
Vol.: (0123456789)
1 3

Environ Monit Assess         (2024) 196:456  
https://doi.org/10.1007/s10661-024-12613-2

RESEARCH

Ecotoxicological evaluation of surface waters in Northern 
Namibia

L Faulstich   · S Wollenweber · 
Ch Reinhardt‑Imjela   · R Arendt   · A Schulte · 
H Hollert   · S Schiwy 

Received: 17 September 2023 / Accepted: 4 April 2024 
© The Author(s) 2024

system showing the highest acute toxicity. At the cel-
lular level, only weak effects were identified, although 
these were stronger in the Iishana system than in the 
two perennial systems. Algae growth was not inhib-
ited, and no cytotoxic effects could be detected in any 
of the samples. Mutagenic effects and an estrogenic 
potential were detected at three sites in the Iishana 
system. These findings are critical in water resource 
management as the effects can adversely impact 
the health of aquatic ecosystems and the organisms 
within them.
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Introduction

Freshwater ecosystems provide important ecosystem 
services and are biodiversity hot spots (Balian et al., 
2008; Stendera et  al., 2012). Anthropogenic stress-
ors, such as nutrient enrichments, the discharge of 
toxic metals (Leal et al., 2016), or organic substances 
(Christensen et al., 2022), put increasingly high pres-
sure on ecosystems (Jansen et al., 2011). Due to the 
pollution of surface waters, rivers, and lakes are 
threatened to lose their biodiversity and are in dan-
ger of no longer being able to provide their ecosystem 
services (Malaj et al., 2014; Vörösmarty et al., 2010). 
In addition to chemical analysis of water, bioassays 
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are an essential component of water assessment (Di 
Paolo et al., 2016; Keddy et al., 1995; Methneni et al., 
2021) as effect-based bioassays map the effects of 
the complex sample regardless of the concentration. 
The harmful concentrations of substances in different 
organisms (bacteria, green algae, small crustaceans, 
and fish) are studied to determine aquatic toxicity 
(Chapman, 2002; Neale et  al., 2017). Several stud-
ies investigate aquatic systems for ecotoxicologi-
cal effects (Aragaw & Mekonnen, 2021; Ford et  al., 
2021; Grund et al., 2011; Hollert et al., 2005; Krein 
et  al., 2012). Most of the studies analyzed aquatic 
systems of rivers, where active point sources can be 
identified (Keiter et al., 2006; Pawlowski et al., 2004; 
Wolf et al., 2022). In addition, it is known that pollut-
ants can induce cytotoxic, endocrine, and mutagenic 
effects in aquatic systems (Shuliakevich et al., 2022a; 
Wolf et al., 2022).

In southern Africa, the seasonal precipitation and 
high evaporation cause a challenging water supply. 
However, there is still a huge research gap on the state 
of freshwater ecosystems, although they are ecologi-
cally important and diverse (Schoenfuss et al., 2022). 
The region in southern Angola and central-northern 
Namibia has an increased incident human water secu-
rity threat (Vörösmarty et al., 2010). In central-north-
ern Namibia, the landscape is characterized by the 
Cuvelai-Etosha Basin (CEB), and the Kunene River 
and Kavango River basins. These three basins are 
very important for the local water supply but have not 
been well investigated concerning the potential eco-
toxicity of freshwater systems, there are hardly any 
data on environmental pollution. It is necessary to 
analyze the current state of the freshwater systems to 
take appropriate protection or renaturation measures. 
The intensively used surface waters of these three 
basins are exposed to many influencing factors, such 
as water withdrawal for use as potable water, irriga-
tion water, or drinking water for livestock, input of 
agricultural runoff, and surface runoff from farmland.

In southern Africa, (eco)toxicological investiga-
tions have only been used since the 1990s (Wepener 
& Chapman, 2012). Potential toxic effects on selected 
organisms were studied for drinking water (Grabow 
et  al., 1991) or to investigate the consequences of 
mining activities (Connell et  al., 1991). In Namibia, 
endocrine disruption compounds (EDCs) were inves-
tigated in water resources close to densely popu-
lated areas (Faul et al., 2013, 2014). However, to our 

current knowledge no studies on ecotoxicological 
investigations at the Kavango and the Kunene Rivers 
were conducted. The Kunene River is the subject of 
several studies concerning river ecology, water gov-
ernance, and water management (Hipondoka et  al., 
2018; Meissner & Jacobs, 2016; Schwieger, 2019; 
Schwieger, 2020). The Kavango River is investigated 
for discharge, precipitation variability, hydrobiology, 
and ecology (Bauer-Gottwein et  al., 2015; Benitez 
et al., 2022; Cronberg et al., 1995; Gaughan & Way-
len, 2012; Jury, 2009; Kgathi et  al., 2006). Gwenzi 
and Chaukura (2018) described a lack of ecotoxi-
cological studies in African aquatic systems and the 
resulting dangers of organic contaminants (OCs), 
estrogenicity, and acute toxicity. In particular, in Sub-
Saharan Africa, except South Africa, investigating 
OCs in potential drinking water is an important task 
that has not yet been solved satisfactorily. In general, 
ecotoxicological studies in ephemeral systems in arid 
and semi-arid regions are rare (Lahr, 1997). In previ-
ous studies, the water quality and microplastic pollu-
tion of the Iishana were investigated (Faulstich et al., 
2022  &  2023). The Iishana have high turbidity val-
ues, up to 1615.4 NTU, and elevated salt concentra-
tions, Na up to 429.0 mg/l and Cl up to 678.0 mg/l. 
Aluminum and iron were found in elevated concen-
trations (up to 19.3 mg/l Al and 3.9 mg/l Fe2+), par-
ticularly in suspended solids and sediments (Faulstich 
et al., 2023). With this composition, the water is not 
suitable as potable water and must first be treated. 
With appropriate treatment, the water quality for 
humans can be achieved, but no sustainable improve-
ment in the condition of the ecosystem is obtained. 
Parts of the local population are not able to consume 
treated water for financial reasons. They are, there-
fore, dependent on the water of the Iishana. Thus, 
the ecosystem of the Iishana must be considered to 
determine how its condition can be improved. Poor 
water quality due to pollutants can directly or indi-
rectly have harmful effects on these organisms and 
ultimately affect the entire aquatic ecosystem. Eco-
toxicological testing methods can be used to identify 
pollutants and investigate the extent to which they can 
be taken up and accumulated by organisms. In order 
to ensure the safe use of water bodies in the long term 
and to take appropriate treatment measures, their eco-
logical condition must be examined.

This is the first study that investigates the Iis-
hana ecosystem using chemical parameters and 
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ecotoxicological test methods. The water bodies of 
the Iishana represent an important water resource in 
the region and, therefore, need to be studied inten-
sively. Thus, this study first gives insight into the 
hazard potential of the surface waters of the Iishana, 
Kunene, and Kavango Rivers on organisms and the 
environment. The main question is if there are any 
acute toxic or mechanism-specific potential (cytotox-
icity, endocrine activity, mutagenicity or dioxin-like 
potential) in the surface waters of the three basins. 
After a single application on organisms, the acute 
toxicity with a toxic effect was measured on three 
trophic levels: algae, daphnia, and fish embryos. 
These assays were applied to gain knowledge of the 
ecotoxicological potential of the surface waters in 
northern Namibia. Without this data, a final assess-
ment of the waters is not possible. The data obtained 
in this study can help to identify sources of pollution 
and take appropriate measures to protect the three 
investigated ecosystems.

Methods

Study area

The Iishana system in central-northern Namibia is a 
complex hydrological system of drainless depressions 
and small channels (Iishana, singular Oshana). The 
Iishana have different sizes, with a depth of 1–7  m 
(Mendelsohn et  al., 2013). When there is enough 
rainfall, they connect to form a network of narrow 
drainage ways (Arendt et  al., 2021; Faulstich et  al., 
2022). The Iishana system is part of the Cuvelai-
Etosha Basin (CEB) that is neighbored by the Kunene 
basin in the west and the Kavango basin in the east 
(Mendelsohn et  al., 2013). While ephemeral rivers 
dominate the endorheic CEB, the Kunene and the 
Kavango basins are dominated by their namesake per-
ennial rivers that drainage into the Atlantic (Kunene 
River) and the Okavango Delta (Kavango River) 
(Meissner & Jacobs, 2016; Steudel et al., 2013). The 
Kunene River has its source in southwestern Angola, 
flows to the south, and forms the border between 
Angola and Namibia. With a discharge of 15  km3/
year and a difference in altitude of about 1700 m, it 
is suitable for hydroelectricity (Meissner & Jacobs, 
2016). The Kavango River originates in the Ango-
lan highlands, flows southwards, and terminates in 

the Okavango Delta (McCarthy & Ellery, 1998). In 
Namibia, the Cubango and Cuito rivers join, build a 
wetland strip, and form the Okavango River, which is 
also called the Kavango River. At the border between 
Angola and Namibia, the discharge is about 10 km3/
year (Steudel et al., 2013).

Due to the intensive dry (April to September) and 
rainy seasons (October to March), the water supply 
is challenging. In the last decade, rainfall was below 
average in the rainy seasons, resulting in the Iishana 
not carrying enough water to serve as a water source 
throughout the dry period (NOAA, 2021). Almost 
half of the Namibian population lives in the Namibian 
part of the CEB. Water resources are the freely acces-
sible Iishana and the Calueque-Oshakati canal as part 
of the public water supply that transports water from 
Calueque (Angola) to Oshakati (Namibia) (Shuuya & 
Hoko, 2014).

Sampling and extraction

The Iishana, the Kunene, and the Kavango River 
water samples were taken in 2019 (Fig. 1 shows the 
catchment areas, sampling locations, and sample 
numbers; Supplementary Data 1 includes detailed 
information of the sampling sites). At every site, 
several aluminum bottles (4 × 60  ml, 8 × 120  ml, 
and 1 × 600  ml; Bürkle, Germany) were three times 
pre-rinsed with Acetone (Acetone, HPLC Grade; 
CarlRoth, Germany) and filled with water samples. 
Samples were consistently refrigerated at 4  °C until 
analysis.

For sample preparation, the individual water 
samples (1.8  l each) were filtrated with suction 
through a 0.2-µm fiberglass filter (MN GF-2; Mach-
erey–Nagel, Germany). The samples were concen-
trated by solid phase extraction (SPE) to extract 
the per- and poly-fluoroalkyl substances. At first, 
the columns (CHROMABOND HLB; 60  µm, 
15  ml/500  mg; pore diameter 63  Å, particle size 
53  µm; Macherey–Nagel, Germany) were condi-
tioned with dichloromethane (Dichloromethane, 
ROTISOLV HPLC Grade; CarlRoth, Germany), 
methanol (Methanol, MeOH, HPLC Grade; Carl-
Roth, Germany), and ultrapure water. Then, the SPE 
columns were loaded with the samples under a vac-
uum (− 0.3 – − 0.4  bar). The columns were eluted 
with 6  ml MeOH and 6  ml DCM. As a solvent 
keeper, 50 µl dimethylsulfoxide (Dimethylsulfoxide, 
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DMSO, 99.8%; CarlRoth, Germany) was added. 
The samples were rotated to a minimum (40°C, 
slowly decreasing pressure) and transferred to 
amber glass vials. The vials were evaporated under 
nitrogen to exclude the remaining MeOH.

The resulting extract of 1 ml is 2000-fold concen-
trated. The water extracts included a realistic envi-
ronmental matrix of the water body and were fro-
zen for further bioassay testing. A process control 
(ProCo) of ultrapure water was treated and tested 
like a sample to control the purity of the extraction.

Bioassays

In Table  1, the key data of the applied bioassays 
with the information on endpoints, model organ-
isms, exposure time and vessels, medium quantities, 
and followed guidelines are shown.

Fish embryo toxicity test

The zebrafish used were originally from the strain of 
the Westaquarium (Bad Lauterberg, Germany) and 
were bred in the Department of Evolutionary Ecology 
and Environmental Toxicology, Goethe University 
Frankfurt am Main (Germany). The fish embryo acute 
toxicity test was applied as a limit test with fertilized 
eggs of the zebrafish (Danio rerio), based on the DIN 
guideline and the OECD guideline 236 (DIN EN ISO, 
2008; OECD, 2013a; Shuliakevich et al., 2022b). As 
described in Johann et  al. (2021), the experiments 
were terminated shortly before 120-h post-fertiliza-
tion (hpf). According to the Directive 2010/63/EU 
(European Union, 2010), testing zebrafish embryos 
and larvae before 120  hpf does not require animal 
ethics test approval. After testing, all embryos were 
euthanized with a benzocaine-ethanol solution (40 g/
ml in ethanol). All samples were tested in the highest 

Fig. 1   Catchment areas of the three systems with sampling sites and numbers
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concentration (Ref 2) of the water sample extracts of 
the Iishana and the perennial rivers. For each sample, 
ten fertilized eggs in stadium 8–16 cells (collected 2 h 
after spawning and washed with 0.1% methylene blue 
solution) were added within 22 ml medium (compo-
sition of the medium according to guideline, OECD, 
2013a, 2013b) and 22  µl sample extract. Eggs were 
transferred to 24 well plates, one egg in 2 ml per well, 
including plate control. One positive control (PC; 
3,4-dichloranilin, 4 mg/l), one negative control (NC; 
medium), and one solvent control (SC; DMSO) were 
included per replicate, with ten eggs per control. A 
total of three replicates were performed. The embryos 
were incubated at 26 °C in well plates with gas-per-
meable foil. They were evaluated every 24  h up to 
120 hpf for lethal and sublethal effects. According to 
the OECD guideline, a test was classified as valid if 

at least 30% of the PC showed lethal effects and not 
more than 10% of the NC (OECD, 2013a, 2013b). All 
data presented the validity criteria. The effects were 
defined according to the study of von Hellfeld et  al. 
(2020).

Acute immobilization test with Daphnia magna

The present study performed the daphnia-immobi-
lization test as a limit test according to the OECD 
guideline 202 (OECD, 2004). The Daphnia magna 
Straus were obtained from the Institute for Environ-
mental Research culture at the RWTH Aachen Uni-
versity (the original daphnids are from stock cultures 
at the University of Sheffield; Agatz et  al., 2012; 
Simon et al., 2015). At the start of the test, the neo-
nates (younger than 24  h) were sieved and added 

Table 1   Key data of the bioassays performed

* Starlab International GmbH, Germany

Bioassay Method title Endpoint Model organ-
ism

Exposure 
duration
[h]

Exposure ves-
sels

Medium per 
vessel [ml]

Guideline

FET test Fish embryo 
acute toxicity 
test

Fish embryo 
lethality and 
occurrence of 
morphologi-
cal sublethal 
endpoints

Danio rerio 120 24-well plates* 2 ISO 15088:2008 
(DIN EN ISO, 
2008)

OECD Test No. 
236 (OECD, 
2013a, 2013b)

Daphnia test Daphnia acute 
immobiliza-
tion test

Immobilization 
of daphnids

Daphnia 
magna

48 glass tubes 10 OECD Test No. 
202

(OECD, 2004)
Algae test Algal growth 

inhibition test
Growth inhibi-

tion
Raphidocelis 

subspicata 
(formerly: 
Pseudo-
kirchneriella 
subcapitata)

72 96-well plates* 2 OECD Test No. 
201

(OECD, 2011)

Ames assay Ames fluctua-
tion assay

Induction of 
reverse muta-
tions

Salmonella 
strains 
TA100 and 
TA98

48 24-/384-well 
plates*

0.5 (+ 2.5)/0.05 ISO 
11350:2012–
05 (DIN EN 
ISO, 2012), 
Reifferscheid 
et al., 2011

Micro-EROD 
assay

Micro-EROD 
bioassay

Cytochrome 
activities

Rat hepatoma 
cell line 
H4IIE

72 96-well plates* 0.1 Schiwy et al., 
2015a

YES assay Yeast estrogen 
screening 
assay

Estrogen recep-
tor binding 
activity

Recombinant
yeast cells

18–72 96-well plates* 0.2 ISO 19040–1: 
2018 (DIN EN 
ISO, 2018), 
Routledge & 
Sumpter, 1996
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directly to the test solution. The test medium was 
prepared according to the guideline (OECD, 2004). 
The experiments were performed in three replicates, 
with four glass tubes per sample. Five neonates were 
introduced per glass tube, with 10 µl sample extract in 
10 ml medium. The NC was the respective medium, 
and the SC was DMSO. The tubes were stored at 
20 ± 1 °C and a 16/8-h light/dark photoperiod. After 
24 and 48  h, the immobility was examined. Immo-
bilization was considered when individuals did not 
move after 15  s and gentle agitation. The validity 
criteria (pH value variation of < 1.5  units, dissolved 
oxygen > 3  mg/l, and < 10% of immobilized daphnia 
in the NC and SC) were fulfilled for all replicates and 
samples.

Algae growth inhibition test

The test was performed according to the OECD 
guideline 201 (OECD, 2011). The green algae (Chlo-
rophyta) Raphidocelis subspicata (formerly: Pseu-
dokirchneriella subcapitata) was originally obtained 
from the culture collection of algae (SAG Göttingen, 
Germany). The short-term algae culture was diluted 
1:10, and its density was measured (required cell den-
sity: 5000  cells/ml). The highest concentration was 
Ref 2 with a dilution series 1:6. As SC, 0.1 ml DMSO 
was prepared and as blank a sample without algae. 
The fluorescent density of the samples was meas-
ured with the multi-well plate reader (Tecan infinite 
M200; Tecan Group Ltd., Switzerland). All plates 
were closed with parafilm and incubated for 72  h. 
Every 24 h, the well plates were mixed for 1 min at 
150 rpm before the fluorescent density was measured. 
The pH value was measured every 24 h and should be 
8.1 ± 0.2. Further validity criteria regarding growth 
rate and mean coefficient of variation (OECD, 2011) 
were fulfilled for all experiments.

Ames fluctuation assay

The test was performed according to the DIN EN 
ISO guideline 11,350:2012–05 (DIN EN ISO, 2012) 
and the study of Reifferscheid et  al. (2011). The 
amino acid-dependent strains TA 98 and TA 100 of 
Salmonella typhimurium (Strains obtained from the 
Deutsche Forschungsgemeinschaft, DFG, Bonn, 
Germany) were tested with and without S9 (rat liver 

homogenate). The samples were tested in three inde-
pendent replicates.

Both bacterial strains were grown with sterile 
growth medium (9.4 g nutrient broth, 0.6 g NaCl in 
0.4 l H2O) and sterile ampicillin in an overnight cul-
ture (incubator at 12 °C until incubation period, 8.5 h, 
37  °C, 150  rpm). With 500  µl total volume, sample 
extracts and DMSO were diluted 1:50 in the medium. 
First, the bacteria were diluted according to their 
measured FAU (Formazine Attenuation Unit; TA 98: 
FAU 170, TA 100: FAU 45). The plates with bacte-
ria suspension, samples, S9-mix, PC, and NC were 
incubated for 100 min at 37° C while shaking. After 
incubation, 2.5  ml of reversion indicator medium 
was added. Then, transfer to the 384-well plates with 
50 µl/well each and 48 wells per concentration and 
control.

The highest concentration was Ref  40, and the 
lowest was Ref  1.75. Several evaluation approaches 
were combined to achieve the best results (Levy 
et  al., 2019). Revertant colonies were counted, and 
the induction factor (IF) was calculated by dividing 
the median result at each concentration by the median 
result with the corresponding negative control (Keiter 
et al., 2006; Kosmehl et al., 2004; Seitz et al., 2008). 
Additionally, the concentration-dependent induction 
factor (CDI) was calculated to rank the mutagenicity 
in environmental samples because it is independent of 
the tested concentrations (Shuliakevich et al., 2022a).

Micro‑EROD assay

The test was performed according to the developed 
protocol of Schiwy et al. (2015a). The cell suspension 
(prepared according to the protocol by Schiwy et al., 
2015a) was diluted to a cell density of 200,000 cells/
ml. Afterwards, 50  µl of the suspension was filled 
into 96-well plates and incubated for 2 h (37 °C, 5% 
CO2, 95% humidity). A total of 6 concentrations of 
the samples (1:2 series) were prepared, with Ref 20 
as the highest concentration. TCDD (2,3,7,8-tetra-
chlorodibenzo-p-dioxin) was prepared in medium 
1:100, and 50  µl each was added to the cells. The 
exposed samples were incubated for 70 h (37 °C, 5% 
CO2, 97% humidity). Subsequently, the medium was 
aspirated in a dark environment, 100  µl of the ETX 
stock solution (see protocol) was added, and the sam-
ples were incubated for 30 min (37 °C, 5% CO2, 95% 
humidity). A total of 75 µl methanol were added into 
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each well and shaken for 20 min at room temperature 
to stop the reaction. The fluorescence of the sam-
ples (production of resorufin) was measured with the 
multi-well plate reader (Tecan infinite M200; Tecan 
Group Ltd., Switzerland). One protein standard (ETX 
solution with BSA standard; see Schiwy et al., 2015a) 
with 7 concentrations was prepared and transferred to 
the plate. After that, 100 µl of the bicinchoninic acid 
(BCA) reagent mix (Pierce BCA Protein Assay Kit; 
Thermo Scientific, Germany) was added to all cells. 
The plates were incubated for 40  min at room tem-
perature. Afterwards, the absorption was measured at 
550  nm. The validity criteria (Schiwy et  al., 2015a) 
were achieved for all experiments.

Yeast estrogen screen

The Yeast estrogen screen (YES) assay was per-
formed according to DIN EN ISO 19040–1:2018 
(DIN EN ISO, 2018) and the study of Routledge 
and Sumpter (1996). The yeasts (cryo culture; origi-
nally from Deutsche Forschungsgemeinschaft, DFG, 
Bonn, Germany) were prepared as an overnight cul-
ture (ONC) with 500 µl SD-medium and 500 µl DO-
medium (22  h, 30  °C while shaking). The samples 
were diluted 1:100 in ultrapure water. In 96-well 
plates, a 1:2 serial dilution with Ref 20 as the high-
est concentration was performed. The final cell solu-
tion (ONC and DO-Medium) was prepared, and the 
FAU was measured (42.5 – 57.5 FAU). The exposure 
Medium (SD-Medium, DO-Medium, CuSO4, Ampi-
cillin, streptomycin) and the cell solution were given 
in 96-well plates and shaken for 30 s at 450 rpm. The 
optical density (OD) was measured at 600  nm, and 
the plates were incubated for 18 h at 30 °C (covered 
with a gas-permeable film). After the incubation, the 
cell density was measured (600 nm). The lacZ reac-
tion mixture was prepared and transferred to new 
96-well plates with the samples. The OD was meas-
ured immediately at 580  nm. The plates were incu-
bated for 1 h at 30 °C under agitation. The OD was 
measured at 580 nm and 540 nm. The validity crite-
ria (DIN EN ISO, 2018) were fulfilled for all samples 
and all replicates.

Data analysis

The data analysis was performed in an RStudio 
environment (Version: 2022–04-22 ucrt) by using 

the scripting language R (Version: 4.2.0) (R Core 
Team, 2019). Several packages in RStudio have 
been used: “compositions”, “psych”, “car”, “dplyr”, 
“ggplot2”, “pgirmess”, “survival”, and “PMC-
MRplus”. At first, the three river systems (peren-
nial, ephemeral rivers, and the Iishana system) 
were tested for normal distribution with logarithm 
transformed data by applying the Shapiro–Wilk 
test, which is suitable and delivers good results 
for small sample sizes. Subsequently, a Levene 
test to check the differences of variances in case 
of a normal distribution. The not normally distrib-
uted data with unequal variances were tested with 
the Kruskal–Wallis test for significant differences 
between the three systems. The normally distrib-
uted data with unequal variances, i.e., the Ames 
assay, were also tested with the Kruskal–Wallis-
Test. This test is suitable for testing non-normally 
distributed data and comparing the mean values of 
several groups without the requirement of a specific 
distribution form. The Friedman test was applied 
to gain knowledge of the differences between 
sampling sites. As a post hoc test, the Wilcoxon 
test was carried out. Differences between the Iis-
hana and the perennial rivers were tested with the 
Mann–Whitney-U-test (95% confidence inter-
val), because of unrelated and not normally dis-
tributed data and a small sample size. A two-way 
ANOVA and a post-hoc Tukey test were applied for 
the Ames assay to test for significant differences. 
With a p-value < 0.05, the results were defined as 
significant.

Results

Fish embryo toxicity test

Several sublethal effects, such as chorion defor-
mations and edema, could be observed in the Iis-
hana system, the Kunene River, and the Kavango 
River. The embryotoxic and teratogenic potential 
was similar in all systems, and the most observed 
effects were pericardium and yolk sack edema 
(see Fig.  2a, b, and Supplementary Data 2). After 
48  h, all samples showed more than 10% effects 
(10 to 100% effects), except samples 15, 23, and 
32. All samples showed a decrease in effects after 
96 h. The striking effects were an affected, slightly 
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decomposed chorion, pectoral fin underdevelop-
ment, and blood congestion. In particular, at sites 7, 
15, and 27 of the Iishana, these effects were noted, 
but at the Kunene and Kavango Rivers, these effects 
were detected less frequently (10% to 14% effects). 
Embryo malformation and development retardation 
were the most common effects at the perennial riv-
ers. After 72  hpf 32% of the development retarda-
tions and failures were observed (Fig. 2a, b). How-
ever, there are no statistically significant differences 
between the Iishana system and the perennial rivers 
regarding the number of observed effects (p = 0.83).

No embryotoxic effects were detected in the 
ephemeral and perennial river systems, as the 
results were not significantly different from those 
of the negative control. The hatching success was 
equal in all three river systems compared with con-
trol embryos. Of the control group, 96% hatched 
until 120 hpf, and 99.6% of the exposed embryos.

Daphnia acute immobilization test

The negative and solvent controls were identical, 
with 5% immobile daphnids in three replicates. An 
effect of acute immobility is defined as when > 10% 
of daphnids are immobilized. At the Iishana, sites 7, 
15, and 27 and all sites at the perennial rivers show 
more than 10% effects. After 24 h, 6% of the daph-
nids exposed to Iishana water and 8% of the daph-
nids exposed to the water of the perennial rivers were 
immobilized. After 48  h, the immobilized daphnids 
increased to 9% at the Iishana and 13% at the peren-
nial rivers (Fig. 3a, b). Samples from the Iishana and 
perennial rivers differ significantly in the number of 
immobilized daphnia (p = 0.049). The samples of the 
Iishana are not significantly different from the nega-
tive control, except for sites 7 (p = 0.0016) and 15 
(p = 0.00004). However, the perennial waters signifi-
cantly differ from the negative control (p < 0.05).

ba

Fig. 2   Observed effects of a the Iishana system and b the perennial rivers

a b

Fig. 3   Immobilized Daphnia magna in a Iishana and b perennial rivers
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Algae growth inhibition test

The growth inhibition study showed no effects on the 
algal species studied. The systems did not differ sta-
tistically from each other. Growth rates and inhibition 
rates can be found in Supplementary Data 3.

Ames fluctuation assay

The investigation of the mutagenicity with the Ames 
fluctuation with Salmonella typhimurium strains 
TA98 and TA100 (± S9) showed effects for both river 
systems. All samples show an increasing number of 
wells of revertant growth over the concentration range 
compared to the NC (two-way ANOVA, p < 0.05). 
The visible reproducible increase in revertant counts 

compared to the negative control was significant for 
both strains for the sites 23, 27, and 29. At sites 15 
and 32, the strain TA98 + and at sites 30 and 31, the 
strain TA98- were significant (see Supplementary 
Data 4). There are no statistically significant differ-
ences between the Iishana and the perennial rivers 
(p > 0.05).

Figure 4 shows the IF of both strains and all sam-
ples. A significant potential mutagenic activity is 
defined with an IF > 1.3 (Kosmehl et al., 2004). The 
strain TA98 (± S9) showed IF values > 1.3 in every 
sample. In contrast, investigation with the strain 
TA100 − showed at sites 27 and 30 IF values > 1.3 
and with strain TA100 + at site 30. The IF of strain 
TA98 are higher than that of strain TA100 but not sig-
nificantly different. TA98 + shows slightly higher IFs 

Fig. 4   Distribution of induction factors (IF) evaluated by exposure of strain TA98 and TA100 ± S9 to the Iishana, and the Kunene 
and Kavango Rivers in six dilution steps and three replicates
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with a higher range (0.3 – 6) than TA98- (0 – 4.5). 
TA100 − and TA100 + have smaller ranges (both 0 
– 4).

Seitz et al. (2008) introduced the CDI as an index 
value to compare environmental samples regard-
ing their genotoxic potential. In Table  2, the con-
centrated-dependent induction factor (CDI) for the 
strains TA98 ± and TA100 ± for all samples are pre-
sented. The results show mutagenic potential in the 
strain TA98 (± S9). In contrast, no mutagenic poten-
tial was indicated for the strain TA100 (± S9).

Micro‑EROD assay

Prior to the EROD assay, potential cytotoxicity was 
investigated. Subsequently, only the concentrations 
that did not show cytotoxicity (> 80% cell viability) 
were used for the EROD assay to exclude the possi-
bility of masking the mechanism-specific effect. No 
cytotoxic effect could be detected for any samples 
so that a masking effect can be excluded. In addi-
tion, none of the samples tested showed dioxin-like 
potency in the EROD assay.

Yeast estrogen screen

An endocrine-disrupting potential was found in sam-
ples 15, 23, and 32 of the Iishana system (Fig.  5). 
The concentrations of 10.89 ng/l ± 0.41 (sample 15), 
5.62  ng/l ± 0.37 (sample 23), and 21.28  ng/l ± 1.19 
(sample 32) were calculated for the two highest 
concentrations REF 20 and REF 10. The statisti-
cal analysis showed no significantly different results 
(p = 0.94) for samples 15 and 23. However, a different 
result could be observed for sample 32 with p-values 
of 0.007 and 0.015. In the lower concentrations, the 
measured values were below the limit of Quantifica-
tion (LOQ). In all the other samples, the estrogenic 

activity was below the limit of detection (LOD) and 
the LOQ (for details see Supplementary Data 5).

Discussion

All samples of the Iishana system and the peren-
nial rivers showed > 10% sublethal and lethal effects 
per sample in the FET. The observed sublethal 
effects concerning the blood circulation system, 
such as edema and slow blood flow, can be caused 
by substances that bind to the Ah-receptor and act 
similarly to dioxin (Barron et  al., 2004; Kais  et al., 
2017; Schiwy et  al., 2015b). However, dioxin-like 
chemicals (DLCs) could not be detected in the micro-
EROD assay, so they are probably excluded as pos-
sible causative agents. Further compounds, such as 
pesticides (Awoyemi et  al., 2019), flame retardants 
(Parsons et  al., 2019), nanomaterials (Shaw et  al., 
2016), and heavy metals (Taslima et  al., 2022) can 

Table 2   The average concentration-dependent induction factors (CDI) for the strains TA98 and TA100 ± S9 (Salmonella typhimu-
rium) for the Iishana system and the Kunene and Kavango Rivers

Iishana Kunene Kavango

7 15 23 27 32 29 30 31

TA98- 1.8 2.1 1.8 1.8 1.9 2.1 2.7 2.1
TA98 +  3.0 4.3 4.8 3.8 3.6 3.0 3.1 2.4
TA100 −  0.8 0.8 0.8 0.5 1.1 0.6 0.4 0.4
TA100 +  1.4 0.2 0.5 0.1 0.4 0.6 0.5 0.8

Fig. 5   EEQ (17β-estradiol equivalents) in ng/l for the Iishana 
system
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also cause edema. In the analyzed samples of the Iis-
hana, concentrations of Cd (0.5 µg/l), Cr (3.94 µg/l), 
and Cu (37.33 µg/l) were detected in previous stud-
ies (Faulstich et al., 2023). Muzungaire et al. (2012) 
could detect 64.0 µg/l Fe and 9.0 µg/l Cu concentra-
tions in the Kavango River. These metals could have 
caused pericardial edema and slow heart rate, even in 
small concentrations (Taslima et al., 2022). However, 
a comprehensive chemical analysis of the substances 
is to be performed, making it difficult to precisely 
identify the drivers of the toxic effects.

The pectoral fin underdevelopment could indi-
cate that the fins lack blood supply. Von Hellfeld 
et  al. (2020) observed fin underdevelopment caused 
by histone deacetylase (HDAC) inhibitors. Differ-
ent HDACs were linked to a changed skeletal devel-
opment in mammals, but the underlying functions 
of HDACs are comparable to the findings in fish 
embryos in the present study. In this study, the effect 
of an affected chorion appeared mostly after 48  hpf 
and 72 hpf at the Iishana. The metabolism of zebrafish 
embryos differs over time, and 72 hpf is the most suit-
able time for the use of the zebrafish, concerning the 
stability and viability of the embryos (Dhillon et al., 
2019; Kais et  al., 2017; Schiwy et  al., 2015b). The 
embryos in affected chorions were mostly able to 
hatch, suggesting a substance that attacks the cho-
rion but does not cause coagulation of the embryo. 
The affection and slight decomposition of the chorion 
can be caused by substances that cannot pass the cho-
rion. During the hours after fertilization, the chorion 
changes its permeability (Pelka et al., 2017). If effects 
decrease over time, then the substance has either been 
used up, or biotransformation has taken place, and the 
hatched fish have degraded the substance.

Logan et  al. (2023) identified several negative 
impacts of nanofibers, such as increasing apoptosis 
and the neutrophil response for the embryonic devel-
opment of fish. Microplastic fragments and fibers 
have been detected in the Iishana system (Faulstich 
et  al., 2023) and the blood stasis as a result of neu-
trophilic reactions could also be detected in the tested 
embryos. Therefore, it cannot be excluded that 
nanofibers may have negatively affected the embry-
onic development of Danio rerio.

In addition to the effects on fish embryos, acute 
effects on algae growth could also be observed. As 
mentioned before, heavy metals, such as Cd, Cr, and 
Cu, could be detected in the investigated samples 

(Faulstich et al., 2023). These analyzed heavy metals 
can also influence the observed toxicological effects 
on algae. For example, Ni and Cu affect the survival 
and the photosynthetic energy storage capacities of 
algae (Bossuyt & Janssen, 2004). In the Iishana sys-
tem, 17.7 µg/l of Ni and 37.3 µg/l of Cu were found 
(Faulstich et  al., 2023). In addition to its effects on 
fish embryos and algae, heavy metals negatively 
affect daphnia. Zn and Cu, for example, are likely 
more toxic for algae than daphnia (Ardestani et  al., 
2014). This study found stronger effects on daph-
nia than on algae, on the one hand, this could indi-
cate that the metal concentrations are too low to 
cause effects in algae. On the other hand, interactions 
between metals and microorganisms could reduce the 
metal content in the water and cause less effects on 
algae (Priya et al., 2022).

The Iishana system has shown up to 30% effects 
on daphnia mobility. The immobility of daphnia 
could result from disseminated pollutants, for exam-
ple microplastics (Samadi et al., 2022), heavy metals 
(Yuan et al., 2020), or antibiotics (Yisa et al., 2023). 
The perennial Rivers Kunene and Kavango showed 
no significant toxic effects on daphnia. These find-
ings are in line with other publications. For example, 
investigations on the Cértima River in Portugal and 
the Sebou River in Morocco also showed no nega-
tive impact on Daphnia magna (Serpa  et al., 2014; 
Koukal et al., 2004).

Several studies could prove a negative impact 
of wastewater treatment plants on the toxicity for 
the aquatic organisms (Ra et  al., 2008; Shuliak-
evich et al. 2022c). The study area has a wastewater 
treatment plant near Outapi, a small town between 
site 23 and site 7 (Liehr et  al., 2016). Brooks et  al. 
(2006) describe the influence of effluent discharges 
on ephemeral systems. Flood events in the CEB can 
discharge wastewater and pollutants into the Iis-
hana system. Major flood events occur regularly in 
the region, most recently in 2011 and 2013 (Arendt 
et al., 2021). In 2019, only low rainfall was recorded 
in the Iishana system, which could cause slow flood-
ing. Besides wastewater, open landfill sites could 
be a source of toxic substances that cause effects in 
Daphnia magna. Wichmann et al. (2006) investigated 
a landfill site with open combustion and discovered 
effects < 20% in the test with Daphnia magna. Near 
Oshakati, between site 27 and site 32, is a landfill site 
with open combustion (Faulstich et al., 2023), whose 
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effluents could be responsible for the effects found in 
this study, especially at site 32, which is close to the 
landfill site.

Besides the water bodies, suspended solids of the 
Iishana are also contaminated with metals: 4.9 µg/g 
Cd, 83.7 µg/g Cr, 166.9 µg/g Cu, 52.6 µg/g Ni, 82.7 
µg/g Pb, 90.2 µg/g Sr, and 122.8 µg/g Zn (Faulstich 
et al., 2023). Contaminated particles can cause toxic 
effects on filter feeders such as Daphnids. On the one 
hand, xenobiotics are continuously dissolved from the 
particles; on the other hand, the particle-bound frac-
tion can become available within the body of parti-
cle-feeding organisms. Consequently, this can lead 
to unexpectedly high tissue concentrations (Weltens 
et al., 2000). Therefore, further examining suspended 
solids for toxicological effects is reasonable.

Endocrine-disrupting compounds, such as 
17α-ethinylestradiol (EE2) and 17β-estradiol (E2). 
are hormonally active, even at low concentrations, 
and are found in surface water and groundwater 
worldwide (Bistan et  al., 2012; Klaic & Jirsa, 2022; 
Sumpter, 2005). The Iishana system and the perennial 
rivers Kunene and Kavango showed EEQ concen-
trations up to 37.55  ng/l. One reason for these high 
concentrations of EEQ could be the input of various 
wastewaters in case of floods and surface runoff from 
settlements, roads, and agriculture (Burkhardt-Holm, 
2010). These high concentrations up to 40  ng/l, 
such as in the Iishana system, are commonly found 
in wastewater. Murk  et  al. (2002) detected with the 
YES assay up to 317  pmol  EEQ/l (~ 141.1  ng/l) in 
untreated wastewater and 4  pmol  EEQ/l in surface 
water (~ 1.8  ng/l). Kidd et  al. (2007) demonstrated 
that 5–6  ng/l  EEQ lead to a collapse of whole fish 
populations. Wolf et  al. (2022) detected EEQ con-
centrations up to 2.7  ng/l in a small German river 
and detected that heavy rainfall events influence the 
input of endocrine compounds into the aquatic sys-
tem. Kunz et  al. (2015) reported concentrations of 
EEQ up to 9.4  ng/l in European surface waters. In 
South Africa, in Pretoria and Cape Town, they could 
not detect estrogenic potential in drinking water sam-
ples with the YES assay. Still, the T47D-KBluc bio-
assay delivered low estrogenic activities with EEQ 
values between 0.002 to 0.114  ng/l (van Zijl et  al., 
2017). These measurements from other studies and 
systems show that the measured concentrations of 
EEQ in surface waters in this study are unusually 
high. Aneck-Hahn et  al. (2012) observed estrogenic 

activities in the South African Limpopo province. 
They discovered a connection between estrogenic 
activities and metal concentrations, as metals can 
bind the estrogen receptor alpha (ERα) and bold the 
binding of 17β-estradiol (Darbre, 2006). 17β-estradiol 
is released into the environment by agricultural runoff 
and animal excretions and was found in several stud-
ies (He et  al., 2022; Liu et  al., 2019; Perondi et  al., 
2020). Also, plastic compounds could be a source 
of estrogenic potential (Chen et  al., 2019b). Some 
studies indicate an accumulation and adsorption of 
toxic contaminants, such as polychlorinated biphe-
nyls (PCBs), bisphenol A (BPA), and heavy metals, 
on microplastics (Aragaw & Mekonnen, 2021; Vo & 
Pham, 2021; Wang et  al., 2019). Microplastics were 
found in all three systems, and water and sediment 
samples in the Iishana system showed elevated metal 
concentrations (Faulstich et  al.,  2022  & 2023). It is 
unlikely that the present microplastics or the elevated 
metal concentrations caused the high EEQ concen-
trations up to 37.55  ng/l. Rather, there seems to be 
a source that releases these estrogenic substances. 
EDCs have already been found in surface waters in 
Namibian dams (Faul et  al., 2014). Faul et  al. show 
that EDCs were mainly found in water bodies close 
to urban activities and a high population density, such 
as Windhoek. Since similar conditions prevail in the 
Iishana system, it is possible that EDCs may also be 
found in surface waters there.

The Calux assay has often replaced the YES assay 
due to the partially missing transferability of yeasts to 
the human organism (Iuele et  al., 2022; Nascimento 
et  al., 2021). Nevertheless, the YES assay is still a 
good indicator for detecting endocrine potential in 
environmental samples and is used in aquatic systems 
in Southern Africa (Aneck-Hahn et al., 2006; Archer 
et al., 2020; Kasonga et al., 2021).

In addition to evaluating the estrogenic poten-
tial of the samples, potential mutagenicity was also 
investigated with the two strains of Salmonella typh-
imurium (TA98 and TA100). The results showed that 
the Salmonella typhimurium strain TA98 was more 
sensitive than TA100, resulting in a significant repro-
ducible increase in revertant counts referred to the 
revertant number in the negative control in all sam-
ples of the Iishana. The strain TA100 only showed 
visible differences regarding the revertants. The 
number of revertants for the strain TA98 ± is slightly 
smaller than the spontaneous revertant control values 
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(20–50  revertants) in the literature (Mortelmans & 
Zeiger, 2000; Tejs, 2008). For the strain TA100 ± , the 
control values (75–200  revertants) are significantly 
higher than those in this study. However, the meas-
ured revertant counts were significantly different from 
the NC. The strain TA98 is more sensitive and can 
detect frameshift mutations (Kosmehl et  al., 2004). 
A low cell density of the strain TA100 and fewer tar-
gets for base substitution cause a lower sensitivity 
than the strain TA98 (Reifferscheid et  al., 2011). Iji 
et al. (2021) analyzed the surface water of a stream in 
South Africa (Mpumalanga Province) with the Ames 
test to gain knowledge of the genotoxic potential. The 
IF of strain TA98 was > 1.5, and of strain TA100 > 1.7 
(Iji et al., 2021). The metabolic activation by the rat 
liver S9-mix had a marginal effect on the mutagenic 
potential. All tested samples in this study have IF 
values > 1.3 for the strain TA98. Both strains show 
slightly higher IF values with the S9 mix and have a 
higher mutagenic potential. For a quantitative inter-
pretation of genotoxicity and mutagenicity data, refer-
ence points are missing, like a benchmark dose. The 
dose–response relationship still needs to be evaluated 
(Menz et al., 2023). Therefore, it is difficult to quan-
titatively assess the genotoxicity and mutagenicity 
of the investigated river systems. Nevertheless, it is 
known that heavy metals can cause mutagenicity. In a 
case study in India, Rajput et al. (2020) described that 
samples with a higher concentration of heavy metals 
lead to a higher mutagenicity. As described before, 
heavy metals were found in the Iishana and could 
cause mutagenic effects.

Conclusion and outlook

This study is the first study in Namibia that investi-
gated surface waters regarding their ecotoxicological 
potential. It is an important step towards a comple-
mentary water quality assessment of these hardly-
researched waters. The main objective of this proof 
of concept study was to identify the ecotoxicological 
potential of the Iishana system and the two neighbor-
ing systems, Kunene and Kavango. Several effects 
were detected in the investigated samples. Acute tox-
icity was detected in fish and daphnia, while freshwa-
ter algae showed few effects. The investigated river 
systems differ concerning the observed acute tox-
icity. The perennial rivers show fewer effects in the 

FET but more on the immobilization of daphnia than 
the Iishana. Common endpoints included a slightly 
decomposed chorion, pectoral fin underdevelopment, 
and blood congestion. Strong endocrine effects up to 
40 ng EEQ/l were investigated and a significant muta-
genic potential was identified for the strain TA98 ± .

The demonstrated ecotoxicological effects in the 
studied aquatic systems seriously affect water bodies 
and their ecosystems. Toxic substances, EDCs, and 
microplastics (Faulstich et al., 2022) threaten the eco-
system of the Iishana. Demonstrated acute toxicity to 
the daphnia and zebrafish may result in reproductive 
disruption, affecting the population size of primary 
and secondary consumers. There are several negative 
effects of estrogenic and estrogen-like compounds on 
endocrine systems, reproductive outcomes, and repro-
ductive health of the population (Campbell et  al., 
2006; Hecker & Hollert, 2011; Woodruff, 2011). 
Estrogenicity may cause damage to the reproductive 
organs, thus also negatively affecting populations. 
When aquatic pollution affects keystone species, such 
as daphnia and algae, biodiversity is threatened. A 
loss of biodiversity in the Iishana, the Kunene and 
Kavango Rivers can reduce fish populations, which 
are important for the local food supply. The water of 
the Iishana is used as drinking water (Faulstich et al., 
2023). This study showed that the Iishana water has 
toxic effects and it cannot be excluded that these 
will be transferred to humans, then this is a high risk 
for the local population and human health could be 
endangered by consuming Iishana water. There-
fore, appropriate measures are needed to improve 
water quality, reduce toxicity, and ensure the use of 
the Iishana water as a water resource. Addressing 
acute effects, endocrine disruptions, and mutagenic 
effects in a river basin requires a comprehensive 
approach, considering various potential sources and 
factors. Applied measures could address five differ-
ent aspects: (i) wastewater treatment plants (WWTP) 
improvement, (ii) landfill site management, (iii) green 
infrastructure, (iv) sustainable agriculture practices, 
and (v) remediation technologies.

The treatment technologies in wastewater treat-
ment plants could be upgraded by advanced oxidation 
processes, membrane filtration, or activated carbon 
adsorption to enhance the removal of contaminants, 
including heavy metals and organic pollutants (Klaic 
& Jirsa, 2022). The installation of activated carbon 
filters at strategic points to adsorb and remove organic 
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pollutants, mitigating acute toxicity and endocrine 
disruption.

Implementing monitoring systems that detect 
fluctuations in pollutant concentrations could enable 
rapid response to unexpected discharges and allow 
the optimization of treatment processes. Existing con-
taminated sites should be remediated to prevent the 
further release of pollutants (Koda et al., 2020). The 
adoption of sustainable waste management practices, 
such as recycling and waste-to-energy technologies, 
could minimize the generation of pollutants in the 
first place. Green infrastructure and natural filtra-
tion systems, such as riparian buffers, wetlands, and 
vegetated swales filter pollutants and improve water 
quality (Chen et  al., 2019a; Saravanan et  al., 2021). 
New management practices in agriculture mini-
mize the runoff of agrochemicals and fertilizers into 
water bodies and reduce reliance on chemical pesti-
cides, thereby minimizing the introduction of harm-
ful substances into the environment. This includes 
contour plowing, cover cropping, and precision agri-
culture (Bai et  al., 2019). The exploration of in  situ 
remediation technologies, such as phytoremediation 
and biostimulation, can treat contaminated areas 
within the river basin without significant disturbance 
(Sharma et al., 2023).

Implementing these measures in a coordinated 
manner can contribute to the reduction of acute tox-
icity, endocrine disruptions, and mutagenic effects 
in a river basin. Sustainable management of the river 
basin, safeguarding both environmental and human 
health, is crucial. Therefore, regular reassessment and 
adaptation of strategies based on ongoing monitor-
ing and research findings are necessary for long-term 
success.

Although the approach used in this study, a com-
bination of several bioassays, has already been pub-
lished in several studies, it delivers results for a region 
where these analyses have not been documented. 
To the authors’ knowledge, in Namibia, there are 
no studies concerning the ecotoxic potential of sur-
face waters. Identifying toxic compounds is inevita-
ble to estimate the state of the ecosystem. This study 
could prove the acute toxicity of the Iishana system, 
the Kavango, and the Kunene Rivers. Statements on 
chronic exposure cannot yet be made. Further investi-
gations, for example testing the pre-filtered suspended 
solids, could help identify the relevant substances 
causing these effects.

Therefore, more effects may be detectable when 
using more sensitive test systems or other organisms 
likely more adapted to arid and semi-arid regions 
(Lahr, 1997). Increasing the exposure times for the 
endpoints mobility and growth reduction could cause 
the achievement of more effects. In the environ-
ment, organisms are exposed to potentially toxic sub-
stances for long durations. These long exposure times 
can be recreated in the laboratory. Harmful effects 
often occur after prolonged exposure to pollutants, 
since the environmental samples are also exposed to 
the potentially toxic substances for a longer period 
of time. Long-term toxicity tests, which simulate 
chronic exposure for up to several weeks or months 
based on the life cycle of the test organism, can be 
helpful in assessing long-term effects. For acute tox-
icity, reproduction can be examined as a “long-term” 
test for Daphnia Magna (OECD, 2012) and the early 
life stage test for Danio rerio (OECD, 2013b).

One decade ago, ecotoxicology was a relatively 
new science in South Africa (Wepener & Chapman, 
2012), but it has developed rapidly, and nowadays, 
numerous studies can be found on ecotoxicologi-
cal risk assessment of aquatic systems in the SADC 
region, with large differences between countries (Eij-
sackers et al., 2020; Selwe et al., 2022). Future inves-
tigations concerning freshwater quality should link 
chemical and bioanalytical information and quantify 
cause-effect relationships (Altenburger, 2019). Over-
all, managing and mitigating acute toxicity in surface 
waters is vital for maintaining the ecological integrity 
of aquatic ecosystems and ensuring the sustainable 
use of water resources for various human and envi-
ronmental needs. For a holistic study of the Iishana 
ecosystem, a chemical analysis, and the analysis 
of sediments and suspended solids for toxic effects 
would complete the ecotoxicological assessment.
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