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Purpose: Automated lesion segmentation is increasingly used in acute ischemic 
stroke magnetic resonance imaging (MRI). We explored in detail the performance 
of apparent diffusion coefficient (ADC) thresholding for delineating baseline 
diffusion-weighted imaging (DWI) lesions.

Methods: Retrospective, exploratory analysis of the prospective observational 
single-center 1000Plus study from September 2008 to June 2013 (clinicaltrials.
org; NCT00715533). We built a fully automated lesion segmentation algorithm 
using a fixed ADC threshold (≤620  ×  10–6  mm2/s) to delineate the baseline DWI 
lesion and analyzed its performance compared to manual assessments. Diagnostic 
capabilities of best possible ADC thresholds were investigated using receiver 
operating characteristic curves. Influential patient factors on ADC thresholding 
techniques’ performance were studied by conducting multiple linear regression.

Results: 108 acute ischemic stroke patients were selected for analysis. The median 
Dice coefficient for the algorithm was 0.43 (IQR 0.20–0.64). Mean ADC values in 
the DWI lesion (β  =  −0.68, p  <  0.001) and DWI lesion volumes (β  =  0.29, p  <  0.001) 
predicted performance. Optimal individual ADC thresholds differed between 
subjects with a median of ≤691  ×  10−6 mm2/s (IQR ≤660–750  ×  10−6 mm2/s). Mean 
ADC values in the DWI lesion (β  =  −0.96, p  <  0.001) and mean ADC values in the 
brain parenchyma (β  =  0.24, p  <  0.001) were associated with the performance of 
individual thresholds.

Conclusion: The performance of ADC thresholds for delineating acute stroke 
lesions varies substantially between patients. It is influenced by factors such 
as lesion size as well as lesion and parenchymal ADC values. Considering the 
inherent noisiness of ADC maps, ADC threshold-based automated delineation of 
very small lesions is not reliable.
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1. Introduction

Recent research further advancing the time window for mechanical 
thrombectomy and intravenous thrombolysis highlights the importance 
of tissue-based criteria in acute ischemic stroke (AIS) therapy (1, 2). 
Quantifying the ischemic core has been of central importance in trials 
using advanced imaging to guide stroke treatment (3, 4).

In clinical practice, visual assessment of diffusion-weighted imaging 
(DWI) lesions and computed tomography perfusion (CTP) thresholding 
are used for the estimation of the ischemic core, with DWI being more 
sensitive (5, 6). The visual assessment of DWI lesions as an estimation 
for unsalvageable tissue is subjective and lacks a clinically available gold 
standard (5). Efforts have thus been made to make the identification of 
the ischemic core using the apparent diffusion coefficient (ADC) more 
objective. As an absolute diffusivity measurement, the ADC appears 
well-suited for thresholding techniques across locations and vendors 
(7). Furthermore, the ADC can be used to further stratify the ischemic 
core into reversible and irreversible components (8, 9).

With rising demand for infarct quantification, automated lesion 
segmentation software is increasingly used in trials and clinical 
practice (10). For algorithms based on MRI, most commercially 
available lesion segmentation algorithms use absolute ADC thresholds 
for the determination of the ischemic lesion (10). The two most widely 
used algorithms RAPID® (iSchemaView) and Olea Sphere® (Olea 
Medical), use fixed or user-adjustable generalized absolute ADC 
thresholds (11–13). The threshold of ≤620 × 10–6 mm2/s currently 
used in RAPID® and also frequently applied using Olea Sphere® was 
initially proposed in 2015 by Purushotham et al. (8, 14). Their study 
determined an ADC threshold for distinguishing between tissue 
inside the DWI lesion destined to infarct and reversible regions. The 
threshold was volumetrically verified on 14 patients using the 
manually delineated DWI lesion as ground truth (8).

While these algorithms are already used in clinical practice and 
were implemented in many multicenter studies, the underlying 
assumptions behind this ADC threshold have not yet been 
independently replicated (3, 4, 10). This ADC threshold was determined 
on a small sample size and only volumetrically verified, lacking detailed 
spatial analysis (8). Differences in automated and manual lesion 
delineations and factors affecting the performance of ADC-based lesion 
segmentation algorithms remain scarcely investigated.

In this study, we explored in detail the performance of the widely 
used ADC threshold (≤620 × 10–6 mm2/s) for delineating baseline 
DWI lesions and the performance of ADC thresholds in general. To 
that end, we built a lesion segmentation algorithm that used ADC 
thresholding and compared its performance to manual DWI lesion 
delineation in a large cohort of acute ischemic stroke patients. The 
algorithm was intended to replicate commercially available DWI 
delineation software, supplemented with artifact reduction techniques 
adopted from previous research (8, 15) in order to gain insights into the 
performance of ADC thresholds for automated DWI lesion delineation.

2. Materials and methods

2.1. Participants

All patients participated in the prospective observational 
1000Plus study from September 2008 to June 2013 (clinicaltrials.org 

NCT00715533). The single-center study performed by the Center for 
Stroke Research Berlin acquired MRI data from 1472 patients 
presenting to the emergency room with a clinical diagnosis of an 
acute cerebrovascular event (16). The study design was approved by 
the institutional review board of the Charité Universitätsmedizin, 
Berlin (EA4/026/08). The study was carried out in accordance with 
The Code of Ethics of the World Medical Association (Declaration 
of Helsinki). Written informed consent was obtained from 
all patients.

A subset of 126 patients was selected for retrospective analysis. 
Inclusion criteria included available DWI data, either a vessel occlusion 
on day 1 with vessel recanalization on day 2 or no vessel occlusion on 
day 1, as well as the known time of symptom onset. Vessel recanalization 
on day 2 was required to investigate the degree to which automatically 
delineated DWI lesions on day 1 reflect final infarct volume (assessed 
between days 3 and 5 using FLAIR) (17). In the group without vessel 
occlusion on day 1, we excluded very small strokes (≦3 mL in volume) 
because we considered that these would not be appropriate for automated 
threshold-based delineation. Following the exclusion of 18 patients after 
data processing 108 patients were selected for analysis (Figure 1).

2.2. Imaging protocol

Imaging was performed on a 3T MRI scanner (Tim Trio; Siemens 
AG, Erlangen, Germany). DWI was performed with a spin-echo echo-
planar imaging sequence with a ‘b’ value of 1000  s/mm2 (TR/
TE = 7600/93  ms, matrix = 192 × 192, field of view = 230  mm, slice 
thickness = 2.5 mm, slice gap = 0 mm, number of slices = 50, acquisition 
time = 2 min 11 s). The study protocol also included T2*-weighted 
images, time-of-flight magnetic resonance angiography (TOF-MRA), 
and fluid-attenuated inversion recovery (FLAIR) images (16). All 
participants were scanned relative to the time of stroke symptom onset 
(TOO) on day 1 (within 24 h) and day 2 (24–48 h). In 78 patients, 
follow-up imaging data obtained around the fifth day of admission 
(range: day 3–7, mean 4.8 days) was available.

2.3. Image preprocessing

All images were first converted from DICOM to NIfTI format 
using dcm2nii software (18). Brain extraction was performed on b0, 
trace (b = 1000), and ADC map images using BET (Brain Extraction 
Tool) (19). The brain-extracted b0 images were registered to MNI152 
T1-weighted 2 mm isovoxel standard space using three-dimensional 
diffeomorphic symmetric normalization (using 
antsRegistrationSyNQuick) (20–24). Registered images were checked 
visually and unsatisfactory registrations were excluded. Resulting 
transformation matrices were used for mapping of ADC map and 
trace images to MNI152 standard space using antsApplyTransforms 
(20–24). Tissue segmentation of cerebrospinal fluid (CSF) and brain 
parenchyma was conducted on b0 images using FMRIB’s Automated 
Segmentation Tool (25). Baseline DWI lesions and follow-up FLAIR 
lesions were delineated by a group of stroke imaging researchers using 
MRIcro and supervised by either an experienced radiology resident, 
a board-certified neuroradiologist, or a radiologist (26). DWI ROIs 
were mapped nonlinearly to MNI152 standard space using 
antsApplyTransforms (20–23).
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2.4. Input to automated lesion delineation 
algorithm

MR imaging data obtained at admission within 24  h of 
symptom onset were used. After image preprocessing, the brain 
extracted and registered b0, trace, and ADC map images were read 
by the algorithm.

2.5. Automated lesion delineation

A threshold-based lesion segmentation algorithm was 
developed using the FSL software package (27–29). The approach 
solely relies on the acquired DWI sequence (the trace and ADC) 
and outputs a lesion mask that aims to match the expert lesion. It 
uses artifact reduction techniques known from previous research 
and uses ADC thresholds already implemented in commercially 
available software (8, 15). First, the algorithm localizes the infarct 
and creates a primary lesion mask (see Figure  2). Artifact 
reduction and lesion contrast enhancement are achieved by 
dividing the trace image by the ADC map. Resulting relative voxel 
values inherit greater contrast between healthy and ischemic 
tissue. To assure comparability between subjects and brain 
regions, normalization of relative values is performed in every 
slice separately by dividing the voxel’s signal intensity by the 
average voxel value of the whole slice. Consecutively, smoothing 
using an isotropic 5 voxel Gaussian kernel is performed. Mirroring 
along the x-axis and subtraction of the contralateral hemisphere 
further reduces artifacts. A lower threshold of 0.75 image intensity 
is applied to the resulting processed image based on testing lesion 
coverage on a subset of 5 randomly chosen subjects. Partial 
dilatation completes the mask creation. Finally, the delineated 
infarct region includes areas within the mask with ADC values 
between 200 and 620×10−6 mm2/s (8). Removal of scattered trace-
hypointense voxels is achieved by removing voxels with trace 
intensities below the 95th percentile (Figure 2).

2.6. Statistical analysis

Statistical analysis of this retrospective, exploratory study was 
performed using R Studio Version 2022.07.1 + 554 (30). The 
Dice coefficient

 
D TP

TP FP FN
=

+ +
2

2

was used to study spatial overlap between the automated, and the 
manual delineated ROIs (31). Volumetric agreement between manual 
and automated DWI lesion volumes as well as between initial lesion 
and follow-up FLAIR lesion volumes was investigated using Bland–
Altman analysis (32). The correlation of manual and automated 
delineated lesion volumes was assessed by calculating Pearson’s 
correlation coefficient (33). A whole-brain ROC analysis was 
conducted in every subject using the fslmaths function of the FSL 
software package to determine the optimal ADC threshold for 
distinguishing infarcted from healthy tissue (28, 29). Therefore, voxel-
wise analysis was performed between ADC values of manually 
delineated day one DWI lesions and the whole brain parenchyma 
ADC map. A second analysis used the same ground truth, but a 
different ADC map centered on the DWI lesion. This was achieved by 
dilating the DWI lesion using the fslroi function from the FSL toolbox 
and applying the resulting mask to the ADC map (29). ROC analysis 
output was pooled across subjects to identify a generalized threshold. 
The Youden index

 J sensitivity specificity= + −1

was used to determine the best possible threshold (34). 
Multivariate and univariate linear regression was used to 
investigate whether initial DWI lesion size, DWI lesion ADC 
value, mean ADC in the brain parenchyma, age or TOO would 
be associated with the performance of the segmentation algorithm 
itself and the diagnostic capability of the ADC threshold found in 

FIGURE 1

Inclusion flowchart.
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the patient. As the performance of the algorithm was measured in 
spatial overlap, the Dice coefficient was the response variable in 
the first model. As diagnostic capability was assessed with the 
Youden index (YI) it represented the response variable in the 
second model. Assumptions for using linear models were checked, 
assessing skewness, kurtosis, link function and heteroscedasticity 
with the R packages “lmtest,” “gvlma” and “corrplot” (35–37). 
Visualization was accomplished using the R package 
“ggplot2” (38).

The image processing scripts, segmentation algorithm, and 
statistical analysis scripts are openly accessible.

3. Results

3.1. Baseline characteristics

The baseline characteristics of the 108 patients analyzed are 
summarized in Table 1.

3.2. Infarct characteristics within 24 h of 
symptom onset

After applying the segmentation algorithm to imaging data 
acquired within 24  h of symptom onset (median 247  min, IQR 
108–737 min), the resulting delineations were compared to manually 
delineated ROIs. The median ADC value in the automated ROIs was 
504 × 10−6  mm2/s (IQR 421–533 × 10−6  mm2/s) compared to 
686 × 10−6 mm2/s (IQR 591–780 × 10−6 mm2/s) in the manual ROIs 
(see Figure 3A). Automated ROIs had a median lesion size of 5.5 mL 
(IQR 1.4–12.7 mL), and the median volume of manual ROIs was 
6.9 mL (IQR 1.8–16.5 mL) (Figure 3B).

3.3. Volumetric agreement and spatial 
overlap

The Bland Altman analysis showed a mean bias of −4.92 mL with 
an upper limit of agreement of 19.36 mL and a lower limit of agreement 
of −29.21 mL (Figure 4A). The volumes of automated and manual 
ROIs correlated strongly, r(106) = 0.79 (CI = 0.7–0.85), p-value < 0.0001 
(Figure 4B). Linear regression had a slope of 0.49 (adjusted R2 = 0.62, 
p-value < 0.0001). In two outlier subjects, the algorithm did not detect 
an infarction. The median Dice coefficient for the automated 
segmentation was 0.43 (IQR 0.20–0.64) (Figure 5A). No spatial overlap 

FIGURE 2

Algorithm. Schematic steps performed within the thresholding algorithm.

TABLE 1 Patient characteristics.

Variable Descriptive statistic

Patients (female) 108 (♀ = 38)

Mean age in years (±SD) 68 (±14)

Hypertension, n (%) 77 (71%)

Diabetes mellitus, n (%) 21 (19%)

Hyperlipidemia, n (%) 53 (49%)

Median time from onset to MRI* 247 min (IQR 108–737 min)

With vessel occlusion, n (%) 76 (79%)

Median Wahlund score 5 (IQR: 4–8)

Median NIHSS† at admission 3 (IQR: 1–6)

Type of infarction, n (%)

Territorial 99 (91.7%)

Lacunar 5 (4.6%)

Borderzone 4 (3.7%)

Infratentorial infarction, n (%) 16 (15%)

*MRI, magnetic resonance imaging; †NIHSS, National Institutes of Health Stroke Scale.
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was seen in 15 lesions with low volume (manually delineated lesion size 
IQR: 0.2–0.8 mL, median 0.46 mL) (see Figure 5B).

3.4. ROC analysis

The optimal generalized threshold to match the expert ischemic 
lesion delineation in the brain parenchyma using pooled ROC 
analysis was an ADC ≤704 × 10−6  mm2/s (sensitivity 65% and 
specificity 77%, AUC 0.76). Narrowing down the search area by a 
median of 96% (IQR 0.93–0.97) to the vicinity of the infarct resulted 
in an optimal pooled threshold of ≤693 × 10−6 mm2/s (sensitivity 63% 
and specificity 75%, AUC 0.74). In both cases, individual ROC curves 
differed substantially from those generated using pooled data (see 
Figure  6). The individual whole-brain ROC analysis determined 
thresholds with a median of 691 × 10−6 mm2/s (IQR 
660–750 × 10−6 mm2/s; sensitivity median 75%, IQR 64–86%; 
specificity median 80%, IQR 73–83%).

3.5. Linear model

Sixteen patients with unknown time from symptom onset to imaging 
were excluded from this analysis. At first, predictors of the performance 
of the segmentation algorithm were assessed. The overall regression was 
statistically significant (adjusted R-squared = 0.54, F(5, 86) = 22.03, 
p < 0.001). The mean ADC value in the DWI lesion (β = −0.65, [−0.80 – 
−0.50], p < 0.001) and the DWI lesion volume (β = 0.28, [0.13–0.42], 
p < 0.001) were significantly associated with the Dice coefficient. The 
mean ADC values in the brain parenchyma (β = 0.16, [−0.03–0.35], 
p = 0.09), time from onset to imaging (β = 0.01, [−0.13–0.16], p = 0.84) and 
patient age (β = −0.17, [−0.36–0.01], p = 0.07) were not.

Secondly, variables possibly impacting the identification of 
individual ADC thresholds as determined by ROC analysis (compare 
Figure 6) were analyzed. The dependent variable was the Youden index 
(YI). The overall regression was statistically significant (adjusted 
R-squared = 0.87, F(5, 86) = 118.7, p < 0.001). Significant predictors for 
the Youden index were mean ADC values in the DWI lesion (β = −0.96, 

FIGURE 3

Lesion characteristics. Mean lesion ADC values (A) and lesion volumes (B) are displayed as boxplots with individual data points (n  =  108). The middle 
bars represent the median, the box indicates the lower (Q1) and upper (Q3) quartiles. Lines connect observations within one subject.

FIGURE 4

Volumetrics. (A) Bland Altman plot of volume differences (n  =  108). The Y-axis shows the difference between automated and manual delineations 
(manual-automated). The X-axis represents the reference method (32). The blue line displays mean difference, the red lines indicate limits of 
agreement from −1.96 to +1.96 standard deviations of mean difference. (B) Logarithmic scaled scatterplot comparing manual and automated ROI 
sizes with blue line of regression and gray 95% confidence interval (n  =  108).
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[−1.04 – −0.87], p < 0.001), mean ADC values in the brain parenchyma 
(β = 0.28, [0.18–0.38], p < 0.001), DWI lesion volume (β = −0.11, [−0.18 
– −0.03], p = 0.006) and patient age (β = −0.14, [−0.25 – −0.04], 
p = 0.006). Time from onset to imaging (β = 0.05, [−0.03–0.12], p = 0.20) 
did not show a significant association. Visualization of the results of the 
regression analysis and additional univariate models can be accessed 
in the Supplementary Figures S1–S3.

4. Discussion

In this study, we investigated the performance of ADC thresholds 
using an automated acute stroke lesion delineation algorithm based 
on assumptions from previous research (8, 15). We  tested the 
algorithm on a large, heterogeneous group of patients incorporating 
all types and locations of infarcts, representing real-life conditions.

Automatically delineated lesions had significantly lower mean 
ADC values and volumes than manual delineations. The broader 
range of mean ADC values in the manual delineations suggests that 

human raters also delineate tissue with high ADC values, possibly 
including early vasogenic edema in the delineated areas. The degree 
to which manually and automatically delineated lesions overlapped 
varied between patients. In cases where no spatial overlap was 
observed, the DWI lesions had very low volumes (Figure 5). Factors 
significantly associated with a higher Dice coefficient and thus better 
performance of the algorithm were a low DWI lesion ADC value and 
the lesion size. Our algorithm slightly underperformed commercial 
automated segmentation algorithms. Previous studies using RAPID® 
showed a Dice score of 0.52 (n = 426) (39) and a mean volumetric 
difference of −1.95 mL (−12.8–9.0 mL, n = 134) when compared to 
manually delineated DWI lesions (40). Other studies report median 
Dice scores of 0.39 for optimal, individual DWI thresholds and 0.28 
for ADC thresholds when simple thresholding is used (15).

The generalized ADC threshold determined by our ROC analysis is 
slightly higher than the one used for the algorithm, possibly due to the 
used ground truth. Individual, non-pooled ROC curves differed 
significantly between subjects. Reducing the total voxel count for the 
analysis by narrowing the area of search did not yield better results 

FIGURE 5

Algorithm performance. (A) Boxplot with overlain dot plot displaying Dice coefficients of the automated lesion delineations (n = 108). (B) Scatter plot 
showing the relationship between manual ROI volume and Dice coefficient for the automated segmentation (n = 108). The line represents smoothed 
conditional means.

FIGURE 6

ROC Analysis. (A) ROC analysis to determine the optimal threshold for automated delineation of ischemic lesions (n  =  108). (B) Youden index plotted 
against individual and pooled ADC thresholds (n  =  108). Thick lines represent mean ROC curves across patients (blue for dilated DWI lesion and black 
for whole-brain parenchyma). TPR (true positive rate), FPR (false positive rate).
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(Figure 6). A high ADC value in the brain parenchyma and a low ADC 
value inside the lesion were associated with better diagnostic 
performance. A higher mean ADC in the surrounding brain parenchyma 
is likely to enhance contrast and lead to better lesion discrimination 
when thresholding is used. In our cohort, younger individuals had lower 
mean ADC values in the DWI lesion and brain parenchyma, the latter 
being a finding that has been extensively described in the literature (41, 
42). This relationship between ADC and age is a possible explanation for 
the worse performance of individual ADC thresholds in older patients.

As for most radiologic studies evaluating automated image 
recognition tools, one limitation of our study is the ground truth. As the 
human rater evaluates the infarcted tissue mainly by assessing the trace 
images, there are inherent differences in what is picked up by methods 
using ADC thresholds and what is seen by a human rater. Unlike 
previous studies, we  chose to focus on searching for a threshold to 
delineate the baseline DWI lesion rather than the “true” ischemic core 
(8). The reasons for this were twofold - firstly, follow-up imaging required 
for identifying the true ischemic core was unavailable for many of our 
patients (30/108). Secondly, the quality of coregistration between 
follow-up FLAIR images and baseline DWI was, after thorough testing, 
insufficient for voxelwise comparisons between the two. We nonetheless 
performed a volumetric comparison between baseline DWI lesions and 
available follow-up FLAIR lesions (see Supplementary Figure S4). 
We found that, similar to other studies, both manually and automatically 
delineated DWI lesions underestimated follow-up FLAIR lesions (43, 
44). Image preprocessing is commonly applied as part of MRI 
segmentation algorithms (45). Precisely how preprocessing is done 
affects the performance of ADC thresholds. We did not systematically 
assess the influence of different preprocessing parameters on 
performance because our goal was not to create a diagnostically superior 
algorithm but to characterize the diagnostic performance of ADC 
thresholds in general and investigate the factors that influence it. Though 
the sample size in our study is considerably larger than in previous 
studies, it is not large enough for detailed subgroup analysis.

5. Conclusion

Our study found that a single, generalized ADC threshold for 
automated acute infarct delineation does not consistently match an 
expert’s delineations. Several patient-and lesion-specific factors influence 
thresholding-based automated segmentation methods and can lead to 
heterogeneous performance. Our results suggest that research into 
automated acute infarct delineation should move away from attempting 
to find a single threshold applicable to all patients. Considering the 
inherent noisiness of ADC maps, ADC threshold-based automated 
delineation is particularly unreliable for very small lesions.
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