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Abstract

Turbulence in stable boundary layers (SBL) is often accompanied by the presence of large
patches of non-turbulent flow regions, even close to the wall, a phenomenon referred in literature
as global intermittency. Understanding the physical processes and dynamics of this mode of
rotating, stratified and intermittent turbulence is important for the improvement of existing
and/or development of new parametrizations of the SBL, which in turn, may be useful for
many applications, including but not limited to numerical weather prediction, modeling gas
dispersion events and understanding the Arctic climate system. In this thesis, the SBL is
investigated by establishing a detailed comparison with the well-studied neutrally stratified
atmospheric boundary layer. The datasets examined here were inherited through the work of
Ansorge (Dissertation, Springer 2016). They used a simplified physical configuration, namely,
an Ekman flow over a smooth wall where global intermittency is known to occur beyond a
certain stability despite the absence of surface heterogeneities and other external perturbations.

Comparisons between both regimes is accomplished with the help of coherent structures,
particularly with their geometry. This is motivated from previous observations where a change
in the geometry of these structures from hairpin vortices under neutral conditions to thermal
plumes under unstable conditions (where there is a positive buoyancy flux) has been detected.
However, very little is known about the geometry of these structures, especially their three-
dimensional character, when buoyancy has a stabilizing effect. Since a well-accepted definition
of a coherent structure has not yet surfaced, the classification of boundary layer structures
introduced by Robinson (Dissertation, Stanford 1991), henceforth referred to as Robinson
structures, is used to study the various structures identified in literature in an organized
manner. Suitable scalar indicators are identified for all eight categories of Robinson structures
and they are grouped as quantitative and qualitative, the former of which can be extracted
and geometrically characterized.

First, a framework to characterize the geometry of quantitative Robinson structures is
developed. There are two main steps: extraction and geometrical characterization. In the
extraction step, individual structures are obtained by thresholding scalar indicators. An
improvement to the neighbor scanning procedure of Moisy and Jiménez (J. Fluid Mech. 2004)
with the marching cubes algorithm is developed to extract visualization accurate structures.
Optimum thresholds are identified with the percolation analysis approach of Del Álamo et al.
(J. Fluid Mech. 2006). However, it is seen that this fails when the flow is strongly intermittent.
Therefore, an extension of this method where percolation analysis is applied in an iterative
manner is introduced. In the second step, noise-like structures are filtered out by discarding
structures having a fractal dimension less than 1. The remaining structures are subjected to
the non-local methodology of Bermejo-Moreno and Pullin (J. Fluid Mech. 2008) to classify a
structure as blob-like, tube-like or sheet-like based on its location within a three-dimensional
visualization space composed of two differential geometry parameters - shape index and
curvedness, and a stretching parameter.

Next, the framework is applied to structures obtained from instantaneous neutral and
stably stratified Ekman flow fields with increasing stability. Results are discussed by dividing
the flow field into four layers in the wall-normal direction: viscous sublayer, buffer, inner and
outer layers. Geometrical characterization reveals that the structures are moderately stretched



tube-like or moderate to strongly stretched sheet-like regardless of the strength of stratification.
Furthermore, in the strongly stratified case, it is shown that global intermittency has a direct
impact in the viscous sublayer where a large portion of the domain is occupied by a single
low-speed streak which is reminiscent of the non-turbulent region aloft. Conclusions derived
from the geometrical characterization are also compared with those obtained from conditional
one-point statistics. To this end, a new definition of intermittency factor based on coherent
structures is proposed to segregate the flow into turbulent and non-turbulent parts.

Since global intermittency is known to exhibit spatio-temporal variability, it may have an
impact on the dynamics of coherent structures which can induce changes in their geometry.
The geometrical characterization framework is modified with the addition of a region-based
tracking procedure where correspondence is determined by measuring the degree of spatial
overlap. Starting with structures having a similar geometry, i.e., with similar shape index,
curvedness and stretching parameters from the instantaneous Ekman fields analyzed previously,
the Robinson structures are tracked in time and temporal changes in their geometry are
recorded. Similar to previous observations, these results also suggest mostly tube-like and
sheet-like geometry for all Ekman flow cases. While all these results indicate that the geometry
is mostly unaffected for increasing stability, the presence of non-turbulent flow patches that
extend throughout the vertical length of the flow alters the spatial organization of coherent
structures. This is particularly visible for hairpin-like vortex structures, whose abundance
increases with stability and at the strongest stratification the head regions of these structures
appears to be oriented in similar directions in the turbulent patches.

Finally, the orientation and abundance of hairpin-like structures are investigated. The
region-based tracking scheme is improved to overcome the limitation of using a constant
threshold in time by dynamically adjusting the thresholds such that the feature can freely
grow or shrink in time. This is used to track hairpin-like structures from both neutral and
stably stratified cases. Results show that the hairpin-like structures experience longer lifetime
and higher number of interactions with increasing stability and a link between the number of
split events and the autogeneration mechanism is proposed to be the underlying cause of the
abundance of hairpins with increasing stability. To gain a better understanding of the dynamics,
hairpin-like structures are also studied with a slender vortex filament approach, i.e., a vortex
filament whose diameter d is much smaller than its characteristic radius of curvature R. The
corrected thin-tube model of Klein and Knio (J. Fluid Mech. 1995) is used to calculate the
motion of these filaments with the mean velocity profiles of the Ekman flow as the background
flow. These results suggest that orientation of the filament in the spanwise direction is linked
to its initial starting height under stable stratification whereas no such dependency can be
observed with the neutrally stratified background flow.
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Zusammenfassung

Die Turbulenz in stabilen Grenzschichten (SG) geht häufig mit dem Vorhandensein großer
Bereiche nichtturbulenter Strömungsregionen selbst in Wandnähe einher, ein Phänomen,
das in der Literatur als globale Intermittenz bezeichnet wird. In dieser Arbeit wird die SG
untersucht, indem ein detaillierter Vergleich mit der gut untersuchten neutral geschichteten
atmosphärischen Grenzschicht angestellt wird. Die hier untersuchten Datensätze stammen
aus der Arbeit von Ansorge (Dissertation, Springer 2016). Sie verwendeten eine vereinfachte
physikalische Konfiguration, nämlich eine Ekman-Strömung über einer glatten Wand, bei der
bekanntlich jenseits einer bestimmten Stabilität eine globale Intermittenz auftritt.

Vergleiche zwischen beiden Regimen werden mit Hilfe kohärenter Strukturen, insbesondere
ihrer Geometrie, durchgeführt. Wurde die von Robinson (Dissertation, Stanford 1991) einge-
führte Klassifizierung von Grenzschichtstrukturen erwendet, die im Folgenden als Robinson-
Strukturen bezeichnet werden, um die verschiedenen in der Literatur identifizierten Strukturen
in geordneter Weise zu untersuchen. Es wird ein Rahmen für die Charakterisierung der
Geometrie von Robinson-Strukturen entwickelt. Einzelne Strukturen werden aus Skalarfeldern
extrahiert, und die nichtlokale Methodik von Bermejo-Moreno und Pullin (J. Fluid Mech.
2008) wird verwendet, um eine Struktur als tropfen-, röhren oder blattartig zu klassifizieren.

Anschließend wird der Rahmen auf Strukturen angewandt, die sich aus momentanen
neutralen und stabil geschichteten Ekman-Strömungsfeldern mit zunehmender Stabilität
ergeben. Die geometrische Charakterisierung zeigt, dass die Strukturen unabhängig von der
Stärke der Schichtung mäßig gestreckt röhrenförmig oder mäßig bis stark gestreckt blattförmig
sind. Die aus der geometrischen Charakterisierung abgeleiteten Schlussfolgerungen werden auch
mit denen verglichen, die sich aus der bedingten Ein-Punkt-Statistik ergeben. Zu diesem Zweck
wird eine neue Definition des Intermittenzfaktors auf der Grundlage kohärenter Strukturen
vorgeschlagen.

Da die globale Intermittenz bekanntermaßen eine räumlich-zeitliche Variabilität aufweist,
kann sie sich auf die Dynamik kohärenter Strukturen auswirken, was zu Veränderungen ihrer
Geometrie führen kann. Der Rahmen wird durch die Hinzufügung eines regionenbasierten
Verfolgungsverfahrens modifiziert, und die Robinson-Strukturen werden zeitlich verfolgt, wobei
zeitliche Veränderungen ihrer Geometrie aufgezeichnet werden. Diese Ergebnisse deuten eben-
falls darauf hin, dass die Geometrie in allen Fällen der Ekman-Strömung überwiegend röhren-
und flächenförmig ist. Das Vorhandensein von nicht-turbulenten Strömungsfeldern, die sich über
die gesamte vertikale Länge der Strömung erstrecken, verändert die räumliche Organisation
der kohärenten Strukturen und ist besonders bei haarnadelartigen Wirbelstrukturen sichtbar,
deren Häufigkeit mit der Stabilität zunimmt, und bei der stärksten Schichtung scheint der
Kopfbereich dieser Strukturen in den turbulenten Teile in ähnliche Richtungen ausgerichtet zu
sein. Schließlich werden die Ausrichtung und Häufigkeit haarnadelartiger Strukturen untersucht.
Ersteres wird mit einem neuartigen Verfolgungsschema untersucht, das die Beschränkung der
Verwendung eines zeitlich konstanten Schwellenwerts überwindet, indem die Schwellenwerte
dynamisch angepasst werden, so dass das Merkmal im Laufe der Zeit frei wachsen oder
schrumpfen kann, und letzteres mit einem schlanken Wirbelfadenansatz.
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4.6 In the top panel, isosurfaces of a tracked high-speed streak are visualized at
different viscous times. The bottom panel shows the temporal evolution of
the geometry of the same high-speed streak until t+ = 9.24. The black circle
surrounding the marker indicates the viscous time t+ = 8.54 when the structure
being tracked merges with a larger one. . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Contour lines of the joint p.d.f. of λ, Ĉ (left) and Ŝ, Ĉ (right) are shown for all
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1
Background and introduction

The idea is that they [coherent structures]
are regions of space and time (significantly
larger than the smallest flow or turbulence
scales) within which the flow field has a
characteristic coherent pattern.

Stephen B. Pope, Turbulent flows, 2001

It is well known that the study of turbulence is important in science and engineering.
Turbulent flows can be encountered over a vast range of scales, from astrophysical and
geophysical phenomena to the flow past an aircraft wing, reactive flow through combustion
engines etc. The atmospheric boundary layer (ABL), which is the lowest part of the atmosphere
that humans primarily interact with, is also turbulent. It governs the vertical exchange of
meteorologically relevant variables such as momentum, heat and moisture between the Earth’s
surface and the free atmosphere (Nieuwstadt and Duynkerke, 1996). Realistic models of ABL
representing all major physical processes in the atmosphere are necessary for numerical weather
prediction and climate simulations (Garratt, 1994). However, to build accurate models, the
intricacies associated with ABL turbulence need to be thoroughly understood.

The overarching goal of this thesis is to improve our knowledge of ABL turbulence,
particularly in the very stable regime where turbulence is weak. This is accomplished with
the help of coherent structures whose geometry and dynamics are compared for increasing
stability. This chapter is organized as follows: a brief introduction to the ABL is first presented
in section 1.1. This is followed by a discussion on the complexity of turbulence in the stable
boundary layer (SBL) in section 1.2. Section 1.3 presents the approach employed to studying
the ABL. Details of the simulation datasets analysed in this thesis are discussed in section 1.4.
The research objectives, outline of the thesis and related posters/paper/preprints generated
during the course of this work are presented in the rest of the chapter (sections 1.5 - 1.7).

1.1 The atmospheric boundary layer

The ABL is a part of the atmosphere which is in direct contact with the Earth’s surface,
resembling a wall-bounded flow. It is formed due to the combined action of turbulent friction
from the wall (surface) and the Coriolis force as a result of the rotation of the Earth (Monin,
1970). Although it shares many similarities with canonical examples in fluid mechanics such
as flat plate boundary layers (FPBL) and channel flows, there are two key differences:
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1. Background and introduction

Figure 1.1: The Atmospheric Boundary Layer highlighted by naturally generated fog showing
intermittent patches. The picture is an own work of the author captured in Gif-sur-Yvette, France.

• The ABL is influenced by the Coriolis force where the mean wind direction turns towards
the right (northern hemisphere) or left (southern hemisphere) with increasing height
(Cermak, 1971).

• Strong heating or cooling, corresponding to daytime or nocturnal conditions respectively,
at the surface causes density variations penetrating throughout the ABL and turbulence
is affected through buoyant forces.

Thus, the ABL can be thought of as a rotating, stratified turbulent boundary layer. Its
height is determined by the capping inversion atop within which the flow is statistically stable
and turbulent motions from below do not penetrate. This height varies between 0.2 km under
nocturnal conditions up to 2 km during daytime conditions (Garratt, 1994). This large length
scale implies that ABLs typically have large Reynolds numbers on the order of 106 − 108

which is significantly higher than that which is achievable today in laboratory experiments or
numerical simulations of the boundary layer (Hommema and Adrian, 2003).

A source of complexity in studying the ABL stems from the diurnal cycle of surface heating
and cooling. For instance, when the surface gets heated during daytime, it causes the air to
rise up due to buoyancy resulting in strong mixing away from the surface. This is commonly
referred to as the unstably stratified ABL or convective boundary layer (CBL). Absence of
buoyancy effects results in a neutrally stratified ABL within which turbulence is essentially
shear-driven and shares many similarities with the canonical FPBL (Fang and Porté-Agel,
2015). On the other hand, when the surface is sufficiently cooled relative to the free atmosphere,
the density stratification is stable and turbulence is weak or intermittent (Van de Wiel et al.,
2012). This is referred to in the literature as the stable atmospheric boundary layer (SBL).
Often, a distinction is made between the weakly stable boundary layer (WSBL) and the very
stable boundary layer (VSBL) (Malhi, 1995; Ohya et al., 1997; Mahrt, 1998b). The former
is regarded as the “textbook” SBL which is known to occur during windy and/or cloudy
conditions and for which surface cooling is relatively slow. Turbulence in this regime is more
or less continuous and it has a well-defined height (Mahrt, 1998a). Along with the CBL and
near-neutral ABL, the WSBL has been extensively investigated through field measurements

2



1.2 Turbulence and global intermittency in the SBL

(e.g., Willis and Deardorff (1974), Willis and Deardorff (1979), Schmidt and Schumann (1989),
and Lenschow et al. (1988)) and numerical simulations (e.g., Mason (1989), Lin et al. (1996),
and Deusebio et al. (2014)).

The latter regime, VSBL, is characterized by weak winds and relatively stronger radiative
cooling at the surface. The turbulence can be weak or virtually absent and is generally
accompanied by the occurrence of non-turbulent patches even close to the surface (Mahrt,
1998a; Van de Wiel et al., 2012; Ansorge, 2016). In such cases, it may be difficult to define
the boundary layer depth as turbulence may be generated by vertical shear above the surface
inversion layer and then brought down to the surface. Therefore, numerical models requiring
the depth may not be very successful (Smedman et al., 1993; Mahrt, 1998a; Mahrt and
Vickers, 2003). Furthermore, the well-established Monin–Obukhov similarity theory (MOST)
for the surface layer, which relates the flux-gradient relationship to the stability parameter in
stationary flow over horizontally homogeneous surfaces, is applicable from unstable to weakly
stable conditions but breaks down under strong stability (Ha et al., 2007; Optis et al., 2014).
Optis et al. (2016) associated this breakdown to the increasing impact of the Coriolis force
under weak turbulence and frequent low-level jets. Since the SBL is important for numerous
applications such as numerical weather prediction which relies on MOST (Atlaskin and Vihma,
2012), modeling gas dispersion events (Sharan and Gopalakrishnan, 1997), understanding
the Arctic climate system (Kral et al., 2021), and studying global warming trends which are
seemingly pronounced during night time (McNider et al., 2010), an improved understanding of
the underlying physical processes and dynamics can pave the way for newer parameterizations.
The SBL, which is the object of research in this thesis, is investigated by establishing a detailed
comparison with the well-studied neutrally stratified ABL.

1.2 Turbulence and global intermittency in the SBL

Apart from the presence of non-turbulent patches, turbulence in the SBL is accompanied by
complex events such as microfronts (Mahrt, 2010), internal gravity waves (Sun et al., 2004),
density currents (Sun et al., 2002), solitary waves (Terradellas et al., 2005), wave-turbulence
interactions (Sun et al., 2015) and other complex modes which are grouped under the umbrella
term “submeso motions”. Mahrt (2014) suggests that submeso motions refer to any non-
turbulent motions which are less than 2 km in size. Under atmospheric conditions, the presence
of these motions along with orographic obstacles lends to further complexity in studying the
SBL. Therefore, one can choose a simplified physical configuration such as the Ekman flow over
a smooth wall, where effects of both stratification and rotation are present without complex
orography, as indicated in the work of Ansorge and Mellado (2014) and Shah and Bou-Zeid
(2014b).

As mentioned previously, the SBL is characterized by intermittent turbulence featuring
brief episodes of turbulence interspersed with relatively weak or unmeasurable fluctuations
(Van de Wiel et al., 2002). This intermittency tends to occur on scales larger than the coherent
eddies and is classified by Mahrt (1989) as global intermittency. An example can be seen
from figure 1.2(b) which shows a horizontal vorticity magnitude (ω) slice of the strongly
stratified Ekman flow simulation. The dark regions signify little to no turbulent activity. This
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Figure 1.2: Horizontal vorticity magnitude slices normalized with its RMS over that slice are
shown here at y+ ≈ 100 ((·)+ indicates wall units) for 1/6 of the full simulation domain. (a, b,
c, d) correspond to the neutrally stratified case N and the stably stratified cases S_1, S_2, S_3
respectively. All simulation cases are described in table 1.3.
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1.2 Turbulence and global intermittency in the SBL

intermittency is different from the small or fine scale intermittency which occurs within larger
eddies themselves. Through observations, it was previously suggested that globally intermittent
turbulence is due to external triggering mechanisms including orographic obstacles, wind gusts,
density currents and other submeso motions (Acevedo and Fitzjarrald, 2003; Sun et al., 2012).
However, with the direct numerical simulations (DNS) of Ekman flows, Ansorge and Mellado
(2014) found that global intermittency can manifest without any external perturbations and
suggested that it is an intrinsic property of the SBL which will occur beyond a certain stability.
This indicates the suitability of this flow configuration for our study and the DNS database of
Ansorge (2016) is described in section 1.4.

The demarcation of the flow into turbulent and non-turbulent regions was already
investigated by Townsend (1948) in the wake of a circular cylinder. This was facilitated
with an intermittency factor, denoted by γ. Pope (2001), Bisset et al. (2002), Da Silva et al.
(2014), and Ansorge and Mellado (2016) suggest a vorticity-based γ to separate the turbulent
(rotational) and non-turbulent (irrotational) regions. While applying this to an instantaneous
Ekman flow field, Ansorge and Mellado (2016) note that the use of vorticity magnitude ω

works well for the outer layer of neutrally stratified flows but has issues close to the wall
for globally intermittent flows. A well-known drawback of ω is producing false-positives in
shear dominated regions (Lugt, 1979). This means that γ will be close to 1, near the wall,
indicating that the flow is more or less turbulent. Ansorge and Mellado (2016) proposed the
use of high-pass filters to overcome this issue and found that γ > 0.8 even for the strongly
stratified case at their chosen threshold. A recent review by Günther and Theisel (2018)
suggests numerous ‘indicators’ to identify vortex (rotational) regions within the flow, some
of which avoid the drawback of ω (a comprehensive list can be seen in table 1 of Günther
and Theisel (2018)). The applicability of these indicators and their subsequent impact on γ

are examined in this thesis. Furthermore, a framework is developed in chapter 2 to select
a non-subjective threshold value. This allows us to quantify the near-wall effects of global
intermittency under stably stratified contexts of the flow. Later in the thesis, evidence is
provided that global intermittency has a direct impact even in the viscous sublayer where the
flow is locally laminar. This is of immediate relevance to improve wall models of large eddy
simulation (LES) in which, typically, the first grid point is well above the viscous sublayer
(Chauhan et al., 2013).

Separation of the flow into turbulent and non-turbulent sub-volumes also allows for a
direct comparison of turbulence within a turbulent patch under stable stratification and
the continuous turbulence from neutral stratification. With conditional one-point statistics,
Ansorge and Mellado (2016) concluded that the morphology of turbulence within the turbulent
patches remains unchanged regardless of the strength of stratification but the proportion
of turbulent fraction changes resulting in order one changes in the conventional statistics.
This leads them to suggest the use of a factorized parametrization where γ, expressed as
a function of the Obukhov length1, can be used with the standard approach for modelling
the WSBL to determine bulk properties of the flow. However, it should be noted that the
conditional analyses of Ansorge and Mellado (2016) pertain to instantaneous snapshots of the

1The Obukhov length scale is written as L = θ̄uτ /κg(vθ̄)0 where θ̄ is the mean temperature, uτ is the friction
velocity, κ = 0.41 is the von Kármán constant, g is acceleration due to gravity and (vθ̄)0 is the kinematic surface
heat flux.
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1. Background and introduction

flow. Analyses of turbulent heat flux from field data in the past have already established the
temporal variability of global intermittency (Poulos et al., 2002; Van de Wiel et al., 2002). To
the author’s knowledge, it is currently unknown if the morphology of turbulence within the
turbulent patches remains unchanged in time. This is investigated in chapter 4 of this work.

1.3 A structure-based approach to study the ABL

One approach to comparing the neutral and stably stratified contexts of the ABL can be
accomplished by comparing the geometry of coherent structures or patterns observed within
the flow. For instance, Belušić and Mahrt (2012) compared the frequency of occurrence of
four predefined patterns (sine, step, ramp-cliff and cliff-ramp) in time series of wind speed and
temperature between stable and unstable conditions of the atmospheric boundary layer. They
found that large-scale coherent structures were more common under stable conditions than
under unstable conditions and speculated that these differences could be attributed to the
preference of horizontal and vertical growth of perturbations respectively. Although coherent
structures such as the hairpin vortex have been proposed much earlier (Theodorsen, 1952),
the structural view of turbulence started to gain momentum since the pioneering work of
Kline et al. (1967) who experimentally revealed the existence of wall streaks in turbulent
boundary layers. Studies focusing on the neutrally stratified ABL found structures similar
to those observed in flat plate boundary layers (FPBL) such as low-speed streaks, sweeps,
ejections, hairpin vortices and large-scale motions (Hommema and Adrian, 2003; Carper and
Porté-Agel, 2004; Huang et al., 2009a; Inagaki and Kanda, 2010; Li and Bou-Zeid, 2011; Fang
and Porté-Agel, 2015). However, it can be expected that the structures under stable and
unstable conditions may be different as they can be modulated by the surface buoyancy flux. In
fact, through smoke visualization experiments, Hommema and Adrian (2003) found ramp-like
structures (which are interpreted as hairpin packets) under neutral conditions and thermal
plumes under unstable conditions. Li and Bou-Zeid (2011) linked this change in topology of
the coherent structures to the reduction in momentum transport efficiency with increasing
instability.

In the other limit, i.e., under stable conditions, reviews by Hopfinger (1987) and Mahrt
(2014) suggest the coexistence of internal waves and quasi two-dimensional modes with
little vertical coherence, thereby hinting at pancake-like structures. However, recent results
obtained from the DNS of stably stratified shear layers indicate the presence of hairpin vortices
(Watanabe et al., 2019; Jiang et al., 2022). A systematic and detailed comparison on the
geometry of coherent structures can not only help clarify the type of geometries observed but
also how they change under increasing stability.

Before a method to determine the geometry of coherent structures is chosen, an important
question needs to be addressed: “what are coherent structures?”. To date, there is no generally-
accepted definition of a coherent structure. Previous attempts include,

• Fiedler (1988): “.. a flow structure with discernible correlation, i.e., an element of
turbulent motion which is set off against the stochastic background and which by its
repetitive specific properties characterizes a specific flow.”
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1.3 A structure-based approach to study the ABL

• Robinson (1991): “a three-dimensional region of the flow over which at least one
fundamental flow variable such as velocity component, density, temperature, etc. exhibits
significant correlation with itself or with another variable over a range of space and/or
time that is significantly larger than the smallest local scales of the flow”.

• Pope (2001): “.. they are regions of space and time within which the flow field has a
characteristic coherent pattern”.

A common element among all three definitions is that they are too general and do not
point to any particular structure identified through flow visualization experiments. The vast
literature on boundary layers presents a zoo of coherent structures educed through various
means, for instance, wall streaks (Kline et al., 1967), sweeps and ejections (Wallace et al., 1972)
and hairpin vortices (Head and Bandyopadhyay, 1981). Therefore, it is useful to categorize
these structures in various classes and use that as a starting point to studying the ABL. Two
existing classifications of boundary layer structures are the Fiedler (1988) classification and the
Robinson (1991) classification. As seen from table 1.1, most coherent structures are common
between the two classification systems with the addition of shear layers and backs in the
Robinson classification. In this thesis, the latter classification is used to study the ABL in an
organized manner.

Several methods exist in the literature to determine the geometry of three-dimensional
coherent structures. For instance, with a classical box-counting technique, Moisy and Jiménez
(2004) studied intense structures2, i.e., structures that exist at large thresholds extracted
from scalar fields of vorticity magnitude and strain-rate magnitude in isotropic turbulence.
They found that these structures had a mean fractal dimension of 1.1 ± 0.1 (filament-like
geometry) and 1.7 ± 0.1 (sheet- or ribbon-like geometry) corresponding to vorticity structures
and strain-rate structures respectively. Since the mean fractal dimension presents only a
rough indication of the type of geometry, they further defined three characteristic lengths
(r1, r2, r3) for each structure and calculated two dimensionless aspect ratios (r1/r2, r2/r3).
These aspect ratios allowed them to relate the structures to four ideal objects namely, sphere
(1, 1), tube (1, 0), ribbon (0, 0) and sheet (0, 1). The results of this geometrical analysis were
found to be consistent with the mean fractal dimension indicating tube-like geometry for
intense vorticity structures and ribbon-like or sheet-like geometry for strain-rate structures.
The same box-counting technique was also used by Schumacher et al. (2005) who found that
intense regions of the scalar dissipation in isotropic turbulence had a fractal dimension close
to 2, indicating sheet-like geometry. However, this is a global measure which was applied over
the entire scalar field.

Bermejo-Moreno and Pullin (2008), on the other hand, applied a non-local, multi-scale
methodology to characterize the geometry of structures from a passive scalar field of isotropic
turbulence. Iso-surfaces of individual structures were extracted with the help of a curvelet
transform from the largest to the smallest scales and three parameters were used to characterize
their geometry namely, shape index (Ŝ), curvedness (Ĉ) and stretching (λ). Since shape index
and curvedness are local properties, i.e., they are obtained at all points of the surface, a

2Moisy and Jiménez (2004) defined a structure as a set of connected points satisfying a threshold. They
extracted individual structures with a neighbor scanning procedure which visits all points in the scalar field
that satisfies the threshold and groups together points having neighbors.
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feature center (weighted mean) for the area-based joint probability density functions of those
local properties were calculated which enables the local to non-local transition. Depending
on their position within a three-dimensional feature space composed of these parameters, the
structures can be related to blob-like (1, 1, 1), sheet-like (Ŝ, Ĉ ≈ 0, λ) or tube-like (0.5, 1, λ)
geometries. They found a transition in geometry of structures from blob-like at the largest
scale to tube-like at moderate scales to sheet-like at the smallest scales. This method is more
precise as the geometry is determined from the surfaces of the extracted individual structures
rather than from the aspect ratios of the embedding as was done in Moisy and Jiménez (2004).
In this thesis, this non-local methodology, without the multi-scale decomposition, is used to
study the geometry of Robinson structures in the ABL.

1.4 Simulation database

The datasets analysed in this thesis were inherited through the work of Ansorge (2016). In
their set-up, the atmospheric boundary layer (ABL) is represented with a simplified physical
configuration, i.e., a turbulent Ekman flow over a smooth, flat wall. This describes the flow
over a smooth, flat, rotating plate with a temperature difference between the wall and the free
stream.

The governing equations are the Navier-Stokes equations for an incompressible, rotating,
stratified viscous fluid which are solved in the Boussinesq limit, so that density variations are
neglected except when acted upon by gravity. This leads to the following simplified set of
equations (Ansorge and Mellado, 2014),

∂ui, v

∂t
= −uj

∂ui

∂xj
+ ν

∂2ui

∂x2
j

− ∂π

∂xi
+ fϵi3k(uk − Gδk1) + bδi3 (1.1a)

∂b

∂t
= −uj

∂b

∂xj
+ κH

∂2b

∂x2
j

(1.1b)

∂ui

∂xi
= 0 (1.1c)

where ui,i∈{1,2,3} are the velocity components, b = gθ/θ0 is the buoyancy. θ is the potential
temperature, θ0 is a reference temperature which is constant and g is gravity. The buoyancy
b = 0 under neutral stratification. π = p/ρ0 is the pressure where ρ0 is the reference density, ν

is the kinematic viscosity, κH is the diffusivity, G is the geostrophic wind velocity magnitude
and f is the Coriolis parameter. Here, the f-plane approximation is applied with f = 2Ω sin Φey

where Ω is the Earth rotation rate, Φ is the latitude and ey is the vertical unit vector. This
corresponds to a system which is subjected only to a vertical rotation rate with an intensity
Ω sin Φ. For the lower and upper boundary, no-slip and free-slip conditions are implemented
which represent a wall and the free stream, respectively. The domain is doubly periodic in the
horizontal directions to capture the largest, relevant turbulent structures.

In the neutrally stratified case, once turbulence has fully developed, the flow is governed
by the quantities G, f, ν, κH . The Coriolis parameter f is replaced by the laminar Ekman
layer depth D =

√︁
2ν/f in the dimensional analysis. The corresponding Reynolds number

is defined as Re = GD/ν and the Prandtl number Pr = ν/κH is set to 1. The Ekman flow
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Fiedler (1988) classification Robinson (1991) classification
Wall region only:
Wall streaks: These are regions of alternating low- and high-speed fluid seen close to the
wall (up to y+ = 40) of a turbulent boundary layer. They are known to have a streamwise
extent of more than 1000 viscous units.
Pockets: These are predominantly circular regions observed in the wall region of the
boundary layer. They are thought to be the imprint of an outer layer structure which
induces wallward flow.

Wall and outer region:
Ejections (bursts): The wall streaks which often lift-up away from the wall are termed
ejection motions. These structures show less coherence than wall streaks and several
ejections may emanate from a single low-speed streak.
Sweeps: The fluid pumped outwards during ejection activity is balanced by wallward
motions named sweeps. These structures along with ejections are known to have a significant
contribution to the Reynolds shear stress.
Vortical structures (eddies): The term “eddy” implies an inherently (whirling) vortical
motion. Although there is a lack of a rigorous, accepted mathematical definition of a vortex,
structures having a hairpin, arch or cane-like geometry are often identified in wall-bounded
flows. These structures are thought to play a central role in the production of turbulence.
Large-scale motions (bulges): Existing at the interface of the boundary layer and the
free stream, these structures are characterized by relatively weak vorticity in the mean flow
direction. Often, these structures are known to span 2 − 3 times the boundary layer height
in the streamwise direction.

—

Near-wall shear layers: Long, sloping,
shear structures have been identified in re-
gions close to the wall (y+ < 80). They are
known to retain coherence of 1000 viscous
units and can be seen on the upstream side
of a low-speed streak.

—

Backs: Near-wall shear layers which extend
further outward in the outer layer are cat-
egorized as backs. Although these δ- scale
structures (here, δ is the mean boundary
layer thickness) have been reported in pre-
vious studies, it is unclear if the distinction
between these two structures is useful.

Table 1.1: A comparison of the classification of boundary layer structures presented by Fiedler
(1988) and Robinson (1991).
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1. Background and introduction

Case uτ

N 0.052826
S_1 0.047248
S_2 0.0482142
S_3 0.0471626

Table 1.2: Friction velocity calculated for an instantaneous time step for all cases.

reaches steady state due to the balance of turbulence production due to shear and turbulence
suppression as a result of rotation and this steady state solution in terms of a statistical
description of turbulence is a function of Re only (Ansorge and Mellado, 2016). After the flow
becomes turbulent, the laminar Ekman depth D cannot be used to describe the flow and the
boundary layer height under neutral conditions δh = uτ /f (determined through averages over
the last inertial period) is used instead. The Reynolds number becomes,

Re = Gδh

ν
(1.2)

and
u2

τ = ν
∂

√︁
⟨u⟩2 + ⟨v⟩2

∂z

⃓⃓⃓
y=0

(1.3)

is the corresponding friction velocity. Ansorge (2016) notes that uτ is not a fixed parameter in
the simulation and exhibits a weak dependence on Re. Therefore, uτ is calculated a posteriori
for an instantaneous time step with (1.3) and listed in table 1.2 for all cases analysed in
this thesis. For the neutrally stratified case, Re= 26 450. It should be noted that the fully
turbulent, statistically-steady and neturally-stratified Ekman flow is used as an initial condition
to simulate the stably stratified cases. A fixed surface buoyancy is used which is imposed via
a Dirichlet boundary condition,

b(x, y = 0, z, t > 0) = 0, b(x, y = ymax, z, t > 0) = B0 (1.4)

where B0 is the buoyancy difference between the wall and free stream. Since the Froude
number is described as Fr = G2/(B0D), where D is the laminar Ekman depth, it looses
relevance once the flow becomes turbulent. Hence, the global bulk Richardson number defined
as,

RiB = B0δh

G2 (1.5)

is used instead. The initial buoyancy profile is given by an error function in the wall-normal
direction (see equation (2.14) of Ansorge (2016)). For stronger stratification, cases with
intermediate stratification are used as an initial condition and the buoyancy field is multiplied
by some value to match the required bulk stratification. In all simulations, the horizontal
domain size, expressed in terms of the neutral reference, is 20.4 × 20.4δh. A high-order finite-
difference scheme was used to integrate the governing equations on a structured, collocated grid
composed of 3072×512×6144 points along the streamwise, wall-normal and spanwise directions

10



1.5 Research objectives

Case Line specification RiB Fr Re Lx Ly L+
x L+

y

N ———– 0 ∞

26 450 20.4δ 20.4δ 28 620 28 620
S_1 ............ 2.64 0.02
S_2 - - - - - - - 0.76 0.07
S_3 – — – — 0.58 0.09

Table 1.3: The various cases analysed in this thesis are listed here. Cases with the prefix S refer
to stratified flows and N corresponds to the neutrally stratified case. Reynolds number can be
defined with δh and the laminar boundary layer depth. The value of the former case is shown here.
If we define Re with the latter, then the value is 1000. Further simulation details can be found in
Ansorge and Mellado (2016).

respectively. The grid is unequally spaced in the wall-normal direction with ∆y+ ⃓⃓
y=0 = 1.15

and ∆y+⃓⃓
y≈3δh

= 45.31. (·)+ indicates viscous or wall units,

y+ ≡ yuτ

ν
(1.6)

The time integration was carried out with a fourth-order Runge-Kutta algorithm. All
simulations and their parameters are summarized in table 1.3. The database is composed
of a neutrally stratified case, henceforth denoted N and three stably stratified cases which
are denoted S_1, S_2, S_3. Although the stably stratified cases have different global bulk
Richardson numbers, analysis of the time evolution of vertically integrated turbulent kinetic
energy (TKE) suggests that all three cases fall under the very stable regime (Ansorge, 2016). In
this regime, turbulence nearly dies out which is evident from figure 1.2(b, c, d) and subsequently
recovers. The intensity of turbulence also reduces with increasing height and beyond a certain
point is unaffected by stratification and decays slowly. This type of decaying turbulence is most
commonly observed in nocturnal atmospheric boundary layers (Stull, 1988) which suggests the
suitability of these simulations to study stable boundary layers.

For convenience, results are communicated with three horizontal grid sizes as indicated in
figure 1.3. Grid A represents the entire computational domain whereas grids B and C show
1/3 and 1/6 of the domain respectively.

1.5 Research objectives

In his review paper, Mahrt (2014) points out that the very stable regime of the ABL is
poorly understood due to reasons including but not limited to, “..complex interactions between
turbulence and wave-like and other submeso motions”. As a result, under strong stratification
where the flow is globally intermittent, assumptions made for common turbulence closures
break down. Therefore, to pave the way for newer parametrizations, a detailed comparison is
established with the Ekman flow datasets under stable and neutral stratification. This forms
the starting point for our research. To enable this comparison, the flow is decomposed in
terms of its coherent structures which can be extracted for further analysis. An immediate
question that follows is “what are coherent structures?”. As elucidated in section 1.3, coherent
structures are generally understood as characteristic patterns that persist in space and time.
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1. Background and introduction

a

b
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d

Grid A

Grid B

Grid C
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z

6
8
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28620+

9540+

4770+

Figure 1.3: The schematic shows the three types of grids - A, B and C used in the paper. x, y, z
correspond to the streamwise, wall-normal and spanwise directions respectively. (·)+ indicates
viscous units as described in (1.6).

Although coherent structures lack a precise mathematical definition, the literature on boundary
layers identifies numerous types of structures educed through various scalar criteria. The
classification of boundary layer structures developed by Robinson (1991), henceforth called
Robinson structures, is used to study them in an organized manner. Our first objective is as
follows,

(1) Identify suitable scalar indicators for the eight categories of Robinson structures listed
in table 1.1.

The identified scalar indicators are listed in table 2.1 and they are grouped as quantitative
and qualitative. With quantitative structures, the three-dimensional scalar field is thresholded
and individual structures can be extracted while qualitative structures are only observable
through visualization. For the former group of structures, a threshold needs to be chosen
first. As noted by Green et al. (2007), an important issue when dealing with any Eulerian
(where structures are identified through quantities derived from instantaneous velocity fields)
criteria is its reliance on a subjective, user-defined threshold value. Apart from this, once the
structures have been extracted at some threshold for increasing stratification, a methodology
needs to be developed to establish a comparison. Therefore, our second objective is,

(2) Develop a non-subjective method for choosing a threshold value pertaining to wall-
bounded flows and subsequently, a methodology to compare the extracted structures for
increasing stratification.

The methodology used for selecting non-subjective threshold values is discussed in section
2.3. This is based on the work of Del Álamo et al. (2006) who proposed a systematic way to
partition the flow by identifying the region of ‘percolation’ transition between two threshold
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1.5 Research objectives

limits. This defines a threshold which retains most of the enstrophy3 and still identifies
individual structures (Jiménez, 2018). However, it is shown in subsection 2.3.1 that this
method does not work well under strong stratification as choosing a single global threshold
value tends to identify a large cluster of structures as an individual structure (see figure 2.14).
This leads to a subsidiary objective,

(2a) Modify the percolation analysis methodology such that individual structures can be
educed for strongly stratified flows.

Once the thresholds are identified, individual structures are extracted with the neighbor
scanning algorithm of Moisy and Jiménez (2004) which is extended with the marching cubes
algorithm (Lorensen and Cline, 1987) to ensure accurate extraction even at smaller thresholds
(see the issue pointed out in figure 2.6). Accurate structure extraction is necessary due to the
method employed to compare the extracted structures. The method is as follows: first, the
noise-like structures having a fractal dimension less than 1 are filtered out. The remaining
structures are geometrically characterized with two local (i.e., at all points on the surface of
the structure, thereby necessitating the accurate structure extraction) differential-geometry
parameters and a global parameter as shown in Bermejo-Moreno and Pullin (2008). By
calculating area-based probability density functions, the local properties are made non-local.
These three parameters broadly classify whether a structure is tube-like, sheet-like or blob-like
depending on its location within a three-dimensional visualization space composed of these
parameters (see figure 2.21). As elucidated before, the choice of geometry-based classification is
motivated from the literature wherein changes in the geometry of coherent structures have been
reported from eddies under neutral conditions to thermal plumes under unstable conditions
(Hommema and Adrian, 2003). Under strong stratification, reviews by Hopfinger (1987) and
Mahrt (2014) note the coexistence of internal waves and horizontal two-dimensional modes
suggesting (pancake-) sheet-like geometry having little vertical coherence. This leads to the
third objective,

(3) Determine if geometry of the quantitative Robinson structures become sheet-like with
increasing stability.

Apart from changes in geometry, studies by Hommema and Adrian (2003) and Carper and
Porté-Agel (2004) suggest an increase in the inclination angles of hairpin vortex structures
with increasing instability. A related objective is therefore,

(3a) Identify the changes in the inclination angle of hairpin structures with increasing stability.

The geometry of Robinson structures are compared under increasing stability in section
3.1 by dividing the flow field into four layers: viscous sublayer, buffer, inner and outer layers.
Results show that similar geometrical features for all quantitative Robinson structures could
be seen for both neutrally stratified and stably stratified cases. This is plainly emphasized in
figure 3.22 and suggests no inclination towards sheet-like geometry with increasing stability.
However, the presence of non-turbulent patches (due to global intermittency) which extends

3Enstrophy determines the rate of dissipation of kinetic energy and for a viscous, incompressible flow is
defined as E(u) =

∫︁
Ω |ω(x)|2dx where Ω is the domain and ω is the vorticity vector (Foias et al., 2001).
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1. Background and introduction

throughout the flow and even affects the viscous sublayer (see figures 3.1(b) and C.1(a, b))
in which the flow is locally laminar, has an impact on the spatial organization of coherent
structures. Previous time series analysis, for instance by Van de Wiel et al. (2002), show that
global intermittency alternates between strongly turbulent and non-turbulent periods, thereby
exhibiting temporal variability. This spatio-temporal variability of the global intermittency
may have an impact on the dynamics and therefore, the geometry of coherent structures. This
leads to the fourth objective,

(4) Starting from the instantaneous Ekman flow fields analyzed for objective (3), identify if
there are changes in the temporal evolution of the geometry of coherent structures for
increasing stability by tracking them in time.

While investigating the inclination angles of hairpin-like structures, some interesting
characteristics pertaining to these structures can be observed. Even though these structures
are present for all cases, an abundance of them confined to the turbulent patches of the flow,
most of which are oriented in a similar direction, can be seen for the strongly stratified case.
While hairpin-like structures have been reported in previous works under stable stratification
(Oncley et al., 2016; Watanabe et al., 2019), the source of their abundance and similar
orientation, to the author’s knowledge, have not been examined. Furthermore, dynamical
aspects of hairpin-like structures are relatively unexplored for stratified flows but have been
extensively studied for unstratified fluid flows (see Moin et al., 1986; Acarlar and Smith, 1987;
Hon and Walker, 1991; Zhou et al., 1996; Zhou et al., 1999; Adrian et al., 2000). These studies
show that once the hairpin structures lift-up due to self-induction from their initial state, they
are stretched by the mean background flow as they are advected downstream. This suggests
that the hairpin structure grows in size over time. Since the region-based feature tracking
scheme used for objective (4) cannot capture changes in size of the structure as the same initial
threshold is used for all subsequent time steps, the fifth objective is therefore,

(5) Modify the region-based feature tracking scheme to account for changes in the size of
the structure by altering the thresholds in time. By tracking hairpin-like structures and
their interactions, can the abundance of these structures in the strongly stratified case
be explained?

Although the modified feature-tracking scheme is capable of adapting to the dynamical
changes in the size of the hairpin-like structure, a complete understanding of its dynamics
cannot be achieved. This can be attributed to interactions, specifically split events which
can cause an ambiguity in following the “correct” structure and the use of thresholds which
may not represent the “full” structure (see the discussion in subsection 5.4.1). Moreover,
hairpin-like structures are generally identified and tracked only from a later stage in their
lifetime and therefore, the evolution from their origin is not clear. To alleviate these issues, a
more fundamental approach is sought where the hairpin-like structures are treated as slender
vortex filaments. The sixth and final objective is,

(6) With the filament approach, identify the impact of stratification on the dynamical
characteristics (for instance inclination angles, orientation, streamwise and spanwise

14



1.6 Outline

stretching) of a hairpin filament. By studying these characteristics, can the orientation
of these structures in the strongly stratified case be explained?

At this stage, the intricacies of SBL turbulence are examined with coherent structures
to gain an insight into their geometry and dynamics. The next stage of research would
involve using these results to improve existing/build new parametrizations of the SBL. Possible
directions are discussed in chapter 6.

1.6 Outline

The rest of the thesis is organized as follows. In the subsequent chapter, a means of identifying
the eight classes of Robinson structures with numerous indicators are presented. The Robinson
structures are broadly divided into two categories: quantitative and qualitative. Structures
belonging to the former category can be extracted and geometrically characterized with
a modular framework based on methodology of Bermejo-Moreno and Pullin (2008). The
geometry of the latter category of Robinson structures are qualitatively described. Results
of the geometrical analysis applied to the Ekman flow datasets are shown in chapter 3.
Furthermore, in chapter 3, a novel definition of the intermittency factor based on coherent
structures is proposed for wall-bounded flows. With this definition, the flow is split into
turbulent and non-turbulent subvolumes and one-point statistics are obtained for some of
the quantitative Robinson structures to complement the geometrical analysis. Results from
the geometrical analysis suggests that similar geometrical features can be found regardless
of increase in the strength of stratification, i.e., the negative buoyancy flux does not have
a significant impact on the geometry of coherent structures. This is investigated further
in chapter 4, where the coherent structures are tracked in time with a region-based feature
tracking scheme. The limitation of using a constant threshold in time is overcome by developing
a method capable of altering the thresholds in time. However, since interactions such as split
events can complicate the tracking in DNS datasets, the thin filament approach is used to
understand the motion of hairpin filaments in time in chapter 5. The final conclusions and
outlook are discussed in chapter 6.

1.7 Related works

Some parts and figures of this thesis can be found in the following list of posters, paper and
preprints.

→ The contents and figures of chapters 1, 2 and 3 are based/adopted from the following
posters and preprint.

Harikrishnan, A., Ansorge, C., Klein, R., & Vercauteren, N. (2020). The curious nature
of hairpin vortices. Gallery of Fluid Motion.

Harikrishnan, A., Ansorge, C., Klein, R., & Vercauteren, N. (2021). Geometry and
organization of coherent structures in stably stratified atmospheric boundary layers. arXiv
preprint. arXiv:2110.02253.
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Harikrishnan, A., Ernst, N., Ansorge, C., Klein, R., & Vercauteren, N. (2021). Lagrangian
hairpins in atmospheric boundary layers. Gallery of Fluid Motion.

→ The spatial overlap method used to track Robinson structures in time in chapter 4 is
based on the following preprint.

von Lindheim, J., Harikrishnan, A., Dörffel, T., Klein, R., Koltai, P., Mikula, N., Müller
A., Névir P., Pacey G., Polzin R. & Vercauteren, N. (2021). Definition, detection, and
tracking of persistent structures in atmospheric flows. arXiv preprint. arXiv:2111.13645.

→ The technique of multilevel percolation thresholding in time (MLPT) which is used to
obtain optimum thresholds in time, presented in chapter 4, is adopted from appendix
D of the following paper. Chapter 5 is also largely based on the numerical analysis of
slender vortex filaments discussed in sections I - V and appendices A - C of the following
paper.

Harikrishnan, A., Rodal, M., Klein, R., Margerit, D., & Vercauteren, N. (2023). On the
motion of hairpin filaments in the atmospheric boundary layer. Physics of Fluids, 35 (7).
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2
A framework for the geometrical

characterization of coherent structures

As elucidated in the previous chapter, there is still no widely accepted definition of a coherent
structure. Some of the previous attempts suggest definitions which are too general and do
not identify a particular structure seen in flow visualization studies. Hence, the classification
introduced by Robinson (1991) is chosen to study the different categories of coherent structures
in an organized manner. The geometry of these structures, henceforth referred as Robinson
structures, are used to compare the Ekman flow datasets at different strengths of stratification.
This allows us to understand the changes in geometry of these structures in response to changes
in the strength of stratification. Towards this end, the goal of this chapter is to develop a
methodology to quantify the geometry of individual coherent structures.

An overview and a means of identifying the eight categories of Robinson structures are
presented in section 2.1. These structures, summarized in table 2.1, can be broadly divided
into two major categories namely, quantitative and qualitative. Quantitative structures are
those for which individual structures can be extracted by thresholding scalar fields, whereas
qualitative structures are only observable with visualization and are therefore, not extracted.

To extract individual coherent structures from three-dimensional scalar fields, the neighbor
scanning algorithm of Moisy and Jiménez (2004) is considered. It is seen in section 2.2 that this
algorithm tends to group together two or more individual structures which are closely spaced,
especially at small thresholds. Since this may result in a misclassification of the geometry, a
correction of this algorithm is sought and is presented in subsection 2.2.2.

A criticism frequently pointed out in previous works (Green et al., 2007) is that Eulerian
criteria, for which an instantaneous spatial field is used in identifying coherent structures,
are dependent on subjective, user-defined thresholds. This subjectivity is overcome with the
percolation analysis of Del Álamo et al. (2006) for wall-bounded flows in which a single, global
threshold is computed for the entire flow field. However, as revealed in subsection 2.3.1, this
tecnhique fails for globally intermittent flows in which turbulent and nonturbulent regions
co-exist and therefore a global threshold is insufficient for identifying individual structures.
Therefore, an extension of this method is presented in subsection 2.3.1 in which percolation
analysis is applied in an iterative manner such that individual structures can be extracted at
different thresholds.

Once the individual structures are extracted with non-subjective thresholds, they are
geometrically classified as tube-like, blob-like or sheet-like structures with the non-local
methodology of Bermejo-Moreno and Pullin (2008). An additional step is added to this
method in that structures having a fractal dimension less than 1 are considered noise-like and
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Type Coherent structure Indicator Region Color specification

Quantitative

High-speed streaks u′ > 0 y+ < 40
Low-speed streaks u′ < 0 y+ < 40
Sweeps u′ > 0, v′ < 0 y+ < 1550
Ejections u′ < 0, v′ > 0 y+ < 1550
Vortices 1

2(||Ω||2 − ||S||2) > 0 y+ < 1550
Shear layers |ω| y+ < 80
Backs |ω| y+ < 1550

Qualitative
Pockets streamlines y+ < 5 -
Bulges |ω| y+ < 1550 -

Table 2.1: A summary of coherent structures and their indicators are shown here. The region
column specifies where the dataset is cut in the wall-normal direction.

are excluded from the geometrical analysis. This modified methodology is presented in section
2.4. Together, all of the methods discussed above constitute a framework for the geometrical
classification of individual coherent structures in wall-bounded fluid flows. Results of the
geometrical classification of the Ekman flow datasets described in section 1.4 are discussed in
chapter 3. In chapter 4, individual coherent structures are followed in time and the geometrical
characterization procedure is used to describe changes in geometry during their temporal
evolution.

2.1 Robinson’s taxonomy of boundary layer structures

In this section, a brief overview of the eight categories of coherent structures identified by
Robinson (1991) are discussed and a means of identifying them in data are presented.

2.1.1 Streaks

Through the experimental work of Kline et al. (1967), streaks or wall-layer streaks are known
to exist close to the wall of a turbulent boundary layer. These structures were highlighted with
hydrogen bubbles, which tend to accumulate in regions of slow moving fluid. Such structures
are termed in the literature as low-speed streaks. Kline et al. (1967) also revealed that the
streamwise vorticity resulted in the movement of these structures gradually away from the wall.
At some point, this gradual movement is followed by a ‘breakup’ or ‘bursting’ phenomenon by
which the low-speed fluid is ejected into the outer flow regions. The authors suggest that this
violent bursting process plays an important role in the transfer of momentum between the
inner and outer regions of the boundary layer.

The viscous sublayer region of the boundary layer is also composed of faster moving fluid
regions known as high-speed streaks. Both low-and high-speed fluid regions alternate in a
repeatable manner and are known to have a well-defined spanwise mean spacing of 100+ viscous
units for flat plate boundary layers (FPBL) (Kline, 1978). Kline (1978) also notes that streaks
are clearly visible in FPBLs until y+ ≈ 40. To inspect our dataset in this respect, low-speed
streaks are visualized by computing the streamwise fluctuating velocity and the resulting scalar

18
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Figure 2.1: Isosurfaces of u′ < τp representing the low-speed streaks are shown here. (a, b, c, d)
correspond to the neutrally stratified case N and stably stratified cases S_1, S_2, S_3 respectively.
Computation of τp for low-speed streaks is described in section 2.3. The streaks are visualized for
1/3 of the computational domain until y+ ≈ 1550.

field is thresholded at a value less than 0. As seen from figure 2.1, it is immediately apparent
that the nature of streaks has a strong dependence on the strength of stratification. This is
further discussed in chapter 3. In all four cases, smaller, individual structures are visible close
to the wall. Beyond that, particularly for case S_1, they tend to merge into larger sheet-like
structures that sometimes span the entire domain (as seen in the strongly stratified case S_1).
Since these larger sheet-like structures are not meaningful for the geometrical analysis (as it
requires closed surfaces), the domain is restricted to y+ < 40.

To the author’s knowledge, the structure of the streaks within the viscous sublayer of
ABLs has not been investigated. This is because the ABL is usually studied with LES, for
which the first wall-normal grid point in the domain is far away from the wall such that the
viscous sublayer is not resolved. Khanna and Brasseur (1998) and Jayaraman and Brasseur
(2021) have visualized the three-dimensional structure of the streaks with LES for various
stability states. With increase in the global stability parameter (−zi/L) from neutral state,
i.e., −zi/L = 0, they note that the streamwise coherence of streaks in the surface layer tends to
increase until it reaches a critical value and then starts decreasing monotonically. However, the
visualization from figure 2.1(b), which visualizes 1/3 of the simulation domain, suggests that a
major portion of the domain is composed of a single low-speed streak. Although not visualized
here, the single low-speed streak can be seen spanning the full simulation domain as well. This
presents a need to study the coherence of streaks at different levels of stratification. Drobinski
and Foster (2003) have shown that streaks contribute to surface stress and momentum flux
and emphasize that these effects must be accounted for in ABL parametrizations.
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Figure 2.2: Definition of quadrants of the instantaneous u′v′ plane. Figure adapted from Robinson
(1991).

2.1.2 Sweeps and ejections

With hydrogen bubble experiments, Kim et al. (1971) found that low-speed streaks moving
downstream gradually lift up from the wall in FPBLs. This is followed by a bursting process
after a critical height which is called low-speed-streak lifting or ejection. Complementing the
outward motion of ejections, Corino and Brodkey (1969) observed that a stream of fluid
accelerated downstream to sweep away the ejection activity. With the DNS of a channel
flow, Kim et al. (1987) noted that sweep events were a dominant contributor to the Reynolds
shear stress until y+ ≈ 12 beyond which ejection events took over. Willmarth and Lu (1972)
reported a similar behavior in their study albeit at a height of y+ ≈ 15.

The quadrant-splitting technique of Wallace et al. (1972) in which the product of
instantaneous streamwise and wall-normal velocity fluctuations (u′v′) is split into four categories:
Q1(+u′, +v′), Q2(−u′, +v′), Q3(−u′, −v′), Q4(+u′, −v′), corresponding to outward interaction,
ejection, inward interaction and sweep respectively as shown in figure 2.2. Q2 and Q4 were
meant to identify ejection and sweep structures identified by Kline et al. (1967) and Corino and
Brodkey (1969) respectively. In the ABL, sweeps (or downdrafts) and ejections (or updrafts)
are regarded as the primary constitutive motions to study momentum, heat and mass transport
(see Katul et al. (1997a), Katul et al. (1997b)). The contribution of the sweep-ejection cycle
to scalar and momentum transport is studied with the quadrant technique and conditional
sampling methods in which the four quadrants are considered analogous to four modes of
momentum transport: Q1, Q2 and Q3, Q4 are ejections and sweeps for momentum and scalar
fluxes respectively (Katul et al., 1997a; Katul et al., 2006; Shaw et al., 1983; Li and Bou-Zeid,
2011). In particular, Li and Bou-Zeid (2011) were able to observe a change in the topology of
coherent structures from eddies to thermal plumes with increasing instability. They link this
topological change to an increase in the transport efficiency of both momentum and scalars by
the ejections. In chapter 3, the geometry of both sweeps and ejections are investigated under
stable and neutral stratification.
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Figure 2.3: A vertical slice for the entire wall-normal height of the simulation is shown for (a)
finite-time Lyapunov exponent and (b) vorticity magnitude corresponding to case S_1. T and NT
denote turbulent and nonturbulent regions respectively.

2.1.3 Vortices

Described by Küchemann (1965) as the ‘sinews and muscles’ of fluid flows, vortices and their
identification is important in turbulence. Currently, there exists no universally accepted
definition for a three-dimensional vortex and a vast range of criteria are used to detect these
structures. A comprehensive overview of these criteria can be seen in the review papers of
Cucitore et al. (1999) and Günther and Theisel (2018). Jeong and Hussain (1995) require
that a vortex must possess net vorticity (so as to exclude potential vortex regions having zero
cross-section) and that their geometry must be Galilean invariant. Newer criteria have stricter
requirements such as objectivity or reference frame invariance (Haller, 2015). All criteria
fall under two broad categories - Eulerian criteria involve point-wise characterization of the
velocity gradient tensor (∇v) for every instant in time and Lagrangian criteria follow fluid
particle trajectories.

In a recent work, Lindheim et al. (2021) showed by tracking coherent structures educed
with Q-criterion in ERA 5 reanalysis datasets that Eulerian and Lagrangian techniques provide
useful and complementary results. For instance, while the Eulerian tracking method is able
to detect structures corresponding to the extratropical cyclones ‘Lothar’ and ‘Martin’, the
Lagrangian coherent set approach (Banisch and Koltai, 2017) shows the rapid advection of air
masses around these storms but does not identify the centers of the storms itself. By analyzing
cross-sections of a channel flow, Green et al. (2007) show that the Eulerian Q−criterion and
the Lagrangian finite-time Lyapunov exponent (FTLE) highlight similar regions as vortices
with the latter method having better resolution but at a higher computational cost. In our
test, another Eulerian criteria called vorticity magnitude,

ω = ∇ × v, |ω| > ωthreshold (2.1)
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2. A framework for the geometrical characterization of coherent structures

(a) (b) (c)

Figure 2.4: A comparison among (a) Q, (b) λ2 and (c) ∆ vortex criteria are shown here for a
small subset of channel flow data obtained from the Johns Hopkins Turbulence Database (Graham
et al., 2016). All three criteria are visualized at the equivalent thresholds proposed by Chakraborty
et al. (2005) (see equation 5.2). The thresholds are τ = 49, −49, 4357.37 for Q, λ2 and ∆ criterion
respectively.

where | · | is the magnitude of the vorticity vector ω, v is the velocity vector and ωthreshold

is a threshold applied over the entire scalar field, is compared with FTLE. As described in
Shadden et al. (2005) and Green et al. (2007), at each point in space, FTLE gives a scalar
measure of the maximum rate of separation of a pair of tracer particles initialized near that
point. For tracers advected in forward-time, this indicates repelling Lagrangian Coherent
Structures (LCS) whereas in backward-time, it indicates attracting LCS. Both |ω| and FTLE
are calculated over the full simulation domain i.e., 3072 × 512 × 6144 points for the case S_1.
In the case of FTLE, 5 billion tracers were advected in the flow field in forward time (showing
repelling material surfaces) until t+ = 1.4 (about 10 timesteps).

It is easily observable from figure 2.3 that both criteria demarcate the flow into turbulent
and non-turbulent regions in a comparable manner. However, it is noted that the Eulerian
criterion had a significantly lower computational cost and the computation was possible on a
single CPU in few minutes whereas a GPU parallelized code was written for Lagrangian FTLE
which was run on the TESLA P100 GPU with 3584 cores for about 7 hours. In this thesis,
the Eulerian vortex criteria are preferred over the Lagrangian criteria due to the following
reasons: (1) significantly lower computational cost and, (2) the geometrical characterization
procedure described later in the chapter requires structures with clearly defined boundaries,
i.e., level sets which can be extracted from scalar fields. Although some methods such as the
Lagrangian-averaged vorticity deviation (Haller et al., 2016) allow for the extraction of such
features, this is not clear for methods such as the FTLE.

To choose an appropriate Eulerian criterion, one can follow the work of Chakraborty et al.
(2005) who showed that popular criteria such as Q-criterion (Hunt et al., 1988), λ2 (Jeong and
Hussain, 1995) and ∆ (Chong et al., 1990) tend to classify similar points in the spatial domain
as belonging to the ranges of vortices. The Q-criterion characterizes regions as vortices when,

Q = 1
2(||Ω||2 − ||S||2) > 0 (2.2)

where Ω = 1
2 [∇v − (∇v)T ] is the spin tensor and S = 1

2 [∇v + (∇v)T ] is the strain-rate tensor.
Therefore, the Q−criterion identifies vortices as regions where spin dominates over strain.
This criterion overcomes a crucial drawback of vorticity magnitude where shearing motions
are misidentified as a vortex (Lugt, 1979). However, Q > 0 does not automatically guarantee
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2.1 Robinson’s taxonomy of boundary layer structures
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Figure 2.5: Two random hairpin-like structures are extracted from different regions of the flow
for the case S_1. (a) shows Q−criterion structures oriented in similar directions and (b) shows
structures identified with FTLE also oriented in similar directions. In both cases, the horizontal
slice is at y+ ≈ 10.

a pressure minimum within the vortex region. The λ2 criterion is based on the observation
that a pressure minimum in a plane can be identified if the pressure Hessian has two positive
eigenvalues. Starting from the incompressible Navier-Stokes equation and neglecting unsteady
and viscous effects, the reduced equation is written as,

S2 + Ω2 = −1
ρ

∇(∇p) (2.3)

where p is the pressure and the right hand side denotes the pressure Hessian. Therefore, the
λ2-criterion identifies vortices as regions where,

λ2(S2 + Ω2) < 0 (2.4)

i.e., the intermediate eigenvalue of the symmetric tensor S2 + Ω2, when they are ordered
λ1 ≥ λ2 ≥ λ3, is negative. The ∆-criterion, on the other hand, defines vortices as regions
where the velocity gradient tensor (∇v) admits complex eigenvalues,

∆ =
(︃

R

2

)︃2
+

(︃
Q

3

)︃3
(2.5)

where Q and R are the second and third invariants of ∇v respectively. When ∆ > 0, then
∇v has complex eigenvalues. Chakraborty et al. (2005) show that it is possible to define an
equivalent threshold among these criteria to identify similar structures at a non-zero threshold.
An example is illustrated in figure 2.4 which shows that similar regions are identified as vortices
with the three criteria. This implies that a choice among these criteria will not affect our
qualitative results, therefore the Q-criterion is chosen to identify vortices.

In addition to their importance in turbulence production (Robinson, 1991), vortices,
particularly the hairpin-like ones exhibit unique characteristics in strongly stratified flows. As
shown in the poster of Harikrishnan et al. (2020), randomly extracted hairpin-like Q-criterion
structures from two different regions of the flow field seem to be oriented in a similar direction.
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2. A framework for the geometrical characterization of coherent structures

Later, the same was observed with the Lagrangian FTLE haripin-like structures (see poster of
Harikrishnan et al., 2021). These results as shown in figure 2.5 seem to suggest an organization
of structures at a global level which will be investigated in later chapters.

2.1.4 Shear layers and backs

Zhou et al. (1999) noted that when quasi-streamwise vortices eject fluid up and back, this
induced back flow tends to interact with the mean flow which results in the formation of
shear layers close to the wall. Shear layers are ubiquitous close to the wall of boundary
layers. They exist in the buffer layer (5 < y+ < 30) and sometimes extend beyond y+ > 80.
These structures, which are characterized by high values of the instantaneous velocity gradient
(∂u′/∂y), are capable of retaining coherence up to 1000+ viscous units in the streamwise
direction (Johansson et al., 1987). In conjunction with vortices, shear layers may be responsible
for near-wall turbulence production (Robinson, 1991; Alfredsson et al., 1988).

Since vorticity magnitude is a known indicator for shear regions, it can be used to highlight
near-wall shear layers and shear layers on the order of δ-scale (here, δ refers to the mean
boundary layer thickness which is the height at which the velocity is 99% of the free stream
velocity) termed backs.

2.1.5 Pockets

Pockets are ‘footprints’ of outer layer structures which have not received much attention and
they were identified through the work of Falco (1977), Falco (1980), and Kim et al. (1987).
Their contribution to turbulence production is not fully understood yet, however Chu and
Falco (1988) noted that they may be responsible for the generation of hairpin vortices.

To the author’s knowledge, pockets have never been investigated in the context of ABL
flows and a goal of this work is to understand if these structures are useful and warrant further
investigation in future works. These structures are known to exist within the viscous sublayer
and are observable with diverging streamlines (Robinson, 1991).

2.1.6 Bulges

A coherent structure frequently referred to in ABL literature (Shah and Bou-Zeid, 2014a; Katul,
2019) are the bulges which are very large scale motions (VLSMs) or superstructures existing
between the free stream and the outer edge of the boundary layer. They show numerous narrow
incursions, sometimes extending into the buffer layer (Corrsin and Kistler, 1955; Kovasznay
et al., 1970). These structures have a tendency to meander in the spanwise direction (Hutchins
and Marusic, 2007) and are also known to attenuate small-scale fluctuations close to the wall
(Marusic et al., 2010). Recently, Salesky and Anderson (2018) observed that VLSMs show a
change in topology with increasing instability in the convective boundary layer. They report
a change from being convective rolls under weakly convective conditions to open cells under
highly convective conditions.

With vorticity magnitude as an indicator, the geometry, streamwise and spanwise extent
of these structures under increasing stratification are investigated in chapter 3.
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2.2 Extraction of structures from scalar fields

Figure 2.6: A drawback of the NS algorithm is shown here where two individual structures
(colored blue and red) is misidentified as a single structure. Examining a plane reveals the reason
for the misidentification and is shown in the right. When a point belonging to the blue structure
(at the tail end of all arrows) is considered to be the center of the 3 × 3 cube, one of its neighbors
is a point belonging to the red structure.

2.2 Extraction of structures from scalar fields

For any three-dimensional scalar field, the numerical procedure used to extract individual
coherent structures is described in this section. Following the work of Moisy and Jiménez
(2004), a structure embedded within this scalar field is defined as a set of connected points
satisfying a threshold. A point x belongs to a structure if,

α(x) > τp (2.6)

where α is one of the several indicators from table 2.1 and τp is an appropriate threshold.
There are numerous ways of choosing a threshold and a systematic, non-subjective approach
is developed and discussed in section 2.3. This method of decomposition of the flow field
based on a global threshold value is a classic image segmentation technique and an overview
of numerous segmentation techniques can be found in the review work of Pal and Pal (1993).
To extract individual structures, a new algorithm combining the neighbor scanning procedure
of Moisy and Jiménez (2004) and marching cubes algorithm of Lorensen and Cline (1987) is
developed and described in the following subsections.

2.2.1 Neighbor scanning algorithm

The neighbor scanning (NS) method of Moisy and Jiménez (2004) is a simple and fast algorithm
to extract individual structures. The algorithm initially identifies a ‘seed’ point by successively
scanning points in the domain which satisfies (2.6). When a seed is identified, this is taken as
a starting point for the structure. The neighbors of this seed are identified by considering this
point to be the center of a 3 × 3 cube and any of the 26 neighbors (faces, edges and vertices of
the cube) are added to the structure if they also satisfy (2.6). New neighbors are added to the
structure until no new ones can be found. All points in this structure are given the same label.
Then the algorithm proceeds to find a new seed point. Once all structures are identified, they
are sorted by size.

While this method yields good results at large threshold values for which the structures
are spaced apart, some structures tend to be grouped together at smaller threshold values.
This drawback is illustrated in figure 2.6 in which both red and blue regions are extracted as a
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2. A framework for the geometrical characterization of coherent structures

(a) (b)

Figure 2.7: Difference between continuous and discontinuous mesh.

(a) (b) (c) (d)

Figure 2.8: Examples of surface mesh generation for (a) continuous surface mesh corresponding to
case 49 and (b, c, d) discontinuous mesh surfaces corresponding to cases 53, 37 and 90 respectively.

single structure. An inspection of the plane reveals that a point belonging to the red region is
a neighbor to the blue one and hence, both points are added as a part of the same structure.
The difference is apparent only upon visualization. In a later part of the chapter that discusses
the geometrical characterization procedure (section 2.4), it can be seen that the method relies
on local (point-wise) computation of shape and curvature to classify a structure as either
blob-like, sheet-like or tube-like. Shortcomings of the NS algorithm will result in an inaccurate
classification of the geometry. Therefore, in the following subsection, an improvement of this
algorithm is presented.

2.2.2 Marching cubes correction

The reason why the NS algorithm failed to separate the structures in the example shown in
figure 2.6 is because the information regarding the surface mesh generation by the visualization
algorithm is not incorporated into it. Therefore, to ensure visualization accurate1 structure
extraction, the identified neighbors are corrected with the popular marching cubes (MC)
algorithm (Lorensen and Cline, 1987). Although numerous visualization algorithms exist
Lewiner et al. (2003), Schreiner et al. (2006), Ju et al. (2002), and Dey and Levine (2008), the
MC algorithm is chosen as it is employed by our visualization software Amira (Stalling et al.,
2005).

For each grid cell (eight vertices of a cube), the MC algorithm determines the vertices
which satisfy (2.6) and generates triangles (or surface mesh elements) to represent surfaces at
those vertices. For the eight vertices of the cube, the surface mesh can be represented 28 ways.

1The accuracy of extraction of structures is strongly dependent on the visualization algorithm employed. In
this thesis, only the marching cubes algorithm is used for visualization and hence, is combined with the neighbor
scanning procedure for accurate extraction of structures. If a different visualization algorithm is employed, the
NS+MC algorithm may no longer be adequate. Hence, for visualization accurate extraction of structures, the
same algorithm used for visualization must be used during the extraction procedure.
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2.2 Extraction of structures from scalar fields

The reader is referred to the original work of Lorensen and Cline (1987) for further information
on the MC algorithm. First, a distinction is made between continuous and discontinuous
surface mesh elements. For most cases, the mesh element is continuous as shown in figure
2.7(a). This means that all points satisfying the threshold are a part of the same structure.
For 92 cases, the mesh element is discontinuous (see figure 2.7(b)) when 2 − 4 nonadjacent
points satisfy the threshold. In these cases, the discontinuous mesh elements may belong to
the same structure or to completely different structures as illustrated in figure 2.6. To rectify
this issue, the following correction is applied to the NS algorithm,

(1) Construction of a lookup table: The purpose of the lookup table is to enhance the speed
of the algorithm. The vertices of the cube are assigned an index from {0, ..., 7}. Next,
all of the 256 cases are visualized to identify the vertices that have to be grouped. When
a continuous surface mesh is seen, the lookup table has an empty array meaning no
correction is necessary. The same is true for case 0 and case 255 where all or no points
satisfy the threshold and hence, no surface mesh is generated. For discontinuous mesh
elements, the vertex indices need to be grouped. For instance, in figure 2.8(b) two groups
are identified; one with vertex indices {0, 4, 5} and the other with vertex index {2}. The
final lookup table with vertex groupings for all cases is shown in appendix A.

(2) Identifying the case in the lookup table: Once the 26 neighbors of the large 3 × 3 cube
are identified by the NS algorithm, each of the 8 subcubes are matched with a case from
the lookup table. If Vp = {v0, ..., v7} is the set of vertices for each subcube, the vertex
is assigned a value of 1 when the neighbor is added and 0 otherwise. The following
equation can be used to identify the case from the lookup table,

case =
7∑︂

i=0
2i[Vp(i) = 1] (2.7)

where [·] denotes an Iverson bracket. For the example shown in figure 2.8(a), the case
= 20 + 24 + 25 = 49.

(3) Neighbor correction: Once all subcubes are associated with a case from the lookup table,
the vertex grouping indices are retrieved. No corrections to the neighbors are applied
if there are no vertex groupings, i.e., if the array is empty. On the other hand, for a
non-empty array, the ‘right group’ of vertex indices has to be chosen. This is chosen as
the one which contains the center point of the 3 × 3 cube. The reasoning is as follows:
since the center point of the 3 × 3 cube (being the current point of interest) is already
a part of a structure, the vertex group which has this center point should be a part of
the structure as well. This is repeated for all subcubes, thus correcting the neighbors
identified with the NS algorithm.

The complete algorithm for neighbor scanning with the marching cubes correction is shown in
figure 2.9.
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2. A framework for the geometrical characterization of coherent structures

Input: Scalar indicator α, threshold τ
Output: Scalar field with labels corresponding to individual structures, Structure

information data containing the embedding location of each structure,
Volume of the biggest structure in the given domain Vmax, Volume of all
structures in the domain V , Auxiliary scalar field with structure labels

/* Thresholding the scalar field converts the data from

floating-point numbers to boolean data type where 1 satisfies the

threshold indicating the presence of a structure. */

begin thresholding the scalar indicator:
if τ > 0 then

data = α > τ
else

data = α < τ
end

end
Create an auxiliary scalar field of size α to store the label of structures;
/* Main loop */

for i = 1 to x length do
for j = 1 to y length do

for k = 1 to z length do
if data(i, j, k) == 1 then

/* data(i, j, k) == 1 marks the starting point of a

structure */

while neighbors exist do
Assign a label to data(i, j, k) and store in auxiliary scalar field;
Consider data(i, j, k) to be the center of a 3 × 3 cube;
Identify which of the 26 neighbors satisfy τ ;
begin marching cubes correction:

Split the 3 × 3 cube into 8 subcubes;
for p = 1 to 8 do

Identify the marching cubes case with equation (2.7);
With the case, the grouping of vertices is inferred from
the lookup table in appendix A;

The group of vertices which contain data(i, j, k) is kept
and the remaining neighbors are discarded;

end

end

end

end

end

end

end

Figure 2.9: Algorithm for the extraction of individual structures from scalar fields with neighbor
scanning algorithm and marching cubes correction
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2.2 Extraction of structures from scalar fields

Figure 2.10: Sample Q-critrion data chosen for validation of the NS+MC algorithm. Here
structures are visualized at thresholds τ = 100 (Left), 549 (Right). Clearly, the complexity of
structure extraction increases for lower thresholds.
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Figure 2.11: A comparison among the surface extraction algorithm (square marker), NS+MC
algorithm (diamond marker) and NS algorithm (circle marker) for (a) extraction of structures at
various thresholds and (b) the time taken for extraction are shown here.

2.2.3 Validation of the NS+MC algorithm

The goal of this section is to validate the NS+MC algorithm for visualization accurate extraction
of structures from three-dimensional scalar fields. To aid with the validation, an alternate
method by which structures can be extracted directly from the visualized surfaces is used.

As described in Lorensen and Cline (1987) for the marching cubes algorithm, within a cube,
triangles are created at points where the user-defined threshold is satisfied. Depending on
which of the points in a cube satisfy the threshold, these triangles are constructed in a specific
manner through a lookup table composed of all 256 combinations. Some examples are shown
in figure 2.8. To represent the surface composed of these triangles, a list of 3D coordinates
and a connectivity list of triangles are necessary (Stalling et al., 2005). Each triangle in the
connectivity list has three indices which point to the list of coordinates. By exploiting the fact
that connected triangles in a surface share a common edge, the connectivity list can be used
to identify and extract connected surfaces or structures. This is henceforth referred to as the
surface extraction algorithm.

A sample dataset of a Q-criterion scalar field with size 200 × 328 × 234, as shown in figure
2.10, is chosen for validation. For various thresholds, the extracted structure counts and the
corresponding time taken with the surface extraction algorithm (described above), NS+MC
algorithm and NS algorithm are plotted in figure 2.11. If the surface extraction algorithm
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2. A framework for the geometrical characterization of coherent structures

(square marker) is taken to be the ground truth, one can see that its results compare well
to the NS+MC algorithm at all tested thresholds. The disparity between neighbor scanning
algorithm (circle marker) and when it is corrected with the marching cubes algorithm (diamond
marker) is instantly observable in figure 2.11(a). As expected, the NS algorithm tends to group
together structures at smaller thresholds (where they are closely spaced) and therefore, the
number of structures is always lower than that obtained with the other two algorithms. Figure
2.11(b) shows the time taken for the extraction of structures with all three algorithms. At the
smallest tested threshold, the NS algorithm is the fastest taking only 15 seconds, NS+MC
with 19 seconds and surface extraction taking about 5387 seconds or approximately 1.5 hours.

2.3 On the choice of a threshold

Green et al. (2007) noted that the crux when dealing with any Eulerian criterion is its
reliance on a user-defined threshold to identify individual structures. Over the years, numerous
justifications have been provided for the choice of the threshold. In general, it can be seen that
a low value of threshold often yields a complex, interconnected, sponge-like structure whereas
a high value will result in few intense regions. Moisy and Jiménez (2004) proposed to consider
this problem to be analogous to that of a percolation transition in which the complex cluster
appears above a critical threshold. This threshold, henceforth referred to as a percolation
threshold, τp, presents a natural, non-subjective way of choosing a threshold value. In the
context of channel-flow turbulence, Del Álamo et al. (2006) pointed out that τp is similar for
increasing Reynolds numbers.

Percolation analysis on the seven quantitative indicators of table 2.1 is shown in figure 2.12
(a - g). The ratio Vmax/V , where Vmax is the volume of the largest structure in the domain
and V is the sum of the volume of all structures at a threshold τ , is computed for increasing
values of τ . Vmax/V = 1 implies that a large interconnected structure spans the entire domain.
As the threshold is increased, the magnitude of the slope of Vmax/V increases and reaches
a maximum at τp. It should be noted that the percolation analysis is computed on grid A
(3072 × ylen × 6144). The number of grid points in the wall-normal direction (ylen) is based
on the indicator (see table 2.1). Ideally, the computation should also be performed for the
entire threshold range of the indicator. However, due to the high computational cost especially
at lower values of τ , the threshold range is discretized so that the transition is seen with fewer
values of τ . The threshold range is initially split with a chosen number (usually 1000) of evenly
spaced values. Generally, a smooth plot can be generated with the first 50 values of τ . If the
transition is not seen in this region, the order of magnitude of the chosen number is changed.

It was noted by Del Álamo et al. (2006) that the inhomogeneity of the flow in the wall-
normal direction for wall-bounded flows needs to be taken into account when choosing a global
threshold value. If a threshold is chosen to visualize wall features, few structures will be
highlighted away from the wall and vice versa (see figure 2.13(a)). Nagaosa and Handler (2003)
circumvented this issue by nondimensionalizing the Q-criterion with its root mean square
(RMS) at every wall-parallel plane. This resulted in a more uniform spread of structures
throughout the channel flow. Equation (2.6), can therefore, be rewritten as,
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Figure 2.12: Percolation analysis on seven indicators from table 2.1 are shown here. (a - g) are
the high-speed streaks, low-speed streaks, sweeps, ejections, vortices, shear layers and backs. Solid
line is the neutrally stratified case (N) and the dashed and dotted lines are the various stably
stratified cases (S_1, S_2, S_3). Line specification is shown in (a). Red portion of the lines
indicate the region of percolation transition.
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Figure 2.13: The Q−criterion structures are highlighted for case N. Isosurfaces at (a) τ = 0.0017
and (b) τ = 10 are visualized. In the latter case, the effect of nondimensionalization with the RMS
over every wall normal planes is visible and structures are highlighted throughout the flow. Here,
the y+ ≈ 1550 which includes a significant portion of the outer layer.

α(x) > τp α′2(y)1/2 (2.8)

where α′2(y)1/2 is the RMS of the indicator α over wall-normal planes. The effect of this
parametrization is visible in figure 2.13(b) where a threshold chosen to highlight wall features
also shows structures in the outer layer. This parametrization is only necessary when dealing
with large domains where a significant portion of the outer layer is included. In the case of
streaks with the domain restricted to y+ < 40, a global threshold value will highlight the
structures uniformly without the parametrization.

2.3.1 Multilevel percolation analysis

Although the techniques introduced in the previous subsections to choose a global threshold
value with percolation analysis work well for neutral and intermediate levels of stratification
(i.e., for cases N, S_2 and S_3), individual structures cannot be educed for high levels of
stratification i.e., case S_1. The presence of global intermittency with coexisting turbulent and
nonturbulent regions, forces structures to aggregate into clusters at non-zero thresholds. This
can be clearly seen from figure 2.14(a) in which the Q−criterion thresholded at τp identifies
an entire region colored gold as a single structure. To avoid this issue, a new technique based
on iterative application of percolation analysis is described in this subsection.

The goal of the new technique is to identify suitable thresholds larger than the global
percolation threshold τp for individual structures i.e., the large structure is broken down into
individual structures and each exists at a unique threshold value. The steps of this technique,
henceforth called multilevel percolation analysis (MLP), is presented below:

(1) For a given indicator applied to a flow field, the global percolation threshold τp is
initially computed over the entire domain with the procedures described in the previous
subsections.

(2) The structures at τp are extracted with the NS+MC algorithm. If an entire cluster is
extracted as a structure as in figure 2.14(a), then the entire structure can be subjected
to MLP. In this scenario, a small portion of the domain of size 300 × 90 × 600 is chosen
to keep the computational costs low.
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Figure 2.14: When Q−criterion applied to case S_1 and thresholded at the global percolation
threshold τp, an entire cluster colored in gold is identified as a single structure as shown in (a). A
small region chosen for MLP analysis is shown in (b) and the result is shown in (c).
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Figure 2.15: A schematic for MLP is shown. Here, τp is the global percolation threshold and
⟨Dα⟩ is the mean fractal dimension (see subsection 2.4.1 for an explanation) of the structure. When
Vmax/V > 0.5 for the entire threshold range, then the structure is classified as simple and the
minimum threshold is chosen for the structure. If the structure is deemed complex, the procedure
is repeated.
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(3) For the small domain, the percolation analysis is repeated to obtain a new threshold
value. It should be noted that the global percolation threshold τp obtained in step (1) is
the minimum threshold which is checked.

(4) At the new threshold value, the structures are extracted and the fractal dimension for
each structure is computed with the method described in subsection 2.4.1.

(5) The structures with a mean fractal dimension ⟨Dα⟩ < 1 (⟨·⟩ is the mean calculated over
the local dimensions corresponding to various box sizes and α is an indicator) are filtered
out. This step ensures a noise-free result.

(6) The structures which are filtered out are checked against a stopping criterion to determine
if the structure is an individual one or if it still exists as a cluster. The stopping criterion
applies the percolation analysis again and computes the minimum value of the ratio
Vmax/V reached over the threshold range. In this case, the new τp obtained from step
(3) is the minimum threshold which is checked. If the ratio Vmax/V is above 0.5 over the
entire threshold range, the structure is deemed as a simple structure and the minimum
threshold which is checked is taken as the unique threshold for the structure. If, on the
other hand, the ratio Vmax/V ≤ 0.5, then the structure is deemed as a complex structure.
A new percolation threshold is computed for the complex structure and the process from
step (3) is repeated.

(7) Steps (3-7) are repeated on all structures extracted in step (2). The entire procedure is
shown as a schematic in figure 2.15.

The MLP analysis on a small computational domain as seen in figure 2.14(b) gives the
result shown in figure 2.14(c). It is instantly observable that the result is noise-free and the
structures are more or less individual. In the current implementation of the algorithm, this
computation took 5 days on serial mode.

2.3.1.1 Rationale for the stopping criterion

For simplicity, the stopping criterion chosen is to adopt a minimum value of the ratio Vmax/V

over the entire threshold range being tested. From a geometric standpoint, it can be understood
that when Vmax/V = 1 or Vmax = V at a threshold τ , then a single structure spans the entire
domain. If the condition holds over the entire threshold range, this implies that the structure
has one local maximum value, i.e., for increasing thresholds the structure will collapse towards
one point in space as depicted in figure 2.16(a). In practice, however, this condition is
computationally expensive and can be relaxed to Vmax/V > 0.5. With this condition, at most
two structures can exist, i.e., there are two local maximum values and the volume of one
structure is always larger than the other (see figure 2.16(b)). It should be noted that choosing
Vmax/V other than 1 is subjective and should be considered only for very large datasets to
lower the computational burden.

Figure 2.16(c) shows a proof-of-concept for a simple and complex structure in which the
threshold Vmax/V > 0.5 is chosen as the condition to identify a simple structure.
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Figure 2.16: The effect of choosing a minimum value of the ratio Vmax/V as (a) 1 and (b) 0.5
respectively is shown. A proof-of-concept for MLP is shown in (c). The highlighted thresholds
correspond to τ = 0.0625, 0.334, 3.01.

2.4 Geometrical characterization

The necessity of extracting visualization accurate structures with the NS+MC algorithm is
exemplified in this section. Once all structures are extracted with the global percolation
threshold τp, they are geometrically characterized with an approach similar to Bermejo-Moreno
and Pullin (2008). The main steps along with the modifications are presented in the following
subsections.

2.4.1 Fractal dimension

In the first step, all structures which are sparser than a line i.e., those that have a mean
fractal dimension (FD), ⟨Dα⟩ < 1, are filtered out. There are two important reasons for this
filtering step: first, structures consisting of few connected points which are noise-like cannot
be meaningfully interpreted. Second, computation of curvedness and stretching parameters
described in subsection 2.4.2 are dependent on the volume of a structure and hence require
that the structure should have a closed surface. The second reason raises the obvious question
of why the structures having a fractal dimension between 1 ≤ ⟨Dα⟩ ≤ 2 are not discarded.
This is answered below.

Following the work of Moisy and Jiménez (2004), the fractal dimension of a structure is
estimated with the classical box-counting method. The extracted structure is first placed
inside a domain that embeds it. With a fixed grid scan, a box of size r is moved over the
entire domain without overlap and the number of boxes i.e., Nα(r; τp) that contain some point
belonging to a structure is counted. This grid scan is repeated for decreasing box sizes chosen
as 2−nL, where n is varied between 0 and 9 and L is the largest length of the embedding
domain. The fractal dimension defined as,

Dα(r) = −d ln Nα(r)
d ln r

(2.9)
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Figure 2.17: The Q−criterion scalar fields for case N are reconstructed for (a) ⟨DQ⟩ < 1, (b)
1 ≤ ⟨DQ⟩ ≤ 2 and (c) ⟨DQ⟩ > 2.
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Figure 2.18: Probability density function of the mean fractal dimension ⟨DQ⟩ for the neutrally
stratified case is shown here. Box-counting is performed for grid B until y+ ≈ 1550.

is the range of box sizes over which this logarithmic slope is approximately constant. Even
though, FD estimates are used only for filtering purposes in this procedure, they can already
give a first understanding of the geometry of the structures. For instance, FD estimates
computed on Q−criterion structures for case N are visualized in figure 2.17 and its probability
density function (p.d.f.) is shown in figure 2.18. The p.d.f. suggests that a large number of
structures have ⟨Dα⟩ < 1 but they are hardly visible in the visualization (cf. figure 2.17(a)).
An example visualization of a structure with its embedding domain shows that it is small-scale,
composed of a few connected points and not closed. The p.d.f. also suggests a large number of
structures in the range 1 ≤ ⟨DQ⟩ ≤ 2. This can be directly observed in the visualization and
the example below shows a typical tube-like, closed structure within this category. Since the
box-counting dimension is perceived as a space-filling metric, the embedding domain plays an
important role in categorizing the extracted structures. This is primarily the reason for not
filtering out structures with FD between 1 and 2. Further discussion on fractal dimension of
structures is presented in chapter 3.
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2.4 Geometrical characterization

2.4.2 Shape index, curvedness, stretching

To geometrically characterize the filtered structures, two local (at every point on the surface)
differential-geometry parameters and a global parameter are used. The first two are the shape
index (S) and curvedness (C) which represent the local shape and intensity of curvature,
respectively (Koenderink and Van Doorn, 1992). They can be expressed in terms of the
principal curvatures κ1 and κ2 (see Appendix B for a detailed description and the advantage
for choosing shape index and curvedness over other measures) of a surface as,

S =
⃓⃓⃓⃓
− 2

π
arctan

(︃
κ1 + κ2
κ1 − κ2

)︃⃓⃓⃓⃓
, C = µ

√︄
κ2

1 + κ2
2

2 (2.10)

The shape index (S) is a scale-independent parameter which ranges between −1 and 1
before taking the absolute value. The positive and negative signs of S distinguish the local
shape, for example, between elliptical concave and convex surfaces (cf. figure 5 of Koenderink
and Van Doorn (1992)) depending on the direction of the normal. Since this direction of the
normal is not of interest, the absolute value of the parameter, denoted by | · |, is taken instead.
Curvedness (C), on the other hand, is scale dependent with physical dimension of reciprocal
length. This parameter is non-dimensionalized with µ = 3Vs/As, where Vs and As are the
volume and surface area of the structure respectively. The area of the structure is computed
by summing up the area of all triangles representing the surface mesh. To obtain accurate
volume estimation, the vertices of each triangle are connected to the center of the structure
forming tetrahedrons and the volume of the structure is then the sum of the volume of all
tetrahedral elements (Zhang and Chen, 2001).

Bermejo-Moreno and Pullin (2008) introduced a feature center (corrected mean) for the
area-based joint probability density function (jpdf) of S and C to represent these properties
in a non-local sense. This correction accounts for the skewness of jpdfs and ensures that the
mean will lie closer to the region of higher density. For a real-valued random variable X with
a p.d.f f(x), x ∈ R, the feature center x̂ is defined as,

x̂ ≡

x − dl

√︁
1 − (dl/du)2 if dl < du

x + du

√︁
1 − (du/dl)2 if dl > du

(2.11)

where x is the mean of X and du and dl which are the upper and lower distances (considered
as the RMS of the p.d.f) which are defined as

dl ≡

⌜⃓⃓⎷∫︁
x≤x(x − x)2f dx∫︁

x≤x f dx
, du ≡

⌜⃓⃓⎷∫︁
x≥x(x − x)2f dx∫︁

x≥x f dx
(2.12)

The feature centers of both parameters are henceforth denoted as Ŝ and Ĉ. To validate
our scripts, the torus example from Bermejo-Moreno and Pullin (2008) is repeated. The mean
and feature center of S and C shown in figure 2.19(b) agree with their results. The third
parameter, denoted by λ, is a global parameter which characterizes the amount of stretching
experienced by the educed structure and is given by,

λ = 3√36π
V

2/3
s

As
(2.13)
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Figure 2.19: For the torus shown in (a), the jpdf of S and C, along with their marginal p.d.f.
(top and right side of the plot respectively) are shown in (b). The stretching parameter λ is shown
below the plot. The gray marker indicates the mean and the red marker indicates the feature
center. The errorbars show the upper and lower distances which can be computed from (2.12).
Figure is based on the work of Bermejo-Moreno and Pullin (2008).

The area-based jpdf, hereafter P(S, C), and λ together characterize the geometry of the
structure. These parameters are rotation and translation invariant and are therefore suitable
for comparing the geometry of structures. This is further discussed in the following subsection.
The complete algorithm for extracting and geometrically characterizing structures from scalar
indicators is presented in figure 2.20.

2.4.3 Visualization space

By constructing a 3-dimensional visualization space or feature space composed of the parameters
Ŝ, Ĉ and λ, each structure can be represented by a point in this visualization space. When
two points lie close to each other, they indicate similar geometry. The distance between the
points indicates the degree of similarity. With this idea, the visualization space can be used
to broadly classify structures into three categories as blob-like, tube-like or sheet-like. For
instance, a sphere having (Ŝ, Ĉ, λ) = (1, 1, 1) is a blob-like structure and points which lie closer
to this region can be thought of as approaching the geometry of a sphere. Similarly, tube-like
structures can be localized close to a cylinder with (Ŝ, Ĉ, λ) = (0.5, 1, λ) and λ characterizes
the amount of stretching experienced by the cylinder-like object. Small values of λ indicate
strong stretching and vice versa. Sheet-like structures are solely characterized by the parameter
Ĉ. The limiting case for planar objects is Ĉ = 0. Some examples of commonly encountered
structures along with a typical example of each quantitative Robinson structure is shown in
figure 2.21.

With visual inspection of the common structures from panel (b) of the figure, one can
intuitively categorize A, B as blob-like and C, D as tube-like structures. This is confirmed with
the K-means clustering algorithm initialized with 3 clusters. The results are shown in panel
(a) where blob-like structures (A, B) are highlighted with yellow markers, tube-like structures
(C, D, E, G, H) are marked blue and red markers show sheet-like structures (F, J, K).
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2.4 Geometrical characterization

Input: Scalar indicator α
Output: Feature centers of shape index and curvedness (Ŝ, Ĉ) and stretching

parameter λ
begin nondimensionalization of the scalar indicator:

The scalar indicator is nondimensionalized with its RMS over wall-normal
planes;

end
begin computation of percolation threshold:

Split the entire range of the nondimenstionalized indicator into 1000 linearly
spaced values;

With the first 50 values as thresholds, apply algorithm 1 and obtain the
volume of the biggest structure Vmax and the volume of all structures V ;

The percolation threshold τp is identified when the slope of the ratio Vmax/V is
maximum;

end
begin extraction of individual structures and geometrical characterization:

Threshold the nondimensionalized scalar indicator, α/α′2(y)
1/2

> τp and
extract structures with algorithm 1;
for i = 1 to nstructures do

Embed structure i in a box with its maximum extent along every direction;
Compute mean fractal dimension 〈Dα〉 of the structure with equation (2.9);
if 〈Dα〉 > 1 then

Compute shape index (S) and curvedness (C) for each point of the
structure;

Compute their respective feature centers (Ŝ, Ĉ) with equations
(2.11)-(2.12);

Compute the stretching parameter λ with equation (2.13);

end

end

end

Figure 2.20: Workflow for the geometrical characterization of an individual structure
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Ĉ

0 1

1 blobstubes

sheets

tran
sition

A

B

C
D

FF

GG II

JJ

EE

KK

HH

Ŝ
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Figure 2.21: The three-dimensional visualization space along with a set of two-dimensional
orthogonal projections composed of λĈ and ŜĈ is shown in panel (a). The scatter markers are
colored by the cluster labels identified with the K-means algorithm. This figure is adapted from
the work of Bermejo-Moreno and Pullin (2008). The non-local shape index (Ŝ) is shown in panel
(b) for some common structures like a sphere (A), ellipsoid (B), torus (C), cylinder (D), and the
Robinson structures (E − K) for case N. Coloring of the structures is according to table 2.1.

2.5 Summary and conclusions

Initially, this chapter presents an overview of the various categories of coherent structures
identified by Robinson (1991) which are relevant to turbulent boundary layers. For each
category of Robinson structures, an indicator and the region in which these structures can
be studied are identified from the literature. Next, a numerical procedure is developed to
extract these structures from three-dimensional scalar fields and geometrically characterize
individual structures as blob-like, tube-like or sheet-like. In the subsequent chapter, these
Robinson structures are studied for the Ekman flow datasets so that changes in their geometry
can be examined for increasing levels of stratification. As explained in chapter 1, knowledge of
changes in geometry/properties of coherent structures can lead to better parametrizations of
the ABL. For instance, since VLSMs are known to attenuate the small-scales near the wall, a
mathematical model was proposed by Marusic et al. (2010) to predict the velocity statistics in
the near-wall region given the large-scale signal in the log region. Another example can be
seen in Chauhan et al. (2013), where inclination angles of vortical features, which are assumed
to be pivotal for energy transfer, are used to improve computations of wall shear stress which
is used in wall models of LES.

To extract individual coherent structures from three-dimensional scalar fields, an
improvement on the neighbor scanning algorithm of Moisy and Jiménez (2004) is proposed.
As shown in subsection 2.2.3, this algorithm is fast and capable of visualization accurate

40



2.5 Summary and conclusions

structure extraction. This algorithm has been successfully tested on real world datasets to
extract extratropical cyclones and weather fronts (Lindheim et al., 2021).

An important challenge when extracting structures with Eulerian criteria is to choose an
‘appropriate’ threshold. However, as pointed out in previous studies, these choices are somewhat
subjective (Green et al., 2007; Elsas and Moriconi, 2017). Moreover, the inhomogeneity of
wall-bounded flows in the wall-normal direction enhances the difficulty in choosing a single
global threshold value (Del Álamo et al., 2006). To overcome these difficulties, two strategies
are implemented. First, the indicators are nondimensionalized with their root mean square
for every wall-normal plane. As shown by Nagaosa and Handler (2003) for Q-criterion, the
probability density function of Q/(Q′2)1/2 becomes homogeneous everywhere except the viscous
sublayer. Similar results were reported for the ∆-criterion in Del Álamo et al. (2006) and
quadrant events in Lozano-Durán et al. (2012) and Lozano-Durán and Jiménez (2014). In this
thesis, this technique is applied for all indicators except the high-and low-speed streaks which
is only studied close to the wall until y+ = 40.

Next, a non-subjective threshold is chosen by identifying the region of percolation transition
between two limits (Moisy and Jiménez, 2004; Del Álamo et al., 2006). Although this allows for
a non-subjective choice of the global threshold value, Jiménez (2018) noted that this analysis
will point to a range of thresholds rather than a single value. This can indeed be seen in figure
2.12 for all indicators. Naturally, the mean value was chosen as the threshold but values above
and below the mean within this range are also valid choices. Jiménez (2018) further states
that due to the inherent ambiguity of the analysis, conclusions deduced with structures at
percolation thresholds need to be complemented with other statistical analyses. Therefore,
the geometrical results presented in chapter 3 are complemented with conditional analysis of
one-point statistics of various coherent structures.

Applying the percolation analysis to the Ekman flow datasets reveals that a global threshold
value identified with percolation analysis is insufficient to educe individual structures under
strong stratification with coexisting turbulent and nonturbulent regions (see subsection 2.3.1).
In this scenario, an entire cluster may be identified as an individual structure. To overcome this,
a novel method is proposed in which percolation analysis is applied in an iterative manner to
break down the cluster to individual structures, all of which exist at different thresholds. This
method relies on a stopping criterion to determine if the structure being examined is simple
(hence, individual) or complex. In this thesis, the minimum value of the ratio Vmax/V > 0.5
(Vmax is the volume of the biggest structure in the domain and V is the volume of all structures)
over the entire threshold range is chosen as the stopping criterion. Although Vmax/V = 1 or
Vmax = V for which only a single structure exists in the domain is the best possible condition
to identify individual structures, this can become computationally expensive for large datasets.
As percolation analysis relies on the extraction algorithm, future research works can be directed
towards making this algorithm more efficient. Another direction is towards identifying alternate
stopping criteria. For instance, an example from algebraic topology are the Betti numbers
(Gardner, 1971) which describe the connectivity of simplicial complexes (which contain a set
of points, lines, triangles or their n-dimensional generalizations). One can compute the second
Betti number b2 which can indicate the number of voids or cavities within the closed surface
and a simple structure can be defined as having exactly one void.
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2. A framework for the geometrical characterization of coherent structures

Once the individual structures are obtained, they are geometrically characterized with the
non-local methodology of Bermejo-Moreno and Pullin (2008). Together with the extraction
algorithm and the percolation analysis (sections 2.2 - 2.4), they can be seen as a modular
framework for the extraction and geometrical characterization of coherent structures and
should facilitate improvements at each step in future works. A natural extension of this
methodology is to study the temporal changes in geometry of coherent structures which is
presented in chapter 4.
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3
Geometry of Robinson structures in stratified

Ekman flows

One-point statistics measure the intensity
of the fluctuations, and two-point statis-
tics, such as spectra and correlations, give
an idea of their spatial scales ... But they
are not enough to describe a functioning
turbulent flow.

Javier Jiménez, Coherent structures in
wall-bounded turbulence, 2018

In the previous chapter, a modular framework is developed to extract individual structures
at optimum, i.e., percolation thresholds and geometrically characterize them with a modified
non-local procedure of Bermejo-Moreno and Pullin (2008). This enables individual structures
to be broadly classified as either blob-like, tube-like or sheet-like, thereby enabling comparison
among the different Ekman flow cases. This framework is then applied to the quantitative
Robinson structures (see table 2.1) on an instantaneous time step of three stably stratified
cases S_1, S_2, S_3 at different levels of stratification and a neutrally stratified case N.

The idea of comparing the geometry of coherent structures among the various Ekman flow
cases is motivated from previous observations in neutral and buoyant atmospheric boundary
layers wherein changes in geometry and their subsequent impact on transport of momentum
and scalars have been reported. Under neutral conditions, in which buoyant forces are absent,
coherent structures such as low-speed streaks, sweeps, ejections, counter-rotating vortex pairs
(or hairpins), large-scale motions (hairpin packets) and very large scale motions are known
to exist (for example, see Hommema and Adrian, 2003; Carper and Porté-Agel, 2004; Huang
et al., 2009a; Inagaki and Kanda, 2010; Li and Bou-Zeid, 2011; Fang and Porté-Agel, 2015).
This suggests that the neutral ABL has structures similar to those observed in non-rotating,
flat plate boundary layers (Robinson, 1991). On the other hand, when buoyancy has a
destabilizing effect, the hot (and therefore lighter) air rising from the surface tends to lift the
coherent structures away from the wall resulting in sheet-like thermal plumes (see figure 14
of Hommema and Adrian (2003)). Furthermore, the inclination angles of hairpin packets are
higher than those observed under neutral conditions (Hommema and Adrian, 2003; Carper
and Porté-Agel, 2004). Studies conducted in the limit of the unstable ABL, which closely
resemble Rayleigh-Bérnard convection (RBC), show curved, sheet-like plumes near the surface
which turn into axisymmetric plumes with mushroom (or blob)-like geometry away from
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3. Geometry of Robinson structures in stratified Ekman flows

the wall (Schmidt and Schumann, 1989; Puthenveettil and Arakeri, 2005). These plume
structures, analogous to bursts in the boundary layer, are known to be responsible for the bulk
of heat transport (Siggia, 1994). Increase in buoyancy is also known to have an impact on the
transport of momentum and scalars (such as water vapor and heat) (Katul et al., 1997b; Choi
et al., 2004). By analyzing transport efficiencies, Li and Bou-Zeid (2011) show that scalars are
efficiently transported whereas momentum transport is less efficient with increasing instability
and suggest that the change in topology of coherent structures from eddies (under neutral
conditions) which have significant horizontal vorticity to thermal plumes (under unstable
conditions) to be the underlying cause.

As pointed out in the introduction, in the other limit, in which buoyancy has a stabilizing
effect, reviews by Hopfinger (1987) and Mahrt (2014) suggest the coexistence of internal
waves with quasi two-dimensional modes (suggesting pancake or sheet-like geometry with little
vertical coherence). However, DNS simulations of the stably stratified shear layers indicate
the presence of hairpin vortices suggesting tube-like geometry as well. This naturally raises
the following questions,

• Is there a change in geometry/topology of coherent structures with increasing stability?
Can an affinity towards pancake (or sheet-like) geometry be established?

• What is the impact of increasing stability on the inclination angle of hairpin structures?

In this chapter, a detailed analysis is carried out comparing the geometry of Robinson
structures between the stably stratified and the neutrally stratified cases. Results, presented
in section 3.1, are discussed by splitting a flow field into the following classical boundary layer
regions, or layers: viscous sublayer, buffer, inner and outer layers based on the wall-normal
height y+. The defining property of each of these layers is explained in table 7.1 of Pope
(2001). Comparisons between case N and S_1, for which major differences are expected, are
shown in the running text of the thesis whereas comparisons between the other two stably
stratified cases S_2 and S_3 are shown in Appendix C. The geometry and inclination angles
of hairpin-like vortex structures are investigated in subsection 3.1.5.

Although the geometry of individual structures are calculated at optimum or percolation
thresholds, the region of percolation transition typically identifies a range of thresholds which
approximately span a decade (see figure 2.12). Naturally, the mean value is chosen as the
percolation threshold in the thesis, however any threshold within this range can be considered
“optimum”. This uncertainty, leads Jiménez (2018) to propose that conclusions derived from
thresholding of structures need to be validated against other techniques. Therefore, conditional
one-point statistics of four quantitative indicators: low-and high-speed streaks, sweeps and
ejections are compared with results obtained from the geometrical analysis.

The conditioning of the flow into turbulent and non-turbulent subvolumes is facilitated
with an intermittency factor, denoted by γ. A novel definition of γ is proposed in section
3.2 which aims to overcome the drawback of using vorticity magnitude and an arbitrarily
defined threshold to segregate the flow into turbulent and non-turbulent parts (Bisset et al.,
2002; Da Silva et al., 2014; Ansorge and Mellado, 2016). Since vorticity magnitude is known
to misidentify shear-dominated regions as vortices (see subsection 2.1.3 for an explanation),
Q-criterion is suggested along with the percolation threshold. With this new definition,
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Figure 3.1: Isosurfaces of u′ < 0 (low-speed streak) and u′ > 0 (high-speed streak) are shown
for case (a) N and (b) S_1 in the viscous sublayer with grid C. The color specification for the
structures is according to table 2.1 for the low-and high-speed streak. The longest structure for
the former is highlighted with light green and the longest structure for the latter is highlighted in
pale yellow.

conditional one-point analysis on all Ekman flow cases are carried out and the corresponding
results are discussed in section 3.3.

3.1 Geometry of structures in the ABL

In this section, results of the analysis carried out with the geometrical characterization
framework on the Ekman flow datasets are discussed.

3.1.1 Viscous sublayer

In this subsection, the impact of five Robinson structures namely, low-and high-speed streaks,
sweeps, ejections and pockets are discussed for the lowest portion of the ABL, i.e., when
y+ < 5. Other Robinson structures are not observable in this region as the flow is locally
laminar. This portion of the flow field is generally not resolved in LES models as the first grid
point is far away from the wall (Khanna and Brasseur, 1998; Chauhan et al., 2013). Therefore,
it is crucial to study the impact of this region with coherent structures so that they may be
accounted for in ABL parametrizations. It should be noted that this region is excluded from
geometrical analysis as structures which have a mean fractal dimension ⟨Dα > 1⟩, i.e., which
are not noise-like are not fully formed here and generally extend into the buffer layer and
sometimes beyond.

Streamwise low-and high-speed streaks are identified with velocity fluctuations, i.e., u′ =
u − ⟨u⟩, where ⟨u⟩ is the space-time averaged velocity computed over wall-normal planes for
5 uncorrelated time steps. When u′ > 0, high-speed streaks are observed and u′ < 0 shows
low-speed streaks. The isosurfaces of these structures at the global percolation threshold τp

are visualized for all cases in figures 3.1 and C.1.
It can be instantly observed that the distribution of structures is different for all cases,

especially between the neutrally stratified case N and the strongly stratified case S_1. The
character of streaks in case N is thin, elongated and are more evenly spread across the domain
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Figure 3.2: Joint p.d.f. of the streamwise (∆x+) and the spanwise (∆z+) coherence for (a)
high-speed streaks, (b) low-speed streaks, (c) sweeps and (d) ejections. The neutrally stratified case
N is represented by solid line (—) and the stably stratified cases S_1, S_2, S_3 are represented
by dotted (...), dashed (- - -) and dash patterned (– — –) lines respectively.
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Figure 3.3: Contour plots for case N are shown with (a) ejections and low-speed streaks, (b)
sweeps and low-speed streaks at y+ ≈ 3.58 with grid C. The color specification is according to
table 2.1.
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Figure 3.4: Contour plots for case S_1 are shown with (a) ejections and low-speed streaks, (b)
sweeps and low-speed streaks at y+ ≈ 3.58 with grid C. The color specification is according to
table 2.1.

making it comparable to the ones in Flat Plate Boundary Layers (FPBL) (Kline et al., 1967;
Kline, 1978; Robinson, 1991). From figure 3.2, it is clear that the strength of stratification has
an impact on the streamwise and spanwise coherence of low-speed streaks. With an increase
in stratification, i.e., from S_3 to S_1, their coherence increases with the longest low-speed
streak (light green region in figure 3.1(b)) spanning the entire domain for S_1. If the low-speed
streaks were excluded from figure 3.1(b), the resulting high-speed streaks and the large empty
patches are reminiscent of the non-turbulent regions seen from figure 1.2(b) at y+ ≈ 100. The
presence of the large low-speed streak suggests that global intermittency causes a deceleration
of the flow within the patchy regions.

With figures 3.3, 3.4, C.2 and C.3, the interaction of sweeps, ejections and streaks are
discussed. Ejections and Sweeps are Q2 and Q4 events respectively which are computed with
the quadrant technique. The wall-normal velocity fluctuations v′ are computed the same way
as those of u′. Akin to streaks, sweeps and ejections in case N show similar characteristics to
FPBL. They show less streamwise coherence than streaks (cf. figure 3.2) which is in-line with
previous studies (Corino and Brodkey, 1969; Bogard and Tiederman, 1986). It is also evident
from the contour plots (figures 3.3, 3.4, C.2 and C.3) that several ejections arise out of a single
low-speed streak as they are both regions of negative u′. By extracting the structures at this
plane, it can be seen that, on average, 2 − 3 ejections arise out of a low-speed streak for case
N which is higher than the 1 − 2 ejections for the stratified cases. This implies a dependence
on stratification in which outward motion of the fluid is restricted when the flow is stratified.
For the long low-speed streak in case S_1 (see light green region in 3.1(b)), it can be seen that
few ejections arise out of it, most of which are confined to the outer edges of the structure.
The inner region of this low-speed streak is devoid of ejections, further confirming the idea
that these non-turbulent patches are simply decelerated regions of the flow.

For all cases, the sweep events appear to be aligned with the low-speed streaks and ejections.
It is known from previous studies (Robinson, 1991) that sweep/ejection pairs support the
existence of quasi-streamwise vortices near the wall of the boundary layer. With the extraction
algorithm, the structures are extracted at y+ ≈ 3.58 and the ratio of sweep/ejection structures
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Figure 3.5: Three pocket regions are highlighted with diverging streamlines for (a) case N and
(b) case S_1 at y+ ≈ 3.58. Overlayed are sweeps and ejections. Color specification for sweeps and
ejections are according to table 2.1.

are the following: case N with 3033/6676 (0.45), case S_3 with 3104/4842 (0.64), case S_2 with
2798/4980 (0.56) and case S_1 with 2194/3054 (0.72). These ratios illustrate the following:

(1) While most ejections and sweeps exist as a pair, the number of ejections outweigh the
number of sweeps within the domain. This suggests strong outward flow within the
ejection regions in the viscous sublayer.

(2) With the difference between cases S_2 and S_3 being minimal, it can be seen that an
increase in stratification reduces the number of ejections suggesting stunted outward flow
from the wall.

With these observations along with figures 3.3 and 3.4, it can be suggested that the organization
of sweep/ejection pairs in clusters as seen in case S_1 will force vortices to be formed directly
above it leaving large regions of no vortex activity. This suggestion is revisited in later
subsections.

Another Robinson structure which is known to be observed in this region are pockets.
Kim et al. (1987) observed these structures by tracking particles/markers which are initially
distributed on a plane parallel to the wall. These particles then rearrange themselves over time,
essentially carving out pockets of low marker concentration (Chu and Falco, 1988). Since these
regions are thought to be influenced by outer region motions that induce wallward motion,
pockets are often associated with vortices. Robinson (1991) pointed out that pockets can
be identified in instantaneous flow fields with streamlines since wallward fluid motion causes
streamlines to diverge. Therefore, the line integral convolution (LIC) technique of Cabral and
Leedom (1993) is used to visualize diverging streamlines. Three pockets for each case are
identified in figures 3.5 and C.4 and most of them can be associated with a sweep/ejection
pair thereby strongly hinting that these regions are associated with vortices. The association
of pockets with vortices are reviewed again in subsection 3.1.5.
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3.1 Geometry of structures in the ABL

3.1.2 Buffer layer

As noted in the previous subsection, most of the structures which start within the viscous
sublayer are not fully formed and often extend into the buffer layer, i.e., between 5 < y+ < 30
and beyond. The goal here is to geometrically characterize all quantitative Robinson structures
except backs and compare them for increasing stratification. The comparison is performed for
structures which are fully formed within this region, i.e., structures that start and end within
the buffer layer itself and also for structures which start from the viscous sublayer and end in
the buffer layer.

The procedure for the geometrical analysis for the current and subsequent subsection is
briefly reviewed before the results are discussed. For all indicators in table 2.1, the global
percolation threshold τp is computed with the procedure described in section 2.3 for grid A
until y+ ≈ 1550. Individual structures are then extracted with the NS+MC algorithm (see
subsection 2.2.2) at τp. It should be noted that the individual structures are only extracted for
grid B, i.e., one-third of the computational domain to keep the computational costs reasonable.
Next, the fractal dimension is computed on all structures and those which have a mean fractal
dimension ⟨Dα⟩ < 1 are filtered away. A second filter is applied to exclude structures which
intersect with the side walls as they are open surfaces. Finally, the feature centers of shape
index and curvedness and the stretching parameter are computed on the surfaces of individual
structures with the procedure described in subsection 2.4.2.

The results of the geometrical analysis for the buffer layer are shown in figures 3.6 and C.5
for all cases. Instantly, the lack of blob-like geometry and the prevalence of tube- and sheet-like
geometries among all Robinson structures is noted. Additionally, two general observations are
made - among all cases, similar geometrical features can be observed within each category of
Robinson structures without any obvious distinction. Most structures in the buffer layer are
tube-like with few sheet-like structures.

The geometry of high- and low-speed streaks (see figures 3.6(a, b) and C.5(a, b)), which
are mostly tube-like, do not appear to change with increasing stratification. This indicates
that streaks are generated primarily by shear and their geometry is unaffected by buoyant
motions in the buffer layer (Lee et al., 1990; Young et al., 2002). Consistent with visualizations
(cf. figure 3.1) and previous studies (Kline et al., 1967; Robinson, 1991), both low- and
high-speed streaks are highly stretched structures (indicated by low values of λ). Although it
cannot be inferred from the geometrical analysis, visualization of these structures shows that
the stretching is in the streamwise direction. It is also worth noting that a large sheet-like,
low-speed streak spans the domain for the case S_1, similar to the observation in the viscous
sublayer suggesting that the non-turbulent regions are decelerated in the buffer layer as well.

Sweeps are mostly tube-like structures for all cases whereas ejections, particularly for cases
S_2 and S_3, show more sheet-like structures. With the K-means clustering algorithm, the
structures are separated into tube-like and sheet-like clusters by initializing the number of
clusters as 2. When these clustered structures are visualized, no discernable patterns could be
identified, i.e., the structures appear to be distributed quite randomly throughout the domain.
It is not clear from this analysis if a classification into tube-like and sheet-like structures is
useful in understanding the contribution of sweeps and ejections to the Reynolds shear stress
term ρu′v′. In general, Willmarth and Lu (1972) note that sweeps have a higher contribution
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Ĉ

0 1

1

Ŝ
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Ĉ

0 1

1

Ŝ
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Figure 3.6: Visualization space for all quantitative Robinson structures except backs are shown
with joint pdfs for the buffer layer. From (a - f) are the high-speed streaks, low-speed streaks,
sweeps, ejections, vortices and shear layers. The geometry of structures is compared with case N
(unfilled contours with dashed lines) and case S_1 (filled cotours). The number of structures for
each contour level is indicated in black for case N and dark blue for case S_1. Numbers within
paranthesis (a - d) are those which start from the viscous sublayer and end in the buffer layer.
Numbers outside paranthesis are those which start and end within the buffer layer itself. Ŝ, Ĉ, λ
are the shape index, curvedness and stretching parameters respectively.

to the Reynolds shear stress when y+ < 15 and ejections have a higher contribution when
y+ > 15. Kim et al. (1987) confirmed this view by examing the DNS of channel flow at
multiple Reynolds numbers. It can be noted from figures 3.6(c, d) and C.5(c, d)) that the
number of sweeps within the buffer layer itself is much higher (denoted by number of structures
outside paranthesis) than ejections for all cases. This suggests strong wallward flow in the
sweep regions of the buffer layer.

It can be observed from figure 3.6(e) that the neutrally stratified case shows higher vortex
activity (indicated by the amount of structures plotted within one-third of the entire domain)
than the stably stratified cases. However, the lower vortex count for case S_1 can be attributed
to the clustering of structures at the percolation threshold due to global intermittency (which
was already discussed in subsection 2.3.1) in which the entire cluster is identified as an
individual structure. This cluster of structures was excluded from the geometrical analysis
as it will be wrongly classified as sheet-like due to its large area, i.e., the ratio µ = 3Vs/As

becomes small which implies Ĉ → 0. For the remaining structures in case S_1, it can be
seen that the majority of them are less stretched (λ → 1) than in the other cases. This can
still be attributed to the exclusion of the large cluster where most hairpin-like structures are
seen. For a small region within this cluster, the MLP technique (discussed in 2.3.1) is applied
and hairpin-like structures are geometrically characterized. These results are discussed in
subsection 3.1.5.

It is interesting to note that both vortices and shear layers which are identified with
vortex indicators (Q-criterion and vorticity magnitude respectively) show drastically different
geometry of structures. Most Q-criterion structures tend to be less-stretched, tube-like whereas
vorticity magnitude shows strongly-stretched, tube- and sheet-like features. If the tube-like
and sheet-like structures of vorticity magnitude are separated into clusters with the K-means
algorithm (initialized with 2 cluster centers) and visualized for the strongly stratified case S_1
(see figure 3.7), it can be seen that there are numerous stretched sheet-like structures at the
turbulent/non-turbulent interface (TNTI) suggesting strong shearing motions at this region.
This does not imply that sheet-like structures exist only at TNTI. Zhou et al. (1999) showed
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Figure 3.7: Sheet-like shear layers are visualized with blue isosurfaces of vorticity magnitude.
Q-criterion contours are shown in red at the global percolation threshold.
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Figure 3.8: Isosurfaces of vorticity magnitude extracted from case S_1 are shown on the left
column to illustrate (a) tube-like structure and (b) sheet-like structure. On the right column, a
velocity vector plot is shown which shows that the tube-like structures are vortex regions whereas
sheet-like structures are shearing regions.

that the quasi-streamwise vortices which push the fluid up and back tend to enounter the
mean flow resulting in the formation of a shear layer (cf. figure 5 of Zhou et al. (1999)). If
an example of a tube-like and sheet-like structure are examined with cross-sectional velocity
vectors, it can be seen from figure 3.8 that the tube-like structure identifies spinning regions
whereas the sheet-like structure shows shearing regions. With this interpretation, one can
construct a visualization space with a complete geometrical characterization of structures
identified with vorticity magnitude as an indicator for wall-bounded flows. This is shown in
figure 3.9. The transition from vortex tubes to shear layers can be thought of as the degree of
shearing where strong shearing occurs when Ĉ → 0.
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Figure 3.9: Visualization space to geometrically characterize vorticity magnitude structures.
Here, A and B are examples of tube-like and sheet-like structures, both of which are visualized in
figure 3.8 (a, b) respectively. Ŝ, Ĉ, λ are the shape index, curvedness and stretching parameters
respectively.

3.1.3 Inner and outer layer

This subsection continues the geometrical analysis with the same Robinson structures for the
inner and outer regions1 of the boundary layer. Figures 3.10(a, b) and C.6(a, b) reveal that
few streaks are formed after y+ > 30. Streaks are studied only until y+ ≈ 40 (as shown in
table 2.1) and therefore, one can surmise that there is little activity in the region 30 < y+ < 40.
Compared to the buffer layer, high- and low-speed streaks for case N and S_1 show a downward
shift in both ŜĈ and λĈ planes indicating stretched, sheet-like structures. The geometry of
streaks for case S_2 and S_3, however, remain the same as that of the buffer layer.

In this region, both sweeps and ejections for all cases (figures 3.10(c, d) and C.6(c, d)) are
tube-like unlike the buffer layer where some ejections were sheet-like. Although the difference
is small, it can be noted that the number of sweep structures are higher than ejections within
the domain. By extracting the structures in this region, the ratio of sweep/ejection structures
are 892/820(1.09) for case N, 296/201(1.47) for case S_1, 614/520(1.18) for case S_2 and
440/635(0.69) for case S_3. Ignoring case S_3, a trend opposite to the one from the viscous
sublayer is observed where the sweep events outweigh the ejections. This suggests strong
wallward flow within the sweep regions. With all this information, the overall behavior of
sweeps and ejections can be commented upon. Within the viscous sublayer, ejections are
dominant contributing to strong outwards flow whereas in the other regions (buffer and inner
layer) sweeps are dominant contributing to stronger wallward flow. By initializing 2 cluster
centers for the K-means algorithm, the tube-like and sheet-like structures are segregated.
Similar to the buffer layer, the tube-like and sheet-like sweeps and ejections are distributed
quite randomly throughout the domain.

1It should be noted that the inner layer is usually defined as y/δ < 0.1 which corresponds to y+ < 140 and
the outer layer defined as y+ > 50 (see Pope (2001) and Marusic et al. (2010)). The Ekman flow analysed
here has a Reynolds number of 26 500 which is sufficiently high to have an overlap between the inner layer and
outer layer which is approximately 90 viscous wall units. In this subsection, the structures are geometrically
characterized until y+ ≈ 1000 to include a good portion of the outer layer.
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3. Geometry of Robinson structures in stratified Ekman flows

As with the buffer layer, the shear layer structures indicated in figure 3.10(f) and C.6(f) are
strongly-stretched (λ → 0), tube- and sheet-like structures (Ĉ → 0) and vortices seen in figure
3.10(e) and C.6(e) are less-stretched, tube-like structures. Also similar to the buffer layer,
the sheet-like shear layer structures can be seen at the TNTI. Since hairpin-like vortices are
fully formed within this region, shear layers can be generally seen above the vortex structures.
Figure 3.11 shows a hairpin packet and an example sheet-like shear layer structure highlighted
in blue.

3.1.4 δ−scale structures

Since the geometry of structures until y+ ≈ 1000 are already studied in the previous subsection,
only two δ−scale Robinson structures are discussed here. They include long, sloping shear
layer structures also known as backs which originate within the buffer layer and extend beyond
y+ > 80 and large scale motions (LSM) called bulges.

Backs are known to span the entire boundary layer and are generally inclined at an angle
of 12◦ − 30◦ from the wall (Robinson, 1991). Since they are essentially shear layers formed
on the upstream side of a LSM, vorticity magnitude can be used to locate these structures.
In particular, structures which start within the buffer layer and extend beyond y+ > 80 are
sought out. The distinction between backs and shear layers is not necessary for inclined
structures that extend until y+ = 80. The number of backs detected for the neutrally stratified
case is the highest where 165 such structures were classified as backs out of a total of 105

structures. Similarly, 11 structures for case S_1, 35 structures for case S_2 and only 8
structures for case S_3 were detected. Their wall-normal extent ranges between 0.2δ(55+)
to 0.32δ(104+) suggesting that these are not O(δ) structures as indicated in previous studies
(Chen and Blackwelder, 1978; Robinson, 1991). The mean inclination angle, computed with
θi = arctan(∆y+/∆x+), with respect to the streamwise direction is 67◦, 49◦, 59◦ and 58◦ for
cases N, S_1, S_2 and S_3 respectively suggesting a decrease in the inclination angle with
increase in stratification. These inclination angles are much higher than those reported for
FPBL. The geometry of these structures as shown in figures 3.12 and C.7 indicate that they
are strongly-stretched tube-like or sheet-like features with an affinity towards the latter.

Bulges are most apparent in figure 3.13(a) where the δ−scale structures are clearly visible
interspersed with irrotational regions which is a consequence of global intermittency. However,
these structures exist in all cases regardless of the strength of stratification. The identified
bulges range between 2 − 4δ in the streamwise direction which is similar to the 0.8 − 3δ

reported for the FPBL (Robinson, 1991; Kovasznay et al., 1970). It can be seen that the point
of interaction of the outer flow and the boundary layer for all cases has a spike in vorticity
magnitude which suggests the presence of large scale rolls. For case S_1, this type of rolls was
already visualized in figure 2.14(a) in which a large Q−criterion structure (above the hairpins)
could be seen spanning most of the domain indicating that bulges are three-dimensional events.

Before the importance and physical relevance of all Robinson structures to the ABL are
discussed, a specific category of vortices shaped like hairpins are studied in the next subsection.

54



3.1 Geometry of structures in the ABL

01

1

λ

Ĉ
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Figure 3.10: Similar to the previous subsection, the visualization space for all quantitative
Robinson structures except backs are shown with joint pdfs for the inner and outer layer. From
(a - f) are the high-speed streaks, low-speed streaks, sweeps, ejections, vortices and shear layers.
The geometry of structures is compared with case N (unfilled contours with dashed lines) and
case S_1 (filled cotours). The number of structures for each contour level is indicated in black for
case N and dark blue for case S_1. Numbers which are within paranthesis (a - d) are those which
start from the viscous sublayer and end in the outer layer. Numbers outside paranthesis are those
which start beyond the buffer layer and end within the outer layer. Ŝ, Ĉ, λ are the shape index,
curvedness and stretching parameters respectively.
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Figure 3.11: A hairpin packet is visualized with Q-criterion for case N at the percolation threshold.
An example sheet-like shear layer structure is shown in blue. A vertical contour slice of vorticity
magnitude colored red highlights shear layer structures.

01

1

λ

Ĉ
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Figure 3.12: Visualization space for backs is shown for case N with unfilled contours and S_1
with filled contours. The number of structures between contours are indicated in dark blue for
case S_1 and black for case N. Ŝ, Ĉ, λ are the shape index, curvedness and stretching parameters
respectively.
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Figure 3.13: Vorticity magnitude contours along the (x, y) plane are shown here for (a) case N
and (b) case S_1 for grid A until y+ ≈ 1550. In each case, a δ−scale bulge is highlighted. The
wall-normal direction is exaggerated three times to show the structures clearly.
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Figure 3.14: The top panel shows isosurfaces of Q-criterion at τ = 0.6 for case S_1 until
y+ = 200. The blue arrow points towards the streamwise direction whereas the white arrow is an
approximate orientation of the majority of hairpin-like structures. Similarly, Q-criterion isosurfaces
are visualized for cases (a) S_2 and (b) N in the bottom panel until y+ = 200.
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Figure 3.15: Visualization of a hairpin packet with the Q-criterion at τp is shown for case N.
The blue structure between the legs of the primary hairpin is the low-speed streak. Q2 and Q4
indicate ejection and sweep events respectively (bottom right visualization). A pocket structure
is highlighted on the bottom left. Velocity vector plots for both legs of the primary hairpin are
visualized on the top left and top right.

3.1.5 Hairpin-like structures

The goal of this subsection is to investigate hairpin-like vortex structures. First, the classical
hairpin vortex attributes are reviewed and an attempt is made to explain the following
observations,

(1) It is immediately apparent that visualization with Q−criterion for case S_1 reveals a
remarkable number of hairpin-like structures (see the top panel of figure 3.14) in the
region y+ < 200.

(2) These structures seem to be oriented in a similar direction, even when individual structures
are compared far away in the domain (cf. 2.5(a, b)).

(3) As seen from figure 2.14(b), an entire cluster of structures tends to be misidentified as
an individual structure when using the global percolation threshold for the case S_1.

Upon visualization of Q-criterion at τp for all cases, it is noticeable that stratification has a
strong impact on the volume of hairpin-like structures which appears to increase with increasing
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Figure 3.16: Side view of the hairpin packet visualized in figure 3.15 is shown here. The angle
between the line connecting the head of the hairpin-like structures and the wall is the growth angle
θ.

stratification. While the neutrally stratified case shows the least amount, a prominent example
of a hairpin packet resembling the vortex packets of Adrian et al. (2000) is highlighted and
discussed from this case (visualization of this packet can be seen in figures 3.15 and 3.16).

Examination of this packet along with the Robinson structures (particularly low-speed
streaks, sweeps, ejections and pockets) in figure 3.15 reveals classical hairpin attributes. The
(x, y) cross-sectional velocity plots visualized on both legs of the hairpin, henceforth primary
hairpin, show that they are indeed counter-rotating. Probing other indicators close to the
hairpin allows us to extract nearby Robinson structures. Between the hairpin legs, there
appears to be a region of low momentum fluid (blue region of the low-speed streak) passing
through all the hairpins which is consistent with previous observations (Zhou et al., 1999;
Adrian et al., 2000). Closer inspection on the right hairpin leg also reveals the existence of Q2

(yellow-colored ejection) and Q4 (green-colored sweep) events on either side of the leg. Along
with the velocity plot, it is easy to understand that the Q2 event pushes up the fluid whereas
the Q4 event pushes it down. When the fluid is pushed up, it is also pushed downstream where
it interacts with the mean flow resulting in the formation of near-wall shear layers (Zhou et al.,
1999). The autogeneration mechanism is also evident here. The upstream hairpin induces
a strong Q2 event which interacts with the high-speed fluid behind it which results in the
formation of further hairpins downstream (Adrian et al., 2000). Another classic attribute is the
growth angle θ which is the angle between the line connecting the heads of the hairpin packet
and the wall. In this case, θ = 54◦, which is significantly higher than the 12◦, 20◦ obtained by
Adrian et al. (2000) and Head and Bandyopadhyay (1981) respectively. The inclination angles
of individual hairpin-like structures are discussed below.

A pocket region (visualized with diverging streamlines) can also be observed interacting
with the Q−criterion structure which is a part of the primary hairpin. Although these are
intended to be ‘footprints’ of outer structures, typically eddies (Chu and Falco, 1988), no
diverging streamlines are observed for other regions which are also clearly interacting with the
wall.
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Figure 3.17: The geometry of 100 hairpin-like structures are compared in the visualization space
for case N and S_1. Isosurfaces of two tube-like examples from each case are shown on the right.
Filled contours represent case S_1 whereas unfilled contours represent case N. Ŝ, Ĉ, λ are the
shape index, curvedness and stretching parameters respectively.

Before the geometrical characterization is applied to the hairpin-like structures, a distinction
is made between a hairpin and a hairpin-like structure. While manually probing the datasets,
it is possible to encounter a structure which looks like a hairpin but may not contain any of
the aforementioned classical hairpin attributes. Therefore, all manually probed and extracted
structures are designated ‘hairpin-like’ throughout the thesis. For the geometrical analysis,
100 hairpin-like structures are manually probed and extracted for case N, S_2 and S_3 at
the global percolation threshold. For S_1, in which an entire cluster of structures tend to be
misidentified as a single structure, the MLP procedure described in subsection 2.3.1 is applied.
A smaller domain of size 300 × 90 × 600 is chosen with a stopping criterion Vmax/V = 0.5
to keep the computational costs bearable. The chosen subdomain is shown in figure 2.14(a).
From the MLP results, 100 hairpin-like structures are identified.

The results of the geometrical characterization are shown in figures 3.17 and C.9.
Interestingly, only the case S_1 has no sheet-like structures and Ĉ is above 0.5. This can
be attributed to the MLP procedure which identifies only simple structures thereby limiting
the possibility of choosing a complex structure which may resemble a hairpin. Apart from
a few anomalous sheet-like structures, most of the structures are tube-like as expected with
negligible difference in geometry for changes in strength of stratification.

Finally, the inclination angles of hairpin-like structures are examined. For the 100 structures
chosen from each case, the inclination angle (θi = arctan(∆y+/∆x+)) is computed. The average
inclination angles are θi = 35.4◦, 27◦, 26.6◦, 25.4◦ for case N, S_1, S_2 and S_3 respectively.
This suggests that the hairpin-like structures from the neutrally stratified case N have a
higher inclination angle than the stably stratified cases (all of which seem to have similar
inclination angles). Also, while θi for case N is much higher than those reported in previous
studies (for example - 18◦, Brown and Thomas (1977); 18.7◦, Hommema and Adrian (2003);
16◦, Carper and Porté-Agel (2004); 14.4◦, Marusic and Heuer (2007); 25◦, Hutchins et al.
(2012); 13.7◦, Chauhan et al. (2013)), it should be noted that these estimations may involve
hairpin-like structures which are far away from the wall. Adrian et al. (2000) note that θi tends
to increase as the hairpin ages and moves away from the wall. Therefore, if the structures
only close to the wall are considered, i.e., structures which start within the buffer layer, then
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the mean inclination angles are θi = 19.7◦, 21◦, 19.2◦, 19.2◦ for case N, S_1, S_2 and S_3
respectively. This is in-line with previous observations and also indicates that, close to the
wall, the inclination angles do not change much with increase in stratification. While the
geometry and inclination angles of hairpin-like structures are addressed, their orientation and
abundance require further investigation which is carried out in subsequent chapters.

3.2 A general definition of intermittency factor for wall-
bounded flows

From the previous sections, it is evident that global intermittency has a significant impact on
every layer of the stably stratified ABLs. Although the geometry of coherent structures are
thoroughly quantified for increasing levels of stratification, it is important to note that this is
achieved through: (a) thresholding of scalar indicators to identify individual structures, (b)
limiting the analysis to one-third of the computational domain. Jiménez (2018) points out
that,

“It is clear that the percolation threshold is only
one among many possible threshold choices, and that
conclusions derived from the structures thus obtained
have to be tested against other methods of analysis.”

Therefore, to complement the results of the geometrical analysis presented in the previous
sections, we turn towards conditional one-point statistics. The conditioning is based on a
quantitative description of global intermittency to segregate the turbulent and non-turbulent
regions. The goal of this section is twofold: to review the previous definitions of the
intermittency factor, and to suggest possible improvements for the same.

Corrsin and Kistler (1955) have shown that the non-turbulent regions are comprised of
irrotational fluctuations. Since irrotational regions have no vorticity, Bisset et al. (2002)
and Da Silva et al. (2014) used the magnitude of vorticity to separate the turbulent and
non-turbulent regions. The intermittency factor according to Pope (2001) is given by,

γ(x, t) = ⟨H(|ω(x, t)| − ωτ )⟩ (3.1)

where H is a Heaviside function, |ω| is the magnitude of vorticity, ωτ is a small threshold
below which the flow is assumed to be approximately irrotational, x is a streamwise location,
t is time and ⟨·⟩ is the averaging over wall-normal planes. Da Silva et al. (2014) observed that
the geometric shape of the turbulent/non-turbulent interface (TNTI) has a weak dependence
on the value of ωτ . There are many ways to choose ωτ . For instance, in Ekman flows, Ansorge
and Mellado (2016) define ωτ = 7ωrms(δ95), where δ95 is the height at which the total stress
is approximately 5% of the wall shear stress. However, as pointed out in section 2.3, the
inhomogeneity of the flow in the wall-normal direction has to be taken into account while
choosing a non-subjective global threshold value. Hence, (3.1) can be written as,

γ(y) = ⟨H(α(x, y, z) − ατp)⟩ (3.2)
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Figure 3.18: Intermittency profiles are shown with various values of ωτp . In (a), ω is used as an
indicator for case N without nondimensionalization with its RMS over every wall-normal plane.
(b) shows the same indicator again for case N with nondimensionalization. (c, d, e, f) show the
Q-criterion as an indicator with nondimensionalization for case N, S_1, S_2, S_3 respectively.
Dashed lines from left to right indicate increasing values of the threshold starting from 0. Solid
lines show the global percolation threshold.

where α is a vortex indicator normalized with its RMS over wall-parallel planes and ατp is the
global percolation threshold of the indicator. This is a generalization of (3.1) as α can be any
vortex indicator. The time t is excluded as a single time step of the flow is analyzed in this
chapter.

The advantage of (3.2) is shown in figure 3.18. In figure 3.18(a), ω is chosen as the vortex
indicator. The profile is similar to that found for a non-rotating boundary layer as seen in
figure 2 of Kovasznay et al. (1970), figure 9(a) of Da Silva et al. (2014) and rotating, stratified
Ekman flow seen in figure 3 of Ansorge and Mellado (2016). Close to the wall, γ is more or
less equal to 1 suggesting that this region is completely turbulent. As pointed out previously
in subsection 2.1.3, ω misidentifies shearing motions as vortices and is hence responsible for
a large value of γ. Furthermore, since ω is not nondimensionalized with its RMS, small
threshold values will highlight structures only in the wall region of the boundary layer. If ω is
nondimensionalized with its RMS over wall-parallel planes, the results from 3.18(b) indicate
a more uniform spread of structures throughout. However, γ is still 1 close to the wall. An
alternate indicator such as the Q-criterion can be used to rectify this issue. This is shown in
figure 3.18(c) for case N. The profile correctly shows that regions close to the wall are relatively
less filled with structures compared to the previous two cases. It is interesting to note that
at the global percolation threshold τp (shown with solid line), the profiles for 3.18(b, c) are
similar after y+ > 30.

While the non-dimensionalized Q-criterion shows a minor variability of γ in the wall-normal
direction for case N, the impact of global intermittency can be clearly seen in figure 3.18(d,
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Figure 3.19: Vertical profiles of conditional one-point statistics applied to (a) high-speed streaks,
(b) low-speed streaks, (c) sweeps and (d) ejections are shown here. Black profiles indicate turbulent
regions and teal profiles correspond to the non-turbulent regions.

e, f) for which γ shows significant variations. The effect of these variations on conditional
one-point statistics of streaks, sweeps and ejections are presented in the next section.

3.3 Conditional one-point statistics

The intermittency factor definition introduced in (3.2) is used to split the flow into turbulent and
non-turbulent regions with α as Q-criterion. This conditioning is applied to four quantitative
indicators namely, high-speed streaks, low-speed streaks, sweeps and ejections to complement
the results obtained in section 3.1. Unlike the geometrical analysis which is restricted to grid
B (1/3) of the computational domain, conditional statistics are applied to grid A (full domain).
Once the flow is partitioned, vertical profiles are obtained by averaging the wall-parallel planes
and the results are shown in figure 3.19.

Conditioning of the high-speed and low-speed streaks reveals a striking difference between
the lower region of the boundary layer (y+ < 30) and the region aloft. The lower region of the
boundary layer is discussed first. In accordance with the results presented in subsection 3.1.1,
it can be seen from figure 3.19(b) that the low-speed streaks in the non-turbulent region (blue
dotted line) for case S_1 are dominant over those of the other cases. This is to be expected
since it was shown that global intermittency affects the lower regions of the boundary layer
including the viscous sublayer (as seen from figure 3.1(b)) in which the non-turbulent regions
were occupied by low-speed streaks. For all four cases, figure 3.19 shows that the high-speed
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3. Geometry of Robinson structures in stratified Ekman flows

streaks, which are regions of fast moving fluid, belong to the turbulent part of the flow. This
is in accordance with the origin of turbulence within the buffer layer, in which strong shear is
dominant leading to turbulence production.

Above the buffer layer, the streaks were examined only until y+ ≈ 40 in the geometrical
analysis. Beyond that, it is observable from figure 3.19(a, b) that the non-turbulent regions of
the flow are composed of high-speed streaks, i.e., faster moving fluid, whereas the turbulent
region is occupied by the low-speed streaks. While these structures are still denoted as streaks,
one must be aware that these are no longer the ‘wall streaks’ understood from the classical
sense of the term. The behavior of these streaky regions can be explained with the non-locality
of turbulence. Since turbulence mostly originates near the wall and is slower, it is manifested
as low-speed streaks in the turbulent regions whereas the non-turbulent fluid originates from
above and is therefore faster, which is seen with the high-speed streaks in the non-turbulent
regions (Ansorge and Mellado, 2016).

In subsection 3.1.1 (on the viscous sublayer), a single low-speed streak was seen spanning
the domain leading to the conclusion that non-turbulent regions are decelerated regions of the
flow. This view is now examined here. For the non-turbulent regions of the flow, the ratio
of the number of high- or low-speed streaks over the total number of non-turbulent points
is computed over every wall-parallel plane and is shown in figures 3.20(a - d) for all cases.
Apart from the neutrally stratified case in which the non-turbulent regions are composed of
predominantly high-speed streaks until y+ ≈ 1550, it can be seen that low-and high-speed
streaks tend to alternate for the stratified cases. This is most visible for case S_1 shown in
figure 3.20(b) where the low-speed streaks are dominant until y+ ≈ 31.26, after which the
non-turbulent region is composed of high-speed streaks. This behavior is seen for cases S_2
and S_3 where the switch happens at a lower height of y+ ≈ 6.18 and y+ ≈ 7.55 respectively.

The conditioning of sweeps (cf. 3.19(c)) and ejections (cf. 3.19(d)) also reveals interesting
behavior. It was seen in subsection 3.1.2 that significant sweep activity is observed in the
buffer layer, which is also evident in the turbulent regions when comparing figures 3.19(c, d).
Sweeps in the non-turbulent regions also show significant wallward activity beyond y+ ≈ 200
for the stably stratified cases, which indicates that the non-turbulent fluid originates from
above. Figure 3.19(d) also suggests significant ejection activity within the turbulent regions of
the flow beyond the buffer layer but within y+ ≈ 200. This was not seen in section 3.1 and
indicates alternating regions of outward and wallward flow in all cases.

3.4 Physical interpretation and discussion

If the geometry of all Robinson structures analysed in section 3.1 are plotted for each case
as shown in figure 3.22, it can be seen that the envelopes of the joint p.d.f. are very similar
regardless of the impact of global intermittency. Most structures within the ABL are moderately
stretched tube-like or moderate to strongly stretched sheet-like with no blob-like structures. In
previous works, sheet-like structures were observed at small scales in homogeneous, isotropic
turbulence (Schumacher et al., 2005). Both flat and curved sheet-like features, having a fractal
dimension of 2 (obtained through box-counting), were seen at the most intense regions2 of

2Intense regions can be thought of as those parts of the scalar field which satisfy a large threshold relative to
the maximum possible threshold.
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Figure 3.20: Vertical profiles indicating the fraction of the volume occupied by high- and low-
speed streaks are shown on the left for case (a) N, (b) S_1, (c) S_2 and (d) S_3. Except for case
N, the height at which the profiles intersect is visualized on the right. For case S_1, S_2 and S_3,
the profiles intersect at y+ ≈ 31.26, y+ ≈ 6.18 and y+ ≈ 7.55 respectively. For case N, a height of
y+ ≈ 13.45 is visualized.

the scalar dissipation. Similarly, Bermejo-Moreno and Pullin (2008) applied the curvelet
transform on a passive scalar field of forced, isotropic turbulence and reported the presence
of sheet-like structures at the smallest scales. They also found a continuous transition from
blob-like structures with moderate stretching at the largest scales, tube-like in the middle
scales and stretched sheet-like structures in the smallest scales. Moisy and Jiménez (2004),
by computing the aspect ratios of three-dimensional structures extracted from scalar fields,
found that intense strain-rate regions were predominantly sheet-like with a fractal dimension
of 1.7 (obtained with a box-counting analysis). Although a scale-by-scale analysis was not
performed in this work, it was shown in figure 3.11 that small (≈ 100+ viscous units in the
streamwise direction and 37+ viscous units in the spanwise direction), intense sheet-like shear
layer structures are formed in the vicinity of hairpin packets. Figures 3.18(a, b, c) also suggest
the presence of intense shearing regions close to the wall. If the geometry of structures within
the wall region of the ABL can be clarified with a multi-scale analysis, it could be used to
improve, for instance, structural models of LES in which the subgrid stress is modeled as a
superposition of velocity fields from an ensemble of tube-like structures (Misra, 1997; Misra
and Pullin, 1997).

The analysis of numerous Robinson structures allows for a comparison with previously
known results, for instance, the conceptual hairpin-packet model of Adrian et al. (2000). A
sketch of the Robinson structures is shown in figure 3.21(a, b). It should be noted that
high-speed streaks, pockets and backs are omitted here. The existence of high-speed streaks is
ubiquitous and can be seen alternating with the low-speed streaks (cf. figures 3.1 and C.1).
Although the latter two structures were detected in the ABL, numerous Q-criterion events
interacting with the wall showed no pocket-like regions in the viscous sublayer (see discussion in
subsection 3.1.5) and their contribution to turbulence generation is not immediately apparent.
Far fewer backs (extended shear layers) were detected in the flow field for all simulation cases,
particularly for case S_1. The detected structures were not on the order of δ−scale as shown
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Figure 3.21: A sketch of the conceptual model discussed in the text is shown here. The color
specification of the structures is according to table 2.1.
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Figure 3.22: Visualization space showing the geometry of all structures analysed for all simulation
cases. The neutrally stratified case N is represented by solid line (—) and the stably stratified
cases S_1, S_2, S_3 are represented by dotted (...), dashed (- - -) and dash patterned (– — –) lines
respectively.

in the literature. Therefore, it remains unclear if backs are a part of the ABL or if more
sophisticated methods are necessary for their detection.

The hairpin packet discussed in subsection 3.1.5 is useful to understand the interactions of
various Robinson structures which are shown in figure 3.21(a). A low-speed streak (colored
blue) is seen in-between the legs of a primary hairpin. Zhou et al. (1999) proposed that
low-speed streaks are generated due to the backward pumping of the fluid by the hairpin
packet. Close to the leg of a hairpin, a Q2 ejection event (colored yellow) and a Q4 sweep
event (colored green) can be seen on either side. The Q2 event which pushes the fluid up can
be seen arising out of the low-speed streak as they are both regions of −u′. The fluid which is
pushed up interacts with the mean flow which results in the formation of shear layers (colored
magenta) (Zhou et al., 1999). The primary hairpin autogenerates a new hairpin with a strong
Q2 event which interacts with the high-speed fluid (Adrian et al., 2000). This results in the
formation of a hairpin packet. Streamwise coalescence of these hairpin packets results in the
formation of large scale motions (Katul, 2019) as sketched in figure 3.21(b).
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3.5 Summary and conclusions

To understand the intricacies associated with stable boundary layers, the modular framework
developed in the previous chapter has been used to examine the geometry of all Robinson
structures among three stably stratified and a neutrally stratified case of the Ekman flow.
For an instantaneous time step of each case, the structures were extracted at the percolation
threshold and geometrically characterized. About 106 structures were analyzed. The results
are reported by segregating the ABL into different layers or regions based on the wall-normal
height y+.

Within the viscous sublayer (y+ < 5), particularly with the low-speed streaks, an increase
in their streamwise coherence was observed with increase in stratification. For the strongly
stratified case S_1, a large portion of the domain is occupied by a single low-speed streak (cf.
figure 3.1(b)). Notably, this low-speed streak has few ejections arising out of it (both low-speed
streaks and ejections are regions of −u′), most of which are confined to the outer edges of the
structure. The inner region which is completely devoid of ejections is comparable to the non-
turbulent regions seen above the viscous sublayer. This suggests that global intermittency has
a direct impact in this layer, although partitioning of the flow into turbulent and non-turbulent
regions isn’t applicable here since the flow is locally laminar. Therefore, global intermittency
should be generalized to indicate active/inactive regions rather than turbulent/non-turbulent
regions to account for its impact within the viscous sublayer.

Since the geometrical analysis requires structures to be closed and not noise-like, i.e., having
a mean fractal dimension ⟨Dα⟩ > 1, it is only performed for structures in the buffer layer and
beyond. In general, figures 3.6, 3.10, C.5, C.6 suggest that structures with similar geometrical
features exist for all stratifications, i.e., an affinity towards sheet-like (or pancake-like) geometry
cannot be established for increasing stability at an instantaneous snapshot of the flow. This
result is surprising since changes in geometry have been observed with increasing instability
(see the discussion in the introduction of this chapter). It should be noted that the discrepancy
observed in figure 3.10(a, b) between case N and S_1 for high-and low-speed streaks, where S_1
shows sheet-like structures, can be attributed to the small sample size, given that structures
were analyzed only in the region 30 < y+ < 40. Although this result was unexpected, it is
in-line with recent results reported by Gucci et al. (2023), who found that one-component
turbulence3 (associated with very stable stratification) does not lead to two-dimensional (or
pancake-like) turbulence.

Examination of hairpin-like structures in subsection 3.1.5 shows that they possess similar
tube-like geometry inclined at approximately 19◦ − 21◦ (close to the wall) regardless of
changes in strength of stratification. While these results suggest that the geometry of coherent
structures and inclination angles of hairpin-like structures do not change much with increasing
stability, numerous visualizations (for instance, figures 3.1, 3.3, 3.4, 3.13, 3.14) clearly indicate
the presence of quasi-laminar patches (due to global intermittency) for the case S_1 extending
throughout the vertical length of the flow which has a strong impact on the spatial organization

3Here, one-component refers to a limiting state of the anisotropic Reynolds stress tensor, where one
eigenvalue is much larger than the other two (See Pope (2001), table 11.1 for a list of all limiting states and their
corresponding shape). In stable boundary layers where submeso motions exist, it was shown by Vercauteren et al.
(2019) that flow configurations influenced by these submeso motions have a preference towards one-component
axisymmetric stress.
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of coherent structures. By analyzing the time series of turbulent heat flux from the CASES-99
data (Poulos et al., 2002), Van de Wiel et al. (2002) (see figure 1) show that global intermittency
also exhibits temporal variability in which strongly turbulent periods (negative heat flux)
are interspersed with quiet periods (no heat flux). This spatio-temporal variability of global
intermittency can have a direct influence on the dynamics of coherent structures. Therefore,
to fully comprehend the impact of stability on the geometry of coherent structures, one
must extend current results by studying the temporal evolution of geometry for which these
structures are tracked in time. This is pursued in the subsequent chapter.

Since there is an ambiguity in choosing the “optimum” threshold value from percolation
analysis, conclusions derived from the geometrical analysis are complemented with those from
conditional one-point statistics. The flow is conditioned into turbulent and non-turbulent
subvolumes with an intermittency factor γ. Previous definitions of γ used the magnitude
of vorticity (ω) with an appropriate threshold to segregate the turbulent (rotational) and
non-turbulent (irrotational) parts. Two improvements to this definition are proposed in section
3.2. Since shearing motions are misidentified as vortices by ω, it is suggested to replace ω with
alternate Eulerian vortex indicators, for instance with the Q-criterion. It should be noted that
this is important only for wall-bounded flows, in which strong shearing motions exist close to
the wall. If the analysis is conduced far away from the wall or for other flow conditions such as
homogeneous isotropic turbulence, vorticity magnitude will be sufficient to partition the flow
field. As shown in subsection 2.1.3 and Chakraborty et al. (2005), popular vortex criteria such
as Q, λ2 and ∆ tend to identify very similar regions as vortices and therefore, a particular
choice among these should not affect the conclusions presented in this thesis. The second
improvement concerns the threshold. Since the flow is inhomogeneous in the wall-normal
direction, using a single, global threshold value may not highlight features evenly for the entire
flow field. This effect has already been illustrated in figure 2.13. Therefore, the vortex indicator
is nondimensionalized with its RMS over wall-parallel planes before percolation analysis is
carried out to choose the threshold.

Results of the conditioning applied to streaks, sweeps and ejections are discussed in section
3.3. It should be noted that the conditional analysis is performed on grid A (full domain),
unlike the geometrical analysis which was restricted to grid B (1/3 of the domain) to lower
computational costs. Similarities between the results of the geometrical analysis and the
conditional statistics can be seen in low-speed streaks, both of which suggest a dominant
presence in non-turbulent flow regions close to the wall for the strongly stratified case S_1
(see figures 3.1(b), 3.19(b)) suggesting that non-turbulent patches are decelerated regions of
the flow. However, analysing the volume fraction occupied by low- and high-speed streaks in
figure 3.20(b) reveals a switching behavior where the outer non-turbulent regions are occupied
by high-speed streaks which was not seen in the geometrical analysis since it was restricted to
y+ < 40. This switching behavior, also mirrored in sweeps and ejections (see figures 3.19(c, d)),
suggests that the outer non-turbulent patches is composed of fast moving fluid. This makes
sense as non-turbulent fluid originates from the free stream (Ansorge and Mellado, 2016) and
is therefore faster.
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4
Temporal evolution of the geometry of

Robinson structures

In the last chapter, a detailed geometrical analysis on the Robinson structures was carried
out on an instantaneous snapshot of the Ekman flow at different levels of stratification. The
modular geometrical characterization framework from chapter 2 was used to characterize
the geometry of individual structures as blob-like, tube-like or sheet-like depending on their
location within a three-dimensional visualization space composed of three parameters: shape
index Ŝ, curvedness Ĉ and stretching λ. Results indicate that, despite the influence of global
intermittency extending until the viscous subalyer, similar geometrical features are observed
with increasing stability and an affinity towards a certain geometrical type (for instance,
sheet-or pancake-like) could not be established. However, visualizations show that global
intermittency in the stably stratified cases has an impact on the spatial organization of coherent
structures. Since global intermittency is known to exhibit temporal variability (Van de Wiel
et al., 2002), one can expect that the dynamics of coherent structures will be affected, which
in turn, can lead to temporal variations in their geometry. Therefore, the purview of the
first part of this chapter is to study the temporal evolution of the geometry of quantitative
Robinson structures and compare the same for increasing stratification. Specifically, the
following question is addressed,

• With the instantaneous Ekman flow fields analyzed in the previous chapter as a starting
point, is there a dissimilarity in the temporal evolution of the geometry of the quantitative
Robinson structures for increasing stability?

Dynamical aspects of coherent motions have been investigated in numerical simulations
of channel flows in prior works (Johansson et al., 1991; Robinson, 1991; Zhou et al., 1999;
Lozano-Durán and Jiménez, 2014). Recently, Lozano-Durán and Jiménez (2014) studied the
dynamics of sweeps, ejections and vortices on spatially and temporally well-resolved DNS of
channel flow data by tracking them in time. Their results show that most structures are small
with short lifetimes while the ones which are large were found to be geometrically self-similar
with more or less constant aspect ratios. Observations from similar studies have been useful
to build/improve models of wall-bounded turbulence based on coherent structures (Panton,
2001). Examples of such models include the hairpin-packet model (due to Adrian et al. (2000))
discussed in the previous chapter and a model for the logarithmic layer in terms of sweeps,
ejections and clusters of vortices proposed by Del Álamo et al. (2006), Flores and Riley (2011),
and Lozano-Durán et al. (2012), both of which are based on the attached-eddy model of
Townsend (1961). In the ABL, coherent structures such as hairpin-like structures, hairpin
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Figure 4.1: A schematic representation of the steps involved in tracking the Robinson structures
in time. An additional step (step III) is introduced to the geometrical characterization framework
from chapter 2.

packets, sweeps, ejections and large-scale motions have been detected and studied in field
experiments (Hommema and Adrian, 2003; Carper and Porté-Agel, 2004; Horiguchi et al.,
2010; Li and Bou-Zeid, 2011; Oncley et al., 2016; Heisel et al., 2018) under a variety of stability
conditions. However, to the author’s knowledge, the dynamics of these structures - particularly
their three-dimensional extent, has received less attention. Even less attention has been paid
to their geometry. While structures with ramp-like geometry have been identified in time-series
data of stable boundary layers (Belušić and Mahrt, 2012; Halios et al., 2014), Mahrt (2014)
points out that only limited inferences regarding the physics can be made with time-series data
and stresses the need for detailed analysis in the spatial domain. This motivates the necessity
to track three-dimensional coherent structures in time and quantify changes in their geometry.

Tracking of structures (or features) in time-dependent data sets has been studied extensively
in the computer graphics community. To successfully track a structure, one needs to match
the same structure at different instances in time. This is known as the correspondence
problem (Ballard and Brown, 1982). For an overview on the various approaches to solve the
correspondence problem, the reader is referred to the review paper of Post et al. (2003). In this
thesis, a region-based correspondence technique is used in which correspondence is determined
by volume or spatial overlap of structures between successive time steps. Tracking progresses
only when the overlap threshold, denoted τoverlap, is satisfied. This method is chosen due to its
simplicity in implementation and to keep the computational costs low. It has been previously
applied for tracking vorticity magnitude structures in isotropic turbulence (Silver, 1995; Silver
and Wang, 1996; Silver and Wang, 1997; Silver and Wang, 1998) and hairpin vortices, sweeps
and ejections in channel flows (O’Farrell and Martín, 2009; Lozano-Durán and Jiménez, 2014).
A common issue associated with this method is that it requires a rather high temporal sampling
rate to track small, fast moving structures. Recently, a workaround was proposed by Badel
(2021) and Lindheim et al. (2021) in which volume overlap can be combined with medical image
registration to solve correspondence of non-overlapping structures. Other techniques also exist
for which global spatial and physical attributes can be used to obtain the best matching result
(Ji and Shen, 2006; Bußmann et al., 2022). Since these modifications/methods will increase the
computational costs and it is desirable to keep them as low as possible (due to the large size
of the dataset), the former method with spatial overlap is preferred and the snapshots of the
simulation are output at full temporal resolution, i.e., every iteration. This ensures that most
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structures having lifetimes greater than ∆t+ (which is the sampling interval) can be tracked.
The sampling intervals are shown in table 4.1 for all cases. To keep the storage requirements
reasonable, only the first 1000 snapshots starting with the instantaneous snapshot analyzed in
chapter 3 are stored.

To compute the temporal evolution of the geometry of quantitative Robinson structures,
an additional step is introduced in the geometrical characterization framework as shown in
figure 4.1. The tracking methodology is described in section 4.1. While the method is capable
of identifying and tracking interactions (such as split and merge events), only the primary
structure is tracked for the Robinson structures. This is because interactions (specifically,
merge events) can significantly alter the geometrical state of the structure as shown in figure
4.6. Results of tracking applied to Robinson structures are discussed in section 4.2.

In the previous chapter, visualization with the Q-criterion in figure 3.14 revealed interesting
characteristics of hairpin-like structures. While these structures are observable for all cases, an
abundance of them, most of which appear to be oriented in a similar spanwise direction, can
be seen for the strongly stratified case S_1. It should be noted that hairpin-like structures
have already been identified in previous studies for various stability conditions. For instance,
in field experiments, signatures of hairpin vortices have been detected in unstable and neutral
conditions of the ABL (Hommema and Adrian, 2003; Li and Bou-Zeid, 2011; Heisel et al.,
2018). Oncley et al. (2016) also report the presence of counter-rotating vortices which can be
interpreted as the legs of a hairpin structure under stable conditions. Furthermore, Watanabe
et al. (2019) and Jiang et al. (2022), while studying the DNS of a stably stratified shear layer,
not only found a large number of hairpin-like structures but also noted that they were oriented
in the streamwise and spanwise directions at the middle and top of the shear layer respectively.
Dynamical aspects of these structures have also been well documented for unstratified fluid
flows (Acarlar and Smith, 1987; Zhou et al., 1999; Adrian et al., 2000). However, they remain
relatively unexplored for stratified flows.

While studying the motion of an isolated hairpin vortex in the DNS of a channel flow,
Zhou et al. (1999) observed that, after the initial lift-up due to self-induction, the hairpin
structure is stretched in the streamwise direction due to the mean background flow. They
further note that the head of the hairpin continues to lift upwards and assumes a near vertical
orientation over time. This suggests that the hairpin structure grows in size as it is advected
downstream. Since the feature tracking scheme, discussed in section 4.1, uses the same initial
threshold to identify the structures in subsequent time steps, changes in size of the feature
may not be adequately captured. Therefore, the following question is raised,

• Can the region-based feature tracking scheme be modified to account for changes in the
size of the feature by dynamically adjusting the thresholds in time? How much would
the temporal evolution of the geometry of the tracked feature differ with those obtained
using constant threshold in time?

Steps of the modified feature tracking scheme are presented in subsection 4.3.1 and results
of the geometrical comparison with constant and varying thresholds in time are discussed in
subsection 4.3.2. With this modified feature tracking scheme, hairpin-like structures along
with their interactions are tracked for all cases listed in table 4.1 and an attempt is made
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4. Temporal evolution of the geometry of Robinson structures

Case Line specification RiB Fr ∆t+ Re

N ———– 0 ∞ 0.14
26 450S_1 ............ 2.64 0.02 0.125

S_2 - - - - - - - 0.76 0.07 0.254

Table 4.1: The table from chapter 1 is repeated here with the omission of case S_3. ∆t+ is
the time separation between consecutive time steps. It should be noted that the friction velocity
uτ which is used for normalization of quantities including time is not known a priori for Ekman
flows and generally varies with time. Therefore, an averaged value of uτ is used to compute these
quantities (see table 1.2).

to explain the abundance of hairpin-like structures found in the strongly stratified case S_1.
This is presented in subsection 4.3.3.

4.1 Methodology for tracking coherent structures in time

In this section, the region-based tracking procedure is described. The procedure for tracking
individual structures is described in the subsequent subsection. Here, only the structure
of interest is tracked and any interactions (split or merge events) which may occur during
its lifetime are ignored. Lozano-Durán and Jiménez (2014) noted that interactions form a
substantial part of the temporal evolution of structures (vortex structures, sweeps and ejections)
in turbulent channel flows. They further note that large structures (on the order 100η1) are
more susceptible to interactions, some of which may be complex, i.e., structures which are split
from or merging with the primary structure may have experienced split or merge events of their
own. An example of a complex vortex interaction can be seen in figure 5 of Lozano-Durán and
Jiménez (2014). Therefore, a tracking procedure accounting for all interactions is described in
subsection 4.1.2. Although both tracking procedures employ concepts similar to those described
in Silver and Wang (1996) and Lozano-Durán and Jiménez (2014), they are differentiated
by the use of the NS+MC algorithm which extracts visualization accurate structures from
three-dimensional scalar fields (see subsection 2.2.2).

4.1.1 Tracking procedure for individual structures

In this scenario, the structure of interest (which can be a vortex identified with the Q-criterion,
Q2, Q4 event etc.) is chosen by the user at time tn. With the NS+MC algorithm, this structure
is extracted at the global percolation threshold τp from the three-dimensional scalar field,
denoted by I. The next stage of tracking is to determine correspondence between the source
structure (or structure of interest) and target structures at later times.

In the consecutive time step tn+1, the scalar field is thresholded at τp and all resulting
structures are extracted with the NS+MC algorithm. Each structure is assigned a label
{1 , ..., N}. To identify potential target structures, the space (location of points) occupied by
the source structure is searched at tn+1. This space may be occupied by a single structure (one

1Here, η is the Kolmogorov length scale which is defined as η = (ν3/ϵ)(1/4) where ν is the kinematic viscosity
and ϵ is the mean dissipation rate of kinetic energy.
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4.1 Methodology for tracking coherent structures in time

tn tn+1

|Itn+1
||Itn| |Itn ∩ Itn+1

|

Figure 4.2: Spatial or volume overlap of a feature at different times tn (solid line) and tn+1
(dashed line). The overlap region is highlighted with a darker shade of blue.

Primary branch

Outgoing branch

Incoming branch

Time

Figure 4.3: A sketch of the temporal graph indicating a merge event (colored blue) and a split
event (colored red). The coloring scheme is used throughout the chapter unless otherwise indicated.
Figure adapted from Lozano-Durán and Jiménez (2014).

unique label) or multiple structures (multiple labels) in case of a split event. Correspondence
is determined by measuring the degree of spatial overlap between the source and each target
structure with the dice similarity coefficient (DSC) (Dice, 1945),

DSC(Itn , Itn+1) = 2|Itn

⋂︁
Itn+1 |

|Itn | + |Itn+1 |
(4.1)

where | · | denotes the volume of the structure. DSC can range between 0...1, where 0 indicates
no spatial overlap and unity indicates a perfect overlap. The target structure which satisfies
the user-defined overlap threshold, denoted τoverlap, is identified as the correct structure to
follow. The overlap condition can be written as,

DSC(Itn , Itn+1) > τoverlap (4.2)

In the case for which there are multiple target structures which satisfy τoverlap, the one
with the highest DSC value is followed. Tracking continues until the structure dissipates, i.e.,
the structure becomes noise-like or when τoverlap is not met.

4.1.2 Tracking procedure for interactions

In the previous procedure, structure interactions such as split or merge events are not followed.
Previous works such as Lozano-Durán and Jiménez (2014) and Bußmann et al. (2022) have
shown that coherent structures undergo numerous complex interactions during their lifetime.
According to Samtaney et al. (1994), these interactions can be one of the following,
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4. Temporal evolution of the geometry of Robinson structures

• Bifurcation: This is where the source structure at tn can split into two or more structures
at tn+1.

• Amalgamation: The inverse of bifurcation is also possible where two or more structures
at tn merge with the source structure at tn+1.

• Creation: A new structure may be created at a later point in time that merges with the
source structure.

A branching event is said to have occured when there is an interaction with the source
structure in the form of a split or merge. The split is termed as an outgoing branch and the
merge is termed as an incoming branch (Lozano-Durán and Jiménez, 2014). A temporal graph
is shown in figure 4.3 where an incoming structure attaches itself to the primary structure
followed by a split of the primary structure into two. This is an example of a simple branching
event in which the primary branch has only one interaction at any given time, i.e., a split or a
merge. When these interacting structures undergo further split or merge events of their own,
then a complex branching event ensues.

The procedure to track structures with interactions involves the following steps:

(1) Correspondence determination: In the first time step tn, the scalar field is thresholded at
τp and all resulting structures are extracted and labeled {1, ..., N}. This is repeated for
tn+1. For every source structure at tn, the procedure described in the previous subsection
is carried out in which the space occupied by the source structure is searched at tn+1. If
one unique label exists, then the source structure is said to have evolved without any
interaction and can unambiguously be matched to the target structure as long as the
overlap condition (4.2) is satisfied.

(2) Split and merge detection: If multiple labels exist, then the target structure which
satisfies the overlap condition is identified as part of the primary branch as shown in
figure 4.3. Other target structures are identified as split events and linked with the
primary branch. To detect merge events, the procedure is carried out in reverse, i.e., the
space occupied by every source structure at tn+1 is searched at tn. Additional target
structures apart from the one which satisfies the overlap condition are said to have
merged with the primary branch. An additional lifetime constraint is imposed for merge
events where the structure should have existed at tn−1 to avoid spurious connections. For
instance, structures which are created at a time step tn (as they satisfy the threshold)
may immediately undergo a merge event at tn+1.

(3) Updating structure interactions: Interactions between structures in consecutive time
steps are stored as key-value pairs. For instance, when a structure splits, the target
structures which do not satisfy the overlap condition (and hence, are not a part of the
primary branch) are assigned new labels (or values) and linked with the label of the
primary branch (or key). The process is reversed for merges. It is important to note that
during merges, the merged structure continues with the label of the structure having
the largest volume. Apart from the key-value pairs, the time instance of interactions
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4.2 Temporal evolution of geometry of Robinson structures in the ABL

are also stored. With both sets of information, all connected components are organized
into a large supergraph similar to Lozano-Durán and Jiménez (2014) and Bußmann
et al. (2022) where each node identifies an instantaneous structure and the edges show
their temporal connections. Connections are updated for every time step and structures
created at a later point that interact with the primary structure are assigned new labels.

4.1.3 Validation of the tracking procedure with interactions

In this subsection, a validation of the tracking methodology is presented in order to ensure
precise tracking of individual structures and branches. Two synthetic test cases, one representing
a simple branching event and the other representing a complex branching event, were developed
as shown in figure 4.4(a, b) respectively.

In the first test, there is exactly one incoming (merge) and one outgoing branch (split)
interacting with the primary branch. This is captured by the tracking algorithm correctly and
the results are shown in the forward temporal graph. The test was also repeated in backward
time by reversing the order of the dataset and it can be seen that the roles of split and merge
are exchanged. This is expected as a split in forward time becomes a merge in backward time.

In the second test, three structures not only interact with the primary branch, but they
have interactions on their own. The results shown in the forward temporal graph reveal that
all interactions are captured correctly, including a structure which exhibits both a split from a
secondary branch and a merge to the primary branch. As expected, the picture is inverted in
the backward temporal graph where the roles of splits and merges are reversed. A difference
can be observed where the splits (red branches) from the forward temporal graph have different
temporal lengths as merges (blue branches) in the backward temporal graph. This difference
can be explained by how splits and merges are handled by the tracking algorithm as described
in step 3. It should be noted that each structure is assigned a label by the algorithm. When a
structure is split, a new label is assigned to the split structure and both structures are tracked
with individual labels until they dissipate. However, when two structures merge, the label
of the structure with the smaller volume is discarded and the merged structure is tracked
with the label of the structure with larger volume. Although the method is clearly capable of
tracking complex branching events, only simple branching events are tracked in this thesis.

4.2 Temporal evolution of geometry of Robinson structures in
the ABL

In this section, the geometrical analysis from chapter 3 is continued by tracking the geometrical
evolution of Robinson structures in time. The goal of this section is to test the hypothesis
of whether the spatio-temporal variability of global intermittency has an impact on the
geometrical evolution of structures.

Initially, a pre-processing step is carried out on the DNS database before the structures are
temporally tracked. For the three cases listed in table 4.1, six scalar indicators corresponding
to the low- and high-speed streaks, sweeps, ejections, vortices and shear layers are computed
for all available time. Since this is storage intensive, the domain is restricted to grid B,
i.e., 1/3 of the computational domain and wall-normal height y+ ≈ 1300. Additionally, all
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4. Temporal evolution of the geometry of Robinson structures

Primary branch

Outgoing branch

Incoming branch

Forward time

Backward time

(a)

Primary branch

Forward time

Backward time

(b)

Figure 4.4: Two synthetic test cases for validation of the tracking methodology are shown. (a)
shows a simple branching event with one incoming and one outgoing branch whereas (b) exhibits a
complex branching event where branches themselves have interactions. The arrows (→) indicate
the direction of time and black circle markers (•) indicate that the structure doesn’t exist after
that time step. The coloring of branches for the temporal graphs are according to figure 4.3 and
the scatter points indicate time steps.
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4.2 Temporal evolution of geometry of Robinson structures in the ABL
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Figure 4.5: Visualization space for the high-speed streaks for stably stratified (S_1, S_2) and
neutrally stratified (N) cases are shown. Ŝ, Ĉ, λ are the shape index, curvedness and stretching
parameters respectively. A sphere of radius r = 0.05, with origin at the centroid of the cluster,
identifies geometrically similar structures for tracking. These structures, shaded gray, are projected
on the planes ŜĈ and λĈ.

indicators except for the low- and high-speed streaks are normalized with their RMS over
every wall-parallel plane such that a single global threshold will highlight the structures evenly
throughout the domain (see the description in section 2.3 for choosing a global threshold).

In order to establish a comparison among the stably stratified (S_1, S_2) and neutrally
stratified (N) cases, the tracking is initiated by identifying geometrically similar structures, i.e.,
structures having similar values of Ŝ, Ĉ, λ from the instantaneous Ekman flow fields analyzed in
chapter 3. An example is shown in figure 4.5 for which the geometry parameters of high-speed
streaks for all three cases are plotted. At the centroid of the cluster of all points, a small
sphere of radius r = 0.05 is used to identify structures having similar geometry. This is the
minimum radius at which few structures can be consistently identified for each case. Smaller
radii may result in too few or no structures being identified for some cases and a larger radius
will result in too many structures being identified, thereby increasing computational time.
This process is repeated for other Robinson structures.

To investigate the geometrical evolution of structures, only the primary branch is tracked
and all emerging structures after branching are ignored. Furthermore, a constraint is imposed
on the tracking scheme in which the structure being tracked merges with a much larger
structure, the tracking is terminated. This is because merges with larger structures tend to
significantly alter the geometry of the structure. An example is shown in figure 4.6 where the
high-speed streak after merging exhibits strong decrease in both λ and Ĉ, the former implying
strong stretching and the latter indicating that the structure is becoming sheet-like. Finally, it
should be noted that when comparisons are made among the different Ekman flow cases, it is
always done in terms of viscous time units. This is because the friction velocity uτ is not a
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4. Temporal evolution of the geometry of Robinson structures
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Figure 4.6: In the top panel, isosurfaces of a tracked high-speed streak are visualized at different
viscous times. The bottom panel shows the temporal evolution of the geometry of the same
high-speed streak until t+ = 9.24. The black circle surrounding the marker indicates the viscous
time t+ = 8.54 when the structure being tracked merges with a larger one.

fixed parameter in Ekman flow simulations (Ansorge, 2016). The mean values of uτ listed in
table 1.2 are used to calculate viscous times t+ = tν/δ2

v where δv = ν/uτ is the viscous length
scale.

In total, about 600 structures have been tracked and geometrically characterized. The
results are discussed in the following subsection.

4.2.1 Results and discussion

Results of the geometrical analysis for quantitative Robinson structures are shown with joint
pdfs of Ŝ, Ĉ and λ, Ĉ in figure 4.7 for cases N, S_1 and S_2. The contour lines are drawn for
2% of the maximum value which encompasses most of the data. Similar to the observation in
chapter 3, the lack of blob-like geometry is instantly noticeable. Most structures appear to be
moderately stretched tube-like and moderate to strongly stretched sheet-like structures. While
this characteristic also appears to be unchanged from the results of the instantaneous flow
field analyzed in chapter 3, minor differences in the geometry with increasing stratification
can be discerned.

The geometry of high-speed streaks (see figure 4.7(a)) shows a marked difference between
the stably stratified (dotted and dashed contours) and neutrally stratified case (solid contour).
Although very few structures were tracked for the case S_1 (the tracking for the remaining
structures were terminated due to mergers with large structures), both stably stratified cases
indicate that the dimensionless curvedness parameter Ĉ > 0.3. For the neutrally stratified case,
more stretched (low λ) and sheet-like geometry (Ĉ → 0) can be observed. The source of this
sheet-like tendency can be understood from the example shown in figure 4.8. Starting from
point P, the high-speed streak becomes more tube-like over time and eventually reaches Q,
after which the structure starts to dissipate becoming more stretched and sheet-like. Similar
temporal developments can also be observed for case S_2 and an example is shown in figure D.1
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4.2 Temporal evolution of geometry of Robinson structures in the ABL
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Ĉ

0 1

1

Ŝ
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4. Temporal evolution of the geometry of Robinson structures
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Figure 4.7: Contour lines of the joint p.d.f. of λ, Ĉ (left) and Ŝ, Ĉ (right) are shown for all
tracked (a) high-speed streaks, (b) low-speed streaks, (c) sweeps, (d) ejections, (e) vortices and
(f) shear layers. Contours are drawn for 2% of the maximum value. Case N, S_1 and S_2 are
represented with solid, dotted and dashed lines respectively. The blue circle indicates the region
where structures having similar geometry were identified from the instantaneous Ekman flow fields
analyzed in chapter 3 to initiate the tracking.
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Figure 4.8: Top panel shows the isosurfaces of a tracked high-speed streak at different viscous
times for the neutrally stratified case. The temporal evolution of the geometry of this streak is
shown in the bottom panel. P, Q, R correspond to viscous times t+ = 0, 1.68, 3.92 respectively.

where the structure initially becomes more tube-like with Ĉ ≈ 1 followed by a strong reduction
in Ĉ indicating that the structure becomes sheet-like as it reaches the end of its lifetime.
This suggests that the differences observed in figure 4.7(a) between the stably stratified and
neutrally stratified cases can be attributed to the constraint placed on the tracking procedure
in which structures are often not followed until they dissipate. The geometry of the low-speed
streaks as seen in figure 4.7(b) do not appear to change much with increasing stratification.
The left panel of figure 4.7(b) suggests that the low-speed streaks are more stretched than
the high-speed streaks. This behavior was already seen in chapter 3 and is consistent with
previous studies (Kline et al., 1967; Robinson, 1991; Jayaraman and Brasseur, 2021).

For the remaining Robinson structures, two cluster centers were identified with the K-means
algorithm which segregates the structures into tube-like and sheet-like clusters. Structures
having similar tube-like and sheet-like geometry are then identified with a ball of radius
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4.3 Temporal evolution of hairpin-like structures

r = 0.05 as described previously. Since the sheet-like sweeps and ejections were often found to
be short-lived, lasting only a few time steps before dissipation or merger with large structures,
they are excluded from the geometrical analysis. From figures 4.7(c, d), it can be seen that
the geometry of sweeps and ejections are quite similar for increasing stratification. This means
that the temporal evolution of the geometry of sweeps, ejections (and also, streaks) are not
hindered by the presence of non-turbulent patches in the stably stratified cases. This, in
turn, suggests that, within the turbulent patches of the flow, the dynamical evolution of these
structures may be similar to those seen in the neutrally stratified case.

Finally, figures 4.7(e, f) show the temporal evolution of the geometry of tube-like vortices
and sheet-like shear layers. It should be noted that for the strongly stratified case S_1, in
which a large cluster of structures was misidentified as a single structure (see the discussion
in section 2.3), the small domain of size 300 × 90 × 600 subjected to MLP analysis as shown
in figure 2.14(c) is used to identify the initial similar structures for tracking. The tracking is
conducted using distinct threshold values for each structure because MLP analysis decomposes
the large cluster into individual structures that possess unique threshold values. Apart from
a minor inclination towards sheet-like geometry for the case S_1, no significant change in
geometry can be seen with increasing stratification in figure 4.7(e). The tendency towards
sheet-like geometry can be explained with figure D.2 where only the last time instant of
tracking is plotted. It can be observed that relatively fewer structures from cases N and S_2
can be seen close to Ĉ = 0. This combined with the structures having larger volume (indicated
by the size of the marker) away from Ĉ = 0 suggests that the tracking for most structures
was terminated due to merge events with large structures. In the case of shear layers (see
figure 4.7(f)), it can be seen that most structures do not stay sheet-like and appear to become
less-stretched (higher λ) and more tube-like (Ŝ ≈ 0.5 and high Ĉ) over time. Robinson (1991)
notes that shear layers tend to develop a vorticity concentration near their mid-point (see
figure 10.8.4 of Robinson (1991)) which may be responsible for the change in geometry. A
minor trend can be noticed for which an increase in the strength of stratification leads to lower
Ĉ, i.e., more flattened structures.

In summary, tracking the temporal evolution of the geometry of Robinson structures,
starting from structures possessing similar geometry, yields only minor geometrical differences
for changes in the strength of stratification. This hints that spatio-temporal variability of
global intermittency may not have a significant impact on the dynamics of the Robinson
structures.

4.3 Temporal evolution of hairpin-like structures

The goal of this section is twofold: first, a comparison of the temporal evolution of the geometry
of a hairpin-like structure is made when a constant threshold (to identify the feature) is applied
and when the thresholds are dynamically adjusted in time. Second, with the modified tracking
procedure, an attempt is made to investigate the source of abundance of the hairpin-like
structures seen in the strongly stratified case S_1. To this end, the hairpin-like structures
identified in subsection 3.1.5 are followed in time along with their primary interactions and
compared among cases N, S_1 and S_2.
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4. Temporal evolution of the geometry of Robinson structures

4.3.1 Multilevel percolation thresholding in time (MLPT)

Since this method relies on multilevel percolation (MLP) analysis discussed in subsection
2.3.1, it is briefly reiterated here. Once the global percolation threshold τp is identified for
a given indicator, the resulting structures are extracted at that threshold. These structures
are then subjected to percolation analysis in an iterative manner until they can be classified
as a simple structure. A simple structure is obtained when the ratio Vmax/V (where Vmax is
the volume of the largest structure in the domain and V is the volume of all structures) is
above 0.5 (or a higher value chosen by the user). If a complex structure is encountered, then
the percolation analysis is repeated until only simple structures remain. These definitions
of simple and complex structures can be used to obtain optimum thresholds in time. The
combination of the region-based spatial overlap technique with identifying optimum thresholds
in time, henceforth called as multilevel percolation thresholding in time (MLPT), is presented
in the following steps:

(1) Once the structure of interest is chosen by the user for tracking, the initial threshold is
set as either the global percolation threshold τp or the MLP threshold. The former is
used when tracking structures from cases N, S_2 and the latter is used for case S_1. At
this threshold, the structure of interest is extracted with the NS+MC algorithm for the
first time step.

(2) As shown in figure 4.9(a, b), an overlapped structure at tn+1 is initially extracted at the
same threshold and is classified as simple or complex. If the structure is deemed simple,
then the algorithm checks for structure growth first by decreasing the threshold. It
should be noted that decreasing the threshold results in a larger structure which signals
that the structure is growing in time and increasing the threshold results in a smaller
structure which signals that the structure is shrinking in time. The minimum threshold
to check is given by the indicator itself. For instance, when the Q−criterion is used,
smaller thresholds are checked as long as the condition Q > 0 is satisfied.

(3) For each decrease in the threshold, the structure at tn is overlapped with the one at
tn+1 and classified as simple or complex. Once a complex structure is identified at tn+1,
this indicates to the algorithm that the maximum growth of the structure is reached
i.e., it can no longer be considered as an individual structure. Therefore, the previous
threshold for which the structure could still be identified as simple is chosen as the
optimum threshold for tn+1.

(4) On the other hand, if the first overlap test with the structure at tn+1 results in a complex
structure as shown in figure 4.9(b), then the thresholds are increased to check if the
structure is shrinking in time. The steps are similar to point (3) in which each increase
in the threshold, the structure at tn is overlapped with the one at tn+1. This process is
repeated until the structure at tn+1 can be deemed simple. The threshold for which the
structure is deemed simple is chosen as the optimum one.

(5) The steps described in (2-4) are repeated for every time step.
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Figure 4.9: The technique of MLPT to choose an optimum threshold for a subsequent time step
is illustrated here. In the scenario shown in (a) the structure is initially simple and therefore the
thresholds are decreased until a complex structure is found. The opposite scenario is shown in (b)
where the structrue is initially complex and therefore, the thresholds are increased until it can be
deemed simple. Both (a, b) illustrate that the structure is allowed to grow or shrink freely in time.
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4. Temporal evolution of the geometry of Robinson structures

Optimization strategies:

The addition of MLPT to the feature tracking scheme can become computationally
expensive, especially when tracking structures across a large computational domain. Hence,
two key optimization strategies are sought,

(1) Since temporally well-resolved DNS data is used for tracking of coherent structures in
this thesis, an assumption can be made that the structure is not advected by the mean
flow too far away in the domain between consecutive time steps. This enables one to
use a smaller computational box around the structure to reduce the search space for the
extraction algorithm. This, in turn, reduces the time necessary for obtaining optimum
thresholds in time. The exact performance gain depends on the size of the smaller
computational domain used.

(2) In conjunction with the previous optimization step, the memory or RAM overhead can
be reduced by reading only specific bytes of the binary file which correspond to the
smaller computational box.

4.3.2 Comparison of tracking results with constant and MLPT thresholds

To enable this comparison, a candidate hairpin-like structure is first chosen. During testing of
the tracking algorithm, it was seen that the hairpin-like structures from the strongly stratified
case S_1 could be tracked for several hundred time steps before dissipation suggesting that
they possess much longer lifetimes than the other cases. Since this trait is useful to elicit a
detailed comparison, the candidate structure is chosen from S_1.

t+ = 0 t+ = 10.62 t+ = 21.25 t+ = 31.87 t+ = 39.12 t+ = 42.5 t+ = 53.12 t+ = 63.75 t+ = 74.37

τ = 1.399

(a)

t+ = 0 t+ = 10.62 t+ = 21.25 t+ = 31.87 t+ = 39.12 t+ = 42.5 t+ = 53.12 t+ = 63.75 t+ = 74.37

τ = 1.399 τ = 0.374 τ = 0.213 τ = 0.350 τ = 0.323 τ = 0.414 τ = 0.586 τ = 0.455 τ = 0.350

(b)

Figure 4.10: Track of a hairpin-like structure from case S_1 with (a) constant thresholding and
(b) MLPT thresholding. Isosurfaces of Q-criterion are plotted at multiple time instances.

Initially, the candidate structure is tracked with a constant threshold of τ = 1.399 (identified
with MLP analysis, see subsection 3.1.5) and the results of the tracking for various time instances
are visualized in figure 4.10(a) until t+ = 74.37. As expected, the structure appears to be
constantly shrinking in time until it dissipates at a much later viscous time of t+ = 83.3. For
MLPT tracking, the ratio Vmax/V which determines whether a structure is simple or complex
needs to be set. For all subsequent tracking with MLPT, Vmax/V = 0.8. This condition is
sufficient to educe more or less individual structures. Results of the MLPT tracking for the
same hairpin-like structure are visualized in figure 4.10(b) which suggests that the hairpin
initially grows until a viscous time of t+ = 42.5 after which it appears to shrink. It should be
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4.3 Temporal evolution of hairpin-like structures

noted that the results for MLPT are truncated until t+ = 83.3 to make it comparable to the
constant thresholding case. Plotting the wall-normal extent of the hairpin-structure over time
as shown in figure 4.11(a) confirms that the structure is indeed growing reaching ∆y+

max = 119.3
at t+ ≈ 42. The spikes and valleys in the plot can be attributed to the interactions (split and
merge events) experienced by the structure during its lifetime. Zhou et al. (1999) observed that
hairpin structures tend to grow as they are advected downstream due to the competing effects
of the self-induced velocity generated by the hairpin structure itself and the shear induced
stretching as a result of the mean background flow. This suggests that the MLPT technique is
capable of capturing changes in the size (growth or deterioration) of the structure by actively
modifying the thresholds in time.
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Figure 4.11: Time history of the (a) wall-normal extent (∆y+) and (b) inclination angle of the
hairpin-like structure tracked in figure 4.10 plotted every 8 time steps. Solid and dashed lines
correspond to tracking with constant and MLPT thresholds respectively.

Changes in the inclination angle over time are plotted in figure 4.11(b). Both methods
initially suggest θi ≈ 46◦ which is consistent with the findings of Head and Bandyopadhyay
(1981) who found that hairpin structures in the outer regions of the boundary layer were
inclined at a characteristic angle of 45◦ with respect to the wall. Over the entire tracking
period, the hairpin-like structure exists at a wall-normal height 80 < y+ < 180, i.e., in the
outer layer. Figure 4.11(b) also shows only minor differences in θi between both methods. This
is likely due to the changes in the threshold value in MLPT which alters both the streamwise
and wall-normal extent of the structure. Finally, a comparison of the temporal changes in
the geometry between both methods is illustrated in figure 4.12. Figure 4.12(a), showing the
temporal evolution of the geometry with constant threshold, suggests that the hairpin-like
structure becomes less stretched (high λ) and approaches blob-like geometry (high Ŝ) as it
dissipates. On the other hand, a dense clustering of points with relatively modest changes in
Ŝ, Ĉ, λ can be seen for the MLPT case in figure 4.12(b) which indicates that the structure
remains tube-like over the same time period. This hints that the structure might persist for a
longer duration than what was predicted by tracking with constant threshold.

4.3.3 MLPT tracking applied to the Ekman flow cases

With the MLPT tracking procedure, hairpin-like structures are tracked along with their
interactions for both stably stratified (S_1, S_2) and the neutrally stratified case (N). Tracking
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Figure 4.12: Visualization space for the structure tracked in figure 4.10 with (a) constant
thresholding and (b) MLPT thresholding. Markers correspond to the geometrical state of the
hairpin structure at a time instant.

is initiated with the manually identified structures from subsection 3.1.5 for all cases. Similar
to the procedure described for vortices in subsection 4.2.1, hairpin-like structures are identified
from the MLP results for the strongly stratified case S_1 and therefore, each structure has
a unique starting threshold. First, an estimation of the lifetime of the structures is sought.
Although MLPT is capable of capturing the dynamical changes in size of the structure which
may result in a better evaluation of its lifetime, it should be noted that these structures are
only tracked from a later stage of their evolution and the time elapsed from their source (or
birth) to the later stage is not accounted for. Furthermore, while tracking interactions, it is
unclear if the lifetime should also include split or merge events. For instance, structures which
split from the primary branch can prevail long after the primary branch ceases to exist. To
circumvent this, the definition from Lozano-Durán and Jiménez (2014) is adopted in which the
time elapsed from a structure’s first appearance in the primary branch to its last appearance
is taken to be its lifetime.

With this definition, the average lifetime of all tracked hairpin-like structures for the three
cases are plotted in figure 4.14(a). It can be seen that the average lifetime from both stably
stratified cases is more than twice that of the neutrally stratified case. Unlike the previous
subsection where a constraint had to be placed to exclude merges with large structures, MLPT
will simply classify such merges as a complex structure and continue to increase the threshold
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4.3 Temporal evolution of hairpin-like structures

until a simple structure is found. Therefore, tracking with MLPT only terminates when the
structure dissipates, becomes noise-like or when the overlap condition τoverlap is not met.

t+ = 0

t+ = 20

t+ = 13.3

t+ = 14.98

t+ = 19.46

Primary hairpin

Secondary hairpin

Tertiary hairpin

Figure 4.13: A track of the hairpin packet from figure 3.15 for the neutrally stratified case is
shown here. The hairpin packet autogenerates a tertiary hairpin (seen in the bottom panel) at
t+ = 20. The autogeneration process is shown on the left panel.
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4. Temporal evolution of the geometry of Robinson structures

The average number of split and merge events encountered by the structure until a viscous
time t+ = 10 is plotted for the three Ekman flow cases in figure 4.14(b). It should be noted
that only simple branching events are recorded and complex interactions (where interactions
have their own interactions) are ignored. It can be observed from figure 4.14(b) that the
number of interactions increase with an increase in the strength of stratification. This result is
surprising since, in conjunction with the result from figure 4.14(a), it suggests that the hairpins
from the strongly stratified case S_1 have a longer lifetime while experiencing a relatively
large number of interactions, 67% of which are merges. Interestingly, the number of splits for
the case S_1 is also more than 3 times higher than that of the neutrally stratified case. A
likely explanation may involve the autogeneration mechanism previously discussed in section
3.4. For instance, if the hairpin packet shown in figure 3.15 is tracked in time, it can be seen
from figure 4.13 that a new tertiary hairpin is autogenerated over time. Although not shown,
this autogenerated hairpin splits away from the hairpin packet and continues as a separate
entity. If new hairpin structures are continuously autogenerated this way, the high number of
splits may explain the abundance of hairpin structures seen in the strongly stratified case S_1.
However, it is currently not known if after the autogeneration of a secondary hairpin which
splits over time, the primary hairpin is capable of autogenerating another secondary hairpin.
Zhou et al. (1999) note that autogeneration of new hairpins depends on the strength of the
initial event and its location. They argue that hairpins far away from the wall, where the
effect of the mean shear reduces, need to have a sufficiently higher strength to autogenerate
new hairpins. However, the presence of quasi-streamwise vortices on either side of the older
primary hairpin seen in figure 10 of Zhou et al. (1999) suggests that autogeneration of new
hairpins at a later stage may not be an entirely implausible scenario.
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Figure 4.14: (a) Average lifetime of the primary branch tracked by the feature tracking procedure
for all Ekman flow cases. (b) Average number of interactions experienced by the hairpin-like
structures for all Ekman flow cases until t+ = 10. RiB is the bulk Richardson number which
quantifies the strength of stratification.

4.4 Summary and conclusions

The first part of the chapter builds upon the geometrical analysis of quantitative Robinson
structures performed for an instantaneous snapshot of the Ekman flow in chapter 3 by
comparing the temporal changes in their geometry. This is facilitated with the addition of a
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region-based feature tracking scheme to the geometrical characterization framework as shown
in figure 4.1. Since results from chapter 3 suggested that similar geometrical features could
be observed for increasing stability, it was hypothesized that the spatio-temporal variability
of global intermittency could have an impact on the temporal evolution of the geometry of
Robinson structures.

First, a region-based tracking procedure in which correspondence is calculated by measuring
the degree of spatial overlap of structures between consecutive time steps is discussed in
section 4.1. A differentiating feature of this tracking procedure compared to other overlap
approaches (Silver and Wang, 1996; Lozano-Durán and Jiménez, 2014) is the use of NS+MC
algorithm to extract visualization accurate structures from scalar fields as shown in section
2.2. Next, structures having similar geometry, i.e., similar values of Ŝ, Ĉ, λ are selected from
the instantaneous Ekman flow fields analysed in chapter 3 as those that fall within a small
ball of radius 0.05 centered at the centroid of the cluster of all points as exemplified in figure
4.5. To get a precise sense of the temporal changes in the geometry, only the primary branch
is tracked and split and merge events are ignored. Additionally, it was seen that merges with
much larger structures could significantly alter the geometry of the structure (for instance, see
figure 4.6) and hence, when such interactions are encountered, the tracking is terminated.

Akin to the observations in chapter 3, results in figure 4.7 show a lack of blob-like geometry
and suggest that most structures are moderately stretched tube-like and moderately to strongly
stretched sheet-like structures. Apart from the minor trend seen for shear layer structures in
figure 4.7(f) where structures become more flattened (or pancake-like) with increasing stability,
no further distinction can be made for other Robinson structures. Although this hints that
the spatio-temporal variability of global intermittency may not have a significant impact on
the geometry of Robinson structures, this result should not be seen as conclusive due to the
following reasons: (i) the tracking was performed with a constant threshold in time which
does not adapt to the dynamical changes in the structure, (ii) the tracking procedure also
involves the use of another subjective threshold τoverlap to determine correspondence, (iii) in
some cases (for instance, high-speed streaks of case S_1) too few structures were identified and
tracked with a ball of radius 0.05. While the first and third issue can be fixed by repeating the
geometrical analysis with multilevel percolation thresholding in time (MLPT) and increasing
the radius of the ball respectively, MLPT still involves using the subjective τoverlap. Therefore,
as pointed out by Jiménez (2018), one needs to complement the conclusions derived from
threshold-based analysis with other statistical methods as conducted in chapter 3. Future
research work can be directed towards improving the analysis presented in this chapter by using
MLPT combined with image registration to effectively remove the requirement for structure
overlap (see Badel (2021) and Lindheim et al. (2021) where this was achieved with constant
thresholding in time). Other tracking approaches where global spatial and physical attributes
are used to determine correspondance can also be considered (Ji and Shen, 2006; Bußmann
et al., 2022).

The second part of the chapter is concerned with the dynamics of hairpin-like structures.
Visualization of Q-criterion structures in figure 3.14 clearly show a marked increase in the
number of hairpin-like structures with increasing stability. To investigate this, manually probed
hairpin structures from subsection 3.1.5 are tracked in time along with their interactions (which
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4. Temporal evolution of the geometry of Robinson structures

include only simple branching events) with the novel MLPT technique. This method relies on
percolation analysis to find simple structures in time by dynamically altering the thresholds.
A comparison of tracking a hairpin-like structure with constant and MLPT thresholding as
shown in subsection 4.3.2 reveals that the latter technique is capable of capturing the growth
phase of the hairpin structure which known to occur as a result of the shear induced stretching
by the mean background flow (Zhou et al., 1999). Results of the average lifetime of the primary
branch and the number of interactions as a function of the bulk Richardson number shown in
figure 4.14 suggest that hairpin-like structures from both stably stratified cases have a much
longer lifetime and experience relatively higher interactions than the neutrally stratified case.
Although a link between the number of split events and the autogeneration mechanism is
suggested, in that higher number of splits as seen in the strongly stratified case S_1 may lead
to a higher autogeneration rate which can explain the abundance of hairpin-like structures,
it is still unclear if older hairpins are capable of continuously autogenerating new vortices as
they are advected downstream and away from the wall. It should also be noted that the cause
of the high number of merges for the case S_1 is not known and needs further investigation.
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A thin filament approach for the dynamics of

hairpin structures

A major goal of this thesis is to understand the changes in geometry and dynamics of
coherent structures in response to changes in stratification of the atmospheric boundary
layer (ABL). Among all the examined Robinson structures, hairpin-like vortex structures, in
particular, appear to exhibit interesting characteristics in the stably stratified contexts of the
ABL. In chapter 3, it was seen that at an instantaneous time step, an abundance of these
structures (identified with the Q−criterion indicator) with tube-like geometry can be observed
in the turbulent/active patches of the strongly stratified case S_1. The head region of these
structures also appear to have similar spanwise orientation (cf. figure 3.14(a)). In the previous
chapter, these structures were temporally tracked with a feature tracking method capable of
automatically identifying optimum overlap thresholds in time. The results show that these
structures have clearly defined growth and deterioration phases and also undergo numerous
interactions (split or merge events) during their lifetime. A link between the number of split
events and the hairpin autogeneration mechanism is proposed and the relatively high number
of split events seen in the strongly stratified case S_1 leading to a higher autogeneration rate
could possibly explain their abundance in this regime. However, the similar orientation of
these structures remains unexplained. Furthermore, the feature tracking method prevents us
from gaining a complete view of the dynamics due to the following issues,

(1) When structures interact during a split or merge event, there is an inherent ambiguity
in following the “correct” structure. This ambiguity is exacerbated when the structure
being tracked undergoes further interactions during its lifetime.

(2) Although optimum overlap thresholds are identified with multilevel percolation analysis
at every instantaneous time step, thresholding often results in some useful features being
lost and the “full” structure is not represented. An example is shown in figure 5.13.

(3) The hairpin-like structures were identified and tracked only from later stages in their
lifetime and so, their evolution from the point of origin remains unclear.

Therefore, in this chapter, a somewhat fundamental approach is sought, in which hairpin-
like structures are treated as slender vortex filaments (see section 5.1 for a description). This
is motivated through previous studies for which the motion of hairpin filaments have been
examined under the influence of shear. For instance, Moin et al. (1986) initialized isolated
hairpins as parabolic filaments and showed that the tip region of the filament, which has no
initial inclination, tends to lift-up due to self-induction. They also note that the nodes in
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5. A thin filament approach for the dynamics of hairpin structures

the tip region are stretched rapidly apart in the wall-normal direction under the influence of
uniform shear. Similar results were also reported by Hon and Walker (1991) who subjected a
hairpin filament to a strong shear flow. They used a different initial configuration in which the
parabolic filament was extended with a straight portion on either side as shown in figure 5.3. In
addition to the lift-up due to self-induction, their results also showed the formation of hairpin
“legs” moving towards the wall and the development of secondary/tertiary hairpins on both
sides of the original disturbance. They note that the development of additional hairpins are
regenerative which is similar to the autogeneration mechanism proposed by Zhou et al. (1996)
who studied the motion of an isolated hairpin vortex in the DNS of a channel flow in which the
initial structure was obtained through a linear stochastic estimation procedure. In later work,
Zhou et al. (1999) also reported lift-up of the tip region due to self-induction and the subsequent
stretching due to mean shear for the isolated hairpin vortex. This suggests the suitability of
the filament approach to study the dynamics of hairpin structures in shear-dominated flows.
An attempt is made to explain the similar orientation of hairpin-like structures in the strongly
stratified case S_1 by comparing the temporal evolution of hairpin filaments under neutral
and stably stratified background flow conditions. Specifically, the following questions are
addressed,

(1) How do the changes in stratification of the background flow impact the dynamical
characteristics (such as inclination angle, orientation, streamwise and spanwise stretching)
of the hairpin structure? By studying changes in these dynamical characteristics, can
one explain the similar orientation of the hairpin-like structures in the strongly stratified
case S_1?

(2) Does the initial wall-normal location also play a role? How do the dynamical
characteristics change with respect to stratification when the hairpin is initialized in the
buffer or outer layer of the flow?

(3) Although some issues with the feature tracking method have been pointed out,
qualitatively, how much would the results differ from those obtained through simulation
with the filament approach?

Details for the extraction of the Ekman background flow profiles are given in subsection
5.4.1. An additional source of motivation for the filament approach is that it may lead to
the development of novel subgrid scale models (SGS)1 for large-eddy simulation of the stably
stratified ABL. For instance, Misra (1997) proposed a class of structure-based subgrid models
with the assumption that the subgrid structure of turbulence consists of a superposition of
stretched vortices whose orientation is governed by the resolved velocity field.

The review paper of Leonard (1985) identifies two methods to calculate the motion of
vortex filaments which are the thin-filament (TFA) and the local induction approximation
(LIA). TFA is based on the notion that in some applications, for instance, trailing vortices of an
aircraft, vorticity is assumed to be concentrated along a “filament centerline” L(t) : s → X(s, t).
The averaged diameter d of the vortex core is assumed to be very small compared to the

1In large-eddy simulation, the detailed time and space dependence of fluid motions are resolved for scales
larger than a prescribed cutoff. The effects of the eliminated scales, called the subfilter or subgrid scales are
modeled.
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L(t)

ω ≡ 0
R

d

ω 6≡ 0

Figure 5.1: A portion of a slender vortex filament is shown. Vorticity (ω) is concentrated in
a thin tube having a diameter d and a characteristic radius of curvature R. L(t) is a smooth
time-dependent curve. Sketch adapted from Klein and Knio (1995).

characteristic radius of curvature R of L(t). An illustration is sketched in figure 5.1. Further
details regarding TFA and its numerical implementation with the corrected thin-tube model
of Klein and Knio (1995) are discussed in sections 5.1.1 and 5.2.2. LIA, on the other hand,
is a simplification of TFA in which all non-local effects of vortex self-induction are neglected
and the motion of the filament is due to its curvature alone (Hama, 1962). A brief overview
of this method is discussed in subsection 5.2.1 and the impact on the temporal evolution of
hairpin filaments due to omission of these non-local effects is exemplified in subsection 5.3.2.
In this thesis, LIA is included only for validation purposes while the corrected thin-tube model
of Klein and Knio (1995) is used to study the motion of hairpin filaments with the Ekman
background flow. Results of this simulation and its subsequent comparison to the feature
tracking approach are presented in sections 5.4 and 5.5.

5.1 Slender vortex filaments

The notions of vortex lines, tubes and filaments are introduced in this section. First, let us
consider the motion of an incompressible, inviscid flow which is given by the Euler equations,

∇.u = 0 (5.1)
Du
Dt

= g − 1
ρ

∇p (5.2)

where u = (u, v, w) is the velocity along streamwise (x), wall-normal (y) and spanwise (z)
directions respectively, t is time, p is the pressure force, g is the body force (gravity), ρ is
the density, ∇ = ∂/∂x, ∂/∂y, ∂/∂z and D/Dt = ∂/∂t + u.∇ is the material derivative. In the
absence of body forces, with unit density and vorticity defined as the curl of the velocity field,

ω = ∇ × u (5.3)

taking the curl on both sides of (5.2) gives the vorticity transport equation,
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Dω

Dt
= ω.∇u (5.4)

This equation indicates that vorticity tends to move along particle trajectories while being
rotated and stretched by ∇u. A line which is tangent everywhere to the local vorticity vector
is called a vortex line. A surface formed by a family of vortex lines passing through a smooth
closed curve C is known as a vortex tube (Batchelor, 1967). An illustration is shown in figure
5.2. The circulation Γ along the closed curve C is given by,

Γ =
∫︂

C
u(x, t).dl (5.5)

Around any closed curve, Γ is known to be invariant in time for an inviscid fluid, i.e., dC(t)
dt = 0.

This is Kelvin’s circulation theorem. The value of Γ denotes the strength of the vortex tube. If
S is the area spanning the closed curve C, applying Stoke’s theorem gives,

Γ =
∫︂

S
ω.ds (5.6)

Therefore, circulation around a closed curve is equal to the integral of vorticity over a surface
S bounded by the curve. Equivalently, it is also the strength of the vortex tube formed by
the family of vortex lines passing through the curve. A vortex tube of small and finite cross
section surrounded by irrotational fluid (ω = 0) is called a vortex filament. A cross section of
this filament constitutes its core. Vortex rings, which are often studied, are a special case of
vortex filaments having a circular shape of their centerline (Zhou, 1996). Betchov (1965) notes
that the same velocity induced at a point on a circular filament can also be obtained for a
non-circular filament as long as it is assumed to be thin or slender, i.e., the typical diameter d

of the vortex core is very small compared to its characteristic radius of curvature R such that
the dimensionless core size parameter δ satisfies,

δ = d

R
≪ 1 (5.7)

In an unbounded domain, the velocity induced by this filament at a point P outside the
vortex core and time t is given by the line-Biot-Savart law (Callegari and Ting, 1978) as,

Q1(P, t) = − Γ
4π

∫︂
L

(P − X(s′, t)) × ds′

|P − X(s′, t)|3
, (5.8)

where Γ is the circulation or strength, s is the arc length along the line and L(t) is the
“centerline” of the filament along which the vorticity distribution is highly concentrated. Apart
from their application to studying the motion of hairpin filaments in shear-dominated flows,
slender vortices have many important applications, for instance, predicting the behavior of
trailing or tip vortices emanated behind aircraft wings (Crow, 1970; Widnall, 1975) and for
theoretical modelling of vortex reconnection (Yao and Hussain, 2022).

5.1.1 Thin filament approximations

Leonard (1985) notes that the structure of the vortex core needs to be taken into account to
compute the motion of vortex filaments. This is because as the point P moves towards the
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Vortex line

C

Figure 5.2: Illustration of vortex lines and vortex tube. Figure adapted from Zhou (1996).

centerline, Q1(P, t) becomes singular. This means that the line Biot-Savart law (5.8) alone
cannot predict the self-induced motion of the filament. Early ad hoc desingularization methods
were proposed by Rosenhead (1930) and Moore (1972). In these methods, a small parameter
(called the “cut-off” parameter) is introduced in the denominator of the Biot-Savart integral. A
particular choice of the cut-off depends on the radius of the filament and the radial distribution
of vorticity and axial flow (Moore, 1972). Later, with the method of matched asymptotic
expansion, Callegari and Ting (1978) showed how the singularity is naturally regularized
within the framework of Navier-Stokes equations and derived an equation of motion for the
filament centerline which includes precise mathematical expressions for the non-local induction
terms. For a non-closed, infinite filament, the equation of motion is written as,

∂

∂t
X(s, t) = Γ

4π
κb(s, t)

(︃
ln

(︃2
δ

)︃
+ C(t)

)︃
+ Q0(s, t) , (5.9)

where
Q0(s, t) = Qf(s, t) + Q2(X(s, t)) (5.10)

and C(t) represents the local effects from the core vorticity distribution. Q0(s, t) is a
superposition of the non-singular remainder of the line-Biot-Savart integral Qf(s, t) and
the superimposed background flow Q2(X(s, t)) (which, e.g., can be a simple shear or in our
case an Ekman background flow). In the Local Induction Approximation (Hama, 1962), both
Q0(s, t) and C(t) are neglected and the filament motion is due to the curvature κb(s, t) term
alone.

Lagrangian vortex element schemes such as the thin tube model (ttm) of Knio and Ghoniem
(1990), in which the filament centerline is discretized with a finite chain of regularized vortex
elements with spherical overlapping cores, have also been proposed. This method starts with
the discretization of the initial vorticity field into a finite number of N vortex elements with
vorticity ωi. The initial vorticity is segregated into volume elements dVi, i = 1, 2, ..N and the
resulting vorticity is written as (Knio and Ghoniem, 1990),
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ω(x, 0) =
N∑︂

i=1
ωi(0)dVifδ(x − Xi) (5.11)

where Xi is the center of the volume element dVi which has a vorticity ωi and fδ is a spherical
core smoothing function with a core radius δ which smoothes the vorticity in the neighborhood
of Xi. This core smoothing function fδ needs to be chosen such that it satisfies the following
conditions (for a description on the construction of these functions, see Beale and Majda
(1985)),

•
∫︁

fδ(x)dx = 1 and fδ converges to a Dirac delta function as δ → 0.

• fδ is smooth and rapidly decreasing.

• The velocity field of a finite vortex filament is non-singular at its center.

The smoothing function fδ obeys the following relationship,

fδ(x) = 1
δ

f

(︃ |x|
δ

)︃
(5.12)

where f > 0 for |x| < δ and vanishes rapidly for |x| > δ. In this method, it should be noted
that the numerical core size δ is implicitly assumed to be the physical core size. With the
Callegari and Ting framework, Klein and Knio (1995) point out that this assumption leads to
O(1) velocity prediction errors due to differences in the numerical and phyiscal core coefficients.
This led to a correction of the thin-tube model, hereby referred to as the corrected thin-tube
model, and three correction strategies were proposed. The third correction method, which
involves an asymptotically motivated rescaling of the numerical core radius, is deemed to be
simple to implement (as higher-order arclength derivatives need not be computed) and is used
in this thesis. The complete numerical scheme is described in subsection 5.2.2.

5.2 Numerical schemes

Before the numerical methods for solving the local induction approximation and the corrected
thin-tube model are presented, the initial hairpin configuration is first discussed. Following
the work of Hon and Walker (1991), the hairpin filament is initialized as a small, symmetrical,
three-dimensional perturbation of the form,

X(s, t) = A
[︂
(cos θi)î + (sin θi)ĵ

]︂
e−βs2 + ĵ + sk̂ (5.13)

where (î, ĵ, k̂) are unit vectors in the streamwise, wall-normal and spanwise directions
respectively. Also, A is the amplitude, θi is the angle between the plane of the perturbation
and the wall and β is a large value which controls the initial width of the perturbation. The
hairpin filament is initialized at a distance yinitial away from the wall as sketched in figure 5.3.

5.2.1 Local Induction Approximation

Since LIA has been discussed extensively in previous works (Arms and Hama, 1965; Zhou,
1996; Margerit et al., 2004; Batchelor, 1967), only a brief overview of the method is presented
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θi

Γ
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Figure 5.3: A hairpin filament when viewed from (a) front and (b) side. Here, Q2 is a background
shear flow acting on the filament, yinitial is the initial distance from the wall, θi is the angle the
filament makes with the wall and Γ is the circulation.

here. As stated in subsection 5.1.1, LIA neglects the long-distance induction effects, Q0(s, t),
and the local effects from the core vorticity distribution, C(t). This leads to a simplified
equation of motion which is written as,

∂

∂t
X(s, t) = Γ

4π
κb(s, t) ln

(︃2
δ

)︃
(5.14)

where κb(s, t) is the curvature in the binormal direction. Klein and Majda (1991a) and Klein
and Majda (1991b) note that this binormal term alone cannot account for self-stretching of
vortex filaments which is due entirely to non-local induction. Therefore, LIA is used only
for validation purposes in this thesis. In order to make the results of LIA comparable to
the corrected thin-tube model presented in the following subsection, Margerit et al. (2004)
suggest using the Callegari and Ting equation (Callegari and Ting, 1978) without the non-local
self-induction term Q0(s, t). For a non-closed, infinite filament, the equation of motion is as
follows,

∂

∂t
X(s, t) = Γ

4π
κb(s, t)

[︃
ln

(︃2
δ

)︃
+ C(t)

]︃
(5.15)

where C(t) is the core structure coefficient. It is natural to see this local term as an O(1)
correction to the local induction contribution of the self induced velocity and to call it the
local induction approximation (or contribution) at O(1).

5.2.2 Corrected thin-tube model

In this model, a slender vortex is represented as a finite chain of vortex elements which overlap
one another by satisfying the following overlap condition,

max
i=1..N

|δχi| < δ (5.16)

where {χi}N
i=1 are N vortex elements or nodes and δ is the core size of the filament. This

condition implies that the maximum distance between neighboring nodes in the filament is
smaller than its core size. Knio and Ghoniem (1990) reported good accuracy of computational
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5. A thin filament approach for the dynamics of hairpin structures

results when this condition was enforced. Each vortex element has a constant, time-independent
circulation Γ and the total vorticity on the filament is given by,

ω(x, t) =
N∑︂

i=1
Γδχi(t)fδ(x − χc

i (t)) (5.17)

where χc
i (t) and δχi(t) are Lagrangian variables denoting the centers and the secant vectors

that approximate the filament centerline and are positively aligned with the vorticity. They
are computed as follows,

δχi(t) = χi+1(t) − χi(t) , χc
i (t) = χi+1(t) + χi(t)

2 . (5.18)

In (5.17), the smoothing function fδ is related to a rapidly decaying numerical core vorticity
distribution and is given by,

fδ = 1
δ3 f

(︃ |x|
δ

)︃
(5.19)

The velocity field is constructed by inserting (5.17) in the three-dimensional Biot-Savart
integral,

v(x, t) = − 1
4π

∫︂∫︂∫︂
x − x′

|x − x′|3
× ω(x′)dx′ (5.20)

where dx′ = dx′
1dx′

2dx′
3 is a volume element. The result reads,

vttm(x, t) = − Γ
4π

N∑︂
i=i

(x − χc
i (t)) × δχi(t)

|x − χc
i (t)|3

κδ(x − χc
i (t)) (5.21)

where κδ ≡ κ(|x|/δ) is the velocity smoothing function which is directly related to the numerical
core vorticity distribution f from (5.19). Equation 5.21 is the standard thin-tube model (ttm)
of Chorin (1980), Knio and Ghoniem (1990), and Knio and Ghoniem (1991). It was noted
by Klein and Knio (1995) that the standard ttm does not make a distinction between the
numerical core size parameter δttm and the physical core size δ and therefore, results in O(1)
errors. With an asymptotic analysis of the numerical vorticity structure, Klein and Knio, 1995
propose three correction strategies to overcome this issue. Due to its simplicity and ease of
implementation, the third correction method is employed. The involves a rescaling of the core
radius as follows,

δttm = δ exp (Cttm − C) . (5.22)

Here, Cttm is the numerical core constant. If the velocity core smoothing function is chosen
as κ(r) = tanh(r3), then Cttm = −0.4202 as obtained by Knio and Klein (2000). According
to asymptotic theory, the core structure coefficient C includes contributions from the local
swirling and axial velocities, denoted by Cv and Cw respectively,

C = −1 + Cv + Cw (5.23)
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Γ

Center domainLeft images Right images

Figure 5.4: Illustration of the boundary conditions. A long filament is envisioned, periodic in the
axial direction. The domain of integration, of length L, contains one complete period.

Depending on the presence/absence of viscous effects and the initial leading-order velocity
profile in the core, different expressions of the core structure coefficients can be obtained.
Following Ting and Klein (1991) for the case of a similar vortex core with the same initial
core size and circulation without axial flow, Cv and Cw are given by,

Cv = 1 + γE − ln(2)
2 − ln(δ) (5.24)

Cw = −2
[︃

m(0)
Γδ

]︃2[︃
S0

S(t)

]︃4
(5.25)

where S0 is the initial length of the filament, δ is the stretched radius whose exact formula is
given in Ting and Klein (1991), m(0) is the initial axial flux of the vortex and γE = 0.577 is
Euler’s constant. In our case, m(0) = 0 implying no contribution from axial velocity.

Remark: Equation (5.23) is usually written as C = Cv + Cw (for instance, see (2) of Knio and
Klein (2000)). The inclusion of −1 accounts for the difference in the definition of Cv (compare
equations (2.3.73e) of Ting and Klein (1991) and (3) of Knio and Klein (2000)).

5.2.2.1 Periodic boundary conditions

For hairpin filaments which are periodic in the spanwise direction and embedded in an
unbounded domain in the other two directions, the total velocity vttm requires contributions
from an infinite number of images in addition to the elements within the computational domain
(Knio and Ghoniem, 1991). Therefore, (5.21) is written as,

vttm(x, t) = − Γ
4π

±∞∑︂
k=±1

N∑︂
i=i

(x − χc
i (t)) × δχi(t)

|x − χc
i (t)|3

κδ(x − χc
i (t)) (5.26)

Since it is not practical to evaluate an infinite number of images, the above sum is
decomposed into two components,

vttm(x) =
N∑︂

i=1
(vcenter(x) + vimage(x)) (5.27)

where vcenter is the contribution from the central part of the domain and vimage is the
contribution from the image system. They are computed as,
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5. A thin filament approach for the dynamics of hairpin structures

vcenter(x) = − Γ
4π

N∑︂
i=i

(x − χc
i (t)) × δχi(t)

|x − χc
i (t)|3

κδ(x − χc
i (t)) (5.28)

vimage(x) = − Γ
4π

±P∑︂
k=±1

N∑︂
i=i

(x − χc
i (t)) × δχi(t)

|x − χc
i (t)|3

(5.29)

For the image system, it should be noted that the effect of the velocity smoothing function
is neglected as it is assumed that L ≫ δ. Also, ±P is the number of images chosen on either
side of the domain. In all simulations presented in the thesis, P = 8. This choice is explained
in subsection 5.3.1.1.

5.2.2.2 Optimization

In order to ensure that the numerical core structure is well defined, the overlap condition
must be met. This implies that for thin cores, i.e., when the core size parameter δ is small, a
large number of nodes are necessary. Motivated by the observation that the number of nodes
necessary for an adequate representation of the centerline is always lower than the number
of nodes necessary for overlap, Knio and Klein (2000) proposed three optimization strategies
for the corrected thin-tube model. The first method, henceforth denoted M1, is chosen as it
avoids computation of filament curvature κ and requires little modification of the code. This
method uses a Richardson-type extrapolation procedure of the core size parameter as follows,

vttm
corr = v1 + (v1 − v2) ln (σ1/δttm)

ln ϕ
(5.30)

where v1 and v2 correspond to velocities due to two large core sizes σ1 and σ2. If σ0(t) =
max
i=1..N

|δχi| denotes the inter-element separation distance, then

σ1 = K σ0, σ2 = ϕ σ1 . (5.31)

and K and ϕ are constants which are chosen as 3 and 2 respectively. The choice of these
parameters are described in subsection 5.3.1.1. It is easy to see that for any value of K > 1
and ϕ > 1, both σ1 and σ2 will satisfy the overlap condition. Therefore, the corrected velocity
at the centerline is obtained at the cost of two large core evaluations. The vortex elements are
transported along Lagrangian trajectories with the following equation of motion,

dχi(t)
dt

= vttm
corr(χi(t), t) (5.32)

A summary of the numerical scheme is presented as follows,

(1) First, the initial configuration of the hairpin is setup.

(2) For the chosen velocity core smoothing function κ(r) = tanh(r3), Cttm is set to −0.4202.
The numerical core radius δttm is computed from (5.22). With σ0(t) = max

i=1..N
|δχi|, (5.31)

can be used to compute the two coarse radii.

(3) For both core radii, (5.21) is evaluated at each node location by applying the periodic
boundary condition as illustrated in figure 5.4, i.e., the velocity at a node x inside
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Parameter Value
Core size, δ 0.01
Amplitude, ˜︁a 0.01
Circulation, Γ 4π

Expansion parameter, ϵ 0.5
Number of nodes, N 1024

Table 5.1: Parameters used for the static test comparisons.

the computational domain is evaluated by applying a translation along the periodicity
direction such that x is at the center of the domain.

(4) The corrected velocity is obtained according to (5.30).

(5) Finally, the node positions are updated with the equation of motion (5.32) with a fifth
order Adams-Bashforth scheme and Runge-Kutta-Fehlberg initialization (Butcher, 2016;
Hairer et al., 1993).

5.3 Validation of the slender vortex filament code

For the two methods described in the previous section, a program is written in python and
validation of this code is presented here. Initially, the static test of Klein and Knio (1995) on
a sinusoidal plane curve is carried out to compare the binormal velocity prediction of LIA and
M1 KK method at an instantaneous time step. This static test is chosen due to the obvious
advantage that temporal discretization errors will not be reflected in the velocity predictions.
Next, a hairpin filament is initialized and the temporal evolution of this filament in a stagnant
background flow is also compared. These tests emphasize the differences between LIA and
M1 KK methods where the former method does not include non-local effects of self-induction.
Finally, the hairpin filament is advected in a shear background flow with the M1 KK method
to (a) test the effect of the background flow on the motion of the filament, (b) test the motion
of the filament with/without a wall boundary condition. These results are compared to the one
obtained by Hon and Walker (1991) where the cut-off method of Moore (1972) was employed.

5.3.1 Sinusoidal plane curve test

Following Klein and Knio (1995), the sinusoidal plane curve geometry is given by the following
equation,

X(s) = st + ϵ2˜︁a sin(2s/ϵ)n (5.33)

where ˜︁a is the amplitude of the curve and t, n are mutually orthogonal unit vectors. This
equation describes a filament in the (t, n) plane which will induce a velocity normal to this
plane, i.e., in the binormal direction b. The parameters used in this test are given in table 5.1.
To satisfy the overlap condition given in 5.16, it can be seen that a minimum of 316 nodes are
necessary. However, if the number of nodes are varied from 100 to 1000 and the maximum
binormal velocity along the filament is recorded for each case with the M1 KK scheme, the
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Figure 5.5: The solid line shows the maximum binormal velocity along the filament with the M1
KK method for the sinusoidal plane curve test with increasing node counts. The region shaded
red region shows N ≥ 316 which satisfy the overlap condition given in (5.16). The shaded blue
region shows the difference between the maximum binormal velocity obtained at N = 316 and the
maximum binormal velocity at other N .
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Figure 5.6: Velocity prediction in the binormal direction for LIA (dashed line) and the M1 KK
method (solid line).

results as shown in figure 5.5 indicate a minor deviation of 0.42% between the maximum
binormal velocity at N = 316 and N = 1000. Therefore, to eliminate numerical inaccuracies,
1024 nodes are chosen in this test. The filament velocity in the binormal direction is shown
for both LIA and the M1 KK scheme in figure 5.6. By comparing LIA and the Klein-Majda
asymptotic velocity predictions, Klein and Knio (1995) showed a deviation of 20 − 25%. The
results shown in figure 5.6 show a deviation of 19% between the LIA and the M1 KK methods.
Although this is slightly lower, the differences clearly show the overestimation of velocity by
LIA where non-local effects are excluded.

5.3.1.1 Choice of parameters for the M1 KK method

For the M1 KK method, optimal values of two parameters related to the numerical core sizes
(K and ϕ) and a third parameter (number of images P ) to enforce the periodic boundary
conditions need to be chosen. The optimum values are chosen by identifying the minimum
value necessary for an accurate prediction of binormal velocity in the sinusoidal plane curve
test.
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Figure 5.7: For the static test described in subsection 5.3.1, the number of images P are varied
and the maximum binormal velocity is plotted.

With the parameters listed in table 5.1, the number of images are varied from 1 − 100
and the maximum binormal velocity along the filament is recorded in each case. From figure
5.7, it can be seen that there is no deviation in the maximum binormal velocity after P ≥ 7.
This implies that the first few image pairs (one on each side of the domain) have a greater
contribution to the self-induced velocity of the center domain than far away image pairs.
Therefore, for all simulations presented in the thesis, 8 image pairs are chosen.

Apart from the number of images, the M1 technique also requires two parameters K and
ϕ to be chosen. The former is a ratio of the separation distance between the nodes and the
numerical core size and therefore can be seen as an “overlap” parameter (Knio and Klein,
2000). When K > 1, then the neighboring cores overlap each other. To examine the effect
of K on the self-induced velocity of the filament, the second optimization technique of Knio
and Klein (2000), hereafter referred as M2, is used. This method is preferred over M1 as it is
independent of the parameter ϕ. The corrected velocity is obtained as follows,

vttm
corr = v1 + Γ

4π
ln

(︃
σ1

δttm

)︃
κb (5.34)

where σ1 is evaluated dynamically during simulation as shown in (5.31). Again the static test
with the parameters in table 5.1 is repeated by varying K from 1 − 19. The results from figure
5.8(a) show that for K > 2, the velocity predictions show only minor deviations, particularly
for the case with 1024 nodes. Therefore, K = 3 is used for all further simulations.

Since K has been chosen, the M1 method can now be used to study the effect of ϕ on
the self-induced velocity of the filament. With the same test, ϕ is varied from 1 − 19 and
the results are shown in figure 5.8(b). Similar to the results of K, minor deviations in the
maximum binormal velocity can be seen for the case N = 1024 when ϕ > 1. A conservative
value of ϕ = 2 is chosen.

5.3.2 Hairpin evolution in stagnant background flow

In this test, the hairpin filament evolves in the absence of a background flow, i.e., Q2 = 0 as
shown in Hon and Walker (1991). Similar to the previous test, both LIA and the M1 KK
methods are used to validate the dynamical aspects of the filament code. The parameters
used for this test are listed in table 5.2. The hairpin filament is initially inclined at 45◦ with
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Figure 5.8: Similar to figure 5.7, the static test is repeated by varying the values of K (Left) and
ϕ (Right) and the maximum binormal velocity is plotted. The solid, dashed and dotted lines show
the differences with the number of nodes N .
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Figure 5.9: Temporal evolution of a hairpin vortex in a stagnant background flow. (a, b, c) are
the top, side and front view of the hairpin respectively. The simulation performed with LIA and
M1 KK schemes are shown in the top and bottom panels respectively.

Parameter Value Parameter Value
Core size parameter, δ 0.02 Initial wall-normal position, yinitial 1
Circulation, Γ 1 Domain length, L 4
Spread parameter, β 20 Number of nodes, N 700
Amplitude, A 0.5 Time step (LIA), △t 10−5

Angle of inclination, θi 45◦ Time step (M1 KK), △t 10−3

Initial streamwise position, xinitial 1

Table 5.2: Parameters used for the stagnant flow test.
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respect to the wall and a spatial discretization of 700 nodes are used for both methods. It
should be noted that for all simulations performed in this thesis, an adequate number of nodes
satisfying the overlap condition is used to ensure that further refinement does not alter the
findings and conclusions. The results of the simulation are shown in figure 5.9.

To ensure a smooth evolution, a small time step △t = 10−5 is chosen for LIA and a much
larger △t = 10−3 for the M1 KK method. Larger time steps are possible with the M1 KK
scheme as it not only avoids computations with the local curvature term κb for which higher
order derivatives need to be computed, but also is much better conditioned owing to the
Richardson-type extrapolation from the artificially enlarged to the actual core size in the
correction scheme M1. It can be seen from both side view panels in figure 5.9(b) that the
hairpin head (or tip region) bends backward and downward towards the wall as shown in Hon
and Walker (1991). Similar results were also reported in Moin et al. (1986) who studied the
evolution of an isolated parabolic vortex with a cut-off method. Formation of the “corkscrew”
shape is also observed with both methods. The top panel in 5.9(a, c) shows that, for LIA,
small “wiggles” develop and start moving towards the end of the domain. Therefore, the
simulation is stopped at t = 0.2. Simulation with the M1 KK method is also stopped at the
same time so that the results are comparable with LIA. In later stages, formation of secondary
hairpins on either side of the initial perturbation and the development of hairpin “legs” in the
curved regions close to the wall are also visible.

It is clear from the results presented in figure 5.9 that both LIA and M1 KK methods
produce similar results to the cut-off method of Hon and Walker (1991). Now, the differences
between LIA and M1 KK methods are compared by repeating the simulation with two values
of the spread parameter β = 15, 50. It is important to note that larger values of the spread
parameter constrict the width of the perturbation and vice versa. For the same amplitude
and a shorter width, i.e., β = 50, a large number of nodes are necessary to obtain a stable
evolution. In this case, 1300 nodes are used. For LIA, a smaller time step △t = 10−6 is also
necessary. From the insets of figure 5.10(a, b, c, d), it can be seen that by changing the spread
parameter from β = 15 to β = 50, LIA effectively maintains the corkscrew spiral and at β = 50
(smaller width), there appears to be further coiling around the origin of the filament. With the
M1 KK method, this corkscrew pattern cannot be seen in both cases. Further magnification
near the origin of the filament as shown in figure 5.10(e) reveals only slight coiling for the
M1 KK case at t = 0.1 for larger β. However, continuing the simulation (not shown in the
thesis) eventually reveals the corkscrew spiral for β = 15 as early as t = 0.13 while it is delayed
further for β = 50 and is accompanied by further outwards stretching of the hairpin legs than
in the former case. This suggests that as the spanwise width of the filament is decreased, the
nonlocal effects become important which is ignored by LIA. This gives a direct comparison
to the hairpin evolution under the absence of nonlocal effects with LIA where the legs of the
filament do not “see” each other when they approach closely and when the nonlocal effects are
correctly represented by the M1 KK method which results in self-stretching of the filament.
Since the M1 KK method can capture the nonlocal effects accurately, further simulations are
carried out only with this method.
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Figure 5.10: The test shown in figure 5.9 is repeated with β = 15, 50 for both schemes. (a, b)
show the temporal evolution of the hairpin with LIA whereas (c, d) shows the temporal evolution
with the M1 KK scheme. The insets in (a, b, c, d) show magnified portion of the filaments. Further
magnified portion of the LIA (solid line) and the M1 KK (dashed line) cases with β = 50 at t = 0.1
is plotted in (e) with the scatter point indicating the origin of the filament.

108



5.3 Validation of the slender vortex filament code

0 2 4 6 8 10 12 14

0.5

1

1.5

2

x

y

With image vortex
Without image vortex

0

0.1

0.2

0.3

0.4

t

0 2 4 6 8 10 12 14

0.5

1

1.5

2

x

y

With image vortex
Without image vortex

0

0.1

0.2

0.3

0.4

t

−4 −2 0 2 4

0.5

1

1.5

2

z

y

0.2

0.25

0.3

0.35

0.4

t

Figure 5.11: Temporal evolution of a hairpin vortex in a shear background flow. The top panel
shows the side view until t = 0.44 and the solid line indicates that the wall boundary condition
was enforced. The bottom panel shows the front view from t = 0.2 to t = 0.4. The red dashed line
indicates ys which is the top of the shear flow.
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Parameter Value Parameter Value
Core size parameter, δ 0.02 Initial wall-normal position, yinitial 1
Circulation, Γ 1 Domain length, L 4
Spread parameter, β 20 Number of nodes, N 1500
Amplitude, A 0.5 Time step, △t 10−3

Angle of inclination, θi 45◦ Shear flow height, ys 1.5
Initial streamwise position, xinitial 1 Velocity, V 30

Table 5.3: Parameters used for the shear flow test.

5.3.3 Hairpin evolution in shear flow

In this test, the hairpin is allowed to evolve in the presence of a simple shear background
flow. The goal of this test is to validate the code against a background flow profile and also to
account for the presence of a wall. Following Hon and Walker (1991), a simple shear flow is
given by,

Q2 =

yV/ys, if y ≤ ys

V, y > ys

This describes a shear flow which is linear near the wall until ys, after which the flow is uniform
with a velocity V . The parameters used in this simulation are listed in table 5.3.

Aref and Flinchem (1984) noted that using a Blasius or boundary layer background flow
will require the boundary condition of a rigid wall without which the filament approaching the
wall closely will simply pass through it. Moin et al. (1986) showed that the effect of wall can be
accounted with the help of an image vortex, i.e., by placing a vortex at an equal and opposite
wall-normal distance as that of the one being simulated. They also note that the presence of
the wall appears to enhance the streamwise advection of the filament and moves the legs of
the of the filament close to each other. To incorporate an image vortex, an additional step is
included in the calculation presented in subsection 5.2.2.

The results of the simulation are shown in figure 5.11. In agreement with the results shown
in Hon and Walker (1991), the hairpin filament is convected downstream and stretches in the
wall-normal direction due to the shear flow. Eventually, the tip region contacts the uniform
flow region above ys. The legs of the filament also progressively move downward towards the
wall which presents an opportunity to compare the results with and without an image vortex.
It should be noted that the image vortex is placed behind the wall at y = −1. It is apparent
from figure 5.11(a) that the effect of the image vortex increases as the filament approaches the
wall closely as demonstrated in Moin et al. (1986) with a parabolic vortex.

5.4 Hairpin evolution in ABL background flow

In this section, the M1 KK method is used to study the motion of hairpin filaments immersed
in an atmospheric boundary layer background flow. Before the initial conditions and the
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Figure 5.12: Mean velocity profiles for each wall-normal height are plotted until y+ = 1500 for all
velocity components. (·)+ indicates viscous or wall units. (a, b, c) corresponds to the streamwise,
wall-normal and spanwise velocities, respectively. In (a), the red dash dot line shows both the
viscous law of the wall u+ = y+ and the logarithmic law u+ = κ−1

v log(y+) + A with the von
Kármán constant κv = 0.41 and A = 5 for the neutrally stratified case.

results of the simulation are discussed, some suitable arguments are first presented to address
the validity of the results.

• Although the effect of the background flow on the motion of the hairpin filament is
studied, it should be noted that this is simply an approximation since there is no feedback
mechanism in place, i.e., the action of the filament on the background flow is neglected.
Aref and Flinchem (1984) show with an order of magnitude estimate that the neglected
effect (including vortex stretching) is small provided that the core size of the filament
is very small but non-zero compared to the length scale of the background flow field.
This condition is fulfilled in our simulations in which the core size is several orders of
magnitude smaller than the vertical length scale of background flow field.

• The current method also assumes that the viscous effects are very small such that core
structure of the filament is practically unchanged during its evolution. Moin et al.
(1986) suggest that these viscous effects gain importance during a later stage of the
hairpin filament evolution when the vortex cores start interacting with each other. This
aspect can also be seen in DNS simulations of reconnecting vortex tubes which show an
appreciable amount of core deformation, even for very small core sizes (Yao and Hussain,
2020; Yao and Hussain, 2022). Since reconnecting vortex cores are not the focus of this
work, our inviscid core calculations remain valid. Notice, however, that Callegari and
Ting (1978) provide proper evolution equations for the filament vortex core subject to
viscous effects, and the M1 KK method would allow us to straightforwardly include them
if needed. Their main impact would be a slow thickening of the vortex cores and an
associated reduction of the curvature-binormal term in the filament equation of motion.

• While the impact of gravity on the motion of the filament is felt through the external
background flow, its effect on the self-induced motion of the filament is not included. By
extending the work of Callegari and Ting (1978) to include weak gravitational forces,
Harikrishnan et al. (2023) showed that the contribution from gravity is important only
for non-closed and non-periodic filaments that begin and end at different heights. For
infinitely long vortex filaments whose ends are at the same height, which are the focus of
this work, it is indeed valid to ignore the effect of gravity on their self-induced motion.
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5. A thin filament approach for the dynamics of hairpin structures

Core size parameter
Ekman flow case

N S_1 S_2
H1 H2 H3 H1 H2 H3 H1 H2 H3

δmin 0.024 0.016 0.12 0.026 0.17 0.13 0.048 0.025 0.026
δmax 1.26 1.89 1.63 1.92 3.45 5.57 5.79 4.18 1.31
δmean 0.52 0.49 0.74 0.52 1.1 1.05 0.92 0.70 0.33

Table 5.4: The minimum, maximum and mean values of the dimensionless core size parameter
estimated along the centerline of three hairpin-like structures are shown for case N, S_1 and S_2.

5.4.1 Background flow profiles and initial conditions for the simulation

For the three Ekman flow simulations listed in table 4.1, i.e., two stably stratified cases S_1
and S_2 and the neutrally stratified case N, the background flow is obtained by computing
the mean velocity at every wall-normal height. These velocity profiles are shown in figure 5.12.
To enable a comparison among the different degrees of stratification, the space coordinates
(x, y, z) are expressed in viscous or wall units with (1.6) which is reiterated below,

y+ = y uτ

ν
(5.35)

where uτ and ν are the friction velocity and kinematic viscosity respectively. In a similar
manner, the velocity components and time can also expressed in viscous units,

u+ = u

uτ
, t+ = t ν

δ2
ν

(5.36)

where δν = ν/uτ is the viscous length scale. Once the background flow profiles are obtained,
the initial conditions for the simulation are set-up. To aid with the selection of unknown
physical and numerical parameters, the DNS data is inspected.

First, the core size parameter is fixed. Three hairpin-like Q-criterion structures are randomly
selected and extracted for each case N, S_1, S_2. With the block-wise skeletonization algorithm
of Fouard et al. (2006), the centerline of each hairpin is obtained. To estimate the dimensionless
core size parameter, the diameter d of the structure and the local radius of curvature R needs to
be computed. The diameter is first obtained by fitting the largest sphere within the Q-criterion
structure. Next, the radius of curvature is calculated at every point along the centerline X
which is given by (Gray et al., 2017),

R = 1
κ

= |Xs|3√︁
|Xs|2|Xss|2 − (Xs · Xss)2 (5.37)

where Xs, Xss are the first and second derivatives of the space curve. The ratio d/R is the
local dimensionless core size parameter of the filament (not to be confused with the asymptotic
parameter δ from (5.7), which is a characteristic value of this quantity for a given filament).
The minimum, maximum and mean values of δ estimated from all hairpin structures are
tabulated in 5.4.

From figure 5.13(b), it can be seen that δ varies throughout the hairpin with smaller values
(indicating a thinner core) near the legs and larger values near (thicker core) the head region.
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Figure 5.13: The uncertainty of core size estimation is shown in (a) where the isosurface of the
same structure at at two thresholds are visualized. The core size is illustrated at two points in (b).
Here, τ is the threshold and δ is the dimensionless core size parameter.

Circulation
Ekman flow case

N S_1 S_2
H1 H2 H3 H1 H2 H3 H1 H2 H3

Γmin
0.09 0.018 0.015 0.02 0.049 0.047 0.026 0.0076 0.0014
−0.107 −0.24 −0.217 −0.042 −0.22 −0.137 −0.01 −0.26 −0.035

Γmax
0.17 0.115 0.318 0.048 0.13 0.11 0.38 0.225 0.049
−0.009 −0.02 −0.185 −0.048 0.0013 −0.032 −0.0071 −0.0098 0.18

Γmean
0.134 0.077 0.124 0.034 0.094 0.08 0.202 0.113 0.031
−0.045 −0.084 −0.204 −0.025 −0.119 −0.071 −0.0425 −0.122 0.11

Table 5.5: The minimum, maximum and mean values of Circulation estimated along the centerline
of three hairpin-like structures are shown for case N, S_1 and S_2.

It is important to note that the estimations are strongly dependent on the threshold (τ) which
is used to extract the hairpin structure. Large values of τ would imply thinner cores and vice
versa as illustrated in figure 5.13(a). Here, optimum thresholds identified through percolation
analysis are used. For case S_1, which is strongly intermittent, the optimum thresholds are
obtained with multilevel percolation analysis as discussed in subsection 3.1.5. For other cases,
the global percolation threshold (τp) is sufficient to identify individual structures. Apart from
its dependence on the threshold, it is also important to note that these estimations are made
at a later stage in the developmental cycle of a hairpin structure. For most of the hairpin
structures considered here, the minimum value of core size parameter is about 0.02 whereas
maximum value can reach up to 5.79 (see table 5.4). To study the effect of changes in δ, two
values δ = 0.01, 0.05 are conservatively chosen.

For all the extracted hairpin structures, circulation within the Q−criterion structure is
calculated on both legs for every wall-normal height until its head region. From table 5.5, it
can be seen that most hairpin structures have a positive circulation value on one leg and a
negative value on the other which indicates opposite swirling directions. Similar to the core
size parameter, two circulation values are chosen Γ = 0.01, 0.05 to study its impact on the
evolution of the hairpin filament.

Another important parameter is the initial width of the hairpin filament which is controlled
through β. From the stagnant flow test, it is clear that for larger β (and consequently smaller
initial width), the nonlocal effects of self-induction become important and tend to have a
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5. A thin filament approach for the dynamics of hairpin structures

Case Core size Circulation Spread Inclination Amplitude Length
(δ) (Γ) (β) (θi) (A) (L)

R1 0.01 0.01

7500 0.1◦ 10 200
R2 0.05 0.01
R3 0.01 0.05
R4 0.05 0.05

Table 5.6: The four initial configurations of the hairpin chosen for the simulations with ABL
background flow.

z x

y
y+ = 5
y+ = 30
y+ = 50

y+ = 100

Figure 5.14: Side view of an active/turbulent patch of Q−criterion criterion structures for the
case S_1 until y+ = 100.

significant impact on the evolution of the filament. Therefore, this parameter needs to be
carefully chosen. In their experimental study, Acarlar and Smith (1987) test the hypothesis
that hairpin structures are generated from the breakup of low-speed streaks by artificially
creating low-speed streak regions (with periodic injection of fluid in a water-channel) in a
sub-critical laminar boundary layer. They concluded that these artificial low-speed streaks
tend to oscillate over time and later breakup to form hairpin vortices. Therefore, the mean
spanwise width computed over all individual low-speed streaks can be used to choose the
initial width of our hairpin filament. At y+ = 50, where numerous hairpin-like structures can
be seen from figure 5.14, the mean spanwise width of low-speed streaks is about 60 viscous
units which corresponds to β = 7500.

The hairpin filament is also initialized with a length of 200 viscous units and an initial
inclination angle of 0.1◦ (near-planar disturbance). An initial amplitude of 10 viscous units
is also chosen to represent a small perturbation. All parameters used in the simulations are
listed in table 5.6.

5.4.2 Temporal evolution of hairpin filaments in the outer layer

A final parameter which needs to be chosen is the initial starting height, y+
initial. If Q−criterion

structures are visualized for the case S_1 (cf. figure 5.14), the hairpin-like structures at various
stages of evolution can be seen around y+ = 50. Therefore, the first set of simulations are run
with y+

initial = 50.
The hairpin filament is discretized with 500 nodes for all four initial configurations listed

in table 5.6 and three background flow profiles. In all cases, a time step of △t = 5 × 10−5

is used to obtain a smooth evolution. The temporal evolution with S_1 background flow is
plotted every 20 time steps (or △t+ = 1.11) until t+ = 7.8 (or 140 time steps) in figure 5.15.
It should be noted that when comparisons are made among the different Ekman flow cases, it
is always done in terms of viscous time units. This is because the friction velocity is not a
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Figure 5.15: (a) Temporal evolution for all four cases listed in table 5.6 are plotted every 20 time
steps for case S_1. The dotted region is zoomed in for initial condition R3 in (b).

fixed parameter in Ekman flow simulations (Ansorge, 2016). For instance, 140 time steps for
case N and S_2 corresponds to t+ = 9.75, 8.1 respectively.

Similar to the shear flow test, it can be seen from figure 5.15 that the head of the hairpin
filament starts tilting backward and stretches in the wall-normal direction regardless of changes
in δ and Γ, albeit with different rates of evolution. This is in agreement with the results
reported by Zhou et al. (1999), who found that the hairpin vortex qualitatively experiences the
same curl-up process regardless of changes in Γ but with different subsequent evolution. These
changes are due to variations in the balance of self-induced velocity which is responsible for
curl-up and the mean shear which causes stretching both in the streamwise and wall-normal
direction.

From figure 5.15(a), it is clear that the initial condition R3 (thinner core and stronger
circulation) evolves faster than the other initial conditions and R2 (thicker core and weaker
circulation) is the slowest. If changes in the inclination angle θi = arctan(△y+/△x+) are
calculated and plotted over time for all cases, it can be seen from figure 5.16 that R3 has a
faster inclination rate. From a near planar disturbance, the hairpin filament quickly reaches
an inclination angle of 50◦ and plateaus over time for all three background flows N, S_1, S_2.
This is close to the results reported by Head and Bandyopadhyay (1981), who found hairpin
vortices inclined between 45◦ in the outer regions of the boundary layer.

Also from figure 5.16(a), the maximum inclination angle reached is approximately 50◦

regardless of the strength of stratification. This is due to the relatively large values of self-
induced velocity of the filament dominating over the mean shear which, in turn is due to large
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Figure 5.16: Time history of the inclination angle θi computed for (a) all four initial conditions
from table 5.6 until t+ = 28 and (b) only initial condition R2 until t+ = 110. The solid, dashed
and dotted lines correspond to the different cases N, S_1, S_2 respectively. The red markers
indicate the time at which the hairpin filament reaches the maximum inclination angle.
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Figure 5.17: A comparison of self-induced velocity summed over the all nodes of the filament is
shown for the initial conditions R2 and R3 with the mean background flow of S_1.

Γ and small δ. In fact, if the total self-induced velocity is computed by summing up the self-
induced velocity over each node, it can be seen from figure 5.17 that the self-induced velocity
of R3 is at least 16 times the self-induced velocity of R2. However, for smaller self-induced
velocities, the maximum inclination angle has a dependence on the strength of stratification.
For instance, if the integration is continued for the initial condition R2 as shown in figure
5.16(b), the maximum inclination angle reached is θi,max = 18.4◦, 22.2◦, 28.7◦ for S_1, S_2, N
respectively. This suggests that the hairpin evolution strongly hinges on the delicate balance
between self-induction and the mean background flow.

During their temporal evolution, hairpin filaments with the ABL background flow (figures
5.15 and 5.18) exhibit similar features as seen in shear flow test. From its initial position,
these filaments are advected downstream, stretch in the streamwise direction leading to the
formation of hairpin legs and develop secondary hairpins on either side of the main disturbance.
Comparing the initial conditions R2 and R3 for the strongly stratified case S_1, it can be
seen from figure 5.18 that the development of these features occur at a later time for R2. For
instance, secondary hairpins can be seen at a viscous time t+ = 3.9 for R3 and at a much later
viscous time t+ = 53 for R2. Although not shown, similar trends can also be seen with the
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Figure 5.18: Temporal evolution of a hairpin filament for case S_1 with (a) initial condition R2
and (b) initial condition R3. Front view of the filaments are plotted at t+ = 0, 27.8, 55.7, 83.5, 111.4
in (a) and t+ = 0, 2.2, 4.4, 11.1, 22.3 in (b).

other cases N and S_2. This suggests that R2, which has a slower inclination rate, may have
a longer lifetime in the flow (assuming no interactions exist).

Furthermore, the temporal evolution of R2 as shown in the top panel of figure 5.19
illustrates the differences in streamwise advection among the three stratified cases. At time
instance t+ = 56, it can be observed that the hairpin filament is advected about 973, 832, 607
viscous units for case S_1, S_2, N respectively. This is to be expected since the mean
velocity profiles (cf. figure 5.12) already suggest larger streamwise velocity at y+ = 50 for
the stratified flows. Ansorge and Mellado (2016) show with conditional analysis that the
streamwise velocity in the turbulent/active regions of the strongly stratified flow are lower
than their non-turbulent/inactive counterparts which implies a reduction of shear intensity in
the turbulent/active regions of the flow.

Visualizing the temporal evolution with the front view reveals further interesting
characteristics. From the bottom panel of figure 5.19, one can observe that the hairpin
filament becomes asymmetric over time, although it started as a small disturbance that is
symmetric about z+ = 0. One can attribute the development of this asymmetry to the spanwise
velocity gradient where the head of the hairpin filament may encounter a larger velocity than
its leg thereby causing it to tilt in one direction. This is in line with the presence of an Ekman
sprial where the velocity vector rotates with increasing height (Ansorge and Mellado, 2016).
In addition, by inspecting the DNS database of flat-plate boundary layers, Robinson (1991)
found that asymmetric vortical structures having a hook-like geometry were more common
than symmetric ones. Figure 5.19 also shows that the asymmetry is more pronounced for the
stably stratified cases and the degree of tilt increases with increasing stratification.

Apart from the development of asymmetry, the hairpin filament is also strongly advected
in the spanwise direction. Figure 5.20 shows a plot of the midpoint of the hairpin in the (x, z)
plane for every instantaneous time step. The neutrally stratified case experiences stronger
spanwise advection than the stably stratified cases. With respect to the streamwise direction,
the hairpin filament has drifted △z+ = 74, 46, 33 viscous units for case N, S_1, S_2 respectively
at time t+ = 56. These trends remain unchanged for other initial conditions.
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Figure 5.19: Temporal evolution for R2 is shown for cases N, S_1, S_2. The top panel shows a
side view of the filaments and the bottom panel shows the front view. In the bottom panel, (a, b, c)
correspond to case N, S_1 and S_2 respectively. The filaments are plotted at t+ = 0, 14, 28, 42, 56
in the bottom panel.

5.4.3 Evolution of hairpin filaments at other heights

In this subsection, the analysis is continued by studying the dynamical hairpin characteristics
for two other initial starting heights y+

initial = 15, 30. Since these filaments are initialized much
closer to the wall, the effect of wall impermeability is included in these simulations. The same
parameters listed in table 5.6 are used with R2 as an initial condition.

Consider the figure 5.21 where inclination angles computed for both initial heights are
shown. The trend is similar to the results seen for y+

initial = 50 where the maximum inclination
angle reduces with increase in the strength of stratification. In the case of y+

initial = 15,
θi,max = 9.9◦, 10.6◦, 11.8◦ and y+

initial = 30, θi,max = 14.2◦, 17.2◦, 21.1◦ for cases S_1, S_2 and N
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Figure 5.20: A comparison of the spanwise advection among the three cases N, S_1 and S_2 is
shown until t+ = 56 where the hairpin is initialized at y+ = 50.
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Figure 5.21: Time history of the inclination angle θi computed for initial condition R2. The
solid, dashed and dotted lines correspond to the different cases N, S_1, S_2 respectively.

respectively. It is also evident that the hairpins are inclined at shallower angles with decreasing
initial height. Similar observations were reported by Adrian et al. (2000) who suggested θi to
be a strong function of the hairpin location and found hairpin vortices inclined between 15◦ to
75◦ with 45◦ being typical.

The temporal evolution from figure 5.22 also confirms the trends established at y+
initial = 50

where the streamwise advection increases with increasing stratification. The streamwise
displacement, however, increases as the filament is initialized farther away from the wall for
all cases, which is to be expected in wall-bounded flows. The spanwise advection, plotted
in figure 5.23, shows that the neutrally stratified case exhibits only minor variations with
increasing height. On the other hand, both stably stratified cases are strongly affected where an
anticlockwise change in spanwise orientation can be seen with increasing height reflecting the
Ekman spiral. This result suggests that, under stable stratification, the spanwise orientation
of the hairpin filament is linked to its initial height, i.e., its origin. Following Deusebio et al.
(2014), if the height at which the maximum horizontal velocity is attained is used to estimate
the boundary-layer thickness for the strongly stratified case S_1, this is at y+ = 156 viscous
units which is about one fourth of that observed in the neutrally stratified case. This suggests
that all the hairpin simulations were initialized well within the Ekman layer enabling us to
observe the spiral as seen in figure 5.23.

5.5 Comparison with MLPT tracking

Since hairpin-like structures were already tracked in time with temporally well-resolved DNS
data in the previous chapter (see section 4.3), it presents an opportunity to qualitatively
compare their evolution with those obtained through filament simulation. The candidate
structure chosen for comparison is from the strongly stratified case S_1, visualized in figure
5.24 until t+ ≈ 74.4, and was tracked for 674 time steps (or t+ ≈ 84). The centerlines for
the structures are obtained through the block-wise skeletonization method of Fouard et al.
(2006). From figure 5.25, it can be seen that this structure exists in the outer layer in the
range 80 < y+ < 180. To enable an appropriate comparison with the filament simulation, a
hairpin filament with a large amplitude A = 80 is initialized at a higher wall-normal height
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Figure 5.22: Temporal evolution for R2 is shown for cases N, S_1, S_2. The top and bottom
panels show the side view of the filaments at y+

initial = 30 and y+
initial = 15 respectively.
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Figure 5.23: Comparison of spanwise advection for case (a) N (b) S_1 and (c) S_2 at three initial
heights y+ = 15, 30, 50. The solid black line shows the spanwise advection with initial condition
R3 wheras all others are shown with initial condition R2.
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Figure 5.24: Track of a hairpin-like structure from the strongly stratified case S_1 with MLPT
thresholding. The complex geometry of the extracted structures may result in a network of
centerlines. Since we are only interested in the main centerline defining the hairpin structure, the
remaining are discarded.
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Parameter Value
Core size parameter, δ 0.01
Circulation, Γ 0.05
Spread parameter, β 500
Amplitude, A 80
Angle of inclination, θi 0.1◦

Initial wall-normal position, y+
initial 125

Domain length, L 400

Table 5.7: Initial condition for comparison with feature tracking results.
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Figure 5.25: Temporal evolution of the tracked hairpin-like structure with MLPT thresholding.
Left and right figures show the side view and the front view of the feature tracking results
respectively.

y+
initial = 125 and a correspondingly larger width. The initial conditions are listed in table 5.7.

Overlap is ensured with a spatial discretization of 1500 nodes and the simulation is carried
out until the overlap condition is violated. Results of the simulation are shown in figure 5.26.

It should be noted that in the feature tracking results, the initial state of the hairpin-like
structure is unknown and tracking is started only from a later point in its lifetime. While this
makes it practically impossible to establish a direct comparison with the simulation results,
some qualitative comparisons regarding their temporal evolution can be made. The streamwise
advection of the tracked structure and filament simulation for a viscous time t+ = 84 are
1621 and 1682 viscous units respectively. At this height, the hairpin-like structure is mainly
driven by the mean background flow and the minor discrepancy can be attributed to the
choice of the initial starting height of the filament which suggests that the hairpin structure
may have originated from a lower height. The discrepancy can also be attributed to effects of
mutual induction of neighboring structures. Figure 5.27 shows the initial state of the tracked
hairpin-like structure (colored blue) where at least one other structure can be identified in
close proximity which can influence later temporal developments.

Even at the first time step of tracking, the asymmetry of the hairpin-like structure can be
observed from figure 5.25. The legs of the structure are at heights 91 and 85 viscous units.
This asymmetry grows over time and at the maximum growth state, the legs are at heights
78 and 103 viscous units. Starting with a symmetric perturbation, it can be seen from the
filament simulation that asymmetry develops and grows over time and at t+ = 84, the legs
of the hairpin filament are at wall-normal heights of 73 and 106 viscous units. As seen from
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Figure 5.26: Temporal evolution for a larger hairpin filament at y+
initial = 125. Left and right

figures show the side and front view of the temporal development respectively.

Figure 5.27: Isosurfaces of the Q-criterion for case S_1 are shown here for the initial time step.
The structure tracked with MLPT is highlighted in blue.

previous sections, the persistence of asymmetry is due to the influence of spanwise velocity.
This contradicts the results reported by Zhou et al. (1999) who suggested that an initial
asymmetric configuration is necessary to produce asymmetric hairpin vortices. Our results
indicate that asymmetry develops naturally as a consequence of the mean background flow.

5.6 Summary and conclusions

In this chapter, the similar orientations of hairpin-like structures observed in chapter 3 for
the strongly stratified case S_1 have been investigated. To circumvent the limitations of the
feature tracking methodology from the previous chapter, a thin filament approach (TFA) is
used to study the dynamics of hairpin structures with the ABL as a background flow.

The hairpin filaments are initialized as small, symmetric, three-dimensional disturbances
inclined at an angle θi having a spanwise width β and amplitude A. In the first part of the
chapter, the temporal evolution of hairpin filaments with no background flow were studied with
two methods namely, the local induction approximation (LIA) and the corrected thin-tube
model of Klein and Knio (1995) with the method 1 optimization technique (Knio and Klein,
2000) (M1 KK). For a filament initially inclined at θi = 45◦ with respect to the wall with
width β = 20, results from subsection 5.3.2 indicate that both methods correctly capture the
effects of self-induction where the tip region of the filament bends backward and moves rapidly
downward towards the wall resulting in a corkscrew shape, previously observed in Moin et al.
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(1986) and Hon and Walker (1991). If the simulation is rerun with different initial spanwise
widths β = 15, 50, a major drawback of LIA is highlighted. From side views of figures 5.9,
5.10, a marked difference in the development of hairpin “legs” can be observed, particularly
for β = 50. This gives a direct comparison when nonlocal effects of vortex self-induction are
neglected by LIA and when they are correctly represented with the M1 KK method. Therefore,
for simulations with the ABL background flow the M1 KK method is preferred.

The impact of the presence/absence of a wall on the motion of the hairpin filament is
examined in subsection 5.3.3 with a simple shear background flow. Wall impermeability is
accounted with the help of an image vortex placed behind the wall at an equal and opposite
wall-normal distance to the filament being simulated. With the parameters described in table
5.3, the simulation was run with/without a wall and the results are shown in figure 5.11. In
agreement with Moin et al. (1986), it can be seen that the hairpin vortex in the presence of a
wall is advected further downstream than the one without the wall. If the simulation is run
further (not shown), it can be seen that the effect of the image vortex becomes stronger as it
approaches the wall closely.

Finally, the motion of hairpin filaments with the Ekman background flow were studied for
three cases: two stably stratified (S_1, S_2) cases at different degrees of stratification and a
neutrally stratified (N) case with the M1 KK scheme. The hairpin was initialized at a wall
normal height y+

initial = 50, i.e., in the outer layer as a small, nearly two-dimensional perturbation
with an initial inclination angle θi = 0.1◦ and four initial conditions were investigated to
examine the effect of varying core size δ and circulation Γ values (see table 5.6). In all cases,
the hairpin filament lifts up and bends backward away from the wall due to self-induction,
thereby increasing its inclination angle. Particularly for the initial condition R3, which has a
large self-induced velocity (as a result of a relatively thinner core and stronger circulation),
the maximum inclination angle reached is approximately 50◦ regardless of the strength of
stratification. For all other initial conditions, where the self-induced velocity is weaker, the
background flow influences the motion of the filament and the maximum inclination angle
reached reduces with an increase in the strength of stratification (θi,max = 28.7◦, 22.2◦, 18.4◦ for
cases N, S_2, S_1 respectively). The experiment was repeated at other heights y+

initial = 15, 30
in subsection 5.4.3 where the effect of wall impermeability was included. At y+

initial = 15,
θi,max = 11.8◦, 10.6◦, 9.9◦ and at y+

initial = 30, θi,max = 21.1◦, 17.2◦, 14.2◦ for cases N, S_2, S_1.
This suggests that the inclination angle is a strong function of its location and θi,max increases
with increasing height.

Since Ekman flow includes both effects of stratification and rotation, the latter has an
influence on the spanwise dynamics of the filament. Figure 5.19 clearly shows that the hairpin
filament, initially symmetric, becomes asymmetric over time, thereby tilting the filament in
one direction. The degree of tilt increases with an increase in the strength of stratification.
This asymmetry can also be observed in the DNS feature tracking results (see figure 5.25)
in which the degree of asymmetry increases as the hairpin-like structure grows in size. The
rotation also influences the spanwise advection of the filament. In figure 5.23, a comparison of
the spanwise advection at three initial heights y+

initial = 15, 30, 50 are shown. An appreciable
change in the spanwise orientation can be observed, particularly for the stratified cases S_1
and S_2 for which the orientation changes in the anticlockwise direction with increasing height
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reflecting the Ekman spiral. This suggests that hairpins initialized at the same wall-normal
height will have similar spanwise orientations under stable stratification.

Although a link between the spanwise orientation of the filament and its initial starting
height is suggested for the stable regime, it is still not clear if this is solely responsible for
the similar orientation of structures observed in chapter 3. As suggested in section 5.5, the
effect of mutual induction of neighboring filaments may have an impact on the dynamics of the
filament and remains unexplored. Margerit et al. (2004) have shown that the mutual induction
of several filaments can be computed by summing their self-induced velocities. However, as
the filaments approach each other closely, viscous effects become important leading to the
deformation of the core structure as seen in Yao and Hussain (2022). Incorporation of viscous
diffusion was already pursued in Klein et al. (1996) which should lead to a straightforward
modification of the slender vortex code presented in this thesis. Additionally, the simulations
carried out here do not include the impact of gravity on the self-induced motion of the filament
as Harikrishnan et al. (2023) showed that contribution from gravity becomes important when
the filament is tilted with respect to the vertical direction. Therefore, the impact of gravity on
the motion of tilted filaments is currently an open question.
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... turbulent boundary layers also pro-
mote increased mixing, heat transfer, and
exchange processes; thus, when they occur
on an atmospheric scale, they have im-
portant meteorological and climatological
implications.

Marusic et al., Science, 2010

In this thesis, direct numerical simulations of rotating and stably stratified Ekman flows
over a smooth wall have been investigated with the help of coherent structures (chapters 1 - 4)
and vortex filaments (chapter 5). As explained in the introduction, the primary motivation
to study the stable boundary layer stems from the need to improve existing/develop newer
parametrizations through a better understanding of the underlying physical processes and
dynamics. With a structure-based approach, a detailed comparison was established between
the stably and neutrally stratified Ekman flow by (i) comparing the geometry of Robinson
structures in an instantaneous flow field, (ii) comparing the temporal evolution of the geometry
of Robinson structures and (iii) comparing the temporal evolution of hairpin-like structures
obtained through feature tracking and vortex filament schemes. A brief summary of the main
results and methods developed during the course of this work are discussed in this chapter.

6.1 Geometry of coherent structures with increasing stability

In chapter 2, a methodology for the extraction and geometrical characterization of quantitative
Robinson structures was developed. To extract individual visualization accurate (see the
description in section 2.2) structures from three-dimensional scalar fields, the neighbor scanning
(NS) algorithm of Moisy and Jiménez (2004) was improved with the marching cubes (MC)
algorithm (Lorensen and Cline, 1987). The speed and accuracy of the NS+MC algorithm even
at very small thresholds was demonstrated in subsection 2.2.3. Next, a non-subjective threshold
value was identified for each indicator with the following steps: (i) nondimensionalizing the
indicator with its root mean square over every wall-normal plane which accounted for the
inhomogeneity of the flow in the wall-normal direction everywhere, except in the viscous
sublayer, such that a single global threshold could be used for the entire flow field (see figure
2.13) and (ii) identifying the region of percolation transition by varying the threshold between
two limits and calculating its mean. It was seen that this method was insufficient to educe
individual structures for the strongly stratified case S_1. Therefore, a novel method called
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multilevel percolation analysis (MLP) was proposed in subsection 2.3.1 where percolation
analysis could be applied in an iterative manner to break down the complex cluster into
individual structures, all of which exist at unique thresholds. Finally, the extracted individual
structures were geometrically characterized with the non-local methodology of Bermejo-Moreno
and Pullin (2008). All of these steps taken together constitute a framework for the extraction
and geometrical characterization of coherent structures in wall-bounded flows.

The geometrical characterization framework described above was applied for all three
stably stratified cases (S_1, S_2, S_3) and the neutrally stratified case (N). Results of this
analysis are presented in the first part of chapter 3. For an instantaneous time step of each
case, all quantitative Robinson structures were computed with the indicators listed in table 2.1.
Subsequently, the structures were extracted at the percolation threshold τp and geometrically
characterized. In total, about 106 structures were analysed across all cases.

It should be noted that the geometrical characterization was excluded for the viscous
sublayer (y+ < 5) as structures having a mean fractal dimension ⟨Dα > 1⟩ which start within
this region are not fully formed and generally extend into the buffer layer and sometimes
beyond. In this region, it was observed from figures 3.1, C.1 that low-speed streaks (u′ < 0)
show an increase in their streamwise coherence with increase in the strength of stratification.
In particular, a single low-speed streak can be seen spanning a large portion of the domain (cf.
figure 3.1(b)) for the case S_1. Unlike other low-speed streaks, this large low-speed streak
has only few ejections arising out of it, most of which are confined to the outer edges and the
inner region is completely devoid of ejections. This is reminiscent of the non-turbulent regions
observed above and suggests that global intermittency has a direct impact in this layer as well.
This means that global intermittency can be generalized to indicate active/inactive regions
rather than turbulent/non-turbulent regions to include its effect in the viscous sublayer.

Results of the geometrical characterization shown in figures 3.6, C.5, C.6 suggest that the
quantitative Robinson structures range from moderately stretched tube-like or moderate to
strongly stretched sheet-like structures. No blob-like structures exist. Plotting the geometry of
all structures for each case as shown in figure 3.22 indicates similar envelopes of joint pdfs for
all cases. This means that no affinity towards sheet-like (or pancake-like) structures could be
established with increasing stability. This result is important since changes in geometry from
hairpin vortices to thermal plumes were found to have an impact on the momentum transport
efficiency under increasing instability (Li and Bou-Zeid, 2011). Likewise, previous studies
have also reported an increase in the inclination angles of hairpin structures with increasing
instability (e.g., Carper and Porté-Agel (2004)). From subsection 3.1.5, examining near wall
hairpin-like structures from each case did not reveal any significant changes in inclination
angles with increase in stratification. While all these results suggest no significant changes
in geometry or inclination angles with increase in stability, it can be seen from numerous
visualizations (for instance, figures 3.1, 3.3, 3.4, 3.13, 3.14) that the quasi-laminar patches due
to global intermittency extend throughout the vertical column of the strongly stratified case
S_1, thereby having a significant impact on the spatial organization of coherent structures.

Since the percolation analysis points to a range of thresholds which approximately span a
decade rather than pointing to a single value, it presents an ambiguity in choosing an “optimum”
threshold value. In the present work, the mean value was chosen. However, values above and
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below the mean can also be considered reasonable choices. Due to this ambiguity, conclusions
derived from the geometrical characterization are complemented with those obtained from
conditional one-point statistics. The flow field is conditioned into turbulent and non-turbulent
subvolumes with an intermittency factor γ. The definition of γ is generalized as shown in (3.2)
such that any vortex indicator can be used to segregate the turbulent and non-turbulent parts
of the flow. As shown in figure 3.18, using an alternate indicator such as Q-criterion overcomes
the drawback of vorticity magnitude which produces false-positives in shear-dominated regions.
Consequently, the wall region appears less filled even at the lowest possible threshold.

With the Q-criterion based γ, the conditioning is applied for four quantitative indicators
namely, high- and low-speed streaks, sweeps and ejections. While the geometrical analysis
was limited to grid B (1/3 of the domain), conditional analysis was applied to grid A (full
domain). Vertical profiles obtained through horizontal averaging are shown in figure 3.19.
Results indicate a dominant presence of low-speed streaks close to the wall for the case S_1 as
seen from the previous analysis. This signifies the impact of global intermittency close to the
wall under very strong stratification. Although it is initially suspected that these non-turbulent
regions are decelerated regions of the flow, analyzing the volume fraction occupied by low-and
high-speed streaks in the non-turbulent regions reveals a switching behavior for all stably
stratified cases (see figure 3.20) where the outer non-turbulent regions appear to be occupied
by high-speed streaks.

Although analyzing an instantaneous snapshot of the Ekman flow under neutral and stable
stratification suggested that the geometry of the Robinson structures is similar, the spatio-
temporal variability of global intermittency can have an impact on the dynamics of coherent
structures, thereby influencing their geometry. This is investigated in the first part of chapter
4. Initially, the geometrical characterization framework is modified with an additional step as
shown in figure 4.1 to track the Robinson structures in time. Tracking is accomplished with
a region-based method where correspondence is measured with the degree of spatial overlap
of features between consecutive time steps. Next, tracking for the six quantitative Robinson
structures (low-and high-speed streaks, sweeps, ejections, vortices and shear layers) is initiated
by identifying structures having a similar geometry i.e., having similar values of Ŝ, Ĉ and λ. A
sphere of radius r = 0.05 with origin at the centroid of the cluster of all geometries analysed
in chapter 3 is chosen to identify the required structres (an example with high-speed streaks is
shown in figure 4.5). Since merging with larger structures significantly alters the geometry
(see figure 4.6 for an example), a constraint is imposed where tracking is terminated when
such merges occur. About 600 structures have been temporally tracked and geometrically
characterized. Similar to the instantaneous case, results as seen from figure 4.7 suggest a
complete lack of blob-like geometry and most structures are moderately stretched tube-like and
moderate to strongly stretched sheet-like structures regardless of the strength of stratification.
Even though this hints that the spatio-temporal variability of global intermittency does not
have a significant impact on the geometry of coherent structures with increasing stability,
the results should not be seen as conclusive due to the constraint imposed on the tracking
technique, limitations of the tracking technique (such as using a constant threshold in time,
using a subjective overlap threshold) and a small sample size. Similar to the instantaneous
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snapshot case, these results need to be complemented with those obtained through statistical
means.

6.2 Abundance and similar orientation of hairpin-like struc-
tures

The next set of results attempt to explain the abundance and similar orientation of hairpin-like
structures observed from figure 3.14(a) for the strongly stratified case S_1. A new methodology,
called multilevel percolation thresholding in time (MLPT), which overcomes the limitation of
using a constant threshold in time is developed for tracking hairpin-like structures. As shown
in figure 4.9, an optimum threshold is computed for the subsequent time step by adjusting
the threshold such that the structure at tn+1 remains simple, i.e., having a Vmax/V > 0.5 over
the entire threshold range. This allows the structure to freely grow or shrink in time when
the threshold is decreased or increased respectively. Development of this method is motivated
from previous observations where hairpin-like structures were observed to grow in time as they
are advected downstream due to the competing effects self-induced velocity generated by the
hairpin itself and the shear induced stretching as a result of the mean background flow (for
instance, see Zhou et al. (1999)). Results of the comparison between tracking with constant
and MLPT thresholds are shown for a candidate hairpin-like structure in figure 4.10. It clearly
shows that when tracking is accomplished with constant threshold in time the structure is
constantly shrinking whereas, with MLPT thresholds, the hairpin-like structure can be initially
seen growing until t+ = 42.5, after which it starts shrinking. This suggests that MLPT is
capable of capturing the dynamical changes in the size of a structure by actively modifying
the thresholds in time.

To investigate the abundance of hairpin-like structures in the strongly stratified case S_1,
manually probed structures from subsection 3.1.5 are tracked in time with MLPT thresholds
for both stably stratified cases (S_1, S_2) and the neutrally stratified case (N). Only the
primary branches are tracked and the results are reported in the second half of chapter 4. It
can be seen from figure 4.14(a) that the average lifetime of the primary branch is relatively
higher for the stably stratified cases than the neutrally stratified case. Figure 4.14(b) clearly
suggests that the number of interactions (split or merge events) experienced by the hairpin-like
structure over a period of 10 viscous time units increases with an increase in the strength of
stratification. Case S_1 experiences nearly three times the number of interactions than the
case N, 67% of which are merge events. The number of split events are also three times higher
than that of case N and an explanation of this may involve the autogeneration mechanism (see
figure 4.13 and section 3.4 for an explanation) where new hairpin-like structures are generated
from the legs of a primary hairpin that later splits off and continues as a separate entity. The
high number of splits may lead to a higher autogeneration rate which is suggested to be the
likely cause of the abundance of hairpin-like structures seen in the strongly stratified case
S_1. However, it is currently not known if an older primary hairpin is capable of continuously
autogenerating new secondary hairpins that split away as it is being advected downstream
and away from the wall.
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Chapter 5 attempts to provide an explanation of the similar orientation of hairpin-like
structures observed in figure 3.14(a) for the strongly stratified case S_1. Due to the limitations
of the tracking technique (see the introduction of chapter 5), a somewhat fundamental approach
was adopted where hairpin-like structures were treated as slender vortex filaments where the
diameter d of the vortex core is much smaller than its characteristic radius of curvature R.

Studying the temporal evolution of the hairpin filament in a stagnant background flow
with the local induction approximation (LIA) and the corrected thin-tube model of Klein-Knio
with the M1 optimization technique (M1 KK) revealed that both methods correctly capture
the corkscrew spiral shape as shown in the work of Hon and Walker (1991). However, when
the initial width of the filament is reduced, LIA effectively maintains the spiral pattern while
the appearance of this pattern is delayed for the M1 KK technique and is accompanied by
outwards stretching of the filament. This is of prime importance since it indicates that the M1
KK method represents the nonlocal effects of self-stretching of the filament accurately.

Finally, with the M1 KK method, the temporal evolution of hairpin filaments with the mean
background flow were studied for both stably stratified (S_1, S_2) cases and the neutrally
stratified case (N). The filament was initialized as a small, nearly two-dimensional perturbation
at a wall-normal height y+

initial = 50 with an inclination angle θi = 0.1. Four initial conditions
(see table 5.6) with varying δ and Γ were tested initially. For initial condition R3, with small δ

and large Γ, the inclination rate is similar for all background flow profiles and the maximum
inclination angle reached θi,max = 50◦ regardless of the strength of stratification. This is a
result of a large self-induced velocity. For other initial conditions, where the self-induced
velocity is weaker, θi,max reduces with an increase in the strength of stratification. Repeating
the simulation at other heights further shows that θi,max reaches shallower angles with decrease
in initial height. The effect of rotation in the Ekman flow has an impact on the spanwise
dynamics of the filament. It can be seen from figure 5.19 that the initially symmetric filament
becomes asymmetric over time, thereby tilting the vortex in one direction. This degree of tilt
increases with an increase in the strength of stratification. Furthermore, the hairpin filament
experiences strong advection in the spanwise direction. From figure 5.23, it can be observed
that the orientation of the filament changes with increasing height for the stably stratified cases
S_1 and S_2. This suggests that hairpins initialized at the same height may have a similar
orientation under stable stratification and presents a link between the spanwise orientation of
the filament and its initial starting height.

In summary, this thesis finds that despite the effect of global intermittency extending
throughout the entire vertical column of the flow including the viscous sublayer, what changes
is the spatial organization of coherent structures, particularly that of hairpin-like vortex
structures which display an increased abundance and specific orientation characteristics with
increasing stability, rather than the geometry of coherent structures which remains mostly
unchanged even at strong stability.

6.3 Computing facilities

The computational requirements to analyze the Ekman flow dataset far exceed the resources
offered by a traditional desktop or laptop. Initial algorithms were developed and tested on a
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Institute Server name Storage used
(approx.)

Freie Universität Berlin Department internal storage 2 TB
Zuse Institute Berlin multiscal storage 2.5 TB
Jülich Supercomputing Centre JUDAC storage, project dns2share & hku24 120 TB

Table 6.1: List of storage facilities used for this work.

fast desktop machine. Testing was done one on smaller subsets of the channel flow dataset from
the John Hopkins Turbulence Database (Graham et al., 2016). The raw and post-processed
data were stored at multiple computing facilities as indicated in table 6.1.

6.4 Future perspectives

Minor improvements to the methods developed during the course of this work and improvements
to existing techniques (such as addition of viscous diffusion to the simulation of slender vortex
filaments) have already been suggested in the conclusion section of other chapters. Here, the
focus is placed upon the next stage of research.

Inclination angles of energy carrying structures: By analyzing data from field experiments of
the ABL, Carper and Porté-Agel (2004) found silhouettes of inclined vortical features with
opposite rotations (resembling hairpin-like structures) in conditionally averaged fields of velocity,
vorticity and temperature for strong positive (forward-scatter) and negative (backscatter)
subfilter-scale dissipation of energy. Recently, in the poster of Harikrishnan et al. (2022), the
authors used the energy budget for weak solutions of incompressible Navier-Stokes equations
(see Duchon and Robert (2000)) to study the local (in scale, space and time) energy transfers
and dissipation for the strongly stratified case S_1. Close to the Kolmogorov scale, they linked
large values of energy transfer and dissipation with hairpin-like structures (educed through
the Q-criterion).

Carper and Porté-Agel (2004) further noted that the inclination angles (θi) of these
structures were a function of atmospheric stability with near-neutral conditions having an
inclination of 16◦ which increases to around 24◦ − 34◦ under unstable conditions. Various θi

under the neutral regime for numerous Reynolds numbers have been summarized in table 1 of
Liu et al. (2017). In our case, the mean θi calculated from the manually identified hairpin-like
structures which start within the buffer layer from subsection 3.1.5 was 19.7◦ for case N
and 19.2◦ − 21◦ for the stably stratified cases. For hairpin filaments initialized at y+ = 30,
θi,max = 21.1◦, 17.2◦, 14.2◦ for cases N, S_2, S_1, which clearly decreases with increasing
stability. Although similar trends were reported for y+

initial = 15, 50, it was also found that
θi,max is a strong function of the location of the initial structure and θi,max increases with
increasing height. Structure inclination angle is a necessary parameter in the model of Marusic
et al. (2010) where near-wall turbulence is predicted with large-scale information from the
outer layer. They suggested that VLSMs or superstructures which exist in the logarithmic
layer of turbulent boundary layers have a direct impact on near-wall turbulence. In particular,
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they noted that within a large low-speed event, the small-scale fluctuations are attenuated
whereas within a high-speed event, they are amplified. With this “amplitude modulation”
effect linking the VLSMs and the near-wall fluctuations, they suggest a model of the form,

u+
P = u∗(1 + βu+

OL) + αu+
OL (6.1)

where u+
P is the signal predicted at a particular wall-normal height y+, u+

OL corresponds to
the fluctuating large-scale signal at the center of the classical log layer which corresponds
to y+ = 3.9(Reτ )(1/2), u∗ is the statistically universal signal at y+ and α, β are coefficients
corresponding to superimposition and modulation. The only user-input is u+

OL, which is
low-pass filtered retaining streamwise wavelengths λ+

x > 7000. As noted by Marusic et al.
(2010), since this signal is equated to one close to the wall, it is shifted in the streamwise
direction (∆x) to account for the structure inclination angle θi. The streamwise shift ∆x can be
calculated from the mean inclination angles of hairpin-like structures with θi = arctan(∆y/∆x).
This type of predictive model can be used as a “wall model” for large eddy simulation (LES)
as shown in the work of Inoue et al. (2012).

Similarly, as suggested in the work of Chauhan et al. (2013), the streamwise shift ∆x can
also be used to accurately estimate the surface shear stress, thereby improving wall models of
large eddy simulation (LES). For instance, the shifted Schumann-Grötzbach model (Piomelli
et al., 1989) is written as,

τi2(x, z, t) = ⟨τ⟩
⟨˜︁u(y)⟩

˜︁ui(x + ∆x, y, z, t), (i = 1, 3) (6.2)

where ∆x is the streamwise shift, ⟨·⟩ indicates averaging over horizontal planes, ˜︂(·) indicates
spatial filtering, ⟨τ⟩ is the mean shear stress, ⟨˜︁u(y)⟩ is the mean horizontal velocity at a
wall-normal position y and ˜︁ui(x + ∆x, y, z, t) is the instantaneous filtered velocity obtained at
a shifted streamwise location based on the inclination angle of vortical features. The idea of
using streamwise shift ∆x stems from the observation that the inclined hairpin-structures are
associated with large values of energy transfer and essential for forward-scatter and backscatter
subfilter-scale dissipation of energy in LES, as elucidated in the beginning of this section. This
should prove useful for stable boundary layers, particularly under strong stratification, where
the turbulent regions are primarily composed of hairpin-like structures.

Morphology of turbulence under stable conditions: Results of the geometrical characterization
from chapter 3 and the temporal evolution of the geometry of Robinson structures from chapter
4 suggest that the geometry of coherent structures are not affected much with increase in
stability. This means that the factorized parametrization suggested by Ansorge and Mellado
(2016) where the intermittency factor γ, expressed as a function of the Obukhov length, can
be used along with the standard approach for modelling the weakly stable boundary layer.
However, it should be noted that all the results presented here are for a simplified configuration
of the atmospheric boundary layer without the influence of surface heterogeneities. In a
recent review paper focusing on heterogeneity over mostly flat, non-mountainous terrain,
Bou-Zeid et al. (2020) identified four different classes of heterogeneity (semi-infinite interfaces,
statistically-homogeneous patches, large individual patches and unstructured heterogeneity)
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and pointed out that even after five decades of careful research, numerous open questions
remain, thus highlighting the complexity of the physical processes brought about by surface
heterogeneity. This does not even include the small-scale variability arising due to buildings
and trees which make up the “roughness sublayer” or hilly terrains. It has been shown
that even weak topography and local obstacles, i.e., buildings and trees can induce local
circulations on multiple scales (Acevedo and Fitzjarrald, 2003; Mahrt, 2014) which may alter
the spatio-temporal distribution of global intermittency. With direct numerical simulations,
Coceal et al., 2007 studied the impact of three-dimensional roughness on coherent structures
by using a regular array of cubes spread over the surface. While they suggest that there are
some qualitative similarities with structures from smooth walls, they note differences in the
flow structure close to the roughness elements and relatively larger vortices in the rough case.
In a later part of the paper, they examine the feasibility of the hairpin vortex packet model of
Adrian et al. (2000) and conclude that the hairpin structures are substantially larger and more
inclined than the smooth wall case. They also suggest that not all low momentum regions, i.e.,
low-speed streaks can be associated with hairpin structures, thus hinting a complex mechanism
for the generation of hairpin structures. The hairpin packet model was discussed for the ABL
with smooth wall in section 3.4 and future studies can extend the discussion for rough walls.
Such studies may lead to a universal hairpin packet model documenting the complete lifecycle
of hairpin structures for various situations and the mechanisms involved.

Further complex studies can also involve marginal ice zones (regions of mixed ice and open
water surfaces), which are critical for climate models (Fogarty and Bou-Zeid, 2023) or urban
canopies involving bluff buildings and permeable trees (Wang et al., 2014). One could also
consider a study similar to Huang et al. (2009b) who vary the leaf area index, going from
extremely sparse canopy (boundary-layer-like flow) to extremely dense canopy (mixing-layer-like
flow). All of the above suggest that more comprehensive studies are necessary before it can be
conclusively stated that the geometry of structures do not change much with increasing stability.

A multi-scale approach: The geometrical characterization framework described in chapter 2
can be easily extended for multi-scale analysis similar to that of Bermejo-Moreno and Pullin
(2008). In this scenario, a multi-scale decomposition based on, for instance, shearlets (Labate
et al., 2005), can be applied on the scalar field of interest to obtain a finite set of component
three-dimensional fields, each corresponding to a single scale. The rest of the procedure may
remain similar to chapter 2, where each component field is subjected to percolation analysis to
determine the optimum threshold, after which the geometrical characterization method (from
subsection 2.4) can be applied. This may help clarify if the continuous blob-like to sheet-like
transition with decreasing scale seen in isotropic turbulence (Moisy and Jiménez, 2004;
Bermejo-Moreno and Pullin, 2008; Leung et al., 2012) can also be observed in wall-bounded
flows with rotation and stratification. Bermejo-Moreno and Pullin (2008) linked the change in
geometry to the transition seen in volume-data pdfs of the passive scalar fluctuation where
the pdfs are Gaussian at larger scales and exponential at smaller scales. Such an analysis may
enable the usage of simulation techniques other than LES or DNS such as coherent vortex
simulation (Farge et al., 1999; Farge and Schneider, 2001) where a wavelet filter is used to
decompose the flow into coherent and incoherent parts and the temporal evolution of the
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former is computed while the latter is assumed to be Gaussian and modelled.
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A
Grouping indices for marching cubes correction

Case Indices Case Indices Case Indices Case Indices Case Indices
0 - 52 [2], [4, 5] 104 [3], [5, 6] 156 - 208 -
1 - 53 [2], [0, 4, 5] 105 [0, 3], [5, 6] 157 - 209 -
2 - 54 - 106 [3], [1, 5, 6] 158 - 210 [1], [4, 6, 7]
3 - 55 - 107 - 159 - 211 -
4 - 56 [3], [4, 5] 108 - 160 [5], [7] 212 -
5 [0], [2] 57 - 109 - 161 [0], [5], [7] 213 -
6 - 58 [3], [1, 4, 5] 110 - 162 [1, 5], [7] 214 -
7 - 59 - 111 - 163 [0, 1, 5], [7] 215 [3], [5]
8 - 60 [2, 3], [4, 5] 112 - 164 [2], [5], [7] 216 -
9 - 61 - 113 - 165 [0], [2], [5], [7] 217 -
10 [1], [3] 62 - 114 - 166 [1, 2, 5], [7] 218 [1], [3, 4, 6, 7]
11 - 63 - 115 - 167 [0, 1, 2, 5], [7] 219 -
12 - 64 - 116 - 168 [3, 7], [5] 220 -
13 - 65 [0], [6] 117 - 169 [0, 3, 7], [5] 221 -
14 - 66 [1], [6] 118 - 170 [1, 5], [3, 7] 222 -
15 - 67 [0, 1], [6] 119 - 171 - 223 -
16 - 68 - 120 [3], [4, 5, 6] 172 [2, 3, 7], [5] 224 -
17 - 69 [0], [2, 6] 121 - 173 [0, 2, 3, 7], [5] 225 [0], [5, 6, 7]
18 [1], [4] 70 - 122 [3], [1, 4, 5, 6] 174 - 226 -
19 - 71 - 123 - 175 - 227 -
20 [2], [4] 72 [3], [6] 124 - 176 - 228 -
21 [0, 4], [2] 73 [0, 3], [6] 125 [1], [7] 177 - 229 [0], [2, 5, 6, 7]
22 [1, 2], [4] 74 [1], [3], [6] 126 - 178 - 230 -
23 - 75 [0, 1, 3], [6] 127 - 179 - 231 -
24 [3], [4] 76 - 128 - 180 [2], [4, 5, 7] 232 -
25 - 77 - 129 [0], [7] 181 [2], [0, 4, 5, 7] 233 -
26 [1], [3], [4] 78 - 130 [1], [7] 182 - 234 -
27 - 79 - 131 [0, 1], [7] 183 - 235 [2], [4]
28 [2, 3], [4] 80 [4], [6] 132 [2], [7] 184 - 236 -
29 - 81 [0, 4], [6] 133 [0], [2], [7] 185 - 237 -
30 [1, 2, 3], [4] 82 [1], [4], [6] 134 [1, 2], [7] 186 - 238 -
31 - 83 [0, 1, 4], [6] 135 [0, 1, 2], [7] 187 - 239 -
32 - 84 [4], [2, 6] 136 - 188 - 240 -
33 [0], [5] 85 [0, 4], [2, 6] 137 - 189 - 241 -
34 - 86 [1, 2, 6], [4] 138 [1], [3, 7] 190 [0], [6] 242 -
35 - 87 - 139 - 191 - 243 -
36 [2], [5] 88 [3], [4], [6] 140 - 192 - 244 -
37 [0], [2], [5] 89 [0, 3, 4], [6] 141 - 193 [0], [6, 7] 245 -
38 - 90 [1], [3], [4], [6] 142 - 194 [1], [6, 7] 246 -
39 - 91 [0, 1, 3, 4], [6] 143 - 195 [0, 1], [6, 7] 247 -
40 [3], [5] 92 [2, 3, 6], [4] 144 - 196 - 248 -
41 [0, 3], [5] 93 - 145 - 197 [0], [2, 6, 7] 249 -
42 [1, 5], [3] 94 [1, 2, 3, 6], [4] 146 [1], [4, 7] 198 - 250 -
43 - 95 - 147 - 199 - 251 -
44 [2, 3], [5] 96 - 148 [2], [4, 7] 200 - 252 -
45 [0, 2, 3], [5] 97 [0], [5, 6] 149 [2], [0, 4, 7] 201 - 253 -
46 - 98 - 150 [1, 2], [4, 7] 202 [1], [3, 6, 7] 254 -
47 - 99 - 151 - 203 - 255 -
48 - 100 - 152 - 204 -
49 - 101 [0], [2, 5, 6] 153 - 205 -
50 - 102 - 154 [1], [3, 4, 7] 206 -
51 - 103 - 155 - 207 -

Figure A.1: Grouped indices for every case in the marching cubes algorithm.
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B
Surface curvature

B.1 Regular surfaces and fundamental forms

A definition of a regular surface in R3 is introduced following Do Carmo (2016),

DEFINITION 1 Let M ⊂ R3 be a regular surface if, for each point p ∈ M , there exists a
neighborhood V ∈ R3 and a map x : U → V ∩ M of an open set U ⊂ R2 onto V ∩ M such that,

(i) x is differentiable i.e., if

x(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ U (B.1)

the functions x(u, v), y(u, v), z(u, v), have continuous partial derivatives.
(ii) x is a homeomorphism i.e., the inverse x−1 : V ∩ M → U is continuous since x is

continuous by condition (i).
(iii) each map x : U → M is a regular patch for which its Jacobian J(x)(u, v) has rank 2

∀(u, v) ∈ U .

With the parametrization of a regular surface shown above, the first fundamental form is
defined so that measurements on the surface such as arc length, area and angles of tangent
vectors can be made. The first fundamental form, denoted by I, is the inner product of tangent
vectors, i.e.,

I(kp, lp) = ⟨kp, lp⟩ (B.2)

where ⟨·, ·⟩ denotes the inner product of kp, lp which are points belonging to the tangent space
M at p, denoted by TpM . If the tangent plane of the regular surface is defined by the tangent
vectors {xu, xv}1, then the first fundamental form satisfies,

I(axu + bxv, axu + bxv) = a2E + 2abF + b2G (B.3)

The coefficients of (B.3) are given by,

E = ||xu||2, (B.4)

F = xu.xv, (B.5)

G = ||xv||2, (B.6)
1xu, xv are partial derivatives of x w.r.t. (u, v) and are defined as xu =

(︁
∂x
∂u

, ∂y
∂u

, ∂z
∂u

)︁
, xv =

(︁
∂x
∂v

, ∂y
∂v

, ∂z
∂v

)︁
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B. Surface curvature

To define the curvature of a surface, the second fundamental form on the regular surface M at
a point p is defined as the symmetric bilinear form2 on the tangent space,

II(kp, lp) = S(kp).lp (B.7)

Here, S is the shape operator or the Weingarten map which is defined as,

S(m) = −DmN (B.8)

where N is the unit normal of the regular surface M and −Dm is the negative derivative along
m. Therefore, DmN signifies the variation of the tangent planes of M in the m direction which
shows how M is curving in R3. (B.7) satisfies,

II(axu + bxv, axu + bxv) = a2L + 2abM + b2N (B.9)

The coefficients of (B.9) are,

L = N.xuu, (B.10)

M = N.xuv = N.xvu, (B.11)

N = N.xvv (B.12)

These coefficients can also be expressed in terms of E, F, G as follows,

L = det(xuu, xu, xv)√
EG − F 2

, (B.13)

M = det(xuv, xu, xv)√
EG − F 2

= det(xvu, xu, xv)√
EG − F 2

, (B.14)

N = det(xvv, xu, xv)√
EG − F 2

(B.15)

B.2 Principal, Gaussian and mean curvatures

The normal curvature, denoted by k of a regular surface M is defined in terms of the shape
operator as,

k(tp) = S(tp).tp (B.16)

where tp is a unit tangent vector at a point p ∈ M . For any non-zero tangent vector vp, (B.16)
becomes,

k(vp) = S(vp).vp

||vp||2
= II(vp, vp)

I(vp, vp) = a2L + 2abM + b2N

a2E + 2abF + b2G
(B.17)

2The symmetric bilinear form is a bilinear function Q : V × V → R which maps a pair of elements (u, v)
from a vector space V such that Q(u, v) = Q(v, u) ∀u, v ∈ V .
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B.2 Principal, Gaussian and mean curvatures

k1 < 0 k1 = 0 k1 > 0
k2 < 0 peak ridge saddle
k2 = 0 ridge flat valley
k2 > 0 saddle valley pit

Table B.1: Surface shapes with the signs of principal curvatures k1 and k2. Table is extracted
from figure 3.4(a) of Besl (2012).

The maximum and minimum values of k are called the principal curvatures and are denoted
as k1 and k2 respectively. They are formally defined as the eigenvalues of the shape operator
S(p). A possible method of distinguishing surface shapes with the signs of principal curvatures
alone is discussed by Besl (2012) which results in six basic shapes which are peak, ridge, saddle,
flat, valley and pit (see table B.1).

The Gaussian curvature of a regular surface at point p can be defined with the shape
operator as,

K(p) = det(S(p)) (B.18)

In terms of the first and second fundamental forms, it can be written as,

K = det(II)
det(I) = LN − M2

EG − F 2 (B.19)

or equivalently with principal curvatures,

K = k1k2 (B.20)

A point p is classified as elliptic or hyperbolic if K(p) > 0 or K(p) < 0 respectively.
Similarly, when K(p) = 0 but S(p) ̸= 0, the point is said to be parabolic and when K(p) = 0
but S(p) = 0, the point is said to be planar. If K > 0 everywhere on the surface, the surface
is called synclastic. An anticlastic surface ensues when K < 0 everywhere on the surface.

The mean curvature of a regular surface at point p is formally defined with the shape
operator as,

H(p) = 1
2tr(S(p)) (B.21)

In terms of the first and second fundamental forms, it can be written as,

H = 1
2

LG − 2MF + NE

EG − F 2 (B.22)

or equivalently with principal curvatures,

H = k1 + k2
2 (B.23)

Using (B.20) and (B.23), the principal curvatures can be written in terms of the Gaussian and
mean curvatures as,
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B. Surface curvature

K < 0 K = 0 K > 0
H < 0 peak ridge saddle ridge
H = 0 (none) flat minimal
H > 0 pit valley saddle valley

Table B.2: Surface shapes with the signs of Gaussian K and mean curvature H. Table is extracted
from figure 3.4(b) of Besl (2012).

k1 = H +
√︁

H2 − K, k2 = H −
√︁

H2 − K (B.24)

An important property of Gaussian curvature is that it is invariant under local isometry
i.e., it is an intrinsic property of the surface depending only on its first fundamental form and
not on the embedding of the surface in a higher dimensional space. This result was shown in
Gauss’ Theorema Egregium. On the other hand, the mean curvature is an extrinsic property
of the surface and depends upon its embedding. For instance, the surface of a sheet of paper
on a flat table has K = 0 and H = 0. Bending the paper without kinks will result in H ̸= 0
but K = 0 as the intrinsic properties of the surface remain unchanged. However, if the paper
were to deform (like rubber) while bending then K would also change. Similar to using the
signs of principal curvatures, Besl (2012) suggests another method to determine surface shapes
with the signs of H and K (see table B.2). This results in eight basic shapes being identified
with saddle surfaces split into saddle ridges, saddle valleys and minimal surfaces. The shapes
of all eight surfaces can be seen in figure 3.5 of Besl (2012).

B.3 Shape index and curvedness

Koenderink and Van Doorn (1992) introduced two measures of local surface shape, namely
the shape index Υ and curvedness Λ which are defined as,

Υ = − 2
π

arctan
(︃

κ1 + κ2
κ1 − κ2

)︃
, Λ =

√︄
κ2

1 + κ2
2

2 (B.25)

and in terms of K and H, they can be expressed as,

Υ = − 2
π

arctan
(︃

H√
H2 − K

)︃
, Λ =

√︁
2H2 − K (B.26)

The shape index is a dimensionless parameter in the range [−1, 1]. At the extreme ends where
Υ = ±1, the surface represents spherical shapes such as a cup (Υ = −1) or cap (Υ = 1). Minor
variations from spherical shapes pushes the value of Υ towards cylindrical shapes (Υ = ±0.5),
thereby making Υ = ±1 to be the endpoints of the shape scale. In the range, 0.5 < |Υ| < 1,
the shape is ellipsoidal becoming more sphere-like when |Υ| → 1 and more cylinder-like when
|Υ| → 0.5. For −0.5 < Υ < 0.5, the shapes are saddle-like with a symmetrical saddle at
Υ = 0. The shape index scale provides a continuous gradation from concave shapes (Υ < 0) to
symmetrical saddle (Υ = 0) to convex shapes (Υ > 0). Koenderink and Van Doorn (1992)
divide it into nine categories as illustrated in figure 5 of their paper.
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B.3 Shape index and curvedness

The curvedness parameter which measures the intensity of surface curvature has a dimension
of reciprocal length. For a unit sphere and unit saddle, the curvedness is unity. Unlike Gaussian
curvature which vanishes for cylindrical shapes, the curvedness of a unit cylinder is 1/

√
2 and

curvedness becomes null for a planar patch, for which k1 = k2 = 0. As noted by Koenderink
and Van Doorn (1992), while the information present within the shape index and curvedness
parameters are formally equivalent to either the two principal curvatures or Gaussian and
mean curvatures, the main advantage is the decoupling of size and shape of a surface i.e., the
shape index alone can specify the shape with a single number while curvedness specifies the
size.
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C
Geometry of structures for case S_2 and S_3

C.1 Viscous sublayer
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Figure C.1: Isosurfaces of u′ < 0 (low-speed streak) and u′ > 0 (high-speed streak) are shown
for case (a) S_2 and (b) S_3 in the viscous sublayer with grid C. The color specification for the
structures is according to table 2.1 for the low-and high-speed streak. The longest structure for
the former is highlighted with light green and the longest structure for the latter is highlighted in
pale yellow.
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Figure C.2: Contour plots for case S_2 are shown with (a) ejections and low-speed streaks, (b)
sweeps and low-speed streaks at y+ ≈ 3.58 with grid C. The color specification is according to
table 2.1.
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C. Geometry of structures for case S_2 and S_3
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Figure C.3: Contour plots for case S_3 are shown with (a) ejections and low-speed streaks, (b)
sweeps and low-speed streaks at y+ ≈ 3.58 with grid C. The color specification is according to
table 2.1.
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Figure C.4: Three pocket regions are highlighted with diverging streamlines for (a) case S_2 and
(b) case S_3 at y+ ≈ 3.58. Overlayed are sweeps and ejections. Color specification for sweeps and
ejections is according to table 2.1.
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C.2 Buffer layer
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C. Geometry of structures for case S_2 and S_3
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Figure C.5: Similar to figure 3.6, visualization space for all quantitative Robinson structures
except backs are shown with joint pdfs. From (a - f) are the high-speed streaks, low-speed streaks,
sweeps, ejections, vortices and shear layers. The geometry of structures is compared between case
S_3 (unfilled contours with dashed lines) and case S_2 (filled cotours). The number of structures
for each contour level is indicated in black for case S_3 and dark blue for case S_2. Numbers
within paranthesis (a - d) are those which start from the viscous sublayer and end in the buffer
layer. Numbers outside paranthesis are those which start and end within the buffer layer itself.
Ŝ, Ĉ, λ are the shape index, curvedness and stretching parameters respectively.
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C.3 Inner and outer layer

C.3 Inner and outer layer
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Ĉ

(c)

01

1

λ

Ĉ
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C. Geometry of structures for case S_2 and S_3
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Figure C.6: Similar to figure 3.10, visualization space for all quantitative Robinson structures
except backs are shown with joint pdfs. From (a - f) are the high-speed streaks, low-speed streaks,
sweeps, ejections, vortices and shear layers. The geometry of structures is compared between case
S_3 (unfilled contours with dashed lines) and case S_2 (filled cotours). The number of structures
for each contour level is indicated in black for case S_3 and dark blue for case S_2. Numbers
within paranthesis (a - d) are those which start from the viscous sublayer and end in the outer
layer. Numbers outside paranthesis are those which start beyond the buffer layer and end within
the outer layer. Ŝ, Ĉ, λ are the shape index, curvedness and stretching parameters respectively.
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C.4 δ−scale structures

C.4 δ−scale structures
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Figure C.7: Visualization space for backs is shown for case S_3 with unfilled contours and S_2
with filled contours. The number of structures between contours are indicated in dark blue for case
S_2 and black for case S_3. Ŝ, Ĉ, λ are the shape index, curvedness and stretching parameters
respectively.
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Figure C.8: Vorticity magnitude contours along the (x, y) plane are shown here for case (a)
S_2 and (b) S_3 for grid A until y+ ≈ 1550. For each case, a δ−scale bulge is highlighted. The
wall-normal direction is exaggerated three times to show the structures clearly.
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C. Geometry of structures for case S_2 and S_3

C.5 Hairpin-like structures
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Figure C.9: Geometry of 100 hairpin-like structures are compared in the visualization space for
case S_2 (filled contours) and S_3 (unfilled contours). Ŝ, Ĉ, λ are the shape index, curvedness
and stretching parameters respectively.
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D
Supporting results for chapter 4
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Figure D.1: Top panel shows the isosurfaces of a tracked high-speed streak at different viscous
times for the case S_2. The temporal evolution of the geometry of this streak is shown in the
bottom panel. P, Q, R correspond to viscous times t+ = 0, 1.78, 6.98 respectively.
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Figure D.2: The final time instant for all tracked vortex structures are shown for stably stratified
(S_1, S_2) and neutrally stratified (N) cases. The size of the markers represents (in logarithmic
scale) the volume of the structure.
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E
Data and code availability

All Ekman flow datasets analyzed in this thesis can be requested from Dr. Cedrick Ansorge.
A subset of it, pertaining to Chapter 3, is available at the Mathematics institute of the Freie
Universität Berlin. It contains 5 uncorrelated instantaneous snapshots for all flow cases (N,
S_1, S_2 and S_3) and is stored at /bigdata/ag_klima/. Please contact the Mathematics
institute or Prof. Rupert Klein for further details. The mean velocity profiles for all Ekman
flow cases have been made available as a part of the slender vortex filament code and can be
accessed at https://github.com/Phoenixfire1081/SlenderVortexSimulation/.

A major effort has been made to make the codes as fast and efficient as possible
to analyze these large datasets. Most of the codes used this thesis are available at
https://github.com/Phoenixfire1081. Some python codes can be installed with the pip package
manager. An ongoing effort is being directed towards making all programs pip installable.
Detailed instructions on usage of these programs have been provided.

It should be noted that the geometry calculations, particularly Shape Index and Curvedness
have been carried out with the visualization software Amira, which was available as a part of
our collaboration with the Zuse Institute Berlin. The codes for tracking of coherent structures
including MLPT, performed in chapter 4, were also made to work with Amira. These codes
have not been made available online but can be requested from the author. Most visualizations
in this thesis were also produced with this software.
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