal variants are
very often identified distant from transcribed genes (Helgadottir et al., 2007). This
suggestion was confirmed in more recent studies showing that the disruption of the
function of these regulatory elements can lead to changes in gene expression and
disease phenotypes (Weedon et al., 2014; Lupidnez et al., 2015).

Unlike genes, which generate transcripts and have some well understood DNA

sequence features that can be used to identify their location in the genome, most
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enhancers do not seem to need to generate transcripts to function and have more
poorly understood sequence features, and therefore are difficult to identify reliably
genome-wide. Also, because of the variable distance between the enhancer and the
gene it regulates, even when an enhancer is identified it is difficult to determine its
target. These two issues, along with their importance to disease, make enhancers

particularly relevant to study.

2.2 The epigenome

Given that the genome of all cells within an organism share the same DNA | it begs
the question of what causes some cells to look and behave differently from each
other, but causes daughter cells to mostly resemble their parent cell. The answer
to this question is that there is an additional layer of information on top of the
DNA, known as the epigenome (the prefix epi- means over, or outside of) which
can influence the activity of genes. The strict definition of epigenetics refers to
information outside of the genome that can be passed from one generation to the
next, but the more commonly used definition that we will use in this thesis relaxes
the heritability constraint. Specifically, we will focus on chemical modifications of

the DNA itself, as well as to a subset of proteins called histones.

2.2.1 Histone modifications

In order to fit the genome of eukaryotic organisms into the nucleus of a cell it
must be tightly packed. This packing of DNA is performed by protein complexes
called nucleosomes, which consist of the DNA wrapped around a set of eight pro-
tein subunits called histones. The basic structure of a histone consists of a core
which interacts with other histones as well as the DNA, as well as a long tail of
amino acids. The amino acids that make up this tail can be chemically modified
by certain transcription factors, and specific chemical modifications are known to
co-locate with different genomic “states” such as active or repressed genes, en-
hancers, and repressed regions. There are several types of chemical modifications
that can be made, including methylation, phosphorylation, acetylation, ubiquity-

lation, and sumoylation. The most well studied, in the context of gene regulation,
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Table 2.1: Commonly studied histone tail modifications.

Histone modification Genome state

H3K4mel Enhancer regions

H3K4me2 Permissive euchromatin

H3K4me3 Transcriptional elongation; active euchromatin; pro-
moter regions

H3K27ac Transcriptional activation

H3K27me3 Transcriptional silencing;  X-inactivation; bivalent
genes/gene poising

H3K36me3 Transcriptional elongation

are methylation and acetylation, where relationships have been identified between
the modification of certain amino acids in the histone’s tail and certain genomic
regions and transcriptional states (see Table 2.1 for a summary of some of the most
commonly measured histone modifications, or Lawrence, Daujat, and Schneider,

2016 for an extensive review).

2.2.2 DNA methylation

It is also possible to directly modify the nucleotides that make up the genome
without changing the genome’s DNA sequence. One of the most common DNA
modifications is DNA methylation, which consists of the addition of a methyl group
to a cytosine nucleotide. This modification almost exclusively takes place when the
cytosine is followed by guanine nucleotide, and the resulting sequence is usually
referred to as a CpG dinucleotide to differentiate it from the base paired cytosine
and guanine residues that occur between DNA strands.

The effect of DNA methylation is to silence genomic regions, both by repressing
the transcription of nearby genes and by throttling the activity of enhancer regions
(Magnusson et al., 2015 for one example of the latter). This silencing can be
accomplished by a set of proteins that bind methylated DNA, and consequently
interact with other proteins that compact the genome.

In almost all vertebrate cells, the majority of CpGs are methylated. Because
of this, we tend to focus on the more rare occurrence of non-methylated CpGs.

Individual stretches of these regions have been identified and studied for more than
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30 years (Cooper, Taggart, and Bird, 1983), but only with newer experimental
approaches based on high-throughput sequencing have we finally been able to

measure DNA methylation genome-wide.

2.3 Experimental methods for measuring epige-

netic modifications

Over the last several years, many experimental methods have been developed to
help us identify and study the relationships between epigenetic modifications and
transcriptional regulation. These methods all leverage the huge advances that have
taken place in the field of high throughput sequencing, and it is only due to these
advances that we can now have a picture of epigenetic modifications genome-wide.
These genome-wide measurements allow us to develop a more general understand-
ing of these mechanisms and the interplay between genomic sequence, epigenetic

modifications, and transcriptional regulation.

2.3.1 Histone modifications: ChIP-seq

In order to measure protein-DNA interactions genome-wide, the most common
experimental method by far is ChIP-seq, or chromatin immunoprecipitation fol-
lowed by sequencing. It is useful not only for measuring the binding of specific
transcription factors (Robertson et al., 2007; Johnson et al., 2007), but also for
measuring histones with specific modifications (Barski et al., 2007).

The method works by first strongly fixing proteins to the DNA, usually using
the chemical formaldehyde. Next, the DNA is sheared into smaller pieces. The
DNA-protein complexes are then immunoprecipitated from the solution using an
antibody which has a high affinity for the protein of interest, and the DNA bound
to this protein is then purified, amplified and sequenced, yielding millions of se-
quencing reads that originate from locations in the genome where the protein of
interest was bound. The reads are then mapped to the genome, and regions with
a statistically significant enrichment of reads are identified (Zhang et al., 2008).
These regions can then be confidently assumed to interact with the protein of

interest.
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2.3.2 DNA methylation: whole-genome bisulfite sequenc-
ing

Whole-genome bisulfite sequencing (WGBS) is an experimental method which,
given a sample of cells, can determine for each cytosine in the genome the propor-
tion of cells that have that position methylated (Lister et al., 2008; Cokus et al.,
2008).

The method (see Figure 2.2A) involves first isolating DNA from the sample of
cells, and then bisulfite treating the DNA. This treatment converts non-methylated
cytosines to uracils, but leaves methylated cytosines unchanged. The treated DNA
is then sequenced, and by comparing the resulting sequence to a reference genome
it is possible to determine whether each cytosine in the genome is methylated or
not. Each location in the genome is usually sequenced more than once, so for most
CpGs in the genome we are able to calculate the proportion of cells in the sample
that are methylated at that exact position. This proportion is commonly referred
to as a beta (f) value (Figure 2.2B).

One disadvantage of whole-genome bisulfite sequencing is that it requires a
huge amount of sequencing, which is an impediment because of the high cost that
is involved. This is because the experiment essentially requires resequencing the
entire genome at a relatively high depth of coverage. As mentioned above, the vast
majority of the genome is constitutively methylated, and contains rare stretches of
non-methylated CpGs. If one is interested in studying non-methylated regions of
the genome, which make up roughly 5% of the entire genome, it is unnecessary to
sequence the other 95% of the genome. Variants of WGBS have been developed to
partially alleviate this problem, such as reduced representation bisulfite sequencing
(Meissner et al., 2005).

2.3.3 DNA methylation: Bio-CAP

In contrast to whole genome bisulfite sequencing, Bio-CAP is an experimental
method for specifically profiling clusters of non-methylated CpG dinucleotides
genome-wide (Blackledge et al., 2012). The method, when combined with a com-
putational peak calling method such as MACS (Zhang et al., 2008), is able to
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Figure 2.2: Whole-genome bisulfite sequencing experiment.
(A) DNA is treated with bisulfite, which causes an unmethylated cyto-
sine to convert to a uracil but leaves methylated cytosines unchanged.
These converted sequences are then sequenced using high throughput
sequencing, and these bisulfite-generated polymorphisms can be iden-
tified by comparison to a reference genome. Adapted from Wikimedia
Commons (2016b). (B) After mapping reads and post processing, the
results provide a per-CpG estimate of the fraction of cells which are
methylated at that position (bottom track). From Mendizabal and Yi
(2015).
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discriminate non-methylated stretches of CpGs from methylated CpGs, and the
signal that is achieved is proportional to the density of non-methylated CpGs in
the region. Similar to ChIP-seq experiments (see Section 2.3.1), Bio-CAP is an
affinity purification-based method, where the affinity between two biomolecules
(e.g. an antibody and protein) is used to enrich a pool of DNA for the regions of
interest. In contrast to ChIP-seq, which relies on the affinity between specific pairs
of antibodies and proteins, Bio-CAP uses the affinity of a specific protein domain,
called a “CxxC zinc finger domain”, for unmethylated DNA. This affinity is used
to purify unmethylated DNA regions from a pool containing both methylated and

unmethylated genomic regions.

In more detail, the experiment begins by attaching CxxC protein domains to
a bead which can later be used to isolate whatever is bound to the CxxC domain.
The complex is then mixed together with genomic DNA that has been sonicated
to approximately 150-250 bp so that the complexes of the CxxC and unmethylated
CpG-rich DNA can form (see Figure 2.3A). The mixture is then centrifuged, in
order to remove the unbound DNA from the mixture. The remaining DNA (bound
to a CxxC-domain) is then washed to further remove any unbound DNA, and then
subjected to elution at a high concentration of salt to try to remove proteins and
DNA that are binding non-specifically. The high-salt fraction, containing the non-
methylated CpG DNA, is then collected and sequenced. These sequences are then
mapped to a reference genome, and clusters of reads accumulate at regions of the
genome where clusters of non-methylated CpGs are present. A peak calling method
is then used to identify these clusters genome-wide. When using MACS (Zhang
et al., 2008) for calling peaks, the peak caller adapts its model to the experimental
data and to local differences in the genome, and as such is able to provide more
reliable discrimination of significant sequencing peaks (non-methylated regions)
from noise (methylated regions) than would be possible with a simple cutoff on
the number of sequencing reads. The regions identified by the peak caller are the
final experimentally determined non-methylated genomic regions (Figure 2.3B).

By purifying and sequencing only the non-methylated regions of the genome,
the amount of sequencing that is required is greatly reduced in comparison to
WGBS. For example a typical whole genome bisulfite sequencing experiment on

a human sample requires between 600 million and 6 billion reads (the examples
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used were NIH Roadmap Dataset ID ENCFF887XUB and ENCODE Dataset ID
ENCSR890UQO), whereas a typical Bio-CAP experiment requires only approxi-
mately 60 million reads (Long et al., 2013), a reduction of at least 10 fold. However,
there is one clear disadvantage of Bio-CAP compared to WGBS: Bio-CAP does not

have base-pair resolution, but rather identifies broad regions of low methylation.

2.4 Other relevant experimental methods

In addition to the measurement of different epigenetic marks, there are several
other experiments that are very helpful when studying regulatory regions like

enhancers.

2.4.1 CAGE

CAGE, or cap-analysis of gene expression (Kodzius et al., 2006), is a technique
for identifying the transcription start sites of RNA transcripts. This can be used
when trying to identify enhancers, because some enhancers are thought to generate
bidirectional transcripts called eRNAs. Using CAGE, it is possible to identify
the transcription start sites of actively transcribed regions genome-wide, and by
applying filters based on genome annotation as well as the type of transcription
(single direction or bidirectional) one can estimate the activity of protein coding
genes, non-coding RNAs, or putative enhancers.

CAGE takes advantage of the fact that the 5 end of some RNA transcripts,
which is the end adjacent to the transcription start site, have a modified chemical
cap added to them. This cap is used by the cell’s translational machinery identify
mRNAs that they will translate into a protein. CAGE works by first isolating
RNA with a 5" cap, synthesizing a complementary DNA strand, releasing the
single stranded DNA and attaching it to an adapter which is used to amplify the
5’ sequence so that it can sequenced. After mapping these reads to a reference
genome, the reads stack up at the gene’s transcription start site in proportion
to the amount of capped RNA transcript that was present in the original RNA
isolate. These reads can therefore be used as a digital readout of the activity of

transcribed genes, and to identify tissue-specific transcription start sites.
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Figure 2.3: Bio-CAP experiment. (A) CxxC domains bound to
beads are combined with sonicated DNA. This mixture is then sub-
jected to centrifugation, washing, and elution at high salt concentra-
tions in order to isolate the non-methylated DNA which binds to the
CxxC domain. The DNA which remains bound to the beads through
this process is then sequenced. (B) An example genomic region show-
ing mapped reads from a Bio-CAP experiment stacking up at regions
with clusters of non-methylated CpGs. Adapted from Blackledge et al.
(2012).
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2.4.2 HiCAP

HiCAP (Sahlén et al., 2015) is a method for identifying DNA-DNA interactions,
or regions of the genome that loop together. Specifically, HICAP enriches for
interactions where one of the regions is a promoter, by designing probes that
attempt to capture all known promoter regions.

The HiCAP experiment starts by cross-linking the cells, which causes DNA
regions that are very close to each other to bind together tightly. The cells are
lysed and the nuclei are then isolated, and treated with a restriction enzyme that
cuts the DNA into many smaller pieces. The resulting DNA fragments are then
treated with biotin, and the entire mixture is then diluted and then the cross-
linking is removed, and the fragments that were close to each other will then
hopefully ligate to each other, forming a circular DNA consisting of a short region
from each interacting DNA fragment. These ligated DNAs are then purified and
the promoter probes are used to enrich the resulting sequences for DNAs where at
least one of the interacting partners is a promoter. The resulting promoter enriched
sequences are then sequenced using paired end sequencing, and the sequences are
then carefully mapped to the reference genome so that the two DNA regions that

are interacting can be identified.

2.4.3 Enhancer reporter assays

Enhancer reporter assays are used to test if a given piece of DNA can act as
an enhancer. Unlike all the previously mentioned methods, the basic enhancer
reporter assay is not a genome-wide experiment. Rather, each region of interest
has to be tested one at a time. Fortunately there are large databases of regions
that have already been tested (see Vista enhancer browser).

The assay works by taking a short stretch of DNA, containing the putative
enhancer region, and placing it upstream of a promoter and a reporter gene. This
construct, called the reporter construct, is then injected into a tissue or cell type of
interest and the activity of the reporter gene is measured. The promoter is usually
chosen so that it does not drive expression on its own in the cell type where the
enhancer is being tested, so that the activity of the reporter can be attributed to

the putative enhancer region. It is also possible to inject the reporter construct
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into a developing embryo, and then the tissue-specific enhancer activity can be
visualized using microscopy (Visel et al., 2007).

An experiment that can be considered a genome-scale version of this assay has
been developed, called STARR-seq (Arnold et al., 2013), but not many data sets
are currently available and there is some difficulty scaling up the experiment to
work on genomes the size the human or mouse genome. Briefly, STARR-seq works
by randomly shearing genomic DNA, and then inserting these random sequences
into reporter constructs to create a whole library of reporters. These constructs are
then injected into cells, and the reporters are designed so that the random DNA
regions that are able to act as enhancers drive their own expression, and these
sequences can then be isolated and sequenced. When the resulting sequences are
mapped back to the genome, we have an enrichment of reads in regions that have
functioned as enhancers, and the number of reads is roughly correlated to the

strength of their enhancer activity.



Chapter 3

Machine learning on biological

sequerces

Given the critical role of the genome to living organisms, it is not surprising that
a large amount of effort has been put into trying to decode the information it
contains. Despite this effort, we are still quite far from being able to predict the

phenotypic influence of any given region of the genome.

Fortunately, if we consider the genome as a sequence of text written in an
alphabet of four characters, the four nucleotides, then we can leverage the exten-
sive research that has gone into the study of machine learning, natural language
processing and sequential data analysis in general. These methods can be used to
help us make sense of the genome, by identifying patterns in its sequence which are
associated to regions with different functional roles. These patterns can then ide-
ally be used to provide researchers with some initial hypotheses when studying the

mechanistic or causative relationships between genomic sequence and phenotypes.

This chapter provides some background on core concepts in machine learning,
highlights some methods and applications of machine learning on biological se-
quences, and gives a more detailed description of the main methods used through-
out this thesis.

3.1 Fundamental machine learning concepts

Before we can discuss sequence classification in any detail, we first need to describe

what machine learning is and some of its basic concepts.

17
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3.1.1 An example of applying machine learning to a bio-

logical problem

Machine learning is a field combining concepts from computer science, statistics,
and engineering. The goal of machine learning is to identify patterns in data,
and in many cases to use those patterns in order to take actions such as classifying
data into different categories (referred to as classification) or to predict a numerical

value (referred to as regression) (Bishop, 2006).

To introduce some important terminology, let us consider an example of apply-
ing classification to a biological problem. Say we are given a set of genomic regions
and we want to know if they are introns or exons. To approach this problem using
machine learning, we could first collect a set of regions where we know the class,
or label, of the regions: intron or exon. This set of data is called a training set,
and we will use it to try to identify patterns that can be used to classify our new
genomic regions as introns or exons. Based on our biological knowledge, we have
some idea that trinucleotide frequencies might differ between these two classes of
regions, because the exons consist of trinucleotides called codons that encode for
the amino acids that will make up a protein, while the introns do not code for
amino acids. Therefore, we look up the DNA sequence of all of our training set
regions, and calculate the trinucleotide frequencies of each sequence. This step is
called feature extraction, and the resulting frequencies are called features. Next,
we want to use this labeled training data as the input to a machine learning al-
gorithm, which optimizes the parameters of a function, or model, to minimize the
error when using the function to transform input features to output labels. In the
case of our example, the model takes as input the trinucleotide frequencies of any
genomic region, and the model will output a prediction of whether it is an intron or
exon. This optimization can be called the training step. There are many methods
which can be used for this purpose, and we will discuss some of them later in this
chapter (see the section Methods for machine learning on sequences). Finally, we
want to have some idea how well our model works on new data which was not
included in our training set. This concept is called generalization, and we usually
evaluate it by setting aside part of the labeled data from the very beginning and

not using it in our training set, so that we can evaluate how well our predictions
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work on new data after the model has been trained. This set of data is referred
to as the test set, since we know which label each item in this set is supposed to

have and this knowledge can be used to see how good our model’s predictions are.

3.1.2 Supervised, unsupervised and semi-supervised learn-
ing

There are three broad categories of machine learning tasks that any problem
usually falls into: supervised learning, unsupervised learning and semi-supervised
learning. These three categories differ based on how much labeled data is incorpo-
rated into the training step of the algorithm. For example, a dataset might consist
of a set of windows of the genome, the predictive features are the DNA sequences
of those regions, and the labels would be if those regions are methylated or if they
are instead part of a non-methylated region. Using this labeled data as input, we
can use a supervised machine learning algorithm to learn a function which can
map new data to its most likely label.

In contrast, with unsupervised learning we have a set of data with predictive
features for each data point, but the data is not labeled. Therefore, instead of
learning from the example labeled data, we rather try to identify structure (e.g.
clusters) in the unlabeled dataset. In comparison to the previous example, this
would be like having a dataset of windows of the genome, along with their DNA
sequences, but no labels indicating whether the regions are methylated or not. In
this case we can only look for patterns in the DNA sequences that could be used to
group them together in some way, but we wouldn’t necessarily know the biological
meaning of those groups without considering additional information which was not
included in the analysis, such as genomic annotation of genes, non-coding RNAs,
repetitive sequences and CpG islands. In the case of clustering, the biological
relevance (if any) of the clusters that are identified would need to be determined
after the clustering has been performed, often by looking at examples from each of
the groups manually as well as the features that contribute most to the clustering.

Semi-supervised learning is a compromise between supervised and unsupervised
learning. With semi-supervised learning, some of our data is labeled and some of it

is unlabeled. These methods take advantage of an assumption that the underlying
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function that we are trying to model is “smooth”, so we can say that similar input
data is expected to have similar labels. Therefore, we can use the unlabeled data
to define high density areas of the input space (which would be assumed to share
a label based on the smoothness assumption), and then apply a label to these
regions based on the few labeled data points that we have.

There are several reasons why one might choose to use supervised, unsupervised
or semi-supervised learning. For example, it can often be very costly to determine
labels, for instance when a biological experiment is very time-consuming or expen-
sive. In this case, one would be forced to use unsupervised methods if labeled data
is not available, or semi-supervised methods if there are at least a small amount of
labeled data. Additionally, with supervised methods you are only able to choose
between pre-determined labels when classifying a data point. This is not desir-
able when doing exploratory analysis so you might choose to use unsupervised
learning first. In contrast, when the set of possible outcomes or labels is already
known, and there is a large amount of labeled data available, supervised learning
methods will tend to be better than unsupervised learning methods at predicting
the label of new data, as well as identifying important features that are useful for

differentiating between members of each class.

Semi-supervised meta-algorithms: self-training and co-training Two of
the simplest semi-supervised learning methods are self-training and co-training.
They can be considered meta-algorithms, because they use existing classification
algorithms (see Section 3.2 for some examples), along with unlabeled data, to try
to iteratively increase classification performance (Aggarwal, 2015). Both methods
start with a (small) labeled set L, a (large) unlabeled set U, the size of the subset
from U that should be considered at each iteration n,, and some parameter k
which indicates how many data points should be moved from the unlabeled set to

the labeled set with each iteration of the algorithm.

e Self-training is the simpler of the two methods, and it involves training a
single classifier on L, using that trained classifier to identify the set K of the
k most confident instances in a random subset of size n, from U, U;. Those
instances K are then moved from U to L (U <~ U\ K, L - LUK), and the
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label predicted by the classifier is assigned to the instances. This process is
repeated until some stopping criterion is reached, for instance L is increased

to a certain size, or all of the data in U has been labeled.

e Co-training is a more complex method than self-training, and involves using
two feature sets X; and X, to describe the data (Blum and Mitchell, 1998).
Two separate classifiers g; and go are trained on L, using the features X;
and X, respectively. Then each classifier independently identifies the & most
confident instances in two random subsets of size n, from U, U; and Us,.
These instances K; and K5 are then moved from U to L if the two classifiers
do not predict conflicting labels. As above, the process is repeated until
some stopping criteria is reached or all data in U is labeled. For more detail,

see Algorithm 1.

Augmenting training data in this way has led to numerous successful appli-
cations, for instance in text and website category classification (Blum and
Mitchell, 1998), prediction of geographical location (Riloff and Jones, 1999),
word sense disambiguation (Yarowsky, 1995) and named entity classification
(Collins and Singer, 1999). A successful bioinformatics application uses co-
training to improve disease phenotype prediction from genotype by using a
second classifier to impute the phenotype of unlabeled patients based on a
second class of information: clinical health records (Roqueiro et al., 2015).
In general, a review study has shown that algorithms that make use of an
independent split of the features outperform algorithms that do not (Nigam
and Ghani, 2000).

3.1.3 Supervised learning with different numbers of classes

When performing supervised learning, our goal is to take some input vector and
assign it to one or more out of K classes. The most common setting in supervised
learning is binary classification, where K = 2, meaning that each input vector
needs to be mapped to one of two possible classes. One example that is explored

later in this thesis is predicting whether a given genomic region is an enhancer
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Algorithm 1 Co-training

Input: high-confidence labeled set L, unlabeled set U, parameter vector 6 =
(10, k)
Output: classifiers g; and g, trained on augmented labeled set L

1: while stopping criterion is not met do

2: fori=1,2do

3: train classifier g; on L

4: sample subset U; of size n, from U

5: predict class probabilities of data in U; with g;

6: determine the k£ most confidently predicted data in U;

7: label the k£ most confidently predicted data in U;

8: end for

9:  if intersection of U; and Us is not empty (U; N Uz # ) then
10: discard labeled data with non-matching labels (g1(x;) # g2(z;))
11:  end if

12:  add labeled data from U; and U, to L
13: end while

(class 1) or not (class 2). We can define this mathematically as:
Y = f(X), (3.1)

where Y is a vector of length n consisting of class labels Cy, £ = 1,2, X is an
n-by-m matrix of features that describe the input data, and f(X) is a function

mapping the features to one of the two classes C; or C.

In contrast, multiclass learning is an extension of this idea where K > 2. It
is defined identically to the above, but the vector Y consists of class labels CY,
k = 1,2,3,..., meaning that each item can be assigned to one of three or more
mutually exclusive classes. An example of this type of problem in biology would
be predicting the stage of a cancer sample given the set of regions of the genome
that have variable DNA methylation patterns. In that situation there are more

than two possible stages, and each stage is mutually exclusive.

A variation on binary and multiclass classification is multilabel classification.
This differs from binary and multiclass learning because each input item can be
assigned to multiple classes simultaneously. For example, when predicting the

set of tissues in which a gene is expressed given the DNA sequence of the gene’s
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promoter region. Unlike the multiclass example, a gene can be active in more than
one tissue simultaneously, so the output classes are not mutually exclusive. In this
case, our variable Y is now an n-by-K matrix where n is the number of input
items, each of the K columns contains a binary value indicating whether or not
the item belongs to that class, and f(X) needs to map the input features to a set
of classes rather than a single class. This is an example of multilabel classification
with binary classifiers (true or false for each tissue), but it is also possible to do
multilabel multiclass classification where each label is selected from more than two

classes.

3.1.4 Performance Metrics

In order to evaluate the performance of a classifier we need to define performance
metrics. In situations where the predictions assign a class to each element being
classified, the metrics that we use in this work are: true positive rate (also known
as recall), false positive rate, and precision.

To define these measures, we first need to define true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN). They are easily
explained using the following confusion matrix showing the relationship between

the predicted class versus the actual class of each item:

Predicted Class
Positive Negative
Positive | True Positive (TP) False Negative (FN)
Negative | False Positive (FP) True Negative (TN)

Actual Class

We can now define our performance metrics as follows:

true positive rate = TP/(FN + TP)
false positive rate = FP/(FP +TN)
precision = TP/(TP + FP)

Additionally, in situations where the classifier assigns a score indicating the

confidence that each element belongs to a given class we use two additional per-
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Figure 3.1: Example ROC and Precision-Recall Curves. Plots
showing the optimal curve (blue), curve for random predictions (red),
and a typical curve for a relatively good classifier (black) for a re-
ceiver operating characteristic curve (A) and precision-recall curve (B).
The line showing expected performance for random predictions in the
precision-recall curve changes depending on the relative abundance of
the two classes being predicted, and the precision is expected to reach
the fraction of positive/negative examples, in this case 1/5 or 0.2.

formance measures: the area under the receiver operating characteristic curve

(AUROC) and the area under the precision-recall curve (AUPRC).

Receiver operating characteristic (ROC) curves are a commonly used plot for
showing the performance of a binary classifier as the classifier’s score threshold is
varied (Figure 3.1A). At each value of the score threshold the true positive rate
(TPR) and false positive rate (FPR) is calculated. Plotting a line connecting
these pairs (TPR, FPR) in the order of increasing score threshold gives the ROC
curve of the classifier. The area under this curve is then calculated and can be
interpreted as the probability that a randomly selected element from the positive
class will score higher than a randomly selected element from the negative class.

Values near 0.5 indicate that the classifier performs similarly to randomly selecting
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a class, and an AUROC of 1.0 is a perfect classifier.

While ROC curves are the most common performance measure for evaluating
classifiers that output a confidence level, we also use precision-recall curves to
evaluate many of the classifiers. This is because ROC curves are known to be
insensitive to class imbalance (Saito and Rehmsmeier, 2015), and the genome-
wide predictions that we perform in parts of this thesis are always leading to a
highly imbalanced class distribution. For example, non-methylated islands only
make up roughly 2-4% of each organism’s genome, so when trying to predict them
throughout the entire genome we have a ratio of negative:positive regions of roughly
30:1. This is a difficult situation because a classifier that appears to perform well
in the balanced setting might be nearly useless in the unbalanced setting, because
it is very hard to control the number of false positives in such a situation. To give
a better idea of how practical these methods are for the genome-wide prediction
it is better to look at precision-recall curves, which plot the fraction of predicted
positive regions correctly identified (precision) versus the fraction of all positive
regions that are correctly predicted (recall) as the score cutoff used to assign each
region to a class is varied across all possible values (Figure 3.1B). This gives us
an idea of the false discovery rate (1 - precision) of the method at different score
thresholds and whether the genome-wide predictions the classifier makes are likely

to contain many false positives.

3.1.5 Cross-validation

When training a classifier, the performance on the training set is not a good
estimate of how well the classifier will perform on new data. This is because
most classifiers are prone to overfitting, which means that they achieve very low
prediction error on the data they were trained on, but a much higher error on
new data, because they overspecialize the model to the training data and learn
to reproduce the noise within that data. In order to overcome this problem, one
approach is to set aside a portion of the data which is not used in the training step
and use it as an independent dataset or test set in order to assess how well the
classifier generalizes to new data. An extension to the concept of using a separate

test set is to split the whole dataset into m non-overlapping sets (commonly called
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“folds”), and iteratively use each set as a test set while using the remaining m — 1
sets as training data. This is called m-fold cross-validation. It is preferred in many
situations because it allows us to use all the data when building the model, while
at the same time giving a good estimate of predictive performance. The maximum
number of folds is when m is equal to the number of elements in the data set, which
leads to each set consisting of a single element. This special case is referred to as
“leave-one-out” cross-validation.

One downside of cross-validation is that the total number of training runs
increases by a factor of m. However, because each run is independent we can often

overcome this issue by executing each run in parallel.

3.1.6 Feature importance

In contrast to some other situations where machine learning may be applied, it is
especially important when analyzing a biological problem to not only find a solu-
tion which gives an objectively good performance, but it is additionally important
to improve our biological understanding of the problem. To this end, we are par-
ticularly interested in the features of the input data points that were most useful
when assigning the data to a label, commonly referred to as feature importance.
It is similar but not identical to the concept of feature selection, which aims to

remove redundant or irrelevant features from the model.

3.2 Methods for machine learning on sequences

The following sections are a non-exhaustive overview of machine learning methods

on sequences that have been applied to biological data.

3.2.1 Linear models

Linear models are a large class of supervised learning methods for both regression
(when the target variable is numerical) and classification (when the target variable
is categorical). These methods take an object described using some numeric input

variables x, and learn a function that maps x to a target variable y, by tuning
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a set of weights w for each of values in . The models are linear because there
is a linear relationship between the output variable y and the weights w. The
simplest example of a linear model is linear regression, which assumes that the
target variable y is a linear combination of the input variables x scaled by the

weights w (see Bishop, 2006 for an extensive overview):
y(x,w) = wy + w11 + ... + wWpTp (3.2)

It is also possible to make this concept more general by allowing a non-linear
function ¢, called a basis function, to be used to transform the input variables.
This allows non-linear relationships between the input features and the target
variable, but still requires a linear relationship between the weights and the target

variable:

y(x,w) = wy + ij¢j(:v), (3.3)

where y € R.

In order to fit the model, or solve for w, we need a loss function L which
measures how "bad" our predictions are in an objective sense. With regression,
we commonly try to minimize the sum of the squared errors over all N of our

predictions:
N

Low) =3 (g — f(@)’ (3.4)

i=1
A further variant of this, called logistic regression, transforms the linear func-

tion of the feature vector with the sigmoid logistic function o:

y(a, w) = o (wo + Z wigi(r)), (3.5)

where y € [0, 1].

Despite its name, logistic regression is a model for classification, and in a
binary classification setting the resulting outputs of the model can be considered
as posterior probabilities of the item belonging to the positive class. We also use

a different loss function for logistic regression, in order to find the parameters w
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which maximize the sum of the posterior probabilities p(y;|z;) (the probability

assigned to the correct class given the input data):
N
plesikeitond (1) — 3™ log p(y ;) (36)
i=1

When classifying strings, there is one additional step that needs to be performed
that we have ignored in the previous descriptions. We have mentioned that the
input variables x need to be numeric, however when working with DNA sequences
the input is actually a string. In order to use strings as input variables, we need
to explicitly convert the strings to numeric values. There are various conversions
that are possible depending on the application, with the most common being the
conversion of the string to a vector of substring frequencies, or by using a set of
known TF binding motifs and counting the number of binding sites or strength
of predicted binding of these TFs to the input DNA sequence. It should be noted
that when using long substring frequencies, this explicit vector of counts can be
quite large, which is one potential downside of this method. We will look at one
way to address this problem in the next section which describes support vector

machines and kernels.

Feature importance There are several methods for identifying important fea-
tures when using linear models. The first set of methods are stepwise methods,
in which features are added to or removed from the model iteratively. The most
common approaches are forward selection, where features are iteratively added to
the model, backward elimination, where features are removed from a model that
initially contains all features, and bidirectional elimination, where features can
be either removed or added to the model at each step. The general concept is
to consider the addition or removal of each feature from the model at each step,
usually using a statistical test such as an F-test, or some other measure such as
the Bayesian Information Criterion, Akaike information criterion, false discovery
rate, or adjusted R? (Hocking, 1976; Kundu and Murali, 1996). However, there are
several disadvantages of stepwise methods. The iterative model fitting is computa-

tionally intensive, the results can be overly biased and optimistic, and the methods
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perform poorly in the presence of correlated input variables (Harrell, 2001).

An alternative to stepwise methods is to use regularization, which adds an
extra term to the loss function which increases the error when the weights used in
the model are large. Unlike the previous methods, this is an “embedded method”
because the feature importance is directly included in the model fitting procedure.
The purpose of regularization is to reduce overfitting and make the model more
generalizable, but it can also be used to make the model more sparse, meaning
that some coefficients are set to zero and those features are essentially removed
from the model. For example if we consider the sum-of-squares error from the

previous section, a general regularized version would be:

-1 \ N
(; = P+ 5D lwil* (3.7)
Jj=1 i=1
N -~ v ~ g
data dependent error regularization term

where A is a coefficient which determines how much of an influence the regulariza-
tion term takes in comparison to the error term, and ¢ determines the contour of
the regularization term. Setting ¢ = 1 gives you the so-called lasso (Tibshirani,
1996), which is a regularization term that is well suited for creating a sparse model.
When using the lasso regularization term, increasing A will lead to more coefficients
being set to zero and a more sparse model, and this parameter is usually set using

cross-validation.

Biological applications One of the early examples of a string-based regression
method that was applied to a biological problem was the REDUCE algorithm of
Bussemaker, Li, and Siggia (2001). The goal of the method was to identify cis-
regulatory elements, particularly those associated with known transcription factor
binding sites, in the promoter sequence of genes that have an influence on gene

expression. This method is based on the following simple linear model:

Ag=C+> F,Ny (3.8)

pneM
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where A, is the log transformed ratio of mRNA abundances between two samples
for gene g, C is the expression level without any motif instances in a region,
N,, is the number of occurrences of motif p in the regulatory region of gene
g, and F), is the change in expression per instance of motif p. The coefficients
F,, were determined using least squares regression (i.e. linear regression using
the least-squares loss function). The “motifs” that were considered included all
DNA subsequences up to 7 nucleotides in length, which were iteratively added to
the model by selecting the single motif which results in the greatest reduction in
error when added to the model. The authors decided when to stop adding more
motifs to the model by evaluating the statistical significance of the change in error
that is achieved by adding a new motif to the model, under the assumption that
distribution of changes in error follow a normal distribution, and placing a cutoff
of 0.01 on the resulting p-value.

This basic concept was subsequently expanded upon by Conlon et al. (2003)
by using motif match scores instead of binary motif hits, Keleg, Laan, and Vulpe
(2004) using logic regression, and Das, Banerjee, and Zhang (2004) using mul-
tivariate spline models (Friedman, 1991). People consequently moved away from
predicting expression based on sequence data and instead focused on predicting ex-
pression using experimentally determined TF binding data (Gao, Foat, and Busse-
maker, 2004) or histone modification levels (Karli¢ et al., 2010).

3.2.2 Support vector machines

A support vector machine (SVM, Cortes and Vapnik, 1995) is a generalization of
the optimal hyperplane algorithm, which seeks to find an optimal boundary (or
hyperplane) between two sets of data: positive and negative training data. This

hyperplane can then be used to classify new examples x’:
f(z") = sign(wx’ + b), (3.9)

where b is a bias term.
It does this by identifying the maximum margin between the data points be-
longing to each class (Hastie, Tibshirani, and Friedman, 2009). SVMs differ from

simple optimal hyperplane classifiers however, in that they do not require the data
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from each class to be separable, which means that there does not need to exist a
(hyper)plane that can separate the two classes of data points so that all the points
from one class are on one side of the plane, and the points of the other class are
on the other side. This is critical because when working with real-world data we
rarely have data that is separable. We therefore have an optimization problem
which tries to compromise between finding the largest margin while softly penal-
izing points that lie on the wrong side of the classification margin boundary, by

minimizing:
N
1
PMw = CY &+ gl (3.10)
n=1

margin width
misclassification penalty

where C' > 0 controls the tradeoff between the two goals. Misclassified points n
are weighted using slack variables &, according to their distance from the correct

side of the margin (see Figure 3.2).

As with the basis functions we used with linear models (see previous section),
it is possible to transform features from the input space to some other feature
space using a feature mapping ®(z). Additionally, an SVM is a kernel method,
which means that the algorithm does not require that each data point has its own
numerical representation, but rather it is only necessary to be able to calculate
pairwise similarities between data points (Scholkopf, Tsuda, and Vert, 2004). This
is because in the SVM decision function (see Equation 3.9) can be rewritten in the
so-called dual form, so that the value of the decision function for a new data point
2" only uses the dot products between the new point and a subset of the training

data (called the “support vectors”) in the feature space ®(x;) - ®(2'):

fla') = sign( ST (@) - o) + b) (3.11)

support vectors x;

and the dot product between these feature vectors can be replaced by a kernel
function K(z;,2') = ®(x;) - (2’). By using the kernel function it is no longer
necessary to calculate the explicit representation of the data points in the feature
space defined by &, rather the value of the kernel function can be calculated

directly. In order to be a valid kernel function, the function must be symmetric
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Figure 3.2: Support vector machine. The decision boundary (or
separating hyperplane) is shown in red, the support vectors are the
points that are indicated with circles, the margin is the region between
the two blue lines. Slack variables £ are >0 for points that are on the
incorrect side of their margin boundary, and zero otherwise. y is the
decision value, where the sign of y indicates the class that is predicted.
From Bishop (2006).

(K(z,z) = K(z,)), and positive definite:

N
Z cicprK(xj, ) >0 (3.12)
k=1

for any N > 0, and any ¢, ...,cy € R (Scholkopf, Tsuda, and Vert, 2004).

An advantage of using a kernel method like support vector machines is that
kernels allow us to work with objects that are not naturally represented by a
numeric vector, which is the expected input of almost all standard machine learning
methods. These types of objects are common in biology, where the typical objects
that we use as input to our machine learning algorithms are often DNA, RNA or
protein sequences, and are naturally represented by a string of characters over an

alphabet of nucleotides or amino acids rather than a set of numeric values. By
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using kernel methods we do not need to worry about how to transform this data
into a representation that can be handled by the machine learning method, nor
adapt the learning method to work with non-numerical data. Instead, we just
need to define a kernel K : X x X — R which can be thought of as a comparison
function or similarity measure, where higher values indicate more similar objects.
This allows us to leverage the decades of research into different pairwise sequence
comparison methods without having to adapt the classification method itself to

each data representation.

Position-independent string kernels In this thesis we are interested in us-
ing DNA sequences of varying length as input, whose sequence features have no
known fixed location within this input sequence. In this setting, the most ap-
propriate string kernels are position-independent string kernels, which generally
define similarity based on shared subsequences with no concern for the location of
these shared subsequences within the input sequence. Here we will describe three
such kernels that are used in the thesis: the spectrum kernel, mismatch kernel,

and gappy pair kernel.

e Spectrum kernel

The most simple position-independent string kernel is the k-spectrum kernel
(Leslie, Eskin, and Noble, 2002). It is a variant of the classic bag-of-words
representation of a written text (Salton, 1989), which represents a document
using the unordered set of words it contains. These words are delimited
by spaces or punctuation, and the words are stored as a sparse vector of
indicator values (1 if the word is present in the text, 0 if not), or word
frequencies. The similarity between two texts is then defined as the dot
product of these vectors. Because DNA sequence does not have obvious word
boundaries in the same way that written text does, the spectrum kernel uses
a set of features ¥* consisting of all k-length strings over the alphabet X
({A, C, G, T} in the case of DNA). These k-length substrings are referred

to as k-mers. The feature map for a single k-mer «a is defined as:

PP (3) = (G4 (@) )aerrs (3.13)
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where ¢,(x) = # occurrences of the k-mer a in z. The spectrum kernel is

then defined as the inner product of the spectrum feature vectors:

KSpectrum (l‘, y) _ <<I>2pectrum (.’L’), (I)zpectrum (y)) (3 14)

The main advantage of the spectrum kernel compared to other string kernels
is the fact that it can be very efficiently computed (see Table 3.1). Using
suffix trees (Vishwanathan and Smola, 2003), the runtime for a single element
in the kernel matrix is linear on the sum of the lengths of the input sequences
(O(lz+1,)), and can be reduced even further in certain cases by preprocessing
the input sequences. The disadvantage of the spectrum kernel is that for a
k-mer to contribute to the similarity score when comparing a sequence to
another, it must have an exact match in the other sequence. For short k-
mers this is not a problem, but for longer k-mers the chance of finding an
identical sequence elsewhere in the genome drops rapidly to zero. Also, we
know from analyzing transcription factor binding sites that it is common to
have several bases that are important for binding, interspersed with one or
more unimportant bases. In this situation it would be preferable to have a

kernel that allows for inexact matching.

Mismatch kernel

The (k, m)-mismatch kernel (Leslie et al., 2004) extends upon the spectrum
kernel by allowing some inexact matching between k-mers. This set of inex-
act matching k-mers is referred to as the (k, m)-neighbourhood of the k-mer
a, and the neighbourhood contains all k-length sequences g that differ from
a by at most m characters. The neighbourhood is denoted by N, (a). The

feature map for a single k-mer «a is defined as:

Dl " (a) = (¢5(a)) pesr, (3.15)

where ¢g(a) = 1if § is in the set N m)(a), and 0 otherwise. Then we can
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define the feature map over the input string x as:

Qimath(p) = Y pyimateh(q) (3.16)

k-mers a in

As with the spectrum kernel, the mismatch kernel can then be defined by

taking the inner product of the feature vectors:

Rt (3, ) = (@fsmaten (), pifimarc(y) (3.17)

Note that the spectrum kernel is equivalent to the mismatch kernel with m
= 0.

e Gappy pair kernel

The (k, g)-gappy pair kernel (Kuksa, Huang, and Pavlovic, 2008; Palme,
Hochreiter, and Bodenhofer, 2015) considers two k-mers separated by up to

g positions:

k-mer, ... k-mer;,
~

ko 0sisg g

This differs from the mismatch kernel because of the variable distance that
is permitted between the k-mers, and the sequence contains two k-mers,
meaning that the number of matching characters between sequences is 2k.
The set of sequences in the (k, g)-gappy pair of the k-mers a and b consist
of all sequences v of the form acb where ¢ is any sequence with a length
between 0 and g. This set of sequences is defined as G g)(a, b). The feature
map for the gappy pair kernel is defined as:

q)(cjjg)py pair(a’ b> = (¢’Y(a> b))'yEE’W (318)

where ¢, (a,b) = 1if 7 is in the set G g)(a, ), and 0 otherwise. In the same

way as we did for the mismatch kernel, we can define the feature map over
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Table 3.1: Runtime complexity of some string kernels. Run-
times are for the computation of the entire kernel matrix. p is the aver-
age length of a sequence, m is the number of sequences in the training
set, k is the k-mer length, M is the number of allowed mismatches,
|X| is the size of the alphabet (4 for DNA), ¢k is a constant that is
independent of alphabet size (Scholkopf, Tsuda, and Vert, 2004).

Kernel Complexity
spectrum O(pm?)
mismatch O(EM|ZMpm?)
gappy O(ckpm?)

an input string x as:

LS CEND VI il U NN S0

k-mer pairs (a,b) in x

As with the other kernels, the gappy pair kernel is defined as the inner
product of the feature vectors:

Ga air Ga air Ga air
K(kgpyp (x,y) = <c1)(k7§)PYP (z), q)(k;)pyp (¥)) (3.20)

Feature importance In general, calculating feature importance is not straight-
forward with support vector machines. However, in special cases it is possible
to retrieve feature weights using the fitted model. In the case of the position-
independent string kernels discussed above, the importance z of each feature (e.g.
k-mer when using the spectrum kernel) can be calculated as outlined in the original

spectrum kernel paper of Leslie, Eskin, and Noble (2002):

z = Z a;y; P(x;), (3.21)

support vectors x;

where « is the optimal solution to the SVM problem in its dual form (see Equa-
tion 3.11), @ are the indexes of the support vectors, y; is the true class of the
element (-1 for the negative class or 1 for the positive class), and ® is the spec-

trum of k-mers for the sequence z;. The higher the absolute value z the more that
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k-mer contributes to the classification of a new sequence.

Biological applications When it comes to sequence based classification in
bioinformatics, there is no method that has been used as extensively as support
vector machines, and prior to the recent improvements in deep learning the SVM
was the state-of-the-art method for many types of problems including those in com-
putational biology. Early biological applications include the detection of remote
homology between proteins (Jaakkola, Diekhans, and Haussler, 1999; Logan et al.,
2001), the functional classification of genes based on their promoters (Pavlidis et
al., 2001), mRNA splice site detection (Degroeve et al., 2002), and many others
(see Scholkopf, Tsuda, and Vert, 2004 for more examples).

3.2.3 Deep neural networks

Neural networks have made a huge resurgence in popularity over the last few
years due to both advances in computational hardware (allowing extremely fast
matrix computation on graphical processing units) and the learning algorithms
themselves. These advances have made it feasible for the first time to train large
neural networks with multiple interconnected layers of nodes using huge datasets
consisting of billions of data points. These networks are called deep neural net-
works because of the multiple internal layers that are used, on contrast to shallow
networks consisting of an input layer, output layer, and a single internal layer.
The first applications of deep neural networks concentrated on speech recognition
(Hinton et al., 2012), image recognition (Krizhevsky, Sutskever, and Hinton, 2012),
and the generation and translation of text (Martens, 2011; Sutskever, Vinyals, and
Le, 2014), and established these methods as the state of the art in each of those
fields.

A neural network can be visualized as a graph with multiple layers, which usu-
ally consists of one layer of inputs, one or more “hidden” layers, and an output
layer (see Figure 3.3). Each of these layers can consist of any number of nodes,
which are usually fully connected to the previous layer and have an associated
activation function which transforms the output of the node (like the logistic func-

tion in logistic regression). One of the most classic types of neural network is the
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hidden units

YK

outputs

Figure 3.3: A basic feed-forward neural network. The net-
work consists of an input layer x = (xg,...,2zp), a single hidden layer

z = (z0,...,2m), and the output layer y = (yi,...,yx). Each layer

is connected with weights wg-) which is the weight of the edges con-

necting element 7 in the layer | with element ¢ in layer [ + 1. The
dark blue nodes zy and 2y are biases. Arrows represent the direction of
information flow. From Bishop (2006).

feed-forward neural network, also called the multilayer perceptron. It is essentially
a model made up of multiple layers of logistic regression models.

Additionally, given the modular nature of neural networks there are many
other variants besides feed-forward networks. Especially noteworthy are two types
of deep neural networks that are particularly useful for classification based on DNA
sequences: convolutional neural networks and recurrent neural networks.

Convolutional neural networks (CNNs) are appealing because they are designed
to require little pre-processing of the data, in contrast to most other methods
which require features to be designed by hand. Convolutional neural networks use
“filters”, relatively small matrices whose weights are learned during the training

process. These filters are then slid over the input sequence, and the element-wise
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product between the filter and that portion of the sequence is taken. The sum of
these values is then computed, and that is the output for the given position in the
sequence. This is repeated for the entire input sequence. In this way, the features
(filters in this case) are learned at the same time as the network is being trained.
For example, several of the methods we have mentioned in the previous sections
use a set of known transcription factor binding motifs and score sequences based
on the likelihood of each transcription factor binding to that DNA sequence. These
scores are then used as input features when training a classifier. Using a CNN,
the input of the classifier is the raw DNA sequences, and the motifs are the filters
that are learned as the model is fit. This has the advantage of not depending on
an extensive set of known TF binding motifs, which could be difficult to obtain
especially in species which are not heavily studied.

Recurrent neural networks (RNNs) are well suited to learning from DNA se-
quence because unlike most other neural networks which assume that each input
and output is independent from the others, RNNs are able to take advantage of
the fact that the inputs and outputs of the network are sequential. This is ac-
complished by having the network store some internal state that is used as an
additional input when the next input feature is processed, serving as a sort of
memory and allowing information to be shared between adjacent inputs or out-

puts in the sequence.

Feature importance How to calculate feature importance using deep neural
networks is still very much an open problem. This difficulty is arguably the greatest
disadvantage of using deep neural networks, especially for biological problems. The
challenge comes from the high complexity of the network’s structure. When using
convolutional networks, it is possible to visualize the weights of the filter that is
being used. For biological sequences, these filters can be visualized as motifs, and
this allows the user to compare these motifs to known TF binding motifs as in
Angermueller et al. (2017).

One other relatively recent method by Li, Chen, and Wasserman (2015) simply
puts an additional layer between the input layer and first hidden layer with a single
weight connecting each node, and uses the weights that are learned for this layer as

feature importance measures. This approach has however not gained widespread
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popularity, possibly because the features can be re-weighted in later layers of
the network so the weights at the first layer are not necessarily indicative of the

features’ contribution to the final prediction.

Biological applications One of the first applications of deep learning to a bi-
ological problem was by Leung et al. (2014), where the group tried to predict the
alternative splicing of mRNA transcripts across five tissues, using 1393 sequence-
derived features including predicted motif binding to the intronic region, exonic
region, as well as structural features and cross-species conservation. The deep
structure of the network (see Figure 3.4) allows it to learn interactions between
features as well as model non-linear relationships between the input features and
output. More complex neural networks have since been applied to other biologi-
cal problems, including the prediction of enhancers (Liu et al., 2016; Jia and He,
2016; Kim et al., 2016) or the effect of changes in enhancer regions (Zhou and
Troyanskaya, 2015).

An additional benefit of neural networks is their modularity. I mentioned in the
section’s overview that convolutional neural networks (CNNs) as well as recurrent
neural networks (RNNs) are particularly useful for learning from DNA sequences.
CNNs and RNNs can also be used together to create a network that combines the
benefits of each type of network. One example of this approach being applied to
a biological problem is a very recent paper by Angermueller et al. (2017) which
predicted per-CpG DNA methylation levels in single cells using a CNN to learn
DNA motifs, and an RNN to learn dependencies between methylation levels of

CpGs in the same genomic neighbourhood.

3.2.4 Hidden Markov models

A hidden Markov model (HMM) is an unsupervised learning method that can be
used for segmenting sequential data. This segmentation assigns a label to each
segment, and the process can be thought of as a clustering of the positions in the
input sequence into a fixed number of clusters. The model assumes that a sequence
of observations x = (z1, ..., xy) can be explained by the hidden state of the system

z=(z1,...,2n), and that this sequence of hidden states is a Markov process where
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Figure 3.4: Deep network for alternative splicing prediction.
The network was created by Leung et al. (2014) to predict the tissue-
specific alternative splicing of mRNA transcripts. The output of the
network is the approximate percent spliced in (low = 0 - 0.33, medium
= 0.33-0.66, high = 0.66-1.0) for each exon and tissue, and an indication
of the change in inclusion between two tissues.
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Figure 3.5: Hidden Markov model. Blue nodes signify observa-
tions, and the white nodes are hidden states. Arrows indicate condi-
tional dependence relationships between nodes. From Bishop (2006).
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the state of the system at any point depends on a fixed number of previous states
in the sequence (see Figure 3.5). This means that unlike the other methods we
have discussed in this chapter, an HMM does not assume independence between
adjacent observations, and we refer to an HMM where the number of previous
states M that the model is influenced by as an M-th order hidden Markov model.

The model is defined by five variables: S the set of hidden states, O the set
of output symbols, 7 the initial state probabilities (7 = (m1,...,mg)), B the
probability of emitting each output symbol when in a given state (B = p(z;|zk)),
A the probability of transitioning between hidden states which is independent of
the position in the sequence n (Ajx = p(zpr = 1lzn—1; = 1)), where z,; is an
indicator variable that is 1 of the hidden state is k at the nth position in the
sequence and 0 otherwise). The number of states |S| is usually the only parameter
given to the algorithm. Given this set of variables, and assuming we are using a
1st-order HMM, it is possible to determine the probability distribution of hidden

states at a given position n in the sequence:

S| 1S]

P(zalzn-1, A) = T[] A5 (3.22)

k=1j=1

This is slightly different for the first state z;, because it does not have a parent

node. Instead, we use the initial state probabilities:

|S|

p(z1|m) = H T (3.23)

Also, the probability of a given observation can be calculated as:

S|
p(xn|2zn, B Hp Tn|Bg)™ (3.24)

These probabilities can then be used to calculate the joint probability distri-
bution over both hidden states Z and observed data X:

N N
p(X, Z|0) = p(z1|7) [ [ [ p(znlza-1, A)] [ plam|zm, B (3.25)
n=2 m=1
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where 0 =, A, B, X =x1,...,on,and Z = 2z1,...,2N.
We can use this probability distribution to find the most probable hidden state

sequence for a set of observations, which is called the Viterbi path:

Vil — aremax p(Z = 2| X = 2) (3.26)

A similar but different problem is determining the most probable hidden state

at a certain position in the sequence z;. This is called the posterior decoding:

Posterior decoding
%

= argmax p(Z; = j|X = z) (3.27)
JEL .k

The parameters for the HMM can be estimated using an expectation maximiza-
tion algorithm called the Baum-Welch algorithm, but we will not go into detail on

that. A description of the algorithm can be found in Bishop, 2006.

Feature importance The type of HMMs we have discussed so far are not usu-
ally used with the intent of calculating feature importance. Nevertheless, it is
possible to get some information about what variables are most prevalent in each
state by looking at the table of emission probabilities (the variable B above, see

an example in Figure 3.6).

Biological applications HMDMSs have been used extensively in the field of com-
putational biology. A non-exhaustive list of biological problems they have been
applied to include gene finding (Lukashin, 1998), pairwise and multiple sequence
alignment (Eddy, 1995; Durbin et al., 1998), the identification of copy number vari-
ants (Love et al., 2011), protein secondary structure prediction (Asai, Hayamizu,
and Handa, 1993) and the identification of protein-RNA interactions (Krakau,
Richard, and Marsico, 2017).

Particularly relevant to this thesis are the applications of HMMs to CpG is-
lands and general genome segmentation. The textbook application of HMMs to
biological data is an HMM for identifying CpG-rich regions using DNA sequence
by Durbin et al. (1998). This was an extension of the original HMM for CpG
islands by Churchill (1992). The work was later expanded upon by Wu et al.
(2010). Another well-known application is ChromHMM, a tool that uses an HMM



44  CHAPTER 3. MACHINE LEARNING ON BIOLOGICAL SEQUENCES

Emission parameters

OO~ WN —

i b
.

State (user order)

CTCF
H3K27me3
H3K36me3
H4K20me1

H3K4me1
H3K4me?2
H3K4me3
H3K27ac
H3K9ac
WCE

<
o
o
=

Figure 3.6: Visualization of emission probabilities from
ChromHMM. Hidden states are rows and observed ChIP-seq regions
are columns. Darker blue indicates a higher emission probability. From
Ernst and Kellis (2012).
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to segment the genome into different “chromatin states” based on ChIP-seq data
(Ernst and Kellis, 2012).



46 CHAPTER 3. MACHINE LEARNING ON BIOLOGICAL SEQUENCES



Chapter 4

Predicting non-methylated

islands from DNA sequence

Genome-wide methylation of CpG dinucleotides is a hallmark of vertebrate genomes.
An exception to this ubiquitous methylation is the set of regions known as non-
methylated islands (NMIs), which are stretches of unmethylated genomic DNA.
Our understanding of vertebrate NMIs has until recently been limited by the lack
of experimental methods which can identify these regions genome-wide. Fortu-
nately, recent advances in high-throughput sequencing as well as experimental
methodologies have finally given us the chance to observe NMIs genome-wide in a
collection of vertebrates, both warm- and cold-blooded as well as several tissues.
In the following chapter, we present the results of a computational analysis of
NMIs, including a method for more accurate prediction of NMIs using their DNA
sequence. We then use this method to further our understanding of the difference
between cold-blooded and warm-blooded NMIs. Additionally, we apply the same
method to NMIs in several tissues, both to compare the accuracy of NMI predic-
tion in different tissues and also to attempt to discriminate between tissue-specific
NMIs. The content of the chapter is an extended and adapted version of a paper
which was published in PLoS Computational Biology (Huska and Vingron, 2016),

except for Section 4.4 which was written after the paper was published.

4.1 Motivation

DNA methylation is known to play an important role in vertebrate gene regulation
(Bird and Wolffe, 1999; Deaton and Bird, 2011). Most of the human genome is
usually methylated, however over 30 years ago a relatively small number of non-
methylated regions were identified using methylation-sensitive restriction enzymes

(Cooper, Taggart, and Bird, 1983). These non-methylated regions were found to

47
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have a higher than expected number of CpG dinucleotides when compared to the
rest of the genome, and it was suggested that this is because methylated CpGs are
more likely to be mutated to CpAs or TpGs than non-methylated CpGs, leading
to the reduction of CpG dinucleotides in most of the genome (Coulondre et al.,
1978; Bird, 1980). Due to the increasing availability of genomic sequence data
but the lack of a method for the genome-wide measurement of methylation, this
sequence-based proxy for non-methylated regions became popular, and they have
come to be referred to as CpG islands. One of the first sequence-based definitions
of CpG islands was proposed by Gardiner-Garden and Frommer (1987), which
defines CpG islands as regions of the genome that have a length of >200 bp, GC
content >50%, and a ratio of observed CpGs to expected CpGs (the “CpG Ratio”)
>0.6. A variant of this method is still used to provide an annotation of CpG islands
in the popular UCSC Genome Browser (Kent et al., 2002), and for many years
these CpG islands continued to be used as a proxy for non-methylated regions of

the genome.

CpG ratios are also used in vertebrates to classify genes into those with high
CpG promoters and low CpG promoters, due to the observation that there is a
clear bimodal pattern in the CpG ratios of human promoters (Davuluri, Grosse,
and Zhang, 2001; Saxonov, Berg, and Brutlag, 2006). This bimodality is also
observed in several other vertebrates including humans, chicken, frog and zebrafish
(Elango and Yi, 2008). However, the overall percentage of promoters that overlap a
CpG island was later shown to be much lower in cold-blooded vertebrates (<20%)
when compared to warm-blooded vertebrates (>40%) (Sharif et al., 2010). This
suggested that very few promoters are unmethylated in cold-blooded vertebrates,
or that the role of CpG-rich regions may differ between cold- and warm-blooded
vertebrates.

Later, tissue-specific methylated regions were identified and found to be corre-
lated with tissue-specific gene expression. A study by Song et al. (2005) showed
that out of 150 differentially methylated regions that were studied, 100 of the re-
gions overlapped with predicted CpG islands, many of which were unexpectedly
shown to be methylated in most tissues. More recent work has reported similar
results on a genome-wide scale (Ziller et al., 2013; Mendizabal and Yi, 2015). This

dynamic methylation, even at CpG islands, made it clear that some disagreement
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between true unmethylated regions and CpG island predictions should be expected
since CpG island predictions are not tissue-specific. Additionally, differences in GC
content of non-methylated regions between different organisms were observed. For
example, in contrast to other vertebrates, fish CpG islands were found to not be
GC-rich, despite the regions still having a high CpG ratio (Cross et al., 1991).
Also, a study of CpG islands in mouse and human showed that the GC content of
islands in the two organisms differs (Antequera and Bird, 1993). These findings
suggested that a single model of CpG islands for all of these species would not
be appropriate, and at the very least the cutoffs for calling a region a CpG island

would need to be adapted when making predictions in different organisms.

Fortunately, experimental methods have now been developed that are able to
identify methylated or non-methylated regions (also called non-methylated islands,
or NMlIs) in a given cell line or tissue genome-wide. These methods include whole-
genome bisulfite sequencing (Lister et al., 2008; Cokus et al., 2008) as well as the
Bio-CAP method (Blackledge et al., 2012), the latter of which is specifically for
identifying regions that are unmethylated (see Section 2.3 for more details). Whole
genome bisulfite sequencing data is publicly available, including experiments cover-
ing ten different human tissues (Mendizabal and Yi, 2015). Additionally, Bio-CAP
was recently used to determine the location of NMIs in several vertebrates, includ-
ing both warm-blooded (human, mouse, chicken and platypus) and cold-blooded
(lizard, frog and zebrafish) vertebrates, in multiple tissues including testes and liver
(Long et al., 2013). In that study it was noted that the number of non-methylated
regions that overlap with predicted CpG islands was in most cases quite low (e.g.
~ 20% overlap in zebrafish, see Figure 4.1), leading the authors of that study to
conclude that the computational methods that are commonly used to identify CpG
islands are not able to accurately identify NMIs in vertebrate genomes. The same
study (Long et al., 2013) also showed that despite the low percentage suggested by
CpG island predictions, over 50% of promoters in all vertebrates that were studied
actually do have non-methylated regions at their transcription start sites, but that
existing CpG island prediction methods are simply not able to identify them in
cold-blooded vertebrates.
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Figure 4.1: Overlap between Bio-CAP NMIs and UCSC CpG
islands. The “NMIs” are experimentally determined using the Bio-
CAP method and the “Predicted CGIs” are from UCSC’s genome
browser and are predicted using a method similar to that of Gardiner-
Garden and Frommer (1987). Figure from Long et al. (2013).
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4.1.1 Computational methods for NMI prediction

We will consider two general approaches to predicting NMI regions from DNA
sequence using machine learning: unsupervised or supervised learning approaches
(see Section 3.1.2). The choice between these two methods is primarily made
based on how many known NMI and non-NMI regions, which we will collectively

call labeled data, are available.

As stated earlier, CpG islands have long been used as a proxy for non-methylated
islands because of the shortage of experimental methods to identify NMIs, and for
the same reason the prediction of CpG islands from DNA sequence is a problem
that was typically solved using unsupervised learning methods. These methods
cluster the input DNA sequences into two or more groups, and one of these groups
is assigned to be the CpG islands after the groups have been assigned, usually based
on the CpG content of the sequences in that group. The initial ad-hoc sequence-
based definition of Gardiner-Garden and Frommer (1987) (outlined above) includes
somewhat arbitrarily chosen cutoffs which can have a considerable effect on which
regions are called a CpG island. This motivated the use of a method with a strong
statistical basis by Churchill (1992), an unsupervised learning method called a
hidden Markov model, or HMM (see Section 3.2.4 for a description of HMMs).
Churchill’s HMM uses each DNA nucleotide in the genome as an observation,
with the C position of each CpG dinucleotide encoded as a binary 1, and the rest
of the sequence as a 0. This sequence is modeled as a first-order Markov chain,
with two hidden states: “normal” and “CpG rich”. Later, a similar HMM was out-
lined in Durbin et al. (1998), but omitted the binary encoding of the sequence and
modeled each of the four possible nucleotides separately, using eight hidden states
instead of two: a "normal" and "CpG rich" state for each of the four nucleotides
(see Figure 4.2). These methods have not been widely used for annotation of the
genome for two reasons: first, these models would need to have many more than
two states to properly model local variations in base composition, and second, that
modeling each nucleotide separately leads to a model that is overly complex when

working on the scale of whole genomes (Wu et al., 2010).

More recently, Wu et al. (2010) created an HMM to address these problems. It

uses non-overlapping 16 bp genomic windows as observations rather than individ-
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Figure 4.2: Durbin’s HMM model for CpG islands. CpG-rich
states for each nucleotide are indicated with a 4+ subscript, and normal
with a - subscript. Transitions within the same state (CpG-rich or
normal) were omitted for clarity. From Durbin et al. (1998).

ual nucleotides, and also takes into account local changes in GC content and its
impact on the CpG ratio. These changes led to an increase in the overlap between
experimentally determined differentially methylated regions and their CpG island
predictions, compared to UCSC CpG islands.

In this study we chose another approach, to predict NMIs using supervised
learning. We decided to use this approach because it allows us to directly iden-
tify predictive sequence patterns in the newly available experimentally determined
non-methylated island regions which we use as training data. This also differs from
the previous methods because we do not make any assumptions about the sequence
content of the non-methylated regions (for example, the importance of CpG din-
ucleotides and GC content), but rather we can learn any characteristic sequence
features directly from the example NMIs themselves. As a supervised learning
method we considered several of the methods outlined in Section 3.2. Deep learn-
ing was quickly removed from consideration because at the time the project was
started there were no suitable implementations available. Choosing between linear
models (specifically logistic regression) and support vector machines, we selected

support vector machines because they would allow us to more easily evaluate dif-
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ferent string kernels (see Section 3.2.2). The use of different string kernels could
potentially be helpful for modeling the binding of transcription factors, which are
known to be affected by DNA methylation (Yin et al., 2017) and could also have an
effect on methylation. For example, certain string kernels can model mismatches
and gaps in the DNA subsequences we are comparing (the mismatch kernel), and
also model the binding of proteins as dimers (the gappy pair kernel, see Section
3.2.2 for details).

4.2 Methods

4.2.1 Data

NDMIs in six vertebrates. Experimentally determined NMIs from the testes
and liver of six vertebrates were taken from Bio-CAP experiments (see Section 2.3.3
for details) performed by Long et al. (2013), and are publicly available from GEO
under the accession number GSE43512. The six vertebrates that were analyzed,
along with their UCSC genome version, were Homo sapiens (hgl9), Mus musculus
(mm9), Gallus gallus (galGal3), Anolis carolinensis (anoCar2), Xenopus tropicalis
(xenTro3), and Danio rerio (danRer7). Reference genomes were downloaded from
UCSC to match these genome versions. The platypus data was omitted because its
genome assembly is highly fragmented, consisting of over 200 thousand separate
sequence fragments, and only approximately 17% of the organism’s genome could
be mapped to a chromosome and ordered (Lewin et al., 2009).

Section 4.3 presents the analysis of testes NMIs across these six vertebrate
species. The same analysis was repeated in liver and the results were qualitatively

the same, so those results have been omitted for the sake of conciseness.

NMIs in 10 human tissues. In order to be able to compare NMIs across a
wider range of tissues, NMIs identified using whole genome bisulfite sequencing
experiments (see Section 2.3.2 for details) in 10 human tissues were obtained from
Mendizabal and Yi (2015). The authors post-processed the WGBS data to identify
regions that were non-methylated by selecting regions in the genome that have a

moderate number of CpG dinucleotides (at least 10 within each 200 bp window
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of DNA) and a very low average amount of methylation (average (8 values < 0.2
within each window). The human genome version that these NMIs are mapped
to is hg38. When comparing these NMIs with those from the Bio-CAP NMIs, the
coordinates for the Bio-CAP NMIs were converted from hgl9 to hg38 coordinates
using the 1ift0Over tool from UCSC.

4.2.2 Existing CpG island predictions

CpG island predictions from UCSC’s Genome Browser were downloaded from the
UCSC FTP site. These predictions are based on a variant of the original Garden-
Gardiner and Frommer method (Gardiner-Garden and Frommer, 1987), with a
number of modifications: the length of the region must be >200 bp, the percent
of G or C nucleotides must be >50%, observed /expected CpG ratio must be >0.6,
and an additional running score is calculated that must remain above 0 for the
entire length of the island. The running score is computed by adding 17 for each
CpG, and subtracting 1 for every other base. Also, islands are cut in half at
their maximum running score and each half is evaluated separately (for details see
http://genomewiki.ucsc.edu/index.php/CpG_Islands).

Additionally, CpG island predictions from Wu et al. (2010) were downloaded
from the paper’s website if available (for Gallus gallus, Mus musculus and Homo
sapiens), or calculated from scratch using default parameters (for Danio rerio and
Anolis carolinensis). The one exception is Xenpous tropicalis, whose genome re-
peatedly caused the software to crash and was therefore excluded from the analysis.

Lastly, the CpG observed-expected ratio, or CpG Ratio, is used in several
comparisons, because it is the basis for most CpG island predictions. It is defined

as:

frequency of CpG’s in sequence
CpG Ratio = 4 Y P a

frequency of C’s in sequence x frequency of G’s in sequence

4.2.3 Genome preprocessing

For the genome-wide analysis, each genome was pre-filtered to remove regions

that are not uniquely mappable using the GEM mappability program (version


http://genomewiki.ucsc.edu/index.php/CpG_Islands
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20130406-045632, Derrien et al., 2012). This was done because the experimental
methods that we used to define our gold standard NMIs are both sequencing-based,
and therefore is blind to NMIs that are in regions that are not uniquely mappable.
GEM was run with default parameters with the following exceptions, which were
chosen in order to match the sequencing data and read mapping settings that were
used when defining NMI peak regions from the Bio-CAP experiments (Long et al.,
2013): generate an index that includes the reverse complement DNA sequence, use
a read length of 51 bp, and allow a maximum of 2 mismatches.

Additionally, a region of 500 bp centered at the borders of each Bio-CAP NMI
was removed from the genome-wide analysis. This was done because Bio-CAP is
not a high resolution method, and therefore there is some uncertainty about the
exact location of the NMI borders (see Section 4.4.4). The border regions were
removed so that we could try to avoid training the classifier on mislabeled regions,
and to hopefully reduce the number of false positive and false negative regions in

the Bio-CAP training sets overall.

4.2.4 Support vector machine implementation

For the genome-wide NMI predictions, we used the very fast implementation of
the spectrum kernel SVM that is part of the Shogun machine learning toolbox
(Sonnenburg et al., 2010).

For the smaller dataset of 10 human tissue where we only looked at tissue-
specific NMIs, we additionally used more computationally expensive kernels: the
mismatch and gappy pair kernels (see Section 3.2.2 for details). The implementa-

tion that was used in this case was from the R package Kebabs (Palme, Hochreiter,

and Bodenhofer, 2015).

4.2.5 Identifying transcription factor motifs

Two methods were used to attempt to identify sequence specific transcription factor
motifs that were either enriched or depleted in the sequences that were analyzed.
First, the sequences of NMI and non-NMI regions were analyzed using the tool
MEME-ChIP (Machanick and Bailey, 2011). This tool performs ab initio motif

discovery, motif enrichment analysis, motif visualization, binding affinity analysis
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and motif identification. The motif discovery is performed using the classic MEME
algorithm (Bailey et al., 2006), as well as DREME (Bailey, 2011), an algorithm
that specifically takes into account a background set (our non-NMI regions).

The second method for identifying transcription factor motifs was using the
k-mer weights that can be calculated using a trained SVM classifier, as outlined
in Section 3.2.2. These k-mer weights can be thought of as an indication of the
importance of those k-mers for predicting the class of a given input DNA sequence.
To compare these k-mers to known sequence specific transcription factor binding
motifs, the tool Tomtom (Gupta et al., 2007) was used. As a database of motifs
to compare against, 519 motifs from the JASPAR 2016 core vertebrates database
were used (Sandelin et al., 2004).

4.2.6 Parameter tuning and performance evaluation

Genome-wide predictions Parameter tuning, model training and performance
evaluation was carried out separately on each organism and tissue as explained
below. Two exceptions to this was in the calculation of the top 20 k-mers for
each organism, and the cross-species predictions, in which case the k-mer length
parameter was fixed at 6 and SVM soft margin penalty parameter C fixed to 1.0
to make the results more easily comparable across organisms.

In order to select the appropriate parameters for the SVM and to evaluate its
performance when identifying NMIs, we split each organism’s preprocessed genome
into three sets: a parameter tuning set which was used to select optimal model
parameters, a separate training set and a test set to evaluate the performance of
the model on held out data. A random subset of each organism’s chromosomes was
set aside as the test set, such that approximately half of the organism’s genomic
sequence was contained in the test set. Entire chromosomes were set aside rather
than individual genomic windows because adjacent windows are not independent,
and having adjacent windows in the training and test set could bias the results.
The remaining chromosomes were then divided into NMI and non-NMI regions,
and those regions were split into 750 bp windows of which a random 50% were
used for parameter tuning and the other 50% were used for training. This window
size was selected after considering the length distribution of the Bio-CAP NMIs
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to ensure that the majority of NMIs would be longer than or equal to the window
length. In order to control for the differing length of each organism’s genome as
well as the different ratio of background-to-NMI sequences, the tuning and training
windows were subset to have a total of 30,000 windows, with a 5:1 ratio between
background and NMI sequences.

In order to identify the optimal parameters of the SVM model we chose to
use a common and simple method called a grid search, which involves evaluating
the SVM’s performance on a subset of the data for every possible combination of
parameters using cross-validation. In this case, the SVM’s soft margin penalty C'
as well as the k-mer length were selected in this way. A grid search was performed
over C' values of 0.01, 0.1 and 1, and k-mer lengths between 2 and 9. 5-fold cross-
validation was used on the parameter tuning dataset and the parameters that
yielded the highest average AUROC were selected (the best parameters are shown
in Table 4.3). The R package caret (Kuhn, 2008) was used for parameter tuning.

The SVM was then trained on the training set using the selected parameters,
and the chromosomes in the test set were split into 750 bp windows whose NMI
status was then predicted. For comparison with other methods, the windows were
further split into 50 bp windows, because the predictions of the other methods
are occasionally quite short (e.g. the Wu HMM method predictions have a small
percentage of predictions less than 100 bp), and these predictions would be lost
if the window size is too large. A window was called a true NMI if > 50% of its
length was covered by an experimentally determined NMI.

This entire process was carried out 5 times with different random seeds, to
estimate how much variance in the selected parameters and overall predictive per-
formance we see on different random subsets of chromosomes, different random
splits into training and test sets, and different subsampled sets.

When performing cross-species prediction, we reused the same training and
test sets that were defined for the intra-species prediction. This ensures that the
performance of cross-species prediction can be more directly compared to the intra-
species prediction because they both use the exact same training and test sets,
and therefore preserve several properties that could affect training performance
including training set size, any possible chromosomal biases, and training and test

set class imbalance.
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Direct tissue-specific NMI comparison When comparing NMIs from dif-
ferent tissues directly, we used a simpler 10-fold cross-validation approach rather
than splitting the genome up by chromosome. This is because we do not have to
worry as much about the dependence between adjacent windows because we did
not split the NMIs into windows in this case, and we also do not include non-NMI
genomic regions. Parameter tuning using a grid search and 5-fold cross-validation

was performed for each one of the 10 cross-validation iterations separately.

4.2.7 Randomly trained model

When performing genome-wide predictions, in order to control for overfitting, as
stated above we used non-overlapping parameter tuning, training and test datasets.
Optimal parameters were then chosen using 5-fold cross-validation on the param-
eter tuning set. In addition, we also wanted to evaluate how the model behaves
when trained on data with randomly shuffled labels. This extra check was carried
out to ensure that we are not leaking information between any of the three previ-
ously mentioned sets of data, and also to evaluate the behaviour of the model when
trained on a dataset with a different level of class imbalance than the final test set
(5:1 in the parameter tuning and training sets versus approximately 20:1 in the
test set). By using randomly shuffled class labels in the training set we are able
to preserve the relative class abundance and exact number of training examples in
each class.

We first looked at the results of parameter tuning when training on shuffied
labels. We saw that the AUROC (the criteria which is being used to choose the
best parameters) when performing 5-fold cross-validation on the parameter tuning
set is very close to 0.50 regardless of which parameters are selected (data not
shown). It is noteworthy to mention that in this setting the class imbalance is the
same in both the training and test set, because this training and test set is being
drawn from the 5:1 downsampled parameter tuning set.

We then fixed the parameters to match those that were used for cross-species
prediction (k-mer length = 6, C' = 1.0), trained on the large held out training
dataset with shuffled labels and predicted on the held out test set. Unlike the

parameter tuning setting described above, the class imbalance is not the same in
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the training and test sets. The training set has a 5:1 ratio of background:NMI
sequences, because the background sequences were downsampled to keep compu-
tational runtime reasonable. In contrast, the test set has an imbalance that differs
from one organism to the next, since the test set is made up of approximately half
of the organism’s genome without any subsampling, and therefore has the same
ratio of background:NMI sequences as the organism’s genome does. The results
show that the test set AUROC is approximately 0.35-0.65 for this classifier, likely
reflecting the effect of a different amount of class imbalance between the training
and test set. AUPRCs are close to the value of approximately 0.015 that we would
expect from a classifier which randomly assigns a class. These results are shown in
Figure 4.3 and Figure 4.4 (ROC and PRC plots respectively), as well as Table 4.1
as “SVM (random)”.

4.2.8 Software availability

A set of scripts were produced that can be used to train a classifier and predict
NMIs in a set of DNA sequences. This code is available at https://github.
com/matthuska/predict-nmi, and is licensed under the MIT open source license.
These scripts use the spectrum kernel SVM from the Shogun machine learning
toolbox (Sonnenburg et al., 2010).

4.3 Identification of NMIs genome-wide in six

vertebrates

In this section we take advantage of newly available genome-wide experimentally
determined NMIs from Long et al. (2013) to answer several questions. First, how
well can we predict experimentally determined NMIs genome-wide using DNA
sequence, and what are the important sequence features for this prediction? We
also compare these results between all six vertebrates. Finally, we look at how well
we can predict NMIs when we train in one species and predict in another. Unless

otherwise stated, the NMIs being used are from Bio-CAP testes experiments.
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4.3.1 DNA sequence is highly predictive of non-methyl-

ated islands

To investigate how informative DNA sequence is in determining whether or not a
given genomic region is a non-methylated island, we used a subset of each organ-
ism’s chromosomes to train an SVM to differentiate between known NMI sequences
from testes and the rest of the genome (see the Methods section for details). This
classifier was then used to predict NMIs in the rest of the genome and its per-
formance was evaluated. This process was carried out separately for each organ-
ism, which allowed us to identify differences in predictive performance and impor-
tant sequence features between the six species. As a baseline, the performance
of the SVM classifier was compared to the observed versus expected CpG ratio
of the sequence, as well as to two existing CpG island predictions: UCSC’s pre-
dictions based on the Gardiner-Garden and Frommer method (Gardiner-Garden
and Frommer, 1987) and a more recent hidden Markov model-based method (Wu
et al., 2010). We compare the performance of the methods using ROC curves and
Precision-Recall curves in order to understand the performance of the classifiers
when classifying a given random genomic window as an NMI or not, as well as how
well the classifiers can annotate the entire genome while controlling the number of
false positives.

The ROC curves show that the SVM classifier was able to identify NMIs based
on sequence alone with high predictive performance (see Figure 4.3, Table 4.1
and Table 4.2). A simple CpG ratio is also quite predictive in humans, mice, and
chickens (AUROC 0.96-0.98), though the SVM performs slightly better in all cases
(AUROC 0.98-0.99). In cold-blooded vertebrates the SVM shows a more marked
improvement in predictive performance over the CpG ratio (SVM AUROC 0.91—
0.98 versus CpG ratio AUROC 0.76-0.88). The UCSC and Wu HMM methods
are both very conservative with their predictions. While they both maintain low
false positive rates, they also have very low average true positive rates of between
7% and 49%. The two methods also achieved higher true positive rates in warm-
blooded vertebrates than cold-blooded vertebrates, with an average of 3 times more
true positives being identified in warm-blooded vertebrates than in cold-blooded

vertebrates.
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Figure 4.3: ROC curves showing NMI prediction perfor-
mance. A receiver operating characteristic curve for four different
classifiers: SVM (the spectrum kernel SVM), the CpG ratio, UCSC
CpG island predictions, the HMM from Wu et al. (2010), as well as an
SVM trained on sequences with randomly shuffled labels, “SVM (ran-
dom)”. The UCSC and Wu HMM methods are shown as points rather
than curves, because they only provide a set of genomic windows rather
than scores for the whole genome, essentially the same as choosing a
single cutoff score for the other methods. The prediction was run five
times with different random splits of training and test data, therefore
five lines or points are shown for each method. The performance is very
stable between runs, with the lines for each run almost perfectly over-
lapping. The average area under the curve across all 5 random splits is
indicated in each panel.
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Table 4.1: AUROC and AUPRC of NMI prediction genome-
wide. Values are the average AUROC and AUPRC of whole genome
NMI prediction across 5 random splits of parameter tuning, training

and test data. The performance of an SVM trained on sequences with
randomly shuffled labels is included as “SVM (random)”.

AUROC AUPRC
organism CpGRatio SVM SVM (random) CpGRatio SVM SVM (random)
Homo sapiens 0.974 0.988 0.356 0.584 0.820 0.013
Mus musculus 0.964 0.983 0.425 0.611 0.774 0.024
Gallus gallus 0.975 0.993 0.397 0.433 0.849 0.019
Anolis carolinensis 0.883 0.977 0.443 0.105 0.664 0.014
Xenopus tropicalis 0.764 0.937 0.462 0.029 0.400 0.012

Danio rerio 0.857 0.913 0.477 0.115 0.416 0.023




Table 4.2: Performance measures for all methods of NMI prediction at a single score cutoff.
The Wu HMM and UCSC methods are provided as windows, so it is not possible to compute AUROC
and AUPRC curves for them. Therefore, we present several other common performance measures, and
apply a score cutoff to the CpGRatio and SVM methods in order to make them comparable. The SVM
decision value cutoff was set to 0, and the CpG Ratio score cutoff was 0.6, to match the original cutoff
used in (Gardiner-Garden and Frommer, 1987). FPR is the false positive rate and TPR is the true
positive rate. The performance of the Wu HMM method for Xenopus tropicalis was intentionally left
out, because the method consistently crashed when trying to calculate predictions for this genome. All
values are averages across 5 random splits of the genome into parameter tuning, training and test sets.
Recall is not included because it is identical to the true positive rate.

FPR TPR Precision
organism CpGRatio UCSC WuHMM SVM CpGRatio UCSC WuHMM SVM CpGRatio UCSC WuHMM SVM
Homo sapiens 0.006  0.001 0.003  0.009 0.557 0.354 0.489 0.810 0.632 0.906 0.713  0.603
Mus musculus 0.001  0.000 0.002 0.016 0.316 0.191 0.329 0.791 0.867 0.982 0.764  0.550
Gallus gallus 0.012  0.002 0.004 0.012 0.734 0.489 0.481 0.864 0.528 0.829 0.719  0.598
Anolis carolinensis 0.032  0.002 0.005 0.016 0.382 0.147 0.170  0.782 0.139 0.512 0.294  0.400
Xenopus tropicalis 0.113  0.006 - 0.024 0.323 0.075 - 0.613 0.036 0.148 - 0.247
Danio rerio 0.270  0.002 0.018 0.002 0.841 0.077 0.128  0.099 0.070 0.536 0.148  0.798
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4.3.2 Support vector machine is uniquely able to predict

NMIs genome-wide in all six vertebrates

The Precision-Recall curves more clearly show that the SVM outperforms the
other methods. Despite the fact that the ROC curves for the SVM and CpG Ra-
tio looked quite similar the PRC shows that the SVM is much better at controlling
false positives genome-wide (see Figure 4.4). In the case of all cold-blooded verte-
brates (lizard, frog and zebrafish) the CpG ratio-based predictions consist almost
exclusively of false positives, regardless of the scoring cutoff that is used. In con-
trast, the SVM-based method is still able to control the amount of false positives,
though at an admittedly low recall.

The UCSC and Wu HMM methods both achieve high precision in warm-
blooded vertebrates (>0.71 in all cases), but their precision drops in cold-blooded
vertebrates. The UCSC method still manages an average of 0.52 precision in lizard
and zebrafish, but this decreases to 0.15 in frog. The Wu HMM method has lower
performance, with an average precision of 0.3 in lizard and 0.15 in zebrafish. The
Wu HMM software was not able to produce a prediction for frog (the software
crashed repeatedly). While some of the false positives which lead to low precision
for many of the predictions could in fact be false negatives from the Bio-CAP
method, we have no way of knowing if this is the case from the Bio-CAP data

alone.

4.3.3 Longer CpG-poor sequence features are required for
accurate NMI identification in cold-blooded verte-

brates

We next sought to investigate why CpG island prediction methods based on CpG
ratios perform so poorly at predicting NMIs in cold-blooded vertebrates in compar-
ison to their higher predictive accuracy in warm-blooded vertebrates. Additionally,
we wanted to understand why CpG ratios perform so poorly in cold-blooded verte-
brates while the SVM classifier is better able to control false positives. To address
these questions we looked into the performance of the SVM on the parameter

tuning subset of the data, which contained the same number of windows for all
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Figure 4.4: Precision-Recall curves of NMI prediction perfor-
mance. These Precision-Recall curves plot the relationship between
the fraction of correctly identified regions (precision) versus the frac-
tion of all NMIs that are identified (recall). The average area under the
curve across all 5 random splits of the genome into parameter tuning,
training and test sets is indicated in each panel. The performance of
an SVM classifier trained on sequences with randomly shuffled labels,

“SVM (random)”, is shown in grey.
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organisms (30,000) and a fixed ratio of non-NMI windows to NMI windows (5:1).
For all datasets we calculated the AUROC and AUPRC when using k-mers of
increasing length (see Methods section) as features (see Figure 4.5). The results
show that short k-mers are already very predictive of NMI status in warm-blooded
vertebrates (AUROC >0.97), but that longer k-mers are required for reasonable
performance in cold-blooded vertebrates, especially frogs and zebrafish (see Ta-
ble 4.3). Using longer k-mers that led to a high AUROC in all organisms we ob-
served that the 20 highest scoring k-mers were almost completely devoid of A/T
nucleotides in warm-blooded vertebrates, while nearly every k-mer in cold-blooded
vertebrates contained an A or T nucleotide (see Table 4.4). Two example regions
in frog and lizard are shown in Figure 4.6, where in some windows overlapping
an NMI the CpG ratio is low, the UCSC and Wu HMM methods both perform
poorly, but the SVM classifier is still able to correctly identify the majority of the
NMI region.

The importance of longer, more complex sequence features, especially in frog
and zebrafish, suggests that different mechanisms for the establishment and main-
tenance of non-methylated regions may be dominant in these organisms. To in-
vestigate this, the k-mers that contribute the most to the classification of NMIs
in each organism were compared to all known transcription factor binding motifs
in the JASPAR 2016 vertebrates database (Sandelin et al., 2004) (see Supplemen-
tary Table A.1 in Appendix A). In warm-blooded vertebrates as well as lizard,
the resulting enriched transcription factor motifs included a number of zinc fin-
ger proteins and other DNA binding proteins with GC-rich binding motifs such
as SP1, SP2, and E2F family proteins (see some examples in Figure 4.7), as had
been previously observed (Deaton and Bird, 2011). In the remaining cold-blooded
vertebrates there were essentially no enriched motifs within NMI regions. Direct
analysis of the NMI and non-NMI sequences using MEME-ChIP did not identify
any enriched motifs that are similar to known TF binding motifs, using the same

JASPAR database.
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Table 4.3: Optimal SVM parameters for each organism. For 5
separate splits of the genome into parameter tuning, training, and test
sets, the optimal parameters (the soft margin penalty C' and k-mer
length) were determined using 5-fold cross-validation. The parameters

were selected based on average AUROC.

Organism

Replicate AUROC

C K-mer Length

Homo sapiens
Homo sapiens
Homo sapiens
Homo sapiens
Homo sapiens
Mus musculus
Mus musculus
Mus musculus
Mus musculus
Mus musculus
Gallus gallus
Gallus gallus
Gallus gallus
Gallus gallus
Gallus gallus
Xenopus tropicalis
Xenopus tropicalis
Xenopus tropicalis
Xenopus tropicalis
Xenopus tropicalis
Danio rerio

Danio rerio

Danio rerio

Danio rerio

Danio rerio

Anolis carolinensis
Anolis carolinensis
Anolis carolinensis
Anolis carolinensis
Anolis carolinensis

1

CUR W N R U WN R O W R U W R OUER WN O WD

0.99
0.99
0.99
0.99
0.99
0.98
0.98
0.98
0.98
0.98
0.99
0.99
0.99
0.99
0.99
0.93
0.92
0.92
0.92
0.92
0.91
0.90
0.90
0.90
0.90
0.97
0.97
0.97
0.97
0.97

1.00
0.10
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.10
0.10
0.10
1.00
1.00
1.00
1.00
1.00
1.00
0.10
1.00
0.10
0.10
0.10
1.00
1.00
1.00
1.00
1.00
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Figure 4.5: AUPRC and AUROC for the SVM with increas-
ing k-mer lengths. While the frequency of di- and tri-nucleotides is
already highly predictive of NMI status in warm-blooded vertebrates
(AUROC >0.97), the frequencies of k-mers of length 6 or more are
required for accurate prediction of NMIs in cold-blooded vertebrates.
Box plots show the prediction performance on the parameter tuning set
across 5 runs of 5-fold cross-validation. The datasets for all organisms
consist of 30,000 750 bp windows with a 5:1 ratio of non-NMI windows
to NMI windows. This fixed number of windows and fixed class im-
balance means that both the AUROC (blue) and AUPRC (red) can be

compared across organisms.
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Figure 4.6: Example genomic regions showing prediction im-
provement with SVM. Two example regions from (A) Anolis caroli-
nensis and (B) Xenopus tropicalis. In both cases there are NMIs that
contain stretches of relatively low CpG content, which are either poorly
predicted (in lizard) or not predicted at all (in frog) using CpG ratios,
UCSC CpG island predictions or the Wu HMM method. Nevertheless,
they are quite accurately predicted using the SVM-based method that
uses longer k-mers as features.
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Table 4.4: The top 20 highest weight 6-mers. The highest ranked
k-mers contribute the most to classifying a region as a non-methylated
island. 6-mers containing more than one A or T nucleotide are in bold.

A and T nucleotides are almost completely absent from high scoring

6-mers in warm-blooded organisms, while nearly every high scoring

6-mer contains an A or T in cold-blooded organisms.

Homo sapiens  Mus musculus  Gallus gallus ~ Anolis carolinensis ~ Xenopus tropicalis Danio rerio
1 CCCCGC GGGCGG GGGGGG TGTGTG ATCTAT GCGCGC
2 CCGCCC elelelelele lelelelelele AAAAAA ATAGAT CGCGCG
3 GCGGGG CcGCeee AAAAAA TCTCTC GATAGA ACACAC
4  GGGGCG GGGGCG TTTTTT GTGTGT TCTATC GTGTGT
5  CCCGCC CCCGCC GCGGGG cccoce ACACAC TAACGT
6  CGCCCC GCGCGC CCCOGC AGAGAG GTGTGT ACGTTA
7 GGCGGG CCCCGC GCAGCG GAGAGA ATATAT AACGTT
8  GGGCGG AAAAAA GCCCCG CTCTCT TAGATA TTTAAA
9  GCGCGC GCGGGG CGCTGC CACACA TATCTA CACACA
10 CGCGCC GGCGGG CAGCGC GGGGGG CACACA TTAAAT
11 GGCGCG CGCGCG CGCAGC TTTTTT TGTGTG TCTCTC
12 GCGCGG GCCCCG CGGGGC ACACAC AGATAG CTCTCT
13 CCGCGG CTCCGC GCTGCG ATATAT CTATCT TGTGTG
14 CCGCGC cceoce GCGCTG CCTTCC TATATA CGCGCT
15  CGCGGG CTGCGC GGCAGC GGAAGG AAAAAA ACGCGC
16 CCCGGG CCCGGG GCTCCG GAGGAG TTTTTT GAGAGA
17 CCCGCG GCGGAG CCCGGC GCGCGC AGCAGC AGCGCG
18  CTCCCG CGGGGC GGGCGG CCTCCT GCTGCT TATCTA
19  GCGGAG GCTGCG GCCGGG GGAGGA GCAGCA AGAGAG
20  GCCCCG GGGCGC CAGCCC AGGAGG TGCTGC ATTTAA
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Example TF motifs identified using highly

weighted k-mers. (A) A highly weighted k-mer CCGCCC from mouse
and human is similar to the TF motif for E2F4. (B) A highly weighted
k-mer CCCCCC from lizard is similar to the TF motif for SP1.
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4.3.4 Cross-species prediction

We also investigated how well a classifier trained in one organism can predict NMIs
in another organism. This is particularly useful because it would potentially allow
us to improve NMI annotation in species whose genomic sequence is known but
genome-wide methylation experiments such as Bio-CAP or whole-genome bisulfite
sequencing have not yet been performed, which is the majority of species. In order
to make it easier to compare the results across organisms, we fixed the SVM pa-
rameters and used a k-mer length of 6 for all organisms. This way we can attribute
any differences that we observe to the differences between organisms rather than
differences in parameters. Additionally, after observing the clear grouping of sam-
ples into cold and warm-blooded vertebrates in the previous results, we decided
to add two more training sets to the analysis: a set of sequences sampled from
all warm-blooded vertebrate species (human, mouse and chicken), and a set of

sequences from all cold-blooded species (lizard, frog and zebrafish).

As shown in Table 4.5, the best predictions (AUPRC) are always achieved
when training and testing on the same species. The pooled samples which in-
clude the test organism consistently achieve the second best performance. The
one exception to this was in chicken, where the prediction based on pooled warm-
blooded sequences was slightly better than the predictions using chicken sequences
alone, though this difference is very small (0.003 AUPRC). In general the warm-
blooded vertebrates are all fairly well predicted by other warm-blooded vertebrates
as well as by lizard. A classifier trained on frog and zebrafish sequences performed
relatively poorly when trying to predict NMIs in any of the warm-blooded verte-
brates, though pooled cold-blooded sequences managed to achieve a high AUPRC
in chicken (0.792). Cross-species prediction of NMIs in cold-blooded species was
overall very difficult. The only partial exception to this is the lizard, whose NMIs
were predicted modestly well (> 0.3 AUPRC) by classifiers trained in any organism

or set of organisms, with the exception of frog and zebrafish.

These results also show that the best cross-species predictor for warm-blooded
organisms is always the organism that has the most recent common ancestor:
mouse and human are more closely related than chicken, and also achieve the

highest cross-species predictive performance. Additionally, the predictor based on
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Table 4.5: AUPRC of cross-species prediction. Rows are the
organisms which the classifier was trained on, and columns are the
organisms which the classifier was tested on. The last two rows show
the performance when training on a set of combined sequences from
human, mouse and chicken (All warm-blooded), or lizard, frog and
zebrafish (All cold-blooded). Each value is the mean AUPRC across
5 separate training sets and test sets (see Methods for details). The
tissue in all cases was testes.

H. sapiens M. musculus G. gallus  A. carolinensis  X. tropicalis  D. rerio

H. sapiens 0.815 0.709 0.829 0.339 0.047 0.107
M. musculus 0.747 0.752 0.831 0.332 0.052 0.096
G. gallus 0.685 0.635 0.835 0.330 0.088 0.092
A. carolinensis 0.702 0.548 0.770 0.658 0.059 0.088
X. tropicalis 0.392 0.351 0.598 0.254 0.410 0.086
D. rerio 0.497 0.349 0.665 0.164 0.039 0.400
All warm-blooded 0.781 0.726 0.838 0.353 0.059 0.098
All cold-blooded 0.664 0.547 0.792 0.564 0.183 0.217
CpG Ratio 0.584 0.611 0.433 0.105 0.029 0.115

pooled warm-blooded vertebrate species would be useful for predicting NMIs in
other warm-blooded vertebrates as well as lizard, a species whose last common
ancestor with the three warm-blooded organisms was roughly 300 million years
ago. This is not the case in the remaining cold-blooded vertebrates, where there
is no trend of better cross-species prediction when training on more evolutionarily

close organisms.

4.4 NMIs in different cell types and tissues

Unlike classical CpG islands, which are defined purely based on sequence and
therefore do not differ from one cell type to the next, non-methylated regions
that are experimentally determined can vary between cell types. This is clearly
seen in the dataset we used throughout the previous section from Long et al.
(2013), where the authors identified NMIs in both liver and testes in all organisms
that were studied. Comparing the locations of NMIs in these two tissues in all
organisms, we see that there is a modest portion of NMIs that is not shared in
both tissues (see Figure 4.8). This brings up two questions: first, can the DNA

sequences of the NMIs in one tissue be used to predict NMIs in another tissue,
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Homo sapiens Mus musculus Gallus gallus
16442 23884 11059 16678 16680 1368 3993 15553 1550
Anolis carolinensis Xenopus tropicalis Danio rerio
775 11837 10165 729 10359 10755 5921 20832 13689

testes

liver

Figure 4.8: Overlap between liver and testes NMIs in six ver-
tebrates. A region is placed in the intersection if it overlaps with a
region in the other tissue by at least one base pair.

and second, for NMIs that are tissue-specific can the NMI’s sequence be used to
determine which tissue or tissues it is active in. In the following text we address

these questions in detail.

4.4.1 Cross-tissue prediction in six vertebrates

We know that methylation can be involved in tissue-specific gene regulation.
Now that we have experimental data from multiple species that contains non-
methylated regions which differ between tissues (see Figure 4.8), it would be in-
teresting to know whether the DNA sequence of NMIs in one tissue can be used
to predict those in another tissue in the same species. To answer this question, we

used the experimentally determined testes and liver NMIs from Long et al. (2013)
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Table 4.6: AUROC of cross-tissue prediction. Scores are the
mean AUROC across 5 random splits of the data.

Tissue (train) Tissue (test) Hsapiens Mmusculus Ggallus  Acarolinensis  Xtropicalis  Drerio

liver liver 0.986 0.952 0.987 0.968 0.929 0.913
testes liver 0.980 0.951 0.986 0.959 0.930 0.912
testes testes 0.986 0.979 0.989 0.975 0.933 0.901
liver testes 0.981 0.971 0.987 0.973 0.926 0.893

Table 4.7: AUPRC of cross-tissue prediction. Scores are the
mean AUPRC across 5 random splits of the data.

Tissue (train) Tissue (test) Hsapiens Mmusculus Ggallus  Acarolinensis  Xtropicalis  Drerio

liver liver 0.792 0.668 0.762 0.614 0.371 0.408
testes liver 0.788 0.662 0.750 0.625 0.409 0.414
testes testes 0.820 0.755 0.811 0.657 0.406 0.401
liver testes 0.772 0.724 0.813 0.613 0.354 0.386

as a training set, then trained a classifier on the DNA sequence of the NMIs from
each tissue separately, and used that classifier to try to predict NMIs in the other
tissue. This was performed for all six species independently so that we can see if

there are species-specific differences in cross-tissue predictive performance.

The results show that regardless of species, cross-tissue prediction is nearly as
accurate as prediction within the same tissue (see Tables 4.6 and 4.7). The high
predictive accuracy of cross-tissue prediction suggests that in all six vertebrates,
the DNA sequence features of NMIs in these two tissues are similar. Looking at
the importance of all k-mers in the prediction across 5 different random sets of
training, test and model selection sets, we see that the correlation of the k-mer
importances is relatively low between replicates, but even lower between tissues
(see Figure 4.9). We also looked for individual k-mers that were differentially
important in the two tissues and found that out 4096 possible 6-mers, across all
six vertebrates, just three had a statistically significant difference between the two
tissues: GCTAAG in zebrafish, and ATCATC and TTTACC in humans (n = 5, paired
Student’s t-test, corrected for multiple testing using the method of Benjamini and
Hochberg (1995). K-mers were considered significant if FDR < 0.1).
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Figure 4.9: Comparison of k-mer importances for classifiers
trained to detect liver NMIs versus classifiers trained to detect
testes NMIs (in human). Classifiers were trained on experimentally
determined NMIs from human liver or testes, and a SVM was trained to
separate these regions from the rest of the genome. The input data was
randomly split into training and test sets 5 times, and each replicate
is shown. Points are binned and the density of points in a region is
represented with red (high density), yellow (medium density) or blue
(low density). The pairwise Pearson correlation coefficient is shown in
the lower right corner of each plot.
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4.4.2 Differentiating between testes and liver NMIs in six

vertebrates

The previous section we showed that using a genome-wide classifier trained on one
tissue, we were able to predict NMIs in another tissue with high accuracy. This
was true across all six vertebrate species that were tested, and in both liver and
testes. Additionally, comparing the most important features of these classifiers
identified very few k-mers that had a consistent difference in importance in the
two tissues. This suggests that the sequence features of NMIs in both tissues are
similar, and that the tissue specific differences in methylation are not encoded or
influenced by the DNA sequence of the NMIs. To test this, we took the NMIs
that are uniquely present in either liver or testes, and tried to train a classifier to
differentiate between the two sets of NMIs.

In this analysis we are most interested in more complex sequence features, so
we decided to first check for some simple biases in the input sequences, and control
for them. Specifically, we checked the length of the sequences, CpG ratio, and total
number of sequences from each tissue. First, we compared the distributions of NMI
lengths between the two tissues in all six organisms. This was done because length
of the input sequences can bias the classifier, especially when using relatively short
sequences and long k-mers (which results in a sparse vector of k-mer frequencies).
This is regardless of the fact that the spectrum string kernel has the option to
normalize the feature vector, which in my experience only works well when the
feature vector is more dense. Next, we checked the CpG ratio distribution of
the NMI sequences in each tissue. Looking at the resulting distributions (see
Figures 4.10 and A.1), we see that the distributions of both lengths and CpG
ratios are quite different in several of the organisms. To remove the influence of
these factors from the analysis, we simply binned the sequences based on each
of these variables, and downsampled the sequences in each bin so that there is
a matching number of sequences in that bin from both tissues. Looking at the
same distributions after performing this procedure (see Figures 4.10B and A.2),
we see that the distributions are nearly identical for the two tissues. Additionally,
this downsampling also leaves us with an identical number of sequences from each

tissue, correcting for another potential bias.
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Figure 4.10: Zebrafish NMI length and CpG ratio distribu-
tions. (A) Length and (B) CpG ratio distributions of liver and testes
NMIs in zebrafish before and after downsampling. For other organisms
see Supplementary Figures A.1 and A.2 in Appendix A.
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The remaining liver and testes NMI sequences were then used to evaluate
whether or not their sequences can be used to identify which tissue the NMI is
active in. The number of NMIs were also randomly downsampled so that the
same number of sequences were used for each species, allowing us to more easily
compare the results for different species. We then used nested cross-validation
to estimate the performance of the classifier on new data (outer cross-validation
loop), as well as choose the best k-mer length (inner cross-validation loop). The
outer cross-validation was 10-fold cross-validation, and inner cross-validation was
5-fold cross-validation. For each of the 10 outer cross-validation steps, the optimal
k-mer length was chosen using an inner run of 5-fold cross-validation, which was
then used to retrain the model and predict on held out test data which is made
up of 10% of the whole data set.

The nested parameter tuning over different k-mer lengths shows that the k-mer
length that achieved the highest average AUROC in all organisms was 5-mers,
with the exception of mouse which had a slightly higher average AUROC using
4-mers (see Figure 4.11). Overall the results show that it is possible to differentiate
between liver and testes NMIs in all six species with high predictive performance
(mean test set AUROC 0.70-0.89, see Figure 4.12), using only the DNA sequence
of the NMI.

4.4.3 NMIs in 10 human tissues and cell types

The previous section has shown that across six different vertebrate species, DNA
sequence can be used to predict whether a given NMI is present in liver or testes
with high accuracy. While this is interesting, the analysis is limited by the fact
that the Bio-CAP data we used is only available for two tissues in all six organ-
isms that were studied. To determine if the results generalize to more tissues, it
would be necessary to have experimentally determined NMIs for more cell types.
Fortunately, Mendizabal and Yi (2015) collected whole genome bisulfite sequenc-
ing (WGBS) data from 10 human cell types and tissues, and also processed this
data and defined NMI regions. First, we will compare the NMIs identified using
Bio-CAP by Long et al. (2013) to those identified using WGBS by Mendizabal
and Yi (2015), and then we will explore the predictive power of DNA sequence in
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Figure 4.11: Parameter tuning for liver vs. testes NMI pre-
diction. Grid search over k-mer lengths from 2-mers to 9-mers. The
results show the average AUROC of 10 runs of 5-fold cross-validation.



80

CHAPTER 4. PREDICTING NON-METHYLATED ISLANDS

0.9 —

0.8

AUROC (test set)

0.7 —

0.6 —

Homo sapiens —
Mus musculus —
Gallus gallus —
Anolis carolinensis —
Xenopus tropicalis —
Danio rerio —

Species

Figure 4.12: AUROC when predicting NMI liver vs. testes
in six vertebrate species. 10-fold cross-validation using optimal pa-
rameters from an internal 5-fold cross-validation loop (see Figure 4.11).
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WGBS-based NMIs across 10 human tissues.

4.4.4 Comparing Bio-CAP NMIs to whole genome bisul-
fite sequencing NMls

Before starting to analyze the NMIs across all 10 cell types, we will first compare
the NMIs that have been identified using the Bio-CAP method by Long et al.
(2013) with those identified using WGBS data by Mendizabal and Yi (2015). As
outlined in Section 2.3, the two experiments are fundamentally very different, and
it is expected that this may result in differences in the non-methylated regions
that are identified using each method.

To compare the two methods, we used the one tissue for which we have both
Bio-CAP and WGBS data: human liver. As a first step, we used a genome browser
to visually compare the experimental data (mapped reads for the Bio-CAP data,
and beta values for the WGBS data), as well as the NMI regions that were called
by the authors of each study using that data.

When looking at the broad trends in the experimental data, the two methods
look like they identify very similar regions (Figure 4.13A). Overall, the Bio-CAP
regions are more broad and the signal is smoother, but it is quite rare that there
is a signal in one experiment and nothing in the other. Looking at several regions
in more detail, the base pair resolution of the WGBS method becomes apparent,
and it is also possible to see regions that seem to have very few CpGs. Also, the
WGBS data seems to be relatively binary (5 = 0% or 100% in most cases), while
the Bio-CAP data varies more in signal intensity.

Comparing the actual regions that are called NMIs by each method, especially
when zoomed in close to a single region, we observe quite a lot of variability.
Bio-CAP NMIs look much more broad than WGBS NMIs, and possibly extend
beyond the end of the true non-methylated region (Figure 4.13B-D). In contrast,
the WGBS NMIs are very short, and seem to break up regions that should be
a single continuous NMI into multiple pieces, missing out on part of the NMI
region in the process (Figure 4.13D). Also, the criteria for calling a region an NMI
with WGBS data seems to be more stringent, resulting in the method missing
some regions that are called NMIs by the Bio-CAP method (Figure 4.13A right
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side). Overall the Bio-CAP NMIs look more consistent with its associated raw
experimental data.

One explanation for this is that Bio-CAP NMIs are identified by identifying
clusters of reads in the mapped sequencing data using the tool MACS, a compu-
tational method based on a rigorous statistical model that is commonly used to
identify peaks in ChIP-seq data. In contrast, to call regions from the WGBS data
Mendizabal and Yi (2015) used a more ad-hoc method, using a 200bp sliding win-
dow and a 50bp step size, they extended the window until it contained < 80% of
sparse (< 0.2 beta value) methylation. Additionally, the windows had to contain
at least 10 CpGs. This ad-hoc approach could clearly be improved.

The qualitative observations based on looking at a handful of regions in the
genome browser were then evaluated quantitatively. A histogram of the widths of
all the NMI regions called by each method confirms that the NMIs identified by
Mendizabal and Yi (2015) tend to be much shorter than the NMIs identified by
Long et al. (2013) (Figure 4.14). The most common length of the WGBS NMIs
is exactly 200 bp, corresponding to the window size used by the authors when
post processing the experimental data, and nearly all NMIs are less than 2 kb. In
contrast, the Bio-CAP NMIs are much longer, with very few NMIs having a length
less than 750 bp and the vast majority being between 1 kb and 6 kb.

To evaluate the effect of the potentially too broad Bio-CAP NMIs, we sys-
tematically removed increasing amounts of sequence centered on the borders of
the Bio-CAP NMI regions, and then evaluated how well the left over regions can
be predicted using the same whole-genome classification scheme as was discussed
extensively in Section 4.4. The results show that predictive performance (AUROC
and AUPRC) increases up until between 1 kb-2 kb of the NMI border regions are
removed, and then the predictive performance drops again (Figure 4.15). While
this isn’t conclusive evidence that the NMIs called using the Bio-CAP method
are approximately 1.5kb too broad in most cases, it does support the idea that
the flanking regions at least contain different sequence patterns than the inner re-
gions, most likely containing what have been described previously as CpG shores
(Irizarry et al., 2009).

In summary, both experimental methods are in relatively high agreement. The
Bio-CAP NMIs look like they extend beyond the region that is supported by the
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Figure 4.13: Example non-methylated genomic regions show-
ing Bio-CAP and WGBS data, along with the NMIs that are
called from this data. Bio-CAP data is shown in orange and WGBS
data is shown in blue. There are two tracks for each experiment: raw
experimental data as first track, and post processed NMIs as the second
track. (A) A typical large genomic region showing qualitatively high
agreement between the NMIs identified using Bio-CAP data and those
identified using WGBS data. (B) A more detailed view of a single re-
gion, showing a single Bio-CAP NMI split into multiple WGBS NMIs.
(C) The NMIs extend further beyond the core non-methylated region
in Bio-CAP NMIs. (D) A region with very low methylation is missed
by the method which calls NMI regions from WGBS data.
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Figure 4.14: Histogram of NMI lengths. NMIs were identified
using Bio-CAP and whole genome bisulfite sequencing experiments in
human liver.

experimental data, and a region of approximately 1.5 kb centered on the borders of
the NMIs should be excluded from a high confidence NMI training set. The WGBS
experiment looks well suited for identifying NMIs, but the method for calling NMI
regions from the experimental data breaks up many NMIs into smaller pieces,
and misses out on parts of the NMI. We can say the WGBS NMI calling method
has high precision, because the regions it calls NMIs look like they are strongly
supported by the experimental data, but lower sensitivity because it misses out

on some regions that the experimental data strongly suggests are non-methylated.

4.4.5 Predicting NMI presence in 10 human tissues

In light of the analysis in the previous section, we can be confident that the re-
gions that are called WGBS NMIs by Mendizabal and Yi (2015) are indeed non-
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Figure 4.15: Predictive performance of successively narrower
NMI regions. Whole-genome predictive performance across 5 random
runs using Bio-CAP NMIs that have had regions around their borders
removed from the analysis. Both the AUROC and AUPRC are shown,
and in both cases the optimal predictive performance is with 1kb—2kb
of border region removed.

methylated regions. We used them to directly compare WGBS-based NMIs in a
wide range of tissues (10 human tissues), to determine if the tissue where a region
is unmethylated can be predicted based on sequence. Because we are interested
in comparing tissues, we have removed from the analysis all regions that are ubiqg-
uitously non-methylated in all tissues. The remaining 27,589 (out of an original
51,572) regions were then used as input to separate classifiers that were trained
for each tissue. For these classifiers, the positive set is the NMIs that are non-
methylated in the tissue of interest, and the negative set is the NMIs that are
methylated in that tissue but are non-methylated in at least one other tissue. The

number of NMIs present (non-methylated) in each tissue are shown in Figure 4.16.

Using 10-fold cross-validation on each tissue, we trained string kernel SVMs

to try to predict whether a given DNA sequence belongs to an NMI that is non-
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Figure 4.16: The number of WGBS-based NMIs in 10 human
tissues. Only NMIs that are not ubiquitously present in all 10 tissues
are shown. Ubiquitous NMIs were excluded from the entire analysis.

methylated in that tissue or not. For this analysis we evaluated different string
kernels to see if we could improve predictive performance: the spectrum kernel
(used throughout the earlier part of this thesis), the mismatch kernel, and the
gappy pair kernel (see Section 3.2.2 for details).

As we see from the results (Figure 4.17), the choice of kernel has no consistent
effect on predictive performance. For colon and placenta, the gappy pair kernel
achieves a noticeable improvement in AUROC, but in all other tissues there is
little difference between kernels.

Regardless, the average AUROC values show that in 8/10 tissues, it is possible
to predict whether or not a region is non-methylated in a particular tissue with
fairly high accuracy (average AUROC of approximately 0.8, see Figure 4.17). In
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the remaining two tissues, placenta and colon, the predictive performance was
significantly lower (< 0.7 AUROC). To investigate if these two tissues would be
expected to be outliers, we compared the correlation of NMI presence and absence
across all regions in every pair of tissues, performed principal component analysis
(PCA) on the matrix of NMIs, and compared the number of unique NMIs per
tissue. This comparison did not yield any single indication as to why these two
tissues are outliers. Placenta is an outlier in the PCA plot, but sperm is even more
of an outlier (see Supplementary Figure A.3 in Appendix A). Colon has very few
NMIs that are unique to that tissue (only 1), but liver and adrenal gland also have
very few (19 and 9 respectively). Further analysis would therefore be required to

explain the difference in predictive performance in these two tissues.

4.5 Discussion

Our results demonstrate that highly informative tissue-specific DNA sequence fea-
tures are contained within experimentally determined non-methylated regions of
DNA, which can be used to identify NMIs genome-wide in several vertebrates.
Using known non-methylated regions of the genome to both train and evaluate
our methods, we were able to show that DNA sequence can be used as a predictor
for non-methylated regions in all six vertebrates that were examined, and that
sequence can also be used to predict per-tissue NMI activity. This was not en-
tirely expected because existing sequence-based CpG island predictions have a low
overlap with true non-methylated regions, suggesting that DNA sequence might
not be highly predictive of non-methylated regions (Long et al., 2013). The high
performance of the SVM classifier in all organisms and tissues proves that despite
the low overlap with existing CpG island predictions, the use of a more complex
model with longer subsequences as features and a supervised learning approach
demonstrates that there are DNA features in all vertebrates that are predictive of

NMI regions.

NMIs in different species We show that using a string kernel support vector
machine these informative DNA features can be used to predict the location of

non-methylated islands genome-wide better than existing CpG island prediction
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Figure 4.17: Classification performance of NMI tissue pre-
diction in 10 human tissues. The classifiers were trained with a
foreground consisting of all regions where an NMI was present in the
given tissue, and the background set was the NMIs that are absent
in that tissue but present in another tissue. Three different kernels
were used: the spectrum kernel, mismatch kernel, and gappy pair ker-
nel. The distribution shows the AUROC of the classifier across the 10
cross-validation folds.
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methods. Given the fact that NMIs only make up 2-4% of the genome, only a clas-
sifier that can control false positives will be useful for predicting non-methylated
regions genome-wide. The precision-recall curves show that for all organisms we are
able to predict NMIs better than all existing methods, and that for cold-blooded
vertebrates we are uniquely able to identify a modest number of non-methylated

regions while maintaining a low false discovery rate.

Additionally, we have shown that NMI predictions made by training a classifier
in one species and predicting in another can be highly accurate when performed
between warm-blooded species and to a lesser extent lizard, while cross-species
prediction in zebrafish and frog proved to be very difficult. One explanation for
the differences we are observing in cross-species prediction accuracy is that NMI
regions in all six vertebrates are identified based on two factors: first, simple CpG-
richness, and second, more complex sequence features (potentially including tran-
scription factor binding sites) that are species and/or tissue-specific. These two
factors have a different level of importance in each organism. In warm-blooded ver-
tebrates, CpG richness is the most important factor by far, while in cold-blooded
vertebrates more complex sequence features are more important. This is why a
simple classifier using dinucleotide frequencies works so well in warm-blooded ver-
tebrates, and why this simple classifier is easily transferable to other warm-blooded
vertebrates. In contrast, in zebrafish and frog CpG content still contributes to the
prediction of NMIs, but the contribution of more complex sequence features is
more important. These complex sequence features are species-specific, and there-
fore do not transfer well between species, resulting in poor cross-species prediction
accuracy in zebrafish and frog. Lastly, the importance of the two factors in lizard
is more balanced. CpG content is more important than in other cold-blooded ver-
tebrates, but complex sequence features are more important than in warm-blooded
vertebrates. This explains why we observe fairly good prediction of NMIs in lizard
after training in warm-blooded vertebrates, which are identifying the simple CpG
richness that is somewhat important in lizard NMIs. On the other hand, the clas-
sifiers trained in other cold-blooded vertebrates have learned to identify complex
species-specific sequence features and place less importance on CpG richness, and

therefore perform poorly at predicting lizard NMIs.
The important k-mers for genome-wide prediction identified by the SVM did
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show clear differences between warm-blooded and cold-blooded organisms though,
with the highest scoring k-mers containing almost no A/T nucleotides in warm-
blooded organisms, and nearly every high scoring k-mer containing an A/T nu-
cleotide in cold-blooded organisms (see Table in 4.5). This disagreement between
the importance of the k-mers, which suggests a role for sequence-specific transcrip-
tion factors, and the lack of known JASPAR motifs could suggest that the factors
involved in establishing and maintaining NMIs in cold-blooded organisms may
have changed along with composition of cold-blooded NMI sequences themselves.
And because of this our databases do not adequately reflect those transcription
factor binding sites in cold-blooded vertebrates.

These findings are complemented by those presented in a recent paper in which
the authors experimentally evaluated whether stretches of genomic sequence con-
taining NMIs from one organism can also evade methylation when placed into an-
other organism (Long et al., 2016). Their study demonstrated that transplanting
a segment of genomic DNA from human into mouse, or from mouse into zebrafish,
resulted in the majority of NMIs within these regions remaining unmethylated. In
particular, these findings show that the fish is capable of protecting mouse CpG
islands from being methylated. Nevertheless, the typical fish NMI sequence has
evolved in the direction of the sequence patterns that we identified in this analysis.
This again raises the point that there should be a particular functional pressure
that has led it to do so, for example transcription factors whose motifs are not

currently known in cold-blooded vertebrates.

NMIs in different tissues We additionally showed that the NMIs DNA se-
quence is not only predictive of whether or not that region will be methylated, but
also in which tissues it will be methylated or unmethylated.

For liver and testes tissues in six vertebrate species, we have shown that training
an NMI on one tissue and predicting in another does not greatly decrease the
predictive accuracy of the classifier in comparison to training and predicting on
the same tissue. This is in spite of a large set of tissue-specific NMI regions that
exist in each species.

Nevertheless, we show that a string kernel support vector machine is able to

predict which tissue an NMI is active in based on its DNA sequence with high
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accuracy (AUROC =~ 0.8). This was demonstrated for two tissues in six vertebrate
species, and for ten tissues in human. In human tissues, colon and placenta NMIs
were noticeably more difficult to predict than those from the rest of the tissues.
There was not a clear technical reason for the difference, so it is possible that
the difference is biological. In comparison to the other tissues that were used in
the study, placenta is a relatively heterogeneous mixture of cell types which may
have an affect on the analysis. Colon may have more variable methylation and
be more easily altered by environmental and dietary factors, just as lung tissue
demonstrates changes in DNA methylation in smokers (Zeilinger et al., 2013).

However these hypotheses would need to be tested in a later study.
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Chapter 5

Predicting enhancers using a
small subset of high confidence

examples and co-training

In this chapter we present the results of taking a conceptually different approach to
the computational prediction of regulatory regions of the genome called enhancers.
First, we take a more conservative approach to defining our training set by requir-
ing that the regions in the training set are identified by three completely different
experimental methods (CAGE, HiCAP and a classical enhancer reporter assay,
see Section 2.4 for details). Second, because this conservative approach yields a
small training set, rather than using the standard method of supervised learning
we chose to leverage both labeled data from our training set and unlabeled data
using a semi-supervised learning approach (see Section 3.1.2). Specifically, we use
a variant of semi-supervised learning called co-training, which allows us to make
our predictions based on multiple sets of input features, in this case the abundance

of histone modifications as one set and the DNA sequence as another set.

The content of this chapter is adapted from a paper that was co-first authored
with Anna Ramisch, and was presented at the German Conference on Bioinfor-
matics 2016. Anna Ramisch did the initial implementation of the algorithm, data
preprocessing, and exploratory plots, and I did extensive rewriting of the algo-
rithm, methods for parameter tuning, summary plots and the overfitting analysis.
We both worked on the paper along with the other co-authors, a preprint of which
is available at PeerJ Preprints (Huska et al., 2016).

93
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5.1 Motivation

Given the importance of enhancers in the context of gene regulation and disease, it
is critical to be able to identify them in the genome. A multitude of experimental
and computational methods have been developed over the last several years with
the goal of genome-wide enhancer identification. Originally, cross-species genomic
sequence conservation was used to identify enhancers, with the assumption that
important regulatory elements would be conserved through evolution (Pennacchio
and Rubin, 2001; Nobrega, 2003; Pennacchio et al., 2006; Visel, Bristow, and
Pennacchio, 2007; Visel et al., 2008). However, experimental validation of highly
conserved regions using either in vivo or in vitro reporter assays showed that only
approximately half of them were able to act as enhancers (Pennacchio et al., 2006;
Visel et al., 2008). Later, methods were developed that could identify DNA-protein
interactions on a genome-wide scale, including chromatin immunoprecipitation
followed by microarray (ChIP-chip) and chromatin immunoprecipitation followed
by high-throughput sequencing (ChIP-seq). These methods were used to try to
identify enhancers based on the relationship between certain modified histones
(mainly H3K4mel and H3K27ac) or histone modifying proteins (such as p300).
More recently, methods for the large-scale identification of DNA-DNA interac-
tions have been used for enhancer prediction as well (Sahlén et al., 2015; Chepelev
et al., 2012; Li et al., 2012; Rao et al., 2014). This is based upon experimen-
tal evidence that enhancers function by physically looping to interact with the
regions that they regulate (Miieller-Storm, Sogo, and Schaffner, 1989). Another
method, STARR-seq (Arnold et al., 2013), in essence performs a large-scale version
of a classic enhancer reporter assay that can measure ectopic enhancer activity,
has been able to identify genomic regions with enhancer potential genome-wide
in drosophila, and in selected regions in humans. Lastly, enhancers were recently
hypothesized to initiate bidirectional RNA polymerase IT (RNAPII) transcription,
producing so-called eRNAs (Kim et al., 2010). Based on CAGE experiments from
the FANTOMS5 consortium, consisting of data from hundreds of cell lines and
tissues, Andersson et al. (2014) identified more than 40,000 putative enhancer re-
gions, together with their activation levels across human tissues, marked by the

presence of bidirectional capped transcripts.
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5.1.1 Computational methods for enhancer prediction

To complement the experimental methods, computational methods have been de-
veloped that use data from some of the preceding experimental methods as input in
order to make more accurate enhancer predictions. Currently available computa-
tional methods can be divided into two broad classes of approaches: unsupervised
methods, for example the genome segmentation algorithms Segway, ChromHMM
and EpicSeg (Hoffman et al., 2012; Ernst and Kellis, 2012; Mammana and Chung,
2015), and supervised enhancer prediction methods such as RFECS (Rajagopal
et al., 2013), EnhancerFinder (Erwin et al., 2013), and an SVM-based method by
Lee, Karchin, and Beer (2011) (see Section 3.1.2 for a description of supervised

and unsupervised learning).

The unsupervised methods do not rely on any knowledge about already iden-
tified enhancer regions, but extract patterns (for instance, of different chromatin
states) directly from the data — an advantage when no experimentally validated
information is available. While this sounds like an advantage, the downside is that
we do have knowledge of certain regions in the genome to be actual enhancers, but

unsupervised methods do not take advantage of this information.

The supervised methods on the other hand rely critically on the existence of
a large high-confidence labeled training set of known enhancer and non-enhancer
regions. Most supervised computational methods select a single set of experimental
data, often created using one of the experimental methods mentioned above, and
use it as their large labeled training set. This is not ideal because each experimental
method only tests for one of the properties of enhancers that is currently believed
to be necessary for their function: HiCap tests for looping, but regions can form
loops without being active. ChIP-seq tests for the presence of certain histone
modifications that are thought to be correlated with enhancer activity, but it is
still unknown if this relationship is causal and the mechanisms for this relationship
are still unknown. STARR-seq tests to see if the region can drive expression
in a reporter, but this activity is ectopic and outside of the enhancer’s native
environment. The bidirectional transcription that Andersson et al. (2014) use to
identify putative enhancer regions could be a mark of active enhancers (Andersson

et al., 2014; Li, Notani, and Rosenfeld, 2016), or simply a mark of accessible
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chromatin (Young et al., 2016). Beside the fact that these methods tend to test
for only one property of enhancer activity, they are also large scale methods which
each have their own biases, whether that is sequencing, amplification or other
technical biases. This means that the putative enhancers identified by any of the
previously mentioned methods are likely to contain a number of false positives
that make them a poor starting point for supervised learning.

In contrast to all the computational methods which rely on only one type
of experimental method to define their enhancers, we choose not to fully rely
on the results of a single type of experiment. Instead, we make the assumption
that a region that is identified by several experimental methods is more likely to
be a true active enhancer, because it has several of the properties of enhancer
regions: the ability to loop to a promoter or other enhancer, the ability to boost
the expression of nearby genes, a chromatin environment that is thought to be
conducive to enhancer activity, etc. Therefore, we decided to start our enhancer
prediction with a set of regions that are identified using not one but three separate
experimental methods: HiCap, CAGE and ectopic enhancer assays as found in the
Vista Enhancer Atlas.

This approach of choosing such a stringent set of enhancers when training a
learning algorithm also has its disadvantages, in this case the size of the overlap
between the enhancers predicted by all three methods is only 21 enhancer regions
(see Figure 5.1). These are likely not enough examples for a fully supervised ap-
proach, so instead we choose a method which is a compromise between supervised
learning and unsupervised learning: semi-supervised learning, specifically a variant
of semi-supervised learning called co-training (see Section 3.1.2).

In this analysis we apply co-training to the problem of enhancer prediction
because it allows us to start from a very small but high-confidence training set,
and because we can incorporate sequence features and epigenetic features sepa-
rately in order to improve prediction performance. For sequence features, we use
dinucleotide frequencies of each genomic region. The epigenetic features are input-
normalized ChIP-seq counts for several histone marks, transcription factors and
histone modifying proteins. We focus on mouse embryonic stem cells (mESCs)
because it is one of the few cell types for which sufficient experimental data is

available.



5.2. METHODS 97

5.2 Methods

5.2.1 Experimentally determined enhancers

In order to obtain our high confidence set of mouse enhancers that are active in em-
bryonic stem cells with which to start training our model, we combined data from
several sources which attempt to identify enhancers using different experimental
methods. Each method tries to measure one property of enhancers, separately
identifying regions that can loop to promoters or other cis-requlatory regions, are
bidirectionally transcribed, and can boost transcription of a nearby gene in an en-
hancer reporter assay. The experiments that were used to identify these regions

are all described in Chapter 2, and the specific datasets are outlined below.

Can loop to other regions: HiCap enhancers. We downloaded putative en-
hancers in mESCs from the set of high-resolution, genome-wide promoter-enhancer
and enhancer-enhancer interactions determined with the HiCap technique by Sahlén
et al. (2015). The set of putative HiCap enhancers comprises 71,698 unique ge-

nomic regions, which can be involved in more than one interaction.

Produces bidirectional transcripts: FANTOMS5 enhancers. From the
FANTOM5 Transcribed Enhancer Atlas (http://fantom.gsc.riken.jp/5/
datafiles/latest/extra/Enhancers/) we downloaded 44,150 putative enhancer
regions. These enhancers were defined by detecting bidirectional transcription at
sites of enriched CAGE signal in various mouse cell lines and tissues (Andersson

et al., 2014). The entire mouse permissive enhancers “phase 1 and 2” set was used.

Boosts transcription of a gene: VISTA enhancers. We downloaded 323
putative enhancer regions in embryonic mouse tissues from the VISTA Enhancer
Browser (Visel et al., 2007). These regions, initially identified by extreme evolu-
tionary sequence conservation or by ChIP-seq, were experimentally validated in a

transgenic mouse enhancer reporter assay.


http://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/
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5.2.2 Co-training

Given the strict requirements for our training data, we decided to use a semi-
supervised machine learning method so that we can take incorporate both labeled
and unlabeled data into the learning process. Specifically, we used a variant of
semi-supervised learning called co-training (Blum and Mitchell, 1998, see Chap-
ter 3 for details). We compared that method to self-training, a more simple semi-
supervised learning method, as well as supervised learning. For this work we used
logistic regression as the base classifier, and as the supervised learning method as

well.

5.2.3 Predictive Features

Because we are using the co-training method, we can use multiple separate sets of
features as input to our predictive model. In this case, we chose to use ChIP-seq
data as one feature set, since there are known correlations between certain his-
tone modifications and enhancer activity. These associations seem to be the same
regardless of cell type. As a second feature set, we used DNA sequence, because
enhancer regions tend to be bound by cell type-specific transcription factors and
therefore would be expected to contain binding sites for those transcription factors,
or at the very least certain sequence biases. These DNA sequence features can po-
tentially add some cell type-specificity to the more general cell type-independent
ChIP-seq features.

ChIP-seq data The following mESC ChIP-seq datasets were used for building
the first active enhancer classifier: H3K4mel, H3K4me2, H3K4me3, H3K27ac,
H3K27me3, H3K36me3, H2AZ and corresponding input (GEO series GSE36114,
E14 Day0 samples); and Pol2, p300, CTCF and corresponding input (GEO se-
ries GSE29184, samples GSM723019, GSM723018, GSM723015 and GSM723020).
The data were pre-processed as described in Juan et al., 2016. Briefly, sra files were
transformed into fastq files with sra-toolkit (v2.1.12) and aligned to the reference
mm9/NCBI37 genome with BWA v0.5.9-r16 (Li and Durbin, 2009) allowing zero
to one mismatches. We counted the overlapping ChIP-seq reads in the genomic

regions of interest, namely enhancers, promoters and intergenic regions using bam-
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signals v1.2.1 (Mammana and Helmuth, 2014). Read counts in genomic regions
where normalized by subtracting the log transformed input read counts by the log

transformed ChIP-seq counts.

Genome Sequence We used the mouse genome as provided by UCSC (mm9,
Jul. 2007), and calculated k-mer frequencies from these sequences to use as input
features for the classifier. This was done using the oligonucleotideFrequency ()

function from the Biostrings v2.38.4 package in R v3.2.3.

5.2.4 Partitioning of the dataset

The entire dataset was partitioned into three distinct sets: a high confidence la-
beled set L, a hold-out validation set and an unlabeled set U. Each genomic region
can only belong to one of these sets. The labeled set L and the unlabeled set U
change their composition during the iterative procedure in the co-training and self-
training algorithms. Note that in the following sections, regions are considered to

be intersecting if they overlap by at least one base pair.

Initial labeled set The initial training set L is an almost fully balanced set
of 21 positive and 28 negative examples. More precisely, the positive set is the
intersection of enhancers defined by VISTA, FANTOMS5 and HiCap experiments
(as described above), and as such represents high-confidence enhancer regions. The
negative set is composed of 14 promoter regions and 14 intergenic regions of size

300 bps, which were randomly chosen from the rest of the genome.

Validation set Our validation set consists of 500 positive and 500 negative
examples. We chose positive examples for our validation set randomly from in-
tersections of only two of the three putative enhancer sets (see Figure 5.1). The
negative set is built from 250 randomly chosen promoter regions and 250 randomly

chosen regions of size 300 bps from the rest of the genome.

Initial unlabeled set The unlabeled set U consists of 111,183 identified putative
enhancers from VISTA, FANTOMS5 and HiCap experiments, 21,359 protein coding

gene promoters and 99,736 randomly chosen intergenic regions.
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Figure 5.1: Input data and workflow of co-training. (A) Venn
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(in green) was used as a validation set. (B) Size and composition of
the validation set, and the initial labeled and unlabeled sets. The
colors in the bars refer to the genomic regions contained in the sets.
(C) Workflow of our co-training method.
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5.2.5 Parameter tuning

Both the co-training and self-training algorithms have several important parame-
ters that need to be chosen. The parameters we focused on were (i) the size n, of
the unlabeled sets U; and U, that are sampled at each iteration step, and (ii) the
criterion ceopn s for defining the most confidently labeled examples that are added
to the training set after each iteration.

In order to select good parameters for each method, we tuned these parameters
using a grid search and selected the parameter combination that resulted in the
highest average AUROC across four randomly chosen validation sets, with four
random seeds per validation set, resulting in 16 runs of each parameter set total.
The parameters that were tested were n,, = 100, 200, 500, 5000, and two criteria for
selecting the most confidently labeled examples were evaluated. The first criterion
was to just take a fixed number of examples per iteration, 6, 10, 25, 50, or 100
examples, and add them to the labeled set L. An additional parameter for this
criterion was whether the selected examples should be forced to be equally split
between positive and negative examples, or if the highest confidence examples are
selected regardless of which class they belong to. The second criterion for choosing
the most confidently labeled examples was using a score cutoff. Logistic regression
gives scores between 0 and 1, so we evaluated using a score cutoff s = 0.05, 0.1, or
0.25, and all regions with a predicted probability p < s or p > 1 — s were added
to the labeled set L. The optimal parameters for each method and the resulting
AUROC is show in Table 5.1.

5.2.6 Experiments

Experiments were conducted to compare the methods against each other using
different feature sets comprised of combinations of ChIP-seq and DNA sequence
features. In detail, we compared co-training using ChIP-seq and DNA sequence

feature sets to the following methods and feature sets:

e Semi-supervised self-training based on logistic regression with:

— ChIP-seq-based features
— Sequence-based features
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— All features (ChIP-seq and sequence-based)

e Supervised logistic regression with:

— ChIP-seq-based features
— Sequence-based features
— All features (ChIP-seq and sequence-based)

5.3 Results

5.3.1 Very few enhancers are identified by all three exper-

imental methods

In this work we first inspected the overlap between the three sets of experimen-
tally determined enhancers that we are using to define our high confidence en-
hancers: FANTOMb5 CAGE-based enhancers, HiCap-based looping enhancers and
experimentally validated enhancers from the VISTA Enhancer Browser. The three
datasets contain 44,150, 71,698 and 323 putative enhancers respectively, but the
intersection between the three sets is only 21 regions as can be seen in Figure 5.1.
Such a small intersection indicates that it is a non-trivial task to design a training
set for a supervised enhancer classification task. Most other methods choose to use
one of the three putative enhancer sets to train the model. In this scenario, the
training set is large and fully supervised learning methods are expected to have a
good performance, but it also means adding more noise and technique-specific bias.
Another option is to choose the small subset of 21 enhancers at the intersection
as a positive set. Given that enhancers at the intersection are supported by three
completely different experimental techniques, we opted for the latter choice and

adapted our learning methods to the smaller training data set by using co-training.

5.3.2 Optimal parameters for each method

By performing the parameter tuning as outlined in the Methods section, the op-
timal parameters for each method were determined. These values, along with the
mean AUROC, are contained in Table 5.1.
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For each validation

ran all methods on 20 different validation sets each comprised of a ran-
domly selected 500 positive regions and 500 negative regions made up

of 250 promoters and 250 other genomic regions.

set, each method was run 5 times using a different random seed.
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Table 5.1: Optimal Parameters For Each Method

Method and Features Ny Ceonf mean AUROC
Co-training 100 top 50 (force balanced) 0.84
Self-training All 5000 top 6 0.71
Self-training ChIP-seq 500 top 6 0.80
Self-training Sequence 5000 top 6 (force balanced) 0.68

5.3.3 Co-training outperforms other methods

Using the best set of parameters for each method as identified using the procedure
outlined in the previous section we monitored the performance of each method at
each iteration on 20 different validation sets (for one example, see Figure 5.2). In
every case, and independent of the choice of the validation set, co-training performs
on average better than the other methods (see Figure 5.3). In addition, unlike the
other methods the classification performance (AUROC) reliably improves after

incorporating unlabeled examples into the prediction.

5.3.4 Co-training greatly reduces overfitting

Looking at the change in performance over several training iterations (Figure 5.2),
we see that in contrast to co-training, the self-training methods do not consistently
improve in predictive performance as they iteratively add new examples to their
labeled sets. One potential reason for this is that the self-training methods are
overfitting, and that the additional examples they are adding to their labeled sets
are not alleviating this problem.

One way to test for overfitting is to compare the predictive performance on the
same data that the method was trained on, and compare that to the predictive
performance on the held out test set. If the performance on the training set is much
better than the performance on the test set, then it is an indication of overfitting.
This test was performed on both the co-training method and the self-training
method which uses both ChIP-seq and sequence features, and the results can be
seen in Figure 5.4. We see that the self-training method is overfitting regardless
of the number of iterations being performed, and the co-training method initially

overfits as well, but this overfitting decreases with each iteration of the algorithm.
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5.4 Discussion

The enhancer prediction problem is usually addressed by supervised learning algo-
rithms based on chromatin features and/or sequence properties that need a large
quantity of labeled examples to perform well. These approaches rely on genome-
wide experimental data to define enhancers, making the labeled training set highly
dependent on the accuracy of the given technique, as well as specific characteristics
of the experiment or high-throughput technology that is used.

We show that the agreement between these experimental methods is very low,
which casts doubt on how suitable the results of any single one of these experiments
are for use as a gold standard enhancer set. To avoid this problem, we instead
require that our gold standard enhancers are identified by three separate methods.
The challenge that this stringent approach presents is that we start with a very
small set of high confidence enhancers, which makes it difficult to find predictive
patterns in those enhancers because we have so few examples to learn from.

We addressed this challenge using co-training, a semi-supervised learning method
which uses multiple sets of input features as well as both labeled and unlabeled
data. We show that co-training performs the task of predicting enhancer regions
using a small training set better than supervised learning as well as self-training,
which is another semi-supervised learning method. Additionally, we show evidence
that the reason for co-training’s better performance is that it reduces overfitting, a
major problem when trying to apply machine learning methods to small datasets
such as the one we have here. While this wasn’t our initial motivation for us-
ing co-training, we later found that co-training is known to be more resilient to
overfitting than self-training, as mentioned in Aggarwal (2015).

In the future, there are several ways that we could expand upon this analysis.
We plan to incorporate other feature sets containing higher information content
than dinucleotide frequencies, for example transcription factor binding site motif
match scores, in order to further improve the classifier performance as well as
biological interpretability. Additionally, it is important to see how this method
performs in other cell types in order to confirm that the results observed here
generalize to other cell lines, tissues and organisms. We intentionally did not

compare our results to other methods that rely on a much larger training set to do
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their predictions, but it would be useful to compare our results with unsupervised
learning methods such as ChromHMM, EpiCSeg or Segway (Ernst and Kellis,
2012; Mammana and Chung, 2015; Hoffman et al., 2012).

Lastly, we should consider different methods for defining what we consider
to be high confidence enhancers, especially as more experimental data becomes
available or new types of experiments are devised. The Vista enhancer set we used
is very small compared to the other enhancer sets, and was the main reason we
had such a small training set. Newer experimental methods such as STARR-seq
have the goal of providing similar information as the classic enhancer assay, but
at a much larger scale, and it would be interesting to use that data in place of
the Vista data. Also, our use of the intersection of three experimental methods
to define a high confidence set does not take into account how confidently each
individual experimental method predicts that region as an enhancer. We could
instead incorporate the weights or ranks from each method into an aggregate
score for each potential enhancer. Alternatively, we could use a set of regions
that were not identified using large scale experimental methods at all, but were
rather individually and extensively studied with smaller scale experiments (such

as enhancers in the S-globin locus).



Chapter 6
Conclusions

Gene regulation is one of the core biological mechanisms involved in defining cel-
lular identify, and the misregulation of gene expression has been implicated in a
wide variety of diseases. This has made the study of the genome, as well as how
the genes it encodes are regulated, one of the major topics in biology. Rapid ad-
vances in technology have allowed us to more easily read an organism’s genome
sequence, and additionally observe many other aspects of the cell’s state includ-
ing epigenetic marks such as DNA methylation and chemically modified histones,
the three-dimensional structure of chromatin, and active RNA transcription (see
Chapter 2). Nevertheless, this abundance of experimental data does not imme-
diately lead to new biological insights. In Chapter 3, we described the field of
machine learning and outlined machine learning methods that are well suited to
the task of exploring relationships between different types of data, particularly

while incorporating the genome’s sequence as a predictive feature.

In Chapter 4, we presented a study of non-methylated islands (NMIs) in the
genome using newly available experimental data and supervised learning models.
We showed that models trained on experimentally determined non-methylated
regions can accurately predict the methylation status of a given genomic region
based on its DNA sequence, in several species and tissues. These models allowed
us to identify differences in the predictive DNA features in cold- versus warm-
blooded vertebrates. Additionally, we showed that the tissue-specific methylation
can be predicted with high accuracy from DNA sequence as well, and that in colon
and placenta methylation is particularly difficult to predict in comparison to other
tissues.

Chapter 5 presented the problem of identifying regulatory regions known as
enhancers. We highlighted the lack of agreement between several experimental
methods that are commonly used to identify putative enhancer regions. Therefore,

in contrast to other enhancer prediction methods we chose not to rely on any
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single experiment to define a set of true enhancer regions, and instead used only
those regions that are supported by several experimental methods. This stringent
requirement left us with a very small set of true enhancers, so we used a semi-
supervised learning approach so that our model could incorporate information from
both the known enhancer regions and the rest of the genome. Our predictions are
based on two separate input feature sets: ChIP-seq features, which are commonly
used to predict enhancers, and DNA sequence information as a second feature
set. We show that when using a small input set of known enhancer regions, our
method achieves the highest predictive performance when compared to simpler
semi-supervised models as well as supervised learning methods.

Overall, we were able to use predictive models to better predict and understand
genomic methylation across several species and tissues, as well as to better predict
genomic enhancers when starting with very few known examples. These models
incorporated DNA sequence data as predictive features, and enabled us to show
a correlation between DNA sequence and genomic regions that can influence gene
expression. Nevertheless, there are some opportunities for future work.

First, despite the predictive performance of our models it was still difficult to
associate the model’s performance with specific biological entities. For example, in
spite of our efforts to associate predictive k-mer sequences with transcription fac-
tors through their binding motifs, it was not possible to make such an association
for any of the cold-blooded vertebrate species. In the case of enhancer prediction,
our goal was to include cell type-independent signals (histone modifications) as
well as cell type-specific signals (DNA sequence features) into the model. How-
ever, the optimal predictive features for the model that we built were very simple,
just a small set of ChIP-seq experiments and dinucleotides as sequence features.
These very simple sequence features made it impossible to speculate on the role of
sequence transcription factors in tissue specific enhancer activity using this model,
or any other more biologically interesting hypothesis.

In terms of machine learning methods, we could also use methods other than
SVMs and logistic regression. Very recently we have seen the rapid development
of easy to use libraries for performing deep learning, and deep learning approaches
appear to be achieving state-of-the-art performance for most classification tasks

where a large amount of data is available. Already, these methods have been
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applied to the problem of predicting genomic methylation with promising results
(Angermueller et al., 2017), and it would be interesting to see how a similar model
would perform on the more diverse set of species that were analyzed in this thesis.
Additionally, there are deep learning models that can perform semi-supervised
learning, but there have been few, if any, applications of these methods to biological
problems. Based on the results presented in Chapter 5, it might be worthwhile
to apply deep semi-supervised learning to the task of enhancer prediction, while

incorporating more complex sequence features.
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Table A.1: Comparison of highest weighted 6-mers features from a trained string kernel SVM with known JASPAR core
vertebrate motifs using the tool Tomtom. 6-mers were ranked by average feature weight across 5 random splits of the
genome into parameter tuning, training and test sets. The top 20 k-mers with the highest weight (contributing most to
classifying a sequence as a NMI), and bottom 20 k-mers (contributing most to classifying the sequence as a non-NMI) were
used. Only motif matches with a g-value less than 0.1 were kept. The Query ID consists of the position of the k-mer in the
feature weight ranking, the k-mer sequence itself, whether it contributes positively or negatively to classifying the sequence
as an NMI, and the average feature weight.

Org Class Query ID Target ID Offset p-value E-value q-value Overlap Query Target Strand GeneSymbol
ac NMI 5_CCCCCC__pos13.98 MAO0753.1 1 0.00 0.01 0.02 6 ccceccecece CCCCCCCCAC + ZNF740
ac NMI 5_CCCCCC__pos13.98 MAO0736.1 2 0.00 0.03 0.02 6 cccececece GACCCCCCGCGAAG + GLIS2
ac NMI 5_CCCCCC__pos13.98 MAO737.1 2 0.00 0.03 0.02 6 cccececece GACCCCCCACGAAG + GLIS3
ac NMI 5_CCCCCC_posl3.98 MAO0735.1 3 0.00 0.03 0.02 6 ccccecce AGACCCCCCACGAAGC + GLIS1
ac NMI 5_CCCCCC_pos13.98 MAO0697.1 2 0.00 0.15 0.06 6 ccececece GACCCCCCGCTGCGC + ZI1C3
ac NMI 5_CCCCCC_posl3.98 MAO751.1 2 0.00 0.18 0.06 6 ccececece GACCCCCCGCTGTGC + ZI1C4
ac NMI 5_CCCCCC_posl13.98 MA0696.1 2 0.00 0.22 0.06 6 ccceecece GACCCCCCGCTGTG + ZIC1
ac NMI 10_GGGGGG_posl2.53 MAO0753.1 2 0.00 0.01 0.02 6 GGGGGG GTGGGGGGGG - ZNF740
ac NMI 10_GGGGGG_posl2.53 MAO0736.1 6 0.00 0.03 0.02 6 GGGGGG CTTCGCGGGGGGTC - GLIS2
ac NMI 10_GGGGGG_posl2.53 MAOQ737.1 6 0.00 0.03 0.02 6 GGGGGG CTTCGTGGGGGGTC - GLIS3
ac NMI 10_GGGGGG_posl2.53 MAO0735.1 7 0.00 0.03 0.02 6 GGGGGG GCTTCGTGGGGGGTCT - GLIS1
ac NMI 10_GGGGGG_posl2.53 MAO0697.1 7 0.00 0.15 0.06 6 GGGGGG GCGCAGCGGGGGGTC - Z1C3
ac NMI 10_ GGGGGG_posl2.53 MAO0751.1 7 0.00 0.18 0.06 6 GGGGGG GCACAGCGGGGGGTC - Z1C4
ac NMI 10__GGGGGG_posl2.53 MA0696.1 6 0.00 0.22 0.06 6 GGGGGG CACAGCGGGGGGTC - ZIC1
hs NMI 2_CCGCCC__posl0.31 MAO0470.1 5 0.00 0.09 0.09 6 CCGcCcce CCTTCCCGCCC - E2F4
hs NMI 2_CCGCCC__posl0.31 MA0162.2 3 0.00 0.17 0.09 6 CCGCcCccC ccccececaeecececeaee + EGRI1
hs NMI 2 _CCGCCC_pos10.31 MA0079.3 3 0.00 0.19 0.09 6 ccagcecee Geececcecaececcece + SP1
hs NMI 2_CCGCCC_posl10.31 MAO0471.1 5 0.00 0.19 0.09 6 CccGcecce CCTTCCCGCCC - E2F6
hs NMI 2 _CCGCCC__pos10.31 MAO0516.1 3 0.00 0.25 0.10 6 CccGccce Goececeaeecececrecee + SP2
hs NMI 5_CCCGCC_pos9.74 MAO0865.1 3 0.00 0.02 0.03 6 CCCGCC TTTCCCGCCAAA + E2F8
hs NMI 5_CCCGCC_pos9.74 MAO758.1 4 0.00 0.03 0.03 6 CCCGCC TTTTCCCGCCAAAA + E2F7
hs NMI 5_CCCGCC_pos9.74 MAO0470.1 4 0.00 0.07 0.04 6 CCCGCC CcCcTTCcCcCcGeee - E2F4
hs NMI 5_CCCGCC_pos9.74 MAO0471.1 4 0.00 0.07 0.04 6 CCCGCC ccTTrcccaecece - E2F6
hs NMI 5_CCCGCC_pos9.74 MAO0516.1 2 0.00 0.09 0.04 6 CCCGCC Geececcecaeeecceccerecee + SP2
hs NMI 5_CCCGCC_pos9.74 MAO0079.3 2 0.00 0.19 0.06 6 CCCGCC Gececceccaeececce + SP1
hs NMI 5_CCCGCC_pos9.74 MAO0162.2 2 0.00 0.22 0.06 6 CCCGCC cceececaeececeecaee + EGR1
hs NMI 7_GGCGGG_pos9.43 MAO0865.1 3 0.00 0.02 0.03 6 GGCGGG TTTGGCGGGAAA - E2F8
hs NMI 7_GGCGGG_pos9.43 MAO0758.1 4 0.00 0.03 0.03 6 GGCGGG TTTTGGCGGGAAAA - E2F7
hs NMI 7_GGCGGG__pos9.43 MAO0470.1 1 0.00 0.07 0.04 6 GGCGGG GGGCGGGAAGG + E2F4
hs NMI 7_GGCGGG_pos9.43 MAO0471.1 1 0.00 0.07 0.04 6 GGCGGG GGGCGGGAAGG + E2F6
hs NMI 7_GGCGGG__pos9.43 MAO0516.1 7 0.00 0.09 0.04 6 GGCGGG GGGAGGGGGCGGGGC - SP2
hs NMI 7_GGCGGG__pos9.43 MAO0079.3 3 0.00 0.19 0.06 6 GGCGGG GGGGGCGGGGC - SP1
hs NMI 7_GGCGGG__pos9.43 MA0162.2 6 0.00 0.22 0.06 6 GGCGGG GGCGGGGGCGGGGG - EGR1
hs NMI 8 _GGGCGG_pos9.26 MAO0470.1 0 0.00 0.09 0.09 6 GGGCGG GGGCGGGAAGG + E2F4
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Org Class Query ID Target ID Offset p-value E-value g-value Overlap Query Target Strand GeneSymbol
hs NMI 8_GGGCGG_pos9.26 MA0162.2 5 0.00 0.17 0.09 6 GGGCGG GGCGGGGGCGGGGG - EGR1
hs NMI 8_GGGCGG_pos9.26 MAO0079.3 2 0.00 0.19 0.09 6 GGGCGG GGGGGCGGGGC - SP1
hs NMI 8_GGGCGG_pos9.26 MAO0471.1 0 0.00 0.19 0.09 6 GGGCGG GGGCGGGAAGG + E2F6
hs NMI 8 GGGCGG_pos9.26 MAO0516.1 6 0.00 0.25 0.10 6 GGGCGG GGGAGGGGGCGGGGC - SP2

mm NMI 1_GGGCGG_posl0.96 MAO0470.1 0 0.00 0.09 0.09 6 GGGCGG GGGCGGGAAGG + E2F4

mm NMI 1_GGGCGG__posl0.96 MAO0162.2 5 0.00 0.17 0.09 6 GGGCGG GGCGGGGGCGGGGG - EGR1

mm NMI 1_GGGCGG_posl0.96 MAO0079.3 2 0.00 0.19 0.09 6 GGGCGG GGGGGCGGGGC - SP1

mm NMI 1_GGGCGG_posl0.96 MAO0471.1 0 0.00 0.19 0.09 6 GGGCGG GGGCGGGAAGG + E2F6

mm NMI 1_GGGCGG__posl0.96 MAO0516.1 6 0.00 0.25 0.10 6 GGGCGG GGGAGGGGGCGGGGC - SP2

mm NMI 2 _CCGCCC_posl0.74 MA0470.1 5 0.00 0.09 0.09 6 ccaGecee CCTTCCCGCCC - E2F4

mm NMI 2_CCGCCC_posl0.74 MAO0162.2 3 0.00 0.17 0.09 6 ccGcecce cceeeaeeeeeaee + EGR1

mm NMI 2 _CCGCCC_posl0.74 MAO0079.3 3 0.00 0.19 0.09 6 CcCcGccce Gecececcecaeeccece + SP1

mm NMI 2 _CCGCCC_posl0.74 MAO0471.1 5 0.00 0.19 0.09 6 CcCcGccce CCcTTCCCGCCC - E2F6

mm NMI 2_CCGCCC_posl0.74 MAO0516.1 3 0.00 0.25 0.10 6 cCcGcecece Gcccecaeeecececrcee + SP2

mm NMI 5_CCCGCC_pos9.89 MAO0865.1 3 0.00 0.02 0.03 6 CCCGCC TTTCCCGCCAAA + E2F8

mm NMI 5_CCCGCC__pos9.89 MAO758.1 4 0.00 0.03 0.03 6 CCCGCC TTTTCCCGCCAAAA —+ E2F7

mm NMI 5_CCCGCC_pos9.89 MAO0470.1 4 0.00 0.07 0.04 6 CCCGCC CccTTCcCcCcGCCcC - E2F4

mm NMI 5_CCCGCC_pos9.89 MAO0471.1 4 0.00 0.07 0.04 6 CCCGCC CccTTCcCccGece - E2F6

mm NMI 5_CCCGCC__pos9.89 MAO0516.1 2 0.00 0.09 0.04 6 CCCGCC Goecceccecaeeecceccerecee + SP2

mm NMI 5_CCCGCC_pos9.89 MAO0079.3 2 0.00 0.19 0.06 6 CCCGCC Gececceccaeececce + SP1

mm NMI 5_CCCGCC__pos9.89 MAO0162.2 2 0.00 0.22 0.06 6 CCCGCC cceececaeeececaee + EGR1

mm NMI 10_GGCGGG_pos8.95 MAO0865.1 3 0.00 0.02 0.03 6 GGCGGG TTTGGCGGGAAA - E2F8

mm NMI 10_GGCGGG__pos8.95 MAO0758.1 4 0.00 0.03 0.03 6 GGCGGG TTTTGGCGGGAAAA - E2F7

mm NMI 10__GGCGGG_pos8.95 MAO0470.1 1 0.00 0.07 0.04 6 GGCGGG GGGCGGGAAGG + E2F4

mm NMI 10__GGCGGG__pos8.95 MAO0471.1 1 0.00 0.07 0.04 6 GGCGGG GGGCGGGAAGG + E2F6

mm NMI 10__GGCGGG__pos8.95 MAO0516.1 7 0.00 0.09 0.04 6 GGCGGG GGGAGGGGGCGGGGC - SP2

mm NMI 10__GGCGGG__pos8.95 MAO0079.3 3 0.00 0.19 0.06 6 GGCGGG GGGGGCGGGGC - SP1

mm NMI 10_GGCGGG__pos8.95 MAO0162.2 6 0.00 0.22 0.06 6 GGCGGG GGCGGGGGCGGGGG - EGR1

mm NMI 14 CCCCCC__posT7.05 MAO0753.1 1 0.00 0.01 0.02 6 ccceccecece CCCCCCCCAC + ZNF740

mm NMI 14 CCCCCC_posT7.05 MAO0736.1 2 0.00 0.03 0.02 6 ccccecce GACCCCCCGCGAAG + GLIS2

mm NMI 14 CCCCCC__posT7.05 MAO737.1 2 0.00 0.03 0.02 6 ccceecece GACCCCCCACGAAG + GLIS3

mm NMI 14 CCCCCC__posT7.05 MAO0735.1 3 0.00 0.03 0.02 6 ccececece AGACCCCCCACGAAGC + GLIS1

mm NMI 14 CCCCCC__posT7.05 MAO0697.1 2 0.00 0.15 0.06 6 ccececece GACCCCCCGCTGCGC + ZI1C3

mm NMI 14_ CCCCCC_posT7.05 MAO751.1 2 0.00 0.18 0.06 6 ccceecece GACCCCCCGCTGTGC + ZI1C4

mm NMI 14_ CCCCCC__posT7.05 MAO0696.1 2 0.00 0.22 0.06 6 ccececece GACCCCCCGCTGTG + ZIC1
gg NMI 1_GGGGGG_posl0.59 MAO0753.1 2 0.00 0.01 0.02 6 GGGGGG GTGGGGGGGG - ZNF740
gg NMI 1_GGGGGG_posl0.59 MAO0736.1 6 0.00 0.03 0.02 6 GGGGGG CTTCGCGGGGGGTC - GLIS2
gg NMI 1_GGGGGG_posl0.59 MAO0737.1 6 0.00 0.03 0.02 6 GGGGGG CTTCGTGGGGGGTC - GLIS3
gg NMI 1_GGGGGG_posl0.59 MAO0735.1 7 0.00 0.03 0.02 6 GGGGGG GCTTCGTGGGGGGTCT - GLIS1
gg NMI 1_GGGGGG_posl0.59 MAO0697.1 7 0.00 0.15 0.06 6 GGGGGG GCGCAGCGGGGGGTC - ZI1C3
gg NMI 1_GGGGGG_posl0.59 MAO0751.1 7 0.00 0.18 0.06 6 GGGGGG GCACAGCGGGGGGTC - Z1C4
gg NMI 1_GGGGGG_posl0.59 MA0696.1 6 0.00 0.22 0.06 6 GGGGGG CACAGCGGGGGGTC - ZI1C1
gg NMI 2 _CCCCCC_pos9.18 MAO0753.1 1 0.00 0.01 0.02 6 ccoececce CCCCCCCCAC + ZNF740
g8 NMI 2_CCCCCC_pos9.18 MAO0736.1 2 0.00 0.03 0.02 6 ccceccecece GACCCCCCGCGAAG + GLIS2
g8 NMI 2_CCCCCC_pos9.18 MAO737.1 2 0.00 0.03 0.02 6 cccececece GACCCCCCACGAAG + GLIS3
g8 NMI 2 _CCCCCC_pos9.18 MAO0735.1 3 0.00 0.03 0.02 6 cccececece AGACCCCCCACGAAGC + GLIS1
g8 NMI 2 _CCCCCC_pos9.18 MAO0697.1 2 0.00 0.15 0.06 6 cccececece GACCCCCCGCTGCGC + ZIC3
g8 NMI 2__CCCCCC_pos9.18 MAO751.1 2 0.00 0.18 0.06 6 ccececece GACCCCCCGCTGTGC + ZIC4
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Org Class Query ID Target ID Offset p-value E-value g-value Overlap Query Target Strand GeneSymbol
g8 NMI 2__CCCCCC_pos9.18 MA0696.1 2 0.00 0.22 0.06 6 cceecece GACCCCCCGCTGTG + ZIC1
gg NMI 18__ GGGCGG_pos5.43 MAO0470.1 0 0.00 0.09 0.09 6 GGGCGG GGGCGGGAAGG + E2F4
gg NMI 18__ GGGCGG_pos5.43 MAO0162.2 5 0.00 0.17 0.09 6 GGGCGG GGCGGGGGCGGGGG - EGR1
gg NMI 18__ GGGCGG_pos5.43 MAO0079.3 2 0.00 0.19 0.09 6 GGGCGG GGGGGCGGGGC - SP1
gg NMI 18__GGGCGG_posh5.43 MAO0471.1 0 0.00 0.19 0.09 6 GGGCGG GGGCGGGAAGG + E2F6
gg NMI 18 GGGCGG_pos5.43 MAO0516.1 6 0.00 0.25 0.10 6 GGGCGG GGGAGGGGGCGGGGC - SP2
ac notNMI 2__ATAATA_neg9.95 MAO0752.1 8 0.00 0.01 0.01 6 ATAATA TCCATCCCATAATACTC + ZNF410
ac notNMI 6__TATTAT_ negb.84 MAO0752.1 3 0.00 0.01 0.01 6 TATTAT GAGTATTATGGGATGGA - ZNF410
ac notNMI 15__ CAGCTG_neg4.37 MAO0048.2 2 0.00 0.03 0.01 6 CAGCTG CGCAGCTGCG + NHLH1
ac notNMI 15 CAGCTG__neg4.37 MAO0691.1 2 0.00 0.03 0.01 6 CAGCTG AACAGCTGAT + TFAP4
ac notNMI 15_ CAGCTG_neg4.37 MAO0816.1 2 0.00 0.03 0.01 6 CAGCTG AGCAGCTGCT + Ascl2
ac notNMI 15 CAGCTG__neg4.37 MAO0832.1 4 0.00 0.06 0.01 6 CAGCTG GCAACAGCTGTTGT + Tcf21
ac notNMI 15_ CAGCTG__neg4.37 MAO0665.1 2 0.00 0.06 0.01 6 CAGCTG AACAGCTGTT + MSC
ac notNMI 15_ CAGCTG__neg4.37 MAO0500.1 2 0.00 0.07 0.01 6 CAGCTG GACAGCTGCAG + Myog
ac notNMI 15_ CAGCTG_neg4.37 MAO0521.1 2 0.00 0.07 0.01 6 CAGCTG AACAGCTGCAG + Tcfl2
ac notNMI 15_ CAGCTG_neg4.37 MAO0796.1 3 0.00 0.09 0.01 6 CAGCTG TGACAGCTGTCA + TGIF1
ac notNMI 15__ CAGCTG_neg4.37 MA0499.1 2 0.00 0.19 0.02 6 CAGCTG TGCAGCTGTCCCT + Myod1
ac notNMI 15_ CAGCTG_neg4.37 MAO0667.1 2 0.00 0.23 0.02 6 CAGCTG AACAGCTGTT + MYF6
ac notNMI 15__ CAGCTG__neg4.37 MAO0797.1 3 0.00 0.36 0.03 6 CAGCTG TGACAGCTGTCA + TGIF2
ac notNMI 15__ CAGCTG_neg4.37 MAO0782.1 3 0.00 0.86 0.07 6 CAGCTG TGACAGGTGTCA + PKNOX1
ac notNMI 17_TTTTAT_ neg3.87 MAO0465.1 0 0.00 0.02 0.05 6 TTTTAT TTTTATGGCTT - CDX2
ac notNMI 20__AACAAT_neg3.73 MAO0087.1 1 0.00 0.04 0.05 6 AACAAT AAACAAT - Sox5
ac notNMI 20__AACAAT_ neg3.73 MAO0077.1 1 0.00 0.15 0.05 6 AACAAT GAACAATGG - SOX9
ac notNMI 20__AACAAT_neg3.73 MAO0866.1 0 0.00 0.21 0.05 6 AACAAT AACAATGGTAGTGTT + SOX21
ac notNMI 20__AACAAT_neg3.73 MAO0869.1 0 0.00 0.21 0.05 6 AACAAT AACAATTTCAGTGTT + Sox11
ac notNMI 20__AACAAT_neg3.73 MAO0870.1 0 0.00 0.21 0.05 6 AACAAT AACAATAACATTGTT + Sox1
ac notNMI 20_AACAAT_neg3.73 MAO0084.1 3 0.00 0.21 0.05 6 AACAAT GTAAACAAT + SRY
ac notNMI 20_AACAAT_neg3.73 MAO0867.1 1 0.00 0.23 0.05 6 AACAAT GAACAATTGCAGTGTT + SOX4
ac notNMI 20_AACAAT_ neg3.73 MAO0868.1 0 0.00 0.23 0.05 6 AACAAT AACAATGTGCAGTGTT + SOX8
dr notNMI 14 CCGGAA_neg3.66 MA0028.2 1 0.00 0.03 0.01 6 CCGGAA ACCGGAAGTG + ELK1
dr notNMI 14 CCGGAA_neg3.66 MAO0475.2 1 0.00 0.03 0.01 6 CCGGAA ACCGGAAGTG + FLI1
dr notNMI 14_ CCGGAA_neg3.66 MAO0759.1 1 0.00 0.03 0.01 6 CCGGAA ACCGGAAGTA + ELK3
dr notNMI 14 CCGGAA_ neg3.66 MAO0760.1 1 0.00 0.03 0.01 6 CCGGAA ACCGGAAGTG + ERF
dr notNMI 14__ CCGGAA_neg3.66 MAO0762.1 2 0.00 0.04 0.01 6 CCGGAA AACCGGAAATA + ETV2
dr notNMI 14__ CCGGAA_ neg3.66 MA0473.2 3 0.00 0.05 0.01 6 CCGGAA AACCCGGAAGTG + ELF1
dr notNMI 14_ CCGGAA_ neg3.66 MAO0641.1 3 0.00 0.05 0.01 6 CCGGAA AACCCGGAAGTG + ELF4
dr notNMI 14__CCGGAA_neg3.66 MAO0640.1 3 0.00 0.05 0.01 6 CCGGAA AACCCGGAAGTAA + ELF3
dr notNMI 14__ CCGGAA_neg3.66 MA0474.2 1 0.00 0.06 0.01 6 CCGGAA ACCGGAAGTG + ERG
dr notNMI 14_CCGGAA_neg3.66 MAO0062.2 0 0.00 0.07 0.01 6 CCGGAA CCGGAAGTGGC + Gabpa
dr notNMI 14__ CCGGAA__neg3.66 MAO0598.2 3 0.00 0.09 0.01 6 CCGGAA AACCCGGAAGTA + EHF
dr notNMI 14 CCGGAA_neg3.66 MAO0156.2 1 0.00 0.09 0.01 6 CCGGAA ACCGGAAGTG + FEV
dr notNMI 14__ CCGGAA__neg3.66 MAO0763.1 1 0.00 0.09 0.01 6 CCGGAA ACCGGAAGTG + ETV3
dr notNMI 14 CCGGAA_neg3.66 MAO0076.2 1 0.00 0.11 0.01 6 CCGGAA GCCGGAAGTGG - ELK4
dr notNMI 14 CCGGAA_neg3.66 MA0098.3 1 0.00 0.12 0.01 6 CCGGAA ACCGGAAGTG + ETS1
dr notNMI 14 CCGGAA_neg3.66 MAOQ761.1 1 0.00 0.12 0.01 6 CCGGAA ACCGGAAGTA + ETV1
dr notNMI 14 CCGGAA_neg3.66 MAO0764.1 1 0.00 0.15 0.02 6 CCGGAA ACCGGAAGTA + ETV4
dr notNMI 14 CCGGAA_neg3.66 MAOQ765.1 1 0.00 0.35 0.04 6 CCGGAA ACCGGAAGTG + ETV5
dr notNMI 14 CCGGAA_neg3.66 MAO0136.2 2 0.00 0.48 0.05 6 CCGGAA ACCCGGAAGTA + ELF5
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Org Class Query ID Target ID Offset p-value E-value g-value Overlap Query Target Strand GeneSymbol
hs notNMI 10_CACCTG__neg4.62 MAO0103.2 3 0.00 0.03 0.01 6 CACCTG CCTCACCTG + ZEB1
hs notNMI 10__CACCTG__neg4.62 MAO0745.1 1 0.00 0.03 0.01 6 CACCTG ACACCTGTT - SNAI2
hs notNMI 10__CACCTG__neg4.62 MAO0522.2 2 0.00 0.03 0.01 6 CACCTG AACACCTGCT + TCF3
hs notNMI 10_ CACCTG__neg4.62 MAO0824.1 2 0.00 0.03 0.01 6 CACCTG TACACCTGTC + D4
hs notNMI 10_CACCTG__neg4.62 MAO0830.1 2 0.00 0.03 0.01 6 CACCTG CGCACCTGCT + TCF4
hs notNMI 10_ CACCTG__neg4.62 MAO0743.1 3 0.00 0.06 0.02 6 CACCTG AACCACCTGTTGCTC - SCRT1
hs notNMI 10_CACCTG__neg4.62 MAO0744.1 1 0.00 0.10 0.03 6 CACCTG CCACCTGTTGCAT - SCRT2
hs notNMI 10_ CACCTG__neg4.62 MAO0820.1 2 0.00 0.12 0.03 6 CACCTG ACCACCTGTT + FIGLA
hs notNMI 10__CACCTG__neg4.62 MAO0783.1 3 0.00 0.20 0.04 6 CACCTG TGACACCTGTCA - PKNOX2
hs notNMI 20__CAGGTG__neg4.08 MA0103.2 0 0.00 0.03 0.01 6 CAGGTG CAGGTGAGG - ZEB1
hs notNMI 20__CAGGTG__neg4.08 MAOQ745.1 2 0.00 0.03 0.01 6 CAGGTG AACAGGTGT + SNAI2
hs notNMI 20__CAGGTG__neg4.08 MA0522.2 2 0.00 0.03 0.01 6 CAGGTG AGCAGGTGTT - TCF3
hs notNMI 20_CAGGTG__neg4.08 MA0824.1 2 0.00 0.03 0.01 6 CAGGTG GACAGGTGTA - ID4
hs notNMI 20_CAGGTG__neg4.08 MAO0830.1 2 0.00 0.03 0.01 6 CAGGTG AGCAGGTGCG - TCF4
hs notNMI 20__CAGGTG_neg4.08 MAO0743.1 6 0.00 0.06 0.02 6 CAGGTG GAGCAACAGGTGGTT + SCRT1
hs notNMI 20_CAGGTG__neg4.08 MAO0744.1 6 0.00 0.10 0.03 6 CAGGTG ATGCAACAGGTGG + SCRT?2
hs notNMI 20__CAGGTG__neg4.08 MAO0820.1 2 0.00 0.12 0.03 6 CAGGTG AACAGGTGGT - FIGLA
hs notNMI 20__CAGGTG__neg4.08 MAO0783.1 3 0.00 0.20 0.04 6 CAGGTG TGACAGGTGTCA + PKNOX2
xt notNMI 3_CCCCCC_neg5.80 MAO0753.1 1 0.00 0.01 0.02 6 ccceecece CCCCCCCCAC + ZNF740
xt notNMI 3__CCCCCC_neg5.80 MAO0736.1 2 0.00 0.03 0.02 6 cccececece GACCCCCCGCGAAG + GLIS2
xt notNMI 3__CCCCCC_neg5.80 MAO737.1 2 0.00 0.03 0.02 6 cccececece GACCCCCCACGAAG + GLIS3
xt notNMI 3__CCCCCC_neg5.80 MAO0735.1 3 0.00 0.03 0.02 6 cccececece AGACCCCCCACGAAGC + GLIS1
xt notNMI 3__CCCCCC_neg5.80 MAO0697.1 2 0.00 0.15 0.06 6 cccececece GACCCCCCGCTGCGC + ZI1C3
xt notNMI 3_CCCCCC_neg5.80 MAO0751.1 2 0.00 0.18 0.06 6 ccccecce GACCCCCCGCTGTGC + Z1C4
xt notNMI 3_CCCCCC__negh.80 MA0696.1 2 0.00 0.22 0.06 6 ccccecece GACCCCCCGCTGTG + ZI1C1
xt notNMI 20_CCCCCA__neg2.96 MAO0737.1 3 0.00 0.04 0.03 6 CCCCCA GACCCCCCACGAAG + GLIS3
xt notNMI 20_CCCCCA_neg2.96 MAO0753.1 3 0.00 0.04 0.03 6 CCCCCA CCCCCCCCAC + ZNF740
xt notNMI 20_CCCCCA_neg2.96 MAO0735.1 4 0.00 0.05 0.03 6 CCCCCA AGACCCCCCACGAAGC + GLIS1

mm notNMI 15 CCATGG__neg4.45 MA0600.2 5 0.00 0.26 0.08 6 CCATGG CGTTGCCATGGCAACG + RFX2

mm notNMI 15_ CCATGG__neg4.45 MAO0509.1 4 0.00 0.31 0.08 6 CCATGG GTTGCCATGGCAAC + Rifx1

mm notNMI 15_ CCATGG__neg4.45 MAO0138.2 7 0.00 0.38 0.08 6 CCATGG TTCAGCACCATGGACAGCGCC + REST

mm notNMI 15_ CCATGG__neg4.45 MA0510.2 5 0.00 0.38 0.08 6 CCATGG CGTTGCCATGGCAACG + RFX5

mm notNMI 15_ CCATGG__neg4.45 MAO0798.1 5 0.00 0.38 0.08 6 CCATGG CGTTGCCATGGCAACG + RFX3

mm notNMI 15__ CCATGG__neg4.45 MAO0799.1 5 0.00 0.51 0.08 6 CCATGG CGTTGCCATGGCAACG + RFX4
gg notNMI 3_CCATGG_ neg2.00 MAO0600.2 5 0.00 0.26 0.08 6 CCATGG CGTTGCCATGGCAACG + RFX2
gg notNMI 3_CCATGG__neg2.00 MAO0509.1 4 0.00 0.31 0.08 6 CCATGG GTTGCCATGGCAAC + Rfx1
gg notNMI 3__CCATGG__neg2.00 MAO0138.2 7 0.00 0.38 0.08 6 CCATGG TTCAGCACCATGGACAGCGCC + REST
gg notNMI 3_CCATGG__neg2.00 MAO0510.2 5 0.00 0.38 0.08 6 CCATGG CGTTGCCATGGCAACG + RFX5
gg notNMI 3_CCATGG__neg2.00 MAO0798.1 5 0.00 0.38 0.08 6 CCATGG CGTTGCCATGGCAACG + RFX3
gg notNMI 3_CCATGG__neg2.00 MAO0799.1 5 0.00 0.51 0.08 6 CCATGG CGTTGCCATGGCAACG + RFX4
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Figure A.1: NMI length distributions in liver and testes. (A)
before subsampling (B) after subsampling,.
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Figure A.3: PCA plot of NMI absence/presence across 10
tissues. Principal components analysis plot of the binary matrix of
NMI absence and presence values across ten human tissues. The first
two principal components are shown.



Appendix B

Zusammenfassung

In dieser Arbeit untersuchen wir den Einfluss der DNA-Sequenz auf Elemente des
Genoms, welche die Genregulation beeinflussen. Zu diesem Zweck nutzen wir An-
satze aus dem Bereich des Maschinellen Lernens, da dieser etablierte Methoden zur
Mustererkennung in Datensequenzen bereitstellt, welche wir hier auf Nukleotidse-
quenzen anwenden.

Zunéchst zeigen wir, dass wir die Lage und die Gewebsspezifitdt von experi-
mentell bestimmten nichtmethylierten Regionen des Genoms mit hoher Genauigkeit
vorhersagen konnen, indem wir die DNA-Sequenz der Region verwenden. Diese
Analyse basiert auf neu entwickelten experimentellen Methoden zur Bestimmung
von genomweiten DNA-Methylierungen, deren Entwicklung die CpG-Inseln als
Grundlage zur Vorhersage von nichtmethylierte Regionen abgeldst hat. Wir demon-
strieren die hohe Vorhersageleistung unserer Methode anhand von zwei Geweben in
jeweils sechs verschiedenen Vertebratenspezies sowie auch in zehn Humangeweben.
Dartiberhinaus tubertrifft unser Ansatz die Leistung anderer existierender Metho-
den, welche zur Identifizierung von CpG-Inseln entwickelt wurden.

Des Weiteren prasentieren wir einen neuen Ansatz zur computerbasierten Vorher-
sage von genomischen Enhancern. Im Gegensatz zu bestehenden Methoden kom-
binieren wir die Ergebnisse von verschiedenen komplementaren experimentellen
Methoden um die Menge von Enhancern zu definieren, welche als Mustervorlage
des Lernprozesses dient. Aulerdem wird ein spezieller Algorithmus des Maschinellen
Lernens genutzt, das Co-Training, welches es erlaubt, zum Trainieren des Pradik-
tors sowohl eine kleine Menge von Enhancerregionen mit hohem Konfidenzniveau
als auch den Rest des Genoms zu integieren. Die Vorhersage der Enhancer basiert
auf Daten von ChIP-seq Experimenten und der DNA-Sequenz jeder Region. Wir
sind in der Lage zu zeigen, dass unser Ansatz eine bessere Vorhersageleistung erre-
icht als andere Methoden und, dass das Co-Training fiir diese Art von Problemen

besonders gut geeignet ist, da es das Problem der Uberanpassung reduziert.
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Appendix C

Summary

In this thesis we explore the influence of DNA sequence on genomic elements that
are involved in the regulation of genes. We approach this topic using tools from
the field of machine learning, which provides established methods for identifying
patterns in sequential data, in this case sequences of nucleotides.

First, we show that the location and tissue-specificity of experimentally deter-
mined non-methylated regions of the genome can be predicted with high accuracy
using the regions’ DNA sequence. This analysis relies on new experimental meth-
ods that have been used to measure DNA methylation genome-wide, and their
development has led to a shift away from relying on CpG islands as a proxy for
non-methylated genomic regions. We demonstrate the high predictive performance
of our method in two tissues across six different vertebrate species, as well as in ten
human tissues, and show that the method we use outperforms existing methods
that were designed to identify CpG islands.

Next, we present a new approach to computationally predicting genomic en-
hancers. In contrast to existing methods, we combine the results of multiple com-
plementary experimental methods to define the set of enhancers from which to
learn patterns, and we use a machine learning method called co-training to en-
able us to incorporate this small set of high confidence enhancer regions as well as
the rest of the genome into the training of our predictor. The enhancers are pre-
dicted based on both experimental data from ChIP-seq experiments and the DNA
sequence of each region. We are able to show that our method achieves better
predictive performance than other methods, and that co-training is particularly

well suited for this problem because it is able to reduce the problem of overfitting.
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Appendix D
Selbststandigkeitserklarung

Hiermit erklére ich, dass ich diese Arbeit selbststandig verfasst und keine anderen
als die angegebenen Hilfsmittel und Quellen verwendet habe. Ich erklire weit-
erhin, dass ich die vorliegende Arbeit oder deren Inhalt nicht in einem fritheren

Promotionsverfahren eingereicht habe.

Berlin, den 6.2.2018
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