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Abstract
For decades, frustrated quantum magnets have been a seed for scientific progress and innovation
in condensed matter. As much as the numerical tools for low-dimensional quantum magnetism
have thrived and improved in recent years due to breakthroughs inspired by quantum
information and quantum computation, higher-dimensional quantum magnetism can be
considered as the final frontier, where strong quantum entanglement, multiple ordering
channels, and manifold ways of paramagnetism culminate. At the same time, efforts in crystal
synthesis have induced a significant increase in the number of tangible frustrated magnets which
are generically three-dimensional in nature, creating an urgent need for quantitative theoretical
modeling. We review the pseudo-fermion (PF) and pseudo-Majorana (PM) functional
renormalization group (FRG) and their specific ability to address higher-dimensional frustrated
quantum magnetism. First developed more than a decade ago, the PFFRG interprets a
Heisenberg model Hamiltonian in terms of Abrikosov pseudofermions, which is then treated in
a diagrammatic resummation scheme formulated as a renormalization group flow of m-particle
pseudofermion vertices. The article reviews the state of the art of PFFRG and PMFRG and
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discusses their application to exemplary domains of frustrated magnetism, but most importantly,
it makes the algorithmic and implementation details of these methods accessible to everyone.
By thus lowering the entry barrier to their application, we hope that this review will contribute
towards establishing PFFRG and PMFRG as the numerical methods for addressing frustrated
quantum magnetism in higher spatial dimensions.

Keywords: quantum many-body methods, functional renormalization group,
strongly correlated systems, frustrated magnetism, spin models, quantum spin liquids

1. Introduction

In condensed matter physics, quantum-many body systems
can give rise to remarkable collective states of matter that
have no classical counterparts, such as superconductors [1],
superfluids [2] or quantum spin liquids [3]. But connecting
such complex emergent behavior to a microscopic picture
in terms of short-ranged interactions between the element-
ary quantum mechanical degrees of freedom has, to this day,
remained a fundamental challenge. Analytical approaches can
often provide initial guidance and crude understanding on the
level of mean-field theory or effective field theory descrip-
tions, but their validity and underlying abstractions are often
a matter of debate. Instead, unbiased numerical simulations
are called for in verifying these assumptions and providing
quantitative guidance, e.g. by mapping out phase diagrams
(in terms of the microscopic interactions) and identifying the
respective phase transitions. This has led to a remarkable string
of method development including the expansion of Monte
Carlo simulation techniques to the quantum realm [4], the
development of dynamical mean-field theory [5], the formula-
tion of entanglement-based variational approaches such as the
density matrix-renormalization group [6] and tensor network
approaches [7], andmost recently their combinationwith ideas
from machine learning [8, 9]. Over the past three decades, this
combination of analytical and numerical approaches has led
to remarkable progress in understanding the general features
of collective states of quantum systems constituted by bosonic
degrees of freedom, such as a broad class of quantum magnets
or ultracold atomic systems.

However, there are a number of important outstanding
problems that have for decades resisted solution, most prom-
inently the many-fermion problem. The quantum statistics,
which sets fermions apart from bosons, has profound implic-
ations not only on the intricate nodal structure of quantum
mechanical wavefunctions of many-fermion systems and the
resulting, enticingly complex variety of fermionic ground
states but also on the ability to simulate many-fermion sys-
tems with the most powerful, unbiased numerical approach to
quantummany-body systems—quantumMonte Carlo simula-
tions. As realized early on, the fermionic exchange statistics
leads to the infamous sign problem [10], i.e. the occurrence
of negative statistical weights in the sampling of fermionic
world-line configurations. Overcoming the sign problem by
identifying a basis transformation to a sign-free basis (such as
the basis of eigenstates) is known to be a NP-hard problem
[11]. This computational complexity arising from the sign
problem also manifests itself in a broad variety of frustrated

quantum magnets—quantum magnets with competing inter-
actions that cannot be simultaneously satisfied and which
thereby give rise to low-temperature physics that is quite dis-
tinct from their conventional counterparts [12]. This includes
the formation of long-range entangled quantum order, emer-
gent gauge theories, and fractionalization of the elementary
quantummechanical (spin) degrees of freedom. As such, frus-
trated quantum magnets have attracted broad interest since
they have long served as a fertile ground to develop the basic
phenomenology and concepts of quantummany-body systems
at large. However, their numerical exploration has remained
challenging as they are often not amenable to path-integral
quantum Monte Carlo techniques due to their intrinsic sign
problem (with some exceptions [13]), dynamical mean-field
theory due to their long-range quantum structure at low tem-
peratures, or tensor-network based approaches as some of the
most interesting problems occur in three spatial dimensions
such as the formation of quantum spin ice (though DMRG has
made some inroads into higher-dimensional problems [14]).

Diagrammatic methods centered around the concept of cor-
relation functions represent an alternative and well established
approach to quantum many body physics [15]. By construc-
tion, diagrammatic methods are both oblivious to frustration
and the dimensionality of the system. However, the main
obstacle for their direct application to spin systems is the lack
of an unconstrained fermionic or bosonic path integral for the
latter such that Wick’s theorem, the main pillar of diagram-
matic perturbation theory, does not hold. Due to the resulting
complications, diagrammatic approaches to spin systems—
though explored [16–19]—have not been widely applied.

Once spin operators are represented in terms of (pseudo-)
fermionic operators the situation changes and one can apply
the well developed diagrammatic toolbox to the resulting—
and in general interacting—fermionic problem. However, as
it turns out, simple perturbation theory is rarely sufficient or
even suffers from infinities so that one has to resort to mod-
ern resummation schemes. The resummation scheme of choice
for pseudo-fermion Hamiltonians is the fermionic functional
renormalization group (FRG) [20, 21] in vertex expansion. It
builds upon Wetterich’s generalization [22] of the renormal-
ization group idea by Kadanoff and Wilson [23–25] whereas
the latter was originally applied to critical phenomena and the
Kondo model.

The pseudo-fermion functional renormalization group
(PFFRG), which at its core consists of a hierarchy of flow
equations for vertex functions, was formulated in a sem-
inal work by Reuther and Wölfle [26, 27], and subsequently
developed over the years [28–38] to bring much-needed
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numerical guidance to such frustrated quantum magnets in
two [39–51] and three spatial dimensions [43, 52–66]. Much
technical understanding has been developed over the past
fifteen years including ways to reduce the number of flow
equations by symmetry-optimization [67], to reliably distin-
guish the formation of quantum spin liquids versus the long-
range magnetic order, to expand the approach to the lim-
its of large S [68] and large N [69], along with numerous
technical tricks to speed up practical implementations which
have been made available as open-source packages [70–72].
More recent advances include an alternate formulation of
the PFFRG approach in terms of auxiliary Majorana fermi-
ons along with inroads to quantitatively describe the finite-
temperature physics [73, 74] of frustrated magnets.

We emphasize that the diagrammatic Monte Carlo
approach has been applied to pseudo-fermion (PF)
Hamiltonians [75–77]. Offering a different type of resum-
mation scheme than the FRG, this method can thus be seen
as closely related to PFFRG and we will make appropriate
quantitative comparisons below.

It is the purpose of this review to give a pedagogical intro-
duction to the PFFRG approach and to provide extensive tech-
nical details on its implementation so that a beginning gradu-
ate student might find all the information to set up one’s own
calculations. We also provide an overview of the many applic-
ations of the PFFRG approach over the past fifteen years to a
variety of quantum magnets with competing, diagonal and/or
off-diagonal spin exchange in two and three dimensional lat-
tice geometries as well as, more recently, to systems with
coupled spin-orbital or spin-valley degrees of freedom. For
those wanting to readily jump to certain parts of this review
here is an overview of its structure: In section 2 we introduce
the basic microscopic exchange model of a quantum magnet,
whichwe then recast in terms of auxiliary fermions in section 3
and discuss its fundamental symmetries. We then dive into the
technical discussion setting the stage with an introduction of
the functional renormalization group in section 4, then mov-
ing to the PFFRG in section 5. We close our technical discus-
sion with an account of recent extensions to finite-temperature
physics in section 6. Section 7 is then devoted to a broad
overview of applications of the PFFRG approach to funda-
mental problems in frustrated quantum magnetism. We close
this review with section 8 on future directions and some of the
challenges that still lay ahead of us and some conclusions in
section 9.

2. Model

In the following, we consider models with time-independent
spin Hamiltonians in which two spins on lattice sites i and
j interact via an exchange interaction Jαβij . Here, we assume
a general interaction with α,β = x,y,z that couples the α’th
component of spin i to the β’th component of spin j

H=
1
2

∑
i,j

∑
α,β

Sαi J
αβ
ij S

β
j . (1)

For spin-1/2, the operators can be represented by Pauli
matrices σα, i.e. Sαi = h̄

2σ
α
i , where σαi is defined to only act

on site i and thus commute with all other operators that are
not acting on i. In this general form, equation (1) describes
a vast multitude of interacting spin models, for instance the
isotropic Heisenberg model Jαβij = Jijδαβ , but can also con-
tain anisotropic interactions, e.g. of Kitaev [31, 36, 78–82] or
Dzyaloshinsky–Moriya type [62, 67, 83]. Similarly, the real-
space extent of the interactions is not only limited to short-
range, but also long-range interactions are treatable [84–86].

Due to its exponentially large Hilbert space and its strongly
interacting nature, an exact solution of equation (1) is often
impossible. In the following, we discuss the functional renor-
malization group as a many-body field theoretical method to
obtain an approximate solution. Although this approach, in
principle, also can handle interactions involvingmore than two
spins, this is numerically not tractable, such that we restrict
the discussion in this manuscript to Hamiltonians of the type
defined in equation (1).

3. Auxiliary Fermions

Many standard diagrammatic techniques used to treat quantum
many-body systems are not applicable to spin models, due
to the peculiar commutator structure of their corresponding
operators. The canonical angular momentum commutation
relations

[
Sα,Sβ

]
= ih̄

3∑
γ=1

ϵαβγS
γ , (2)

of the spin operator’s components Sα (α= x,y,z) is neither
fermionic nor bosonic. This in turn renders Wick’s the-
orem [87], a fundamental theorem upon which most many-
body techniques are based, inapplicable in its standard formu-
lation [88, 89].

This fact can be remedied by introducing an auxiliary
particle representation of the spin operators in terms of
pseudo-fermions, first introduced by Abrikosov [90]. In the
following, we will review this representation and give an
overview over the consequences the construction has for the
Green’s functions of the pseudo-particles.

3.1. Spin-operator mapping

We introduce two species of auxiliary (complex) fermions, c↑
and c↓, to define the operator mapping

Sα =
1
2

∑
µ,µ ′=↑,↓

c†µσ
α
µµ ′cµ ′ , (3)

where σα (α ∈ {1,2,3}) are the Pauli matrices. As can be
readily verified, this representation fulfills the commutation
relations equation (2). However, by introducing two differ-
ent fermionic operators, the Hilbert space now consists of four
states

|0↑,0↓⟩ |1↑,1↓⟩= c†↑c
†
↓|0↑,0↓⟩

|1↑,0↓⟩= c†↑|0↑,0↓⟩ |0↑,1↓⟩= c†↓|0↑,0↓⟩, (4)
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Figure 1. Pseudofermion representation of spin- 12 operators. The
mapping to a fermionic Fock space doubles the Hilbert space
dimension and introduces two unphysical states with sz = 0.

where only the singly occupied ones in the second row corres-
pond to the physical up/down spin states | ↑⟩/| ↓⟩ of the spin
model, while the empty and doubly occupied ones do not have
a physical counterpart. The structure of the spin-fermion map-
ping is pictorially shown in figure 1. This overcounting neces-
sitates the introduction of the single occupation constraint in
form of the operator identity

c†i↓ci↓ + c†i↑ci↑ = 1. (5)

in addition to the mapping in equation (3), to construct a faith-
ful operator mapping. For a many-body system, equation (5)
has to hold individually per site i.

3.2. Gauge symmetry

The restriction to half-filling in pseudo-fermion space intro-
duces an ambiguity in the pseudo-fermion description: The
physical states can be described as being constructed by filling
an unphysical fermionic vacuum, as done in equation (4), but
equally well as filling holes into an unphysical fully occupied
state. This leads to a SU(2) gauge structure, which allows to
rotate freely between creation operators of one and annihila-
tion operators of the other spin species, while simultaneously
changing the fermionic vacuum.

To formalize this intuitive picture, we introduce the matrix
operator [91]

Ψ =

(
c↑ c†↓
c↓ −c†↑

)
, (6)

which allows us to express the mapping in equation (3) as

Sα =−1
4
Tr
[
σαΨΨ†] . (7)

In this form, it becomes clear that the mapping is invariant
under a right-multiplication with a SU(2)matrix according to

Ψ →ΨU†, U ∈ SU(2) , (8)

i.e. a SU(2) transformation intermixing creation and annihil-
ation operators of up- and down spins. Consequently, the two
possible vacua |0↑,0↓⟩ and |1↑,1↓⟩ in equation (4) get inter-
mixed. Given that the physical Hamiltonian (1) is a function
of only spin operators, one acquires a SU(2) gauge symmetry
in the fermionic representation [91, 92].

As operator expectation values in second quantization are
always taken with respect to a specific vacuum, only the U(1)
and Z2 subgroup of the full SU(2) gauge symmetry can be
exploited, as they will lead to a pure, rather than mixed,
vacuum state. The former amounts to multiplying the operat-
ors with a complex phase, leaving the vacuum invariant, while
the latter represents a particle-hole transformation given by

UZ2 =

(
0 1
−1 0

)
. (9)

Under this transformation, |0↑,0↓⟩ and |1↑,1↓⟩ swap their
roles. Both these subgroups of the full SU(2) symmetry, there-
fore, lead to well-defined expectation values, which can be
brought into relation with each other.

For completeness, let us mention that the single occupation
constraint equation (5) can also be recast in terms of the matrix
operator in equation (6), by realizing that half filling addition-
ally implies the operator identities

c†i↑c
†
i↓ = ci↑ci↓ = 0, (10)

as in a half-filled state, we can neither create nor annihilate two
fermions at the same time.

Together, equations (5) and (10) can be recast as a vector
equation

Gα =
1
4
Tr
[
σαΨ†

i Ψi

]
= 0. (11)

Using the cyclic property of the trace, a SU(2) transforma-
tion according to equation (8) corresponds to transforming the
Pauli matrix in equation (11) according to

σα → U†σαU=
∑
β

Rαβσ
β , (12)

where we have used the fact that any SU(2) transformation
on a Pauli matrix will correspond to a SO(3) rotation R of
the Pauli matrix vector. This means, although superficially
equivalent to the half-filling constraint, the additional oper-
ator identities in equation (10) will be generated under the
action of the SU(2) gauge symmetry of the pseudo-fermion
representation. The special case of a particle-hole symmetry
equation (9) does not mix the components of the constraint
vector Gα defined in equation (11), but only flips the sign of
its y component.

Lastly, using the relation between SO(3) and SU(2) back-
ward, we can straightforwardly show that also any physical
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rotation in spin space corresponds to another SU(2) transform-
ation of the corresponding fermionic operators, according to

∑
β

RαβS
β
i =−1

4
Tr

∑
β

Rαβσ
β

ΨiΨ
†
i


=−1

4
Tr
[
U†σαUΨiΨ

†
i

]
=−1

4
Tr
[
σα
(
UΨi

)
(UΨi)

†
]
. (13)

In contrast to the symmetry of the operator mapping
equation (3) given by equation (8), this left-multiplication with
a SU(2) matrix in equation (13) does not leave the spin oper-
ators invariant, but rather is a representation in matrix oper-
ator language of their transformation properties under physical
rotations in spin space.

3.3. Pseudo-fermion Hamiltonian

Having defined the pseudo-fermion mapping, we are now able
to rewrite the spin Hamiltonian, equation (1), in fermionic lan-
guage, leading to

H̃=
1
8

∑
i,j

∑
α,β

∑
µ,ν,ρ,σ

Jαβij c
†
iµciνc

†
jρcjσσ

α
µνσ

β
ρσ. (14)

The absence of a kinetic term here is generic for pseudo-
fermion Hamiltonians. As we will show in section 3.4.6, the
U(1) gauge-symmetry of the operator mapping in equation (3)
does not allow for terms quadratic in operators which are not
on-site. This renders spin systems inherently strongly interact-
ing in the pseudo-fermionic picture, preventing any perturbat-
ive treatment of the problems around a Gaussian theory.

3.4. Symmetries of pseudo-fermion Green’s functions

The spin Hamiltonian in equation (14) features, in addition to
the SU(2) gauge symmetry of the pseudo-fermion mapping,
a series of physical symmetries, such as hermiticity and time-
reversal invariance. In this section, following the presentation
in [93], wewill summarize these symmetries and their implica-
tions for the relevant one- and two-particle Green’s functions9.

To fix notation, we define the one-particle Green’s
function [94]

G(x ′1|x1) =−
ˆ

dτ ′
1dτ1e

i(τ ′
1 ω

′
1 −τ1ω1)

×
〈
Tτci1,µ1

(τ1)c
†
i ′1 ,µ

′
1
(τ ′

1 )
〉

(15)

9 In literature, n-particle functions are also called 2n-point functions. We
choose the former name, referring to the number of pairs of creation and
annihilation operators within an expectation value, signifying the number of
particles involved, while the latter refers to the number of operators itself, or
equivalently the number of external arguments to the function.

and its two-particle counterpart

G(x ′1,x
′
2|x1,x2)

=

ˆ
dτ ′

1dτ
′
2dτ1dτ2e

i(τ ′
1 ω

′
1 +τ

′
2 ω

′
2 −τ1ω1−τ2ω2)

×
〈
Tτci1,µ1

(τ1)ci2,µ2
(τ2)c

†
i ′2 ,µ

′
2
(τ ′

2 )c
†
i ′1 ,µ

′
1
(τ ′

1 )
〉
, (16)

where Tτ is the imaginary time ordering operator and we
use multi-indices xj = (ij, iωj,µj), containing the site index ij,
Matsubara frequency10 ωj and spin index µj. Primed indices
are referred to as outgoing, whereas unprimed ones are called
incoming indices.

3.4.1. Time-translation invariance. We start our discussion
of symmetries with the invariance of the pseudo-fermion
Hamiltonian under translations in imaginary time, manifested
in the absence of any explicit time or Matsubara frequency
dependence in equation (14). This, in turn, implies Matsubara
frequency conservation, leading to a parametrization of one-
and two-particle Green’s functions as

G(x ′1|x1) = G(x ′1|x1)δω ′
1 ,ω1

(17)

and

G(x ′1,x
′
2|x1,x2) = G(x ′1,x

′
2|x1,x2)δω ′

1 +ω
′
2 ,ω1+ω2

, (18)

reducing the frequency dependencies by one frequency each.

3.4.2. Time-reversal invariance. The second physical sym-
metry to be considered is imaginary time-reversal, which can
be implemented at the pseudo-femion level by the antiunitary
operator T acting according to

T

(
c†iµ
ciµ

)
T −1 =

(
eiπµ/2c†iµ̄
e−iπµ/2ciµ̄

)
, (19)

where the notation µ̄=−µ is a shorthand to indicate the flip
of the spin index with µ=±1 representing spin up/down.

Using this relation for the two-particle Green’s function in
equation (15), we find for time-reversal invariant systems the
relation

G(x ′1|x1) = eiπ(µ
′
1−µ1)/2G(T x ′1|T x1)

∗
, (20)

where T xj = (ij,−iωj, µ̄j) and the complex conjugation due to
the antiunitarity of time-reversal is only meant to act on the
Green’s function itself, but not on its arguments.

The phase factor eiπ (µ ′
1−µ1)/2 can be simplified, using the

fact that µ=±1, to

eiπ(µ
′
1−µ1)/2 = µ ′

1µ1, (21)

10 For clarity we drop the discrete index of the Matsubara frequencies.
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as can be easily verified by considering all possible combina-
tions of the spin indices.

Similarly, the two-particle vertex obeys the relation

G(x ′1,x
′
2|x1,x2) = µ ′

1µ
′
2µ1µ2G(T x ′1,T x ′2|T x1,T x2)

∗
. (22)

Note that time-reversal symmetry of a magnetic system is
broken when coupling to an external magnetic field B via a
term S ·B or more generally by interactions involving an odd
number of spins. Since, however, time-reversal symmetry will
turn out to be crucial for the performance of our calculations,
we will refrain from adding such terms, although the formal-
ism is, in principle, capable of handling these [95].

3.4.3. Hermiticity. The Hamiltonian and therefore the
thermal density matrix of a pseudo-fermionic system being
real directly dictates that the complex conjugate of operator
expectation values can be related to the expectation values of
their hermitian conjugate.

From this observation, the relations

G(x ′1|x1) = G
(
x1

∗|x ′1
∗)∗ (23)

for the one-particle Green’s function and

G(x ′1,x
′
2|x1,x2) = G

(
x1

∗
,x2

∗|x ′1
∗
,x ′2

∗)∗ (24)

for the two-particle Green’s function follow directly. Here,
we use the shorthand x∗j = (ij,−iωj,µj). By themselves, these
relations already give some insight into the analytical struc-
ture of the Green’s functions, however, a combination with the
time-reversal relations, equations (21) and (22), will lead to
new relations for the whole Green’s function, rather than their
real and imaginary parts separately.

3.4.4. Lattice symmetries. As a last physical symmetry, we
want to consider the effect of lattice symmetries associated
with the spin Hamiltonian in equation (14). Defining a suit-
able unitary operator L, the action of the space group on the
operators can be expressed as

L

(
c†iµ
ciµ

)
L−1 =

(
c†L(i)µ
cL(i)µ

)
, (25)

where the lattice point i is mapped to L(i) by the transforma-
tion. Assuming invariance of the system under all lattice sym-
metries11, we find for the Green’s functions

G(x ′1|x1) = G(Lx ′1|Lx1) (26)

and

G(x ′1,x
′
2|x1,x2) = G(Lx ′1,Lx

′
2|Lx1,Lx2) . (27)

11 Any symmetry breaking imposed by the specific coupling structure can be
treated by defining a new lattice compatible with the coupling symmetries.

Due to the translational subgroup contained in any space
group, we can therefore always map at least one of the site
indices on which the Green’s function depends on, back into a
reference unit cell. If, furthermore, all lattice points are sym-
metry equivalent (an Archimedian lattice), we can use the
point group of the lattice to select a single reference point in
this unit cell12.

3.4.5. Crossing symmetries. Before turning towards the
gauge symmetries of the pseudo-fermion mapping, let us
briefly mention that, due to the fermionic anticommutation
relations, Green’s functions have to change sign under pair-
wise exchange of two incoming or outgoing indices. For the
two-particle Green’s function, this implies

G(x ′1,x
′
2|x1,x2) =−G(x ′2,x

′
1|x1,x2)

=−G(x ′1,x
′
2|x2,x1)

= G(x ′2,x
′
1|x2,x1) .

(28)

These relations are commonly referred to as crossing symmet-
ries of the Green’s function, as in a diagrammatic language
it corresponds to crossing the incoming or outgoing legs of a
given diagram.

3.4.6. Local U(1) gauge symmetry. Having exhausted all
symmetries of the Green’s functions which hold for gen-
eral fermionic systems, we now want to consider the addi-
tional constraints the pseudo-fermion mapping in equation (3)
imposes on these objects. As already discussed in section 3.2,
the single occupation constraint accompanying the mapping
of spin operators to fermions introduces a local SU(2) gauge
symmetry. Since however, the vacuum is not invariant under
this group, only two subgroups of the full symmetry can be
exploited for expectation values defining Green’s functions.
The first one, we want to discuss, is the local U(1) symmetry.

The action of this group amounts to rotating the complex
phase of an operator at site i by an arbitrary angle ϕi, i.e. the
operators transform as

Uϕ

(
c†iµ
ciµ

)
U−1
ϕ =

(
eiϕic†iµ
e−iϕiciµ

)
. (29)

To allow for non-vanishing Green’s functions, these phases
have to cancel, which implies that pairs of incoming and out-
going parameters have to reside on the same lattice point. This
leads to a purely local one-particle Green’s function

G(x ′1|x1) = G(x ′1|x1)δi ′1 i1 , (30)

while the two-particle Green’s function features two possible
combinations of incoming and outgoing sites

G(x ′1,x
′
2|x1,x2) = G(x ′1,x

′
2|x1,x2)δi ′1 i1δi ′2 i2

−G(x ′2,x
′
1|x1,x2)δi ′1 i2δi ′2 i1 .

(31)

12 In case of n symmetry inequivalent points per unit cell (for a non-
Archimedian lattice such as the square-kagome lattice), we have to choose
n such reference points.
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In the second term, we have already explicitly incorporated
the crossing-symmetry, equation (28), leading to a direct and
crossed term in terms of real space indices13. Similar to a
global U(1) symmetry implying conservation of total particle
number, this gauged implementation leads to a particle num-
ber conservation per site, in accordance with the local single
occupation constraint of the pseudo-fermions.

In analogy, multi-particle Green’s functions will become
multi-local, which has profound implications for the nat-
ural basis we will treat pseudo-fermions in: While itinerant
particles tend to delocalize, electronic systems are usually best
treated in a momentum-space picture, whereas for pseudo-
fermions real space is more appropriate.

3.4.7. Local particle-hole conjugation. The second sub-
group of the SU(2) gauge symmetry, we want to discuss,
is the Z2 subgroup, which amounts to a local particle-hole
conjugation14

Zi

(
c†iµ
ciµ

)
Z−1
i =

(
µciµ̄
µc†iµ̄

)
, (32)

which also swaps spin sectors. Applying this transformation to
the locally parameterized Green’s function from the previous
section, we find

G(x ′1|x1)δi ′1 i1 =−µ ′
1µ1G(T x1|T x ′1)δi ′1 i1 (33)

for the one-particle case. The negative sign is due to an anti-
commutationwithin the expectation value defining theGreen’s
function, while the inversion of frequency is due to the swap-
ping of creation and annihilation operators, which flips the
energy spectrum.

For the two-particle case, we analogously find, by applying
the local conjugation to the two independent sites separately

G(x ′1,x
′
2|x1,x2)δi ′1 i1δi ′2 i2

=−µ ′
1µ1G(T x1,x ′2|T x ′1,x2)δi ′1 i1δi ′2 i2 (34)

=−µ ′
2µ2G(x ′1,T x2|x1,T x ′2)δi ′1 i1δi ′2 i2 . (35)

Note that even in the case of i1 = i2, the two relations
equations (34) and (35) hold separately, as the symmetry is
connected to the decomposition of the spin operators involved,
as labeled by 1 and 2, rather than the sites the fermions reside
on.

3.4.8. Summary of the symmetries. For reference, we sum-
marize all symmetry relations of the one- and two-particle
Green’s function in tables 1 and 2, respectively.

13 The real-space structure we find here is completely analogous to the one
in spin space for SU(2) symmetric systems, as used in itinerant fermion
FRG [96].
14 In PFFRG literature, this transformation is usually called particle-hole sym-
metry, which would imply an antiunitary implementation. As the local Z2,
however, is unitary, we prefer the term conjugation.

Table 1. Symmetry relations of the one-particle correlation function
for pseudo-fermion Hamiltonians. The combined index
xj = (ij, iωj,µj) is used as shorthand for site index ij, Matsubara
frequency iωj and spin index µj for incoming (unprimed) and
outgoing (primed) parameters. The labels are shorthands for the
underlying symmetry of the relations: TR denotes time-reversal, TT
time translation, L lattice symmetries, H hermitian conjugation, X
crossing symmetry in both incoming and outgoing particles and PH
is a particle-hole transformation.

G(x ′1|x1) = G(x ′1|x1)δi ′1 i1 (U(1))
G(x ′1|x1)δi ′1 i1 = G(Lx ′1|Lx1)δi ′1 i1 (L)
G(x ′1|x1)δi ′1 i1 = G(x ′1|x1)δi ′1 i1δω ′

1 ,ω1
(TT)

G(x ′1|x1)δi ′1 i1 =−µ ′
1µ1G(T x1|T x ′1)δi ′1 i1 (PH)

G(x ′1|x1)δi ′1 i1 = µ ′
1µ1G(T x ′1|T x1)∗δi ′1 i1 (TR)

G(x ′1|x1)δi ′1 i1 = G(x∗1 |x ′1
∗
)∗δi ′1 i1 (H)

We can divide the symmetries into two groups. The first
one reduces the dependence of the Green’s functions on the
external degrees of freedom: The local U(1) symmetry renders
the one(two)-particle function (bi-)local, greatly reducing their
spatial dependence. Additionally, lattice symmetries (L) allow
to fix one site as a reference point within the unit cell. In
frequency-space, time-translational invariance (TT) has a sim-
ilar effect, reducing the number of frequency arguments by
one.

The second group of symmetries establishes relations
within the remaining structure of the Green’s functions: This
is the case for the remaining part of the lattice symmetries and
the local particle-hole conjugation, which induces one sym-
metry relation (PH) in the one-particle case and two, (PH1)
and (PH2), in the two-particle one, one for each site index.
Time-reversal (TR) and Hermitian (H) symmetry relate the
real and imaginary parts of the Green’s function. For the case
of the two-particle Green’s function, we also have the com-
bined crossing symmetry in both incoming and outgoing argu-
ments (X). As the bilocality constraint following from (U(1)),
already decomposes the vertex into two components, which
are related by an individual crossing symmetry, as shown in
equation (28), crossing symmetry in incoming or outgoing
particles separately is already accounted for.

3.5. Gauge invariance of Lagrangian

Having discussed the symmetries of both the spin Hamiltonian
and the Green’s functions, we still have to see, how the gauge
symmetry affects the Lagrangian, which we need for a field-
theoretic treatment of pseudo-fermion systems. To this end, we
bring the spin Hamiltonian equation (14) in a more convenient
form for our purpose

H̃=− 1
32

∑
i,j,α,β

Jαβij Tr
[
σαΨiΨ

†
i

]
Tr
[
σβΨjΨ

†
j

]
. (36)

Here, it is manifest that the Heisenberg model with Jαβ ∝
δαβ is invariant both under a local SU(2) gauge transformation
according to equation (8),

Ψi →ΨiU
†
i , Ui ∈ SU(2) , (37)
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Table 2. Symmetry relations of the two-particle correlation function for pseudo-fermion Hamiltonians. The combined index xj = (ij, iωj,µj)
is used as shorthand for site index ij, Matsubara frequency iωj and spin index µj for incoming (unprimed) and outgoing (primed) parameters.
The labels are shorthands for the underlying symmetry of the relations, for details see main text.

G(x ′1,x
′
2|x1,x2) = G(x ′1,x

′
2|x1,x2)δi ′1 i1δi ′2 i2 −G(x ′2,x

′
1|x1,x2)δi ′1 i2δi ′2 i1 (U(1))

G(x ′1,x
′
2|x1,x2)δi ′1 i1δi ′2 i2 = G(Lx ′1,Lx

′
2|Lx1,Lx2)δi ′1 i1δi ′2 i2 (L)

G(x ′1,x
′
2|x1,x2)δi ′1 i1δi ′2 i2 = G(x ′1,x

′
2|x1,x2)δi ′1 i1δi ′2 i2δω ′

1 +ω
′
2 ,ω1+ω2

(TT)
G(x ′1,x

′
2|x1,x2)δi ′1 i1δi ′2 i2 =−µ ′

1µ1G(T x1,x ′2|T x ′1,x2)δi ′1 i1δi ′2 i2 (PH1)
G(x ′1,x

′
2|x1,x2)δi ′1 i1δi ′2 i2 =−µ ′

2µ2G(x
′
1,T x2|x1,T x ′2)δi ′1 i1δi ′2 i2 (PH2)

G(x ′1,x
′
2|x1,x2)δi ′1 i1δi ′2 i2 = µ ′

1µ
′
2µ1µ2G(x1

∗
,x2

∗|x ′1
∗
,x ′2

∗
)∗δi ′1 i1δi ′2 i2 (TR)

G(x ′1,x
′
2|x1,x2)δi ′1 i1δi ′2 i2 = G(x1

∗
,x2

∗|x ′1
∗
,x ′2

∗
)∗δi ′1 i1δi ′2 i2 (H)

G(x ′1,x
′
2|x1,x2)δi ′1 i1δi ′2 i2 = G(x ′2,x

′
1|x2,x1)δi ′1 i1δi ′2 i2 (X)

where the matrix Ui can be site-dependent, as well as a
global rotation in spin space given by equation (13). For field-
theoretical treatments, we will need the Lagrangian of this
system [91]

L= i
∑
i,µ

c†iµ
∂

∂t
ciµ−H, (38)

which, by means of integration by parts, is up to a constant
term, equivalent to the manifestly gauge invariant form

L=
i
2

∑
i

Tr

[
Ψi
∂

∂t
Ψ†
i

]
−H. (39)

To incorporate the single-occupation per site constraint in
this formulation, we add three Lagrange multipliers Aα enfor-
cing the three components of equation (11), by adding a term
Tr[Ψi(A ·σ)Ψ†

i ] to the Lagrangian. This term, however, is
nothing else than a coupling of the matrix valued field Ψ to
the temporal component of the SU(2) gauge field A ·σ, given
we allow for fluctuations of the Lagrange multipliers, promot-
ing them to fields.

This approach even allows for time-dependent gauge trans-
formations, which would not leave the quadratic term in
equation (39) invariant, due to the time derivative terms of
the transformation not being canceled. Demanding a suitable
transformation of the gauge field

A ·σ → U†
(
A ·σ− i

∂

∂t

)
U, (40)

restores this invariance, thereby promoting the local SU(2)
gauge invariance to a time-dependent one. The Lagrangian
fully invariant under the local and time-dependent gauge sym-
metry of the SU(2) symmetry of the pseudo-fermions there-
fore reads as

L=
1
2

∑
i

Tr

[
Ψi

(
i
∂

∂t
+A ·σ

)
Ψ†
i

]
−H. (41)

4. Functional renormalization group

The reformulation of the general spin Hamiltonian in terms of
auxiliary spinon operators as presented in the previous section

opens up the possibility of employing established many-body
techniques developed for interacting fermions. In contrast to
itinerant systems, however, the fermionized spin model lacks
a quadratic term as a result of the aforementioned SU(2) gauge
invariance, such that perturbative approaches based on a small
parameter t/J, where t characterizes the kinetic energy scale
and J the spin interactions, are inapplicable.

The functional renormalization group [22, 97, 98] first
emerged in high-energy physics, where it has been success-
fully applied to, e.g. electroweak physics [99], quantum chro-
modynamics [100–103] and models of quantum gravity [104,
105]. The general idea behind FRG is the successive inclu-
sion of low-energy fluctuations during a renormalization group
flow, which evolves the many-body interactions of a micro-
scopic theory in terms of an infrared cutoff. In this sense, it
naturally extends concepts of Wilsonian RG [24, 25, 106],
namely, running couplings and an effective action, to coup-
ling functions (vertices) and their generating functionals.
Nowadays, FRG calculations are also widely used in con-
densed matter research, ranging from applications to zero
dimensional systems such as quantum dots [107–110], over
studies of Luttinger-liquid physics in 1D [111–113], to extens-
ive characterizations of Fermi liquid instabilities in variants of
the Hubbard model [20, 114–125].

In this section, the functional renormalization group
approach to correlated fermionic systems is introduced on a
general level, closely following the derivations presented in
[93, 126]. Given the vast amount of literature that exists on
the matter [20, 96, 107, 113, 127–129], we aim at keeping the
discussion concise and, if feasible, encourage the reader to fol-
low the given references for further detail beyond the scope of
this review. For a practical implementation of FRG for pseudo-
fermions, see section 5.

4.1. Generating functionals

We consider a fermionic action of the form

S
[
ψ̄,ψ

]
=−

(
ψ̄,G−1

0 ψ
)
+ Sint

[
ψ̄,ψ

]
, (42)

where (ψ̄,G−1
0 ψ)≡

∑
x ′1 ,x1

ψ̄x ′1 [G
−1
0 ]x ′1 x1ψx1 . Here, ψ̄,ψ

denote fermionic Grassmann fields and summations over
their multi-indices xi, which could comprise e.g. spin pro-
jections or Matsubara frequencies, are to be understood as

8
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sums (integrals) over their discrete (continuous) components.
Furthermore, we assume a quartic interaction

Sint
[
ψ̄,ψ

]
=

∑
x ′1 ,x

′
2 ,x1,x2

Vx ′1 x ′2 |x1x2 ψ̄x ′1 ψ̄x ′2ψx2ψx1 , (43)

in which the interaction tensor V is antisymmetric with respect
to permutations (x ′1 ↔ x ′2) and (x1 ↔ x2), as indicated by a ver-
tical line separating the respective index sets.

For a given action, the central goal is to compute the corres-
ponding n-particle Green’s functions, i.e. expectation values of
the form

⟨ψ̄x ′1 . . .ψ̄x ′nψxn . . .ψx1⟩ ≡ Gn (x
′
1, . . .,x

′
n|x1, . . .,xn) , (44)

where the (thermal) average ⟨ . ⟩ is defined with respect to the
partition function

Z=

ˆ
D
[
ψ̄,ψ

]
e−S[ψ̄,ψ] . (45)

Defining the functional

W [η̄,η] =
1
Z0

ˆ
D
[
ψ̄,ψ

]
e−S[ψ̄,ψ]−(ψ̄,η)−(η̄,ψ) , (46)

where Z0 is the Gaussian partition function, the disconnected
Green’s functions can be obtained by considering functional
derivatives ofW with respect to the fermionic sources η̄,η and
setting them to zero afterwards:

Gn (x
′
1, . . .,x

′
n|x1, . . .,xn)

=
δn

δη̄x1 . . .δη̄xn

δn

δηx ′n . . .δηx ′1

W [η̄,η]

∣∣∣∣
η̄=η=0

. (47)

For practical purposes it is more convenient to work with
fully-connected correlators15, as disconnected diagrams con-
tain redundant information from Greens’s functions involving
less particles, effectively mixing information about different
particle number sectors. These are generated by the so-called
Schwinger functional

Wc [η̄,η] = ln(W [η̄,η]) . (48)

Although this new functional reduces the superfluous inform-
ation contained in W by excluding fully-disconnected con-
tributions, there is still some redundancy left in this descrip-
tion: some terms can be separated into two mutually discon-
nected parts by removing a single propagator G≡ G1 = Gc

1
16.

To obtain a complete description of the physical system, it
therefore suffices to compute precisely those one-particle irre-
ducible (1PI) correlation functions or vertices from which

15 Statistically speaking, this corresponds to considering the cumulants of the
distribution 1

Z
e−S[ψ̄,ψ] instead of its moments.

16 Here, Gc
1 corresponds to the second functional derivative of Wc with van-

ishing sources.

external legs have been amputated [94]. Their respective gen-
erator Γ is given by the functional Legendre transform of Wc,
i.e.

Γ
[
ϕ̄,ϕ
]
=−Wc [η̄,η]−

(
ϕ̄,η
)
− (η̄,ϕ)+

(
ϕ̄,G−1

0 ϕ
)
, (49)

where ϕ =− δWc[η̄,η]
δη̄ and ϕ̄= δWc[η̄,η]

δη are the conjugate
sources. The one-particle vertex Γ1, for example, corresponds
to the fermionic self-energy Σ up to a minus sign, i.e. Γ1 =
−Σ. The 1PI vertices thus resemble the effective n-body inter-
actions of the system, and their generating functional Γ is
therefore commonly referred to as the effective action [20,
94, 128]. It turns out, that of these three functionals only
the 1PI formulation allows for well-defined initial conditions
for the renormalization group equations we will derive in the
following [128].

4.2. Exact flow equations

In order to set up the functional renormalization group
approach, a proper RG transformation needs to be defined.
To this end, an infrared cutoff Λ is introduced into the bare
propagator G0 such that it vanishes in the ultraviolet limit,
GΛ→∞

0 = 0, and again coincides with G0 when approaching
the infrared limit, GΛ→0

0 = G0. This is usually achieved by
virtue of a multiplicative regulator function R(Λ) with GΛ

0 =
R(Λ)G0, such that R(0) = 1 and R(Λ→∞) = 0. This proced-
ure renders the original action S and likewise the generating
functionals W , Wc and, most importantly, Γ, cutoff depend-
ent. Considering its derivative with respect to Λ, the evolu-
tion of the effective action from Λ→∞ to Λ→ 0 can thus be
described by an ordinary differential equation (ODE) which
reads

∂ΛΓ
Λ
[
ϕ̄,ϕ
]
=−∂ΛWΛ

c

[
η̄Λ,ηΛ

]
−
(
ϕ̄,∂Λη

Λ
)

−
(
∂Λη̄

Λ,ϕ
)
+
(
ϕ̄,QΛϕ

)
, (50)

with QΛ ≡ ∂Λ(GΛ
0 )

−1. Note that a Λ-dependence needs to be
added to the η̄,η source fields to make up for the change of
variables in the Legendre transformation. The cutoff derivative
of the generator Wc hereby computes to

∂ΛWΛ
c [η̄,η] =−Tr

(
QΛGΛ

0

)
+Tr

(
QΛ δ

2WΛ
c [η̄,η]

δη̄δη

)
−
(
δWΛ

c [η̄,η]

δη
,QΛ δWΛ

c [η̄,η]

δη̄

)
, (51)

which, due to equation (49), motivates17 the definition of a
matrix MΛ capturing the second functional derivatives of Γ
with respect to the conjugate source fields, i.e.

17 This is because the derivative
δ2WΛ

c [η̄,η]

δη̄δη
, which appears in ∂ΛW

Λ
c [η̄,η],

can also be expressed in terms of second order field derivatives of Γ.
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MΛ =

1−

(
−GΛ 0

0
(
GΛ
)T)

 UΛ δ2ΓΛ[ϕ̄,ϕ]
δϕ̄δϕ̄

δ2ΓΛ[ϕ̄,ϕ]
δϕδϕ −

(
UΛ
)T
−1

,

(52)

withUΛ = δ2ΓΛ[ϕ̄,ϕ]

δϕ̄δϕ
−ΓΛ

1 . Using this matrix, equation (50)
can be written in a more compact form

∂ΛΓ
Λ
[
ϕ̄,ϕ
]
= Tr

(
QΛGΛ

0

)
−Tr

(
GΛQΛMΛ

11

)
, (53)

where MΛ
11 denotes the upper left element of MΛ. In practice,

it is more convenient to rephrase this functional equation as a
hierarchy of ODEs for the vertices, which represent ordinary
functions. To this end, one Taylor-expands the effective action
on both sides of equation (53) as

ΓΛ
[
ϕ̄,ϕ
]
=

∞∑
n=0

(−1)n

(n!)2
∑

x ′1 ,...,x
′
n

∑
x1,...,xn

ΓΛ
n (x

′
1, . . .,x

′
n|x1, . . .,xn) ϕ̄x ′1 . . .ϕ̄x ′nϕxn . . .ϕx1 , (54)

and carries out the matrix valued geometric series inMΛ expli-
citly. By comparing the coefficients for a given power of
the fields on the left and right hand side of the so-expanded
equation (53), we can finally find the flow equations for the
n-particle vertices. Henceforth, we limit the discussion to the
flow of the self-energy Σ and two-particle vertex, which we
simply refer to as the vertex from now on and, for the sake of
brevity, denote it by Γ instead of Γ2. For the flow of Σ one
finds

∂ΛΣ
Λ (x ′1|x1) =−

∑
x ′2 ,x2

ΓΛ (x ′1x
′
2|x1x2)SΛ (x2|x ′2)

≡−
[
ΓΛ • SΛ

]
(x ′1|x1) , (55)

where we defined the single-scale propagator18

SΛ ≡ GΛQΛGΛ =−∂ΣΛGΛ , (56)

as well as the tadpole contraction •, which connects an incom-
ing and an outgoing line at a n-particle vertex with a fermionic
propagator. For a compact representation of the vertex flow,
we resort to the notation utilized in [130, 131] that is we define
the propagator bubbles

Π̇s (x
′
1,x

′
2|x1,x2) =− 1

2∂
Σ
Λ

[
GΛ (x ′1|x1)GΛ (x ′2|x2)

]
Π̇t (x

′
1,x

′
2|x1,x2) = +∂ΣΛ

[
GΛ (x ′1|x2)GΛ (x ′2|x1)

]
Π̇u (x

′
1,x

′
2|x1,x2) =−∂ΣΛ

[
GΛ (x ′2|x2)GΛ (x ′1|x1)

]
, (57)

18 ∂Σ
ΛG

Λ is a shorthand notation for ∂ΛG
Λ|ΣΛ=const..

and two-particle contractions[
ΓΛ ◦s Γ̃Λ

]
(x ′1,x

′
2|x1,x2)

=
∑
x3,x4

ΓΛ (x3,x4|x1,x2)Γ̃Λ (x ′1,x
′
2|x3,x4)[

ΓΛ ◦t Γ̃Λ
]
(x ′1,x

′
2|x1,x2)

=
∑
x3,x4

ΓΛ (x ′1,x4|x1,x3)Γ̃Λ (x3,x
′
2|x4,x2)[

ΓΛ ◦u Γ̃Λ
]
(x ′1,x

′
2|x1,x2)

=
∑
x3,x4

ΓΛ (x4,x
′
2|x1,x3)Γ̃Λ (x ′1,x3|x4,x2) , (58)

such that

∂ΛΓ
Λ (x ′1,x

′
2|x1,x2) =

[
ΓΛ

3 • SΛ
]
(x ′1,x

′
2|x1,x2)

+
[
ΓΛ ◦s Π̇s ◦s ΓΛ

]
(x ′1,x

′
2|x1,x2)

+
[
ΓΛ ◦t Π̇t ◦t ΓΛ

]
(x ′1,x

′
2|x1,x2)

+
[
ΓΛ ◦u Π̇u ◦u ΓΛ

]
(x ′1,x

′
2|x1,x2) .

(59)

So far, it may not be apparent to the reader why precisely these
definitions of bubble functions and two-particle contractions
are useful. For now, we will simply regard them as one spe-
cific way of grouping the diagrams on the right hand side of
the vertex flow (see figure 2) and postpone this particular dis-
cussion to section 4.3.

A cumbersome property of the vertex flow is the appear-
ance of the tadpole contracted three-particle vertex ΓΛ

3 • SΛ.
In other words, the computation of ∂ΛΓΛ requires knowledge
about ∂ΛΓΛ

3 , which itself features a contribution ΓΛ
4 • SΛ.

More generally speaking, the flow of the n-particle vertex
depends on all ΓΛ

m with m⩽ n+ 1, implying that the form-
ally exact hierarchy of vertex ODEs cannot be solved without
employing additional approximations, which we discuss in the
next section. After having implemented such a truncation, the
flow equations for the action in equation (42) can be solved
using the initial conditions [20, 128]

ΣΛ→∞ (x ′1|x1) = 0

ΓΛ→∞ (x ′1,x
′
2|x1,x2) = 4Vx ′1 ,x ′2 |x1,x2

ΓΛ→∞
n⩾3 (x ′1,x

′
2|x1,x2) = 0 . (60)

4.3. Truncation of the flow equations

The action considered in this review (see equation (42)) con-
sists of a Gaussian part and a quartic interaction and we, thus,
concern ourselves with approximations that truncate the flow
equations beyond the two-particle level. In other words, the
goal of this section is to present different ways of removing

10
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Figure 2. Flow equations for the self-energy and two-particle vertex. The self-energy flow shown in (a) simply consists of a vertex
contracted with a single-scale propagator S. The contributions to Γ in (b), involve two vertices, which have their legs contracted with one of
three propagator bubbles Π̇c. Dashed lines indicate partial derivatives ∂Σ

ΛG. The three-particle vertex Γ3 is difficult to compute (see
section 4.3) and requires some approximation.

the expression ΓΛ
3 • SΛ from the right hand side of ∂ΛΓΛ. To

simplify the notation for the following discussions, we sup-
press the Λ-superscripts above all propagators and n-particle
vertices and consider them implicitly as cutoff dependent.
Furthermore, we dispense with writing out external arguments
such as G(x ′1|x1), since they can be reintroduced a posteri-
ori without further complications. The flow of the vertex then
reads

∂ΛΓ = Γ3 • S+
∑
c

Γ ◦c Π̇c ◦c Γ . (61)

The most simple approximation, the level-2 (L2) truncation,
sets all n-particle vertices with n⩾ 3 to zero, such that

∂ΛΓ (L2)
≈

∑
c

Γ ◦c Π̇c ◦c Γ . (62)

As long as the bare interaction V is small if compared to, for
example, the electronic bandwidth in itinerant fermion mod-
els, the L2 truncation can be justified in the Λ→∞ limit:
contributions to Γ3 are at least third order in V, whereas the
vertex is O(V2) [96, 116]. During the flow, two scenarios
are possible: (1) the vertex stays small and the L2 truncation
remains well-controlled, or (2) Γ flows to strong-coupling,
i.e. it becomes large and higher order vertices cannot be
ignored, resulting in a breakdown of the flow. The latter usu-
ally happens when approaching a low-energy ordered phase
[20, 128] or when correlations mediated by a subclass of dia-
grams become particularly strong.

One of the downsides of the L2 truncation concerns the
accuracy with which Ward identities are fulfilled19. More
specifically, violations of the conservation law already set in at

19 Ward identities are exact relations between vertices of different order that
can be derived from conservation laws [128, 132].

third order in Γ, thereby spoiling the robustness of the results
obtained at the end of the RG flow.Moreover, the latter usually
depend on the specific implementation of the regulator, com-
plicating the analysis even further. A first attempt to improve
the truncation of the flow equations, specifically with respect
to the fulfillment of Ward identities, was made by Katanin in
[133] and amounts to the replacement of the partial derivat-
ive in Π̇c by a full Λ-derivative: ∂ΣΛ → ∂Λ. Consequently, the
vertex flow becomes

∂ΛΓ (Kat.)
≈

∑
c

Γ ◦c ∂ΛΠc ◦c Γ , (63)

where Πc is defined as in equation (57) but without the par-
tial derivative ∂ΣΛ . By expressingG via Dysons’s equation, one
finds that

SΛ = ∂ΣΛG→ SΛkat = ∂ΛG= ∂Λ
(
G−1

0 −Σ
)−1

= ∂ΣΛG+G(∂ΛΣ)G , (64)

i.e. the propagator bubbles in the Katanin truncation feed back
the self-energy flow into ∂ΛΓ, augmenting the diagrams on
the right-hand side (rhs) of the vertex flow by those O(Γ3)
diagrams without overlapping loops. If these additional dia-
grams are accounted for, single-channel FRG calculations20

fulfill Ward identities exactly and, thus, self-consistency of the
FRG approach is improved [133].

While the Katanin truncation reduces the systematic error
induced by truncating three-particle and higher-order ver-
tices (see [132] for numerical results), it does not include
all O(Γ3) diagrams and violations of conservations laws will
therefore likewise set in at third order in Γ. This issue was

20 That is, ladder summations using only one of the terms Γ ◦c ∂ΛΠc ◦c Γ on
the rhs of ∂ΛΓ.
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later addressed by Eberlein [134], who proposed a scheme to
systematically compute the missing third-order diagrams by
first decomposing the vertex into three channels gc corres-
ponding to the three different types of bubbles and contrac-
tions introduced in section 4.1 and subsequently inserting one-
loop diagrams from channel c into contractions with c ′ ̸= c.
In 2018, this idea was generalized by Kugler and von Delft in
what is now called multiloop FRG (MFRG) [130, 135, 136].
This approximation mitigates many of the deficiencies men-
tioned above by instantiating a RG scheme that incorporates
all diagrams of the so-called parquet approximation (PA) [90,
137–139]—a set of coupled many-body relations that self-
consistently connects the one- and two-particle level while
maintaining an effective one-loop structure. Furthermore, the
PA exactly incorporates Ward identities on the one-particle
level [130], allowing for FRG calculations with an accuracy on
par with QMC simulations in the weak to intermediate coup-
ling regime [123].

To present the general formulation of the MFRG flow, we
adopt the language commonly used in the context of the PA
and classify diagrams according to their two-particle reducib-
ility in a particular channel [139]. A diagram is called two-
particle reducible (2PR) in the s-channel if it can be fully
disconnected by cutting two parallel propagator lines. If how-
ever, those propagators point in opposite directions, we refer
to them as t- or u-reducible. t-reducible diagrams differ from
those reducible in the u-channel in the way external legs are
assigned to the disconnected parts: in a t-reducible diagram
the external legs lie on the same edge of a fermionic vertex,
whereas they lie on opposite corners in a u-reducible term21.
The total contribution of c reducible diagrams to the vertex
we denote by gc. For simplicity, we drop the subscripts c in
the vertex contractions ◦ whenever the two-particle reducib-
ility can already be deduced from the inserted bubble Πc. To
compute the multiloop (mℓ) flow of gc, one first computes the
respective Katanin (1ℓ) diagrams, i.e.

∂Λgc
(1ℓ)
≈ Γ ◦ ∂ΛΠc ◦Γ≡ ġ(1ℓ)c . (65)

In a second step, one substitutes the one-loop flows in the com-
plementary 2PR classes for the vertex to the left and right,
while excluding the Λ-derivative in the bubble:

∂Λgc
(2ℓ)
≈ ġ(1ℓ)c + ġ(1ℓ)c̄ ◦Πc ◦Γ+Γ ◦Πc ◦ ġ

(1ℓ)
c̄

≡ ġ(1ℓ)c + ġ(2ℓ)Lc + ġ(2ℓ)Rc . (66)

Here, we introduced the left (L) and right (R) part of the 2ℓ con-
tribution ġ(2ℓ)c ≡ ġ(2ℓ)Lc + ġ(2ℓ)Rc as well as the short-hand nota-
tion gc̄ =

∑
c ′ ̸=c gc ′ . In a two-loop approximation, i.e. ∂Λgc ≈

ġ(1ℓ)c + ġ(2ℓ)c , the vertex flow contains all third-order diagrams
as in the Eberlein construction, as well as some fourth order
diagrams due to the insertion of 1ℓ-diagrams with Katanin

21 The notion of “edges” and “corners” here refers to the diagrammatic rep-
resentation of Γ as a rectangular box.

bubbles. To construct themℓ diagrams form⩾ 3, we addition-
ally need the central part

ġ(mℓ)Cc = ġ([m−1]ℓ)R
c ◦Πc ◦Γ

= Γ ◦Πc ◦ ġ([m−1]ℓ)L
c , (67)

such that ġ(mℓ)c = ġ(mℓ)Lc + ġ(mℓ)Cc + ġ(mℓ)Rc . The multiloop flow
in the c-channel is thus obtained as

∂Λgc
(mℓ)
≈

m∑
n=1

ġ(nℓ)c , (68)

from which the flow of the full vertex follows as ∂ΛΓ =∑
c ∂Λgc. Finally, the central part of the s- and u-channel

ġCt̄
(mℓ)
≈

m∑
n⩾3

ġ(nℓ)Ct̄ , (69)

can be used to add multiloop corrections Σ̇1(2) to the self-
energy flow

∂ΛΣ
(mℓ)
≈ −Γ • S+Σ̇1 +Σ̇2 , (70)

where Σ̇1 = ġCt̄ •G and Σ̇2 = Γ • (G× Σ̇1 ×G)22. The addi-
tional terms in ∂ΛΣ are necessary to fully establish agreement
of MFRG with the parquet approximation [136]. Since the
derivatives ∂ΛΠc in the Katanin bubbles already depend on
the self-energy flow, the calculation of vertex and self-energy
corrections can in principle be iterated until convergence is
reached.

One remarkable property ofMFRG is the restoration of reg-
ulator independence at the end of the RG flow. For Λ→ 0,
the multiloop equations precisely coalesce with the parquet
approximation, which, as a general many-body relation, is
insensitive to the type of regularization used throughout the
RG flow.

Let us summarize the main aspects of this section. We have
presented a general formulation of the functional renormaliz-
ation group framework for interacting fermions with quartic
interactions. In order to make the differential equations for
the 1PI vertex functions soluble, an approximate truncation
scheme is unavoidable. Our discussion introduced three com-
monly used truncation strategies: L2 truncation (Γn = 0 for
n⩾ 3), Katanin scheme (Π̇c → ∂ΛΠc) and multiloop FRG,
which adds parquet type diagrams to the flow of 2PR ver-
tices and accounts for corrections to the self-energy. In the next
section, we will occupy ourselves with the explicit implement-
ations of these truncations within the pseudo-fermion FRG.
For this purpose, we derive an efficient parameterization of
the vertex functions based on the symmetries of the pseudofer-
mion Hamiltonian presented in section 3. This will allow a
compact representation of the bubble functions and vertex con-
tractions which minimizes the numerical effort involved to
compute them.

22 × denotes an ordinary product.
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5. Pseudo-fermion functional renormalization
group

The reformulation of spin Hamiltonians in terms of pseudo-
fermions, as introduced in section 3.1 allows for the imple-
mentation of the general fermionic FRG formalism from the
previous section to treat pure spin systems. Here, wewill intro-
duce this fusion, the PFFRG, by translating the symmetries of
the pseudo-fermion Green’s functions derived in section 3.4
into an efficient parametrization of the vertex functions form-
ing the basic building blocks for the FRG.

5.1. Parameterization of the self-energy

The self-energy is directly related to the one-particle Green’s
function according to Dyson’s equation

Σ(x ′1|x1) = G−1
0 (x ′1|x1)−G−1 (x ′1|x1)

= iω1δx ′1 ,x1 −G−1 (x ′1|x1) ,
(71)

where we have already used that kinetic terms vanish in the
pseudo-fermion formulation and, thus, G0(x ′1|x1) = 1

iω1
δx ′1 ,x1

for the non-interacting propagator. As it is completely diag-
onal in all degrees of freedom, the symmetries of the one-
particle Green’s function listed in table 1 directly apply to the
self-energy.

Upon inspection, we note that U(1) symmetry guarantees
locality of the self-energy in real space, which, in combina-
tion with translational symmetry of the lattice removes any
spatial dependence23. Similarly, time-translational invariance
(TT) guarantees diagonality in frequency space.

Therefore, we find the intermediate parametrization

Σ(x ′1|x1) =
∑

α=0,1,2,3

Σα (ω1)σ
α
µ ′

1µ1
δi ′1 i1

δω ′
1 ,ω1

, (72)

where we have expanded the remaining spin structure in terms
of Pauli matrices supplemented by a unit matrix σ0.

The combination of hermiticity and time-reversal sym-
metry furthermore implies

Σα (ω1)σ
α
µ ′

1µ1
= µ ′

1µ1Σ
α (ω1)σ

α
µ̄1µ̄

′
1
. (73)

Realizing that

µ ′
1µ1σ

α
µ̄1µ̄

′
1
= µ ′

1µ1

(
σαµ̄ ′

1 µ̄1

)∗
= ξ (α)σαµ ′

1µ1
(74)

with

ξ (α) =

{
1 α= 0

−1 α ∈ {1,2,3} .
(75)

immediately leads to the conclusion that only the α= 0 com-
ponent of the self-energy is non-vanishing, removing any spin-
dependence. Additionally, the combination of particle-hole

23 This is only strictly true for Archimedean lattices, for which all lattice sites
are equivalent. For n inequivalent types of lattice sites, one has to define n
different self-energies Σ.

conjugation implies that Σ0 has to be antisymmetric in its
frequency argument, while time-reversal symmetry renders
it purely imaginary. Therefore, for the pseudo-fermion self-
energy, we adopt the parametrization

Σ(x ′1|x1) = iγ (ω1)δx ′1 ,x1 (76)

with a real, antisymmetric function γ.
It is important to note that this simple structure heavily

relies on time-reversal symmetry. Breaking it by, e.g. con-
sidering external magnetic fields would introduce both real-
and imaginary parts and non-vanishing contributions from
α= 1,2,3 in the self-energy parametrization of equation (72).

5.2. Spin and real space dependence of the two-particle
vertex

Similar to the self-energy, we now aim at a simplified repres-
entation of the two-particle vertex, manifesting the symmet-
ries of the pseudo-fermion Green’s functions as summarized
in table 2. To this end, we first give the relation between the
full two-particle Green’s function and the corresponding ver-
tex through the tree expansion [94]

G2 (x
′
1,x

′
2|x1,x2)

=
∑

x ′3 ,x
′
4 ,x3,x4

G(x ′1|x ′3)G(x ′2|x ′4)Γ(x ′3,x ′4|x3,x4)

×G(x3|x1)G(x4|x2)
+G(x ′1|x1)G(x ′2|x2) .

(77)

Due to the diagonality ofG in all indices, as discussed in the
previous section, again all symmetries of the full two-particle
Green’s functionG2 directly carry over to the two-particle ver-
tex Γ.

As in the case of the self-energy, we start form the local
U(1) symmetry of the pseudo-fermions, which induces a bi-
locality of the vertex function captured in the expansion

Γ(x ′1,x
′
2|x1,x2) = Γ=,i1i2

(x ′1,x
′
2|x1,x2)δi ′1 i1δi ′2 i2

−Γ×,i1i2 (x
′
1,x

′
2|x1,x2)δi ′1 i2δi ′2 i1 .

(78)

Here, Γ= and Γ× represent the vertex content, where site
indices are constant across the equally numbered pairs of
indices or swapped, respectively. Clearly, from crossing sym-
metry, the relation

Γ×,i1i2 (x
′
1,x

′
2|x1,x2) = Γ=,i2i1 (x

′
1,x

′
2|x2,x1) , (79)

holds. Employing the space group symmetries of the lattice,
we are able to project back one of the remaining site indices
onto a single reference site, rendering the vertex dependent
only on the difference vector between the sites i1 and i2. We
will, however, not explicitly implement this fact in our nota-
tion, as this would complicate the flow equations discussed
henceforth.

In numerical implementations, however, we will use this
fact to approximate the vertex by neglecting vertex contribu-
tions, for which ∥Ri1 −Ri2∥< L, i.e. we impose a maximum
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correlation length in some norm ∥·∥. Effectively, this imple-
ments calculations in an infinite system, which avoids both
boundary effects for calculations with open boundary con-
ditions and finite momentum resolution imposed by periodic
ones. Although the finite correlation length imposed will lead
to broadened features in reciprocal space, in this way we are
able to resolve magnetic phenomena incommensurate with the
lattice. For details on the implementation see appendix B.1.

In the next step, we expand the spin dependence of the ver-
tex in terms of Pauli matrices, leading to

Γ=,i1i2 (x
′
1,x

′
2|x1,x2) = Γαβi1i2 (ω

′
1,ω

′
2|ω1,ω2)σ

α
µ ′

1µ1
σβµ ′

2µ2
(80)

with a similar expansion for Γ×,i1i2 . Summation over α and β
is implied. We use a similar notation gαβc,i1i2(ω

′
1,ω

′
2|ω1,ω2) for

the c-channel contributions to the vertex.
In the special case of a Heisenberg Hamiltonian, which is

spin-rotation invariant, this relation can be further simplified
to

Γ=,i1i2 (x
′
1,x

′
2|x1,x2) = Γs,i1i2 (ω

′
1,ω

′
2|ω1,ω2)σ

α
µ ′

1µ1
σαµ ′

2µ2

+Γd,i1i2 (ω
′
1,ω

′
2|ω1,ω2)δµ ′

1µ1
δµ ′

2µ2
,

(81)

introducing the so-called spin- and density vertices Γs and
Γd, respectively. These two terms in equation (81) corres-
pond to the only possible spin dependences of a two-particle
vertex that obey the spin-rotation symmetry of a Heisenberg
Hamiltonian.

The last symmetry we want to invoke at this point is a com-
bination of the two particle-hole symmetries listed in table 2,
followed by a time-reversal transform, hermitian conjugation
and another time-reversal operation. This sequence of sym-
metry transformations yields the relation

Γαβi1i2 = ξ (α)ξ (β)
(
Γαβi1i2

)∗
, (82)

which significantly simplifies the analytic structure of the two-
particle vertex functions. In particular, it indicates that the spin
and density vertices Γs and Γd are purely real.

As an intermediate result, we present the multilocal flow
equations, obtained by inserting the bilocal parametrization
of the two-particle vertex, equation (78), into equations (55)
and (59), respectively. Keeping in mind the locality of the self-
energy, we find

d
dΛ

ΣΛ (x1|x1) =
∑
x2

ΓΛ
×,i1i1 (x1,x2|x1,x2)

−
∑
j

ΓΛ
=,i1j (x1,x2|x1,x2)

SΛ (x2,x2)

(83)

for the flow of Σ, as well as

d
dΛ

ΓΛ
=,i1i2 (x

′
1,x

′
2|x1,x2)

=
∑
x3,x4

ΓΛ
=,i1i2 (x

′
1,x

′
2|x3,x4)ΓΛ

=,i1i2 (x3,x4|x1,x2)

−
∑
j

ΓΛ
=,i1j (x

′
1,x4|x1,x3)ΓΛ

=,ji2 (x3,x
′
2|x4,x2)− (3↔ 4)

+ΓΛ
=,i1i2 (x

′
1,x4|x1,x3)ΓΛ

×,i2i2 (x3,x
′
2|x4,x2)+ (3↔ 4)

+ΓΛ
×,i1i1 (x

′
1,x4|x1,x3)ΓΛ

=,i1i2 (x3,x
′
2|x4,x2)+ (3↔ 4)

+ΓΛ
=,i1i2 (x

′
2,x4|x1,x3)ΓΛ

=,i1i2 (x3,x
′
1|x4,x2)+ (3↔ 4)


×GΛ (x3,x3)S

Λ
kat (x4,x4)

(84)

for the two-particle vertex. Note that we have already neg-
lected the three-particle vertex terms and performed the
Katanin substitution in these flow equations. Furthermore,
we have explicitly incorporated the diagonality of the full
and single-scale propagators in all their arguments. Using
equation (79), we can replace Γ× by Γ=, such that the two-
particle vertex is only represented by Γ=. In figure 3, we
illustrate a diagrammatic representation of the multilocal flow
equations.

Comparing equations (84)–(59), there are a few notable
features. Firstly, all but the third line in equation (84) do
not involve a site summation, rendering these terms bi-local.
Secondly, the t-channel diagram contained in equation (59)
splits into three contributions: The third line in equation (84)
represents a RPA-like contribution, which involves a site sum-
mation. As this is the only term mixing correlations between
different pairs of lattice sites, possibly generating longer-
range correlations from initially short-ranged bare interac-
tions. Therefore, we can expect it to be pivotal in the form-
ation of long-range order, a notion we will put on more
solid grounds in section 5.9.1. The fourth and fifth lines in
equation (84), originate from the intermixing of Γ× and Γ=

in the parameterization.
The flow of the self-energy, equation (83), also splits into

two contributions, with the first term resembling a purely
local Fock-style diagram, while the second term is a non-local
Hartree contribution involving a sum over the lattice.

5.3. Frequency parametrization

After discussing the implications of symmetries on the spin
and real-space structure of the pseudo-fermion vertices, we
now turn to an adequate treatment of the remaining fre-
quency structure of Γαβi1i2 . As already mentioned in section 3.4,
time translation invariance implies frequency conservation, so
that the vertex has only three fermionic frequency arguments
instead of four. In the early days of PFFRG, these were usually
rewritten in terms of the three bosonic transfer frequencies
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Figure 3. Diagrammatic representation of the multi-local PFFRG flow equations of the (a) self-energy Σ [gray circle, equation (83)] and (b)
two-particle vertex Γ= [gray square, equation (84)]. Along solid lines of the vertices, the site index remains constant. The arrows represent
full Green’s functions GΛ, while slashed arrows are single scale propagators SΛ. A slash crossing two propagators denotes a sum of the two
possibilities of replacing one propagator by a single scale propagator.

ωs = ω ′
1 +ω ′

2 = ω1 +ω2 (85)

ωt = ω ′
1 −ω1 = ω2 −ω ′

2 (86)

ωu = ω ′
1 −ω2 = ω1 −ω ′

2 , (87)

each of them associated with the energy exchanged dur-
ing a scattering process in the corresponding 2PR channel.
However, as pointed out in a seminal paper by Wentzell
et al [140], this fully bosonic representation of the vertex func-
tion gives rise to complicated high-frequency asymptotics: if
one of the transfer frequencies goes to infinity while the other
two remain fixed, Γ generally does not decay to zero but to a
(non-vanishing) constant depending on the value of the other
two frequencies.

As can be seen from figure 4, where an exemplary decom-
position of the pseudofermion vertex Γ into its 2PR contri-
butions gc is shown, this constant arises from some resid-
ual, non-decaying contributions in the complementary chan-
nels gc ′ ̸=c. For example, if s→∞, all contributions from the
s- and t-channel vanish (see figures 4(b) and (d)), whereas
the u-channel assumes some finite value that depends on ωu
(figure 4(c)). To model the vertex more accurately, Wentzell
and coworkers introduced a mixed bosonic-fermionic fre-
quency notation for each 2PR channel, grouping the diagrams
contributing to gc(ωc,νc,ν

′
c ) into three types of kernel func-

tions, i.e.

gc (ωc,νc,ν
′
c ) = Kc1 (ωc)+Kc2 (ωc,νc)+ K̄c2 (ωc,ν

′
c )

+Kc3 (ωc,νc,ν
′
c ) . (88)

Most importantly, all K-functions decay to zero if one of their
arguments is taken to infinity, which tremendously simpli-
fies their numerical implementation. This decomposition can
already be motivated from the lowest orders of perturbation
theory, where so-called ‘bubble’ (K1) and ‘eye’ (K2, K̄2) dia-
grams govern the high-frequency structure [140].

The rest functions K3 then capture all diagrams which have
an even more intricate loop structure and belong neither to
K1 nor to K2/K̄2, see figure 5. More recent implementations

Figure 4. (a) Illustration of a full pseudo-fermion spin-vertex Γ for
the simple-cubic lattice Heisenberg antiferromagnet shown in the
t= 0 plane, showing characteristic double-cross structure. Its
decomposition in the (b) s-, (c) t- and (d) u-channel contributions
reveals the origin of the structure in the different channels. Due to
this structure, the asymptotics are not well-defined in the transfer
frequency parametrization, necessitating a parametrization for each
channel individually.

of PFFRG [38, 70, 141–143] have adopted this strategy in
order to improve numerical accuracy when integrating the
FRG flow. Following [38, 70, 141], the bosonic frequencies
are defined as in equation (87), whereas the remaining two fer-
mionic frequencies are chosen as

νs = (ω1 −ω2)/2 ν ′
s = (ω ′

2 −ω ′
1)/2

νt = (ω1 +ω ′
1)/2 ν ′

t = (ω2 +ω ′
2)/2

νu = (ω1 +ω ′
2)/2 ν ′

u = (ω ′
1 +ω2)/2. (89)
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Figure 5. Exemplary diagrammatic contributions to the s-channel
kernel functions Ks1, K

s
2, K̄

s
2, and K

s
3. For simplicity, here, we

illustrate the bare vertex as a black dot. (a) Ks1 diagram, where all
external legs couple to the bare vertices. (b) and (c) Are Ks2 and K̄s2
contributions, respectively, where the ν ′

s or ν ′
s dependencies arise

from the additional loops. These diagrams are dubbed fish-eye
diagrams. The nested three-loop diagram (d) contributes to the Ks3
kernel.

The distribution of the frequencies to the external legs of a
two-particle diagram is illustrated in figure 6. Please note, that
this choice of fermionic frequencies is shifted with respect to
[140, 144] to simplify symmetry relations.

Taking the appropriate high-frequency limits, the general
symmetry relations in table 2 can straightforwardly be trans-
lated into the mixed frequency notation and assume are partic-
ularly simple form, see table 3. Most noteworthy, the t-channel
decouples from the other two, while the s- and u-channels
are coupled by inverting the fermionic frequencies. In total,
these symmetries allow us to restrict the frequency domain of
every channel to positive frequencies only, where, in addition,
ν ⩾ ν ′. We want to emphasize that those symmetries exchan-
ging νc and ν ′

c also imply that K2 and K̄2 are equivalent for
pseudo-fermionic systems and, thus, only one of them needs
to be implemented. The full flow equations in this asymptotic
frequency parametrization are presented in appendix A.

5.4. Choice of truncation

In the multi-local flow equations, equation (84), we have
already performed the Katanin-substitution to go beyond a
conventional L2 truncation of the FRG equations. As already
realized in the early days of PFFRG [26], the Katanin substi-
tution is an essential modification to obtain meaningful res-
ults. Technically, the Katanin terms ensure the full feedback
of the self-energy into the flow of the two-particle vertex. This
creates damping effects for the onset of magnetic long range
order that can be seen as an incorporation of quantum fluc-
tuations: If a system flows into a magnetically ordered phase
during the RG flow, the two-particle vertex increases. Since
the self-energy flow is proportional to the two-particle vertex
this also increases the self-energy. However, the self-energy,
when fed back into the two-particle vertex via the additional
Katanin terms, occurs in the denominator of the propagat-
ors. This suppresses the propagators in the flow equation of
the two-particle and, hence, suppresses the two-particle ver-
tex itself, realizing a negative feedback loop that may suppress
the initially assumed onset of magnetic order. In fact, without
the Katanin terms, the PFFRG always predicts magnetic order
and the obtained susceptibilities closely resemble those of a
bare spin mean-field theory. The negative feedback loop of the

Katanin terms is, therefore, essential to find any non-magnetic
phases at all [26].

As a demonstration, in figure 7, the flow of the spin-
susceptibility of the Pyrochlore nearest-neighbor Heisenberg
antiferromagnet (NNAF) (see section 7.3 for a discussion of
the model) diverges in the L2 truncation, whereas it stays
regular in the Katanin corrected case even for small RG
scales Λ.

We will refrain from including multiloop corrections [38,
142] in this review, as the qualitative results are not changed
by these and the quantitative numerical improvements do not
warrant the increased effort (see section 8 for details).

5.5. Regulator

To complete the discussion of the PFFRG flow equations, we
have to specify the regulator function R(Λ) [defined before
equation (50)] used to introduce the IR cutoff. While in itiner-
ant systems, a cutoff in reciprocal space [20], as well as rescal-
ing of the interactions [145] or temperature itself [96, 116] are
commonly used for performing the regularization, the formu-
lation of PFFRG in real space at zero temperature calls for a
different approach, which, most naturally, amounts to imple-
menting the RG scale Λ in frequency space. Here, we will dis-
cuss the two different implementations used in this context: the
sharp step regulator already employed in earlier implementa-
tions of PFFRG [26] and a recently introduced smoothened
version [38, 135, 142].

5.5.1. Step regulator. The most straightforward way to sep-
arate high- and low-energy degrees of freedom is by introdu-
cing a step-like regulator in frequency space of the form

R(ω,Λ) = θ (|ω| −Λ) , (90)

where θ denotes the Heaviside step function. The scale-
dependent bare propagator for a spin system in pseudo-
fermionic representation is then given by

iGΛ
0 (ω) =

θ (|ω| −Λ)

ω
, (91)

from which we immediately find the full propagator, by using
Dyson’s equation (equation (71)), to be

iGΛ (ω) =
θ (|ω| −Λ)

ω+ γΛ (ω)
. (92)

The corresponding single-scale propagator (equation (56)) can
be calculated using Morris’ lemma [146], yielding

iSΛ (ω) =
δ (|ω| −Λ)

ω+ γΛ (ω)
, (93)

where δ denotes the Dirac-delta function. This form a posteri-
ori accounts for its name: the single-scale propagator in this
formulation filters out exactly the frequency corresponding to
the RG scale Λ. This considerably simplifies the right-hand

16



Rep. Prog. Phys. 87 (2024) 036501 Review

Figure 6. Natural frequency parametrization as used in the asymptotic parametrization scheme defined in equation (89). The diagrammatic
s-, t-, and u-channels vanish in the limit of taking the corresponding bosonic transfer frequency s/t/u to infinity. The shift by half the
transfer frequency allows for a simpler implementation of symmetries.

Table 3. Symmetry relations of the channel contributions to the two-particle vertex functions for pseudo-fermion Hamiltonians expanded in
terms of Pauli matrices in the natural frequency parametrization for the s-, t- and u-channels respectively, see equation (89). The rightmost
column specifies the combinations of physical symmetries to realize these relations. TR denotes time-reversal, H hermitian conjugation, X
crossing symmetry in both incoming and outgoing particles and PH1/2 is a particle-hole transformation for particle 1 or 2.

gs,αβi1i2
(ωs,νs,ν

′
s ) = gs,βαi2i1

(−ωs,νs,ν
′
s ) (X ◦ TR ◦ H ◦ PH1 ◦ PH2)

gs,αβi1i2
(ωs,νs,ν

′
s ) =−ξ(α)gu,βαi2i1

(ωs,−νs,ν
′
s ) (PH2 ◦ X)

gs,αβi1i2
(ωs,νs,ν

′
s ) =−ξ(β)gu,αβi1i2

(ωs,νs,−ν ′
s ) (PH2)

gs,αβi1i2
(ωs,νs,ν

′
s ) = gs,βαi2i1

(ωs,ν
′
s ,νs) (X ◦ TR ◦ H)

gt,αβi1i2
(ωt,νt,ν

′
t ) = ξ(α)ξ(β)gt,αβi1i2

(−ωt,νt,ν
′
t ) (TR ◦ H)

gt,αβi1i2
(ωt,νt,ν

′
t ) =−ξ(α)gt,αβi1i2

(ωt,−νt,ν
′
t ) (PH1)

gt,αβi1i2
(ωt,νt,ν

′
t ) =−ξ(β)gt,αβi1i2

(ωt,νt,−ν ′
t ) (PH2)

gt,αβi1i2
(ωt,νt,ν

′
t ) = gt,βαi2i1

(ωt,ν
′
t ,νt) (X ◦ TR ◦ H)

gu,αβi1i2
(ωu,νu,ν

′
u ) = ξ(α)ξ(β)gu,βαi2i1

(−ωu,νu,ν
′
u ) (X ◦ TR ◦ H)

gu,αβi1i2
(ωu,νu,ν

′
u ) =−ξ(β)gs,βαi2i1

(ωu,−νu,ν
′
u ) (X ◦ PH2)

gu,αβi1i2
(ωu,νu,ν

′
u ) =−ξ(β)gs,αβi1i2

(ωu,νu,−ν ′
u ) (PH2)

gu,αβi1i2
(ωu,νu,ν

′
u ) = gu,βαi2i1

(ωu,ν
′
u ,νu) (TR ◦ H)

Figure 7. Flow of the PFFRG spin-susceptibility at the pinch-point
of the nearest-neighbor Heisenberg antiferromagnet on the
Pyrochlore lattice. The L2 truncated flow features a divergence,
indicative of long-range magnetic order, whereas the flow remains
regular when the Katanin truncation is invoked.

side of the FRG equations in a L2 truncation, as it analytically
replaces frequency integrations by a finite summation.

However, invoking the Katanin substitution in
equation (63) or performing a full multiloop scheme, this
advantage is remedied due to integrations not containing
the single-scale propagator. Furthermore, due to the non-
analyticity of the regulator, the frequency dependence of the
vertex functions shows characteristic kinks at Λ dependent
positions, which in a numerical implementation leads to an
oscillating behavior of the RG flow, see e.g. [26].

5.5.2. Smoothened frequency cutoff. To circumvent these
numerical problems, in more recent implementations of
PFFRG, a smooth regulator

R(ω,Λ) = 1− e−
ω2

Λ2 , (94)

is employed, which smears out the step at |ω|= Λ over a
width of Λ. This regulator is similar to the so-called Ω-flow
used in itinerant fermion FRG [147], in the sense that in
equation (94) the suppression of the low-frequency region is
done in a Gaussian shape, while in the Ω-flow, this is done
using a Lorentzian.

The bare propagator for the smooth cutoff is given by

iGΛ
0 (ω) =

1− e−
ω2

Λ2

ω
, (95)

and, consequently, the full propagator reads as

iGΛ (ω) =
1− e−

ω2

Λ2

ω+ γΛ (ω)
. (96)

Since, no discontinuities are present in this function, we can
directly use equation (56) to obtain the single scale propagator

iSΛ (ω) =
2e−

ω2

Λ2

[ω+ γΛ (ω)]
2

ω3

Λ3
, (97)

which, as in the sharp cutoff case, features two peaks located
symmetrically around ω= 0, but now at a frequency ωp < Λ,
whereas we have ωp = Λ in the case of a sharp cutoff.
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5.6. Initial conditions

To close the PFFRG flow, we have additionally to specify the
initial conditions (see equation (60)) for our parameterization
of the PFFRG. Since, the self-energy has to vanish at the begin-
ning of the flow, we trivially find

γΛ→∞ (ω) = 0. (98)

Antisymmetrizing the pseudo-fermion Hamiltonian in
equation (14), we find for the two-particle vertex

Γαβ,Λ→∞
i1i2 =

Jαβi1i2
4
. (99)

Interactions involving three or more spins would lead to
a non-vanishing initial condition for the three-(or higher-)
particle vertex, which is, although analytically possible to
include, numerically not tractable due to the more involved
frequency dependence.

5.7. Susceptibilities

As discussed in the previous sections, the FRG flow equations
are formulated in terms of vertex functions. While these,
in principle, contain the full physical information about the
quantum mechanical state of a system, they are not physical
observables and are therefore of limited use.

The simplest physical observable that can be straightfor-
wardly calculated with PFFRG and which also allows for
physically interpreting the system’s quantum state is the static
susceptibility or spin–spin correlator

χαβij (ω = 0) =

∞̂

0

dτ
〈
Sαi (τ)S

β
j (0)

〉
, (100)

where τ is the imaginary time and only contributions fromα=
β are finite for Heisenberg systems. Expressing the right-hand
side of equation (100) in terms of pseudo-fermions, and using
the tree expansion for the full two-particle Green’s function
(equation (77)), we can express this quantity in terms of the
self-energy and the two-particle vertex as

χαβ,Λij (ω)

=−1
2

1
2π

ˆ
dω ′GΛ (

ω ′)GΛ (
ω ′ +ω

)
δijδαβ

− 1
4

(
1
2π

)2¨
dω ′dω ′ ′GΛ (

ω ′)GΛ (
ω ′ +ω

)
GΛ (

ω ′ ′)
×GΛ (

ω ′ ′ +ω
) ∑
µ ′

1 µ
′
2 µ1µ2

ΓΛ (
x ′1,x

′
2|x1,x2

)
σαµ1µ

′
1
σβ
µ2µ

′
2
.

(101)

where x ′1 = (i,ω ′ +ω,µ ′
1), x

′
2 = ( j,ω ′ ′,µ ′

2), x1 = (i,ω ′,µ1),
and x2 = ( j,ω ′ ′ +ω,µ2). Note that through its dependence
on vertex functions, the correlator χαβ,Λij (ω) has acquired a
Λ-dependence. While this expression is formulated for arbit-
rary frequencies ω, it should be kept in mind that these are
Matsubara frequencies defined on the imaginary frequency

axes. Therefore, only the point ω= 0 corresponds to a phys-
ical quantity. Another physical observable can be obtained by
integrating over frequencies in equation (100), which yields
the usual equal time (i.e. instantaneous) spin–spin correlator

⟨Sαi S
β
j ⟩=

ˆ
dωχαβij (ω) . (102)

Since this additional frequency integration (which in numer-
ical approaches is performed over a discrete mesh) intro-
duces additional numerical errors, the static correlator in
equation (100) is more often used in applications of the
PFFRG.

By Fourier-transforming the static correlator into
momentum space, one further obtains the static susceptibility

χΛ (k) =
1
N

∑
i,j

eik·(ri−rj)χαβ,Λij (ω = 0) . (103)

This quantity is of particular physical interest as it describes
the magnetic response to an (infinitesimally small) static
external magnetic field. Moreover, as it is defined in entire
momentum space (i.e. it does not only correspond to the
response to homogeneous magnetic fields but also to spatially
varying ones) with this quantity one can identify the wave vec-
tors of dominant magnetic fluctuations.

At this point, it is important to mention that, by definition,
the PFFRG flow respects all symmetries of the initial spin
Hamiltonian, in particular, χΛ(k) is invariant under the full
space group of the underlying lattice. In magnetically ordered
phases, however, time-reversal symmetry (and usually also lat-
tice symmetries) are spontaneously broken. As the RG flow
cannot enter phases with spontaneously broken symmetries,
this will lead to an instability in the Λ-flow of χΛ(k) at a crit-
ical scaleΛc, usually in the form of a divergence or kink. In this
case, the wave vector k where χΛ(k) is maximal, provides the
ordering wave vector of the respective magnetically ordered
phase. Here, the implementation of the magentic system as
infinite with finite correlation length (see section 5.2) allows
for accessing the precise location of incommensurate ordering
vectors, e.g. for spin spirals, which would not be accurately
resolvable with other boundary conditions [126]. On the other
hand, in spin liquid phases, where no spontaneous symmetry
breaking occurs, a featureless flow of χΛ(k) down to the small
Λ limit is expected.

We note that, in principle one can also continue the flow
into symmetry broken phases by including a suitable order
parameter field [127]. However, this requires an a priori anti-
cipation of the specific type of symmetry breaking to define
this field. Furthermore, explicitly breaking symmetries on the
Hamiltonian level may increase the numerical efforts enorm-
ously. To avoid both types of complications, applications of
the PFFRG are usually performed without such symmetry
breaking fields and, consequently, the flow has to be stopped
when indications for a magnetic instability arise.

Through Kramers–Kronig relations, the static susceptibil-
ityχΛ(k) is also closely related to the dynamical spin structure
factor Sαβ(k,ω) that can be measured in neutron scattering
experiments,
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χΛ=0 (k) =
ˆ

dω
Sαβ (k,ω)

ω
. (104)

This correspondence allows one to perform direct theory-
experiment comparisons based on the outcomes of PFFRG,
which have been carried out very successfully in past applic-
ations [59, 60, 148]. Having numerical access to the system’s
momentum resolved spin fluctuations as contained in χΛ(k)
is particularly important for magnetically disordered systems,
such as quantum spin liquids. There, the precise distribution
of signal in momentum space provides a superb characteriz-
ation of the system’s ground state magnetic properties which
constitutes one of the key strengths of PFFRG.

In principle, by performing an analytic continuation of
χαβ,Λij (ω) (equation (101)) to the real frequency axis and addi-
tionally transforming this quantity to momentum space, one
could even obtain the full dynamical spin structure factor
Sαβ(k,ω). However, an analytic continuation of numerical
data is a long standing problem which so far has defied a
satisfactory solution and, hence, this strategy of obtaining
Sαβ(k,ω) has until now not been further pursued.

5.8. Single occupation constraint

The pseudo-fermion representation necessitates the fulfil-
ment of the single occupation per site contraint as given in
equations (5) and (10), for equation (3) to be a faithful oper-
ator mapping. As discussed in section 3.5, a suitable SU(2)
gauge field will act as a Lagrange multiplier enforcing the con-
straint. In FRG, however, the inclusion of such a non-Abelian
field complicates the flow equations further [149] and, there-
fore, this has not been pursued to date.

At finite temperature, the inclusion of an imaginary chem-
ical potential µPF, as initially put forward by Popov and
Fedotov [150] projects out the contributions from unphysical
pseudo-fermion sectors, as discussed further in section 6. In
the limit T→ 0, µPF vanishes. As this limit, however, does not
commute with the path integral, a vanishing chemical potential
does only guarantee a fulfillment of the constraints on average
(i.e. ⟨c†i↓ci↓ + c†i↑ci↑⟩= 1 instead of equation (5)), as it implies
half-filling of the particle-hole symmetric pseudo-fermionic
system.

This average constraint was used in all T = 0 implement-
ations of PFFRG to date, motivated by initial studies that
present physically correct results when compared to an exact
implementation of the Popov-Fedotov scheme [126, 149].
Another systematic treatment of the single occupation can be
reached by implementing a level-repulsion term

HLR =−A
∑
i

S2
i , (105)

which for A> 0 energetically favors the physical S= 1/2
states, gapping out the unphysical S= 0 sector of the pseudo-
fermions, in the limit A→∞ leading to an exact fulfillment
of the constraint. Large values of A however spoil numer-
ical stability, of the FRG flow, but up to this point it has
been shown that the flow remains essentially unaffected by the

level-repulsion [151]. Recent studies on small clusters, how-
ever, suggest that small size systems can be found, in which
the constraint violation can spoil the results of PFFRG [74].

5.9. Generalizations

5.9.1. Arbitrary spin-length S. Although most interesting
from the perspective of quantum fluctuations, the S= 1/2
case of spin operators treated by pseudo-fermions is not gen-
erally applicable to model Hamiltonians of real materials,
which often feature higher spin S moments. The obvious way
to extend (3) would be to replace the Pauli-matrices σ with
their higher-spin counterparts, leading to a pseudo-fermionic
representation comprising 2S+ 1 flavors of particles per
site [152]. The occupation constraint then calls for a 1/(2S+
1) filling to achieve one-particle per-site on average. The cor-
responding chemical potential is, however, not a priori known
and nor is particle-hole symmetry present in such a frame-
work, thereby complicating the implementation of such a
scheme.

Therefore, for PFFRG, as an alternative route, it has been
put forward in [68] to introduce 2S replicas of spin S= 1

2 oper-
ators per site to express a single spin-S operator at site i as

Si =
2S∑
κ=1

Si,κ, (106)

with κ enumerating the different replicas. Introducing the
pseudo-fermion mapping, equation (3), for each constituent
spin, we find an alternative pseudo-fermionic representation

Sαi =
1
2

∑
κ,µ ′,µ

c†µ ′κσ
α
µ ′µcµκ, (107)

now subject to the constraint that at each lattice point, the sys-
tem has to be at half-filling and simultaneously the total spin
length must be maximized.

While the first condition can again be implemented by
means of an average projection scheme, the second needs a bit
more care: In addition to the physical sector with spin-length S,
we have introduced S (S− 1/2) unphysical sectors with lower
spin for 2S being even (odd). To minimize their contributions
in the calculations, a modified version of equation (105) as a
level-repulsion term [68]

HLR =−A
∑
i

(
2S∑
κ=1

Si,κ

)2

(108)

is added to the Hamiltonian.
For A> 0, this will energetically favor the case where the

maximal spin length S per site is achieved, while gapping out
sectors with lower spin value. In practical calculations, how-
ever, the inclusion of this term has been shown to have neg-
ligible effects, as the spin replicas already tend to form the
largest spin length multiplets [68].
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5.9.2. Flow equations at arbitrary S. The modifications
needed to implement the replica scheme in the PFFRG flow
equations (83) and (84) are in the form of additional factors,
which do not change the general structure of the equations.

Firstly, we note that in equation (107) every site index i
is accompanied by an additional flavor index κ. As the U(1)
gauge symmetry of the pseudo-fermions (cf section 3.2) acts
on every replica of the S= 1

2 fermions separately, we find a
locality not only in the site index as discussed in section 3.4.6,
but also for the flavor index.

Secondly, considering the initial conditions of the vertex
in equation (99), we see that these are agnostic to the flavor
index. Combined with the flavor index locality, this leads to
the vertex function staying completely independent of the fla-
vor index during the flow. Therefore, any summation over fla-
vor indices is trivially carried out, contributing a factor of 2S
in the flow equations wherever there is an internal site sum-
mation, due to the intimate connection between site and fla-
vor indices discussed above. Therefore, the only changes to
the flow equations are factors 2S for the site summation in
equation (83) and the RPA-like contribution in equation (84).

Since, for increasing S, quantum fluctuations become less
pronounced and the tendency towards classical long-range
order is enhanced, this term can be identified as the one indu-
cing such a phase transition.

5.9.3. Equivalence of S→∞ to Luttinger–Tisza. In the limit
S→∞, this notion becomes particularly clear [68]. The only
surviving term in the two-particle vertex flow then is the non-
local RPA contribution in the t-channel. Therefore, the only
frequency structure of the initially frequency independent ver-
tex will be in the corresponding transfer frequency.

Introducing the shorthand notation

Γ̃
s/d,Λ
ij (t) =

1
2S

Γ
s/d,Λ
ij (s, t,u) , (109)

for the spin and density vertices introduced in section 5.2, the
flow equation for the latter simplifies to

Γ̃d,Λi1i2 (t) =
1
π

ˆ
dω
∑
j

Γ̃d,Λi1j (t) Γ̃d,Λji2 (t)

×
(
SΛkat (ω)G

Λ (ω+ t)+ (ω↔ ω+ t)
)
,

(110)

which stays finite due to the rescaling by 2S in equation (109)
and decouples from the spin vertex flow. Therefore, the ini-
tially vanishing density vertex does not become finite during
the flow. Similarly, the self-energy will only couple to the
density vertex and therefore identically vanish.

Hence, the flow equation for the remaining spin vertex
assumes a tractable form, when using the step-like regulator
introduced in section 5.5.1

Γ̃s,Λi1i2 (t) =
1
π

ˆ
dω
∑
j

Γ̃s,Λi1j (t) Γ̃
s,Λ
ji2 (t)

×
(
δ (|ω| −Λ)

ω

θ (|ω+ t| −Λ)

ω+ t
+(ω↔ ω+ t)

)
,

(111)

which allows for an analytical solution of the frequency integ-
ration. After Fourier transformation of the spatial dependence,
assuming a Bravais-lattice for convenience, the flow equation
reads

Γ̃s,Λ (k, t) =
2

πΛ(Λ+ t)
Γ̃s,Λ (k, t)2 , (112)

which is amenable to an analytic solution [153]

Γ̃s,Λ (k, t) =
J(k)/4

1+ J(k)
2πΛ ln

(
1+ t

Λ

) , (113)

where J(k) is the Fourier transform of the bare Heisenberg
interaction.

This flow features a leading divergence at frequency t= 0
for

Λc =−mink J(k)
2π

, (114)

i.e. the spin vertex diverges at the point in reciprocal space,
where the Fourier transform of the initial interaction is most
negative. Following equation (103) this feature will also
appear in the static susceptibility, implying long-range order
governed by this wave-vector.

Therefore, PFFRG in the S→∞ limit is equivalent to the
Luttinger–Tisza method [154–156], where the same finding is
true. This means, on Bravais lattices, PFFRG reproduces the
exact classical ground-state [68], whereas it is equivalent to a
classical O(N→∞) mean-field in all other cases [157].

In case of a multi-site basis, the minimum in equation (114)
has to be taken over the eigenvalues of the matrix valued
Fourier transform in sublattice space.

5.9.4. Symmetry enhanced SU(N). A second generaliza-
tion of the pseudo-fermion approach is designed to enhance
quantum fluctuations in contrast to the large-S generalization
in the previous section which approached classical behavior.
To this end, the SU(2) symmetry group of spins is promoted
to SU(N) [153, 158], effectively allowing for more quantum
degrees of freedom to the spin operators. This generalization
is not uniquely defined, and several implementations with pos-
sibly different ground-state properties exist [159], but all have
in common that quantum fluctuations are enhanced for N> 2,
rendering them dominant in the N→∞ limit.

Following [153, 158], we introduce the generalization
by introducing the generators Tα of SU(N) in the funda-
mental representation of this group, with α ∈ 1,2, . . . ,N2 − 1.
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These hermitian, traceless N×N matrices follow the su(N)
Lie-algebra

[
Tα,Tβ

]
= i

N−1∑
γ=1

fαβγT
γ , (115)

where f are the structure constants of the group. Replacing the
Pauli matrices in equation (3), we find the fermionic decom-
position of SU(N) spins to be24

Sα =
N∑

µ,ν=1

c†µT
α
µνcν , (116)

where we have introduced N flavors of pseudo-fermions. To
render the operator mapping exact, we additionally have to
introduce the half-filling per site constraint

N∑
µ=1

c†µcµ =
N
2
, (117)

which immediately constrains this generalization to even N.
In the T→ 0 limit, equation (117) can be treated by an aver-
age projection scheme, as discussed in section 5.8. At finite
temperatures, a Popov-Fedotov like scheme, employing ima-
ginary chemical potentials is possible, however, it necessitates
introducing distinct potentials for every fermion flavor [160].

Employing a parameterization in terms of spin and density
like vertex components

Γ=,i1i2 (1
′,2 ′;1,2) = Γs,i1i2 (ω

′
1,ω

′
2|ω1,ω2)T

α
µ ′

1µ1
Tαµ ′

2µ2

+Γd,i1i2 (ω
′
1,ω

′
2|ω1,ω2)δµ ′

1µ1
δµ ′

2µ2
,

(118)

for Heisenberg-like interactions independent of SU(N) com-
ponents, we immediately see that the general structure of the
flow equations will remain unchanged by this generalization,
which amounts to a mere change of prefactors. For the full set
of SU(N) equations we refer the reader to [69, 93]. In contrast,
the symmetries of Greens’ and subsequently vertex functions
discussed in section 3.4 do not all survive the generalization.
By promoting SU(2) to SU(N), the pseudo-fermion mapping
naturally looses its SU(2) gauge symmetry. While the U(1)
subgroup still remains intact, rendering the Green’s functions
multilocal, local particle-hole transformations based on the Z2

subgroup of SU(2) are no longer present. Inspecting table 3,
this especially affects the mapping between s- and u-channels,
which become independent for N> 2.

Indeed, in the N→∞ limit, the only contribution to the
two-particle vertex is the u-channel diagram of the spin vertex,
which does not generate non-local terms. Thus, the susceptib-
ility will remain finite throughout the whole RG flow, while
the vertex itself will diverge, signaling a transition into a spin
rotation invariant ordered state (e.g. a valence bond crystal or
a spin liquid), but not a magnetically ordered phase [153, 158].

24 For the SU(2) case, Tα = 1/2σα.

This reproduces the analytical mean-field results for N→∞,
which are exact in this limit. The Katanin truncation is a vital
ingredient inmaking this connection, a posteriori rationalizing
the necessity to include these corrections to obtain magnetic-
ally disordered ground-states.

6. Extension to finite temperature

6.1. Motivation

There are several reasons to study quantum spin Hamiltonians
like (1) also at finite temperatures T > 0: (i) First, this is
required if one desires quantitative modeling of experiments
which are never conducted at T = 0. Note, however, that the
assumption of thermal equilibrium is mostly appropriate for
solid-state applications, whereas experiments on cold-atom
implementations of spin systems often operate with quench
protocols and thermalization is not necessarily guaranteed
within the available timescales. (ii) Second, from a theoretical
point of view it is significant that spin S= 1/2 Hamiltonians
like the spin model (1) do not come with a small parameter
and this does not change if spins are represented by fermi-
onic partons. However, it is well known that the smallness of
the parameter J/T can control perturbative expansions [161,
162], for example the high-temperature series expansion for
static properties [163] or the pseudo-fermionic diagrammatic
Monte Carlo technique [75–77]. Recently, this type of control
has also been implemented for the PFFRG, see section 6.2.
Finally, from a practical point of view, finite temperatures
are associated with discrete Matsubara frequencies which are
easier to handle numerically than the continuous frequencies
at T = 0. (iii) Third, on top of quantum fluctuations present
at T = 0, turning to T > 0 switches on thermal fluctuations
which might have interesting consequences especially when
they are competing. For example, it is well known that in
one- and two-spatial dimensions thermal fluctuations melt
any ordered phase with a spontaneously broken continuous
symmetry [164]. For discrete symmetries or in three spatial
dimensions, finite critical temperatures Tc mark the bound-
ary between a fluctuation dominated disordered regime and
the ordered regime which survives to finite T. Moreover, if
a zero temperature quantum phase transition [165] driven by
quantum fluctuations is present, the competition of quantum-
and thermal fluctuations in the vicinity of the critical point lead
to non-trivial scaling and power-laws with respect to T that
allow to infer information on the experimentally inaccessible
limit at T = 0, see [166] for a recent experimental example on
the triangular lattice. In summary, it is a highly relevant task
to access static and dynamic properties of spin systems also
at finite temperature. In the following, we review the role of
pseudo-fermionic FRG-based methods in this endeavor.

6.2. Popov-Fedotov trick for PFFRG

As emphasized in section 3, the PF representation of spin oper-
ators which forms the basis of PFFRG, introduces unphysical
states in the Hilbert space. It has been argued that these addi-
tional S= 0 states reside at excited energies above the ground
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state and at T = 0 cannot thus affect the physical observables
computed via the PF representation with PFFRG. On the one
hand, recently found explicit counterexamples [74] question
this lore at T = 0. On the other hand, for T > 0, where unphys-
ical excited states are thermally populated, it is clear that
PFFRG is certainly inapplicable and additional measures must
be taken in order to project out the non-magnetic spin-0 PF
states.

One way to achieve this is through the so-called Popov-
Fedotov trick [150]: An imaginary valued chemical potential
µPopov is added to the PF Hamiltonian equation (14), i.e. H̃ →
H̃Popov = H̃+µPopov

∑
j(nj,↑ + nj,↓ − 1), where nj,σ = c†j,σcj,σ

is the PF density at site j. The value of µPopov = iπT/2 is then
chosen such that the unphysical contributions to the partition
function cancel out when calculating the partition function.
Thermal expectation values are also cleared of non-magnetic
contributions and should therefore resemble their counterparts
in the original spin Hamiltonian.

While the Popov-Fedotov trick is routinely employed in
PF based diagrammatic Monte Carlo [75–77], the numer-
ical implementation of the PF trick in PFFRG was pioneered
only recently in [74] and comes at a price. Since µPopov is
purely imaginary, it will change sign under the anti-unitary
time-reversal transformation and also hermitian conjugation.
Furthermore, the term involving µPopov is also odd under the
global particle-hole symmetry. Fortunately, pairwise combin-
ations of the above-mentioned transformations remain a sym-
metry of the PF Hamiltonian H̃Popov and most symmetry con-
straints of the vertices discussed above remain intact [74].
The numerical effort for using the Popov-Fedotov trick within
PFFRG increases the runtime and memory requirements by
roughly a factor of four.

An important qualitative difference to T = 0 PFFRG is
found in the behavior of the flow. For T > 0, the flowing
quantities are generally smooth and convergent as Λ→ 0 for
any parameter choice. This is related to the presence of a
finite smallest Matsubara frequency πTwhich avoids the zero-
temperature pole in the bare fermionic propagator 1/iωn. As
a consequence, at T > 0, the PFFRG with the Popov-Fedotov
trick generally produces quantitative results for desired prop-
erties which are expected to be accurate for large T/J. In
figure 8(top), these end-of-flow results for the static spin cor-
relation functions for the AFMHeisenberg dimerH= JS1 ·S2

are presented (orange markers) and compared to exact res-
ults (solid black lines). Most importantly, the FRG data is in
quantitative agreement with the exact results for intermedi-
ate and high temperatures (T/J≳ 0.3). If the Popov-Fedotov
trick is left out, the application of both the ED as well as FRG
approach to H̃ (dashed black lines and blue symbols, respect-
ively) disagree with the true spin results due to the contribu-
tion of unphysical states. As a signature of the contribution of
unphysical states, the equal-time correlatorCi = 4⟨S̃zi S̃zi ⟩ (bot-
tom panel) should equal unity in an exact representation of
the spin-1/2 algebra [143]. Without the Popov-Fedotov trick,
Ci approaches 1/2 at high-temperatures where both physical
and unphysical states contribute equally to the partition func-
tion. In contrast, once the PF trick is employed, Ci correctly

Figure 8. Finite-T results for the Heisenberg dimer. Black lines
indicate exact results for the unconstrained pseudofermion
Hamiltonian (H̃) and the original spin model (H). The equal-time
correlator Ci = 4⟨Szi S

z
i ⟩ should equal unity in an exact

representation of the spin- 12 algebra. Data reproduced from [74] and
[167].

converges to one at least for large enough T. At low T, where
the truncation of the FRG flow equation degrades the qual-
ity of the results, the spin constraint ceases to remain exactly
fulfilled and, instead, decreases from one. Simultaneously, the
PFFRG results for the dimer correlation functions start to devi-
ate from the ED result. This issue will be further discussed in
section 8.3.

6.3. Pseudo-Majorana FRG

6.3.1. Pseudo-Majorana representation for spin 1/2.
Instead of relying on the Popov-Fedotov trick to project out
unphysical states, it is also possible to work with an alternative
fermionic representation of spin S= 1/2 devoid of unphys-
ical states altogether. This however requires real Majorana
fermions (η) instead of complex Abrikosov fermions (c,c†).
The pseudo-Majorana (PM) representation [168–171] for spin
S= 1/2 operators at site j is defined in terms of threeMajorana
fermion operators ηαj with α= x,y,z,

S̄xj =−iηyj η
z
j , S̄yj =−iηzj η

x
j , S̄zj =−iηxj η

y
j . (119)

The Majorana operators fulfil anti-commutation relations
{ηαi ,η

β
j }= δijδαβ from which we derive the normalization

(ηαj )
2 = 1/2. Furthermore, it holds (ηαj )

† = ηαj . From these
rules it follows that the spin algebra is fulfilled by the oper-
ators S̄αj and the spin length is S= 1/2. As a consequence, no
eigenstates at energies different from the spin eigenstates can
appear.
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As two Majoranas η,η ′ can be combined to form a com-
plex fermion via c= (η− iη ′)/

√
2, c† = (η+ iη ′)/

√
2, the

Hilbert space dimension per Majorana is
√
2 and the total

dimension of the PM Hilbert space for N spins is thus 23N/2,
enlarged in comparison to the dimension 2N of the spin sys-
tem by a factor 2N/2. This factor is explained by an unphysical
degeneracy of each spin-system’s eigenstate required by the
local Z2 gauge symmetry of equation (119), ηαj →−ηαj for all
α. More precisely, consider the operator Θj = iηxj η

y
j η

z
j which

commutes with all PM spin operators S̄αj ′ , for both j = j ′ and
j ̸= j ′. Thus, the set {Θ1,Θ2, . . .,ΘN} contains N constants of
motion. However, as this set consists of Majorana operators,
it is the fermion parities p(i,j) ≡ 2iΘiΘj =±1 for arbitrary but
fixed pairing of sites (i, j) that provide the N/2 eigenvalues±1
which distinguish the 2N/2 degenerate states.

The unphysical degeneracy of eigenstates in the PM rep-
resentation may seem problematic at first sight. However,
for a correlation-function based method like the FRG, it is
almost invisible. Indeed, consider the relation between the
physical partition function Z and the PM partition function,
Z̄ = 2N/2Z , by the aforementioned degeneracy. Thus, the free
energies per site

f = f̄+
T
2
log(2) (120)

are simply related by a temperature dependent but trivial
offset.

An expectation value of an arbitrary (time-evolved or com-
posite) spin operator denoted by O in a state ρ of the spin sys-
tem is defined as follows,

⟨O⟩= trOρ
trρ

=
1∑

σ ⟨σ|ρ|σ⟩
∑
σ,σ ′

⟨σ|O|σ ′⟩⟨σ ′|ρ|σ⟩ , (121)

where |σ⟩ denotes a basis of the spin system. In the PM rep-
resentation, the Hilbert space is enlarged by a factor 2N/2 that
encodes the different parity configurations p(i,j). However, the
thermal PM state e−βH̄ takes the form ρ̄= ρ⊗ 1p since H̄ com-
mutes with all p(i,j). The same is true for non-thermal states
that only depend on the PM spin operators {S̄αi }i,α. We split
off the trace over parity configurations tr= trσtrp and note that
spin observables in PM representation Ō also do not depend
on the parity configuration. We use trpρ̄= 2N/2ρ which can-
cels between numerator and denominator to conclude that any
expectation values and correlation functions take their phys-
ical value in the PM representation [172–174]

⟨Ō⟩=
trσtrpŌρ̄
trσtrpρ̄

=
trσOtrpρ̄
trσtrpρ̄

= ⟨O⟩ . (122)

We conclude this exposition on the PM representation by writ-
ing the Heisenberg spin Hamiltonian in PM representation,
where the sum is over bonds,

H̄=
∑
(ij)

(−Jij)
(
ηyi η

z
i η

y
j η

z
j + ηxi η

z
i η

x
j η

z
j + ηxi η

y
i η

x
j η

y
j

)
. (123)

Similar to the PF representation, we arrived at a purely
interacting fermionic Hamiltonian, now written in terms of

Majorana operators. In the following, we present the diagram-
matic PMFRG approach to this problem. To keep the notation
light, we limit ourselves to Heisenberg systems, but generaliz-
ations to other bi-linear spin couplings, e.g. of XXZ-type [86],
are straightforward.

6.3.2. Pseudo-Majorana correlators and one-line
irreducible vertices. We define the temporal Fourier trans-
form of the two-point imaginary time-ordered PM correlation
functions [73]

G(1,2) =
ˆ β

0
dτ1,2e

iω1τ1+iω2τ2
〈
Tτη

α1
j1 (τ1)η

α2
j2 (τ2)

〉
(124)

≡ βδω1+ω2,0G
α1α2
j1j2 (ω2) (125)

where 1≡ ( j1,α1,ω1). The four-point function is defined ana-

logously, Gα1α2α3α4
j1j2j3j4 (ω1,ω2,ω3)=

´ β
0 dτ1,2,3e

iω1τ1+iω2τ2+iω3τ3

⟨Tτηα1
j1 (τ1)η

α2
j2 (τ2)η

α3
j3 (τ3)η

α4
j4 ⟩. Here, ω1 is shorthand for

ωm1 = πT(2m1 + 1), m1 ∈ Z. The Heisenberg imaginary time
evolution is η(τ) = eH̄τηe−H̄τ and the Fourier transform con-
vention is such that the n frequencies of the n-point vertex
sum to zero.

An important consequence of the PM representation is that
we are dealing with only one type of operator, e.g. η instead of
c,c†. This means that for imaginary time-ordered correlation
functions any pair of index tuples 1,2, . . . can be exchanged
for a minus sign. This antisymmetry, in conjunction with
the hermitian conjugation property ⟨O⟩=

〈
O†〉⋆ ensures that

G(1,2)≡−ig(1,2) ∈ iR and G(1,2,3,4) ∈ R.
The local Z2 gauge symmetry of the PM representation

ηαi →−ηαi ∀α ∈ {x,y,z} ensures that each non-vanishing PM
correlator is bi-local which means that each site-index appears
at least twice. In the PM representation, time-reversal sym-
metry is implemented as complex conjugation i→−i which
indeed flips all spin operators in equation (119) and implies
that g(1,2) andG(1,2,3,4) are invariant under multiplying all
frequency arguments by −1. Spin rotation symmetries act on
the vector of Majorana operators (ηx,ηy,ηz)T as on the vec-
tor of spin operators (Sx,Sy,Sz)T [170]. If present, these sym-
metries further restrict the flavor combinations α1,2,... of non-
vanishing correlation functions, for details see [73]. For the
Heisenberg case, the above symmetries lead to the following
parameterization of the two-point function,

g(1,2) = βδω1+ω2,0δj1,j2gj1 (ω2) , gj (ω) =
1

ω+ γj (ω)
(126)

with γj(ω) =−γj(−ω) ∈ R. The connected part of the four-
point correlation functions G(1,2,3,4) is linked to the one-
line irreducible vertices Γ(1,2,3,4) by the tree expansion. For
the Heisenberg case, there are only three independent non-zero
vertices, which, without loss of generality, can be defined as

Va
ij (s, t,u) = βδωΓ(ixω1, ixω2, jxω3, jxω4) , (127)

Vb
ij (s, t,u) = βδωΓ(ixω1, ixω2, jyω3, jyω4) , (128)

Vc
ij (s, t,u) = βδωΓ(ixω1, iyω2, jxω3, jyω4) , (129)
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where δω ≡ δω1+ω2+ω3+ω4,0 and we defined the bosonic fre-
quencies as s= ω1 +ω2, t= ω1 +ω3 and u= ω1 +ω4. The
most important frequency symmetries of the V, which allow
to focus on non-negative s, t,u are

Va,b,c
ij (s, t,u) = Va,b,c

ij (−s, t,u) , (130)

Va,b,c
ij (s, t,u) = V a,b,c

ji (s,−t,u) , (131)

Va,b,c
ij (s, t,u) = V a,b,c

ji (s, t,−u) , (132)

and the exchange symmetries between u and t further simplify
the numerical effort,

Va,bij (s, t,u) =−Va,b
ij (s,u, t) , (133)

Vcij (s, t,u) =
[
−Va

ij +Vb
ij +Vc

ij

]
(s,u, t) . (134)

As in PFFRG, spatial symmetries, both point-group and trans-
lation, drastically reduce the number of vertices in an actual
calculation.

Finally, we provide the main observables of interest for
a spin system in terms of PM quantities. First, we remind
the reader that the free energy in equation (120) provides
access to thermodynamic quantities like the energy per site
e= f −T df

dT , the specific heat c= de
dT and even the entropy

s= (e− f)/T, which is often challenging to obtain from other
methods. Moreover, we write the dynamic spin susceptibility
on theMatsubara axis in terms of PMpropagators and vertices,
again for the Heisenberg case,

χzzij (iν) =
ˆ β

0
dτ eiντ

〈
Szi (τ)S

z
j

〉
(135)

= δijT
∑
ω

gi (ω)gi (ω− ν)

+ T2
∑
ω,ω ′

gi (ω)gi (ω− ν)gj (ω
′ + ν)gj (ω

′)

×Vc
ij (ν,ω−ω ′ − ν,ω+ω ′) . (136)

6.3.3. Pseudo-Majorana path integral and FRG flow
equations. Given the fact that Majorana operators and com-
plex fermionic operators are related by a unitary rotation it is
not surprising that there exists a Grassmann field path integral
for the partition function of interacting Majorana systems.
Calling the field ζa, its action reads [175–177]

S
[
{ζa}a

]
=

ˆ β

0
dτ

(∑
a

1
2
ζa (τ)∂τζa (τ)+H [ζa (τ)]

)
,

(137)

where, just like in the complex fermion case, each occurrence
of ηa in the Hamiltonian H is to be replaced by ζa(τ). With
a sufficiently general formulation of the FRG at hand [128],
it is a straightforward task to derive flow equations for the
interaction correction of the free energy, self-energy and 4-
point vertex [73]. Since there is just a single field-type (ζ), the
corresponding diagrams do not feature incoming and outgoing
lines and all vertices are fully antisymmetric under exchanges
of all legs. Likewise, the s, t and u channels in the vertex flow

equations are related to each other by simple permutations of
indices.

In the following, we will express these flow equations dir-
ectly in terms of the PM quantities defined in the previous
section 6.3.2. In analogy to PFFRG, we use a multiplicat-
ive frequency cutoff, which in light of the discrete Matsubara
frequencies is chosen to be smooth, G0(ω)→ GΛ

0 (ω) =
G0(ω)ϑΛ(ω). A standard choice is a Lorentzian, ϑΛ(ω) =

ω2/(ω2 +Λ2) with ∂ΛϑΛ(ω) =−2ω2Λ
(
ω2 +Λ2

)−2
.

We first give the initial conditions forΛ→∞. The free PM
energy per site f̄ starts at its non-interacting value −3T/2log2
and the vertex Vcij(s, t,u) initially is−Jij. All other vertices and
the self energy vanish initially. The flow equations for the PM
free energy per site and the self-energy are

∂Λ f̄
Λ =

−3T
N

∑
k

∑
Ω>0

∂ΛϑΛ (Ω)

ϑΛ (Ω)
γΛk (Ω)gΛk (Ω) , (138)

∂Λγ
Λ
i (ω) =−T

∑
Ω>0

∑
k

[
gΛk (Ω)

]2 Ω∂ΛϑΛ (Ω)
ϑ2
Λ (Ω)

×
[
Va,Λki + 2Vb,Λki

]
(0,Ω−ω,Ω+ω) . (139)

The flows of the 4-point vertices are provided by

∂ΛV
a,Λ
ij (s, t,u) = X a,Λ

ij (s, t,u)− X̃a,Λij (t,s,u) (140)

+ X̃a,Λij (u,s, t) ,

∂ΛV
b,Λ
ij (s, t,u) = Xb,Λij (s, t,u)− X̃c,Λij (t,s,u) (141)

+ X̃c,Λij (u,s, t) ,

∂ΛV
c,Λ
ij (s, t,u) = Xc,Λij (s, t,u)− X̃b,Λij (t,s,u)

+ X̃d,Λij (u,s, t) . (142)

Here, the objects denoted by X and X̃ are bubble functions. In
the case of X, they are defined by

X a,Λ
ij (s, t,u) = T

∑
Ω,k

ΠΛ
k (s,Ω)

×Va,Λki (s,Ω+ω1,Ω+ω2)V
a,Λ
kj (s,Ω−ω3,Ω−ω4)

+ 2× (a→ b) , (143)

and

Xb,Λij (s, t,u) = T
∑
Ω,k

ΠΛ
k (s,Ω)

×Va,Λki (s,Ω+ω1,Ω+ω2)V
b,Λ
kj (s,Ω−ω3,Ω−ω4)

+ (a↔ b)+ (a→ b) , (144)

and

Xc,Λij (s, t,u) = T
∑
Ω,k

ΠΛ
k (s,Ω)

×Vc,Λki (s,Ω+ω1,Ω+ω2)V
c,Λ
kj (s,Ω−ω3,Ω−ω4)

+ (ω1 ↔ ω2,ω3 ↔ ω4) , (145)
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where ΠΛ
k (s,Ω) = ġΛk (Ω)g

Λ
k (Ω+ s). The single-scale

propagator is ġΛj (ω) =
(
gΛj (ω)

)2 [
ω
ϑ ′
Λ(ω)

ϑ2
Λ(ω)

− ∂Λγ
Λ
j (ω)

]
. The

second term in the brackets represents the Katanin truncation
[133]. The local bubble functions X̃ii are by definition equi-
valent to the local Xii. They are given as X̃µ,Λii (s, t,u)≡
Xµ,Λii (s, t,u) for µ= a,b,c and X̃d,Λii (s, t,u)≡−Xc,Λii (s,u, t).
In the nonlocal case, they are defined by

X̃Λa;ij (s, t,u) = T
∑
Ω

ΠΛ
ij (s,Ω)

×VΛa;ji (Ω+ω1,s,Ω+ω2)V
Λ
a;ji (Ω−ω3,s,Ω−ω4)

+ 2× (a→ c) , (146)

and

X̃Λb;ij (s, t,u) = T
∑
Ω

ΠΛ
ij (s,Ω)

×VΛa;ji (Ω+ω1,s,Ω+ω2)V
Λ
c;ji (Ω−ω3,s,Ω−ω4)

+ (c↔ a)+ (a→ c) , (147)

and

X̃Λc;ij (s, t,u) = T
∑
Ω

ΠΛ
ij (s,Ω)

×VΛb;ji (Ω+ω1,Ω+ω2,s)V
Λ
b;ji (Ω−ω3,Ω−ω4,s)

+ (b→ c) , (148)

and

X̃Λd;ij (s, t,u) = T
∑
Ω

ΠΛ
ij (s,Ω)

×VΛb;ji (Ω+ω1,Ω+ω2,s)V
Λ
c;ji (Ω−ω3,Ω−ω4,s)

+ (b↔ c) . (149)

In these equations, ΠΛ
ij (s,Ω) = ġi,Λ (Ω)gj,Λ (Ω+ s)+

ġj,Λ (Ω+ s)gi,Λ (Ω). The symmetries of the X-terms under
frequency flip or exchange are the same as for the vertices V.
For the X̃-terms, they are slightly different. For µ ∈ {a,b,c,d}
it holds that X̃µ,Λij (s, t,u) = X̃µ,Λji (−s, t,u) = X̃µ,Λij (s,−t,u) =
X̃µ,Λji (s, t,−u) and we also have X̃d,Λij (s, t,u) = [X̃a,Λij − X̃b,Λij −
X̃c,Λij ] (u, t,s).

This concludes the description of the PMFRG flow
equations for the most elementary case of a Heisenberg
spin S= 1/2 system. We emphasize again that the numerical
implementation is greatly simplified by the fact thatMatsubara
frequencies are discrete and we usually use a frequency box
withNω = 20. . .60 positive frequencies for the self-energy and
the vertices. Of course, for a given T/J, one should check
that the results are converged with respect to Nω. However,
in practice, this is never a problem, since it turns out that
the truncation of the FRG hierarchy of flow equations is usu-
ally the main bottleneck. This can be seen in the example of
figure 8 which shows the PMFRG results (gray symbols) for
the static spin susceptibility of the AFM Heisenberg dimer.
The deviations from the exact results (black lines) starting
below T/J≃ 0.4 are not caused by any approximation in solv-
ing the flow equations but are only due to the neglect of the

flow of higher-order vertices, i.e. the truncation of the flow
equation hierarchy.

6.3.4. Perturbative control and intrinsic consistency checks.
As mentioned in section 6.1 under point (ii), a crucial tech-
nical advantage in working at T > 0 is the ability to control the
PMFRGwith the smallness of the parameter J/T. For example,
the contribution of the neglected six-point vertex scales as
Γ6 ∼O

(
J3/T2

)
in the standard one-loop truncation, which

means that the four-point vertex V(s, t,u) is accurate up to
O(J3/T2). Checking this scaling explicitly is an excellent test
of any PMFRG implementation. However, since the (PM)FRG
is beyond plain perturbation theory by incorporating infinite-
order resummations, the question is how to decide down to
which T/J the results can be trusted. Ideally, in the absence of
an exact solution as for the dimer case, some method-intrinsic
quality check, similar to the check of the spin-magnitude in
PFFRG [142] or similar developments in the Hubbard model
literature [162], is desired.

Generally speaking, any quantity that can be computed
alternatively from the two-point and the four-point functions
γ and V, respectively, can be used for such an internal consist-
ency check. Consider, for instance, the energy per site which
is defined as

e=
1
N
⟨H⟩= 1

N

∑
(i,j)

Jij⟨Si ·Sj⟩.

On the one hand, the equal-time spin correlators ⟨Si ·Sj⟩ can
be computed from the PM four-point vertex V via a Matsubara
sum of equation (136). On the other hand, as discussed above,
the energy can also be computed from the free energy f
that flows according to equation (138) where only γ enters.
Without the truncation of the hierarchy of flow equations, the
exact vertices would be obtained and the two approaches have
to produce the same result. In practical terms, this statement
can be used in reverse to conclude that an observed consistency
of both results for the energy signals that the truncation of the
flow equations is innocuous. Heuristically, our experiencewith
exactly solvable models indeed supports this point of view and
leads us to discard PMFRG results once the difference grows
beyond ≃5%. Formally, however, the conclusion is not quite
correct as even a perfect consistency between 2- and 4-point
vertices would not be a guarantee for the exactness of a many-
body calculation as such a consistency is a general feature of
a conserving approximation.

An alternative consistency check specific for the PM
case can be derived from the local constant of motion
Θi =−2iηxi η

y
i η

z
i , introduced in section 6.3.1. Since S̄αi =

Θi η
α
i and Θ2

i = 1
2 , we may write the local spin-spin correl-

ator as ⟨S̄zi (τ)S̄zi (0)⟩= ⟨Θi η
z
i (τ)Θi η

z
i (0)⟩= 1

2 ⟨η
z
i (τ)η

z
i (0)⟩.

Therefore, for the local case i= j, the (static) susceptibility of
equation (136) can be alternatively computed via

χzzjj (iν = 0) =
∑
n

1
π (2n+ 1)

gzj (ωn) (150)
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which only involves the self-energy. Again, if the FRG trun-
cation matters, one expects a sizeable difference between
equations (136) and (150).

6.4. Pseudo-fermions versus pseudo-Majoranas

We have now discussed two pseudo-particle FRG meth-
ods where the spin operators are either expressed in terms
of pseudo-fermions (PFFRG) or in terms of PM operat-
ors (PMFRG). We view both approaches as complement-
ary techniques with distinct strengths and weaknesses. The
PFFRG (without an implementation of the Popov-Fedotov
trick) allows for ameaningful application only at T = 0, which,
in fact, is the physically most interesting situation in many
applications. On the other hand, there is usually no control
parameter for a quantum system at T = 0 that guarantees the
accuracy of PFFRG results. Therefore, one can at most expect
qualitatively correct results. The PMFRG allows an applica-
tion at finite temperatures and introduces such a control para-
meter, namely J/T. For J/T≪ 1 results are strictly error con-
trolled in a perturbative sense. However, reaching the phys-
ically most interesting regime where J/T≳ 1 while keeping
results quantitatively correct, may be unfeasible. Of course,
the PMFRG can also be applied at T = 0, in which case, how-
ever, one gives up the advantage of error control for which it
was designed. The choice between both methods, PFFRG and
PMFRG, therefore, crucially depends on the specific needs,
quantitative results at elevated T or more qualitative insights
into T = 0 properties.

It is also worth discussing the differences between
PFFRG with the Popov-Fedotov trick and the PMFRG. Both
approaches represent two different strategies of avoiding
the unphysical states in the conventional PFFRG. While
the Popov-Fedotov trick can be implemented without many
changes in existing PFFRG codes, the PM representation has a
number of advantages: First, even with truncations in the hier-
archy of the flow equations, the PM representation fulfills the
spin-length constraint S= 1/2 exactly by construction, while
this is not the case with the Popov-Fedotov trick. Technically,
this is rooted in the frequency symmetries of the PM ver-
tex function which cancels its contribution to Ci so that only
the bare bubble contributes unity. A second advantage of the
PM approach is that it remains well-defined for T = 0, where
the Popov-Fedotov trick is inapplicable. Third, the Majorana
Hamiltonian is again Hermitian, allowing for a numerically
more feasible implementation.

7. Applications of PFFRG and PMFRG

7.1. Magnetic order

One of the most elementary characteristics of (quantum) mag-
nets is their potential tendency to developmagnetic long-range
order breaking the global spin rotation symmetry, e.g. SU(2)
for a Heisenberg model. The PFFRG and PMFRG are per-
fectly suited to detect magnetic ordering since they provide
access to the spin-spin correlation function which is related
to the four-fermion correlator. Physically, this object takes the

Figure 9. Nearest-neighbor antiferromagnet on simple cubic lattice
with J= 1: PFFRG flow of the spin susceptibility at the dominant
wave-vector kN = (π,π,π) for different maximal correlation
lengths L taken into account. Increasing L sharpens the flow
breakdown, which happens at Λc/J≈ 0.939. Inset: susceptibility
profile in reciprocal space showing Bragg peaks at the corners of the
Brillouin zone characteristic for the Néel ordered state.

role of a spin-susceptibility which is expected to peak at amag-
netic ordering transition. Before we embark into details, we
remind the reader of an important no-go theorem by Mermin–
Wagner [164] which forbids the spontaneous breaking of a
continuous symmetry [as, e.g. SU(2) or U(1)] at non-zero
temperature for short-range interacting systems below three
dimensions. In PFFRG, the parameterΛ, however, plays a sim-
ilar role as the temperature T, since both act like a low-energy
cutoff (the latter via the existence of a minimal Matsubara fre-
quency). Although this implies that there should be no sign
of order in the PFFRG flow of the spin susceptibility for
two-dimensional systems, still a divergence is found for non-
vanishing RG scale. In contrast to the flow breakdown in three
dimensions, which is determined by the phase transition of the
system, in the two-dimensional case it is an artifact of the trun-
cation of the flow equations.

In practice, the detailed protocol to detect magnetic order
is different for PFFRG and PMFRG. As the former focuses
on T = 0, only magnetic ordering tendencies in the the ground
state can be assessed. In the following, for concreteness we
focus on the NNAF on the simple cubic lattice. Historically,
this was the first three-dimensional system investigated with
PFFRG [52]. In the classical S→∞ limit, the spins form
a Néel ordered ground state, where neighboring spins align
antiparallel to each other. Although not an eigenstate of the
quantum model, the dominant correlations of this state carry
over to the spin 1/2 model, where Bragg peaks appear at the
corners of the Brillouin zone, i.e. at kN = (π,π,π) and sym-
metry related points [178].

The PFFRG flow of the maximum of the static susceptibil-
ity for this system in figure 9 shows a smooth behavior up to a
spike atΛc. This signals a long-range ordered ground state, the
formally expected divergent susceptibility is regularized by
both the finite size of the numerically treated correlations and

26



Rep. Prog. Phys. 87 (2024) 036501 Review

the finite frequency resolution. Increasing the former leads to
a progressively faster and earlier divergence, which converges
towards Λc/J≈ 0.939. Evaluating the static susceptibility just
before this peak in reciprocal space indeed reveals the incip-
ient Bragg peaks on the (equivalent) corners of the Brillouin
zone (see inset of figure 9). Note that the susceptibility peak
could also be regularized by a small but finite magnetization
which would then grow below Λc. However, so far this has not
been implemented in PFFRG due to the ensuing breaking of
time-reversal and spin-rotation symmetries, see the discussion
below in section 8.1.

As the PMFRG focuses on finite temperatures, it is com-
plementary to PFFRG also in the search for magnetic order.
However, as PMFRG flows converge in the temperature
regime where the method is controlled we can expect quant-
itative results for critical temperatures which are to be extrac-
ted from end-of-flow PMFRG results. To discuss the required
workflow that applies to continuous phase transitions we
return to the cubic lattice NNAF, where error controlled
quantum Monte Carlo determined Tc/J= 0.946(1) [178].
This was done for a finite-size system with periodic boundary
conditions using the concept of finite-size scaling of the mag-
netic susceptibility at the ordering wave-vector [179]. As peri-
odic boundary conditions are inconvenient for PMFRG which
preferably is applied to infinite and translational invariant lat-
tices, it was shown in [180] that scaling in the vertex cutoff
length L can be used as a practical alternative. Other than that,
the finite-size scaling program continues in a standard way:
One possibility [180] is to determine the critical temperat-
ure by the pure power law-scaling of the Néel susceptibility,
χN(T= Tc,L)/L2 ∼ L−η. Here, η is the anomalous dimension,
known to take on the small value η= 0.035 for the classical
three-dimensional Heisenberg universality class that governs
the finite-temperature magnetic transition even for quantum
S= 1/2 models. Another possibility is to use the so called
correlation ratio to determine the ratio of magnetic correlation
length ξ and L,

ξ/L=
1
2π

√
χ(kN)

χ
(
kN+ 2π

L ex
) − 1. (151)

This relation essentially relates the sharpness of the
momentum-space susceptibility peak at the ordering wave-
vector to the correlation length of the infinite system, see [179]
for a detailed discussion. The critical temperature is reached
when ξ→∞, e.g. when ξ/L does not depend on L. From the
data in figure 10 we read off Tc = 0.92J, less than 3% away
from the error controlled calculation. Similar accuracies for
critical temperatures were obtained in other models for which
an error controlled QMC benchmark exists, namely the AFM
J1 − J3 cubic lattice model, the FM Heisenberg model on the
pyrochlore lattice [180] or the square-lattice FM long-range
dipolar XY-model [86].

Going back to the scaling data of the cubic lattice NNAF
(figure 10) it is also possible to attempt a scaling collapse
of the data by changing the horizontal axes to L|T−Tc|ν .
The collapse [180] is almost perfect with ν= 0.71, the known
correlation length critical exponent of the three-dimensional

Figure 10. Nearest-neighbor antiferromagnet on simple cubic
lattice: PMFRG results for the correlation ratio equation (151) using
a one-loop + Katanin flow. The crossing of the data for various
system sizes indicates a critical temperature Tc = 0.92J close to the
quantum Monte Carlo result Tc/J= 0.946(1) [178] (dashed lines).
We re-defined L= [3/(4π)N]1/3 using the number N of sites
correlated to the reference site instead of the maximum of the
treated vertex range. Empirically, this yields smoother results
especially in the small-N case.

Heisenberg universality class, while the mean-field value
νMF = 1/2 is clearly rejected. On the other hand it is well
known that the underlying field theory of the Wilson–Fisher
fixed point requires interactions in the order parameter. Such
four-spin terms are generically absent in the truncation of
the PMFRG flow equations25, although the bi-local terms are
included via a non-trivial identity of the PM representation
[180]. In conclusion, the quantitative accuracy of the crit-
ical exponents obtained by a scaling collapse could pos-
sibly be accidental in nature or have a reason beyond current
understanding.

In summary, we have used the cubic lattice NNAF to dis-
cuss how magnetic ground state order or ordering temperature
as well as critical exponents can be detected within PFFRG or
PMFRG, respectively. The strength of the methods now rely in
the fact that the same studies can be applied to almost arbitrary
bilinear spin systems, especially those which are frustrated
by competing interactions. Such systems can harbor multiple
exotic magnetic ordering patterns in the ground state, see for
example the rich phase diagram of the J1 - J2 Heisenberg
model on the pyrochlore lattice studied by PFFRG in [55]. Of
particular interest, however, are paramagnetic regions in the
magnetic phase diagram where no magnetic order is detected.
We dedicate the following subsection to this topic.

7.2. Incommensurate order

In themost common cases, magnetic orders are invariant under
translations by an integer linear combination of lattice vec-
tors. For example, Néel order on the square lattice with kNéel =
(π/a,π/a) is invariant under translations by two lattice vectors

25 In the context of spin-fRG of section 8.4, the flow around theWilson–Fisher
fixed point can be constructed from a suitable cutoff scheme, see [181].
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Figure 11. Distance dMΓ of peak in the static magnetic susceptibility
χ(k) from the origin of the Brillouin zone for the Kitaev-Γ model
on the honeycomb lattice. The peak location follows the line
between the high-symmetry points Γ and M of the first Brillouin
zone of the honeycomb lattice. Reprinted (figure) with permission
from [79], Copyright (2021) by the American Physical Society.

in either direction. It is, however, also possible that one ormore
components of the orderingwavevector are irrationalmultiples
of π/a. In such cases, the magnetic unit cell becomes infin-
itely large, and finite-size limitations of methods with peri-
odic boundary conditions pose significant challenges. As dis-
cussed in the previous section, PF- and PMFRG implement
infinite systems, limiting only the maximal length of correla-
tions and thus do not share this limitation.More concretely, the
site summation in themagnetic susceptibility in equation (103)
formally runs over infinitely many sites, although χij = 0 for a
large enough separation of i and j and hence, wavevectors are
continuous and the type of incommensurate order is resolved
accurately, apart from a finite width of sharp features.

Previous PFFRG studies have successfully investigated the
evolution of incommensurate order under variation of model-
specific parameters [57, 79]. For instance, in [79], the ordering
behaviour of the spin-1/2 Kitaev-Γ model

H=
∑
⟨i,j⟩γ

KSγi S
γ
j +Γ

(
Sαi S

β
j + Sβi S

α
j

)
(152)

has been investigated on the honeycomb lattice, where γ =
x,y,z corresponds to one of the three types of honeycomb
bonds and α,β are the other two spin components. Figure 11
tracks the continuous evolution of the distance of the peak in
the magnetic susceptibility away from the origin k= (0,0)
as a function of α, where α determines K=−cos(α) and
Γ = sin(α). This allows for an accurate resolution of the entire
phase diagram which is dominated by incommensurate order.

7.3. Paramagnetic phases

A paradigmatic model where frustration prevents the forma-
tion of magnetic order is the nearest-neighbor pyrochlore anti-
ferromagnet which, in the classical case, famously realizes a
spin liquid [182]. The four sites in the unit cell are arranged
each at half the fcc lattices vectors ai/2, i = 1,2,3, i.e. b0 =
(0,0,0),bi = ai/2 such that the lattice realizes an arrangement
of corner-sharing tetrahedra. Establishing an understanding
of the nature of its apparently nonmagnetic quantum ground
state has motivated a plethora of numerical studies employing

Figure 12. Comparison of PMFRG in one-loop (ℓ= 1) and
two-loop (ℓ= 2) with high-temperature series expansion (HTSE,
red) [186], DMC (light green) [77], and DMRG for 32 (dark green)
and 48 site (orange) clusters [184]. Reproduced from [73].
CC BY 4.0.

Figure 13. (a) Momentum resolved susceptibility of the NNAF on
the Pyrochlore lattice in the hhl-plane calculated from PFFRG at the
lowest simulated Λ = 0.05J. Broadened pinch points are visible at
(4π,0,0) and symmetry related points. (b) Susceptibility in the
Brillouin zone (truncated octahedron) of the Pyrochlore lattice.
Results obtained via PMFRG at low temperatures are observed to be
qualitatively equivalent [63, 180].

various non-FRG methods [183–190]. In figure 12 we show
a comparison of the uniform static susceptibility χ(k= 0)
between PMFRG and error-controlled methods. It can be seen
that PMFRG produces quantitatively reliable results even at
low temperatures, without sharing the limitations of other
methods, which are often hamstrung by lowmomentum-space
resolution. We note that due to the rather small values of
χ(k= 0) for antiferromagnets, the effect of two-loop correc-
tions appears more significant.

One of the advantages of PM and PFFRG methods is
the implementation of fully translationally invariant lattices.
Moreover, only the maximal correlation length is limited such
that in disordered systems, where the physical correlation
length is finite, size effects are effectively absent.

The static susceptibility can therefore be obtained in high
resolution at the end of the flow. As can be seen in figure 7,
the Katanin-corrected PFFRG flow shows no sign of a diver-
gence, as expected for a magnetically disordered ground state.
In figure 13(a) the value of the susceptibility obtained from
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PFFRG at the lowest simulated RG scale in the hhl-plane
(kx = ky). It shows the expected broadening of the pinch points
at (0,0,4π), resulting from violations of the spin ice rule in
the quantum limit (see also [63] where a similar broadening of
higher-fold pinch-points is investigated). Figure 13(b) shows
the same susceptibility in the extended Brillouin zone of the
Pyrochlore lattice. In accordancewith both the featureless flow
and the broad susceptibility in the hhl-plane, no Bragg peaks
are visible in reciprocal space, only broad maxima of the static
susceptibility, strengthening the perception of a magnetically
disordered ground state.

7.4. Probes for symmetry breaking in paramagnets

The results in the previous section establish an absence of
long-range order in the ground state of the NNAF on the
Pyrochlore lattice. The FRG equations, however, respect all
symmetries of the microscopic Hamiltonian, in particular both
spin-rotational invariance and lattice symmetries. Recent stud-
ies employing the density matrix renormalization group [188]
and variational Monte Carlo [187], however, find an inversion
symmetry breaking and combined inversion and rotation sym-
metry breaking ground state, respectively.

To find such tendencies in an unbiased way, a dimer-dimer
correlation function of the form Dij,kl = ⟨(Si ·Sj)(Sk ·Sl)⟩−
⟨(Si ·Sj)⟩⟨(Sk ·Sl)⟩ would have to be calculated [56]. The
divergence of this quantity then would signal the onset of
nematic order. In PFFRG, however, this would necessitate the
calculation of a four-particle vertex, which, while formally
accessible in the formalism, is numerically too demanding.

To probe for specific symmetry breaking patterns, how-
ever, one can resort to the introduction of a small perturba-
tion δ in accordance with the pattern. For this procedure, the
nearest neighbor bonds are grouped into weakened (W) and
strengthened (S) bonds. The perturbation δ then modifies the
Heisenberg couplings Jij → Jij± δ for ⟨i, j⟩ ∈ S/W. The flow
of the dimer response function

ηΛdim =
J
δ

χΛ
S −χΛ

W

χΛ
S +χΛ

W

, (153)

where χΛ
S/W is the spin-spin correlator according to

equation (100) on strong/weak bonds, then signals the tend-
ency of the system to accept/reject the symmetry breaking.

If the initial ηΛ→∞
dim = 1 grows larger during the RG flow,

the symmetry breaking likely is present in the true ground state
of the system, whereas a diminishing susceptibility implies a
rejection of the pattern. This method has been used to confirm
the spatial symmetry breaking on the Pyrochlore lattice from
a PFFRG perspective [61].

Another prime example for the application of such a sym-
metry breaking probe is the determination of the phase bound-
aries of the two-dimensional Shastry-Sutherland-model [192]
as diagnosed [191]. Apart form the analytically dimerized
ground state shown in figure 14(a), which is a product of
spin singlets covering the lattice, the model including nearest-
(J1) and second-nearest enighbor (J2) interactions is known to

Figure 14. (a) The Shastry-Sutherland lattice (top left) features
square-lattice nearest neighbor couplings J1 (blue) and select second
nearest neighbor ones J2 (red). For dominant antiferromagnetic J2
couplings, the ground state is a product of exact singlets on these
bonds (bottom right). (b) Upon increasing J1/J2, the dimerized state
gives way to a plaquette order signaled by a peak in the plaquette
susceptibility (inset: pattern of weak and strong bonds in this
susceptibility). Reprinted (figure) with permission from [191],
Copyright (2022) by the American Physical Society.

host at least two more phases: A plaquette valence bond order
and a Néel phase. In PFFRG, the dimerized phase is readily
identified by an interaction-independent value of the spin-spin
correlation along the bond hosting the singlet. To probe for the
plaquette valence bond order, the corresponding susceptibil-
ity is introduced, which refers to a pattern of weak and strong
bonds in equation (153) as shown in the inset of figure 14.
It shows a pronounced peak at the onset of plaquette order at
J2/J1 = 0.67 as shown in figure 14(b). The ordered Néel phase
in turn can be directly identified from the spin structure factor.
In between the latter phases, a putative spin liquid region was
identified in [191] by probing the response to another pattern
of strong and weak bonds.

Similar prescriptions were used to probe for valence-bond
crystal orders on the simple cubic lattice [52]. Introducing the
symmetry breaking term in spin-space, i.e. breaking SU(2)
symmetry, allows accessing spin-nematic tendencies, as has
also been investigated on the Pyrochlore lattice [56] and square
lattice [42].

Although this approach can only probe for the specific sym-
metry breaking patterns assumed to exist a priori, it is an
important diagnostic for quantum paramagnetic states comple-
menting the pure magnetic long-range order analysis from the
flow of the spin-susceptibility.

7.5. Three-dimensional quantum spin liquid materials

Following these more demonstrative applications, we now
proceed towards presenting PFFRG applications to real mag-
netic materials. The field of frustrated quantum magnet-
ism is poised with the arrival of new candidate quantum
spin liquid materials based on novel three-dimensional lat-
tices. Most prominently, these include the network of S=
1/2 Cu2+ ions forming a hyper-hyperkagome lattice in
PbCuTe2O6 [193] and S= 1 Ni2+ ions forming a bi-trillium
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Figure 15. (a) The excitation profile obtained at an energy transfer
of E= 0.5 meV and temperature T < 0.1 K in the [hk0] plane. (b)
The static (real-valued) spin susceptibility calculated using the
PFFRG approach for the exchange parameters J1 = 1.13 meV,
J2 = 1.07 meV, J3 = 0.59 meV, and J4 = 0.12 meV (corresponding
to a Curie-Weiss temperature ΘCW =−23 K). Reproduced from
[59]. CC BY 4.0.

lattice in K2Ni2(SO4)3 [60]. Indeed, no sign of magnetic
long-range ordering has been observed in PbCuTe2O6 down
to 20mK despite a Curie-Weiss temperature of –23 K, while
in K2Ni2(SO4)2, a QSL is stabilized under the application of
a magnetic field [194, 195]. The magnetic Hamiltonians for
these 3D materials feature a complex hierarchy of predom-
inantly antiferromagnetic Heisenberg exchange interactions,
and are as such not amenable to most numerical quantum
many-body approaches. The PFFRG approach has met with
remarkable success in explaining the momentum resolved sus-
ceptibility [59, 195]. As a case in the point, for PbCuTe2O6,
PFFRG predicts a diffuse sphere of scattering at same wave-
vectors and similar intensity modulations as those observed
in experiment (see figure 15), and is even able to reproduce
the subdominant features. It is worth noting that this level of
agreement has not been achieved for such amaterial withmany
competing interactions on a complicated three-dimensional
lattice and S= 1/2 limit.

7.6. Thermometry in Rydberg array experiment

While the PF/PMFRG has been traditionally applied for
solid state quantum magnets, a recent application from
the field of cold-atom physics considers a Rydberg atom
tweezer array experiment [196] which realizes a square-
lattice XY-model with long-range dipolar interactions H=

J
∑

(i,j)
1
r3ij

(
Sxi S

x
j + Syi S

y
j

)
. Both the ferromagnetic (J< 0) as

well as the frustrated antiferromagnetic case (J> 0) was
implemented. In contrast to the realm of solid-state applica-
tions, Rydberg tweezer array experiments are only conducted
on microsecond time scales and the question about thermal-
ization and temperature is non-trivial. In this context, the
PMFRG (which assumes thermal equilibrium) was applied to
fit a temperature to the measured equal-time spin correlator
profile [86]. Figure 16 shows the results for the antiferromag-
netic case. As the experimental hold-time t increases, more
and more decay processes heat up the system which leads to
increasing temperatures.

Figure 16. Experimental spin correlation function of an
AFM-dipolar XY model realized in a Rydberg atom array shown
schematically in the inset. The data was measured after t= 2 µs
(blue dots), t= 4 µs (orange dots) and t= 8 µs (green dots) and is
taken from [196]. The nearest-neighbor coupling was set to one.
The measured data was multiplied with a factor of 1.208 to take into
account measurement errors [86]. The data for small distances are
well reproduced by thermal PMFRG simulations (dashed line,
infinite system) at temperatures shown in the labels. Reproduced
from [86]. CC BY 4.0.

8. Challenges and future directions

In this section, we review the current challenges and limita-
tions of the PFFRG and PMFRG methods. We combine this
discussion with an outlook to possible future methodological
improvements and propose novel areas of application.

8.1. Magnetic fields

In all previous sections, the PFFRG and PMFRG have been
developed under the assumption that time reversal symmetry
is intact, which excludes external magnetic fields. In the most
general case a magnetic field would give rise to an extra term
in the Hamiltonian of the form

H→H+
∑
i

Bi ·Si . (154)

Indeed, all currently published applications of the PFFRG
and PMFRG have made the assumption of vanishing external
magnetic fields. The only reason for the community’s reluct-
ance to include magnetic fields is the increased numerical cost
which has various different origins. First, even when ignor-
ing the complications from time-reversal symmetry breaking,
the presence of a magnetic field breaks spin-rotation sym-
metry from SU(2) for a Heisenberg system down to at least
U(1). In PFFRG this generates additional contributions to
the two-particle vertex besides the spin and density terms in
equation (81).

The main complicating effect of magnetic fields, however,
comes from time-reversal symmetry breaking which was used
extensively in the above calculations to simplify the flow
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equations and the parametrization of vertex functions. For
example, the simple form of the self-energy in PFFRG (see
equation (76)) which is purely imaginary and proportional to
the identity in spin space would no longer hold. Instead, mag-
netic fields give rise to additional contributions proportional
to Pauli matrices in spin space, which correspond to the terms
Σα(ω)σαµ ′

1µ1
with α= 1,2,3 in equation (72). Since Σα is

found to be real for α= 1,2,3 this also means that the self-
energy and, consequently, the Green’s functions are gener-
ally composed of a finite real and imaginary part. This doub-
ling of terms becomes a quadrupling when products of two
Green’s functions are involved such as in the flow equations for
the two-particle vertex. Another source of increased numer-
ical costs is that the symmetries in the frequency depend-
ence of the two-particle vertex, listed in table 3, are reduced.
Altogether, these complications lead to significantly longer
numerical runtimes for the solution of the flow equations. This
certainly does not generally prohibit the application of the
PFFRG or PMFRG in the presence of finite magnetic field but
makes it more challenging to obtain numerically stable and
converged outcomes. At the time of writing of this review it
was not yet entirely clear how severe these complications are
in practice, i.e. how much they come at the expense of accur-
acy/stability or, more generally, how large the impact of the
truncation of flow equations is in the presence of finite mag-
netic fields. A first step towards addressing these issues has
recently been made in reference [95].

Apart from these challenges, the opportunities of imple-
menting magnetic fields for future applications should also
be explained. One can, generally, pursue two strategies when
adding magnetic fields. The first is the inclusion of small
fields (e.g. on the order of a percent of the exchange coup-
lings) which regularizes the breakdown of the flow in mag-
netically ordered phases. This enables one to continue the
RG flow down to the small Λ limit such that magnetically
ordered phases can be investigated in the physical limit where
the Λ-regulator is absent. Another interesting question for the
PMFRG is if the treatment of a finite magnetization allows
for the detection of 1st order magnetic phase transitions. The
second strategy is to add finite fields (e.g. on the order of
the exchange couplings) to identify phases and phenomena
that require magnetic fields. An obvious application would
be the investigation of magnetization plateaux in magnetiza-
tion curves which are known to occur in a variety of frustrated
spin systems [197–199]. In the high-field limit, the approach
would even be strictly error controlled in a perturbative sense
since the interacting part of the Hamiltonian is small com-
pared to the field term, where the latter is only quadratic in
the pseudo (Majorana) fermions, i.e. non-interacting. In that
case, the method has certain conceptual similarities with a
FRG approach for fermionic Hubbardmodels, where, likewise
the case of small ratio of Hubbard interactions and hopping
constitutes a controlled limit.

Besides the advantages of adding magnetic fields for theor-
etical purposes, such an extension would also lead to further
possibilities to connect to experiments since adding amagnetic
field is one of the simplest and most straightforward ways to
manipulate a quantum magnet.

8.2. Accessing real frequency data

When comparing both PFFRG and PMFRG data to experi-
ments, the most striking limitation of the methods is their for-
mulation on the Matsubara (imaginary frequency) axis. As
shown in section 5.7, this only allows to access the static
(ω= 0) physical quantities directly, although in principle all
physical information is already encoded in the vertex. Inelastic
neutron scattering experiments, in contrast, directly access the
frequency resolved spin-structure factor, which is related to
the imaginary part of the dynamical spin susceptibility.

One way to obtain information on the real frequency
axis is analytical continuation of susceptibilities in terms of
Matsubara frequencies. Performing this procedure numeric-
ally, however, is a notoriously difficult problem and so far has
only been applied in special situations [35].

An alternative approach is to reformulate the whole renor-
malization procedure in terms of real frequencies directly, util-
izing the Keldysh formalism [200]. Originally formulated for
non-equilibrium problems, it is also applicable to systems in
thermal equilibrium. The complication in porting FRG to the
real axis stems from the fact that under time-evolution of a
system the initial and final states at t=±∞ do not neces-
sarily have to be the same. This prevents the formulation
of a path integral akin to the ones discussed in section 4
and therefore the whole formalism as discussed there is not
applicable.

The Keldysh formalism circumnavigates this complication
by performing the time evolution both forward and backward,
leading to a doubling of degrees of freedom by introducing a
positive and negative evolving time contour branch. The for-
mulation of the flow equations stays unchanged, up to an addi-
tional Keldysh index per external leg of a vertex, labeling the
respective branch of the time contour [201–204]. This means
that the self-energy becomes a 2× 2 matrix, whereas the two-
particle vertex acquires four Keldysh indices and therefore 16
components. Additionally, all these quantities are not neces-
sarily real-valued anymore, leading to an additional increase
in numerical complexity.

Further complications arise from the regulators discussed
in section 5.5: In the Keldysh context they violate causality,
whichmakes them unsuitable for use in a real-frequency setup.
Additionally, the symmetries listed in table 3 acquire addi-
tional Keldysh structure. Both points have only been explored
for general fermionic models so far [205], but not for pseudo-
fermionic or PM degrees of freedom in particular, which is,
however, vital for a numerically performant implementation
of the method.

So far, it is not clear, if the additional run time cost will be
outweighed by the potential physical insights from themethod,
or if PFFRG or PMFRG is suited to be treated in the Keldysh
formalism at all.

8.3. Low temperature problem

From the discussions in section 6 as well as the data presen-
ted in figure 8, we have seen that reaching low temperatures
is a major problem for PM and finite-temperature PFFRG:
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The one-loop + Katanin truncation of the flow equations
introduces an error O(J3/T2) to the vertex. Although, this is
an asymptotic statement for large T/J, it explains why bench-
mark comparisons and method-inherent consistency checks
are likely to fail if T≪ J. This is unfortunate since some
of the most pressing questions about quantum spin models,
such as the formation of exotic low-temperature states remain
unanswered from the FRG perspective. Similarly, one could
argue that the cutoff Λ perturbatively controls the error for
the FRG truncation in the T = 0 PFFRG formalism and, thus,
the association of instabilities in the flow with magnetic order
might only be sensible for Λ≳ J. Despite an early discussion
of these concerns in [32] solid numeric evidence for this state-
ment is currently lacking.

The straightforward attempt to improve the quantitative
accuracy of the FRG are multiloop extensions, see the discus-
sion above in section 4.3. Indeed, even the inclusion of two-
loop 2ℓ corrections can improve the accuracy of the results as
demonstrated in figure 12 for the Pyrochlore NNAF. However,
even loop-converged multiloop FRG can at best reproduce
the truncation error of the parquet approximation, which is
O(J4/T3) on the vertex level. Moreover, there is no guarantee
that the additional diagrams which improve the error scaling at
large T/J also systematically improve the accuracy in the low
temperature case. Taking the Heisenberg dimer or the simple-
cubic AFM as an example, truncations of the flow equations
beyond one-loop + Katanin do not seem to systematically
improve the quality of the results [74]. At the time of writ-
ing, therefore, the role of multiloop extensions of PFFRG and
PMFRG remains unclear.

A promising avenue for future research is the fusion of
pseudofermion FRG with non-perturbative strategies, such as
the direct enforcement of Ward identities [206] or the use of
local vertex quantities in the initial condition of the flow, sim-
ilar to the DMF2RG [207]method, where the result of a DMFT
calculation is used to initialize the FRG flow. To make the lat-
ter approach feasible, it is crucial to find a representation of
the flow equations in terms of well-conditioned objects which
(a) do not lead to double-counting of diagrams [35] and (b)
are non-divergent [208]. Recent progress in this direction has
been made by rewriting the flow equations in terms of single
and multiboson scattering processes [131, 209, 210], mitigat-
ing the need to compute two-particle irreducible vertices from
the (inverse) Bethe–Salpeter equation.

The low-Λ or low-T problem of PF- or PMFRG is closely
related to the ignorance of (most of the) higher order fermionic
vertices with more than four legs corresponding to correlat-
ors of more than n= 2 spins. However, an unbiased study of
competing non-magnetic phases (e.g. dimerized or spin liquid
states), might require the calculation of n= 3 (chiral), n= 4
(dimer–dimer) or even higher correlators. One idea to circum-
vent the daunting numerical cost associated with these objects
in the PF- or PMFRG is to abandon a parton spin representa-
tion altogether and instead work with the spin operators them-
selves. This approach, dubbed spin-FRG is discussed further
in the following section 8.4.

8.4. Working without partons: Spin-FRG

In 2019 Kopietz and coworkers [211] suggested a paradigm
change in the application of the FRG to spin systems: Instead
of computing vertex functions of auxiliary and as such unob-
servable fermionic partons, their scheme termed spin-FRG
is applied directly to correlation (and vertex-) functions of
spin operators

〈
TτS

α1
i1 (τ1)S

α2
i2 (τ2). . .S

αn
in (τn)

〉
without the need

of any intervening representation. This builds on the earlier
insight [212] that FRG flow equations do not necessarily
require an unconstrained Grassmann (or real) functional integ-
ral representation of the partition function, which does not
exist for spin. Instead, flow equations can be derived for a
generating functional written in terms of a time ordered expo-
nential of operators. In the Heisenberg case, for example, this
functional in terms of source-fields hαi (τ) is given by

G [h] = lnTrTτ exp
ˆ β

0
dτ

−∑
(i,j)

JijSi (τ) ·Sj (τ)

+
∑
i

hi (τ) ·Si (τ)

]
. (155)

The flow parameter Λ : 0→ 1 is introduced via Jij → ΛJij
(G[h]→GΛ[h]) increasing the coupling Jij from zero to
its final value. The resulting flow equations for the con-
nected imaginary time-ordered spin correlation functions
obtained by functional derivatives with respect to source fields
δGΛ[h]/[δh

α1
i1 (τ1). . .δh

αn
in (τn)]h=0 take on a standard bosonic

form. However, for the free spin case encountered at the begin-
ning of the flow at Λ = 0 the Legendre transform to the gen-
erating functional of vertex functions ΓΛ[m] is not defined for
source fields with non-trivial time dependence. Kopietz and
coworkers bypassed this problem by defining a non-standard
hybrid functional [213] which treats finite and vanishing fre-
quency cases on unequal footing. Despite this technical com-
plication, the flow equations for the one-line irreducible ver-
tex functions finally take a relatively simple form. Up to
now, performant numerical approaches treating the system
of resulting flow equations in its full complexity have not
yet been implemented. Instead, several approximations were
employed which however lead to promising results [181, 213–
218] which will be reviewed in the following.

One of the features of spin-FRG is efficiency. In FRG
approaches to the Hubbard model, the full parametrization of
frequency and momentum dependence for vertices with up to
4 legs is by now standard [219]. Hence, once implemented
within spin-FRG, the flows of 3- and 4-point spin correlat-
ors should be equally accessible numerically, giving simpli-
fied access to dimer-susceptibilities when compared to PF- and
PMFRG, see the discussion in section 7.4. Moreover, one can
hope that the low-temperature problem can be alleviated to a
certain extent by the flow of such higher-order spin vertices.
In part, this optimism is fueled by the percent-range accur-
acy for critical temperatures of classical [211] and quantum
[181] spin models achieved by the Kopietz group with vertex
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parametrization approximated even at the 2-point level. Also,
the inclusion of magnetic fields seems possible at a moder-
ate numerical effort within spin-FRG. Kopietz and cowork-
ers have already demonstrated magnetization calculations and
magnon dynamics [215, 216] in rather simple non-frustrated
settings and with limited numerical ambition.

Due to the SU(2) spin algebra, even local free-spin correla-
tion functions

〈
TτS

α1
i (τ1)S

α2
i (τ2). . .S

αn
i (τn)

〉
c,0

are non-trivial
at every order n but can still be computed [181, 220]. The spin-
FRG takes advantage of this non-trivial information by starting
the flow at the free-spin limit Λ = 0. Moreover, the correla-
tion functions along the spin-FRG flow are physical at every
Jeff = ΛJ and a single flow produces correlation functions for
the full accessible range of T/Jeff. As another benefit, the spin-
FRG formalism is applicable for general spin length S, which
merely enters as a parameter in the initial condition. For com-
pleteness, we also mention the earlier work by Rançon who
used a non-perturbative variant of the FRG to study the XY-
spin model [221].

In summary, while the spin-FRG seems attractive for vari-
ous reasons reviewed above, further work and comparisons
to PF- and PMFRG are necessary to gauge its full potential,
especially in the framework of three-dimensional frustrated
quantum magnets.

9. Conclusions

Frustrated quantum magnets which evade any analytical or
quasi-exact numerical solution pose a many-body problem
with two complementary ways to address them. First, guided
by symmetry and topology, one develops a theory to char-
acterize the suggested ground state of the problem. This
motif includes, but is not exhausted by, approaches as diverse
as mean field theory, variational Monte Carlo, projected
entangled pair states encodings, density matrix renormaliza-
tion group, and tensor networkmethods in general. Its ultimate
goal is to not only learn about the magnetic quantum ground
state, but also elementary excitations whose structure is inher-
ited by the given ground state. Second, inspired by reducing
the bare model Hamiltonian problem to an effective model
where the competing ordering and disordering tendencies are
more clearly expressed, one seeks to distill a low-energymodel
upon exploiting the scale separation between bare exchange
couplings and eventual ordering strength or paramagnetic
incompressibility. Both ways are intertwined, as the former
can readily be applied to the effective model resulting from
the latter. Functional renormalization group serves both pur-
poses in one go. Upon the renormalization flow procedure
explicated in the review and as such rendered accessible to
everyone, one produces an effective spin exchange model at
a lower energy scale dependent on the respective cutoff value.
Furthermore, the renormalization group procedure allows to
investigate the flow of the susceptibility as function of cutoff,
and as such picks up any symmetry breaking propensity along
the flow. This means that even though the method is first of all
an attempt to retrieve effective Hamiltonians /many-particle
vertices at low energies, it also provides a largely unbiased

access to explore the landscape of symmetry breaking in a
quantum magnet. Characterized by an exceptional flexibility,
i.e. not limited by either sign problem, dimensionality, lattice
geometry, or interaction range, the pseudo-particle functional
renormalization group promises to become an indispensable
tool in contemporary research on frustrated quantum magnet-
ism, and has already proven so in the past decade. With fur-
ther improvements on their way to increase their quantitat-
ive predictability, there is substantiated hope that PFFRG and
PMFRG will eventually help to close the circle of cognition in
frustrated magnetism composed of experimental observation,
theoretical conceptualization, and mathematical abstraction.
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Appendix A. Multi-local PFFRG flow equations in
asymptotic frequency parametrization

For reference, in this appendix we list the multi-local flow
PFFRG flow equations as well as the expression for the
spin–spin susceptibility in the asymptotic frequency paramet-
rization for the three channels individually. The frequency
arguments of the channel derivatives are taken to be in nat-
ural parametrization, while the arguments of the vertices on
the right-hand side of the equations always list all three
parametrizations, as they can be decomposed in a sum of
channel contributions. For this, we use the convention

Γµ1234
i1i2

ωs νs ν ′
s

ωt νt ν ′
t

ωu νu ν ′
u

 , (A.1)

where we also introduce the shorthand µ1234 = µ1µ2µ3µ4 for
spin indices.We refrain from specifying the parametrization in
spin space, as the remaining degrees of freedom in this space
are highly dependent on the Hamiltonian.

Furthermore, the symmetric Katanin substituted bubble
derivative

P(ω,ν) = GΛ (ω)SΛkat (ν)+ SΛkat (ω)G
Λ (ν) (A.2)

is used.

A.1. Self-energy

The multilocal self-energy flow reads

d
dΛ

γ (ω) =

ˆ
dω ′

∂
∂Λ

R(ω ′,Λ)

ω ′ + γ (ω ′)

×

Γµ1111
i1 i1

ω+ω ′ ω ′/2−ω/2 ω ′/2−ω/2

ω−ω ′ ω ′/2+ω/2 ω ′/2+ω/2

0 ω ′ ω


−

∑
j,µ2

2Γµ1212
i1 j

ω+ω ′ ω/2−ω ′/2 ω ′/2−ω/2

0 ω ω ′

ω−ω ′ ω/2+ω ′/2 ω/2+ω ′/2




(A.3)

where i1 andµ1 are arbitrary site and spin indices, respectively,
due to the the self-energy being local and diagonal in spin.

A.2. S-channel

ġµ1 ′2 ′12
si1i2 (s,νs,ν

′
s )

=
1
2π

ˆ
dω
∑
µ3µ4

P
( s
2
+ω,

s
2
−ω

)

×Γ
µ1 ′2 ′34
i1i2

 s νs −ω
−νs+ω (s+ νs+ω)/2 (s− νs−ω)/2
νs+ω (s+ νs−ω)/2 (s− νs+ω)/2


×Γµ3412

i1i2

 s ω ν ′
s

−ω− ν ′
s (s+ω− ν ′

s )/2 (s−ω+ ν ′
s )/2

ω− ν ′
s (s+ω+ ν ′

s )/2 (s−ω− ν ′
s )/2

.
(A.4)

A.3. T-channel

ġ
µ1 ′2 ′12
i1 i2

(t,νt,ν
′
t )

=
1
2π

ˆ
dω

∑
µ3µ4

P
(
ω+

t
2
,ω−

t
2

)

×

−
∑
j

Γ
µ1 ′413
i1 j

νt +ω (−t+ νt −ω)/2 (−t− νt +ω)/2

t νt ω

νt −ω (−t+ νt +ω)/2 (t+ νt +ω)/2


× Γ

µ32 ′42
j i2

ω+ ν ′
t (−t+ω− ν ′

t )/2 (−t−ω+ ν ′
t )/2

t ω ν ′
t

ω− ν ′
t (−t+ω+ ν ′

t )/2 (t+ω+ ν ′
t )/2


+ Γ

µ1 ′413
i1 i2

νt +ω (−t+ νt −ω)/2 (−t+ω− νt)/2

t νt ω

νt −ω (−t+ νt +ω)/2 (t+ νt +ω)/2


× Γ

µ32 ′24
i2 i2

ω+ ν ′
t (t−ω+ ν ′

t )/2 (−t−ω+ ν ′
t )/2

ω− ν ′
t (t+ω+ ν ′

t )/2 (−t+ω+ ν ′
t )/2

t ν ′
t ω


+ Γ

µ1 ′431
i1 i1

νt +ω (t− νt +ω)/2 (−t− νt +ω)/2

νt −ω (t+ νt +ω)/2 (−t+ νt +ω)/2

t ω νt


× Γ

µ32 ′42
i1 i2

ω+ ν ′
t (−t+ω− ν ′

t )/2 (−t−ω+ ν ′
t )/2

t ω ν ′
t

ω− ν ′
t (−t+ω+ ν ′

t )/2 (t+ω+ ν ′
t )/2




.

(A.5)

A.4. U-channel

ġ
µ1 ′2 ′12
i1i2

(
u,νu,ν

′
u

)
=

1
2π

ˆ
dω

∑
µ3µ4

P
(
ω− u

2
u,ω+

u
2

)

×Γ
µ2 ′413
i1i2

 νu+ω (u+ νu−ω)/2 (−u+ νu−ω)/2
−νu+ω (u+ νu+ω)/2 (−u+ νu+ω)/2

u νu ω


×Γ

µ31 ′42
i1i2

 ω+ ν ′
u (u+ω− ν ′

u)/2 (−u+ω− ν ′
u)/2

−ω+ ν ′
u (u+ω+ ν ′

u)/2 (−u+ω+ ν ′
u)/2

u ω ν ′
u

.

(A.6)
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A.5. Spin–spin correlator

χαβ,Λij (ω)

=− 1
4π

ˆ
dωG(ω− ν/2)G(ω+ ν/2)δijδαβ

− 1
16π2

ˆ
dω
ˆ

dω ′σαµ1µ
′
1
σβ
µ2µ

′
2

×G(ω− ν/2)G(ω+ ν/2)G
(
ω ′ − ν/2

)
G
(
ω ′ + ν/2

)
×Γ

µ1 ′2 ′12
ij

ω+ω ′ (ω−ω ′ − ν)/2 (ω ′ −ω− ν)/2
ν ω ω ′

ω ′ −ω (ω+ω ′ − ν)/ (ω+ω ′ + ν)/2

.

(A.7)

Appendix B. Numerical implementation

B.1. Lattice symmetries

Vertices within the PM- and PFFRG take the form Γa,ij(s, t,u)
where a indicates the type of vertex (i.e. a= s,d for the PFFRG
in Heisenberg systems), i, j refer to sites that are ‘effectively
interacting’ by means of higher-order interactions and s, t and
u are frequency arguments.

Here, we are not interested in frequency arguments and will
push them into the definition of the vertex type a→ (a,s, t,u),
ΓΛ
a,ij(s, t,u)→ ΓΛ

a (ri,rj) to save digital ink and highlight the
spatial dependence. In both the PM- and PFFRG each contri-
bution in the site summations can be written in the form

∂ΛΣ
Λ
sum (ri) =

∑
k

ΓΛ
a (ri,rk)S(rk)

∂ΛΓ
Λ
sum (ri,rj) =

∑
k

ΓΛ
a (ri,rk)Γ

Λ
b (rk,rj)P(rk,rk) , (B.1)

where S(rk) is the single-scale propagator and P(rk,rk) =
S(rk)G(rk) the usual bubble propagator. In particular, the order
of indices kj ̸= jk, is not generally interchangeable.

For infinitely large systems, we would have infinitely many
equations and an infinite site summation for each of them.
However, in magnetically disordered phases, the effective
interaction between two sites is expected to decay with their
distance, so we may neglect vertices with sufficiently large
|ri − rj| ≫ L, where L is a numerical parameter corresponding
to a system size. Effectively, this corresponds to a maximum
correlation length ξL ∼ L. We may also make use of lattice
symmetries to further reduce the number of vertices we need
to consider. These lattice symmetries are global transforma-
tions ri → L(ri) which leave the lattice (and hence vertices)
invariant

ΓΛ
a (ri,rj) = ΓΛ

a (L(ri) ,L(rj)) . (B.2)

As an example, all lattices are by definition invariant under
translations along any of the lattice vectors al. This is most
important, as it allows us to only consider vertices in which the
first site argument, ri, lies in the first unit cell. Together with the
assumption of finite length vertices, we may restrict ourselves

to a finite number of Nsites sites surrounding this reference unit
cell. Here, it is convenient refer to a site by an integer combina-
tion of lattice vectors together with one of the unit cell’s basis
vectors Ri = [n1,n2,n3,b]≡ n1a1 + n2a2 + n3a3 + bb. Beside
translation, there can also be other symmetries, such as rota-
tions or mirror symmetries, which may in particular transform
a site from one sublattice to another. This further reduces the
number of reference sites ri that we need to consider, see for
example figure B3. Usually, many (or even all) sites in the unit
cell are equivalent. Therefore, it suffices to identify a number
NUnique ⩽max(b) of inequivalent sites in our reference unit
cell that are distinct by all symmetries. Where necessary, we
will then use an index xi = 1,2, . . . ,NUnique which shall label
the type of site i.

The implementation of these symmetries is as follows:
First, given a reference site ri, we identify all pairs of sites
within the maximum correlation distance Rkj ≡ (ri,rj) and
subsequently reduce this set to a minimum set of inquivalent
pairs Rinv

ij which can be used to reconstruct all other pairs via
lattice symmetries.

Subsequently, we pre-compute all the terms that appear in
the site summation for each inequivalent vertex ΓΛ

a (ri,rj) on
the lhs. of equation (B.1) and perform lattice symmetries such
that each term contains only the symmetry inequivalent ver-
tices. In short, the steps that are needed are summarized below,
with more detailed descriptions following in the remainder of
this section.

• Generate inquivalent pairs: We need to first generate a
minimal list of sites which are in inequivalent pairs to each
reference site {Rinv

ij }= R1,R2, . . .. In the FRG, we then
solve differential equations for vertices represented as four-
dimensional arrays, where each index corresponds to a par-
ticular pair Rinv

ij and the other three are for frequency argu-
ments. At this step, we also generate a list {(xi,xj)} of the
types of sites i and j which will be needed to index the
propagators in the FRG. It is recommended to save both lists
in order to re-identify the inequivalent pairs with the real-
space structure after FRG results are obtained.

• Compute the site summation: For each of these pairs Rinv
ij

we need to evaluate the site-summation and apply lattice
symmetries to express the pairs Rki and Rkj through inequi-
valent pairs computed via FRG. Here, we will save the cor-
responding indices of each inequivalent pair in an abstract
matrixMkl with dimensions Nsum ×NPairs, i.e. the number of
terms appearing in the summation Nsum and the number of
inequivalent pairs NPairs. Each matrix element will contain a
tuple of four positive integers:Mkj = (iki, ikj,x,m)kj. The first
two, iki, ikj ⩽ NPairs, are the indices of inequivalent pairs cor-
responding to Rki and Rkj, or in other words the indices of
the vertices appearing in a term in the sum when computed
in the FRG. x refers to the type of site k which is needed
for P(rk,rk)≡ Pxk,xk and S(rk)≡ Sxk in equation (B.1). The
integer m is the multiplicity of the term, i.e. the number
of times the term appears in the sum. Initially, these mul-
tiplicities are set to one. After the matrix is constructed, we
may identify duplicate entries for each column index j, and
reduce them by adding the multiplicities.
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• Construct mapping arrays: Some positive and negative
frequency arguments of vertices are related by exchanges
of sites ΓΛ

a (ri,rj)↔ ΓΛ
x ′(rj,ri). As we only compute posit-

ive values of the frequencies in the spin FRG, we need to
provide a list of indices that maps an inequivalent pair Rinv

ij

to its corresponding site-swapped pair invpairs[Rinv
ij ] = Rji.

Likewise, we need to determine an array containing our
couplings Jij → JRinv

ij
for each inequivalent pair, as our main

program will not have any information about the actual geo-
metry. Finally, there are a few terms in the flow equations
which contain local, or onsite vertices ΓΛ

a (ri,ri), so the FRG
needs to know the positions of onsite pairs in our pair list.
This can be either fixed by a suitable sorting convention, or
by providing a short list with the appropriate indices.

B.1.1. Step 1: generation of inequivalent pairs. At the heart
of any efficient implementation lies an identification of a list of
inequivalent pairs {Rinv

ij } which characterizes all the vertices
ΓΛ
a (ri,rj) that are needed for a complete treatment of the flow

equations.
Starting from each reference site i, we may generate a list

of paired sites, which are within a given distance to site i.
One unbiased approach is to progressively add nearest neigh-
bors to the list, starting from site i, such that in the end, dis-
tances up toNLen nearest neighbor pairs are included, but other
choices are also possible such as including all sites within a
sphere of radius L. We simply append all those for the other
reference sites to the same list, such that it is of the form
[R11,R12, . . . ,R21,R22, . . . ])! In order to keep track of the types
of sites corresponding to the pairs, we simultaneously generate
a list ‘PairTypes’ with equal length which contains the cor-
responding types of sites (xi,xj). As a result, the arrays rep-
resenting vertices within FRG need four dimensions (one for
real space pairs and three for frequencies) and whenever we
need to evaluate propagators we look up the types of sites
i and j. Afterwards we reduce all parts of this list that are
redundant by one of the symmetries. We have already made
use of several symmetries by fixing ri, so not all of them will
be of further use. To be more precise, we are now only inter-
ested in transformations which leave our reference site invari-
ant, as this allows for symmetries ΓΛ

a (R
inv
ij ) = ΓΛ

a (r1,rj) =
ΓΛ
a (r1,L(rj ′)) = ΓΛ

a (R
inv
ij ′ ). A simple example of this step is

given in figure B1 for a system of only four spins, or in figure
B2 for the more complex scenario of a square lattice.

To treat the case of more than one site per unit cell, let us
consider the pyrochlore lattice: As shown in figure B3, we
can fix our reference site i to be the site located at the ori-
gin. Inversion leaves the reference site invariant, but it maps
the coordinates of all other sites to negative ones, reducing the
number of inequivalent pairs. In the same way, the reference
site does not transform under C3 rotations and mirror reflec-
tions around the x= y-plane shown in figure B4. We may thus
systematically find our inequivalent pairs by iterating over the
list of all pairs, and deleting all pairs that are obtained by apply-
ing a symmetry transformation to the current element. For the
pyrochlore lattice, this means we may divide our paired sites

Figure B1. Displayed in different colors are all inequivalent pairs.
All other possible pairings are equivalent, i.e. the pair (4,2) is
equivalent to (1,3) by a C4 rotation around the center.

Figure B2. Blue circles: Sites correlated to the reference site at the
origin (star), and inequivalent sector of pair sites (green circles) that
are found relative to the reference site.

into 2× 3× 2= 12 equivalent sectors and only consider one
of them which by itself reduces numerical effort by a factor
of 12.

It is advisable to sort this list, for instance after the separ-
ation distance of each pair so that the onsite pair will always
be the first element of this list. In the FRG, we may compute
the susceptibility χij → χRinv

ij
for each inequivalent pair. When

evaluating the results, it is thus necessary to save which num-
ber corresponds to which pair of sites, so it is advisable to save
the list of inequivalent pairs in lattice or real-space coordin-
ates that was generated in step 1. It is necessary to generate a
mapping between a given arbitrary pair of sites and the corres-
ponding inequivalent one. This mapping is easily represented
by a dictionary, which can be generated similar to the previ-
ous step, i.e. by applying the full list of point group symmetries
to each inequivalent pair, such that the inequivalent pairs give
the values and the generated pairs are the keys, as shown in
algorithm 1.
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Algorithm 1. Find inequivalent pair from pair of sites.

Require sites Rk,Rj // in lattice coords with basis
Rk = [k1,k2,k3,bk]

Require Symmetries[] // Array of symmetries
Require RefSites[] // Array of sublattice indices for reference sites
for Sym ∈ Symmetries && Rk.b /∈ Refsites do
Rk = Sym(Rk) // there might also be several distinct

symmetries to use here
Rj = Sym(Rj)

end for
Rk = [0,0,0,bi] // global translation of Rk to first unit cell
Rj = [ j1 − k1, j2 − k2, j3 − k3,bj]
return (Rk,Rj)

B.1.2. Step 2: computing the site summation. After the
inequivalent pairs Rinv

ij are identified, we may perform the
site summation for each corresponding vertex Γa(R

inv
ij ). For

instance, selecting the onsite pair Rinv
ii for the simple system of

four sites in figure B1 we obtain from equation (B.1)

∂ΛΓ
Λ
sum

(
Rinv
ii

)
=
∑
k

ΓΛ
a (ri,rk)Γ

Λ
b (rk,rj)P(rk,rk)

= ΓΛ
a (r1,r1)Γ

Λ
b (r1,r1)P(r1,r1)

+ΓΛ
a (r1,r2)Γ

Λ
b (r2,r1)P(r2,r2)

+ΓΛ
a (r1,r3)Γ

Λ
b (r3,r1)P(r3,r3)

+ΓΛ
a (r1,r4)Γ

Λ
b (r4,r1)P(r4,r4)

∂ΛΓ
Λ
sum (1) = ΓΛ

a (1)Γ
Λ
b (1)P(1)+ΓΛ

a (2)Γ
Λ
b (2)P(1)

+ΓΛ
a (3)Γ

Λ
b (3)P(1)+ΓΛ

a (2)Γ
Λ
b (2)P(1),

(B.3)

where in the last step symmetries were used so that each pair of
sites could be replaced by its corresponding inequivalent pair.
Due to the equivalence of sites, all propagators are equal and,
hence, so are the second and fourth term in this sum. Doing this
step for all other pairs allows us to implement the site summa-
tion in the FRG as

∂ΛΓ
Λ
sum (l) =

Npairs∑
k

mk (l)Γ
Λ
a (ik)Γ

Λ
b ( jk)Pxk . (B.4)

Here, i, j and l do not label the distinct sites but rather inequi-
valent pairs. These indices are found by mapping each pair
of sites to the corresponding inequivalent pair using the dic-
tionary generated in the previous step. During this step it is
thus also necessary to save xk, ideally in a matrixMkl together
with the site pairs and the multiplicity. As demonstrated in
equation (B.3), due to point-group symmetries certain terms
ΓΛ
a (ik)Γ

Λ
b ( jk) will appear several times, meaning they may be

added up to a multiplicity mk(l). This is not strictly necessary
but it is easy to implement andwill reduce the time that is spent
in the k summation of the FRG.

With this at hand, the site summation may be easily com-
puted: We first prepare a ‘matrix’ of size NPairs ×Nsites. Then,
for each j = 1,2, . . .NPairs we sum over all sites in the system,

Figure B3. Sites of the pyrochlore lattice within a finite number of
nearest neighbor bonds to the reference site at (0,0,0). Highlighted
in green are the sites that correspond to the symmetry inequivalent
pairs Rinv

0,j with respect to the reference site. Using translation and
point group symmetries, each other pair occuring in the flow
equations can be mapped onto this selection.

map the (i, k) and (k, j) inequivalent pairs with the indices ik
and jk in our list of inequivalent pairs and finally write these
indices in our matrix. One can then search for multiplicities
of these pairs in each row of the matrix and further reduce the
number of columns by saving the multiplicity for each pair of
vertices. This matrix can then simply be passed as an argument
to the FRG code, which can then evaluate the sum by inserting
its elements as indices to vertex functions without any further
information about the particular lattice geometry. Note that
the site summation in the self energy is also contained within
this matrix, as the summation of the onsite pair will contain a
simple summation of all sites in the system, which can be seen
from equation (B.3).

B.1.3. Constructing mapping arrays. The final step is
simple: In general, we have Γij ̸= Γji. Since, we want to swap
signs of frequency arguments when evaluating vertices, we
need to give our program a list which maps an inequivalent
pairRinv

i,j to its inverted pairRj,i = Rinv
i,j ′ for some j′. This is actu-

ally just a special case of the operations we have done within
the site summation and thus we may make use of the dic-
tionary in algorithm 1 to generate an array ‘invpairs[ j] = j ′’.
This array is also passed to the FRG and consequently used
whenever we need to change the sign in either the s or u fre-
quency. Similarly, the initial couplings Jij should be passed to
the FRG. If we have sorted our pairs according to the distance
to the reference site, we may easily set nearest, next-nearest
and further couplings. More complicated couplings can also
be set as long as we know which physical pair of sites a par-
ticular inequivalent pair index corresponds to.
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Figure B4. Selection of inequivalent pairs in the pyrochlore lattice.
Using the C3 rotation symmetry (green) and the mirror symmetry
(red) together with inversion at the origin, only 1/12 of all sites are
needed to reconstruct arbitary pairs Rij.

B.2. Frequency content of vertex functions

Not only the numerical treatment of the spatial, but also the
frequency dependence of both the self-energy and the vertex
function need some consideration. As all frequency arguments
can take on countably (in case of finite-T Matsubara frequen-
cies) or over–countably (in the T = 0 case) many values, any
numerical implementation has to approximate the Matsubara
frequency axis.

In the finite T case, considering only the first Nω discrete
Matsubara frequencies, i.e. all iωn with |n|< Nω has proven
to be most effective [180]. If the flow equations require a
quantity at a larger frequency than considered in the grid,
constant extrapolation is used as a zero-order approxima-
tion to the asymptotic behavior of the vertex discussed in
section 5.3. Additionally, energy conservation excludes some
combinations of Matsubara indices for the three frequency
arguments of the vertex for being unphysical. Using the para-
metrization in terms of transfer frequencies s, t,u, as used in
section 6.3, e.g. requires ns+ nt+ nu to be odd. As unphysical
combinations will never occur in the FRG flow, these can be
excluded [73].

At T = 0, Matsubara frequencies become continuous.
Therefore, a discrete frequency meshing has to be imposed on
all frequency-dependent functions. The structure of the vertex
function, as illustrated in section 5.3 is such that there is more
structure around the origin in frequency space, while larger

frequencies are dominated by asymptotic with less features. To
efficiently capture all information in the vertex, denser mesh
points are needed for low frequencies compared to higher
ones [143].

To achieve this, purely logarithmically spaced meshes [26,
52, 71] or combinations of linear spacing around zero fre-
quency and logarithmic tails [70, 142, 151] have been used.
As the location of the features in frequency space shifts with
Λ, adapting the meshes to the current form of the vertex
leads to improved numerical accuracy. Sophisticated scan-
ning routines have been put forward to achieve low numerical
errors, which is especially needed in multiloop implementa-
tions, as due to the iterative nature of the multiloop corrections
errors will proliferate [142, 143, 151].

The frequency integration on the right hand-side of the FRG
flow equations for T = 0 combined with the non-equal spacing
of the frequency meshes necessitates a means to extract vertex
values at an arbitrary point (ω,ν,ν ′) in three-dimensional fre-
quency space. To this end, a multi-linear interpolation scheme

Γ(ω,ν,ν ′)

=
[
Γ(ωi< ,νi< ,ν

′
i<)(ωi> −ω)(νi> − ν)(ν ′

i> − ν ′)

+Γ(ωi< ,νi< ,ν
′
i>)(ωi> −ω)(νi> − ν)(ν ′ − ν ′

i<)

+Γ(ωi< ,νi> ,ν
′
i<)(ωi> −ω)(ν− νi<)(ν

′
i> − ν ′)

+Γ(ωi< ,νi> ,ν
′
i>)(ωi> −ω)(ν− νi<)(ν

′ − ν ′
i<)

+Γ(ωi> ,νi< ,ν
′
i<)(ω−ωi<)(νi> − ν)(ν ′

i> − ν ′)

+Γ(ωi> ,νi< ,ν
′
i>)(ω−ωi<)(νi> − ν)(ν ′ − ν ′

i<)

+Γ(ωi> ,νi> ,ν
′
i<)(ω−ωi<)(ν− νi<)(ν

′
i> − ν ′)

+ Γ(ωi> ,νi> ,ν
′
i>)(ω−ωi<)(ν− νi<)(ν

′ − ν ′
i<)
]

× 1
(ωi> −ωi<)(νi> − νi<)(ν

′
i> − ν ′

i<)
,

(B.5)

is used, where the indices i>(i<) indicate the nearest larger
(smaller) frequency in the grid on the respective frequency
axis. This scheme can be used for the full vertex in the transfer
frequency parametrization or, turning to the asymptotic fre-
quency paramatrization, in the three different diagrammatic
channels separately. The vertex function asymptotics as well
as the self-energy are interpolated using the two- and one-
dimensional version of this scheme, respectively.

For an efficient implementation of the asymptotic paramet-
rization, the kernel functions K defined in equation (88) are
not the most suitable choice, as in this formulation calculat-
ing the value of a single channel at a specific frequency point
amounts to the interpolation and subsequent summation of
all three functions. Therefore, one can define computationally
more favorable functions Q according to [140, 151]

Qc
3 (ωc,νc,ν

′
c ) = ġc (c,νc,ν

′
c ) (B.6)

Qc
2 (ωc,νc) = lim

|ν ′
c |→∞

ġc (ωc,νc,ν
′
c ) (B.7)

Q̄c
2 (ωc,ν

′
c ) = lim

|νc|→∞
ġc (ωc,νc,ν

′
c ) (B.8)

Qc
1 (ωc) = lim

|νc|,|ν ′
c |→∞

ġc (ωc,νc,ν
′
c ) . (B.9)
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Depending on the exact value of the frequencies, only a
single evaluation ofQc

3 or, if one or two frequencies are outside
of the mesh, Qc

2 or Qc
1 is required, respectively.

These new functions can be related to the original kernels
according to

Qc
3 (ωc,νc,ν

′
c ) = Kc1 (ωc)+Kc2 (ωc,νc)

+ K̄c2 (ωc,ν
′
c )+Kc3 (ωc,νc,ν

′
c ) (B.10)

Qc
2 (ωc,νc) = Kc1 (ωc)+Kc2 (ωc,νc) (B.11)

Q̄c
2 (ωc,ν

′
c ) = Kc1 (ωc)+ K̄c2 (ωc,ν

′
c ) (B.12)

Qc
1 (ωc) = Kc1 (ωc) . (B.13)

Numerically, the asymptotic parts can be calculated set-
ting the according frequencies to a large value. The numerical
advantage of the Q functions defined here, however, comes
at a price: in the parametrization using the kernels K, the fre-
quency discretization on all axes for all asymptotic classes, i.e.
K1, K2, K̄2 and K3 can be chosen independently, such that the
numerically cheaper to calculate K1 class can be augmented
by a higher resolution mesh. Using the sum of these kernels
in form of the Qs defined above, we do not have this choice
anymore. Although one would naively expect that the same
split can be done for the limiting functions, i.e. Q1, Q2, Q̄2

and Q3, in a real implementation, this will lead to interpola-
tion artifacts at the boundaries of the frequency mesh, which
lead to unphysical errors in the flow. The reduced accuracy in
the kernel functions with lower frequency degrees of freedom,
however, turned out to not alter the accuracy of the calculation
as a whole, cf [143].

Therefore, the only split we introduce in the frequency
meshes is to allow for different meshes for the bosonic and
fermionic axes, with the latter being the same for both ν and
ν ′. The reason for this is the symmetry under exchange of ν
and ν ′, as discussed in section 5.3.We also allow the t-channel
contributions to be defined on a different set of meshes than the
s- and u-channel, with the latter utilizing the same discretiza-
tion, again due to the symmetry between both under exchange
of the two fermionic arguments. This split in the diagram-
matic channels turns out to be crucial for tracking the interplay
between magnetic ordering tendencies in the t channel and
paramagnetic behavior stemming from the s- and u-channels
at low RG scale Λ. Additionally, spin- and density-part of the
vertex are allowed to be defined on possibly different meshes,
as their frequency content qualitatively differs.

B.3. Frequency integration

The evaluation of the loops on the right-hand side of the FRG
equations in the T = 0 case calls for a quadrature rule to be
used. In early implementations, simple trapezoidal quadrature
using the mesh points as integration points was used [71]. As
discussed in appendix B.2, this leads to a good resolution only
around the origin of the integration domain. As the integrand
at 1ℓ level always includes a propagator GΛ and a single-scale
propagator Sλ and the latter is more sharply peaked, this leads
to remarkably accurate results, when the integration domain is

shifted, such that the single-scale propagator is peaked at the
origin.

Using a more symmetric frequency parametrization, as in
appendix A, this is no longer the case and adaptive routines
have to be implemented, see e.g. [143].

B.4. Differential equation solver

As for numerical quadrature, the integration of the FRG flow
has to be done numerically. As multiple orders of magnitude
in Λ have to be covered, the step-size during the flow should
be adapted, with initially larger steps becoming smaller while
approaching either Λ = 0 or a flow breakdown. While an
adaptive step-size Euler method performs quite well [26, 52,
71], adaptive Runge-Kutta methods have proven themselves
to decrease numerical cost while maintaining numerical con-
trol over the integration error [143, 180]. Lately, in a model
study on itinerant FRG, adaptive step-size multi-step methods
have been found to outperform even these methods by requir-
ing a lower number of evaluations of the right-hand side [222].
Similar results should hold true for PF/PMFRG applications as
long as the tolerances are high enough. For solutions with low
tolerance, higher-order methods are favorable in which case
the stability region of multi-step methods shrinks while stand-
ard higher order Runge-Kutta solvers benefit from their grow-
ing stability region, allowing for larger step sizes [223].
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