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Observational reinforcement learning in
children and young adults
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Julia M. Rodriguez Buritica 1,2,10 , Ben Eppinger1,3,4,5, Hauke R. Heekeren1,6, Eveline A. Crone7,8,9 &
Anna C. K. van Duijvenvoorde 8,9

Observational learning is essential for the acquisition of new behavior in educational practices and
daily life and serves as an important mechanism for human cognitive and social-emotional
development. However, we know little about its underlying neurocomputational mechanisms from a
developmental perspective. In this study we used model-based fMRI to investigate differences in
observational learning and individual learning between children and younger adults. Prediction errors
(PE), the difference between experienced and predicted outcomes, related positively to striatal and
ventral medial prefrontal cortex activation during individual learning and showed no age-related
differences. PE-related activation during observational learning was more pronounced when
outcomes were worse than predicted. Particularly, negative PE-coding in the dorsal medial prefrontal
cortex was stronger in adults compared to children and was associated with improved observational
learning in children and adults. The current findings pave the way to better understand observational
learning challenges across development and educational settings.

Numerous findings indicated that others have a strong impact on learning
and decision-making1–6. For instance, we may be swayed by the opinions of
others to adjust our norms on acceptable behavior. Alternatively, others
could be considered a source of information, as they can provide us with
valuable information about our environment. Learning from observing
others’s behaviors and outcomes may have benefits in dangerous or novel
environments, in which observational learning allows us to learn from the
actions and outcomes of others without having to engage in these (poten-
tially hazardous) behaviors ourselves. Social situations lend themselves well
for observational learning. That is, learning from others is ubiquitous on
playgrounds, in schools andother social environments, inwhichwehave the
opportunity to observe others behaviors and subsequent outcomes without
necessarily participating ourselves. However, compared to learning from
own experiences, the developmental mechanisms underlying observational
learning are poorly understood.

Several studies have examined how learning from own outcomes
changes with age7,8. Many studies observed that adults typically outperform
children during instrumental learning. That is, adults learn faster than
younger ages and choose the most rewarding option more often. This is

thought to be related to a developmental improvement in cognitive control,
including behaviors such as sustained attention and working memory,
which would benefit learning. It is yet unclear how a social observational
context influences this adult advantage. That is, children are shown to be
highly sensitive to the example of others, quickly copying behavior, parti-
culary of their own peers9. On the other hand, a previous observational
learning study showed that childrenmaynot process anduse informationof
others as efficiently as young adults in their learning and decisionmaking10.
These age-related differences in observational learning have been related to
differences in temporal processing of observed outcomes using electro-
encephalogram (EEG)9,10. Children, ages 8–10, showed larger electro-
physiological responses when observing peers as compared to adults5, but
compared to adults their electrophysiological responses did not change
according to their learning6, and they could not yet benefit in accuracy from
observed information as much as adults. What remains unresolved in the
current literature are the functional and computational processes support-
ing observational learning as compared to individual learning across
development. In this study, we therefore applied a model-based neuroi-
maging approach to observational learning across development, by
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combining reinforcement learning (RL) modeling and functional magnetic
resonance imaging (fMRI) in a children’s and adult age group.

Computational models of reinforcement learning haves been suc-
cessfully applied to understand reinforcement learning in adults and
children5,11–18. In thesemodels, learning is driven by prediction errors, which
reflect the mismatch between expected, Qa(t), and received outcomes, r(t),
per trial (t). Whenever an outcome is better (worse) than expected, the
model will generate a positive (negative) prediction error. Prediction errors
are thought of as important learning signals, and are shown to scale with
activity ofmidbrain dopamine neurons19–22. Theweight in which prediction
errors drive learning behavior is quantified by learning rates. High learning
rates allow prediction errors to quickly change the value of choice options.
Low learning rates result in slower updating and therefore a long-term
integration of outcomes in the value of choice options. In addition, RL
models typically include a temperature parameter that specifies how pre-
cisely one’s choices discriminate between the value of choice options, and
thus controls the specificity in choice behavior. Previous research involving
reinforcement learning models has yielded mixed results regarding age-
related differences in positive and negative learning rates8. Recent reviews,
however, indicate that choice specificity tends to consistently increase with
advancing age7,8.

In contrast to individual learning situations, observational learning is a
richer learning environment. For instance, behavior can be updated twice:
First, by an experiential prediction-error (as in standard reinforcement
learning) and secondby anobservational prediction-error.Where thefirst is
generated by one’s own outcomes, the latter is generated by the outcomes of
an observed other. Neuroimaging studies examining the underlying neural
mechanisms have suggested neural systems may be partly overlapping and
partly specific for learning from social and non-social outcomes5,16,23,24. That
is, whereas prediction errors in various learning paradigms have been
represented in brain regions such as the ventral striatum and ventral medial
prefrontal cortex (vmPFC)11,25–27, prediction errors in other brain regions
may bemore specialized for social learning. For instance, social learning has
been related specifically to the dorsal medial PFC (dmPFC)28,29 and anterior
cingulate cortex (ACC)11,12 with the latter representing other-related
reward-processing, and information on the consequences of actions of
others24,30. In addition, social learning has been related to brain regions
involved in mentalizing and modeling of others, such as the dmPFC,
temporal-parietal junction (TPJ), and posterior superior temporal sulcus
(pSTS)23. Recent studies highlighted the role of mentalizing particularly
in situations in which individuals are confronted with opposing preferences
and in which the mental state (goals, preferences, beliefs, or intentions) of
another person needs to be inferred14,28,31. This mentalizing network is also
thought to track trial-level updating during strategic social interactions12,32.

Until now, few studies have examined the computational and neural
correlates of age-related differences in social and non-social reinforcement
learning. We build on this previous work and extend this with the current
study: Here, we aim to examine age-related differences in the neural cor-
relates of observational and individual prediction errors. Including both
observational and individual learning allows us to examine age-related
differences in both learning situations, as well as to compare these learning
situations directly. To do so, we used functional magnetic resonance ima-
ging (fMRI) and a computational modeling approach. Thirty children
(8–10-year-olds, 18 female) and 30 young adults (18–20-year-olds, 16
female) participated in this study. For the youngest ages we focused on
middle childhood, including children between 8 and10 years. In thiswaywe
captured an important phase of age-related differences in controlling
responses towards positive and negative feedback33, and we built on pre-
vious EEG work on observational learning9,10.

Before the start of the experiment, participants met an age-matched
and same-sex peer who was introduced as the observed other player in the
task. Participants performed a probabilistic observational learning
paradigm9–11 (see Fig. 1). In this task, participants made repeated choices
between pairs (i.e., 8 in total per pair) of stimuli, where one stimulus was
associated with a high probability of reward (80% gains, 20% losses) and the

other was associated with a low probability of reward (20% gains, 80%
losses). Before participants could choose, they observed the other player
choosing between the same two stimuli. We manipulated the amount of
observable information of the other player across two learning conditions
with each three runs (eachwith 2 stimulus pairs per learning condition; thus
32 trials per run): In the individual learning condition participants received
no information about the behavior of the other individual; in the observa-
tional learning condition they could observe the other player’s actions and
outcomes before making their own choice. With this setup, we can better
understand how observed information of others is used for one’s own
learning.The four stimulus pairs (twoper condition)per runwerepresented
intermixed. To better understand and explain age-related differences in
learning in this task, we used a double update Q-learning algorithm11 that
captures learning fromboth other’s and ownoutcomes. Note that just in the
observational learning condition, Q-values could be updated in the obser-
vational stage as in the individual learning no outcome was displayed (see
Fig. 1; and Methods). Here, we included two independent learning rates
(αpos, αneg), separately for each valence (positive, negative) of the outcome
for both learning conditions. A higher learning rate means a quicker
updating of expected values and thereby faster learning. For both stages and
conditions, the probability of choosing option a from a stimulus pair (ab)
was computed using an inverse softmax function34 (seeMethods for further
details), were we estimate the inverse temperature (β)) indicating the spe-
cificity of the subject to differences in Q-values. Since β is the inverse tem-
perature, this means that higher values indicate a less deviations from
optimal choice behavior (i.e., a greater choice specificity). For the fMRI
analysesweused trial-level calculatedprediction errorswhenpresentedwith
own (actionphase in IL condition; Fig. 1) and others (observational phase in
OL condition; Fig. 1) outcomes derived from the median of the parameter
estimates (i.e., αpos, αneg and β) per age group (Fig. 2). Using a model-based
parametric fMRI approach, we examined which brain regions correlated
with prediction error activation.

Given our previous developmental work, we expected that both age-
groups benefitted from the additional observational information, although
adults are expected to outperform children in both conditions and are
expected to learn faster than children10. Based on work in adults, we expect
that RL-models can be used to describe individual and observational
learning across development, althoughduring observational learning choice
valueswill be updated twice11. Given previousmixed findings on age-related
differences in learning rates, we had no clear predictions here, but expected
that the inverse temperature parameter is sensitive to age-related
differences8. Based on previous developmental work, prediction-error
activation of own and observed outcomes is expected to be related to striatal
and medial prefrontal cortex activation across development9,10. Observa-
tional learning is expected to relate to the medial PFC including the ACC
and dmPFC5,11,12,23,24,30, and mentalizing regions such as the TPJ14,28,31.
Finally, whereas both age groupsmay benefit from observational compared
to individual learning, we expected greater neural differentiation between
own and observed outcomes in adults compared to children10,35, reflective of
greater efficiency of learning which is increased in observational situations.
Taken together,we include a computational approach to examine theneural
associations and age-related differences in observational versus individual
learning between children and adults.

Results
Performance differences in observational and individual learning
Oneparticipant (child) did notfinish the learning session in the scanner and
wasnot included in further analyses (seeMethods). Both age groups selected
the correct option (rewarded 80% of the time) more frequently than the
incorrect option (rewarded 20% of the time) and showed accuracies above
chance level in both learning conditions (four t-tests against chance level per
condition and per age group; all p’s <0.001). Performance was correlated
between the observational and individual learning condition (Persons’
r = 0.46, p < 0.001), indicating that individuals who performed well in the
observational condition, also performed well in the individual learning
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condition. Descriptively, 47 (24 children and 23 adults) out of 59 subjects
performed more accurately in the observational than the individual con-
dition, suggesting that most participants benefitted from the additional
observable information.

To test age group and condition effects on learning we analyzed choice
behavior (averaged across runs) using a mixed-effects general linear model
(controlling for intelligence) with the between subject predictor age group
(children, adults) and the within subject predictors learning condition
(individual, observational) and trial number (1:8), as well as all interaction
terms (seeMethods). The results of this analysis (see SupplementaryTable 1
for full model output and Fig. 2a for visualization) showed significant main
effects of learning condition (β = 0.12, t = 5.2, p < 0.001) and trial number
(β = 0.04, t = 3.0, p = 0.005), as well as a significant learning condition x trial
number interaction (β =−0.04, t = -2.2, p = 0.026). Post-hoc comparisons
per condition revealed that participants improved across trials in the indi-
vidual learning condition (β = 0.06, t = 6.3, p < 0.001), while performance
remained stable in the observational condition (see Fig. 2a; β = 0.004,
t = 0.43, p = 0.671). This suggests that learning from observing others
resulted in relatively high-performance levels early in the learning process,
while individual learning showed amore gradual improvement across trials.
We also found age-related differences: including a significant main effect of
age group (β = 0.1, t = 3.7, p < 0.001), as well as a significant age group x trial
number interaction, β = 0.04, t = 2.2, p = 0.031. Post-hoc comparisons per
age group revealed that adults improved across trials (β = 0.05, t = 4.6,
p < 0.001), while children showed limited improvement (see Fig. 2a;
β = 0.18, t = 1.75, p = 0.08). This indicates that adults generally

demonstrated greater accuracy improvement across trials compared to
children.No significant age by learning condition interactionswas observed
(p = .9). Thus, altough adults overall outperformed children, the age groups
benefitted to a similar degree from the additional observable information
(see Fig. 2a).

To ensure that differences in learning conditionswere not solely due to
varying information levels provided to participants (i.e., more information
in observational than individual learning condition), we conducted an
additionalmixed-model analysis. This analysis focused on an equal amount
of information in each learning condition, comparing trials 1–4 in the
observational learning condition (including 1/3/5/7 observed/received
outcomes) to trial 2,4,6, and 8 in the individual learning condition
(including 1/3/5/7 received outcomes). The results align with our main
analysis, indicating better performance in the observational learning con-
dition compared to the individual learning condition (main effect condition:
β = 0.06, t = 5.03, p < 0.001), across both age groups (age x condition
interaction: p = 0.8).

Computational parameter differences in individual and observa-
tional learning. Next, we examined age and learning condition effects on
computational parameters (i.e., αpos, αneg and β; see Methods). Higher
learning rates indicate that recent choice outcomes have a stronger effect
on future choices than less recent choice outcomes. The inverse tem-
perature indicates participants’ sensitivity to differences in these choice
values. Here, the higher the beta parameter, the less stochastic choice
behavior was.

Fig. 1 | Experimental design. Example of the trial procedure for the observation learning and individual learning condition.
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Robust mixed-effects analyses were used to test main and interaction
effects of age group, condition (IL, OL), and valence (Pos, Neg; only for
learning rates; see Fig. 2b andSupplementaryTable 2). Findings showed that
positive and negative learning rates differed significantly across learning
conditions (β = 0.75, t = 3.4, p < 0.001, main effect of valence) with both
learning rates were higher for positive (median = 0.78) than negative out-
comes (median = 0.2). No significant main effect of condition, age, or any
interactions with age and condition were observed (all p’s > 0.7). A similar
analysis on the inverse temperature parameter (see Fig. 2b and Supple-
mentary Table 3) showed that participants followed choice values more
optimally in the observational (median = 2.14) than individual learning
(median = 1.03) condition (main effect condition, β = 0.95, t = 7.4,
p < 0.001). Amain effect of age group showed that children (median = 1.13)
were less optimal in their choice behavior than adults (median = 2.18;
β = 0.91, t = 4.5, p < 0.001). No age x condition effect was observed (p = 0.9).

Age group and condition differences in prediction-error
activation
Weanalyzed neural activation related to prediction error coding (entered as
a signedcontinuous trial-by-trial predictor)whenparticipants received their
own outcomes (Fig. 1, individual learning condition action phase) and
others’ outcomes (Fig. 1, observational learning condition observational
phase). We initially examined whether there were brain regions that
responded differently to prediction errors in individual learning and
observational learning conditions. Results showed that individual compared
toobservational prediction errorsweremore strongly related to activation in

the vmPFC (pFWE’s < 0.05), the left lateral PFC (pFWE’s < 0.05), the
bilateral striatum, and bilateral parietal cortex (pFWE’s < 0.001; see Fig. 3;
and Supplementary Table 4). No brain regions correlated stronger to
observational than individual prediction errors (all pFWE’s > 0.05).

Next, we examined with a whole-brain ANOVA whether this differ-
ence in prediction error activation between individual and observational
learning conditions was sensitivity to age group differences. An age
group × learning condition interaction was observed in the left TPJ/inferior
parietal cortex (pFWE< 0.05; learning condition (IL > OL) × age (adults >
children) contrast). Follow-up tests per age group showed that the TPJ/
inferiorparietal cortexdifferently responded to individual andobservational
prediction errors in adults compared to children: That is, prediction errors
related to increased TPJ activation when other’s outcomes were worse than
expected and to increased activation when own outcomes were better than
expected in adults (t(29) = 5.07, p < 0.001). This differentiation was not
observed in in children (p = 0.15; see Fig. 4; and Supplementary Table 5).

Age effects in observational and individual prediction error activa-
tion. We first used a whole-brain F-test (pFWE < 0.05). to examine both
positive correlations with prediction error activation (i.e., regions where
activation increased with larger positive prediction errors) and negative
correlations with prediction error activation (i.e., regions where activa-
tion increased with larger negative prediction errors) within each
learning condition. The results revealed that in the observational learning
condition, prediction errors were associated with activation in the right
lateral PFC, right inferior parietal, and right insula (see Fig. 5a and
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Fig. 2 | Performance and computational parameter differences in individual and
observational learning. aProportion correct choice (Pc). Pc displayed separately for
the two age groups (adults, children) and learning conditions (individual (IL),
observational (OL)). Data were averaged into four bins (across eight trials). Error

bars reflect the SEM.Grey lines reflect individual learning differences between IL and
OL condition. b Parameter estimates of the best fitting model across age groups.
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Supplementary Table 6). Similarly, in the individual learning condition, a
comparable whole-brain analysis indicated that prediction errors were
positively correlated with activation in the ventral medial prefrontal
cortex, striatum, and parietal cortex (see Fig. 5b and Supplementary
Table 7).

Since our focuswasonagedifferences,we thencompared age groups in
prediction error-associated brain activation for the observational and
individual learning conditions. A whole-brain t-test comparing children
versus adults revealed that observational prediction errors were more
strongly represented in adults than in children in the dmPFC, dorsolateral

Fig. 3 | Activation clusters whole-brain effects for individual
PE > observational PE. Results are displayed at Family-Wise Error (FWE) cluster-
corrected p < 0.05, with an initial cluster forming threshold of p < 0.001. For
visualization we extracted the beta-values from the whole-brain condition effect

from regions of interest. Since our activation spanned multiple subcortical anato-
mical regions, the functional activation from the subcortical cluster is overlaid with a
nucleus accumbens (ventral striatum) anatomical mask.

Fig. 4 | Activation clusters whole-brain analyses on PE-related activation:
learning condition (IL > OL) × age (adults > children). Results are displayed at
Family-Wise Error (FWE) cluster-corrected p < 0.05, with an initial cluster forming

threshold of p < 0.001. For visualization we extracted the beta-values from the whole
brain interaction effect of learning condition × age. Significant differences of follow-
up tests are marked here (***p < 0.001).
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PFC, right inferior parietal cortex, and right insula (see Fig. 6 and Supple-
mentary Table 8). As can be seen in Fig. 6, more negative prediction errors
resulting in stronger PE-related activation.We also compared age groups in
the IL condition, but no significant age differences were observed.

Brain-behavioral relations: relating learning performance to pre-
diction error activation. Lastly, we investigated the extent to which age
differences in learning behavior were associated with prediction-error-
related brain activation. To achieve this, we extracted parameter esti-
mates from clusters responsive to both individual and observational
learning conditions (as shown in Fig. 5), as well as clusters indicating an
age-by-condition interaction (i.e., TPJ; as shown in Fig. 4). We employed
a linear regression analysis for each region of interest to examine the
relationship between prediction error activation and learning accuracy in
both individual learning and observational learning conditions. Addi-
tionally, we included interactions with age groups to assess whether this
relationship varied across different age groups (further details can be
found in the Methods section and Supplementary Table 9). To account
for multiple linear regressions, we applied an FDR correction across all
behavior-brain regression analyses.

Learning accuracy in the observational learning conditionwas found to
be correlated with observation prediction-error activation in the dmPFC
(β =−1.12, t =−3.79, p < 0.001; see Fig. 7) and the right dlPFC (p = 0.037;
see Supplementary Fig. 2a), but not with the right inferior parietal cortex or
the right insula (p’s > 0.596; see Supplementary Table 9 for further details).
Only the brain-behavior relationship in the dmPFC (not dlPFC) remained
significant after multiple comparison correction. This association between
dmPFC activation and task performance was consistent across age groups
(performance × age group: p = 0.558). Thus, improved learning in the
observational learning condition was linked to a stronger prediction-error
response in the dmPFC (see Fig. 7) for both children and adults. It is
important to note that individual learning performance was included as a
covariate in this regression analysis, indicating that this association appears
to be specific to observational learning performance (Supplementary
Table 9).

Learning accuracy in the individual learning condition, after control-
ling for observational learning performance, was associated with individual
prediction error activation in the left parietal cortex (β = 0.98, p = .007; see
Supplementary Fig. 2b). However, this relationship did not survivemultiple
comparison correction. No significant relationships were observed between

Fig. 5 | Activation clusters for PEs relative to (implicit) baseline. a observational
PE activation andb individual PE activation, displayed based on awhole-brain F-test
(pFWE <0.05) Observational PE activation showed negative correlations with brain
activation (i.e., greater negative PEs resulted in larger activation, see bar charts of

extracted beta-values Supplementary Fig. 1). Individual PE activation showed
positive correlations with brain activation (i.e., greater positive PEs resulted in larger
activation, see bar charts of extracted beta-values Supplementary Fig. 1).

Fig. 6 | Age differences observational PEs: adults vs. children.This figure displays age-group differences in observational PEs with a whole-brain t-test at qFDR < 0.05 with
a primary voxel-wise threshold of p < 0.001. For visualization we extracted the beta-values from the whole-brain effects per age-group. Error bars reflect the SEM.

https://doi.org/10.1038/s41539-024-00227-9 Article

npj Science of Learning |            (2024) 9:18 6



individual learning accuracy and activation in the vmPFCor striatal regions,
nor in the right inferior parietal/TPJ (p’s > 0.076; Supplementary Table 9).

Discussion
In this study we examined the behavioral and neural mechanisms under-
lying observational and individual reinforcement learning in 8–10-year-old
children and young adults. Overall, we found that adults compared to
children showed faster learning, better performance, and they were more
optimally following the value of choice options across learning conditions
(see Fig. 2). As expected, both age groups benefitted from observing other’s
choices and outcomes. However, in contrast to our expectations, adults and
childrenbenefited to a similar degree fromobservingothers behavior during
learning and learning in observational versus individual conditions did not
vary across development. To better understand the computational and
neurobiological processes underlying learning we used reinforcement
learning (RL) model in combination with fMRI. We observed that beha-
vioral updating (as indicated by learning rates derived from the RL model
fitting) did not differ across condition, and age, and both conditions and age
groups showed higher learning rates from positive compared to negative
feedback in both learning conditions. Choice behavior in children was
generally less value-driven than in adults, and therefore showed more
random, or potentially more exploratory, choice behavior. In addition,
choice behavior wasmore value-driven in the observational than individual
learning. Model-based parametric fMRI analyses complemented these
behavioral insights. Observational and individual prediction errors were
reflected in partly distinct (vmPFC, striatum), and (for adults) in partly
overlapping brain regions, such as the temporal-parietal junction. Age-
relateddifferenceswere observed inobservational prediction error coding in
the dorsal medial prefrontal cortex, dorsal-lateral prefrontal cortex, parietal
cortex, and insula cortex; regions closely related to cognitive control, social
cognition, and social learning24,30. Moreover, only observational prediction
error signals in the dmPFC correlated with observational compared to
individual learning performance in both children and adults. This finding
underlines the relevance of the dmPFC when learning from others.

Our behavioral results supported previously observed age-related dif-
ferences in instrumental learning. In line with other developmental studies
adults outperformed children in both individual and observational learning
conditions. Children learned slower than adults10,36–40 and their choice
behavior was more stochastic and less value-driven41,42. This decrease in
stochasticity across age is one of the most consistent findings observed in
reinforcement learning7,8. Potentially, this may relate to an increase in
maintaining sustained attention, or improvedworkingmemory, accelerated

by a developmental improvement in cognitive control. Alternatively, chil-
drenmay bemore stochastic because they aremore explorative than adults.
Theoretical work suggested that higher exploration provides children with
more learning opportunities and could allow them to quickly discover
changes in environments43. With the current task design, stochasticity and
exploration cannot be easily distinguished.Whether age-related differences
in stochasticity are valuable for exploration in social- and non-social
learning environments, should be addressed in future studies. Interestingly,
our behavioral findings indicate that both children and adults can learn
from observing other’s outcomes: All ages increase their updating after
positive and negative feedback during observational learning, and all age
groups benefit in performance in observational compared to individual
learning. The adults’ advantage in reinforcement learning may therefore be
reflected in more value-driven choice behavior.

Our brain-based results complement and extend these behavioral
findings. First, our results showed age-related differences in the temporal-
parietal region. Unexpectedly, this regionwas sensitive to observational and
individual prediction errors in adults (although differently signed), but not
in children. In adults, prediction errors correlated positively with brain
activation in the TPJ during individual learning (indicating greater positive
prediction errors resulted in greater activation), and negatively with brain
activation during observational learning (indicating greater negative pre-
diction errors resulted in greater activation). This supports findings sup-
ports prior findings that the TPJ is associated with other’s and one’s own
associations44, self-other distinctions45 and that it can be linked in a valence-
specific way to social and self-related prediction errors. However, in the
current study prediction error related activation in the TPJ did not relate to
age-related differences in behavioral performance. Future research will
therefore need to replicate and extend thesefindings on the role of theTPJ in
instrumental learning.

Second, our findings showed that observational prediction errors
were related to neural activation in frontal regions including the dorsal
medial PFC and dorsolateral PFC. and that that these relations were
stronger for adults compared to children. Our finding that the medial
prefrontal region is related to observational prediction error signaling
in adults and children concurs with a broader framework, which links
theACC and dmPFC to a variety of social learning and decision-making
skills24,30, such as outcome prediction error for confederate’s advice31,
mentalizing32,46, and egocentric and allocentric outcomes of social
decisions24,47. It has also been suggested that the role of different sub-
regions of the mPFC may be more specific than previously recognized,
and a more rostral part of the anterior cingulate cortex gyrus and
dorsomedial prefrontal regions could be particularly specialized for
observational prediction errors5,23,24,28,48,49. In addition, we observed that
prediction-error activation in dmPFC related to performance in the
observational learning condition in both children and adults (see Fig. 7).
This may indicate an important role of the dmPFC for behavioral
improvements in observational learning across age, although this does
not necessarily relate to the observed age-related improvement in
instrumental learning. Interestingly, prediction-error activation in the
observational learning condition mostly increased when outcomes for
others were worse than expected (see also11). This finding may be
interpreted in multiple ways. Possibly, the current setup led to an
experienced competitiveness between the observer and observed indi-
vidual, although it was explicitly instructed that participants were
neither in competition nor dependent on the behavior of the observed
other (e.g.11,50,). Alternatively, seeing others lose may simply be a
stronger learning signal. These directional effects were present across
frontoparietal regions, indicating that these regions may be jointly
involved in social comparison processes.

Finally, individual learning situations resulted in specific prediction-
error related activation in the vmPFC, the left lateral PFC, the bilateral
striatum, and bilateral parietal cortex (see Fig. 3)10,35,51. This supports pre-
vious findings and highlights there may be limited age-related differences
per se in prediction error activation27,40. Whether adolescence is a period of

Fig. 7 | Brain-behavior relationship: observational PE. Scatter plot showing that
more negative PE-related activation in the dmPFCwas related to better performance
during observational learning for both age groups. Shaded areas reflect 95% con-
fidence intervals.
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heightened activation in reward-related learning environments as suggested
by other studies52–54, is something that future research using samples with a
wider, and more continuous, age range should disentangle.

Although our results confirmed several age-related findings from
previous studies on individual and observational learning9,10, some of the
results were unexpected. For instance, in contrast to previous findings on
observational learning10, we did not find age-related performance differ-
ences between learning conditions. It seems viable that differences to results
of previous studies arise because of the administered paradigm to make the
task amenable for fMRI. For instance, in the previous EEG-studies the task
was more complex in terms of learning conditions (i.e., another third
condition was included) and more difficult as the timing was faster (i.e., no
jitters were included). Moreover, when administering a social and non-
social learning conditions an important question is to what extent findings
are specific to social learning or reflective of more general learning
processes48. In our experimental setup children and adults learn indirectly
from others. To create a social learning setting, we informed participants
that they could learn from another participant they met before the experi-
ment, and they observe the other’s photo and name during the experiment.
Varying the age of the other participant, in a previous study9, using the same
social learning setting and task, we demonstrated that similarity in age
(same-aged child vs. young adult) between the observed player and the
observer influenced both behavioral and neural responses in 8-10 year olds.
Building on these findings and because participants judged others as being
similar to themselves (see Methods) we argue that it is likely that the par-
ticipants perceived the observational learning conditions as social learning
conditions rather than conditions in which they simply received only more
information. Based on these considerations we would like to a few recom-
mendations for future developmental studies on observational learning:

First, future studies should take the social context intoaccount inwhich
children learn “indirect” observational learning (e.g., observing others’
choices andoutcomes in absence of the otherplayer) in comparison todirect
observational learning (e.g., “directly” observing others’ choices and out-
comes in presence of the other player). Secondly, it is important to compare
active individual learning toobservational learning,where participants learn
purely passively from observed information (i.e., without the ability to
evaluate this information immediately after the observational phase on a
trial-by-trial basis, as was done in this study). This allows for a more direct
comparison of both learning processes based on a similar amount of
information, which is not achievable in the current task design. Finally, we
observed that our age groups differed in fluid intelligence. Children showed
higher age-normed intelligence scores than adults, which may have influ-
enced age-related differences in performance and neural activation.
Although controlling for intelligence in our behavioral analyses did not
change our main findings, future studies may address to what extent task
difficulties and intelligence relate to age-related differences in observational
learning. For instance, learning condition differences associated with pre-
diction error activationmight be related to greater task difficulty and higher
cognitive load when learning from own outcomes. This could be linked to
higher neural activation as task difficulty increases55–57.

To summarize, our findings show that learning from the outcomes of
others, particularlywhenoutcomeswereworse than expected,was related to
neural activation in the dmPFC, dlPFC and temporal-parietal activation
whichwasmore pronounced in adults than children.Here, only the dmPFC
related to performance in observational learning for both children and
adults. These findings confirm and extend the functional role of the medial
PFC to a social observational learning context and specify its functional
relevance for social learning for children and adults.

Methods
Participants
Thirty 18–20-year-old adults and 30 8–10-year-old children participated in
the study. Data of one child was excluded due to inability to complete the
task. For occasional occurringheadmotion (Framewise displacements >0.5)
volumes with motion were flagged and were not included in regressors of

interest but insteadmodeled by nuisance regressors (i.e., censored), number
of censored volumes regressors varied between 2–12 (<10% of volumes).
The final sample consisted of 30 adults (Age Mean (SD) = 19.45 (0.86); 16
female) and 29 children (Age Mean (SD) = 9.71 (0.89); 18 female). All
participants were right-handed, had normal or corrected-to-normal vision,
were screened for MRI contra-indications, and had no neurological or
psychological disorders. Prior to the experiment we obtained informed
written consent from the participants and bothparents (in case of children).
The study was approved by the Ethics Committee of the Leiden University
Medical Center (LUMC). All anatomical MRI scans were reviewed and
cleared by a radiologist from the radiology department of the LUMC. No
anomalous findings were reported.

Subjects participated in one experimental session in which we assessed
psychometric covariate measures not specific to the current study, and
observational learning performance inside the MR scanner. Participants
were recruited through local advertisements and received a compensation.
Participants’ intelligence (IQ) was estimated with the subsets ‘similarities’
and ‘block design’ of the Wechsler Intelligence Scale for Children, third
edition (WISC-III58). For both age groups, estimated IQswere in the normal
to high range (Adults: Mean IQ (SD) = 106.67 (8.82), Range = 87.5–122.5;
Children: Mean IQ (SD) = 112.76 (11.96), Range = 87.5–132.5). IQ did
differ between age groups: Children showed higher IQ scores than adults (F
(1, 57) = 4.952, p = 0.03, ηp

2 = 0.08). IQ is controlled for in all behavioral
analyses.

Experimental design
We used a probabilistic reward-based observational learning paradigm9,11

(see Fig. 1; controlled by PsychToolBox-359). Participants were asked to
choose one out of two abstract stimuli60. One stimulus was associated with a
high probability of receiving reward (80% gains, 20% losses) and one
associated with a low reward probability (20% gains, 80% losses). Before
participants could choose, they observed an age- and gender-matched peer
(who they met before starting the task) choosing between the same two
abstract stimuli. Participants were told that the other player had already
performed the task and that they could observe the recorded choices. In
order to assess the credibility of our social manipulation we assessed par-
ticipants perception of the other player at the end of the experiment.Almost
all participants (93%) reported that they paid attention to the other player
and on a 7-point Likert-scale (see Supplementary Fig. 3), that watching the
other helped them for learning and that they judged the other as highly
similar to themselves, reliable and believable (p’s < 0.001; one-sampled
Wilcoxon tests for non-parametric data against 3.5). Age groups did not
differ in their rating (unpaired Wilcoxon tests for non-parametric data;
p’s > 0.06). However, unbeknownst to participants the observed choices
were computer generated using a RLmodel (see Supplementary Fig. 4). The
computer-controlled behavior of the model players was associated with the
objective percentage of probabilistic positive or negative outcomes asso-
ciated with each of the stimuli (see supplementary files9,10). The amount of
observable information of the other player was manipulated across two
learning conditions: Observational learning (observing both, the other
player’s actions andoutcomes; shortOL) and individual learning (observing
neither actions nor outcomes of the other player; short IL). In each condi-
tion, the trials followed the general structure of an observational phase that
was followedby an action phase. That is, in theOL condition the participant
would be first presented with a fixation cross for a variable amount of time
per trial (not shown in Fig. 1). This jitter varied exponentially from 1 s to 8 s
andwas followed by a picture of the other person (i.e., precue of 1 s) and the
presentation of a stimulus pair. By pressing a button with the ring finger of
the right hand the other’s choices were revealed. Responses had to be given
within a 2 s window and indicated by a white selection frame (i.e., 2 s –
response time; see Fig. 1), which was followed by a 1 s outcome display
representing the outcome of the other’s choice. Then, the action phase
startedwith a fixation cross (i.e., jitter of 1–8 s) and then participants viewed
his/her own picture (1 s), after which the same stimulus pair was presented.
Participants could choose either the left or the right stimulus by pressing a
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button with the index or middle finger of the right hand. Again, responses
had to be given within a 2 s window, which was followed by a 1 s outcome
display. If no responsewas givenwithin 2 s, in either the observational or the
action phase of any condition the words “too slow” were presented on the
screen. This happened rarely for adults (Mtrials = 2.41, SD = 2.27) and
children (Mtrials = 6.89, SD = 5.54).

The IL condition followed the same timing and structure as the OL
condition and participants also pressed a button when stimuli were pre-
sented in the observational phase, yet no choice (i.e., in this case both
possible choices were surrounded by a white selection frame) or outcome
informationof the otherwerepresented. Each conditionwas associatedwith
two unique stimulus pairs per run and the order of conditionswasmixed. In
total, every pair was presented for eight trials per run (resulting in 32 trials
and four abstract stimulus pairs per run). The four stimulus pairs (two per
condition) per run were presented intermixed. Participants played in total
three runs of approximately nine minutes each with 48 trials per learning
condition (resulting in 96 trials with 16 abstract stimulus pairs in total). For
five participants one run was excluded in further analyses because of high
occasional motion (>10% of censored volumes per run). Participants were
instructed to earn as many points as possible (as indicated by receiving a
positive outcome signal) but were also informed that it was not possible to
gain points on every trial, clarifying the probabilistic nature of the task.
Before performing the task in the MRI, participants practiced the task for
one run length.

Reinforcement learning models
Learning action-outcome-contingencies can be computationally captured
using RL models18. During RL learning the discrepancy between expected
outcomeon trial (t),Qa(t), and the actually receivedoutcomeon trial (t), r(t),
is called prediction error (PE):

Prediction error ¼ r tð Þ � Qa tð Þ ð1Þ

If outcomes are better (worse) than expected, themodelwill generate a
positive (negative) PE, which is used to increase (decrease) the predicted
value, Qa(t), associated with the chosen option a in the current trial t.
Positive and negative outcomes received in each trial are used to update the
predicted values of both options a (Eq. (2)) and b (Eq. (3))61,62:

Qa t þ 1ð Þ ¼ Qa tð Þ þ α½r tð Þ � Qa tð Þ� ð2Þ

Qb t þ 1ð Þ ¼ Qb tð Þ þ α½�r tð Þ � Qb tð Þ� ð3Þ

Thus, for the value of the unchosen option b (Eq. (3)) the counter-
factural outcome is taken into account. The impact of the PE’s on forming
new expectations is scaled by the learning rate α. A high learning rate (~1)
indicates that a new experience (i.e., PE) has a stronger impact on future
predictions whereas a low learning rate (~0) means that a PE only weakly
influences the expected value and thereby choice behavior. Based on pre-
vious developmental studies, we included two independent learning rates
for positive (αpos) and negative outcomes (αneg) to describe the learning
behavior in the individual condition across development40,63.

For the OL condition, we extended the RL-algorithm used in the IL
condition to describe social influences during learning: Learning from
other’s choices and outcomes (see supplementary files for model compar-
isons andmodel recovery) was best captured by using a dual-updatemodel,
one updating phase for the observational (Eq. (4)) and one for action stage
(Eq. (5)) as described in64.

Observational stage : Qa t þ 1ð Þ ¼ Qa tð Þ þ α½rOther tð Þ � Qa tð Þ� ð4Þ

Action stage : Qa t þ 1ð Þ ¼ Qa tð Þ þ α½rOwn tð Þ � Qa tð Þ� ð5Þ

Similarly, to the RL models used in the individual condition we
included two independent learning rates (αpos, αneg) in the OL condition. A

higher learning rate thus means a quicker updating of expected values and
thereby faster learning. For both stages and conditions, the probability of
choosing option a from a stimulus pair (ab) was computed using a softmax
function (Eq. (6))34:

Pa ¼
eQaðtÞ × β

eQaðtÞ × β þ eQbðtÞ × β
ð6Þ

Theprobability of selecting optiona is influencedby the expected value
Q of option a in trial t divided by the sum of the expected values of all
possible options (a and b). The β parameter in this equation reflects the
sensitivity of the subject to differences in expected value. Here, a lower β
parameter indicates more stochastic responding.

Formodel comparisonswe evaluated a set of alternativeRL-algorithms
(i.e., baseline RL-model with one learning rate (α), model with separate
learning rates for positive (αpos) and negative outcomes and (αneg)

40,65 and a
model with separate learning rates for observational and action stage; see
supplementaryfiles, SupplementaryTable 10 andSupplementaryFig. 5).All
learning rates (α, αpos and αneg) and the noise parameter (β) per condition
were individually estimated by fitting themodel predictions to participants’
choices (see supplementary files for further details on the model fitting
procedure). The β parameters were fit with constraints between [0 5]. The α
parameters were constrained between [0 1]. For model selection purposes,
we computed theBayesian information criterion (BIC)across all subjects for
the different models, where lower BIC values indicate better fit (see ref. 66).
For both learning conditions (i.e., IL andOL) the bestfittingmodel across all
subjects included two independent learning rates (αpos, αneg) and the noise
parameter (β) (see supplementary files for further details and S2 for an
overviewof allmodel comparisons andparameter estimates permodel). For
themodel-based fMRIanalysesweused themedianparameter estimatesper
age group (Fig. 2) of the bestfittingmodel per learning condition to calculate
trial-by-trial PEs11,62,67–69. In imaging analyses PEs were scaled and mean-
centered.

To explore the validity of the RL models and the model selection
procedure, we performed 1)model and 2) parameter recovery analyses (see
supplementary files and Supplementary Fig. 6 for further details). As part of
quality control, we further performed simulations using the individual
parameter estimates for each subject for the best fitting model. The simu-
lations indicated that the bestfittingmodel per conditionwas able to capture
learning on a trial-by-trial level in each age group (see supplementary files
for further details and Supplementary Fig. 7).

Behavioral data analysis
Choice behavior was analyzed using a mixed-effects generalized linear
model as implemented in the lme4 package in R70. Accuracy (proportion of
optimal choice) was averaged across runs and modeled using the between-
subjects predictor age group and the within-subjects predictors learning
condition (IL, OL) and trial number (1:8).

Mixed effects model formula:

Accuracy∼ age group � learning condition � trial þ intelligence

þð1þ learning conditionþ trialjidÞ ð7Þ

We treated the between-subjects predictor age group as a fixed effects
factor,whereas allwithin-subjects’predictors of interestwere treatedasfixed
and random effects at the individual subject level. We additionally included
intelligence as predictor to control for age differences in intelligence. The
categorical predictors were contrast-coded, the continuous predictor trial
was mean-centered. Regression weights (beta values), z-values and corre-
sponding p-values are reported (see Supplementary Table 1).

The learning rates and inverse temperature of the best fitting models
per conditions across age were significantly non-normally distributed
(p’s < 0.05). Thus, we used robust mixed effects model to test for age and
condition effects on learning rates and inverse temperature, respectively as
implemented in the robustlmm package (see Supplementary Tables
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2 and 3). Note that due to convergence problems we use a simpler fixed and
random effect structure in these models (see Eq. (8)).

Mixed effects model formula (example):

Learning Rate∼ age group � conditionþ age group � valence
þcondition � valenceþ intelligenceþ ð1jidÞ ð8Þ

Finally, we assessed whether behavior per condition (i.e., accuracy)
related to condition-specific prediction-error activation. We used multiple
linear regression models predicting PE activation by proportion of optimal
choice (accuracy), age, and their interaction, controlling for learning in the
other condition, and intelligence. The categorical predictors were contrast-
coded, the continuous predictor trial was mean-centered. Regression
weights (beta values), z-values and corresponding p-values are reported (see
supplementary files and Supplementary Table 9). P-values in brain-
behavioral analyses were considered significant when evaluated against an
FDR-corrected threshold that included all effects across the multiple ROIs
(8) that were examined.

Multiple linear models’ formula (example):

PE activationOL∼ age group � accuracy OLþ accuracy ILþ intelligence

ð9Þ

MRI data acquisition
MRIdatawere acquiredwith a standardwhole-head coil using a 3-TPhilips
Achieva scanner. T2*-weighted echoplanar images (EPIs) were obtained
during three functional runs, in which the first two volumes were discarded
to allow for equilibration of T1 saturation effects. Volumes covered the
whole brain (38 slices; 2.75mm slice thickness; ascending acquisition) and
were acquired every 2200ms (TE = 30ms). A high resolution T1-weighted
anatomical scan was included at the end of the imaging protocol (140 slices;
TR = 9.76ms; TE = 4.59ms;flip angle = 8°; FOV = 224 × 177.33 × 168mm;
in-plane resolution = 0.875 × 0.875mm; slice thickness = 2mm). Visual
stimuli were projected onto a screen that was visible for participants via a
mirror attached to the head coil. Before the experiment, children were
trained with a mock-scanning procedure. All participants were reminded
during the session not to move during scanning, and head motion was
restricted by using foam padding.

fMRI preprocessing and model specification
Data preprocessing and analysis were conducted using SPM8 (Welcome
Department of Cognitive Neurology, London). Images were corrected for
differences in timing of slice acquisition, followed by rigid body motion
correction. The T1 structural image was co-registered to the functional
images and segmented according to gray matter, white matter, and cere-
brospinal fluid. Functional images were then spatially normalized using the
normalization parameters obtained from the segmentation procedure. The
normalization algorithm used a 12-parameter affine transformation toge-
ther with a nonlinear transformation involving cosine basis functions.
During normalization the data was re-sampled to 3-mm cubic voxels.
Templates were based on the MNI305 stereotaxic space71. Functional
volumeswere smoothedwith a 6-mm full-width at halfmaximum isotropic
Gaussian kernel. Statistical analyses were performed on individual subjects’
data using the General Linear Model (GLM).

To investigate the neural responses to own and other’s outcomes and
PE’s, we modeled in separate regressors the onset of the choice stimuli with
the reaction time as the duration in the observational and the action phase
for both conditions. Choice value, derived from the reinforcement learning
model,was includedas aparametricmodulator of the choice regressor in the
observational (OL), and of the choice regressor in the action phase (OL, IL).
The onset of the outcome was modeled with a stick function. Separate
outcome regressors were created for own and other’s outcomes in the OL
condition, and for own and no-outcomes in the IL condition. In addition,
three outcome regressors (own and other’s outcomes in the OL, and own

outcomes in the IL condition) included a parametric modulation of trial-
wise PE’s derived from the reinforcement learning model. Trials in which
participants did not respond on time and censored motion trials were
modeled separately as regressors of no interest. Finally, 6 head-motion
parameters were included as nuisance regressors.

Our main analyses include the comparison between own outcomes in
the IL (action phase), and other’s outcomes in the OL condition (observa-
tional phase, see Fig. 1). For completeness we include whole-brain maps of
the non-modulated feedback event in Supplementary Fig. 8. As a control
analysis to investigate whether substantial differences would arise when
considering one’s own outcomes in the IL andOL conditions, we compared
PE-related activation for self-outcomes in both conditions (further details
can be found in the supplementary files and Supplementary Fig. 9). It is
important to note that PE activation patterns largely overlapped, and no
significant differences were observed. We chose to use data from the IL
condition exclusively tomaintain a similar number of trials entered into the
analysis. Also, the action phase in the IL condition is less affected by the
information from the observational phase.

Unless stated otherwise, whole-brain results comparing learning
conditions were considered significant if they exceeded an FWE cluster-
corrected threshold of p < 0.05, with an initial threshold of p < 0.001. Age-
related differences were tested with an FDR cluster-corrected threshold of
p < 0.05, with an initial threshold of p < 0.001. We used the MarsBaR
toolbox72 for SPM8 to extract beta-values fromcluster of activation observed
in our contrasts of interest, whichwere used in subsequent correlationswith
performance and parameter estimates.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The data that support the findings of this study can be found in the Leiden
Repository (https://doi.org/10.34894/W4WMPZ).

Code availability
All relevant R codes can be found in the Leiden Repository (https://doi.org/
10.34894/W4WMPZ).
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