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Abstract

In response to the climate crisis, there is a need for technological innovations to reduce

the escalating CO2 emissions. Two promising semiconductor technologies in this regard,

perovskite-based solar cells and memristive devices based on two-dimensional layered

transition metal dichalcogenide (TMDC), can potentially contribute to the expansion of

renewable energy sources and the development of energy-efficient computing hardware.

Within perovskite and TMDC materials, ions dislocate from their ideal position in

the semiconductor crystal and leave void spaces. So far, the precise influence of these

vacancies and their dynamics on device performance remain underexplored. Therefore,

this thesis is dedicated to comprehensively examining the impact of vacancy-assisted

charge transport in innovative semiconductor devices through a theoretical approach

by modeling and simulating systems of partial differential equations. We start by

deriving drift-diffusion equations using thermodynamic principles, including Maxwell-

Stefan diffusion and the grand canonical ensemble of an ideal lattice gas. Particular

attention is directed towards accurately limiting vacancy accumulation. Furthermore,

we formulate drift-diffusion models to describe charge transport in perovskite solar

cells and TMDC memristors. We discretize the transport equations via the finite

volume method and establish the existence of discrete solutions using the entropy

method. Our study concludes with simulations conducted with ChargeTransport.jl,

an open source software tool developed in the programming language Julia. These

simulations investigate the large time behavior of discrete solutions for both transport

models. Additionally, we explore the influence of volume exclusion effects on charge

transport in perovskite solar cells and compare our simulation results with experimental

measurements found in literature for TMDC-based memristive devices.

iii





Contents

List of publications ix

List of abbreviations xi

List of notations and physical constants xiii

List of figures xv

List of tables xix

1. Introduction 1

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1. Perovskite solar cells . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2. Memristive devices . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2. Semiconductor modeling and simulation . . . . . . . . . . . . . . . . 4

1.2.1. Model hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2. Overview of existing numerical methods . . . . . . . . . . . . 6

1.3. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Derivation of vacancy-assisted charge transport equations 9

2.1. Starting point and review . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2. Maxwell-Stefan diffusion and electrostatic drift . . . . . . . . . . . . . 12

2.3. Electron and hole concentration and current density . . . . . . . . . . 15

2.3.1. Carrier concentration . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2. Drift-diffusion current density . . . . . . . . . . . . . . . . . . 18

2.4. Vacancy carrier concentration and current density . . . . . . . . . . . 19

2.4.1. Examples of crystal structures . . . . . . . . . . . . . . . . . . 19

2.4.2. Limiting vacancy accumulation . . . . . . . . . . . . . . . . . 22

2.4.3. Drift-diffusion current density . . . . . . . . . . . . . . . . . . 26

2.5. Volumetric space charge density . . . . . . . . . . . . . . . . . . . . . 28

2.6. Selected thermodynamic properties . . . . . . . . . . . . . . . . . . . 29

2.6.1. Thermodynamic equilibrium and local electroneutrality . . . . 30

2.6.2. Thermodynamic free energy . . . . . . . . . . . . . . . . . . . 31

v



3. Charge transport models for two real device applications 33

3.1. Perovskite solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1. Bulk equations . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.2. Photogeneration and recombination rates . . . . . . . . . . . . 36

3.1.3. Initial and boundary conditions . . . . . . . . . . . . . . . . . 38

3.1.4. Non-dimensionalization . . . . . . . . . . . . . . . . . . . . . . 40

3.2. Memristive devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1. Bulk equations . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2. Initial and boundary conditions . . . . . . . . . . . . . . . . . 44

3.2.3. Non-dimensionalization . . . . . . . . . . . . . . . . . . . . . . 51

3.3. Entropy method to prove the existence of solution . . . . . . . . . . . 53

3.3.1. Entropy functions . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2. Entropy-dissipation inequality . . . . . . . . . . . . . . . . . . 56

4. Numerical analysis of vacancy-assisted charge transport models 63

4.1. Discrete charge transport equations . . . . . . . . . . . . . . . . . . . 64

4.1.1. Discretization meshes . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.2. Finite volume discretization . . . . . . . . . . . . . . . . . . . 68

4.1.3. Charge carrier flux discretization . . . . . . . . . . . . . . . . 71

4.2. Existence of a discrete solution . . . . . . . . . . . . . . . . . . . . . 75

4.2.1. Discrete entropy-dissipation inequality . . . . . . . . . . . . . 75

4.2.2. Existence of electric potential . . . . . . . . . . . . . . . . . . 83

4.2.3. A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.4. Main existence result . . . . . . . . . . . . . . . . . . . . . . . 90

5. Simulation results 95

5.1. Large time behavior, convergence order and entropy decay . . . . . . 96

5.1.1. Perovskite solar cells . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.2. Memristive devices . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2. Volume exclusion effects in perovskite charge transport modeling . . . 107

5.2.1. Design of benchmark . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.2. Discussion of results . . . . . . . . . . . . . . . . . . . . . . . 110

5.3. Role of vacancy dynamics in two-dimensional memristive devices . . . 117

5.3.1. Vacancy depletion and mobility . . . . . . . . . . . . . . . . . 118

5.3.2. Schottky barrier lowering . . . . . . . . . . . . . . . . . . . . . 123

5.3.3. Pulse simulation . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3.4. Summary and conclusion . . . . . . . . . . . . . . . . . . . . . 126

vi



6. Conclusion and outlook 127

6.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A. Selected proofs 131

A.1. Boltzmann and Fermi-Dirac statistics functions . . . . . . . . . . . . 131

A.2. Proof of Lemma 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.3. Proof of Lemma 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.4. Proof of Grönwall’s lemma . . . . . . . . . . . . . . . . . . . . . . . . 135

A.5. Proof of a discrete integration by parts . . . . . . . . . . . . . . . . . 136

A.6. Auxiliary result needed to establish Lemma 4.12 . . . . . . . . . . . . 138

A.7. Auxiliary result needed to establish the existence of discrete solutions 140

B. Summary of model parameters 143

B.1. Perovskite solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B.2. TMDC-based memristive devices . . . . . . . . . . . . . . . . . . . . 144

Bibliography 147

vii





List of publications

The following presents a complete list of my publications. Furthermore, all the required

scripts to generate and visualize the simulation data are available here:

[DA1] D. Abdel. VacancyAssistedChargeTransport.jl – Simulating vacancy-

assisted charge transport in semiconductors. doi: 10.5281/zenodo.8396870

(cit. on pp. 96, 144).

Dissertation related publications

Peer-reviewed articles

[DA2] D. Abdel, C. Chainais-Hillairet, P. Farrell, and M. Herda. “Numerical analysis

of a finite volume scheme for charge transport in perovskite solar cells”. IMA

Journal of Numerical Analysis (2023), pp. 1–40. doi: 10.1093/imanum/

drad034 (cit. on pp. ix, 8, 10, 33, 35, 64, 65, 96, 98–102).

[DA3] D. Abdel, N. E. Courtier, and P. Farrell. “Volume exclusion effects in per-

ovskite charge transport modeling”. Optical and Quantum Electronics 55.884

(2023). doi: 10.1007/s11082-023-05125-9 (cit. on pp. ix, 8, 10, 21, 24, 96,

110–114, 116).

[DA4] D. Abdel, P. Vágner, J. Fuhrmann, and P. Farrell. “Modelling charge transport

in perovskite solar cells: Potential-based and limiting ion depletion”. Elec-

trochimica Acta (2021), p. 138696. doi: 10.1016/j.electacta.2021.138696

(cit. on pp. 2, 8, 10, 16, 27, 33, 34, 64).

[DA5] B. Spetzler, D. Abdel, F. Schwierz, M. Ziegler, and P. Farrell. “The Role

of Vacancy Dynamics in Two-Dimensional Memristive Devices”. Advanced

Electronic Materials 10.1 (2024), p. 2470002. doi: 10.1002/aelm.202470002

(cit. on pp. 4, 8, 10, 33, 43, 44, 46, 96, 119–125).

The publications [DA2, DA3] are licensed under a Creative Commons Attribution 4.0.

ix

https://doi.org/10.5281/zenodo.8396870
https://doi.org/10.1093/imanum/drad034
https://doi.org/10.1093/imanum/drad034
https://doi.org/10.1007/s11082-023-05125-9
https://doi.org/10.1016/j.electacta.2021.138696
https://doi.org/10.1002/aelm.202470002
https://creativecommons.org/licenses/by/4.0/


Conference papers

[DA6] D. Abdel, N. Courtier, and P. Farrell. “Volume exclusion effects in perovskite

charge transport modeling”. 2022 International Conference on Numerical Sim-

ulation of Optoelectronic Devices (NUSOD). 2022. doi: 10.1109/NUSOD54938.

2022.9894826 (cit. on pp. 72, 110).

Software

[DA7] D. Abdel, P. Farrell, and J. Fuhrmann. ChargeTransport.jl – Simulating

charge transport in semiconductors. doi: 10.5281/zenodo.6257906 (cit. on

pp. 95, 110, 127).

[DA8] J. Fuhrmann, D. Abdel, J. Weidner, A. Seiler, P. Farrell, and M. Liero.

VoronoiFVM.jl - Finite volume solver for coupled nonlinear partial differen-

tial equations. doi: 10.5281/zenodo.3529808 (cit. on pp. 95, 96).

Further publications

Peer-reviewed articles

[DA9] D. Abdel, P. Farrell, and J. Fuhrmann. “Assessing the quality of the excess

chemical potential flux scheme for degenerate semiconductor device simula-

tion”. Optical and Quantum Electronics 53.163 (2021). doi: 10.1007/s11082-

021-02803-4 (cit. on pp. 6, 72).

Conference papers

[DA10] D. Abdel, J. Fuhrmann, and P. Farrell. “Comparison of Scharfetter-Gummel

Schemes for (Non-)Degenerate Semiconductor Device Simulation”. 2020

International Conference on Numerical Simulation of Optoelectronic Devices

(NUSOD). 2020. doi: 10.1109/NUSOD49422.2020.9217691.

x

https://doi.org/10.1109/NUSOD54938.2022.9894826
https://doi.org/10.1109/NUSOD54938.2022.9894826
https://doi.org/10.5281/zenodo.6257906
https://doi.org/10.5281/zenodo.3529808
https://doi.org/10.1007/s11082-021-02803-4
https://doi.org/10.1007/s11082-021-02803-4
https://doi.org/10.1109/NUSOD49422.2020.9217691


List of abbreviations

Abbreviation Description

2D Two-dimensional

3D Three-dimensional

2H Two-hexagonal

AI Artificial intelligence

CMOS Complementary metal-oxide-semiconductor

DFT Density functional theory

ETL Electron transport layer

FDM Finite difference method

FEM Finite element method

FVM Finite volume method

HRS High-resistive state

HTL Hole transport layer

IC Initial condition

I-V Current-voltage

IT Information technology

LED Light-emitting diode

LRS Low-resistive state

MAPI Methylammonium lead iodide

PDE Partial differential equation

PCE Power conversion efficiency

PSC Perovskite solar cell

SBL Schottky barrier lowering

SRH Shockley-Read-Hall

TMDC Transition metal dichalcogenide

TPFA Two-point flux approximation

xi





List of notations and physical constants

Symbol Description SI (derived) unit

αg Absorption coefficient m−1

Cp Acceptor density m−3

Bn, Bp Auger rate coefficient m6/s

CVα Average vacancy density m−3

Eα Band-edge J

Eg Band gap J

nα Carrier density m−3

τn, τp Carrier lifetimes s

zα Charge number –

χα Chemical potential V

DOSn, DOSp Density of states 1/(Jm3)

εs Dielectric permittivity C/(Vm)

Dα Diffusion coefficient m2/s

gα Diffusion enhancement –

ηα Dimensionless chemical potential –

ΓD Dirichlet boundary –

Cn Donor density m−3

C Doping density m−3

Fα Driving force (mass transfer) N

Nn, Np Effective density of states m−3

m∗
n,m

∗
p Effective mass m0

jα Electric current density C/(m2s)

ψ Electric potential V

ϕ Electric potential energy J

zαqφα Electrochemical potential J

ψ Electrostatic potential V

Ef Free energy J

ζαβ Friction coefficient Ns/m

xiii



Symbol Description SI (derived) unit

εi Image-force permittivity C/(Vm)

Fph Incident photon flux 1/(m2s)

Eα Intrinsic band-edge energy J

Nintr Intrinsic carrier density m−3

Ωintr ⊆ Ω Intrinsic domain –

ϕ0 Intrinsic Schottky barrier J

µα Mobility m2/(Vs)

ΓN Neumann boundary –

Jα Particle current density 1/(m2s)

G Photogeneration rate 1/(m3s)

φα Quasi Fermi potential V

r0,rad Radiative rate coefficient m3/s

R Recombination rate 1/(m3s)

vn, vp Recombination velocity m/s

nn,τ , np,τ Reference carrier density m−3

εr Relative permittivity –

ΓS Schottky boundary –

Ω ⊂ Rd Spatial domain –

Fα Statistics function –

T Temperature K

UT Thermal voltage V

NVα Vacancy saturation limit m−3

Symbol Description Value SI (derived) unit

kB Boltzmann constant 1.380 649× 10−12 J/K

m0 Electron rest mass 9.109 383 701 5× 10−31 kg

q Elementary charge 1.602 176 634× 10−19 C

h Planck constant 6.626 070 15× 10−34 J/Hz

ℏ=h/2π Reduced Planck constant ≈1.054 571 817× 10−34 J s

ε0 Vacuum permittivity ≈8.854 187 812 8×10−12 C/(Vm)

xiv



List of figures

1.1. Fabricated thin-film perovskite solar cell and simplified device architec-

ture illustration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Memristive device architecture, pinched I-V hysteresis loop and a com-

parison between measurements and simulation. . . . . . . . . . . . . . 4

2.1. Example illustration of a model device geometry with indicated material

layer supporting vacancy-assisted migration. . . . . . . . . . . . . . . 11

2.2. Semi-logarithmic and logarithmic plot of the introduced statistics func-

tions and diffusion enhancements. . . . . . . . . . . . . . . . . . . . . 17

2.3. Cubic perovskite unit cell under idealized conditions and with realistic

crystal defects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4. Different idealized representations of two MoS2 monolayers arranged in

a hexagonal lattice structure. . . . . . . . . . . . . . . . . . . . . . . 22

2.5. Three possible vacancy density configurations depending on the choice

of the saturation limit. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1. Two-dimensional three-layer perovskite solar cell device geometry with

the relevant potentials stated per subdomain. . . . . . . . . . . . . . 35

3.2. Illustration of a memristive device geometry in different dimensions. . 44

3.3. Schematic illustration of inducing image charges in the metal electrode

and the resulting superposition of potential energies. . . . . . . . . . 46

3.4. Summary of the classical Schottky and the image-charge induced Schot-

tky boundary model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1. Neighboring control volumes in the interior of the device domain and

near outer boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2. Two Delaunay triangulations of a computational domain. . . . . . . . 67

5.1. Steady state potentials, densities and initial conditions for a three-layer

test problem with equal boundary values. . . . . . . . . . . . . . . . . 98

5.2. Time evolution of two relative entropies and the quadratic L2 errors

between the computed and the steady state solutions for a three-layer

test problem with equal boundary values. . . . . . . . . . . . . . . . . 99

xv



5.3. Steady state potentials, densities and initial conditions for a three-layer

test problem with non-equal boundary values. . . . . . . . . . . . . . 99

5.4. Second-order spatial experimental convergence and time evolution of

the relative entropy with respect to the steady state and of the quadratic

L2 errors between the computed and the steady state solutions for a

three-layer test problem with non-equal boundary values. . . . . . . . 100

5.5. Steady state potentials, densities and initial conditions for a realistic

perovskite solar cell application. . . . . . . . . . . . . . . . . . . . . . 101

5.6. Time evolution of the relative entropy with respect to the steady state

and the quadratic L2 errors between the computed and the steady state

solutions for a realistic perovskite solar cell application. . . . . . . . . 102

5.7. Illustration of the applied voltage and the time regime of interest for

studying the large time behavior of memristive devices. . . . . . . . . 103

5.8. Steady state potentials, densities and initial conditions for a realistic

TMDC-based memristive device. . . . . . . . . . . . . . . . . . . . . 104

5.9. Time evolution of the relative entropy with respect to the steady state

and of the quadratic L2 errors between the computed and the steady

state solutions for a realistic TMDC-based memristive device. . . . . 105

5.10. Convergence times of the relative entropy with respect to the steady

state and of the quadratic L2 errors between the computed and the

steady state solutions in dependence of the average vacancy concentration.106

5.11. Steady state densities and initial conditions for a realistic TMDC-based

memristive device with two different average vacancy concentrations. 106

5.12. Simulation of three possible equilibrium vacancy density configurations

for a PSC depending on the choice of the saturation limit. . . . . . . 109

5.13. Schematic diagram of the simulated PSC device configuration with

ohmic contacts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.14. Evolution of the electric potential in the perovskite layer solving the

PSC charge transport model based on the nonlinear diffusion current

density and for the model based on the modified drift current density. 111

5.15. Evolution of the vacancy density at the left and right perovskite/transport

layer interface solving the PSC charge transport model based on the

nonlinear diffusion current density and for the model based on the

modified drift current density. . . . . . . . . . . . . . . . . . . . . . 112

5.16. Difference between calculated electrostatic potentials based on either a

modified drift or a nonlinear diffusion approach. . . . . . . . . . . . . 113

5.17. Difference between calculated vacancy densities based on either a mod-

ified drift or a nonlinear diffusion approach. . . . . . . . . . . . . . . 114

xvi



5.18. L∞ error between the electric potentials and the vacancy densities

calculated from a model based on either a nonlinear diffusion or a

modified drift current density with respect to ϵ. . . . . . . . . . . . . 114

5.19. Quadratic L2 errors between computed solutions and steady state

solutions for models based on both current density description for fixed

choices of ϵ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.20. Current-voltage curves for modified drift and nonlinear diffusion for

variations of ϵ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.21. Current-voltage curves for modified drift and nonlinear diffusion for

variations of ϵ in comparison with measurements. . . . . . . . . . . . 116

5.22. Illustration of the applied voltage for the simulation of the TMDC-based

memristive devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.23. Comparison between simulations of a symmetric current-voltage curve

and measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.24. Simulated band diagrams at the beginning of two different cycles. . . 120

5.25. Vacancy density configurations and its steady state limit for selected

positions in the second current-voltage cycle. . . . . . . . . . . . . . . 120

5.26. Example hysteresis loops of the second cycle symmetric current-voltage

simulation for selected vacancy mobilities. . . . . . . . . . . . . . . . 122

5.27. Comparison between simulations of an asymmetric current-voltage curve

and measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.28. Electron band-edge, Schottky barrier changes and asymmetric current-

voltage simulations with different boundary conditions. . . . . . . . . 124

xvii





List of tables

3.1. Scaling factors for physical parameters of a perovskite solar cell. . . . 41

3.2. Scaling factors for physical parameters of a memristive device. . . . . 52

B.1. Parameter values for the simulation of a three-layer perovskite solar

cell with TiO2 as electron transport layer material. . . . . . . . . . . 143

B.2. Parameter values for the simulation of a three-layer perovskite solar

cell with PCBM as electron transport layer material. . . . . . . . . . 144

B.3. Summary of the MoS2 material parameters collected from the literature.145

B.4. Sample-specific parameter sets obtained from the simulation fits to the

experimental data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xix





1. Introduction

Semiconductor technology ranks among the leading sectors in today’s industrial

landscape. We face technology based on semiconductors several times a day, from

the touchscreen displays of smartphones (thin film transistors) to the illumination

provided by LEDs (light-emitting diodes) [101]. Developing new semiconductor devices

and materials drives innovation in established technologies while potentially positively

contributing to environmental sustainability. These innovations influence areas such as

next-generation solar cells, and brain-inspired computing hardware [166, 168]. While

some of these technologies are already on the path to commercialization, others remain

in their early developmental stages, working toward readiness for mass production.

The design of new technologies and devices offers an interdisciplinary interface between

science, technology, engineering, and mathematics. Modeling and simulating charge

transport phenomena in these devices can assist in making predictions and optimizing

their performance, addressing challenges that are often difficult and costly to overcome

solely through experimental approaches [71]. In Section 1.1, we motivate the necessity

to advance theoretical research for two concrete innovative applications. Then, in

Section 1.2, we categorize the models and numerical schemes used in this thesis within

the existing literature. Finally, in Section 1.3, we outline how this thesis aims to

analyze these devices theoretically.

1.1. Motivation

According to the World Meteorological Organization, there is a 66 % probability that

the world will surpass the critical 1.5 °C temperature threshold for the first time

within the next four years [247]. This threshold, denoting the rise in the global average

temperature above the pre-industrial baseline (1850 – 1900), was established in 2016 in

response to the escalating global warming crisis and enshrined in the Paris Agreement

[56]. Due to this alarming trend, the urgency of stabilizing the global climate has never

been more pronounced. The Intergovernmental Panel on Climate Change has recom-

mended achieving net-zero greenhouse gas emissions by 2050 to ensure sustainable

climate stabilization [114]. As a result, rapid and transformative changes in the coming

decades are needed. In this thesis, we pay particular attention to the charge transport

1



1. Introduction

in two semiconductor technologies that can be part of the solution for CO2 reduction.

Specifically, we introduce perovskite-based solar cells for advancing renewable energy

production and transition metal dichalcogenide (TMDC)-based memristors designed

to enhance energy-efficient data storage and processing in future electronic devices.

1.1.1. Perovskite solar cells

In recent years, perovskite solar cells (PSCs) have emerged as a rapidly advancing

technology within the field of photovoltaics [178, 188]. PSCs have demonstrated

remarkable power conversion efficiency (PCE) rates, defined as the proportion of

incident light power converted into electrical power, exceeding 30 % [16, 40, 162].

These PCE rates surpass the efficiency of widely used silicon solar cells under laboratory

conditions. Furthermore, specific PSC architectures can significantly reduce production

costs compared to conventional silicon solar cells. Due to their high efficiency and low-

cost manufacturing, PSCs can potentially revolutionize renewable energy production,

which is crucial for reducing greenhouse gas emissions. However, the commercialization

of PSCs is still in its early stages, and several substantial challenges must be addressed,

including issues related to stability, limited lifespan, and toxicity concerns [213].

Figure 1.1.: A fabricated thin-film perovskite solar cell (left) and an illustration of a planar

perovskite-based solar cell architecture (right). (Left image from [214] and the right image

from [DA4] with modifications.)

In a PSC configuration, a perovskite layer is sandwiched between an electron transport

(ETL), a hole transport layer (HTL), and additional contact layers, as illustrated in

Figure 1.1 (right). A planar cell is among the common architectures where incident

light enters through the ETL. Perovskites do not describe one concrete material but

belong to a class of crystalline semiconductors with the formula unit ABX3, composed

of two cations, A and B, and an anion, X. In reality, these ions are not rigidly fixed
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within the crystalline lattice. Dynamic crystal defects occur, forming void spaces

known as vacancies within the crystal lattice. Ions can occupy these vacancies. The

continually changing crystalline structure, caused by ionic migration occurring on a

timescale about ten orders of magnitude slower than that of electron and hole motion,

significantly impacts the overall device charge behavior and cannot be neglected. In

perovskites, the movement of numerous negatively charged anions plays a substantial

role in charge transport. Several experimental observations and simulations indicate

the occurrence of ionic accumulation near the perovskite interface [29, 141, 224].

Furthermore, the phenomenon of current-voltage (I-V) hysteresis, where different

output currents are observed for varying voltage scanning directions, is directly linked

to vacancy migration [213, 225]. Despite notable advancements in characterizing

vacancy-assisted migration in perovskites, it is still necessary to comprehensively

understand its impact on device performance. As a result, it is crucial to gain a deeper

understanding of charge transport within perovskite materials through advanced

modeling and simulation techniques.

1.1.2. Memristive devices

Energy consumption and, consequently, carbon emissions present a substantial chal-

lenge across all sectors of modern IT (information technology) [123]. This challenge

extends to traditional computing, from personal computers to supercomputers, man-

aging and analyzing large and complex datasets, and the emerging field of artificial

intelligence (AI). Most of today’s IT systems rely on digital CMOS (complementary

metal-oxide-semiconductor) logic and the von Neumann architecture [199]. Regrettably,

the energy efficiency of this type of hardware is insufficient to meet the increasing

demands. In particular, the increasing popularity of AI in recent times [60, 198, 238]

raises significant concerns about the energy consumption of AI and its damaging

impact on the environment [8, 55, 154].

An alternative, more energy-efficient, and sustainable approach to address many

AI challenges is using hardware that processes information similarly to biological

brains. This approach is known as neuromorphic computing [87, 254]. This inno-

vative hardware architecture can be implemented using memristive devices, often

called memristors, as their fundamental building blocks. The term “memristor”, a

portmanteau of “memory” and “resistor”, was initially conceptualized by Chua in

1971 [42]. It took nearly four decades to realize the first prototype in 2008 [228].

Memristors elegantly enable the emulation of synapses and neurons, the fundamental

components of biological brains. Their electrical behavior is characterized by hysteresis

in the current-voltage characteristics [43]. More precisely, memristors are known for
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exhibiting pinched hysteresis loops, as depicted in Figure 1.2 (middle).

Figure 1.2.: Example of a lateral memristive device architecture comprising two electrodes

(source and drain) on top of a two-dimensional memristive material (left), illustration

of a pinched I-V hysteresis loop of a memristive device (middle), and comparison of a

measured current-voltage characteristics from [150] with simulations based on the classical

van Roosbroeck model [204] (right). (Left figure from [DA5] with modifications.)

Memristors based on two-dimensional (2D) layered materials have recently attracted

considerable attention [109, 137]. Transition metal dichalcogenides (TMDCs) represent

a promising class of layered memristive materials [57, 146, 207, 252]. These materials

are characterized by the formula unit AX2, where A is a transition metal atom and X

belongs to the family of chalcogen atoms. In Figure 1.2 (right), a measured curve from

[150] shows the classical memristive hysteresis behavior. In contrast, simulation results

from the standard drift-diffusion model [204], without additional physical effects, fail

to exhibit any hysteresis and underestimate the current-voltage characteristics of the

measured curve. Indeed, the origin of experimental hysteresis in these devices and,

thus, the physics of TMDC memristors is incompletely understood and continues to

be subjects of active debate.

Experimental findings have provided evidence of the accumulation and migration of

chalcogen vacancies within TMDC-based memristive devices [177, 206, 258]. Specifi-

cally, studies have shown a correlation between the dynamics of charged chalcogen point

defects and the observed hysteresis in the current-voltage characteristics [150, 206].

Unlike perovskites, the mechanisms leading to the formation of defects within TMDC

crystals and the stable charge states still need to be fully understood. Consequently,

there is a lack of physically meaningful charge transport models and simulation tools to

investigate the potential vacancy-assisted migration in TMDC memristors adequately.

1.2. Semiconductor modeling and simulation

In summary, perovskite solar cells and TMDC-based memristive devices represent

promising semiconductor technologies characterized by hysteresis behavior closely
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linked to the migration of vacancies. However, these devices also exhibit other physical

effects, such as charged trap states [64, 110, 147, 231], which can impact the overall

device charge and, thus, the current-voltage characteristics. Distinguishing between

various physical phenomena solely through experimental approaches can be challenging.

Moreover, the production of semiconductor devices itself contributes significantly to

greenhouse gas emissions [96, 172]. Consequently, the primary objective of this thesis is

to provide a comprehensive, physics-based theoretical exploration of vacancy-assisted

charge transport in these two devices.

1.2.1. Model hierarchy

Semiconductor device transport modeling aims to understand and predict the behavior

of charge carriers within semiconductor materials and devices. When we treat charge

carriers as discrete quantities that distribute within a medium, microscopic semi-

classical kinetic equations like the Boltzmann transport equation can describe their

behavior. The Boltzmann equation is a partial differential equation (PDE) formulated

for an individual quantity dependent on a three-dimensional spatial vector and a

three-dimensional wave vector (both dependent on time). As the number of quantities

we consider grows (e.g., N = 104 electrons), the number of dimensions 6N to solve

this coupled set of equations linearly increases. Consequently, kinetic models come

with high computational costs in numerical simulations.

However, we often only need specific physical information for certain devices, and

simpler models are preferred for computational efficiency. In light of this, macroscopic

semi-classical drift-diffusion models have been developed to effectively represent the

device behavior while accurately preserving the fundamental physics. Indeed, more de-

tailed semi-classical macroscopic models, such as general hydrodynamic models (which

account for smaller timescales and temperature dependencies) or energy-transport

models (which consider temperature-dependent behavior), also exist, see, e.g., [1, 99,

116, 164, 169]. Since our primary objective is to investigate the influence of vacancy-

assisted charge transport, we, consequently, assume negligible temperature variations

and timescales that do not need more general models in favor of computational costs.

Thus, this thesis focuses on semi-classical drift-diffusion models, which balance accuracy

and computational efficiency. Additionally, the semiconductor structures investigated

in this thesis have dimensions where quantum effects can be neglected. When dealing

with much smaller device scales, more comprehensive quantum mechanical models

(microscopic or macroscopic) instead of semi-classical models must be considered. For

further mathematically-focused details on the presented and other model types, we

refer to [128].
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1.2.2. Overview of existing numerical methods

Drift-diffusion models, being nonlinear PDE systems, often allow for analytical solu-

tions only under simplified conditions. Consequently, extensive literature has been

dedicated to the numerical solution of these models. These numerical methods include

discretization schemes based on both the finite difference method (FDM) and the

finite element method (FEM), see, e.g., [10, 24, 174, 216, 242]. Another alternative,

which is as flexible as FEM with respect to the device geometry, but still correctly

reflects physical phenomena, is the finite volume method (FVM). These physical

phenomena include, for instance, the local conservativity of fluxes and consistency

with thermodynamic laws [70, 72]. Therefore, in the context of this thesis, we introduce

FVM-based schemes.

Adequately decomposing a multi-dimensional computational domain and correctly

discretizing charge carrier current densities is essential to formulate effective FVM

schemes. Admissible meshes [70], which meet certain orthogonality constraints, form

the basis for large classes of finite volume schemes based on two-point flux approx-

imations (TPFA). For instance, central finite difference flux (suitable for problems

governed by diffusion) and upwind flux discretizations (suitable for problems governed

by drift) have been thoroughly analyzed, e.g., [19, 37, 38]. Moreover, exponential fitting

flux approximations, which have been recently investigated and/or developed (see, e.g.,

[19, 32, 72, 85, 140, 190]), have been successfully employed in commercial software

[46, 223, 233]. Exponential fitting schemes are characterized by numerical stability,

thermodynamic consistency, and applicability to general charge carrier statistics [71].

Therefore, this thesis relies on admissible meshes and the excess chemical potential

flux scheme as an exponential fitting TPFA. The earliest reference we could find for

this discretization scheme is [255] which was later numerically analyzed in [30, 92]

and compared in [DA9, 132]. We note that in cases where charge transport models

exhibit anisotropies, such as those related to a magnetic field [88], multi-point flux

approximations formulated on more general, not necessarily admissible, meshes have

been developed and analyzed [63, 69, 84, 191]. Specifically, in [35, 173], hybrid finite

volume schemes for drift-diffusion models have been explored mathematically.

1.3. Outline

This thesis is organized as follows.

In Chapter 2, we derive general semi-classical macroscopic drift-diffusion equations

from Maxwell-Stefan diffusion and electrostatic drift for charge transport in crystalline
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semiconductors. Instead of carrier densities, we use quasi Fermi potentials as primary

variables, which allows us to easily include nonlinear diffusion for electrons and holes as

well as limit the vacancy accumulation. The latter is motivated by a grand canonical

formalism for ideal lattice gas. We also examine crystal lattice diffusion processes for

perovskites and TMDCs. Lastly, we discuss selected thermodynamic properties such

as thermodynamic equilibrium, electroneutrality, as well as the free energy.

In Chapter 3, we apply the derived charge transport equations to two physically and

societally relevant applications: perovskite solar cells and TMDC-based memristive

devices. In order to formulate well-posed initial boundary value problems for these

applications, we employ suitable initial and boundary conditions. Additionally, we

discuss photogeneration, recombination, and image-charge-induced Schottky barrier

lowering. After the non-dimensionalization of both charge transport models, we

introduce the concept of entropy methods. This theoretical framework allows us to

establish an entropy-dissipation inequality, a tool to study the well-posedness of the

equations and the asymptotic behavior of their solution.

Chapter 4 deals with the formulation of numerical schemes for the non-dimensionalized

models and their numerical analysis. We introduce the notion of admissible meshes

and develop implicit-in-time two-point flux finite volume schemes tailored to vacancy-

assisted charge transport in PSCs and TMDC memristors. For both discretizations, we

show an entropy-dissipation inequality within the discrete framework. This inequality

helps us to prove the existence of a discrete solution of the nonlinear discrete systems

with the help of a corollary of Brouwer’s fixed point theorem and the minimization of

a convex functional.

Chapter 5 complements our theoretical results with numerical experiments. We

perform the simulations with ChargeTransport.jl, an open source software tool

in the programming language Julia, designed explicitly for solving charge transport

problems in semiconductors via the Voronoi finite volume method. We validate the

finite volume schemes by examining properties, including relative entropy decay, large

time behavior, and spatial convergence rate. In addition, we discuss the influence of

volume exclusion effects on perovskite charge transport modeling. To achieve this, we

compare two different ionic current density descriptions, treating either the mobility or

the diffusion coefficient as density-dependent while the other quantity remains constant.

Finally, we focus on the phenomenon of hysteresis in TMDC-based memristive devices.

We analyze the hysteresis’ origin through simulations and compare the results with

experimental measurements found in literature.

Chapter 6 summarizes the findings of this thesis and suggests reasonable continuations

for future research.
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The main parts of the derivation in Chapter 2 are based on [DA4]. Other parts of

this chapter can be found in [DA2], [DA3], and [DA5]. In Chapter 3, the work is

partially from [DA2], [DA4], and [DA5]. Furthermore, the main results in Chapter 4

are published in [DA2], whereas minor parts are published in [DA4]. Lastly, Chapter 5

is based on [DA2, DA3, DA5]. Detailed information on which sections are published

in which reference will be given in the introduction of each chapter.
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2. Derivation of vacancy-assisted charge

transport equations

Defects in semiconductor crystals can significantly affect the performance and relia-

bility of electronic devices. Although impressive advancements have been made in

characterizing defects and their impact on electrical properties [101, 196], this charac-

terization highly depends on the specific semiconductor material. When dealing with

novel semiconductors, understanding the impact of vacancies on structural properties,

such as the electronic behavior, and, consequently, on the device performance needs

to be understood. As previously discussed, emerging materials like perovskites and

TMDCs are attractive for future electronic devices. However, accurately predicting and

controlling the behavior of devices based on these materials poses a major challenge

due to the additional vacancy migration. Therefore, a physically meaningful character-

ization of such crystal defects and their dynamics is crucial to advance semiconductor

technology.

To capture the charge carrier transport in semiconductor devices, semi-classical macro-

scopic drift-diffusion models are commonly used. This model class provides a com-

putationally efficient approach to describe the average motion of particles, focusing

on the overall electronic device behavior, where the interactions at the microscale

are not of primary interest. Arguably, this is the most convenient approach with

respect to the computational cost while still yielding an interpretable output of the

device physics. This output can be compared to experimental measurements, such

as I-V characteristics. For this reason, we will exclusively deal with macroscopic

semi-classical drift-diffusion models. We refer to [116, 128] for further information

on different types of models, such as kinetic models, like the Boltzmann equation, or

quantum models, such as density functional theory (DFT) models.

On the one hand, there is a well-established mathematical literature concerning drift-

diffusion models to describe charge transport in (in)organic semiconductors and similar

physical systems, where electrons and holes migrate through a device (see for instance

[89, 90, 163, 164, 174, 204]). Usually, these models are called semiconductor device

equations or van Roosbroeck system [71]. On the other hand, there is well-established

mathematical literature concerning drift-diffusion mathematical models to describe

the charge transport in electrolytes, batteries, and ion channels, where ionic particles
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migrate through a medium, e.g., [25, 62, 85, 133, 143], which are referred to as

(modified) Poisson-Nernst-Planck equations [180, 192, 193].

Indeed, literature addresses the migration of electrons, holes, and additional ionic

carriers in specific oxides. For example, studies are conducted on metal oxide cells

(e.g., [3, 160, 161]). Moreover, some investigations have centered around iron oxide

and its impact on nuclear waste canisters’ corrosion [12, 13, 31], as well as solid oxide

cells employing YSZ as the electrolyte material [170, 240]. Nevertheless, these models

are primarily tailored to specific applications and may not readily apply to other

crystalline semiconductors that support vacancy migration. Thus, this chapter aims to

develop suitable drift-diffusion equations describing vacancy-assisted charge transport

in novel semiconductor materials, such as perovskites and TMDCs.

We start in Section 2.1 with an introduction and review of the initial and the final

equations. In Section 2.2, we derive suitable electric current density descriptions.

Then, we formulate carrier concentration and current density descriptions for electrons

and holes (Section 2.3) and ionic defect carriers (Section 2.4). To complete the charge

transport equations for a crystalline semiconductor layer supporting vacancy migra-

tion, we state in Section 2.5 suitable volumetric space charge densities for concrete

ionic defect migration scenarios. This chapter ends with Section 2.6, where selected

thermodynamic properties are introduced, such as thermodynamic equilibrium and

thermodynamic free energy.

This chapter is based in large parts on [DA4]. Parts of the discussion of statistics

functions (Section 2.3) were published in [DA2], and parts of the discussion on the

limitation of vacancy accumulation and the resulting current density descriptions

(Section 2.4) in [DA3]. Minor parts of Section 2.4.1.2 are based on [DA5].

2.1. Starting point and review

This chapter aims to construct charge transport equations incorporating the influence

of vacancy dynamics by starting from a general system of nonlinear partial differential

equations. This system consists of the Poisson equation for the electrostatic potential

as well as the balance equations for the particle densities in an isothermal electrostatic

setting. The development of these vacancy-assisted charge transport equations lays

the foundation for Chapter 3, where we formulate drift-diffusion models tailored to

two real-world applications, providing the necessary initial and boundary conditions.

In the following, we focus solely on an intrinsic subdomain Ωintr, as highlighted in

Figure 2.1. This subdomain describes the spatial region of a crystalline semiconductor
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material within the device where vacancy-assisted migration phenomena occur. For

example, in the context of PSCs, we can think of the perovskite layer, while in the

context of TMDC memristive devices, Ωintr corresponds to the TMDC layer. The

domain Ωintr is a subset of the overall spatial domain Ω representing the entire device

geometry, i.e., the total solar cell (see Figure 1.1) or the total memristive device (see

Figure 1.2, left). In simpler terms, Ωintr ⊆ Ω, where Ωintr,Ω ⊂ Rd, d ∈ {1, 2, 3}.

To derive now suitable bulk equations for vacancy-assisted charge transport in Ωintr,

we further assume that Ωintr contains charged species α, labeled by a finite index set A.
The quantity nα(x, t) denotes the particle density associated with the species α ∈ A
at the location x ∈ Ωintr for a time t ≥ 0. Furthermore, the charge density carried by

the species α is given by zαqnα, where q denotes the positive elementary charge and

zα ∈ Z the charge number of the species α.

Figure 2.1.: An example illustration of a model device geometry Ω with indicated material

layer Ωintr supporting vacancy-assisted migration on which we focus in this chapter.

The Poisson equation describes the distribution of electric charge within the material

layer Ωintr by relating the electric potential ψ to the overall volumetric space charge

density given as the sum of charge densities

−∇ ·
(
εs∇ψ(x, t)

)
= q

(∑
α∈A

zαnα(x, t) + zCnC(x)
)
, x ∈ Ωintr, t ≥ 0. (2.1a)

Here, nC denotes the density of a fixed background charge uniform in time with charge

number zC ∈ Z. We define εs = ε0εr as the (absolute) dielectric permittivity given

as a product of the vacuum permittivity ε0 and the relative material permittivity

εr. Additionally, mass balance equations for the particle densities, which are self-

consistently coupled to the Poisson equation, are taken into account

∂tnα(x, t) +∇ · Jα(x, t) = rα(x, t), x ∈ Ωintr, t ≥ 0, for α ∈ A. (2.1b)

The particle fluxes are given by Jα and the density production/reduction rates of

species α are denoted by rα. As a matter of readability, we do not highlight the spatial

and temporal dependence of quantities in the following.
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In this chapter, we will systematically derive from (2.1) suitable equations describing

the charge transport in Ωintr. These equations will apply to all mobile carriers α ∈ M,

where M ⊂ A denotes the respective index set. For example, M may contain the

indices of electrons, holes, and vacancies. To provide greater clarity, we will outline

the principal findings of the following sections.

• Section 2.2 will show that the electric currents jα are defined as

jα = −z2αqµαnα∇φα, α ∈ M, (2.2)

with the negative gradient of quasi Fermi potentials φα being the driving force

of motion.

• In Section 2.3.1 and Section 2.4.2 we will find out that we can link the carrier

densities nα to the respective quasi Fermi potentials φα and the electric potential

ψ via the state equations

nα = NαFα

(
ηα(φα, ψ)

)
, ηα(φα, ψ) = zα

q(φα − ψ) + Eα
kBT

, α ∈ M, (2.3)

with Fα being the underlying statistics function.

• In Section 2.3.2 and Section 2.4.3, we will see that the moving carriers satisfy

a generalized Einstein relation which links the diffusion coefficient Dα and the

mobility µα

Dα = µαUTgα

(
nα
Nα

)
, gα

(
nα
Nα

)
=
nα
Nα

(
F−1
α

)′ ( nα
Nα

)
, α ∈ M. (2.4)

Here, gα denotes the nonlinear diffusion enhancement. This relation will eventu-

ally help to rewrite the electric currents jα into a drift-diffusion form.

• Lastly, for each concrete index set M, we must adapt the right-hand side of the

Poisson equation (2.1a), which will be done in Section 2.5.

We refer to ‘List of notations and physical constants’ on page xiii for additional

information on the SI (derived) units of each quantity.

2.2. Maxwell-Stefan diffusion and electrostatic drift

We start with adapting (2.1b) and deriving the electric current (2.2). First, we can

relate the motion of a species to the friction with another species with the help of
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2.2. Maxwell-Stefan diffusion and electrostatic drift

Maxwell-Stefan diffusion and electrostatic drift via

Fα =
∑
β∈A,
β ̸=α

ζαβ

(
Jα
nα

− Jβ
nβ

)
, α ∈ A, (2.5)

where Fα is the main driving force acting on mass transfer and motion of species

α ∈ A and ζαβ = ζβα is the symmetric binary friction coefficient between two species

α and β, see, e.g., [142, 165, 227, 246]. We call Jα/nα the velocities of species α.

Let us assume that one of the species within the semiconductor material layer Ωintr

represents the crystalline lattice with index α = L and charge number zL = 0. Moreover,

we assume that the friction is solely observed as an interaction between the lattice

and the other species,

ζαβ = 0 and ζαL ≥ 0 , α, β ∈ A \ {L}.

We describe the transport of a species α ∈ A\{L} from the viewpoint of the lattice. In

other words, we assume no movement and no production/reduction of lattice species,

i.e., JL = 0, rL = 0. This implies by (2.1b) that ∂tnL = 0. Furthermore, we assume

that the friction does not cause a deformation of the lattice. Moreover, due to zL = 0

the lattice species density does not contribute to the overall charge density (2.1a).

With this, we can simplify (2.5) and model the particle fluxes by

Jα =
1

ζαL
nαFα, α ∈ A \ {L}. (2.6)

Next, we discuss the choices of the friction coefficient ζαL and the driving force Fα,

entering the particle flux Jα. In analogy to classical semiconductor theory, we define

the following relation between the quasi Fermi potential φα, the chemical χα and the

electrostatic potential ψ (see e.g. [11, 15])

φα =
χα
zαq

+ ψ − Eα
q
, α ∈ A \ {L}, (2.7)

where we introduced a species-dependent intrinsic energy level Eα with ∇Eα = 0. We

assume that the force Fα depends on the negative gradient of the chemical potential

χα (per particle) as well as on the electrical field −∇ψ for α ∈ A \ {L}

Fα = −∇χα − zαq∇ψ = −∇ (χα + zαqψ − zαEα) = −zαq∇φα, (2.8)

where we inserted (2.7). In electrochemistry, zαqφα is frequently called electrochemical

potential [11, 15], and, in solid state physics, the quantity zαqφα is often called (total)
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chemical potential. Contrarily, χα is sometimes referred to as (internal) chemical

potential [136, 189]. In this thesis, we use the terminology quasi Fermi potential for φα
and electrochemical potential for zαqφα. Furthermore, we set the friction coefficient to

ζαL =
q

µα
, α ∈ A \ {L}, (2.9)

where µα describes the mobility of species α. Substituting now (2.8) and (2.9) into

(2.6) shows that the negative gradient of the electrochemical potential is the driving

force of the particle current density

Jα = −zαµαnα∇φα, α ∈ A \ {L}. (2.10)

Remark 2.1. (Friction coefficient in the literature) The friction coefficient can be

related to the inverse of the (Maxwell-Stefan) diffusion coefficient -DαL (see e.g. [142,

201, 246])

ζαL =
kBT

-DαL

, (2.11)

where kB is the Boltzmann constant and T the temperature. It is worth noting that

with the definition of the friction coefficient (2.9) and the relation (2.11) we recover

the classical Einstein relation -DαL = kBT
q
µα between diffusion coefficient and mobility

of a species α. In the following of this work, we use the notation Dα := -DαL and refer

to Dα as diffusion coefficient.

The electric current density (sometimes also referred to as electric flux ) jα observed

due to the transport of species α is related to the particle flux Jα by

jα = zαqJα, α ∈ A \ {L}. (2.12)

Using the description of the particle flux (2.10) yields

jα = −z2αqµαnα∇φα, α ∈ A \ {L}. (2.13)

Thus, we have successfully established the desired electric current density description

(2.2) for α ∈ M = A \ {L}. For such an electric flux the drift-diffusion equation now

finally reads

zαq∂tnα +∇ · jα = zαqrα , α ∈ A \ {L}, (2.14)

where we multiplied (2.1b) by zαq. We emphasize that the carrier density nα entering

(2.13) and (2.14) can be rewritten in terms of the quasi Fermi potential φα and

the electrostatic potential ψ as indicated in the state equation (2.3), which will be

addressed in the next two sections.
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2.3. Electron and hole concentration and current

density

Following [101, 216, 235], we relate the carrier density nα to the electrostatic potential

ψ and the respective quasi Fermi potential φα for electrons α = n and holes α = p as

species α ∈ A in accordance with the state equation (2.3). Additionally, we discuss

the implications of different choices for the statistics function Fα entering the state

equation, and we equivalently reformulate the current density (2.13) in drift-diffusion

form. The charge numbers for electrons and holes are zn = −1 and zp = 1, respectively.

2.3.1. Carrier concentration

The carrier densities of electrons and holes can be defined as a convolution integral of

the densities of (electronic) states DOSn, DOSp in the conduction and valence band

and the particle occupation probabilities of an orbital fn, fp over the energy space

nn =

∫ ∞

En

DOSn(E)fn

(
E − znq(φn − ψ)

kBT

)
dE, (2.15a)

np =

∫ Ep

−∞
DOSp(E)fp

(
E + zpq(φp − ψ)

kBT

)
dE. (2.15b)

We call En, Ep the intrinsic conduction and valence band-edge energies. For non-

interacting, identical fermions with half-integer spin (ideal Fermi gas model [58, 78,

136]), we can choose the Fermi-Dirac distribution

fn(x) =
1

exp(x) + 1
, fp(x) = 1− fn(x) =

1

exp(−x) + 1
, x ∈ R. (2.16)

This choice of occupation probability is fundamental in the modeling and simulation

of inorganic three-dimensional semiconductors [71, 216, 235]. The densities of states

DOSn, DOSp in (2.15) can be calculated explicitly for different dimensions and as-

sumptions on the electronic band structure. In case of a parabolic band approximation

[209], the three-dimensional densities of states read

DOSn(E) =
1

2π2

(
2m∗

n

ℏ2

)3/2

Θ(E − En)
√
E − En, (2.17a)

DOSp(E) =
1

2π2

(
2m∗

p

ℏ2

)3/2

Θ(Ep − E)
√
Ep − E, (2.17b)

with the effective masses m∗
n and m∗

p of electrons and holes, the reduced Planck

constant ℏ and the Heaviside step function Θ(x) = 1{x≥0}.
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Substituting (2.16) and (2.17) into (2.15) and setting ξ = E/(kBT ) shows

nn = NnF1/2(ηn), ηn = zn
q(φn − ψ) + En

kBT
, (2.18a)

np = NpF1/2(ηp), ηp = zp
q(φp − ψ) + Ep

kBT
, (2.18b)

where Nn, Np are the effective densities of states

Nn = 2 ·
(
m∗

nkBT

2πℏ2

)3/2

and Np = 2 ·
(
m∗

pkBT

2πℏ2

)3/2

. (2.19)

Since χα = zαq(φα − ψ) + zαEα = kBTηα, we call the argument of the statistics

function ηα dimensionless chemical potential. Moreover,

F1/2(η) =
2√
π

∫ ∞

0

ξ1/2

exp(ξ − η) + 1
dξ, η ∈ R, (2.20)

is the Fermi-Dirac integral of order 1/2. The function F1/2 behaves like η3/2 when the

dimensionless chemical potential η tends to +∞, namely, in the large density limit

(also called degenerate limit). In the low density limit (non-degenerate limit), when

the dimensionless chemical potential η tends to −∞, it behaves like

F (η) = exp(η), η ∈ R, (2.21)

which is called (Maxwell-)Boltzmann statistics. Choosing the Boltzmann distribution

fn(x) = 1/ exp(x), x ∈ R, in (2.15) instead of the Fermi-Dirac distribution (2.16),

yields (2.18) with the Boltzmann statistics (2.21). This is equivalent to the assumption

of a (classical) ideal gas model [189].

Another useful approximation of (2.20) for a certain region of parameters in the

non-degenerate limit is the Blakemore approximation [22, 71]

FB,γ(η) =
1

exp(−η) + γ
, η ∈ R, γ ∈ R, (2.22)

with γ = 0.27. Due to [DA4, Remark 1.7.1.] we point out that the Blakemore

approximation for γ = 1 coincides with the Fermi-Dirac integral of order −1, i.e.,

F−1 = FB,1. For this reason, we refer to

F−1(η) =
1

exp(−η) + 1
, η ∈ R, (2.23)

as Fermi-Dirac integral of order −1, which will play an important role. All the

functions stated are visualized in Figure 2.2 (left).

16



2.3. Electron and hole concentration and current density

Figure 2.2.: Semi-logarithmic plot of the introduced statistics functions Fα for −5 ≤ η ≤ 10

(left) and logarithmic plot of the diffusion enhancement gα for the statistics functions in

the left figure, where we used (2.27) (right). The carrier density (2.24) can be limited by

the Fermi-Dirac integral of order −1 which agrees with the Blakemore function (γ = 1).

In the following of this thesis, we generalize the state equations (2.18) to

nα = NαFα

(
ηα(φα, ψ)

)
, ηα(φα, ψ) = zα

q(φα − ψ) + Eα
kBT

, α = n, p, (2.24)

where Fn,Fp are now general statistics functions, which satisfy the hypothesisFn,Fp : R → (0,∞) are C1- diffeomorphisms;

0 < F ′
α(η) ≤ Fα(η) ≤ exp(η), η ∈ R, α ∈ {n, p},

(H1)

if not mentioned otherwise. With (2.24), we have successfully attained our objective

of establishing a generalized relation between the carrier density and the potentials

(2.3) for electrons and holes.

The positivity of the statistics functions due to (H1) reflects the positivity of the

densities nα. The Fermi-Dirac integral of order 1/2 in (2.20) and the Boltzmann

approximation (2.21) satisfy the hypothesis (H1). In case of im(FB,γ) = (0, γ−1),

the Blakemore approximation (2.22) also satisfies (H1). The proofs can be found in

Appendix A.1. In case of organic semiconductors, the state equation (2.24) also holds

true resulting in a statistics function Fα which is referred to as Gauss-Fermi integral

[186] and with different effective densities of states Nn, Np. For further information,

we refer to [72] and the references therein.

Remark 2.2. Since various definitions of band-edge energies can be found in literature,

we give an overview of how the different terminologies are related. We refer, for example,
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2. Derivation of vacancy-assisted charge transport equations

to [101, 216, 235] for additional information. In case of not necessarily well-defined

band structures (e.g., organic semiconductors) the lowest unoccupied (LUMO) ELUMO

and the highest occupied molecular orbital (HOMO) edge level EHOMO are used,

respectively, instead of the intrinsic conduction and valence band-edge energies [45, 82].

Some references also introduce the electron affinity ϕea and the ionization potential

ϕip, e.g., [82, 181, 249]. However, mathematically all these energies play identical

roles. Thus, we assume in this thesis En = ELUMO = −ϕea and Ep = EHOMO = −ϕip.

Lastly, sometimes the state equation (2.24) is formulated with respect to the band-edge

(energy) of electrons and holes which is defined as the sum of the intrinsic band-edge

energy Eα and the electric potential energy ϕ

Eα = Eα + ϕ, ϕ = −qψ, α ∈ {n, p}. (2.25)

2.3.2. Drift-diffusion current density

In the literature, carrier densities are usually used as primary unknowns. To see the

connection to the literature, we express the electric fluxes in gradient structure form

(2.13) mathematically equivalent in terms of densities. For this, we introduce the

nonlinear diffusion enhancement [167] for electrons and holes given by

gα(ηα) =
Fα(ηα)

Fα
′(ηα)

, η ∈ R, α ∈ {n, p}. (2.26)

For the choice of Boltzmann statistics (2.21), the diffusion enhancement reduces to

gα = 1 and in the case of Blakemore approximation (2.22), we have gα(η) = 1+γ exp(η).

Generally, due to (H1), it holds that gα ≥ 1. Thus, the diffusion enhancement can be

seen as a measure of how far a model is from the non-degenerate case [72]. We stress

that the diffusion enhancement gα in (2.26) can be equivalently formulated in terms of

densities as shown in (2.27). For different statistics functions Fα the expression for gα
in (2.27) is portrayed in Figure 2.2 (right). With the help of the diffusion enhancement

we can formulate now a generalized Einstein relation [101] (see the outline in (2.4))

Dα = µαUTgα

(
nα
Nα

)
, gα

(
nα
Nα

)
=
nα
Nα

(
F−1
α

)′( nα
Nα

)
, α ∈ {n, p}, (2.27)

which relates the carriers’ mobility introduced in (2.9) to the respective diffusion

coefficient Dα. Here, UT = kBT/q is the thermal voltage. Finally, it is now possible to

express the electric currents (2.13) in drift-diffusion form due to the relation (2.27)

and the state equation (2.24)

jα = −zαq
(
Dα

(
nα
Nα

)
∇nα + zαµαnα∇ψ

)
, α ∈ {n, p}. (2.28)
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2.4. Vacancy carrier concentration and current density

From (2.28), it becomes evident that the motion exhibits a drift-diffusion character.

The first term corresponds to diffusion, which arises due to variations in the carrier

density. Contrarily, the second term corresponds to the drift caused by the presence

of the electric field −∇ψ. For electrons and holes, mathematically, choosing the

Boltzmann approximation (2.21) as statistics functions yields linear diffusion. Statistics

functions deviating from the Boltzmann approximation lead to nonlinear diffusion

which grows for larger densities or dimensionless chemical potentials as can be seen

from (2.26) and (2.27) or visually in Figure 2.2 (right). This means, we can interpret

the generalized Einstein relation for electrons and holes (2.27) as a nonlinear, density-

dependent diffusion [72, 101].

2.4. Vacancy carrier concentration and current

density

As mentioned in the introduction, all materials contain structural defects that affect

their electronic properties [101, 196]. Particularly in the case of perovskite-based solar

cells (e.g., [29, 202, 213, 225]) and TMDC-based memristive devices (e.g., [150, 206])

the hysteretic behavior is linked to vacancy migration on the crystal lattice. We begin

by reviewing the literature on perovskites and transition metal dichalcogenides and

making some basic assumptions about defects occurring in their crystal structures.

This will allow us to derive a description for the ionic defect carrier concentrations from

a grand canonical formalism for ideal lattice gas, correctly reflecting the limitation of

vacancy accumulation. Finally, we can formulate suitable defect current densities.

In the following, P is the index set of all unit particles (atomic or ionic) for a

given crystalline semiconductor, whereas PV denotes the index set of respective

vacancies/defects.

2.4.1. Examples of crystal structures

2.4.1.1. Perovskites

Perovskites have the formula unit ABX3, where in the context of perovskite solar cells

A and B denote positively charged cations and X denotes a negatively charged anion.

Several choices for the anions and cations are possible [213]:

• the cation A is chosen to be an organic ion such as methylammonium (MA+) or

formamidinium (FA+),

• the other cation B is a metal, frequently B = Pb2+ (lead) or B = Sn2+ (tin),
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2. Derivation of vacancy-assisted charge transport equations

• the halide anion X is commonly chosen to be either I− (iodine), Br− (bromine),

or Cl− (chlorine).

The most commonly used combination is methylammonium (A = (CH3NH3)
+ =

MA+), lead (B = Pb2+), and iodine (X = I−), resulting into methylammonium lead

(tri-)iodide (MAPI). As perovskites have a highly ordered crystal structure, a variety

of A, B, and X site compositions are possible. In fact, mixing different ions for the

anion and cation sites seems to be the most promising method for developing efficient

solar cells based on perovskites [5, 213].

Not all perovskite structures exhibit the same degree of ionic movement. However, ion

migration is most likely caused by Schottky defects [65, 244], which can be described

by the Kröger-Vink notation, namely,

nil︸︷︷︸
ideal unit cell

V ’
A + V ”

B + 3VX︸ ︷︷ ︸
vacancies

+ ABX3.︸ ︷︷ ︸
perturbed/realistic

unit cell︸ ︷︷ ︸
Schottky defect

(2.29)

Here, nil denotes the ideal perovskite crystalline unit cell. However, in reality, the ions

dislocate from their ideal positions, forming vacancies Vα in the ideal lattice, where

α ∈ P = {A,B,X}. The superscript ′ denotes a negative charge and the superscript

denotes a positive charge. We make some assumptions for these dynamically appearing

and reappearing crystal defects which leave void spaces within the crystal:

1. Each Schottky defect creates oppositely charged vacancies V ’
A, V

”
B and 3VX.

2. Each vacancy Vα can be only occupied by an ionic species α ∈ P = {A,B,X}.

Changes in the crystalline structure affect the electronic properties of the underlying

device. Figure 2.3 visualizes the crystal configuration for an ideal unit cell and in the

case of present vacancies. The quantity βα in Figure 2.3 denotes an ideal lattice weight.

The parameter βα can be determined by counting the number of α-sites in each ideal

unit cell, respecting shared faces and edges with neighboring unit cells. Generally, we

assume βVα = βα.

There are a number of modeling approaches [28, 77, 182, 200], where mobile A and X

ions are taken into account. In [65], it was reported that the hopping of X = I– appears

to have the lowest energy barrier for ABX3 = (CH3NH3)
+Pb2+I –

3 . Therefore, it is

reasonable to assume that both cations A and B are immobile on short timescales [49].

Additionally, simulations on MAPI indicate that assuming either only mobile anions

or mobile anions and mobile cations produces the same results [182]. Hence, in some

applications, it is convenient to consider a charge transport model, in which only the
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2.4. Vacancy carrier concentration and current density

anion species X is considered to be mobile. This is done, e.g., in [29, 48]. Furthermore,

there is a discrepancy in the literature on whether to formulate the equations for

mobile ions (e.g., [28, 77, 182, 200]) or mobile ion vacancies (e.g., [44, 48]). Both ways

are equivalent. Nonetheless, Section 2.4.2 will demonstrate why it is more appropriate

to formulate the charge transport based on vacancy-assisted migration.

Figure 2.3.: A cubic perovskite unit cell under idealized conditions (left) and with realistic

crystal defects (right) with the corresponding charge numbers zα and the ideal dimension-

less lattice weights βα, for α ∈ P. The lattice constant a is also shown. (From [DA3] with

modifications.)

2.4.1.2. Transition metal dichalcogenides

Transition metal dichalcogenides represent a promising class of layered materials.

Usually, in the context of memristive devices, they have thicknesses of only a few

nanometers. In such devices, the length and width are typically on the order of a

few micrometers and, thus, much larger than the thickness, see e.g., [39, 41, 112,

121, 134, 152]. Therefore, these atomic-layered crystal structures are often referred

to as two-dimensional materials. The formula unit is AX2 given by an A-atom layer

sandwiched between two X-atom layers, where the following choices are possible [109]:

• A is a transition metal atom such as molybdenum (Mo) or tungsten (W),

• X belongs to the family of chalcogen atoms such as sulfur (S) or selenium (Se).

Molybdenum disulfide (AX2 = MoS2) along with its electronic properties is among

the most extensively researched TMDC materials [260]. Figure 2.4 illustrates different

idealized schematics of a two-hexagonal (2H) MoS2 monolayers. For TMDCs, the

lattice weights βα depend on the number of monolayers within one unit cell and the

type of crystal structure. In case of 2H MoS2, as depicted in Figure 2.4, we have

βA = 2 and βX = 4.
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2. Derivation of vacancy-assisted charge transport equations

Figure 2.4.: Different idealized representations of two MoS2 monolayers arranged in a hexag-

onal lattice structure [120, 215]. The figure includes a three-dimensional representation of

the two monolayers (left), a schematic of the hexagonal lattice structure with indicated

trigonal prismatic covalent bond (middle), and a view of a single unit cell (right). The

lattice constants a and c are likewise indicated.

Experimental work suggests that sulfur vacancies in MoS2 can migrate [177, 206, 258].

Specifically, studies have shown a correlation between the drift of charged sulfur point

defects and the observed hysteresis in the current-voltage characteristics [150, 206]. In

contrast to perovskites, the mechanisms that lead to the formation of defects within

TMDC crystals and their stable charge states are not fully understood yet. However,

it is expected that when present in high concentrations, such defects VX will act as

n-type dopants [212, 219, 253], i.e., zVX
∈ N. As before, we formulate the following

general assumptions on defects in TMDC for the unit particle index set P = {A,X}:

1. Each defect Vα has a charge number zVα ∈ Z, where α ∈ P = {A,X}.

2. Each defect Vα can be only occupied by a unit particle α ∈ P.

2.4.2. Limiting vacancy accumulation

In order to understand now why and under which assumptions the physical meaningful

statistical relationship (2.3) holds for vacancies, we need to discuss how to limit vacancy

accumulation. Accumulating too many vacancies is physically unrealistic as it can

destroy the crystal structure and lead to unrealistically high vacancy concentrations.

In the fields of electrolytes and battery modeling (e.g., [15, 23, 85, 144, 230]) or cell

and molecular biology (e.g., [25, 26, 108, 187, 248]), the need to limit ionic (defect)

concentrations is already well known. Depending on the literature this phenomenon is

either called volume exclusion effects, excluded-volume effects, steric effects, volume
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2.4. Vacancy carrier concentration and current density

filling or limitation of overcrowding. Within our framework this means that the

finite number of available lattice sites within a crystalline semiconductor needs to be

incorporated into the charge transport model. This can be achieved by either limiting

the vacancy accumulation of Vα or the depletion of a unit particle α ∈ P. To be

more precise, assuming imperfections in the unit cell, we can relate the (realistic) unit

particle density nα and the corresponding (ionic) vacancy density nVα via

nα = nα − nVα , α ∈ P, (2.30)

where nα is the ideal unit particle density which can be linked to the ideal lattice

density nL

βαnL = nα, α ∈ P, (2.31)

with the lattice weights βα discussed in Section 2.4.1. The relationship (2.31) becomes

apparent, when considering that

nL =
#(unit cells)

volume of material
=

1

volume of unit cell
,

since the ideal lattice density nL is constant and, thus, nα = const. This means,

the equality (2.30) reveals the equivalence between either limiting the unit particle

depletion or limiting the vacancy accumulation in a unit cell. We focus on the latter

and model thermodynamically consistently the limitation of vacancy accumulation.

We note that, if the vacancy concentration becomes zero, i.e., nVα = 0 m−3, then

(2.30) yields nα = nα for α ∈ P and all vacancies in a unit cell are occupied. Hence, in

the following, we exclusively discuss the more interesting case, the presence of defects

in the crystal structure, i.e., nVα > 0 m−3.

We assume the existence of a non-zero and uniform average vacancy concentration CVα

and a temperature-dependent, upper saturation density for the vacancy concentration

denoted with NVα = NVα(T ). The latter indicates that we cannot arbitrarily create

new vacancies. We have 0 m−3 < nVα < NVα . For the saturation density NVα we have

the following bounds:

1. As a lower bound for the saturation density, we have CVα ≤ NVα . In the case of

equality, vacancy movement is suppressed.

2. As an upper bound, we have NVα ≤ βαnL = nα which means that the ideal unit

particle density bounds the saturation limit.

As an example, in case of MAPI as perovskite material, we have an average vacancy

concentration CVα in the range of 1.0× 1023 − 1.6× 1025 m−3, see [202]. Furthermore,

23



2. Derivation of vacancy-assisted charge transport equations

DFT calculations [65] provide the lattice constant of 6.28 Å= 6.28×10−10 m, leading to

an ideal halide density of nX = 1.21×1028 m−3. As a result, approximately one vacancy

can be found in every 1.0× 103 to 1.0× 105 unit cell. Figure 2.5 visualizes the vacancy

density nVα for different choices of the saturation limit NVα , including the two special

cases of suppressing vacancy movement (left) or choosing the saturation limit equal

to the ideal unit particle density (right). Experimentally observed accumulation of

vacancies may be reproduced for a saturation limit NVα between these two saturation

limit bounds. Hence, we can identify NVα as a model parameter limiting the vacancy

accumulation.

Figure 2.5.: Three possible vacancy density configurations depending on the choice of the

saturation limit NVα . The left and right figures visualize the case, where NVα agrees

with its lower or upper bound, respectively. The value of the maximum vacancy density

NVα can be chosen to ensure that, e.g., experimentally observed accumulation is correctly

limited (middle). (From [DA3] with modifications.)

Not limiting the vacancy density can lead to non-physical behavior, such as all ion

sites becoming vacant. Especially in out-of-equilibrium calculations, a model needs to

indicate a limit for saturation to reflect experimental observations of ionic accumulation

near the interface. Indeed, in the context of solid oxide cells with YSZ as electrolyte

material, a similar model was formulated for mobile ionic carriers, where a saturation

limit NVα < nα was successfully fitted to measurements [170]. In the numerical

simulations in Chapter 5, we will analyze how varying NVα influences the behavior of

charge transport within perovskite solar cells.

In the following, we will include volume exclusion effects in a thermodynamically

consistent manner while accounting for the limitation of vacancy accumulation. These

features shall be reflected by a suitable statistical relationship between the vacancy

density nVα and the quasi Fermi and electric potential φVα , ψ, respectively, for a unit

particle α ∈ P. The derived state equation for vacancies will mirror the one previously

established for electrons and holes in (2.24), and its derivation is based on a grand

canonical formalism.
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2.4. Vacancy carrier concentration and current density

Grand canonical formalism for ideal lattice gas. We use the grand canonical

ensemble to analyze the behavior of interacting particle systems [6]. In the following,

we let α ∈ PV, i.e., the index α refers to the vacancies and, e.g., nα to the vacancy

density. Our specific ensemble, called Ξ, includes the electrochemical potential zαqφα,

a volume of the semiconductor material Ωvol ⊂ Ωintr and a temperature T , i.e.,

Ξ = (zαqφα,Ωvol, T ). We assume that nα|Ωvol| vacancies exist in Ωvol. For the sake

of simplicity, we further assume no interaction with any of the other species vacancy

β ∈ PV \ {α}. The upper bound for the number of the vacancies in the volume Ωvol is

Nα|Ωvol|. Generally, the grand (canonical) partition function [14, 189, 232] is given as

a sum over all microstates of the ensemble

Z(Ξ,Eα) =

(Nα|Ωvol|)∑
(nα|Ωvol|)=0

Z(nα, Nα, T,Eα) exp

(
nα|Ωvol|

zαqφα
kBT

)
, α ∈ PV, (2.32)

where the function Z corresponds to the (canonical) partition function which is

dependent on the number of vacancies and an energy level Eα. To derive a suitable

expression for the partition function Z, we make use of an ideal lattice gas (or mean

field lattice gas) model for the description of the occupying behavior of particles on a

fixed number of sites on a lattice [14, 83]. There exist

W (nα, Nα) =
(Nα|Ωvol|)!

(nα|Ωvol|)!(Nα|Ωvol| − nα|Ωvol|)!
, α ∈ PV,

distinguishable configurations of the vacancies in the volume Ωvol since the species and

the species vacancies are indistinguishable. We note that the defect configurations are

distinguishable, but we assume that their location on the lattice is fixed. Otherwise,

we may distribute the vacancies among all possible βαnL|Ωvol| sites. Additionally,

every vacancy brings an energy of Eα = zαqψ − zαEα to its microstate, where the first

term corresponds to the electrostatic potential energy and Eα to an intrinsic defect

energy level. With this, the partition function Z entering (2.32) reads

Z(nα, Nα, T,Eα) = W (nα, Nα) exp

(
−nα|Ωvol|

zαqψ − zαEα
kBT

)
, α ∈ PV,

and we can reformulate the grand partition function Z in (2.32) due to the binomial

formula to

Z(Ξ,Eα) =

[
1 + exp

(
zαqφα − zαqψ + zαEα

kBT

)]Nα|Ωvol|

, α ∈ PV.

Furthermore, the following relation holds between the so-called grand potential U and

the grand partition function Z (see [232])

U = −kBT logZ = −kBTNα|Ωvol| log
[
1 + exp

(
zα
q(φα − ψ) + Eα

kBT

)]
, α ∈ PV.
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2. Derivation of vacancy-assisted charge transport equations

The partial derivative of the negative grand potential U with respect to the vacancy

electrochemical potential zαqφα equals the number of the vacancies nα|Ωvol| in the

volume (see [232])

nα|Ωvol| = − ∂

∂(zαqφα)
U = Nα|Ωvol|

exp
(
zα

q(φα−ψ)+Eα

kBT

)
1 + exp

(
zα

q(φα−ψ)+Eα

kBT

) , α ∈ PV. (2.33)

Thus, in analogy to the state of equation for electrons and holes (2.24) we can formulate

nα = NαF−1

(
ηα(φα, ψ)

)
, ηα(φα, ψ) = zα

q(φα − ψ) + Eα
kBT

, α ∈ PV, (2.34)

where F−1 is the Fermi-Dirac integral of order −1 in (2.23). With (2.34), we have

established a statistical relation for ionic charge carriers. From Figure 2.2 (right), one

can clearly see that the vacancy density can never become larger than Nα, meaning

that this choice of statistics function reflects correctly the limitation of defect density

by a saturation limit Nα. In some prior works, such as [23], the relation (2.34) was

derived for electrolyte solutions from a phenomenological free energy framework. This

derivation was based on the assumption that a vacancy site Vα, initially associated

with a unit particle α, can be occupied by a different unit particle β. In our current

derivation, we do not consider such a scenario. By employing the grand canonical

formalism for an ideal Fermi gas, we can similarly derive the descriptions of the

electron and hole concentrations in (2.18), see, e.g., [131].

As before, we formulate a generalized (mathematical) hypothesis which needs to be

satisfied by the statistics function of vacanciesFα : R → (0, 1) is a C1- diffeomorphism;

0 < F ′
α(η) ≤ Fα(η) ≤ exp(η), η ∈ R,

for α ∈ PV, (H2)

if not mentioned otherwise. Contrarily to the hypothesis on the electron and hole

statistics functions (H1), the image of the vacancy statistics is bounded. The bound-

edness of the image of Fα reflects the boundedness of the vacancy density, which can

be likewise observed in Figure 2.2 (left). We refer to Appendix A.1 for the proof that

the Fermi-Dirac integral of order −1 indeed satisfies (H2).

2.4.3. Drift-diffusion current density

Similarly to electrons and holes, we can introduce the nonlinear diffusion enhancement

gα for vacancy carriers which is sometimes called activity coefficient [15]. In the specific

26



2.4. Vacancy carrier concentration and current density

case of the Fermi-Dirac integral of order −1 as statistics function we have

gα

(
nα
Nα

)
=
nα
Nα

(
F−1
α

)′( nα
Nα

)
=

1

1− nα

Nα

, α ∈ PV. (2.35)

The generalized Einstein relation between the diffusion coefficient and the mobility of

vacancies for diffusion processes on a lattice [15] also holds

Dα = µαUTgα

(
nα
Nα

)
, α ∈ PV. (2.36)

While it is a common practice for electrons and holes that the nonlinearity of the

diffusion enhancement is directly incorporated into the diffusion coefficient of the

current density, see, e.g., [46, 71, 223], the situation appears to be more inconclusive

in the literature concerning ionic vacancy carriers, see, e.g., [25, 31, 85, 240]. Whether

we assume now a constant mobility or a constant diffusion coefficient results into

two different drift-diffusion current densities, when reformulating the gradient form

description of the current density jα = −z2αqµαnα∇φα in (2.13). We call these two

resulting descriptions nonlinear diffusion and modified drift current density.

Nonlinear diffusion. On the one hand, to be consistent with the electron and hole

current density expressions we can assume a constant mobility µα = µα in (2.13),

apply the generalized Einstein relation (2.36), and make use of the state equation

(2.34) with a general statistics function satisfying (H2). We receive a current density

with nonlinear diffusion [DA4, 28]

jα,ND = −zαqµαUT
(
gα

(
nα
Nα

)
∇nα +

zα
UT

nα∇ψ
)
, α ∈ PV. (2.37)

Modified drift. On the other hand, a constant diffusion coefficient Dα = Dα allows

us to express the mobility in terms of the diffusion enhancement gα. Reformulating

(2.13) similarly as before leads to a current density with linear diffusion but with a

modified drift term [15, 44, 51]

jα,MD = −zαqDα

∇nα +
zα

UTgα

(
nα

Nα

)nα∇ψ
 , α ∈ PV. (2.38)

It is worth noting that both current densities, (2.37) and (2.38), lead to two different

charge transport models. Assuming that the constant prefactors in both current

density descriptions are proportional, i.e., µαUT ∼ Dα, leads to

jα,ND ∼ gα

(
nα
Nα

)
jα,MD, α ∈ PV. (2.39)
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Hence, if µαUT ∼ Dα, then the main difference between the nonlinear diffusion

and the modified drift current density is the additional diffusion enhancement as

prefactor. In this thesis, we assume a constant mobility, implying that we implicitly

employ the nonlinear diffusion description (2.37) for the vacancy current density. This

choice may not be immediately apparent when considering the quasi Fermi potential

description of the fluxes (2.13). In Chapter 4, we will prove the existence of discrete

solutions for an appropriate discretization of the nonlinear diffusion current density.

Additionally, in Section 5.2, we thoroughly investigate the impact of both current

density descriptions on the electric potential, the vacancy carrier density and the

current-voltage characteristics of a PSC configuration.

Remark 2.3. (Special cases of vacancy current densities) We note that the current

densities introduced in (2.37) and (2.38) align when the Boltzmann statistics is applied.

Furthermore, under suitable conditions, they recover Fick’s law of diffusion.

1. Boltzmann statistics. We assume Fα = exp for α ∈ PV. Then, the diffusion

enhancement reduces to gα = 1. Both current densities in (2.37) and (2.38)

coincide:

jα = −zαq
(
Dα∇nα + zαµαnα∇ψ

)
, α ∈ PV.

The model assumption Fα = exp is, for example, used in [29, 48, 77, 182, 200, 229].

However, as discussed in the current section, this assumption is non-physical.

2. Fick’s law of diffusion. Again, we assume a statistical Boltzmann relation in

(2.3). Furthermore, the driving force acting on motion in (2.8) shall be solely

given by the negative gradient of the chemical potential, which is Fα = −∇χα =

−kBT∇ηα = −kBT∇ log nα

Nα
= −kBT

nα
∇nα With (2.6) and (2.9) we receive a

particle flux of the form

Jα = −µα
kBT

q
∇nα = −Dα∇nα, α ∈ PV,

where we used the Einstein relation (2.4) with gα = 1. We immediately see that

we recover Fick’s first law of diffusion [79, 142].

2.5. Volumetric space charge density

Up to this point, we discussed the electric current density descriptions, the state

equations, and the generalized Einstein relation applicable to electrons, holes, and

vacancies. Lastly, we must adapt the right-hand side of the general Poisson equation
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(2.1a) to suit concrete cases of present carriers. For this, the index set of all species

A shall be given by A = PV ∪ {n, p} ∪ {L}, where we recall that α = L denotes the

crystalline lattice with zL = 0. Additionally, α = C in (2.1a) denotes the index of

stationary charges. For example, in case of singly ionized acceptor atoms with a density

Cp, we have zCnC = −Cp. Analogously, we have for an effective donor background

charge zCnC = Cn, where Cn is the density of singly ionized donor atoms.

In the following, we discuss three concrete choices of the index set of moving carriers

M, initially introduced in Section 2.1.

Case 1. We do not allow any vacancy migration. In this case, we have as index set of

moving carriers M = {n, p}, and we recover the classical Poisson equation [204]

−∇ · (εs∇ψ) = q
(
znnn + zpnp + zCnC

)
. (2.40)

Case 2. All vacancies α ∈ PV are able to move, i.e., M = {n, p} ∪ PV and

−∇ · (εs∇ψ) = q
(
znnn + zpnp +

∑
α∈PV

zαnα + zCnC

)
. (2.41)

Case 3. We have only one migrating vacancy α = VX, where for the sake of

readability we define a := VX. For example, in Section 2.4.1 we introduced two

materials, perovskites and TMDCs, where it is reasonable to assume the migration of

only the halide or the chalcogen vacancies, respectively. Hence, the moving carriers

are given by M = {n, p, a}. In that case, we can formulate the underlying Poisson

equation

−∇ · (εs∇ψ) = q
(
znnn + zpnp + zana + C

)
, (2.42)

where C is the sum of the background charge density and the uniform immobile

vacancy densities

C :=
∑

α∈PV\{a}

zαnα + zCnC. (2.43)

Before ending this chapter and applying the gained knowledge to two real device ap-

plications, we briefly discuss selected thermodynamic properties that hold significance

within the context of this thesis.

2.6. Selected thermodynamic properties

Generally, (non-equilibrium) thermodynamics studies the relationship between energy

and matter and how they interact and transform in physical systems. For example,
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2. Derivation of vacancy-assisted charge transport equations

the negative gradients of quasi Fermi potentials are the driving forces of motion. Due

to that, the quasi Fermi potentials have a natural appearance in the thermodynamic

description of a drift-diffusion model [9, 71]. Also, consistency with fundamental laws of

non-equilibrium thermodynamics is needed when extending the charge transport model

such that optical and thermal effects are considered [9, 131]. Without going into further

details of thermodynamics, we present two thermodynamically meaningful concepts in

this section: thermodynamic equilibrium and free energy. While discretization schemes

preserving thermodynamic equilibrium on a discrete level properly avoid non-physical

state dissipation [18, 71, 73, 140], the free energy is not only a well-known tool in

physics and chemistry but also mathematics to analyze PDE systems and underlying

discretization schemes [36, 129].

For the sake of readability, M = {n, p, a} gives the index set of moving charge carriers

denoting electrons, holes and vacancies, i.e., we are in the Case 3 of Section 2.5.

2.6.1. Thermodynamic equilibrium and local electroneutrality

Thermodynamic equilibrium describes a physical state, where vanishing currents imply

constant quasi Fermi potentials, i.e.,

jα = 0 implying φα,0 := φα = const., for all α ∈ M. (2.44)

Without any loss of generality, we assume that both φn,0 and φp,0 equal the same value

φ0. This indicates that there is only one Fermi level in thermodynamic equilibrium,

and the electron and hole quasi Fermi potentials have the same value in this case.

The gradient structure of the current densities (2.2) guarantees that thermodynamic

equilibrium is satisfied. Assuming additionally to thermodynamic equilibrium a

vanishing left-hand side of the Poisson equation (2.42), we can compute a locally

electroneutral solution ψ0. In case of present vacancies, we have

0 = znnn

(
ηn(ψ0, φ0)

)
+ zpnp

(
ηp(ψ0, φ0)

)
+ zana

(
ηa(ψ0, φa,0)

)
+ C. (2.45)

Usually, this equation cannot be solved directly. However, suppose we assume linear

diffusion of the electron and hole current density, i.e., modeling the charge carrier

statistics Fn, Fp with a Boltzmann approximation (2.21), and assume that no vacancies

are present. In that case, we can solve (2.45) analytically, yielding

ψ0 = φ0 +
En + Ep

2q
− 1

2
UT log

Nn

Np

+ UTarcsinh

(
C

2Nintr

)
, (2.46)

where the intrinsic carrier density Nintr is defined by

N2
intr = NnNp exp

(
−En − Ep

kBT

)
. (2.47)
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2.6. Selected thermodynamic properties

The solution ψ0 of the equation (2.45) will be precisely the function we evaluate at

the boundaries in (3.7), when modeling ohmic contacts.

2.6.2. Thermodynamic free energy

The sum of different energy contributions gives the thermodynamic free energy in

Ωintr. Following [1, 157], on the one hand, the contribution of electrons and holes can

be derived from an ideal Fermi gas. On the other hand, the electrostatic field energy

gives the electric potential contribution to the total energy. Lastly, assuming an ideal

lattice gas as in Section 2.4.2, we can also derive a consistent energy contribution of

vacancies, which extends the electric free energy formulation in [157]. In total, the

free energy functional reads

Ef (t) =
1

2

∫
Ωintr

εs|∇ψ|2 dx +
∑

α∈{n,p}

∫
Ωintr

[
kBTNαΦα

(
nα
Nα

)
− zαEαnα

]
dx

+

∫
Ωintr

[
kBTNaΦa

(
na

Na

)
− zaEana

]
dx,

(2.48)

where Φα is an antiderivative of F−1
α for α ∈ M. Following [1], we neglected the external

interaction effects of the electric potential. Thus, for non-degenerate semiconductors,

i.e., for Fn = Fp = exp and Fa chosen as Fermi-Dirac integral of order −1, the free

energy simplifies to

Ef (t) =
1

2

∫
Ωintr

εs|∇ψ|2 dx +
∑

α∈{n,p}

∫
Ωintr

[
kBTnα

(
log

(
nα
Nα

)
− 1

)
− zαEαnα

]
dx

+

∫
Ωintr

[
kBT

(
na log

(
na

Na

)
+ (Na − na) log

(
1− na

Na

))
− zaEana

]
dx,

(2.49)

where Φn(x) = Φp = x log(x)−x and Φa(x) = x log(x)+(1−x) log(1−x). A variation

of the energy functional (2.48) will help us in Chapter 4 to prove the existence of a

discrete solution for an implicit-in-time finite volume scheme.
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3. Charge transport models for two real

device applications

In Chapter 2, we derived vacancy-assisted charge transport equations in a crystalline

semiconductor layer Ωintr. Next, we apply these equations to two practical device

applications and formulate well-defined initial boundary value problems. Section 3.1

introduces a drift-diffusion model that describes the charge transport in perovskite solar

cells, including photogeneration and recombination. Section 3.2 presents a consistent

charge transport model for TMDC-based memristive devices and a comprehensive

description of an image-charge-induced Schottky barrier lowering boundary model.

After non-dimensionalizing both models in Section 3.1.4 and Section 3.2.3, we discuss

entropy methods in Section 3.3, a mathematical tool to analyze PDE systems. We

conclude this chapter by proving a continuous entropy-dissipation inequality.

Within the intrinsic domain Ωintr, we assume the transport of three carriers: Electrons

(α = n), holes (α = p), and vacancies (α = a). In case of perovskites, we can think

of the carrier α = a as the halide anion vacancies and, in case of TMDCs, as the

chalcogen defects. We have the standard charge numbers zn = −1, zp = 1 for electrons

and holes. For the ionic defect carriers, we allow za ∈ Z for the mathematical modeling,

noting that we discussed previously that in perovskites (Section 2.4.1.1) and TMDCs

(Section 2.4.1.2), negative charge numbers may have limited physical relevance.

The set of unknowns is given by (φn, φp, φa, ψ), i.e., we consider the quasi Fermi

potentials instead of the carrier densities nα as unknowns. Using quasi Fermi potentials

instead of densities as unknowns has several practical advantages: First, they are

on the same order of magnitude as the electrostatic potential and do not vary over

more than twenty orders of magnitude as densities may do, simplifying numerical

computations. Second, unlike densities, quasi Fermi potentials are usually assumed to

be continuous across heterojunctions, meaning no additional discontinuity-preserving

internal boundary conditions are needed. Third, current densities proportional to

gradients of potentials are easier to interpret physically and mathematically, e.g., as

gradient flows [61, 95, 169].

Parts of Section 3.1 are based on [DA2, DA4]. Furthermore, parts of Section 3.2 can

be found in [DA5], whereas Section 3.3 was partially published in [DA2].
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3. Charge transport models for two real device applications

3.1. Perovskite solar cells

Already in the 80ies, the diffusion of ionic halide vacancies in perovskites was studied

[171]. However, only in 2014 did ion migration in perovskite devices become of practical

interest when experiments suggested that the mobility of ionic defects is one possible

reason for current-voltage hysteresis in perovskite solar cells [225]. Since then, few

materials within photovoltaics have gained such interest as perovskites in the last

years [135, 188, 237]. These materials show promise for use in applications, including

lasers, memristors, LEDs, and solar cells. Notably, perovskite-silicon tandem cells have

recently surpassed the efficiency of high-performing single junction silicon solar cells

[16, 40, 162, 178], achieving world record efficiencies exceeding 30 % where further

efficiency gains are likely. Even though specific architectures have significantly lower

production costs than conventional solar cells, a couple of challenges must be overcome

for the mass production of PSCs, especially the fast device degradation. For this

reason, it is paramount to understand the charge transport in perovskites better via

improved modeling and simulation.

A substantial difference between drift-diffusion charge transport models for (in)organic

semiconductors and those for perovskites lies in the fundamental role played by ion

migration within the perovskite material. In PSCs, the various charge carrier species

live in different parts of the domain, evolve on different timescales, and obey different

diffusion laws. Moreover, we need to consider the photogeneration rate due to sun

illumination. These differences and new features compared to classical semiconductors

require additional mathematical and numerical modeling and comprehensive analysis of

these devices, which include all relevant physical effects, to predict the behavior of such

complex physical devices. Initial drift-diffusion models incorporating ionic movement

such as [29, 50, 77, 182, 217, 237] did not impose constraints on the vacancy density,

meaning the presented models did not bound the number of available lattice sites

within a perovskite crystal. Later, models were introduced to address this limitation

[DA4, 28, 44, 51]. Note that other ways exist to model the charge transport in PSCs.

For example, we can find approaches based on atomistic density functional theory [65,

236] and equivalent circuit models [175, 224]. However, a comprehensive discussion of

such models goes beyond the scope of this thesis.

3.1.1. Bulk equations

In a perovskite solar cell, the perovskite layer Ωintr is sandwiched between a doped

electron transport layer (ETL) and a doped hole transport layer (HTL), denoted by

ΩETL and ΩHTL, respectively. TiO2, PCBM, and ZnO are typically chosen as ETL
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3.1. Perovskite solar cells

materials, whereas spiro-OMeTAD, PTAA, and PEDOT:PSS are common materials

for the hole transport layer [213]. More precisely, the device geometry Ω ⊂ Rd,

d ∈ {1, 2, 3}, is separated into three pairwise disjoint, polygonal (or polyhedral),

open subdomains such that Ω = ∪kΩk, k ∈ {ETL, intr,HTL}. We assume that Ω

is an open, connected, and bounded spatial domain, and we denote the interface

between the transport layers and the perovskite layer by ΣETL = ∂ΩETL ∩ ∂Ωintr

and ΣHTL = ∂ΩHTL ∩ ∂Ωintr. The electron and hole transport layer boundaries do

not intersect, i.e., ∂ΩETL ∩ ∂ΩHTL = ∅. We refer to Figure 3.1 for a possible visual

representation of the device geometry.

Figure 3.1.: A two-dimensional three-layer perovskite solar cell device geometry with the

relevant potentials stated per subdomain and a visualization of the notation used for the

definition of the interfacial conditions in Section 3.1.3.2. (From [DA2] with modifications.)

Unlike quasi Fermi potentials for electrons and holes φn, φp and the electric potential

ψ, which are defined on all of Ω, the quasi Fermi potential of halide vacancies φa is

defined only in the intrinsic domain Ωintr. The continuity equations are given by

znq∂tnn +∇ · jn = znq
(
G(x)−R(nn, np)

)
, x ∈ Ω, t ≥ 0, (3.1a)

zpq∂tnp +∇ · jp = zpq
(
G(x)−R(nn, np)

)
, x ∈ Ω, t ≥ 0, (3.1b)

zaq∂tna +∇ · ja = 0, x ∈ Ωintr, t ≥ 0, (3.1c)

which are self-consistently coupled to the nonlinear and region-wise defined Poisson

equation for t ≥ 0

−∇ · (εs∇ψ) =

q
(
znnn + zpnp + C(x)

)
, x ∈ ΩHTL ∪ΩETL,

q
(
znnn + zpnp + zana + C(x)

)
, x ∈ Ωintr.

(3.1d)

Moreover, the electric current densities of electrons, holes, and vacancies are defined

as before (see (2.2))

jα = −z2αqµαnα∇φα, x ∈ Ω, t ≥ 0, for α ∈ {n, p, a}. (3.1e)
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3. Charge transport models for two real device applications

Concerning the right-hand side of the continuity equations (3.1a), (3.1b) and the

Poisson equation (3.1d) we assume that the doping profile C is bounded, i.e., C ∈
L∞(Ω) and that the photogeneration rate satisfies 0 ≤ G ∈ L∞(Ω). In other words,

the carrier-dependent doping profile and the photogeneration rate are constant in time

and bounded in space. In practice, the doping C is equal to a singly ionized donor

density Cn ≥ 0 in the ETL and a singly ionized acceptor density Cp ≥ 0 in the HTL,

i.e., C(x) = Cn(x) for x ∈ ΩETL and C(x) = −Cp(x) for x ∈ ΩHTL. The doping C

in the intrinsic region Ωintr corresponds to the uniform density of cation vacancies in

accordance with (2.43). For global charge neutrality, C is set to the negative average

anion vacancy density −Ca in the intrinsic region, multiplied by the respective charge

number, i.e., C = −zaCa, see [29, 50].

3.1.2. Photogeneration and recombination rates

3.1.2.1. Photogeneration

The photogeneration, i.e., the process of generating charge carriers through light

absorption, is a fundamental feature of photovoltaic devices. We assume that light

enters through one of the transport layers (z direction in Figure 3.1). In the general

case, photogeneration is linked to the electromagnetic field distribution within the

solar cell device, which can be described by Maxwell’s equations [7]. Solving these

equations requires advanced numerical techniques such as the finite element method

[194] or the transfer-matrix method [208]. However, in the context of this thesis, which

primarily focuses on the electric properties of perovskite solar cells, we can rely on

a more straightforward approach. We describe the photogeneration rate using an

analytical formula, following the Beer-Lambert law of light absorption [179], as

G(x) = Fphαg exp(−αgz), x = (x, y, z)T . (3.2)

Here, Fph denotes the incident photon flux and αg the material absorption coefficient

which depends on the light wave length. Thus, the photogeneration rate can be

described as an exponential decay in z direction. For further insights into numerical

studies regarding the optical optimization of perovskite solar cells using advanced

optical models, we refer to, e.g., [119, 239].

3.1.2.2. Recombination rates

Within the device, electrons and holes may recombine. The recombination rate R on

the right-hand side of the electron and hole mass balance equations (3.1a), (3.1b) is

given by the sum of the most common recombination processes: Schockley-Read-Hall
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3.1. Perovskite solar cells

(SRH), radiative, and Auger [71] with r ∈ {SRH, rad,Auger}

R(nn, np) =
∑
r

Rr(nn, np),

where all recombination processes can be modeled by the following formula

Rr(nn, np) = rr(nn, np)nnnp

(
1− exp

(
qφn − qφp

kBT

))
. (3.3)

The process-dependent non-negative rate rr will be defined in the following paragraphs.

It is worth noting that the recombination processes stated in the literature for the

simulation of PSCs such as [28, 44, 77, 182] assume a Boltzmann relation between the

carrier densities and the quasi Fermi potentials, yielding an expression

Rr(nn, np) = rr(nn, np)
(
nnnp −N2

intr

)
, (3.4)

where the intrinsic carrier density Nintr is defined by (2.47). Using (3.4) and assuming

a nonlinear diffusion for electrons and holes via the generalized Einstein relation (2.4)

violates consistency with thermodynamic equilibrium in the sense of Section 2.6.1.

One of the most common recombination processes is the Shockley-Read-Hall recombi-

nation, which models trapping of electrons. In general, this process can be described

by a trap continuity equation [97], which implies different recombination rates for

electrons and holes. However, a simplified version of this physical process can be given

in a closed form when we assume the system to be stationary, namely,

rSRH(nn, np) =
1

τp(nn + nn,τ ) + τn(np + np,τ )
, (3.5)

where τn, τp are the carrier lifetimes and nn,τ , np,τ some reference carrier densities. For

the constant reference carrier densities different expressions can be assumed [28, 46,

223, 233]. In the case of a trap energy level close to the equilibrium Fermi level we

may even assume nn,τ ≈ np,τ ≈ Nintr, see, e.g., [48, 259]. Choosing the simplified

version (3.5) is applicable when assuming that the trapping and detrapping processes

are faster than the timescale of measurements [27]. Otherwise, this way of defining the

SRH recombination needs to be extended as in, e.g., in the context of PSCs [77, 182].

The radiative recombination (frequently called bimolecular or band-to-band recombina-

tion) is given by

rrad(nn, np) = r0,rad (3.6)

for a constant rate coefficient r0,rad.
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For the Auger recombination we have

rAuger(nn, np) = Bnnn +Bpnp

with rate constants Bn and Bp. This type of recombination becomes likely for high

carrier densities or in semiconductors with small band gaps [101]. For example, for

MAPI, it was shown that including Auger recombination has a minor influence on the

resulting current-voltage characteristics [245].

3.1.3. Initial and boundary conditions

We supply the system (3.1) with initial conditions for t = 0

φn(x, 0) = φ0
n(x), φp(x, 0) = φ0

p(x), for x ∈ Ω, (PICa)

φa(x, 0) = φ0
a(x), for x ∈ Ωintr, (PICb)

where we assume φ0
n, φ

0
p ∈ L∞(Ω) and φ0

a ∈ L∞(Ωintr). Correspondingly, we define

the initial densities n0
α(x) = NαFα(ηα(φ

0
α, ψ(x, 0))) for α ∈ {n, p, a}.

3.1.3.1. External boundary conditions

The outer boundary of Ω is decomposed into two ohmic contacts at the metal interfaces

modeled by Dirichlet conditions ΓD and isolated interfaces ΓN , where we impose no

flux Neumann boundary conditions. We assume that ΓD and ΓN are closed subsets

of ∂Ω with ∂Ω = ΓD ∪ ΓN . In particular, the ohmic contacts are solely located at

the outer boundary of transport layers, i.e., ΓD ∩Ωintr = ∅, see Figure 3.1. The outer

boundary conditions are for t ≥ 0 modeled via

ψ(x, t) = ψ0(x) + U(x, t), φn(x, t) = φp(x, t) = U(x, t), x ∈ ΓD, (3.7a)

∇ψ(x, t) · ν(x) = jn(x, t) · ν(x) = jp(x, t) · ν(x) = 0, x ∈ ΓN , (3.7b)

where U corresponds to an externally applied time-dependent voltage and ν is the

outward pointing unit normal to ΓN . The potential ψ0 can be computed iteratively,

implicitly or explicitly when assuming a Boltzmann relation, as described in Sec-

tion 2.6.1. Concerning the anion vacancies, we impose no flux Neumann boundary

conditions on the whole intrinsic boundary, namely,

ja(x, t) · ν intr(x) = 0, x ∈ ∂Ωintr, t ≥ 0, (3.8)

where ν intr is the outward pointing unit normal to ∂Ωintr. In Section 5.2, we will

perform simulations on a perovskite solar cell using these time-dependent outer

boundary conditions.
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3.1. Perovskite solar cells

Remark 3.1. (Time-independent ohmic contacts) Under the assumption of time-

independent boundary conditions we will study the underlying finite volume discretiza-

tion scheme and prove the existence of a discrete solution in Chapter 4. More precisely,

let the Dirichlet values ψD, φD ∈ W 1,∞(Ω) be given. Then, we adjust the outer

boundary conditions (3.7a) to

ψ(x, t) = ψD(x), φn(x, t) = φp(x, t) = φD(x), x ∈ ΓD, t ≥ 0. (3.9)

When comparing (3.7a) and (3.9), this means the boundary values are fixed to

ψD := ψ0 + U and φD := U , where U is a constant-in-time applied voltage. We note

that the same Dirichlet value φD is imposed on both quasi Fermi potentials.

3.1.3.2. Internal boundary conditions

Due to the heterojunctions between the perovskite and the transport layers, we

need additional internal boundary conditions at the interfaces between neighboring

subdomains. The traces of the potentials φn, φp, and ψ coincide on both sides of the

internal boundaries ΣETL and ΣHTL, which contain a point in the one-dimensional

case, an edge in two dimensions and a face in three dimensions. Moreover, we assume

continuity of the corresponding fluxes across internal boundaries. More precisely, for

t ≥ 0 and k ∈ {ETL,HTL} we have(
εs∇ψ(x, t; k)− εs∇ψ(x, t; intr)

)
· ν intr(x) = 0, x ∈ Σk, (3.10a)(

jn(x, t; k)− jn(x, t; intr)
)
· ν intr(x) = 0, x ∈ Σk, (3.10b)(

jp(x, t; k)− jp(x, t; intr)
)
· ν intr(x) = 0, x ∈ Σk. (3.10c)

Here, we use the notation that for an arbitrary function f the expression f(x, t; k)

denotes the trace of f , where f is restricted onto Ωk, k ∈ {ETL, intr,HTL} and

evaluated at the respective interface between transport and perovskite layer x ∈ Σk.

It is possible to introduce surface recombination rates via the right-hand sides of the

electron and hole equations (3.10b), (3.10c), as demonstrated in, e.g., [28, 48]. An

extensive discussion and inclusion of this effect will be neglected in this thesis.

Remark 3.2. (Conservation of mass for anion vacancies) Observe that by integrating

the continuity equation (3.1c) over Ωintr, using Gauss’ theorem, and the Neumann

boundary conditions (3.8) the total mass of anion vacancies is conserved, namely,∫
Ωintr

na(x, t) dx =

∫
Ωintr

n0
a(x) dx, for all t ≥ 0.

An equivalent condition does not hold for electron and hole densities due to the

boundary conditions and the recombination/photogeneration terms.
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3.1.4. Non-dimensionalization

In this subsection, we derive the relevant non-dimensional parameters of the model,

following [50] and [163, Section 2.4]. Starting from the bulk equations (3.1), we

rewrite the equations in terms of the scaled variables given as the ratio of the unscaled

physical quantity to the scaling factors defined in Table 3.1. In the following, we make

several simplifications to simplify the presentation and the forthcoming computations.

More precisely, we assume from now on that the mobilities µn and µp, the dielectric

permittivity εs, and the effective conduction and valence density of states Nn and Np

are constant in the domain Ω, as well as the parameters entering the process-dependent

recombination rate rr in (3.3), if not mentioned otherwise. Moreover, we assume that

the band-edge energies En, Ep, Ea are zero, µn = µp, and Nn = Np. In Table 3.1, the

timescale is chosen for the anion vacancies. By replacing µ̃a with µ̃ in the time variable

scaling factor, one could write the dimensionless version adapted to the electrons and

holes timescale. We assume that the scaling factor Ñ is precisely equal to Nn = Np

and that Ña = Na. Similarly, since we assumed, for simplicity, that the mobilities are

constant in the overall spatial domain, we take µ̃a = µa and µ̃ = µn = µp.

In practice, the previous quantities vary in each subdomain. All the analyses of

Section 3.3.2 and Section 4.2 can be adapted without the previous simplifications.

However, apart from creating a notational overhead, the fundamental ideas remain the

same. Moreover, the location vector is rescaled with respect to the device thickness.

By denoting the scaled quantities with the same symbol as the corresponding unscaled

quantities, the dimensionless version of the mass balance equations (3.1a), (3.1b),

(3.1c) read

ν zn∂tnn +∇ · jn = zn

(
γ G−R(nn, np)

)
, x ∈ Ω, t ≥ 0, (Pa)

ν zp∂tnp +∇ · jp = zp

(
γ G−R(nn, np)

)
, x ∈ Ω, t ≥ 0, (Pb)

za∂tna +∇ · ja = 0, x ∈ Ωintr, t ≥ 0, (Pc)

coupled to the non-dimensionalized version of the Poisson equation (3.1d)

−λ2∆ψ =

 δ
(
znnn + zpnp + C

)
, x ∈ ΩHTL ∪ΩETL, t ≥ 0,

δ
(
znnn + zpnp + C

)
+ zana, x ∈ Ωintr, t ≥ 0.

(Pd)

The charge carrier currents (3.1e) can be rewritten in non-dimensionalized form

jα = −z2αnα∇φα, α ∈ {n, p, a}, (Pe)
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3.1. Perovskite solar cells

Symbol Meaning Scaling factor Order of magnitude

x Space variable l 10−7 m

φα, φ
D, φ0

α Quasi Fermi potentials UT 10−2 V

ψ, ψD Electric potential UT 10−2 V

C Doping profile Ñ 1024 m−3

nn Electron density Ñ 1024 m−3

np Hole density Ñ 1024 m−3

na Vacancy density Ña 1027 m−3

µn, µp Electron and hole mobility µ̃ 10−4 m2/(Vs)

µa Vacancy mobility µ̃a 10−16 m2/(Vs)

t Time variable
l2

µ̃aUT
104 s

jn Electron current density
qUT Ñ µ̃

l
106 C/(m2s)

jp Hole current density
qUT Ñ µ̃

l
106 C/(m2s)

ja Vacancy current density
qUT Ñaµ̃a

l
10−3 C/(m2s)

R Recombination rate
µ̃UT Ñ

l2
1032 1/(m3s)

G Photogeneration rate Fphαg 1028 1/(m3s)

Table 3.1.: Scaling factors of a perovskite solar cell device with MAPI as perovskite material

related to the default parameters of [44, 48] (see also Table B.1) at T = 298 K.

and we have the following non-dimensionalized expression for the state equation (2.3)

nα = Fα

(
zα(φα − ψ)

)
, α ∈ {n, p, a}. (Pf)
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3. Charge transport models for two real device applications

There are four dimensionless parameters, the rescaled Debye length, which is taken

with respect to the anion vacancy concentration

λ =

√
εsUT

l2qÑa

, (3.11)

the mobility parameter, defined as the relative mobility of anion vacancies with respect

to the electron and hole mobility

ν =
µ̃a

µ̃
, (3.12)

the concentration parameter, given as the relative concentration of electrons and holes

with respect to the anion vacancy concentration

δ =
Ñ

Ña

, (3.13)

and the photogeneration parameter, which rescales the photogeneration rate

γ =
Fphαgl

2

µ̃UT Ñ
. (3.14)

We can also interpret the parameter ν as the ratio of the ionic carrier to the electric

timescale. In a typical device, the parameters ν, λ, δ, and γ are small (compared to

1). More precisely, for the values in Table 3.1, we have ν ≈ 10−12, λ ≈ 10−2, δ ≈ 10−3

and γ ≈ 10−4. In particular, the parameters ν and λ2 generate important stiffness

in the model, which motivates using a robust implicit-in-time numerical scheme (see

Chapter 4).

To summarize, we have the set of unknowns (φn, φp, φa, ψ) solving the equations (P)

with rescaled initial conditions (PIC) (see Section 3.1.3). As boundary conditions, we

supply the model with non-dimensionalized versions of (3.7b), (3.8), (3.9), and (3.10).

For t ≥ 0 and k ∈ {HTL,ETL}, we have

∇ψ(x, t) · ν(x) = jn(x, t) · ν(x) = jp(x, t) · ν(x) = 0, x ∈ ΓN , (PBCa)

ψ(x, t) = ψD(x), φn(x, t) = φp(x, t) = φD(x), x ∈ ΓD, (PBCb)

ja(x, t) · ν intr(x) = 0, x ∈ ∂Ωintr, (PBCc)(
λ2∇ψ(x, t; k)− λ2∇ψ(x, t; intr)

)
· ν intr(x) = 0, x ∈ Σk, (PBCd)(

jn(x, t; k)− jn(x, t; intr)
)
· ν intr(x) = 0, x ∈ Σk, (PBCe)(

jp(x, t; k)− jp(x, t; intr)
)
· ν intr(x) = 0, x ∈ Σk, (PBCf)
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3.2. Memristive devices

where ψD, φD ∈ W 1,∞(Ω). Until the end of Chapter 4, we exclusively deal with this

PDE system for the charge transport in perovskite solar cells. Further, if referring to

the initial conditions (PIC), we refer to a non-dimensionalized version of (PIC), if not

mentioned otherwise.

3.2. Memristive devices

Two-dimensional layered transition metal dichalcogenides (TMDCs) are promising

memristive materials for neuromorphic computing systems. These materials could

solve the issue of high energy consumption associated with conventional von Neu-

mann computer architectures, commonly used as hardware for artificial intelligence

calculations [57, 146, 207, 252]. However, our understanding of the physics of lateral

TMDC memristors still needs to be completed, and there is ongoing debate about

the mechanisms responsible for resistive switching in these devices. Experimental

evidence suggests different switching mechanisms, including the movement of chalcogen

vacancies [150, 206]. In our context, understanding the key switching mechanism is

related to understanding the origin of hysteresis in the current-voltage characteristics.

The existing models for lateral devices are based on analytical approximations of

the current-voltage curve with numerous fitting parameters [207] or compact model

formulations [226, 262]. While such models can be helpful for circuit simulations and

design due to their computational efficiency, they fail to capture the complex dynamics

of the switching process. To our knowledge, the first vacancy-assisted drift-diffusion

model for describing lateral TMDC-based memristors is formulated in [DA5]. While

drift-diffusion models describing charge transport in memristors based on other mate-

rials also exist [3, 229], they need to include a proper discussion of the limitation of

vacancy accumulation, as demonstrated in [DA5].

3.2.1. Bulk equations

In contrast to a perovskite solar cell, the memristive device geometry is solely given

by the semiconducting material layer, i.e., Ω = Ωintr, where Ω ⊂ Rd, d ∈ {1, 2, 3},
is an open, connected, and bounded spatial domain. Figure 3.2 illustrates a typical

lateral memristive device geometry and its cross-section in the x-y plane. The device

comprises a TMDC flake on a substrate, given by silicon dioxide (SiO2) and silicon

(Si). The flake is laterally sandwiched between two electrodes, usually composed of a

titanium (Ti) and a gold (Au) layer. We can further simplify the model geometry and

represent it by a one-dimensional (1D) conducting channel, defined by the flake length,

in x direction, see Figure 3.2. As explained in Section 2.4.1.2, we assume vacancy

43



3. Charge transport models for two real device applications

migration of chalcogen defects. The electron, hole, and chalcogen defect densities

nn, np, na satisfy the continuity equations

zαq∂tnα +∇ · jα = 0, x ∈ Ω, t ≥ 0, for α ∈ {n, p, a}, (3.15a)

which are self-consistently coupled via the electrostatic potential ψ to the nonlinear

Poisson equation

−∇ · (εs∇ψ) = q
∑

α∈{n,p,a}

zαnα(ψ, φα) + qC(x), x ∈ Ω, t ≥ 0, (3.15b)

where C ∈ L∞(Ω) denotes the background charge density. In our charge transport

model, we assume a negligible vacancy generation and substantial n-type doping (i.e.,

nn ≫ np). Consequently, this leads to no reaction or production rates in (3.15a).

Lastly, the current densities are defined as before (see (2.2))

jα = −z2αqµαnα∇φα, x ∈ Ω, t ≥ 0, for α ∈ {n, p, a}. (3.15c)

Figure 3.2.: Illustration of the three-dimensional geometry of a memristive device with

indicated SiO2/Si substrate, the TMDC flake and the contact electrodes (left), a two-

dimensional view of the x-z cut plane (upper right), and a simplification of the geometry

for a one-dimensional model (lower right). (From [DA5] with modifications.)

3.2.2. Initial and boundary conditions

The system (3.15) is supplied with initial conditions for t = 0

φn(x, 0) = φ0
n(x), φp(x, 0) = φ0

p(x), φa(x, 0) = φ0
a(x), for x ∈ Ω, (MIC)

where we assume φ0
n, φ

0
p, φ

0
a ∈ L∞(Ω). As before, we define the initial densities

n0
α(x) = NαFα(ηα(φ

0
α, ψ(x, 0))) for α ∈ {n, p, a}.
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3.2. Memristive devices

We divide the outer boundary of the device geometry Ω into two parts: Γ and

ΓN . Here, Γ refers to the interface between the flake and the electrodes and ΓN to

the remaining interfaces. We assume that Γ and ΓN are closed subsets of ∂Ω with

∂Ω = Γ ∪ ΓN . For the chalcogen defects all boundaries represent physical barriers

ja(x, t) · ν(x) = 0, x ∈ ∂Ω, t ≥ 0, (3.16)

where ν is the outward pointing unit normal to ∂Ω. At the isolating Neumann

boundary we impose for the other species

∇ψ(x, t) · ν(x) = jn(x, t) · ν(x) = jp(x, t) · ν(x) = 0, x ∈ ΓN , t ≥ 0. (3.17)

At the metal-semiconductor contact Γ it is possible to impose a range of boundary

conditions. In Section 3.2.2.1 and Section 3.2.2.2, we assume that Γ represents a

Schottky contact, where we use the notation ΓS = Γ. Subsequently, in Section 3.2.2.3,

we consider a scenario where the boundary Γ behaves like an ohmic contact, modeled

by Dirichlet boundary conditions. There, we employ the notation ΓD = Γ.

3.2.2.1. Schottky boundary conditions

In case of classical Schottky contacts at ΓS, thermionic emission [52] is described for

electrons and holes with the boundary conditions

jn(x, t) · ν(x) = znqvn(nn(x, t)− nn,0), x ∈ ΓS, t ≥ 0, (3.18a)

jp(x, t) · ν(x) = zpqvp(np(x, t)− np,0), x ∈ ΓS, t ≥ 0. (3.18b)

Here, vn, vp are the electron and hole recombination velocities given by (with h as

Planck constant)

vn =
4πm∗

n(kBT )
2

h3Nn

and vp =
4πm∗

p(kBT )
2

h3Np

, (3.19)

with the effective mass m∗
n and m∗

p of electrons and holes, respectively. The corre-

sponding equilibrium carrier densities nn,0, and np,0, at the contacts are

nn,0 = NnFn

(
− ϕ0

kBT

)
and np,0 = NpFp

(
−Eg − ϕ0

kBT

)
, (3.20)

where ϕ0 = ϕ0(x) > 0 is an intrinsic Schottky energy barrier constant in time

and Eg = En − Ep is the band gap. For the electrostatic potential at the metal-

semiconductor contacts ΓS we apply the Dirichlet condition

ψ(x, t) = ψ0(x) + U(x, t) , x ∈ ΓS, t ≥ 0, (3.21)
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3. Charge transport models for two real device applications

with ψ0 = −(ϕ0 − En)/q denoting an intrinsic electrostatic potential barrier, and U

denoting a time-dependent applied voltage at the contact. The intrinsic Schottky

barrier ϕ0 is considered as a material and device parameter, i.e., for a given device, ψ0

and ϕ0 depend only on x ∈ ΓS.

3.2.2.2. Image-charge-induced Schottky barrier lowering

The charge transport model (3.15) with the initial conditions (MIC) and classical

Schottky boundary conditions (3.18)–(3.21) characterizes a system where the band-

edges En = En − qψ, Ep = Ep − qψ on the boundary ΓS are prescribed by a Schottky

barrier ϕ0. In what follows, we denote the underlying electrostatic potential unaffected

by any additional external charges by ψr and refer to it as residual electrostatic

potential. Correspondingly, the electric potential energy for electrons is given by

ϕr = qnψr and is visualized in Figure 3.3 (right, gray curve). Here, qn = znq is the

electrons’ electric charge.

Without an external bias, the band-edge of electrons for the previously defined Schottky

boundary model is defined as

En = En + ϕ, ϕ = ϕr, in Ω, (3.22)

En = ϕ0, on ΓS, (3.23)

where ϕ denotes the electric potential energy in accordance with (2.25). However, any

point charge near a metal-semiconductor junction induces an opposite polarity charge

(image charge) in the metal through charge redistribution caused by the electric field

(Figure 3.3, left).

Figure 3.3.: Schematic illustration of an electron point charge qn at the semiconductor-metal

interfaces inducing an image charge −qn in the metal electrode, which results in an

attractive image-charge potential energy ϕi (left), and the superposition of the residual

potential energy ϕr and the image-charge potential energy ϕi without an external bias.

The superposition reduces the interfacial potential energy barrier maximum by |∆ϕ|
relative to the value of ϕr at the interface (right). (From [DA5] with modifications.)
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3.2. Memristive devices

The induction of image charges adds a contribution ϕi (Figure 3.3, right, dark blue

curve), to which we will refer as image-charge potential energy [52, 235], to the total

electric potential energy

ϕ = ϕr + ϕi, in Ω. (3.24)

The new total potential energy (3.24) has an impact on the band-edges En, Ep and

alters the boundary values of En, Ep by some ∆ϕ (see Figure 3.3, right, light blue

curve). As will be demonstrated, in case of the electron band-edge this means when

no external bias is applied

En = En + ϕ, ϕ = ϕr + ϕi, in Ω,

En = ϕ0 +∆ϕ, on ΓS.
(3.25)

This change in the boundary values of the potential energies can be schematically

observed in Figure 3.3 (right). As shown, the total potential energy ϕ is indeed reduced

due to the superposition of the residual potential energy ϕr with the image-charge

potential energy ϕi, which is why this effect is known as (image-charge-induced)

Schottky barrier lowering.

Now, we will carefully extend the classical Schottky boundary conditions (3.18)–(3.21)

on ΓS by identifying the barrier change ∆ϕ caused by Schottky barrier lowering. To

accomplish this, we rely on the following assumptions.

1. The semiconductor-metal interface is planar, with the device’s width and thickness

aligned perfectly with the y and z axes.

2. The electron point charge and the induced image charge are symmetric around

the interface. Both are evaluated at the same distance l from the interface ΓS.

3. We focus only on the closest electrode’s induced charge and image force, i.e., we

ignore image forces from other metal contacts.

We proceed in two steps to find a suitable description of ∆ϕ entering (3.25). First, we

use Coulomb’s law to calculate the energy induced by the image charge ϕi. Due to a

planar setup, the Coulomb force reduces to a one-dimensional force, dependent on an

arbitrary distance s between charges and the interface ΓS

F (s) = − q2n
4πεi

1

(2s)2
, s ≥ 0,

where the negative sign indicates attraction independent of direction. It is worth noting

that we replaced the vacuum permittivity in Coulomb’s law by an appropriate real-

valued permittivity describing the semiconductor medium, the image-force permittivity
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3. Charge transport models for two real device applications

εi [234, 235]. We can calculate the image force potential energy ϕi by integrating F

from a reference position to the exact position s = l > 0 assuming an infinitely far

away reference position [98]

ϕi = −
∫ l

∞
F ds = − q2n

16πεi

∫ ∞

l

1

s2
ds = − q2n

16πεi

1

l
. (3.26)

With (3.26) we have a suitable description for the image-charge potential energy ϕi.

Second, we must evaluate the residual potential energy ϕr = qnψr at Γ
S to address

modified boundary conditions. To do this, we perform a linear Taylor expansion in

the opposite direction of the outward pointing unit normal to ΓS, denoted by ν,

ψr(x− lν) ≈ ψr(x)− l∇νψr(x), x ∈ ΓS, (3.27)

where ∇νψr = ∇ψr · ν. With (3.24), (3.26), and (3.27), we can identify the total

potential energy ϕ as a function of the distance l between the charges and the interface

ϕ(l) = ϕr(l) + ϕi(l) = qn

(
ψr − l∇νψr +

q

16πεi

1

l

)
. (3.28)

The total potential energy ϕ attains a maximum near the interface at

l∗ =

√
− q

16πεi∇νψr
, if ∇νψr < 0,

where we omitted the non-physical solution resulting into a negative length. In the

one-dimensional case and under the assumption of a planar interface, the condition

∇νψr < 0 indicates that ψr needs to be bent downwards. The total potential energy

evaluated at l = l∗ reads

ϕ(l∗) = qn

(
ψr +

√
−q∇νψr

4πεi

)
=: qnψr +∆ϕ,

where the value of ∆ϕ is set to the second term multiplied by the electrons’ charge qn.

Assuming that l∗ is negligibly small, the electron band-edge En at the boundary can

be approximated by

En = En + ϕr + ϕi ≈ (En + qnψr) + qn

√
−q∇νψr

4πεi
= ϕ0 +∆ϕ, x ∈ ΓS, (3.29)

where due to (3.22), we have En+qnψr = ϕ0 for boundary values x ∈ ΓS. The equation

(3.29) is consistent with (3.25). Since qn < 0, the formula in (3.29) demonstrates that

the potential barrier at the boundary is indeed lowered by a value |∆ϕ|, as illustrated
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3.2. Memristive devices

in Figure 3.3 (right). While the image-charge potential energy ϕi is constant in time,

ϕr = qnψr depends on the charge distribution within the semiconductor, which can

influence ∆ϕ. In total, in case of Schottky barrier lowering, the electric potential

boundary condition differs from (3.21) by the barrier change ∆ψ = ∆ϕ/qn, i.e.,

ψ(x, t) = ψ0(x) + U(x, t) + ∆ψ(x, t) , x ∈ ΓS, t ≥ 0, (3.30)

where

∆ψ =


√

− q∇νψr

4πεi
, ∇νψr < 0,

0, ∇νψr ≥ 0.
(3.31)

The latter case (∇νψr ≥ 0) assumes no barrier changes for non-physical negative

lengths l = l∗. Furthermore, the equations for the equilibrium carrier densities at the

metal contacts ΓS in (3.20) must be altered to

nn,0 = NnFn

(
−ϕ0 +∆ϕ

kBT

)
, np,0 = NpFp

(
−Eg − (ϕ0 +∆ϕ)

kBT

)
, (3.32)

to consider the change in the Schottky barrier.

As previously indicated, the residual electrostatic potential ψr solves a Poisson equa-

tion with the same volumetric space charge density as for ψ in (3.15b), supplied

with Dirichlet boundary conditions at the metal contacts ΓS and no flux boundary

conditions on the remaining interfaces ΓN . Consequently, we solve a system of five

coupled partial differential equations with five unknowns, namely, the three quasi

Fermi potentials φn, φp, φa, and the two electrostatic potentials ψ and ψr.

Let ρ(ψ) = q
∑

α∈{n,p,a} zαnα(ψ, φα) + qC denote the right-hand side of the Pois-

son equation (3.15b). Then, the initial boundary value problem for t ≥ 0 can be

summarized by the bulk equations

−∇ · (εs∇ψ) = ρ(ψ), x ∈ Ω, (3.33a)

−∇ · (εs∇ψr) = ρ(ψ), x ∈ Ω, (3.33b)

zαq∂tnα +∇ · jα = 0, for α ∈ {n, p, a}, x ∈ Ω, (3.33c)

with zero-flux boundary conditions on ΓN and the Schottky barrier lowering conditions

at the metal contacts ΓS for t ≥ 0

ψ = ψ0 + U +∆ψ(∇νψr), x ∈ ΓS, (3.33d)

ψr = ψ0 + U, x ∈ ΓS, (3.33e)

jn · ν = znqvn(nn − nn,0), x ∈ ΓS, (3.33f)

jp · ν = zpqvp(np − np,0), x ∈ ΓS, (3.33g)

ja · ν = 0, x ∈ ΓS, (3.33h)
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3. Charge transport models for two real device applications

where ν is the outward pointing unit normal to ΓS and (3.32) defines the equilibrium

densities nn,0, np,0. Lastly, we supply the problem with the initial conditions (MIC).

Figure 3.4.: Summary of the classical Schottky (left) and the image-charge induced Schottky

boundary model (right), where the dependencies on the electric potentials ψ,ψr are

highlighted. The latter boundary model introduces the residual electric potential ψr as an

additional unknown.

We note that the Poisson equation with respect to ψ in (3.33b) is nonlinear in ψ,

while (3.33c) is linear in ψr. In Figure 3.4, the equations for the classical and the

image-charge induced Schottky boundary model are summarized. Including Schottky

barrier lowering adds a term ∆ψ(∇νψr) to the electric potential boundary condition

(3.21). This term depends on the projected gradient of the additional unknown, the

residual electric potential ψr, which solves the Poisson equation for the same material

charge density as ψ.

In Section 5.3.2, we will conduct simulations to study how reducing the Schottky

barrier heights due to the introduced boundary model will impact the current-voltage

characteristics of TMDC memristors and compare the results with measurements

found in literature.

3.2.2.3. Ohmic contacts

Similar to the PSC model, we can supply the memristive charge transport model with

ohmic boundary conditions. For this, we replace ΓS by ΓD. As the outer boundary

conditions on ΓD, we have

ψ(x, t) = ψ0(x) + U(x, t), φn(x, t) = φp(x, t) = U(x, t), x ∈ ΓD, t ≥ 0, (3.34)

with the locally electroneutral solution ψ0 and an externally applied voltage U , as

introduced in Section 3.1.3.1.
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3.2. Memristive devices

Under the assumption of time-independent ohmic boundary conditions, we will also

prove the existence of solutions (φn, φp, φa, ψ) to an implicit-in-time finite volume

discretization scheme in Chapter 4. In consistency with Remark 3.1, we apply

ψ(x, t) = ψD(x), φn(x, t) = φp(x, t) = φD(x), x ∈ ΓD, t ≥ 0, (3.35)

where ψD, φD ∈ W 1,∞(Ω) are given Dirichlet values.

3.2.3. Non-dimensionalization

As in Section 3.1.4, we will formulate a non-dimensionalized model for the charge

transport in TMDC memristive devices, which serves as a reference model for the

numerical analysis in Chapter 4. We rewrite the equations in terms of the scaled

variables given as the ratio of the unscaled physical quantity to the scaling factors

defined in Table 3.2. For this, we use the parameter set S1 (Table B.3, Table B.4).

We assume for the electron and hole mobility µn = µp and for all band-edge energies

Eα = 0 with α = {n, p, a}. However, we allow in contrast to Section 3.1.4 different

magnitudes of electron and hole densities. For the introduced scaling factors C̃, Ñn, Ña

in Table 3.2, we assume C̃ = Np, Ñn = Nn, Ña = Na. Similarly, we take µ̃a = µa, and

µ̃ = µn = µp. As before, we choose the timescale of chalcogen vacancies. Moreover,

the location vector is rescaled with respect to the channel length.

The dimensionless versions of the mass balance equations (3.15a) read

ν zn∂tnn +∇ · jn = 0, x ∈ Ω, t ≥ 0, (Ma)

ν zp∂tnp +∇ · jp = 0, x ∈ Ω, t ≥ 0, (Mb)

za∂tna +∇ · ja = 0, x ∈ Ω, t ≥ 0, (Mc)

which are self-consistently coupled to the non-dimensionalized Poisson equation

−λ2∆ψ = δn

(
znnn + δp (zpnp + C)

)
+ zana, x ∈ Ω, t ≥ 0. (Md)

The dimensionless charge carrier currents are given as

jα = −z2αnα∇φα, α ∈ {n, p, a}, (Me)

and the non-dimensionalized version of the state equation (2.3) equals

nα = Fα

(
zα(φα − ψ)

)
, α ∈ {n, p, a}. (Mf)

There are four dimensionless parameters, the rescaled Debye length, which is taken

with respect to the vacancy concentration

λ =

√
εsUT

l2qÑa

≈ 10−5, (3.36)
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3. Charge transport models for two real device applications

Symbol Meaning Scaling factor Order of magnitude

x Space variable l 10−6 m

φα, φ
D, φ0

α Quasi Fermi potentials UT 10−2 V

ψ, ψD Electric potential UT 10−2 V

C Doping profile C̃ 1021 m−3

nn Electron density Ñn 1025 m−3

np Hole density C̃ 1021 m−3

na Vacancy density Ña 1028 m−3

µn, µp Electron and hole mobility µ̃ 10−4 m2/(Vs)

µa Vacancy mobility µ̃a 10−14 m2/(Vs)

t Time variable
l2

µ̃aUT
104 s

jn Electron current density
qUT Ñnµ̃

l
106 C/(m2s)

jp Hole current density
qUT C̃µ̃

l
102 C/(m2s)

ja Vacancy current density
qUT Ñaµ̃a

l
10−1 C/(m2s)

Table 3.2.: Scaling factors of a MoS2-based memristive device related to the parameter set

S1 (Table B.3, Table B.4) at T = 300 K. Since the doping and hole densities are small

compared to the electron and vacancy densities, we use the same scaling factor.

the mobility parameter, given as the relative mobility of chalcogen vacancies with

respect to the mobility of electrons and holes

ν =
µ̃a

µ̃
≈ 10−10, (3.37)

the electron concentration parameter, defined as the relative concentration of electrons
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3.3. Entropy method to prove the existence of solution

with respect to the chalcogen vacancy concentration

δn =
Ñn

Ña

≈ 10−3, (3.38)

and the hole concentration parameter, given as the relative doping/hole concentration

with respect to the electron concentration

δp =
C̃

Ñn

≈ 10−4. (3.39)

Similar to the non-dimensionalized PSC charge transport model, we have a stiff

model, generated by λ2 and ν. We use the non-dimensionalized version of (MIC) (see

Section 3.2.2) as initial condition if not mentioned otherwise. As boundary conditions,

we supply the model with a dimensionless version of the ohmic contact boundary

model (3.35) at ΓD = Γ, introduced in Section 3.2.2.3. Furthermore, on the isolating

interface ΓN , we consider dimensionless versions of (3.16) and (3.17). Thus, for t ≥ 0,

we have

∇ψ(x, t) · ν(x) = jn(x, t) · ν(x) = jp(x, t) · ν(x) = 0, x ∈ ΓN , (MBCa)

ψ(x, t) = ψD(x), φn(x, t) = φp(x, t) = φD(x), x ∈ ΓD, (MBCb)

ja(x, t) · ν(x) = 0, x ∈ ∂Ω, (MBCc)

where ψD, φD ∈ W 1,∞(Ω). Until the end of Chapter 4, we only deal with the PDE

system (M), (MIC), (MBC) with the unknowns (φn, φp, φa, ψ) for the charge transport

in TMDC-based memristors.

3.3. Entropy method to prove the existence of

solution

A mathematical study of the charge transport model for perovskite solar cells has not

been conducted yet. In contrast, the charge transport model for memristive devices

was explored in [124]. There, the authors established various results, including the

global existence of weak solutions, assuming that all charge carriers obey a Boltzmann

relation with the time-independent boundary conditions (MBC).

In comparison, classical drift-diffusion models have been studied in detail, see, e.g.,

[89, 90, 122, 127, 163, 164, 174]. An essential a priori estimate for these models relies

on the evolution of the physical free energy or a related energy functional. It allows

us to study the well-posedness of the equations as well as the asymptotic behavior of
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3. Charge transport models for two real device applications

their solution [21, 89, 174]. The techniques relying on a well-chosen physically relevant

Lyapunov functional have been used for many dissipative systems of PDEs and are

usually referred to as entropy methods [4, 129]. For further information, we refer to the

textbook [129] and the references therein. Due to that, we will use the term entropy

instead of free energy even though the latter one is physically more appropriate.

From now on, we restrict ourselves to the non-dimensionalized version of the charge

transport models. More precisely, we study for perovskite solar cells the model (P)

with initial conditions (PIC) and boundary conditions (PBC) (see Section 3.1.4) and

for TMDC memristive devices the drift-diffusion equations (M) supplemented with

(MIC) and (MBC) (see Section 3.2.3). It is worth noting that the differences between

both models are the physical interpretation of the vacancy carrier α = a, the scaling,

and the device geometry.

Within this section, we will introduce useful entropy functions for both models and

establish a continuous entropy-dissipation inequality. The discrete version of this

inequality, which we will derive in Section 4.2, will allow us to deduce the existence of

discrete solutions and assess the stability of the discretization schemes. We understand

stability here in the sense that the discrete solutions remain bounded, independent of

changes in the grid and time spacing.

3.3.1. Entropy functions

For α ∈ {n, p, a}, we define the entropy function Φα, associated with the statistics

function Fα, as an antiderivative of the inverse of statistics function, namely,

Φ′
α(x) = F−1

α (x), x ≥ 0. (3.40)

Observe that the hypotheses on the statistics functions (H1) (see Section 2.3.1) and

(H2) (see Section 2.4.2) imply that Fα is strictly increasing and, therefore, that

the entropy function Φα is strictly convex. Furthermore, we note that Φα enters

the definition of the physical free energy (2.48). Of course, from (3.40), the entropy

function Φα is only defined up to a constant, but the value of the constant is not crucial

for electrons α = n and holes α = p in what follows because we will introduce relative

entropies. The constant may be generally taken to ensure that Φα is non-negative and

vanishes at only one point, which is a necessary condition for the vacancies α = a. We

define the relative entropy Hα by

Hα(x, y) = Φα(x)− Φα(y)− Φ′
α(y)(x− y), x, y ≥ 0. (3.41)

Observe that Hα is non-negative due to the convexity of Φα.
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3.3. Entropy method to prove the existence of solution

Examples. In case of the Boltzmann approximation, i.e., Fn(η) = Fp(η) = exp(η),

one may choose, for example, as entropy function

Φn(x) = Φp(x) = x log(x)− x+ 1, x ≥ 0.

In case of the Fermi-Dirac integral of order −1, i.e., Fa(η) = (exp(−η) + 1)−1, one has

Φa(x) = x log(x) + (1− x) log(1− x) + log(2), x ≥ 0.

Let us now state some useful results for the entropy functions. The proofs can be

found in Appendix A.2 and Appendix A.3.

Lemma 3.3. One has the following bounds on the entropy functions (3.40) and (3.41).

(i) Let α ∈ {n, p}. Further, let Fα be a statistics function satisfying (H1) and Hα

be the associated relative entropy function. Then, for any ε > 0 and y0 ≥ 0,

there exists a constant cy0,ε > 0 such that

x ≤ cy0,ε + εHα(x, y), for all x ≥ 0, y ∈ [0, y0].

(ii) Let Fa be a statistics function satisfying (H2) and Φa be the associated entropy

function. Then, for any ε > 0, there exists a constant cε > 0 such that

x ≤ cε + εΦa(x), for all x ≥ 0.

Under the final additional assumption on the statistics functions of electrons and holes

lim
x→+∞

Hα(x, y0)

F−1
α (x)

= +∞, for y0 ≥ 0 and α ∈ {n, p}, (H3)

we have the following result.

Lemma 3.4. Let Fα with α ∈ {n, p} be a statistics function satisfying (H1) and (H3).

Then, for any ε > 0 and y0 ≥ 0, there exists a constant cy0,ε ≥ 0 such that

max{F−1
α (x), 0} ≤ cy0,ε + εHα(x, y), for all x ≥ 0, y ∈ [0, y0].

We will also show in Appendix A.1 that the Boltzmann statistics and the Fermi-Dirac

statistics of order 1/2 both satisfy (H1), (H3), while the Fermi-Dirac statistics of order

−1 satisfies (H2). We proceed with establishing entropy-dissipation inequalities for

both introduced non-dimensionalized charge transport models.
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3.3.2. Entropy-dissipation inequality

The thermodynamic free energy, as introduced in Section 2.6.2, is of physical relevance.

However, our current objective is to prove a mathematical entropy-dissipation inequal-

ity. For this reason, we examine a variation of the energy functional (2.48), which

we will now refer to as the total relative entropy in agreement with the mathematical

literature. Despite considering different device geometries and non-dimensionalizations

for the PSC and the TMDC memristive model, we can establish, in both cases, an

entropy-dissipation inequality. We start with the perovskite solar cell application.

Perovskite solar cells. We consider the problem (P) with the initial conditions

(PIC) and the boundary conditions (PBC) (see Section 3.1.4). Adapting the functional

of [18, 126] to our system, the total relative entropy with respect to the Dirichlet

boundary values ψD, φD ∈ W 1,∞(Ω) for t ≥ 0 is given by

E(t) =
λ2

2

∫
Ω

|∇(ψ−ψD)|2 dx +

∫
Ωintr

Φa(na) dx + δ
∑

α∈{n,p}

∫
Ω

Hα(nα, n
D
α ) dx, (3.42)

where the entropy functions Φa, Hn and Hp are defined in (3.40), (3.41). The densities

nDn , n
D
p can be calculated by inserting φD, ψD into the dimensionless state equation

(Pf). It is important to note that since we generally assume Φa ≥ 0 the middle term is

non-negative as well which implies that the total entropy is non-negative.

In contrast to the energy functional (2.48), the relative entropy (3.42) takes the

assumptions for the non-dimensionalization in Section 3.1.4 into account, in particular

the assumption of vanishing band-edge energies. Furthermore, the energy contributions

of the electric potential and the electron and hole quasi Fermi potentials are defined

on the overall domain Ω, whereas the contribution with respect to the anion vacancies

is solely defined on the intrinsic domain Ωintr.

Taking into account the fact that z2α = 1 for α ∈ {n, p}, the associated non-negative

dissipation D for t ≥ 0 is defined as

D(t) =
δ

ν

∫
Ω

R(nn, np) (φp − φn) dx +
δ

2ν

∑
α∈{n,p}

∫
Ω

nα|∇φα|2 dx

+
z2a
2

∫
Ωintr

na|∇φa|2 dx.
(3.43)

The relative entropy E and the dissipation D satisfy the following inequality.

Theorem 3.5. (Continuous entropy-dissipation inequality for a PSC model) Consider

a smooth solution to the model (P), with initial conditions (PIC) and boundary
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3.3. Entropy method to prove the existence of solution

conditions (PBC). Then, for any ε > 0, there is a constant cε,Ω > 0 such that

d

dt
E(t) + D(t) ≤ cε,Ω + εE(t), t ≥ 0, (3.44)

where the entropy is defined in (3.42) and the dissipation in (3.43). The constant cε,Ω
depends only on ε, the measure of Ω, the boundary data and the photogeneration term

via the norms ∥G∥L∞ , ∥φD∥W 1,∞ and ∥ψD∥W 1,∞ , as well as on z2a and the dimensionless

parameters δ, γ and ν.

Proof. Let t ≥ 0. First, we take the derivative of (3.42) with respect to time

d

dt
E(t) = λ2

∫
Ω

(∂t∇ψ) · ∇(ψ − ψD) dx +

∫
Ωintr

F−1
a (na)∂tna dx

+ δ
∑

α∈{n,p}

∫
Ω

(
F−1
α (nα)−F−1

α (nDα )
)
∂tnα dx.

(3.45)

By integrating the first term by parts and using the Poisson equation (Pd) one obtains

λ2
∫
Ω

(∂t∇ψ) · ∇(ψ − ψD) dx = δ

∫
Ω

(zn∂tnn + zp∂tnp)(ψ − ψD) dx

+

∫
Ωintr

za∂tna(ψ − ψD) dx,

where all the boundary terms cancel thanks to the boundary conditions (PBCb)

and (PBCd). Plugging the previous equality back into (3.45) and using the relation

F−1
α (nα) + zαψ = zαφα (from the state equation (Pf)), we have

d

dt
E(t) = δ

∑
α∈{n,p}

∫
Ω

zα
(
φα − φD

)
∂tnα dx+

∫
Ωintr

za
(
φa − ψD

)
∂tna dx.

Next, we insert the balance equations (Pa), (Pb), (Pc), the definition of the current

densities (Pe), and integrate by parts

d

dt
E(t) =− δ

ν

∑
α∈{n,p}

∫
Ω

∇ · jα
(
φα − φD

)
dx −

∫
Ωintr

∇ · ja
(
φa − ψD

)
dx

+
δ

ν

∑
α∈{n,p}

∫
Ω

zα (γG−R)
(
φα − φD

)
dx

=− δ

ν

∑
α∈{n,p}

∫
Ω

nα∇φα · ∇
(
φα − φD

)
dx+

δ

ν

∫
Ω

(γG−R) (φp − φn) dx

−
∫
Ωintr

z2ana∇φa · ∇
(
φa − ψD

)
dx,
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where we used zn = −1 = −zp. The boundary terms vanish again thanks to (PBCa),

(PBCb), (PBCc), (PBCe), and (PBCf). By expanding all contributions of the previous

equality

d

dt
E(t) =− δ

ν

∑
α∈{n,p}

∫
Ω

nα|∇φα|2 dx+
δ

ν

∑
α∈{n,p}

∫
Ω

nα∇φα · ∇φD dx

−
∫
Ωintr

z2ana|∇φa|2 dx+

∫
Ωintr

z2ana∇φa · ∇ψD dx

+
δγ

ν

∫
Ω

G(φp − φn) dx− δ

ν

∫
Ω

R(φp − φn) dx,

and using Young’s inequality for the cross terms (ab ≤ a2/2 + b2/2) we get

d

dt
E(t) + D(t) ≤ δ

2ν

∑
α∈{n,p}

∫
Ω

nα|∇φD|2 dx+
z2a
2

∫
Ωintr

na|∇ψD|2 dx

+
δγ

ν

∫
Ω

G (φp − φn) dx,

(3.46)

where we also added the dissipation D defined in (3.43). It remains to bound the

terms on the right-hand side. For the first two remainder terms on the right-hand side

of (3.46) we use Lemma 3.3 to find for some ε > 0

δ

2ν

∑
α∈{n,p}

∫
Ω

nα|∇φD|2 dx+
z2a
2

∫
Ωintr

na|∇ψD|2 dx

≤ 1

2ν
||∇φD||2L∞δ

∑
α∈{n,p}

∫
Ω

nα dx+
z2a
2
||∇ψD||2L∞

∫
Ωintr

na dx

≤ 1

2ν
||∇φD||2L∞δ

∑
α∈{n,p}

∫
Ω

(
cyDα ,ε + εHα(nα, n

D
α )

)
dx

+
z2a
2
||∇ψD||2L∞

∫
Ωintr

(
cε + εΦa(na)

)
dx

≤ max

{
1

2ν
||∇φD||2L∞ ,

z2a
2
||∇ψD||2L∞

}(
(δcyDn ,ε + δcyDp ,ε + cε)|Ω|+ εE

)
,

since the first term in (3.42) is non-negative. Here, Hα is defined in (3.41). The

quantities cε, cyDn ,ε, cyDp ,ε are the corresponding constants introduced in Lemma 3.3,

where we set

yDα = Fα(∥φD∥L∞ + ∥ψD∥L∞), α ∈ {n, p}. (3.47)
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3.3. Entropy method to prove the existence of solution

With help of Lemma 3.4 and the relation zαφα = F−1
α (nα) + zαψ, the last remainder

term of (3.46) is estimated by

δγ

ν

∫
Ω

G (φp − φn) dx =
γ

ν
δ

∑
α∈{n,p}

∫
Ω

GF−1
α (nα) dx

≤ γ

ν
||G||L∞δ

∑
α∈{n,p}

∫
Ω

max{F−1
α (nα), 0} dx

≤ γ

ν
||G||L∞

∑
α∈{n,p}

(
δcyDα ,ε|Ω|+ εδ

∫
Ω

Hα

(
nα, n

D
α

)
dx

)
≤ γ

ν
||G||L∞

(
δcyDn ,ε|Ω|+ δcyDp ,ε|Ω|+ εE

)
,

since the other two contributions of the entropy are non-negative. The quantities

cyDn ,ε, cyDp ,ε are the constants introduced in Lemma 3.4 with yDn , y
D
p defined in (3.47).

Plugging these estimates back into (3.46) proves the entropy-dissipation estimate (up

to a redefinition of ε) and with suitable cε,Ω.

Under additional assumptions, we can expect a decay of the relative entropy in time.

Remark 3.6. Under the assumption of constant boundary data, i.e., ∇φD = ∇ψD = 0,

and in the absence of external generation of electrons and holes, i.e., G = 0, the entropy-

dissipation inequality simplifies to

d

dt
E(t) + D(t) ≤ 0, t ≥ 0.

It becomes evident from the proof of Theorem 3.5, particularly from the immediate

estimate (3.46), that the right-hand side of the entropy-dissipation inequality (3.44)

vanishes in this specific scenario. In this case, the entropy E decays in time and the

solution is expected to converge exponentially fast towards the equilibrium solution

(φeq
n , φ

eq
p , φ

eq
a , ψ

eq). This equilibrium is such that the quasi Fermi potentials for electrons

and holes are constant on Ω

φeq
p = φeq

n = φD

and φeq
a is constant on Ωintr, determined by the conservation of mass for anion vacancies∫

Ωintr

na(φ
eq
a , ψ

eq) dx =

∫
Ωintr

na(x, 0) dx,

which is consistent with Section 2.6.1. The electric potential ψeq satisfies the following
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3. Charge transport models for two real device applications

nonlinear Poisson equation

−λ2∆ψeq =


δ
(
np(φ

eq
p , ψ

eq)− nn(φ
eq
n , ψ

eq) + C
)
, x ∈ ΩHTL ∪ΩETL,

δ
(
np(φ

eq
p , ψ

eq)− nn(φ
eq
n , ψ

eq) + C
)

+ zana(φ
eq
a , ψ

eq), x ∈ Ωintr,

supplemented with the boundary conditions (PBCa), (PBC) for the electric potential.

The proof of this asymptotic behavior is beyond the scope of this thesis but could be

investigated following the lines of the seminal work of Gajewski [89].

We proceed with establishing an entropy-dissipation inequality for our second applica-

tion, the TMDC-based memristive devices.

Memristive devices. The memristive model is given by (M), with initial conditions

(MIC) and boundary conditions (MBC) (see Section 3.2.3). Analogously, we define a

total relative entropy with respect to the Dirichlet boundary values ψD, φD ∈ W 1,∞(Ω)

for t ≥ 0

E(t) =
λ2

2

∫
Ω

|∇(ψ − ψD)|2 dx +

∫
Ω

Φa(na) dx + δn

∫
Ω

Hn(nn, n
D
n ) dx

+ δnδp

∫
Ω

Hp(np, n
D
p ) dx,

(3.48)

where Φa, Hn and Hp are given by (3.40), (3.41).

Like the entropy function for the PSC model (3.42), the relative entropy for the mem-

ristive model (3.48) considers the assumptions made for the non-dimensionalization in

Section 3.2.3. This notably includes the assumption of vanishing band-edge energies.

Furthermore, the domain Ω now refers to the TMDC material layer, on which all

potentials evolve. The dissipation rate for t ≥ 0 is defined as

D(t) =
δn
2ν

∫
Ω

nn|∇φn|2 dx +
δnδp
2ν

∫
Ω

np|∇φp|2 dx +
z2a
2

∫
Ω

na|∇φa|2 dx. (3.49)

Observe that the entropy E as well as the dissipation D are non-negative. Now, we

can formulate a continuous entropy-dissipation inequality.

Theorem 3.7. (Continuous entropy-dissipation inequality for a memristive model)

Consider a smooth solution to the model (M), with initial conditions (MIC) and

boundary conditions (MBC). Then, for any ε > 0, there is a constant cε,Ω > 0 such

that

d

dt
E(t) + D(t) ≤ cε,Ω + εE(t), t ≥ 0, (3.50)
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where the entropy is defined in (3.48) and the dissipation in (3.49). The constant cε,Ω
depends only on ε, the measure of Ω and the boundary data via the norms ∥φD∥W 1,∞

and ∥ψD∥W 1,∞ , z2a , and the dimensionless parameters δn, δp and ν. □

The proof of Theorem 3.7 follows a similar structure as the proof of Theorem 3.5 and is

therefore omitted here. Regarding constant boundary conditions, i.e., ∇φD = ∇ψD =

0, Remark 3.6 also applies to the memristive model. Specifically, the right-hand side

of the entropy-dissipation inequality (3.50) also vanishes, indicating an exponential

decay of the entropy E.

Before concluding this chapter, we can deduce, with the help of Grönwall’s lemma

[66, 67, 100], immediate consequences of Theorem 3.5 for the entropy E in (3.42) and

the dissipation D in (3.43) or of Theorem 3.7 for the entropy E in (3.48) and the

dissipation D in (3.49). As time-dependent functions, t 7→ E(t) and t 7→ D(t) are

locally bounded and locally integrable, respectively. To show this, we will employ a

modified version of Grönwall’s lemma, as presented in Lemma 3.8.

Lemma 3.8. (Grönwall’s lemma) Let tF ∈ R≥0 and suppose that u, g, a : [0, tF ] → R
are sufficiently smooth functions such that

u′(t) + g(t) ≤ a(t)u(t), for t ∈ [0, tF ],

where a, g are non-negative on [0, tF ]. Then,

u(t) +

∫ t

0

g(s) ds ≤ u(0) exp

(∫ t

0

a(s) ds

)
, for t ∈ [0, tF ].

The proof of Lemma 3.8 can be found in Appendix A.4. We formulate the following

result, showing that the entropy E is locally bounded and the dissipation D is locally

integrable. Moreover, for any but fixed ε > 0, we observe that the entropy is bounded

by an exponential with respect to time.

Corollary 3.9. Let E and D either be given by (3.42), (3.43) or by (3.48) and (3.49).

Then, for any ε > 0, one has

E(t) +
∫ t

0

D(s)ds ≤ eεtE(0) +
cε,Ω
ε

(eεt − 1) , t ≥ 0.

Proof. We define Ẽ := E+
cε,Ω
ε
. Reformulating now the entropy-dissipation inequalities

in Theorem 3.5 and Theorem 3.7 with respect to Ẽ, gives us
d

dt
Ẽ(t) + D(t) ≤ εẼ(t), t ≥ 0.

Setting now u(t) = Ẽ(t), g(t) = D(t), and a(t) = ε, applying Grönwall’s lemma in

Lemma 3.8, inserting Ẽ, and rearranging terms, proves the claim.
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charge transport models

Extensive literature has been devoted to addressing suitable methods for solving

drift-diffusion equations as given PDE systems, including discretization schemes based

on the finite difference (FDM) or the finite element method (FEM). For instance,

we refer to [10, 24, 75, 125, 148, 155, 174, 216, 242]. However, this thesis will

focus exclusively on schemes derived from the finite volume method (FVM). FVM-

based approaches are flexible with respect to the device geometry like FEM while

still correctly reflecting physical phenomena such as local conservativity of fluxes or

consistency to thermodynamic laws [70, 72]. The design and study of FVM numerical

schemes for drift-diffusion models is also a mature but still very active field of research

(e.g., [19, 30, 74, 86, 88, 125, 132, 157, 211]). In order to ensure the quality of the

numerical simulation and the stability of the numerical method, efforts have been

made towards the design of structure-preserving schemes [17, 34, 94, 107, 173]. They

preserve the physical features of the original model, such as the decay of free energy

or non-negativity of carrier densities.

In the context of perovskite solar cells, other researchers have used either a finite-

difference [50, 77, 138], a finite-element discretization [29, 50] or commercial software

packages [2, 81, 117, 182, 250]. However, as of our current knowledge, no drift-diffusion

discretization schemes have been formulated explicitly for memristive devices.

This chapter is organized as follows: In Section 4.1, we formulate the numerical schemes

for two models, namely, the PSC model defined by (P), (PIC), and (PBC), as well as

the TMDC memristive model given by (M), (MIC), and (MBC). These models were

introduced at the end of Section 3.1.4 and Section 3.2.3, respectively. Additionally, we

provide in this section essential concepts and notations needed for a proper formulation

of the discretization schemes. These finite volume schemes rely on a two-point flux

approximation (TPFA) of the fluxes and a backward Euler scheme in time. As TPFA,

we use the excess chemical potential flux scheme (frequently called Sedan scheme),

which appears to be used for the first time in [255]. As in the continuous setting, we

will show in Section 4.2 that entropy-dissipation relations also hold at the discrete

level, ensuring stability and preservation of the physical structure of the models. After

proving the existence of a discrete electric potential for given quasi Fermi potentials
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(Section 4.2.2), we continue proving a priori estimates on the quasi Fermi potentials

and the electric potential in Section 4.2.3. This chapter ends with the existence proofs

in Section 4.2.4.

This chapter is based in large parts on [DA2]. Minor parts can be found in [DA4].

4.1. Discrete charge transport equations

This section presents the concepts and notations essential for formulating implicit-

in-time finite volume discretization schemes. In Section 4.1.1, we will begin by

introducing admissible meshes [70]. These meshes, which satisfy some orthogonality

constraints, establish the structural framework for discretizing a computational domain

Ω into discrete cells. We continue in Section 4.1.2 with the development of suitable

FVM discretization schemes. Finally, in Section 4.1.3 we discuss two-point flux

approximations designed to describe the flow of charge carriers, and, we introduce

the excess chemical potential scheme, our chosen method for discretizing the current

densities, in this thesis.

In Chapter 3, we made a common assumption for both applications that the device

domain Ω ⊂ Rd, d ∈ {1, 2, 3}, is open, connected, and bounded. It is important to

note that when dealing with the PSC model, the spatial domain is further divided

into three subdomains Ω = ∪kΩk, k ∈ {ETL, intr,HTL}. In contrast, for the TMDC

memristor application, the device geometry is represented solely by Ω. Differences in

the discretizations due to different device geometries in our two applications will be

explicitly highlighted.

4.1.1. Discretization meshes

An admissible mesh, following the definition in [70], can be characterized by the triplet

(T , E , {xK}K∈T ) under the additional assumption that the computational domain Ω

is polygonal (or polyhedral). In this context, T denotes a family of control volumes,

E corresponds to a family of faces, and {xK}K∈T describes a family of nodes. In the

following, we describe the concept of an admissible mesh and its relevance to our

discretization mesh. More precisely, T denotes a family of non-empty, convex, open,

and polygonal (or polyhedral) control volumes (frequently called cells) K ∈ T , whose

Lebesgue measure is denoted by mK . The union of the closure of all control volumes

is equal to the closure of the spatial domain, i.e.,

Ω =
⋃
K∈T

K.
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4.1. Discrete charge transport equations

Furthermore, we call E a family of faces, where σ ∈ E is a subset of Ω contained in a

hyperplane of Rd. Each face (or edge) σ has a strictly positive (d − 1)-dimensional

measure, denoted by mσ. We use the abbreviation σ = K|L = ∂K ∩ ∂L for the

intersection between two different control volumes K ̸= L. The intersection K|L is

either empty or reduces to a face contained in E . Also, for any cell K ∈ T we assume

that there exists a subset of faces EK ⊂ E so that we can describe the boundary of

a control volume by ∂K =
⋃
σ∈EK σ and, consequently, it follows that E =

⋃
K∈T EK .

We distinguish the faces that are on the boundary of Ω by introducing the notations

ED = {σ ∈ E s.t. σ ⊂ ΓD}, EN = {σ ∈ E s.t. σ ⊂ ΓN},

and assume that the Dirichlet and Neumann boundaries ΓD,ΓN can be well described

by the union of respective boundary faces, i.e., ΓD =
⋃
σ∈ED σ and ΓN =

⋃
σ∈EN σ.

Figure 4.1.: Neighboring control volumes in the interior of the device domain (left) and near

outer boundaries ΓD and ΓN (right). For our analysis, we assume that the cell centers

(black points) of a boundary control volume are located in the interior of the computational

domain. The boundary of the control volumes are highlighted in red. (From [DA2] with

modifications.)

To each control volume K ∈ T we assign a node (also called cell center or collocation

point) xK ∈ K, and we assume that the family of nodes {xK}K∈T satisfies the

orthogonality condition: If K and L share a face σ = K|L, then the vector

xKxL is orthogonal to σ = K|L.

We assume that each node xK is located within the interior of Ω. In other words, for

all K ∈ T with EK ∩ ∂Ω ̸= ∅, it holds that xK /∈ ∂Ω. This condition is visualized in

Figure 4.1 (right). It is important to note that the last assumption is not a constraint

arising from the definition of admissible meshes but rather a requirement for the

subsequent numerical analysis in this chapter. Indeed, it is possible to construct

admissible meshes with nodes xK located at the boundary ∂Ω, as will be discussed in

Remark 4.1. Furthermore, for each edge σ = K|L ∈ E , we define dσ as the Euclidean
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4. Numerical analysis of vacancy-assisted charge transport models

distance between two collocation points xK and xL. If the edge σ ∈ E lies on the

boundary ∂Ω, i.e., σ = ∂K ∩ ∂Ω ̸= ∅, then dσ is defined as the Euclidean distance

between xK and the affine hyperplane spanned by σ (see Figure 4.1, right). Lastly, we

introduce the transmissibility through the edge σ by τσ = mσ/dσ. The notations are

illustrated in Figure 4.1.

Additionally to the admissibility, we assume that the mesh (T , E , {xK}K∈T ) is regular

in the following sense. There is a constant ξ > 0, which does not depend on the size

of the mesh hT = maxK∈T {diam(K)} such that

∀K ∈ T , ∀σ ∈ EK ,
{
dσ ≥ ξ diam(K) ,

mK ≥ ξ
∑

σ∈EK mσdσ .
(4.1)

We can think of the regularity assumptions as an asymptotic property as hT → 0,

which have to be always satisfied on a given mesh due to the finite number of cells.

For the time discretization we decompose the interval [0, tF ], for a given end time

tF > 0 into a finite and increasing number of time steps 0 = t1 < . . . < tM = tF
with a step-size τm = tm − tm−1 at time step m = 2, . . . ,M . We finally introduce

∆t = maxm=2,...,M{τm}.

In the PSC charge transport model (P), (PIC), and (PBC), the device domain is

divided into three subdomains Ω = ∪kΩk with k ∈ {ETL, intr,HTL}, where only the

intrinsic perovskite region Ωintr contains migrating anion vacancies. To incorporate

this fact in the discretization, we denote the subset of control volumes in the intrinsic

domain by Tintr ⊂ T . It is assumed that

Ωintr =
⋃

K∈Tintr

K.

Furthermore, we use for the set of faces in the intrinsic domain the notation

Eintr = {σ ∈ E s.t. σ ⊂ Ωintr}.

We also define the set of interior faces on the whole and the intrinsic domain as

E int = {σ ∈ E s.t. σ ̸⊂ ∂Ω}, E int
intr = {σ ∈ Eintr s.t. σ ̸⊂ ∂Ωintr},

respectively.

Remark 4.1. (Boundary conforming Voronoi meshes) A particular type of discretiza-

tion mesh can be generated using Voronoi diagrams and Delaunay triangulations

(triangulation in two dimensions, tetrahedralization in three dimensions), which are
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4.1. Discrete charge transport equations

interdisciplinary concepts with various applications beyond computational mathemat-

ics [185]. Given a finite number of points {xK}K∈T ⊂ Rd, d ∈ {1, 2, 3}, a Voronoi cell

K contains all locations that are closest to the point xK ∈ K from the given point set

{xK}K∈T , i.e.,

K =
{
x ∈ Rd : ∥x− xK∥ < ∥x− xL∥ for all xL ∈ {xK}K∈T ,xL ̸= xK

}
.

The dual of a Voronoi diagram is a Delaunay triangulation, in the sense that the

Voronoi cells’ vertices are the Delaunay triangles’ circumcenters. As a result, explicitly

calculating Voronoi cells is unnecessary to implement the finite volume method based

on Voronoi meshes. Instead, we can work with a triangulation Ω =
⋃
K TK of a

computational domain Ω, where {TK}K is the family of non-overlapping simplices

and the simplicial contributions of the triangulation [71]. Delaunay triangulations of

computational domains can be efficiently generated using software such as Triangle

[218] for two-dimensional or TetGen [221] for three-dimensional domains. Figure 4.2

shows two partitions of a domain Ω, generated with Triangle, with the boundary of

the Voronoi cells highlighted in red and the boundary of the Delaunay simplices in gray.

Clearly, we see that the partition in Figure 4.2 (left) does not satisfy Ω =
⋃
K∈T K

(gray cells).

Figure 4.2.: Two Delaunay triangulations of a computational domain Ω with the boundary

of the Voronoi cells highlighted in red. In the left figure, the Voronoi cells do not satisfy

Ω =
⋃
K∈T K (see the gray cells), while the admissible Voronoi mesh in the right figure

is a product of a boundary conforming Delaunay mesh generation, by adding additional

points to the partition. The meshes are generated with Triangle [218].

However, by imposing additional constraints on the angles of Delaunay simplices and

adding additional points (Figure 4.2, right in red), a concept known as boundary
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4. Numerical analysis of vacancy-assisted charge transport models

conforming Delaunay triangulation [80, 91, 220, 222], we can construct admissible

Voronoi meshes in the sense of [70], as depicted in Figure 4.2 (right). In contrast

to our previous assumption that xK ̸∈ ∂Ω, which does not come from the definition

of admissible meshes, Figure 4.2 (right) illustrates that when a control volume K

intersects with the boundary, i.e., K ∩ ∂Ω ̸= ∅, we require that xK ∈ ∂Ω.

4.1.2. Finite volume discretization

Next, we formulate the implicit-in-time finite volume discretizations for the two charge

transport models (P), (PIC), (PBC) and (M), (MIC), (MBC), stated at the end

of Section 3.1.4 and Section 3.2.3, respectively. In what follows, the quantity umK
represents an approximation of the mean value of u(x, t) on the cell K at time tm,

where u is one of the potentials φn, φp, φa, ψ. With this, we can define the vector

um = (umK)K∈T . We note that for the anion vacancy quasi Fermi potential φa in

the perovskite application the approximation is only given for K ∈ Tintr, so that we

define φma = (φma,K)K∈Tintr . The discretizations of the doping profile C ∈ L∞(Ω), the

boundary data φD, ψD ∈ W 1,∞(Ω), and the photogeneration rate G ∈ L∞(Ω) (for

the PSC model) are expressed as integral averages over a cell K

χK =
1

mK

∫
K

χ(x)dx, K ∈ T , χ = C, G, ψD or φD. (4.2a)

For the boundary data, this results in the vectors ψD = (ψDK)K∈T and φD = (φDK)K∈T .

We discretize in the same way the initial conditions φ0
n, φ

0
p, φ

0
a, which lead to the

corresponding vectors φ0
n, φ

0
p and φ0

a. Furthermore, for a face σ ∈ ED located at the

Dirichlet boundary ΓD the Dirichlet functions ψD, φD are given as integral averages

over the face σ

χσ =
1

mσ

∫
σ

χ(γ)dγ, σ ∈ ED, χ = ψD, φD. (4.2b)

The discrete densities can be calculated via the dimensionless state equations (see (Pf)

and (Mf)) inside the domain and at the Dirichlet boundary, namely,

nmα = Fα (zα(φ
m
α −ψm)) , α ∈ {n, p, a}, m ∈ N, (4.3a)

nDα = Fα

(
zα(φ

D
α −ψD)

)
, α ∈ {n, p}, (4.3b)

nDα,σ = Fα

(
zα(φ

D
σ − ψDσ )

)
, α ∈ {n, p}, σ ∈ ED, (4.3c)

where the statistics function is applied pointwise to the first two input vectors. We

remark that the discrete values of the boundary densities, defined by (4.3b) and (4.3c),

are bounded but that the upper bound may be larger than ∥nDα ∥L∞ . Indeed, we have

max
{
max
K∈T

nDα,K ,max
σ∈ED

nDα,σ

}
≤ Fα(∥φD∥L∞ + ∥ψD∥L∞) =: yDα , for α ∈ {n, p}. (4.4)
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4.1. Discrete charge transport equations

Furthermore, we introduce the finite difference operator acting on vectors u = (uK)K ,

denoted by DK,σ. It is given by

DK,σu =


uL − uK , if σ = K|L,
uDσ − uK , if σ ∈ ED,u ̸= φa,u ̸= na

0, otherwise.

(4.5)

For the vacancy density na and the quasi Fermi potential φa, we have in case of

the PSC model that σ = K|L ∈ E int
intr, whereas in case of the memristive model

σ = K|L ∈ E int. Lastly, we discuss the choice of the time discretization method.

Because of the stiffness in drift-diffusion models arising from small non-dimensionalized

parameters such as the rescaled Debye length λ, fully implicit-in-time numerical

methods are usually preferred. Using the backward Euler method yields robustness

of the discretization schemes and asymptotic preserving properties for drift-diffusion

type models [18, 34]. To the best of our knowledge, there does not exist literature

proving such properties for higher order time and spatial FVM discretizations in the

context of drift-diffusion models. Hence, the discussion of other time discretizations is

omitted here, and we also rely on the backward Euler method. We refer to, e.g., [102,

103, 115] on a general overview of temporal discretization methods.

The finite volume method follows a general procedure in which we integrate the bulk

equations (P) and (M) over each control volume K ∈ T (resp. K ∈ Tintr for the

vacancies in the PSC model). We employ Gauss’ law to account for the current

densities and break down the surface integrals into the sum of integrals over the faces

σ ∈ EK . For instance, for the left-hand side of the Poisson equation, this means

∫
K

∆ψ dx =

∫
∂K

∇ψ · νK,σ dS =
∑
σ∈EK

∫
σ

∇ψ · νK,σ dS ≈
∑
σ∈EK

mσ
DK,σψ

m

dσ
,

where νK,σ is the unit normal to the face σ outward from the control volume K, and,

where we used a central difference flux approximation for ∇ψ · νK,σ. Furthermore, for

the right-hand side of the Poisson equation, we can apply one-point quadrature rules.

Similarly, we can formulate proper discrete counterparts of the other equations. We

proceed with formulating the numerical schemes.

Perovskite solar cells The finite volume scheme for (P), (PIC), (PBC) (see Sec-

tion 3.1.4) is given as follows. First, the discrete mass balance equations for the three
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4. Numerical analysis of vacancy-assisted charge transport models

charge carriers are for each time step m ∈ N given by

νznmK

nmn,K − nm−1
n,K

τm
+
∑
σ∈EK

Jmn,K,σ = znmK

(
γGK −R(nmn,K , n

m
p,K)

)
, K ∈ T , (DPa)

νzpmK

nmp,K − nm−1
p,K

τm
+
∑
σ∈EK

Jmp,K,σ = zpmK

(
γGK −R(nmn,K , n

m
p,K)

)
, K ∈ T , (DPb)

zamK

nma,K − nm−1
a,K

τm
+
∑
σ∈EK

Jma,K,σ = 0, K ∈ Tintr. (DPc)

They are coupled to the discrete Poisson equation for m ∈ N

−λ2
∑
σ∈EK

τσDK,σψ
m =


δmK(znn

m
n,K + zpn

m
p,K + CK), K ∈ T \ Tintr,

δmK(znn
m
n,K + zpn

m
p,K + CK)

+mKzan
m
a,K , K ∈ Tintr.

(DPd)

Memristive devices The finite volume scheme for (M), (MIC), (MBC) (see Sec-

tion 3.2.3) is given by the discrete mass balance equations for the three charge carriers.

For m ∈ N we have

νznmK

nmn,K − nm−1
n,K

τm
+

∑
σ∈EK

Jmn,K,σ = 0, K ∈ T , (DMa)

νzpmK

nmp,K − nm−1
p,K

τm
+

∑
σ∈EK

Jmp,K,σ = 0, K ∈ T , (DMb)

zamK

nma,K − nm−1
a,K

τm
+

∑
σ∈EK

Jma,K,σ = 0, K ∈ T , (DMc)

which are coupled to the discrete Poisson equation which reads for m ∈ N and K ∈ T

−λ2
∑
σ∈EK

τσDK,σψ
m = δnmK

(
znn

m
n,K + δp(zpn

m
p,K + CK)

)
+mKzan

m
a,K . (DMd)

In both numerical schemes (DP), (DM), we assume for α ∈ {n, p, a} that the discrete

current density Jmα,K,σ is a locally conservative and consistent approximation of
∫
σ
jα ·

νK,σ dS with νK,σ as the unit normal to the face σ outward from the control volume

K. We understand locally conservative in the sense that for σ = K|L the flux

approximation shall satisfy

Jmα,K,σ + Jmα,L,σ = 0, α ∈ {n, p, a}. (4.6)
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4.1. Discrete charge transport equations

We note that the finite difference operator DK,σ, defined in (4.5), is also locally

conservative. As a consequence of (4.6), the locally conservative fluxes agree up to sign

for any interior edge σ. This allows us to introduce for the finite difference operator

the notation

Dσu = |DK,σu|, for σ ∈ EK . (4.7)

A discussion of possible choices for the numerical charge carrier fluxes will be part of

the following section.

4.1.3. Charge carrier flux discretization

A correct choice of the discrete current densities Jmα,K,σ is a rather delicate issue as

the wrong choice may lead to instabilities or violation of thermodynamic principles.

For example, when choosing a second-order accurate central finite difference flux for

Jmα,K,σ, rigorous numerical analysis can be performed [30], but does not reflect physical

phenomena adequately generally, such as positivity of carrier densities or a discrete

maximum principle [71]. Furthermore, the first-order accurate upwind flux discretiza-

tions exist, which take the flow direction of the drift component of the continuous

current densities into account [243]. In the context of drift-diffusion models, they were

analyzed in, e.g., [19, 37, 38]. Moreover, we have the exponential fitting schemes. In

case of Boltzmann statistics (2.21), the resulting scheme was independently derived

several times [54, 111, 158, 203, 210]. In the framework of this thesis, we call this

family of discretizations Scharfetter-Gummel schemes, a name frequently used in

semiconductor physics [76, 203].

For a Boltzmann approximation as statistics function Fα, the classical Scharfetter-

Gummel scheme [210] (which corresponds to linear diffusion) results in a stable and

thermodynamically consistent two-point flux approximation scheme. The scheme is

proven to exhibit second-order convergence in the L2 norm for sufficiently smooth

solutions of two-dimensional problems [145]. The classical Scharfetter-Gummel ap-

proximation simplifies to the upwind scheme when the drift component dominates over

diffusion. Conversely, when the electric field, and consequently the drift, vanishes, it

coincides with the central difference flux [71]. A computationally costly generalization

can be formulated for statistics functions beyond the Boltzmann approximation but

cannot be expressed in closed form [68].

Hence, several modified numerically stable Scharfetter-Gummel flux discretizations,

which preserve the physical properties of the model, have recently been developed

and/or analyzed [19, 71–73, 85, 139, 140, 190]. These schemes deal with nonlinear

diffusion within the continuous current densities (see (2.28), (2.37)). In our following
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4. Numerical analysis of vacancy-assisted charge transport models

analysis, we maintain consistency with the descriptions of electron and hole current

densities (2.28) by assuming a constant mobility for the vacancies. This assumption

results in nonlinear diffusion within the drift-diffusion current density (2.37). For a

discussion of schemes for current densities that involve linear diffusion but a modified

drift component as stated in (2.38), we refer to, e.g., [DA6, 31–33, 105]. It is worth

noting that Scharfetter-Gummel based schemes, similar to those mentioned, have been

successfully employed in commercial software such as [46, 223, 233].

In the following, we use the excess chemical potential approximation as TPFA scheme

for Jmα,K,σ. The earliest reference, we could find for this thermodynamically consistent

discretization scheme is [255] which was later numerically analyzed in [30, 92] and

compared in [DA9, 132]. The derivation of the numerical flux is based on an equivalent

reformulation of the non-dimensionalized current densities jα = −z2αnα∇φα (see (Pe),

(Me)) with respect to the dimensionless excess chemical potential ηex := η − ηid. Here,

ηid := log nα denotes the ideal dimensionless chemical potential. For instance, for

the Boltzmann approximation, the dimensionless chemical potential reads η = log nα,

which results in ηex = log nα − ηid = 0. Thus, we can identify the excess chemical

potential ηex as a measure of degeneracy of the chemical potential from a Boltzmann

setup [15].

Using the dimensionless relation zαφα = ηα + zαψ and the fact that ∇ηid = ∇nα/nα,
we reformulate the current densities (Pe), (Me) to

jα = −z2αnα∇φα = −zαnα∇
(
η + zαψ + ηid − ηid

)
= −zα

(
∇nα + nα∇(zαψ + ηex)

)
= −zα

(
∇nα + nα∇(zαφα − log nα)

)
,

for α ∈ {n, p, a}. (4.8)

In the classical Scharfetter-Gummel scheme derivation, we assume that both the

electric field −∇ψ, and the current density jα remain constant along the connecting

vector xKxL between two neighboring control volumes K,L, see, e.g., [71]. Suppose we

additionally assume that the excess chemical potential gradient ∇ηex is also constant

along the vector xKxL. In that case, we can similarly derive the excess chemical

potential flux approximation which takes the following form for α ∈ {n, p, a}

Jmα,K,σ =


−zατσ

(
B
(
−Qm

α,K,σ

)
nmα,L −B

(
Qm
α,K,σ

)
nmα,K

)
, if σ = K|L,

−zατσ
(
B
(
−Qm

α,K,σ

)
nDα,σ −B

(
Qm
α,K,σ

)
nmα,K

)
, if σ ∈ ED, α ̸= a,

0, otherwise,

(DFa)
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4.1. Discrete charge transport equations

where the quantity Qm
α,K,σ is defined as

Qm
α,K,σ = DK,σ (zαφ

m
α − lognmα ) . (DFb)

In the previous formula, the logarithm is applied componentwise. Lastly, the function

B denotes the Bernoulli function

B(x) =
x

exp(x)− 1
, for x ∈ R \ {0} and B(0) = 1. (4.9)

It is worth noting that in case of the PSC discretization scheme (DP), if α = a in

(DF), then the face σ = K|L is only contained in the set of intrinsic interior faces, i.e.,

σ ∈ E int
intr and not in the set of all interior faces σ ∈ E int.

Remark 4.2. (Physical parameters) As explained at the beginning of Section 3.1.4 and

Section 3.2.3 (non-dimensionalization of models), we introduced several simplifications

for the physical parameters to enhance clarity in our presentation. To extend our

current schemes to include non-constant and/or different parameters, we must make

these parameters edge-dependent, involving the mobilities µn, µp, the permittivity

εs, and the effective densities of states Nn, Np. Edge-dependent parameters must

then be introduced into the flux discretization schemes (DF) as well as the sum of

the left-hand side of the Poisson equations (DPd), (DMd). For the effective density

of states, we must adapt the definitions of densities via the state equations (4.3)

accordingly. To consider non-zero but piecewise constant band-edge energies Eα, we

need to add the corresponding term in the state equations (4.3). Finally, we must

modify the definitions of the PSC discrete mass balances (DPa) and (DPb) to include

non-constant recombination parameters entering (3.3).

Remark 4.3. (Boundary conditions) Observe that all the boundary conditions have

been considered in the definition of the schemes. The external Neumann (PBCa),

(MBCa) and Dirichlet boundary conditions (PBCb), (MBCb) for the electric potential

are handled in the definition of the finite difference operator (4.5). For the quasi Fermi

potentials of electrons and holes external boundary conditions are included in the

definition of the finite difference operator (4.5) as well as in the flux discretization

scheme (DF) (and in the discrete state equation (4.3c) entering the flux discretiza-

tion). The Neumann boundary conditions for the vacancies of both applications

(PBCc), (MBCc) are included in the definition of (DF). Finally, observe that for the

discretization scheme of PSCs the continuity of fluxes of electrons, holes and electric

potential through the interfaces ΣETL and ΣHTL ((PBCd), (PBCe), and (PBCf)) is

automatically ensured thanks to the flux conservation property (4.6).
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At first glance, it might not be obvious why the flux scheme (DF) is a discrete version

of the current density jα = −z2αnα∇φα (see (Pe) and (Me)). It turns out that we can

define for α ∈ {n, p, a}

nmα,σ :=



B(−Qm
α,K,σ)n

m
α,L −B(Qm

α,K,σ)n
m
α,K

zα(φmα,L − φmα,K)
, if σ = K|L,

B(−Qm
α,K,σ)n

D
α,σ −B(Qm

α,K,σ)n
m
α,K

zα(φDσ − φmα,K)
, if σ ∈ ED ∩ EK , α ̸= a,

0, otherwise,

(4.10)

and equivalently rewrite the excess chemical potential scheme (DF) to

Jmα,K,σ = −z2ατσnmα,σDK,σφ
m
α , for all α ∈ {n, p, a}. (4.11)

We note that, as before, in case of the finite volume scheme for the perovskite solar

cell charge transport model, we have in case of halide vacancies α = a for the faces

only σ = K|L ∈ E int
intr in (4.10), whereas in all other cases σ = K|L ∈ E int. Moreover,

nmα,σ is well-defined in the sense that thanks to the conservation property (4.6), nmα,σ
depends only on the edge (and not nodal values) as well as the fact that a boundary

edge has only one associated control volume. The reformulation of the discrete fluxes

(4.11) now is closer to the continuous current density jα = −z2αnα∇φα (see (Pe) and

(Me)), but the analogy would not be complete, if nmα,σ is not consistent with the density

at the interface σ. This is actually the case as the following lemma shows which is

adapted from [30, Lemma 3.1].

Lemma 4.4. Let α ∈ {n, p, a}. The interface value nmα,σ defined by (4.10) is a convex

combination of nmα,K and nmα,L (resp. nDα,σ for α ̸= a), if σ = K|L (resp. σ ∈ ED for

α ̸= a). In particular, it is enclosed between the minimum and the maximum of the

two values nmα,K and nmα,L (resp. nDα,σ for α ̸= a).

Proof. Let α ∈ {n, p, a}. It suffices to observe that for σ = K|L (the boundary case

can be readily adapted),

nmα,σ =
B(y)−B(x)

x− y
nmα,L +

B(−x)−B(−y)
x− y

nmα,K , (4.12)

with x = DK,σ logn
m
α and y = −Qm

α,K,σ. Using the fact that the Bernoulli function

is decreasing, B(y) − B(−y) = −y, and B(−x) − B(x) = x, we observe that the

coefficients in (4.12) are non-negative and sum to 1. Hence, the claim follows. We

refer to [30] for additional details concerning this computation.
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4.2. Existence of a discrete solution

The goal of this section is to establish the existence of a discrete solution corresponding

to the two implicit-in-time TPFA finite volume schemes (DP), (DM) with the flux

approximation (DF). The discretizations consist of a nonlinear system of equations at

each time step. Knowing the solution at step m− 1, we establish the existence of a

solution at time step m. We consider the quasi Fermi potentials and the electrostatic

potential as unknowns of the nonlinear system of equations, as the charge carrier

densities are functions of these potentials through the statistical relation (4.3).

The primary tool of our analysis is a discrete counterpart of the continuous entropy-

dissipation inequalities in Theorem 3.5 and Theorem 3.7. For further information

on the entropy method for finite volume schemes, we refer to [36]. We proceed as

follows: In Section 4.2.1, we adapt the arguments of the continuous entropy-dissipation

calculations to show in Theorem 4.5 and Theorem 4.6 that an analogous inequality also

holds for a solution of the implicit-in-time FVM schemes. We continue in Section 4.2.2

with showing the existence and uniqueness of a discrete electric potential for given

quasi Fermi potentials associated with the Poisson equation. Then, we prove in Section

4.2.3 some a priori estimates on the quasi Fermi and electrostatic potentials, obtained

as consequences of the bounds on the entropy and the dissipation. Lastly, Section 4.2.4

shows the existence of quasi Fermi potentials, which finalizes the proof of the existence

of discrete solutions stated in Theorem 4.15 and Theorem 4.16. The proofs rely on

a corollary of Brouwer’s fixed point theorem for the quasi Fermi potentials, coupled

with the minimization of a convex functional for the electric potential.

4.2.1. Discrete entropy-dissipation inequality

This section aims to prove the discrete entropy-dissipation inequalities presented in

Theorem 4.5 and Theorem 4.6, which serve as discrete counterparts of Theorem 3.5

and Theorem 3.7.

Perovskite solar cells We consider the problem (P) with the initial conditions

(PIC) and the boundary conditions (PBC) (see Section 3.1.4). The implicit-in-time

finite volume scheme is given by (DP), (DF). In the following, we derive a discrete

counterpart of Theorem 3.5 for the discrete relative entropy (m ∈ N)

EmT =
λ2

2

∑
σ∈E

τσ
(
Dσ(ψ

m −ψD)
)2

+ δ
∑

α∈{n,p}

∑
K∈T

mKHα(n
m
α,K , n

D
α,K)

+
∑

K∈Tintr

mKΦa(n
m
a,K),

(4.13)
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4. Numerical analysis of vacancy-assisted charge transport models

where Φ′
a = F−1

a (see (3.40)) and Hα(x, y) = Φα(x)−Φα(y)−Φ′
α(y)(x−y) (see (3.41)).

Furthermore, we introduced the notation Dσu = |DK,σu| (see (4.7)). Since we assume

that Φa ≥ 0, the overall discrete entropy EmT is non-negative. Taking into account the

fact that z2α = 1 for α ∈ {n, p}, the corresponding discrete non-negative dissipation

Dm
T for m ∈ N is given by

Dm
T =

δ

ν

∑
K∈T

mKR(n
m
n,K , n

m
p,K)

(
φmp,K − φmn,K

)
+

δ

2ν

∑
α∈{n,p}

∑
σ∈E

τσn
m
α,σ(Dσφ

m
α )

2

+
z2a
2

∑
σ∈E int

intr

τσn
m
a,σ(Dσφ

m
a )

2.

(4.14)

With this, we formulate the discrete entropy-dissipation inequality for the PSC model.

Theorem 4.5. (Discrete entropy-dissipation inequality for a PSC model) Let m ∈ N.
For any solution to the finite volume scheme (DP), (DF) and any ε > 0 one has the

following entropy-dissipation inequality: There is a constant cε,Ω,ξ > 0 such that

EmT − Em−1
T

τm
+ Dm

T ≤ cε,Ω,ξ + εEmT , (4.15)

where the entropy EmT is defined in (4.13) and the dissipation Dm
T in (4.14). The

constant cε,Ω,ξ depends solely on ε, the measure of Ω, the mesh regularity ξ > 0, the

boundary data and the photogeneration term via the norms ∥G∥L∞ , ∥φD∥W 1,∞ and

∥ψD∥W 1,∞ , as well as on z2a and the dimensionless parameters δ, γ and ν. If G = 0

and ∇φD = ∇ψD = 0, then the right-hand side of (4.15) vanishes.

Proof. Let m ∈ N. We start by considering the difference of the entropy EmT defined

in (4.13) evaluated at time tm and tm−1, that is

EmT − Em−1
T =

λ2

2

∑
σ∈E

τσ

((
Dσ(ψ

m −ψD)
)2 − (

Dσ(ψ
m−1 −ψD)

)2)
+ δ

∑
K∈T

mK

(
Φn(n

m
n,K)− Φn(n

m−1
n,K )− Φ′

n

(
nDn,K

)
(nmn,K − nm−1

n,K )
)

+ δ
∑
K∈T

mK

(
Φp(n

m
p,K)− Φp(n

m−1
p,K )− Φ′

p

(
nDp,K

)
(nmp,K − nm−1

p,K )
)

+
∑

K∈Tintr

mK

(
Φa(n

m
a,K)− Φa(n

m−1
a,K )

)
.

(4.16)

First, we apply −b2 ≤ −a2+2(a−b)a for a, b ∈ R to the electric potential contribution((
Dσ(ψ

m −ψD)
)2−(

Dσ(ψ
m−1 −ψD)

)2) ≤ 2DK,σ

(
ψm −ψm−1

)
DK,σ

(
ψm −ψD

)
.
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4.2. Existence of a discrete solution

Second, since Φα is convex, i.e., −Φα(y) ≤ −Φα(x) + Φ′
α(x)(x− y) for x, y ∈ R, we

can estimate for α ∈ {n, p, a}

−Φα(n
m−1
α,K ) ≤ −Φα(n

m
α,K) + Φ′

α(n
m
α,K)(n

m
α,K − nm−1

α,K ).

Applying now the previous two estimates to the right-hand side of (4.16), we receive

EmT − Em−1
T ≤λ2

∑
σ∈E

τσDK,σ

(
ψm −ψm−1

)
DK,σ

(
ψm −ψD

)
+ δ

∑
α∈{n,p}

∑
K∈T

mK

(
F−1
α (nmα,K)−F−1

α

(
nDα,K

)) (
nmα,K − nm−1

α,K

)
+

∑
K∈Tintr

mKF−1
a (nma,K)

(
nma,K − nm−1

a,K

)
,

(4.17)

where we used Φ′
α = F−1

α . Furthermore, for the first sum in the above inequality,

S := λ2
∑
σ∈E

τσDK,σ

(
ψm −ψm−1

)
DK,σ

(
ψm −ψD

)
,

we use a discrete integration by parts, stated in Lemma A.7(i), with u = ψm −ψm−1,

and insert the discrete Poisson equation (DPd) to get

S =− λ2
∑
K∈T

∑
σ∈EK

τσDK,σ

(
ψm −ψm−1

) (
ψmK − ψDK

)
= δ

∑
α∈{n,p}

∑
K∈T

mKzα
(
nmα,K − nm−1

α,K

) (
ψmK − ψDK

)
+

∑
K∈Tintr

mKza
(
nma,K − nm−1

a,K

) (
ψmK − ψDK

)
.

Plugging this relation back into the initial estimate (4.17), and using the relation

zαφα = F−1
α (nα) + zαψ, we obtain

EmT − Em−1
T ≤ δ

∑
α∈{n,p}

∑
K∈T

mKzα
(
φmα,K − φDK

) (
nmα,K − nm−1

α,K

)
+

∑
K∈Tintr

mKza
(
φma,K − ψDK

) (
nma,K − nm−1

a,K

)
.

(4.18)

Now, we divide by the time step size τm and insert the mass balance equations (DPa),

(DPb), (DPc)

EmT − Em−1
T

τm
≤− δ

ν

∑
α∈{n,p}

∑
K∈T

∑
σ∈EK

Jmα,K,σ
(
φmα,K − φDK

)
−

∑
K∈Tintr

∑
σ∈EK

Jma,K,σ
(
φma,K−ψDK

)
+
δ

ν

∑
α∈{n,p}

∑
K∈T

zαmK

(
γGK −Rm

K

) (
φmα,K − φDK

)
,
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where we introduce the abbreviation Rm
K := R(nmn,K , n

m
p,K). Next, we perform a discrete

integration by parts (see Lemma A.7(ii) and (iii)) and use zn = −1 = −zp to deduce

EmT − Em−1
T

τm
≤ δ

ν

∑
α∈{n,p}

∑
σ∈E

Jmα,K,σDK,σ

(
φmα −φD

)
+

∑
σ∈E int

intr

Jma,K,σDK,σ

(
φma −ψD

)
− δ

ν

∑
K∈T

mKR
m
K

(
φmp,K − φmn,K

)
+
δγ

ν

∑
K∈T

mKGK

(
φmp,K − φmn,K

)
.

Furthermore, we insert the fluxes Jmα,K,σ = −z2ατσnmα,σDK,σφ
m
α (see (4.11)) dependent

on the interface density nmα,σ defined in (4.10) and use z2n = z2p = 1

EmT − Em−1
T

τm
≤− δ

ν

∑
α∈{n,p}

∑
σ∈E

τσn
m
α,σDK,σφ

m
αDK,σ

(
φmα −φD

)
− z2a

∑
σ∈E int

intr

τσn
m
a,σDK,σφ

m
a DK,σ

(
φma −ψD

)
− δ

ν

∑
K∈T

mKR
m
K

(
φmp,K − φmn,K

)
+
δγ

ν

∑
K∈T

mKGK

(
φmp,K − φmn,K

)
.

After using the inequality −a(a− b) ≤ −(a2 − b2)/2 for a, b ∈ R in the first two sums

and adding the dissipation defined in Dm
T in (4.14), we obtain

EmT − Em−1
T

τm
+ Dm

T ≤ δ

2ν

∑
α∈{n,p}

∑
σ∈E

τσn
m
α,σ (Dσφ

D)2 +
z2a
2

∑
σ∈E int

intr

τσn
m
a,σ (Dσψ

D)2

+
δγ

ν

∑
K∈T

mKGK

(
φmp,K − φmn,K

)
,

(4.19)

where Dσu = |DK,σu| (see (4.7)). At this stage, it is evident that if G = 0 and

∇φD = ∇ψD = 0, then our claim holds for a vanishing right-hand side, and we can

formulate a discrete equivalent of Remark 3.6. In the general case, it remains to

estimate the different remainder terms in the right-hand side of (4.19), which we

denote by S1, S2 and S3, respectively. We need the following intermediate result for

the remainder terms S1 and S2 in (4.19). Let σ = K|L ∈ E int. Then, we have the

following estimates for the discrete approximation φD = (φD)K∈T of the boundary

data φD ∈ W 1,∞(Ω)

Dσφ
D

dσ
≤ 1

dσmKmL

∫
K

∫
L

|φD(x)− φD(y)| dx dy

≤ diam(K) + diam(L)

dσ
∥∇φD∥L∞ ≤ 2

ξ
∥∇φD∥L∞ .

(4.20)
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4.2. Existence of a discrete solution

The last inequality holds also when σ ∈ ED or when replacing φD with ψD. We

can prove the first inequality by using the integral average descriptions (4.2), the

second with the mean value theorem, and the last inequality with the help of the first

regularity assumption (4.1) (dσ ≥ ξ diam(K)). Going back to the first remainder term

of (4.19), we set

S1 =
δ

2ν

∑
α∈{n,p}

∑
σ∈E

mσ

dσ
nmα,σ (Dσφ

D)2,

where we inserted τσ = mσ/dσ. Since the interface value n
m
α,σ is the convex combination

of the two neighboring non-negative densities (see Lemma 4.4), it is bounded from

above by the sum of these densities, i.e.,

∑
σ∈E

nmα,σ =
∑
σ∈E int

nmα,σ +
∑
σ∈ED

nmα,σ ≤ 2
∑
K∈T

∑
σ∈EK

nmα,K +
∑
σ∈ED

nmα,σ,

where due to the definition in (4.10) we have nmα,σ = 0 for σ ∈ ED. The previous

estimate and Dσφ
D/dσ ≤ 2

ξ
∥∇φD∥L∞ (see (4.20)) yield for S1

S1 ≤
2δ

νξ2
∥∇φD∥2L∞

∑
α∈{n,p}

∑
σ∈E

mσ dσn
m
α,σ

≤ 2δ

νξ2
∥∇φD∥2L∞

∑
α∈{n,p}

(
2
∑
K∈T

nmα,K
∑
σ∈EK

mσ dσ +
∑
σ∈ED

mσ dσn
m
α,σ

)
≤ 2δ

νξ2
∥∇φD∥2L∞

∑
α∈{n,p}

(2
ξ

∑
K∈T

mKn
m
α,K + |Ω|yDα

)
,

(4.21)

where we used the second regularity assumption in (4.1) (mK ≥ ξ
∑

σ∈EK mσdσ) and

estimated the interface density by the upper bounds yDα = Fα(∥φD∥L∞ + ∥ψD∥L∞) for

α ∈ {n, p} (see (4.4)). Similarly, we define the remainder term in (4.19) corresponding

to the vacancy contribution as S2 and establish the estimate

S2 =
z2a
2

∑
σ∈E int

intr

τσn
m
a,σ (Dσψ

D)2 ≤ 4z2a
ξ3

∥∇ψD∥2L∞

∑
K∈Tintr

mKn
m
a,K . (4.22)

With (4.21), (4.22) and Lemma 3.3, we find for some ε > 0 with the corresponding
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constants cε, cyDn ,ε, cyDp ,ε > 0

S1 + S2 ≤
4

νξ3
∥∇φD∥2L∞δ

∑
α∈{n,p}

∑
K∈T

mKn
m
α,K +

4z2a
ξ3

∥∇ψD∥2L∞

∑
K∈Tintr

mKn
m
a,K

+
2δ

νξ2
∥∇φD∥2L∞|Ω|(yDn + yDp )

≤ 4

νξ3
∥∇φD∥2L∞δ

∑
α∈{n,p}

∑
K∈T

mK

(
cyDα ,ε + εHα(n

m
α,K , n

D
α,K)

)
+

4z2a
ξ3

∥∇ψD∥2L∞

∑
K∈Tintr

mK

(
cε + εΦa(n

m
a,K)

)
+

2δ

νξ2
∥∇φD∥2L∞|Ω|(yDn + yDp )

≤ cξ

(
cε,Ω,ξ + εδ

∑
α∈{n,p}

∑
K∈T

mKHα(n
m
α,K , n

D
α,K) + ε

∑
K∈Tintr

mKΦa(n
m
a,K)

)
≤ cξ (cε,Ω,ξ + εEmT ) ,

since the first term of the entropy (4.13) is non-negative. We set the constants to

cξ = max
{ 4

νξ3
∥∇φD∥2L∞ ,

4z2a
ξ3

∥∇ψD∥2L∞

}
,

cε,Ω,ξ = δcyDn ,ε|Ω|+ δcyDp ,ε|Ω|+ cε|Ωintr|+
2δ

νξ2cξ
∥∇φD∥2L∞|Ω|(yDn + yDp ).

For the last remainder term coming from the photogeneration we have

S3 =
δγ

ν

∑
K∈T

mKGK

(
φmp,K − φmn,K

)
=
δγ

ν

∑
α∈{n,p}

∑
K∈T

mKGKF−1
α (nmα,K),

where we used φα = F−1
α (nα)/zα + ψ and zn = −1 = −zp. Furthermore, we use

Lemma 3.4 to estimate

S3 ≤
δγ

ν

(
max
K∈T

GK

) ∑
α∈{n,p}

∑
K∈T

mK max{F−1
α (nmα,K), 0}

≤ γ

ν
||G||L∞δ

∑
α∈{n,p}

∑
K∈T

mK

(
cyDα ,ε + εHα(n

m
α,K , n

D
α,K)

)
≤ γ

ν
||G||L∞

(
δcyDn ,ε|Ω|+ δcyDp ,ε|Ω|+ εEmT

)
,

since the other two contributions of the entropy EmT defined in (4.13) are non-negative.

If we combine everything back into (4.19) for redefined constants cξ, cε,Ω,ξ > 0 depend-

ing on all the aforementioned quantities, we find

EmT − Em−1
T

τm
+ Dm

T ≤ S1 + S2 + S3 ≤ cξ

(
cε,Ω,ξ + 2εEmT

)
. (4.23)
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Since cξ does not depend on ε, this is equivalent to the desired inequality (4.15) up to

a redefinition of ε and cε,Ω,ξ.

In the same way, we can prove a discrete entropy-dissipation inequality for TMDC-

based memristors.

Memristive devices The memristive model is given by (M), with initial conditions

(MIC) and boundary conditions (MBC) (see Section 3.2.3). The underlying implicit-

in-time finite volume scheme is formulated in (DM), (DF). Analogously to (4.13), we

define a total relative entropy for m ∈ N

EmT =
λ2

2

∑
σ∈E

τσ
(
Dσ(ψ

m −ψD)
)2

+ δn
∑
K∈T

mKHn(n
m
n,K , n

D
n,K)

+ δnδp
∑
K∈T

mKHp(n
m
p,K , n

D
p,K) +

∑
K∈T

mKΦa(n
m
a,K),

(4.24)

where Φ′
a = F−1

a (see (3.40)) and Hα(x, y) = Φα(x) − Φα(y) − Φ′
α(y)(x − y) for

α ∈ {n, p} (see (3.41)). Since we assume that Φa ≥ 0, the overall discrete entropy EmT
is non-negative. The non-negative dissipation rate for m ∈ N is defined as

Dm
T =

δn
2ν

∑
σ∈E

τσn
m
n,σ(Dσφ

m
n )

2 +
δnδp
2ν

∑
σ∈E

τσn
m
p,σ(Dσφ

m
p )

2

+
z2a
2

∑
σ∈E

τσn
m
a,σ(Dσφ

m
a )

2,

(4.25)

and with this, we can formulate a discrete entropy-dissipation inequality.

Theorem 4.6. (Discrete entropy-dissipation inequality for a memristive model) Let

m ∈ N. For any solution to the finite volume scheme (DM), (DF) and any ε > 0 one

has the following entropy-dissipation inequality: There is a constant cε,Ω,ξ > 0 such

that
EmT − Em−1

T
τm

+ Dm
T ≤ cε,Ω,ξ + εEmT , (4.26)

where the entropy EmT is defined in (4.24) and the dissipation Dm
T in (4.25). The

constant cε,Ω,ξ depends solely on ε, the measure of Ω, the mesh regularity ξ > 0,

the boundary data via the norms ∥φD∥W 1,∞ and ∥ψD∥W 1,∞ , as well as on z2a and the

dimensionless parameters δn, δp and ν. If ∇φD = ∇ψD = 0, then the right-hand side

of (4.26) vanishes. □

The proof of Theorem 4.6 follows a similar structure as the proof of Theorem 4.5

and is therefore omitted here. From the discrete entropy-dissipation inequality in
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Theorem 4.5 (resp. Theorem 4.6), we can deduce some bounds on the entropy EmT in

(4.13) (resp. (4.24)) and on the cumulated dissipation
∑m

k=1 τ
kDk

T for any m ≥ 1 with

Dk
T defined in (4.14) (resp. (4.25)). The proof relies on similar ideas to those used in

the proof of Grönwall’s lemma, as explained in Appendix A.4.

Corollary 4.7. Let EmT and Dm
T be given by (4.13) and (4.14) (resp. (4.24) and (4.25)).

Provided that ε < (∆t)−1, where ∆t = maxm∈N{τm}, one has for any m ≥ 1 that

EmT +
m∑
j=1

τ jDj
T ≤ (1− ε∆t)−mE0

T +
cε,Ω,ξ
ε

(
(1− ε∆t)−m − 1

)
. (4.27)

Proof. For j ∈ N we define Kj
T = EjT +

cε,Ω,ξ

ε
. It is worth noting that by using (4.15)

(resp. (4.26)) we get

Kj
T −Kj−1

T + τ jDj
T ≤ ετ jKj

T ≤ ε∆tKj
T , j ∈ N, (4.28)

where we multiplied (4.15) (resp. (4.26)) with τ j. Furthermore, for j ∈ N, we define

wj = Kj
T (1− ε∆t)j. Using (4.28) we obtain that

wj − wj−1 + (1− ε∆t)j−1τ jDj
T = (1− ε∆t)j−1

[
Kj

T −Kj−1
T + τ jDj

T − ε∆tKj
T

]
≤ 0,

and summing over j, we get

wm − w0 +
m∑
j=1

(1− ε∆t)j−1τ jDj
T ≤ 0.

We now multiply the last inequality by (1− ε∆t)−m which yields

Km
T +

m∑
j=1

(1− ε∆t)−(m−j+1)τ jDj
T ≤ (1− ε∆t)−mK0

T .

Since (1− ε∆t)−(m−j+1) ≥ 1, we find

Km
T +

m∑
j=1

τ jDj
T ≤ (1− ε∆t)−mK0

T ,

which proves (4.7) after inserting K0
T , Km

T and rearranging terms.

Corollary 4.7 provides the discrete counterpart to Corollary 3.9, demonstrating that

the discrete entropy EmT and the cumulated dissipation
∑m

k=1 τ
kDk

T remain locally

bounded by an exponential for m ∈ N. This result is based on the observation that

for any fixed ε > 0, we have (1− ε∆t)−m = exp(m log( 1
1−ε∆t)) and 0 < ε∆t < 1. In

particular, the boundedness of the entropy and the dissipation for a fixed time are

needed to establish the existence of discrete solutions in Section 4.2.4.
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4.2.2. Existence of electric potential

In the following, we neglect the superscript m, and denote by X the vector containing

the unknown quasi Fermi potentials which we define by

X =
(
(φn,K − φDn,K)K∈T , (φp,K − φDp,K)K∈T , (φa,K − ψDK)K∈Ta

)
, (4.29)

where in case of the PSC discretization scheme (DP), (DF) we have Ta := Tintr.

Analogously, we set for the memristive device scheme (DM), (DF) the family of control

volumes to Ta := T .

This section aims to show the existence of a unique electric potential ψ = (ψK)K∈T
solving the Poisson equation of the discretization schemes dependent on the vector of

unknowns X.

Lemma 4.8. (Existence of electric potential) Let X denote the vector containing the

unknown quasi Fermi potentials as defined in (4.29). Suppose that X is given. Then,

there exists a unique solution ψ(X) to the discrete nonlinear Poisson equation (DPd)

(resp. (DMd)). Furthermore, the mapping X 7→ ψ(X) is continuous.

For the proof of Lemma 4.8, we rely on the following lemma, which addresses the

conditions under which a real-valued function f has a (unique) global minimum.

Lemma 4.9. (Existence of (unique) global minimum) Let N ∈ N and f : RN → R
be a continuous and coercive function.

(i) Then, f has at least one global minimum x∗ ∈ RN .

(ii) Suppose that f is additionally differentiable and strictly convex. Then, the global

minimum x∗ ∈ RN of f is unique.

To establish Lemma 4.9, we will employ the extreme value theorem, which can be

found in, e.g., [205, Theorem 4.16]. We will state the theorem without a proof.

Theorem 4.10. (Extreme value theorem) Let D ⊂ RN be compact and f : D → R
be a continuous function. Then, f attains its maximum and minimum on D. □

Proof of Lemma 4.9. We start with the proof of (i). On the one hand, according to

the extreme value theorem (see Theorem 4.10), we can deduce the existence of a local

minimum x∗ ∈ B(0,M) with M > 0, which satisfies

f(0) ≥ f(x∗), for 0,x∗ ∈ B(0,M).
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On the other hand, due to the coercivity of f , we know that as ∥x∥ → +∞, f(x) →
+∞, which implies that for a sufficiently large M > 0, we have

f(x) > f(0) ≥ f(x∗), for ∥x∥ > M.

The above inequality shows that x∗ is a global minimum. The assumption in (ii) that

f is strictly convex and differentiable implies that f satisfies for x,y ∈ RN

f(y) > f(x) +∇f(x)T (y − x).

Therefore, for an existing global minimum x∗, for which it holds ∇f(x∗) = 0, we can

conclude that f(y) > f(x∗) for all y ∈ RN . This means that the global minimum

x∗ ∈ RN is unique.

We continue by proving the existence of a discrete electric potential for given quasi

Fermi potentials, as stated in Lemma 4.8.

Proof of Lemma 4.8. We will only demonstrate the claim for the discrete Poisson

equation associated with the PSC discretization scheme (DPd). The proof for the

Poisson equation associated with the memristive model (DMd) follows a similar logic.

It is worth noting that the boundary conditions are already incorporated in both

(DPd) and (DMd), as indicated by Remark 4.3. We define the discrete functional J
for Ψ = (ΨK)K ∈ RN as follows:

J (Ψ) = − δ
∑
K∈T

mKCKΨK + δ
∑

α∈{n,p}

∑
K∈T

mKGα(zα(φα,K −ΨK))

+
λ2

2

∑
σ∈E

τσ(DσΨ)2 +
∑

K∈Tintr

mKGa(za(φa,K −ΨK)).

Here, Gα denotes an antiderivative of Fα for α ∈ {n, p, a}. Since Gα is increasing and

Fα vanishes at −∞ (due to (H1) and (H2), stated in Section 2.3.1 and Section 2.4.2),

the antiderivative Gα is bounded from below. Furthermore, the K-th component of

∇J is given by

∂J
∂ΨK

=



− δmK

(
CK +

∑
α∈{n,p}

zαFα(zα(φα,K −ΨK))
)

− λ2
∑
σ∈EK

τσDK,σΨ, K ∈ T \ Tintr,

− δmK

(
CK +

∑
α∈{n,p}

zαFα(zα(φα,K −ΨK))
)

− λ2
∑
σ∈EK

τσDK,σΨ−mKzaFa(za(φa,K −ΨK)), K ∈ Tintr.
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We conclude that a solution ψ to the discrete Poisson equation (DPd) satisfies

∇J (ψ) = 0. Therefore, finding a unique minimizer ψ of J is equivalent to finding

a unique solution ψ to the discrete Poisson equation. The existence of such unique

global minimum follows from Lemma 4.9. Therefore, we need to demonstrate that the

assumptions of Lemma 4.9 are satisfied. Indeed, J is continuous and differentiable.

Since Gα is bounded from below, the coercivity of J follows from the coercivity of

H(Ψ) = λ2

2

∑
σ∈E τσ(DσΨ)2 − δ

∑
K∈T mKCKΨK . We can establish the coercivity of

H as follows. The discrete Poincaré inequality [70, Lemma 3.1] shows that we can

bound the first term of H from below. Furthermore, Hölder’s inequality implies that

∥Ψ∥L1 ≤ MH∥Ψ∥L2 for some constant MH > 0, where we specifically refer to the

discrete approximations of the Lp norms [149]. In total, we obtain

H(Ψ) =
λ2

2

∑
σ∈E

τσ(DσΨ)2 − δ
∑
K∈T

mKCKΨK ≥ λ2

2|Ω|2
∥Ψ∥2L2 − δ|Ω|∥C∥L∞∥Ψ∥L1

≥ λ2

2|Ω|2
∥Ψ∥2L2 − δMH |Ω|∥C∥L∞∥Ψ∥L2 ,

where the right-hand side tends to +∞ as ∥Ψ∥L2 → +∞. This means that H is

coercive, and consequently, J is also coercive. From Lemma 4.9(i) we can conclude

the existence of a global minimum Ψ = ψ. The strict convexity of J , due to being a

sum of a strictly convex and convex functions, gives the uniqueness of this minimum

at Ψ = ψ (see Lemma 4.9(ii)). Therefore, the original claim, that there exists a

unique solution to the discrete Poisson equation (DPd) for given quasi Fermi potentials

X, is established. Finally, we can prove the continuity of X 7→ ψ(X) by applying

the implicit function theorem to ∇J . To do this, we need to demonstrate that the

Hessian of J with respect to Ψ is non-singular. This can be achieved by showing

that the Hessian of J is strictly diagonally dominant [241, Theorem 1.21], which is

straightforward given the description of the diagonal entries of the Hessian of J

∂2J
∂ΨK∂ΨK

=



δmK

∑
α∈{n,p}

z2αF ′
α(zα(φα,K −ΨK)) + λ2

∑
σ∈EK

τσ, K ∈ T \ Tintr,

δmK

∑
α∈{n,p}

z2αF ′
α(zα(φα,K −ΨK)) + λ2

∑
σ∈EK

τσ

+mKz
2
aF ′

a(za(φa,K − ψK)), K ∈ Tintr,

and the fact that the off-diagonal components solely contain information about the

scaled transmissibility τσ of one edge. Moreover, due to (H1) and (H2) we have F ′
α > 0

for α ∈ {n, p, a} which completes the proof.

As a consequence of Lemma 4.8 we can interpret the discrete electric potential as a

continuous map ψ = ψ(X).
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4.2.3. A priori estimates

Due to Lemma 4.8, we denote the discrete entropies (4.13), (4.24) by ET (X) and

its associated dissipation functionals (4.14), (4.25) by DT (X), where X is defined in

(4.29). In this dissipation, we may distinguish the contributions of electrons, holes,

and vacancies. Therefore, we introduce the following notation DT ,α for α ∈ {n, p, a}.
In case of the PSC discretization scheme (DP), (DF), we have

DT ,α(X) =
δ

2ν

∑
σ∈E

τσnα,σ(Dσφα)
2, for all α ∈ {n, p}, (4.30)

DT ,a(X) =
z2a
2

∑
σ∈E int

intr

τσna,σ(Dσφa)
2, (4.31)

and, analogously, for the TMDC memristive device discretization scheme (DM), (DF),

we set

DT ,n(X) =
δn
2ν

∑
σ∈E

τσnn,σ(Dσφn)
2, DT ,p(X) =

δnδp
2ν

∑
σ∈E

τσnp,σ(Dσφp)
2, (4.32)

DT ,a(X) =
z2a
2

∑
σ∈E

τσna,σ(Dσφa)
2. (4.33)

In the following, we prove some a priori estimates on the set of unknowns following

from bounds on the entropy and dissipation. We start in Lemma 4.11 with a bound

on the electric potential.

Lemma 4.11. (Bound for electrostatic potential) Assume that there exists a constant

ME > 0 such that ET (X) ≤ME. Then, there exists some MB > 0 depending on ME,

λ, T , and ψD such that

−MB ≤ ψK ≤MB, ∀K ∈ T . (4.34)

Proof. As the (relative) entropy contributions of the charge carriers α ∈ {n, p, a} are

non-negative, the bound on ET (X) directly implies a bound on the electric energy

contribution,
λ2

2

∑
σ∈E

τσ(Dσ(ψ −ψD))2 ≤ME,

where the difference operator Dσu = |DK,σu| is defined in (4.5) and (4.7) for some u.

We deduce (4.34) by starting with a fixed control volume K∗ ∈ T so that EK ∩ED ̸= ∅.
This means that K∗ has a face σ located on the Dirichlet boundary. For such
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4.2. Existence of a discrete solution

σ∗ ∈ EK∗ ∩ ED ̸= ∅, it holds

λ2

2
τσ∗|ψK∗ − ψDK∗|2 =

λ2

2
τσ∗|DK∗,σ∗(ψ −ψD)|2 = λ2

2
τσ∗(Dσ∗(ψ −ψD))2

≤ λ2

2

∑
σ∈EK∗

τσ(Dσ(ψ −ψD))2

≤ λ2

2

∑
σ∈E

τσ(Dσ(ψ −ψD))2 ≤ME.

Since ψD ∈ W 1,∞(Ω), we can deduce a bound on |ψK∗ | depending on ME, λ, ψ
D and

also T (due to the occurrence of τσ = mσ/dσ). Proceeding now with an interior edge

σ = K∗|L, we observe that

λ2

2
τσ(|ψL − ψDL | − |ψK∗ − ψDK∗|)2 ≤

λ2

2
τσ(|ψL − ψK∗ − (ψDL − ψDK∗)|)2

=
λ2

2
τσ(Dσ(ψ −ψD))2 ≤ME,

which shows that |ψL| is also bounded due to the boundedness of ψK∗ , ψDK∗ , and ψDL .

From these bounds, and by using the connectedness of the mesh and the finite number

of control volumes one can inductively get a uniform finite bound for all (ψK)K∈T

dependent on all the aforementioned quantities.

Next, we prove bounds on the electron and hole quasi Fermi potentials, where we stay

close to the proof in [30, Lemma 3.7]. Due to different hypotheses on the statistics

function Fα and boundary conditions in [30], an adapted version of [30, Lemma 3.2] is

stated in Lemma A.8 and proven in Appendix A.6.

Lemma 4.12. (Bound for electron and hole quasi Fermi potentials) Let α ∈ {n, p}.
Assume that there exists ME > 0 such that ET (X) ≤ ME and MD > 0 such that

DT ,α(X) ≤MD. Then, there exists some MB > 0 depending on ME, MD, T , ψD, φD,

zα, and the dimensionless constants ν and δ (resp. δn, δp) such that

−MB ≤ φα,K ≤MB, ∀K ∈ T . (4.35)

In the following proof, we utilize the definition (4.30) associated with the PSC model

for DT ,n(X),DT ,p(X). If we instead use the definition (4.32) associated with the

memristor model, we only need to adapt the prefactors of the dissipation within the

following proof. In that case, MB in (4.35) additionally depends on other parameters.

Specifically, in the case of the memristive model, we have dependencies on δn, δp for

DT ,p(X), and on δn for DT ,n(X).
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4. Numerical analysis of vacancy-assisted charge transport models

Proof of Lemma 4.12. Let α ∈ {n, p}. First, we rewrite DT ,α(X) as defined in (4.30)

by using Jmα,K,σ = −z2ατσnmα,σDK,σφ
m
α (see (4.11))

DT ,α(X) = − δ

2ν

∑
σ∈E

Jα,K,σDK,σφα,

where we used z2n = 1 = z2p. The main proof idea is based on reformulating DT ,α in

terms of a discrete functional Dα. With the help of another functional associated to

Dα, we can iteratively deduce the boundedness of φα,K for all K ∈ T . To define Dα,

we introduce the function Kα : R× R → R with

Kα(x, a) = log(Fα(x− a))− x, ∀(x, a) ∈ R× R,

and we note that

Qα,K,σ = Kα(zαφα,K , zαψK)−Kα(zαφα,K,σ, zαψK,σ),

where φα,K,σ and ψK,σ stand for φα,L, ψL, if σ = K|L ∈ E int and for φDσ , ψ
D
σ , if σ ∈ ED.

With the help of Kα, we introduce the face dissipation functional Dα : R4 → R defined

by (with Dα = Dα(x, y, a, b))

Dα = (x− y)
[
B
(
Kα(x, a)−Kα(y, b)

)
Fα(x− a)−B

(
Kα(y, b)−Kα(x, a)

)
Fα(y− b)

]
.

Indeed, DT ,α(X) can be rewritten in terms of Dα

DT ,α(X) =
δ

2ν

∑
σ∈E

τσDα

(
zαφα,K , zαφα,K,σ, zαψK , zαψK,σ

)
. (4.36)

Similarly to [30, Lemma 3.7], we introduce another functional associated to Dα,

ΥΦ,Ψ : R → R, defined by

ΥΦ,Ψ(x) = inf
{
Dα(x, y, a, b); −Φ ≤ y ≤ Φ,−Ψ ≤ a, b ≤ Ψ

}
, (4.37)

and we establish (see Appendix A.6, Lemma A.8) that

lim
x→−∞

ΥΦ,Ψ(x) = +∞ and lim
x→+∞

ΥΦ,Ψ(x) = +∞. (4.38)

Especially, Lemma 4.9(i) guarantees that ΥΦ,Ψ is bounded from below, which will even-

tually ensure the boundedness of φα,K for all K ∈ T . As in the proof of Lemma 4.11,

we begin by demonstrating the boundedness of the potential φα,K∗ at a specific control

volume K∗ situated at the Dirichlet boundary. Let K∗ ∈ T be a control volume, for

which there exists a face σ∗ ∈ EK ∩ ED ̸= ∅. Next, we verify whether ΥΦ,Ψ in (4.37) is
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4.2. Existence of a discrete solution

well-defined for σ∗. Thanks to the regularity assumptions on the boundary data, i.e.,

φD, ψD ∈ W 1,∞(Ω), and the bound on the discrete electric potential (see Lemma 4.11),

there exist Φ,Ψ > 0 such that

−Φ ≤ φDσ∗ ≤ Φ and −Ψ ≤ ψK∗ , ψDσ∗ ≤ Ψ,

which shows that ΥΦ,Ψ(zαφα,K∗) exists. We consider the description (4.36) of DT ,α.

The assumption DT ,α(X) < MD and the boundedness of ΥΦ,Ψ(zαφα,K∗) from below,

particularly imply for σ∗ ∈ EK ∩ ED ̸= ∅

−∞ < ΥΦ,Ψ(zαφα,K∗) ≤ Dα

(
zαφα,K∗ , zαφ

D
σ∗ , zαψK∗ , zαψ

D
σ∗

)
≤ 2ν

δτσ∗
MD.

Hence, φα,K∗ is bounded. This property propagates from cell to cell due to the

connectedness of the mesh. Since we have a finite number of control volumes, the

claim follows.

Lastly, Lemma 4.13 gives a bound on the vacancy quasi Fermi potential. Regarding

the numerical schemes for the charge transport in PSCs, we identify α = a as halide

vacancies and set Ta := Tintr. In contrast, for the TMDC-based memristive devices,

we can think of chalcogen vacancies, where we have Ta := T . The difference in the

dissipation DT ,a for both models is only the set of faces in the sum, where we have

σ ∈ E intr
intr for the perovskite model and σ ∈ E for the memristor model (see (4.31) and

(4.33)).

Lemma 4.13. (Bound for vacancy quasi Fermi potential) Assume that there exists

MD > 0 such that DT ,a(X) ≤MD and that there also exists n̄ ∈ (0, 1) such that

1

|Ω|
∑
K∈Ta

mKna,K = n̄. (4.39)

Then, there exists some MB > 0 depending on MD, n̄ and T such that

−MB ≤ φa,K ≤MB, ∀K ∈ Ta. (4.40)

Proof. We note that the statistics function Fa is monotonically increasing due to

hypothesis (H2). Thus, the result stated in Lemma 4.13 is equivalent to the fact that

there exists ε ∈ (0, 1) satisfying

ε ≤ na,K ≤ 1− ε, ∀K ∈ Ta. (4.41)

Under the conditions specified in Lemma 4.13, the inequality (4.41) was previously

demonstrated in [30, Lemma 3.7]. The proof method employed there is similar to the

approach used to establish Lemma 4.12. It involves a reformulation of the dissipation

functions, the introduction of a coercive face dissipation functional ([30, Lemma 3.2]),

and identifying a control volume that ensures the boundedness of at least one na,K

(which is guaranteed by the mass conservation (4.39)).
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4.2.4. Main existence result

Finally, we can prove the existence of discrete solutions. In order to establish the

existence results, we rely on a corollary of Brouwer’s fixed point theorem [67, Section

9.1] which reads as follows and is stated here without a proof.

Lemma 4.14. (From [67, Section 9.1]) Let N ∈ N and P : RN → RN be a continuous

vector field. Assume that there exists MB > 0 such that P(X) ·X ≥ 0, if ∥X∥ =MB.

Then, there exists X∗ ∈ RN such that P(X∗) = 0 and ∥X∗∥ ≤MB. □

Lemma 4.14 will ensure the existence of quasi Fermi potentials associated to the discrete

continuity equations. For example, for the perovskite solar cell discretization scheme

the discrete continuity equations (DPa), (DPb), and (DPc) and for the memristive

application the corresponding equations (DMa), (DMb), and (DMc) at the time step

m constitute a nonlinear system of equations. More precisely, we can introduce a

continuous vector field Pm : RθX → RθX with θX = 2Card(T ) + Card(Tintr) (resp.

θX = 3Card(T )) such that Pm(X
m) = 0 is equivalent to the continuity equations

(DPa), (DPb), and (DPc) (resp. (DMa), (DMb), and (DMc)), where Xm is defined by

(4.29), noting that we have omitted the superscript m there. The vector Xm contains

the unknown quasi Fermi potentials.

Within the existence proofs, we will use an estimate that relates the scalar product

Pm(X
m) ·Xm to the discrete entropy-dissipation inequalities (see Appendix A.7). To

establish this estimate, the components of Pm(X
m) are build as follows. For the

electron and hole components, we put every term of the equations (DPa) and (DPb)

(resp. (DMa) and (DMb)) on the left-hand side and rescale by a factor δτm/ν (resp.

δnτ
m/ν and δnδpτ

m/ν). The vacancy-related components are given by (DPc) (resp.

(DMc)), rescaled by τm. Furthermore, we will apply Lemma 4.14 to a regularized

version of Pm and then consider the limit with respect to the regularization parameter.

In case of perovskite solar cells, the existence result reads as follows.

Theorem 4.15. (Existence of discrete solution to the PSC discretization scheme)

For all time steps m ≥ 1, the implicit-in-time finite volume scheme (DP), (DF)

for the PSC charge transport model (P), (PIC), (PBC) has at least one solution

(φmn ,φ
m
p ,φ

m
a ,ψ

m) ∈ Rθ with θ = 3Card(T ) + Card(Tintr). Moreover, this solution

satisfies the following L∞ bounds. There exists MB > 0 depending on the data and

on the mesh such that

−MB ≤ φmn ,φmp ,φma ,ψm ≤MB, for all m ≥ 1,

holds componentwise.
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Proof. First, we prove the existence of quasi Fermi potentials X, where for the sake

of readability, we omit the superscript m. We recall that Lemma 4.8 guarantees

the existence of a continuous and uniquely determined map X 7→ ψ(X) solving the

nonlinear Poisson equation (DPd) for any given vector of quasi Fermi potentials X.

Thus, Pm is well-defined and continuous. We have established the following inequality

within the proof of Theorem 4.5 for ε > 0 (see Lemma A.9)

Pm(X) ·X ≥ (1− ετm)ET (X)− ET (X
m−1) + τmDT (X)− τmcε,Ω,ξ, (4.42)

where cε,Ω,ξ > 0 and Xm−1 denotes the known solution at the previous time step

m − 1. The scalar product Pm(X) ·X is given in (A.12) up to a rescaling with τm.

For a suitable, but fixed ε, the constant cε,Ω,ξ is bounded. Consequently, there exists

a constant M̃ > 0 such that ετm < 1/2 and ET (X
m−1) + τmcε,Ω,ξ < M̃ . Therefore,

we can further estimate (4.42) as follows,

Pm(X) ·X ≥ 1

2
ET (X) + τmDT (X)− M̃. (4.43)

Our goal is to utilize Lemma 4.14 to demonstrate the existence of a solution at time step

m. Rather than directly applying this lemma to Pm, and specifically showing now the

non-negativity of the scalar product Pm(X) ·X, we introduce a parameter-dependent

regularization of Pm. This regularization satisfies the assumptions of Lemma 4.14:

For a given µ > 0, we define Pµ
m(X) = Pm(X) + µX. It holds

Pµ
m(X) ·X = Pm(X) ·X+ µ∥X∥2 ≥ µ∥X∥2 − M̃ ≥ 0, for ∥X∥ ≥

√
M̃/µ, (4.44)

where we used the estimate (4.43) and the non-negativity of ET (X) and DT (X). Then,

Lemma 4.14 shows the existence of Xm,µ ∈ B(0,
√
M̃/µ) such that

Pµ
m(X

m,µ) = 0, for ∥Xm,µ∥ ≤
√
M̃/µ. (4.45)

Next, we need to show that Xm,µ is actually uniformly bounded in µ. To achieve

this, we will verify the hypotheses of Lemma 4.12 and Lemma 4.13. We begin by

demonstrating the validity of the assumption (4.39) of Lemma 4.13. To do this, we

take the scalar product of Pµ
m(X

m,µ) with the vector V = (0T ,0T ,1Tintr). Since the

sum over all fluxes in the intrinsic region vanishes due to the local conservativity of

the flux discretization scheme, we obtain∑
K∈Tintr

zamKn
m,µ
a,K −

∑
K∈Tintr

zamKn
m−1
a,K + µXm,µ ·V = 0,
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and, therefore, after rescaling with the measure of Ω, we have∣∣∣∣∣ 1

|Ω|
∑

K∈Tintr

zamKn
m,µ
a,K − 1

|Ω|
∑

K∈Tintr

zamKn
m−1
a,K

∣∣∣∣∣ ≤ µ

|Ω|
∥Xm,µ∥∥V∥

≤

√
M̃µ

|Ω|
∥V∥,

(4.46)

where we used ∥Xm,µ∥ ≤
√
M̃/µ. But since the solution at the previous time step exists

and hence is bounded, there exists ε(m−1) ∈ (0, 1) such that 1
|Ω|

∑
K∈Tintr mKn

m−1
a,K ∈

(ε(m−1), 1− ε(m−1)). Consequently, we deduce from (4.46) that for a sufficiently small

µ, the vector Xm,µ satisfies for ε(m) = ε(m−1)/2

1

|Ω|
∑

K∈Tintr

mKn
m,µ
a,K ∈ (ε(m), 1− ε(m)),

where (ε(m−1), 1− ε(m−1)) ⊂ (ε(m), 1− ε(m)). Thus, the condition (4.39) of Lemma 4.13

is satisfied. Moreover, due to (4.43), (4.44), (4.45), and µ∥Xm,µ∥2 ≥ 0,

0 = Pµ
m(X

m,µ) ·Xm,µ ≥ 1

2
ET (X

m,µ) + τmDT (X
m,µ)− M̃,

we see that ET (X
m,µ) and DT (X

m,µ) are uniformly bounded in µ. Hence, we can

apply Lemma 4.12 and Lemma 4.13 to deduce that ∥Xm,µ∥ is bounded uniformly in

µ, for sufficiently small µ. Finally, we can extract a subsequence, which converges to a

limit denoted by Xm as µ tends to 0. Due to (4.45), this limit satisfies P0
m(X

m) =

0. On the other hand, due to the definition of the regularization Pµ
m, we have

Pm(X
m) = P0

m(X
m) = 0. Thus, we have found quasi Fermi potentials which solve

the discrete system (DPa), (DPb), and (DPc). It remains to show the existence of a

uniquely determined and bounded ψ(Xm) which solves the Poisson equation (DPd).

However, this follows from Lemma 4.8 and Lemma 4.11 which ends the proof of

Theorem 4.15.

Analogously, we can formulate an existence result for the memristor application.

Theorem 4.16. (Existence of discrete solution to the TMDC-based memstrive device

discretization scheme) For all time steps m ≥ 1, the implicit-in-time finite volume

scheme (DM), (DF) for the TMDC-based memristor charge transport model (M),

(MIC), (MBC) has at least one solution (φmn ,φ
m
p ,φ

m
a ,ψ

m) ∈ Rθ with θ = 4Card(T ).

Moreover, this solution satisfies the following L∞ bounds. There exists MB > 0

depending on the data and on the mesh such that

−MB ≤ φmn ,φmp ,φma ,ψm ≤MB, for all m ≥ 1,

holds componentwise. □

92



4.2. Existence of a discrete solution

The proof of Theorem 4.16 follows a similar structure to the proof of Theorem 4.15

and is therefore omitted here. We end this chapter with a remark on the convergence

of both introduced discretization schemes.

Remark 4.17. (Convergence of both schemes) In addition to the existence of a solu-

tion to the numerical schemes, it is expected that the entropy-dissipation inequalities,

serving as a priori estimates, will provide the necessary bounds to prove convergence

towards weak solutions of the PDE systems [36]. For instance, Corollary 4.7 demon-

strates that both the discrete entropy and the discrete dissipation remain bounded

for a fixed time. If we closely examine the definitions of the entropy EmT in (4.13) and

(4.24) and the dissipation Dm
T in (4.14) and (4.25), we may identify with Corollary 4.7

uniform estimates for the electric potential, the densities, and the gradients of quasi

Fermi potentials in a suitable Bochner space Lp(0, tF ;X), 1 ≤ p ≤ ∞, where X is some

Banach space, and tF is the end time. We can potentially find a convergent sequence

of approximate solutions by establishing these estimates and employing compactness

and/or convergence arguments. In simpler models, the convergence of the schemes

concerning the excess chemical flux approximation has already been demonstrated

(e.g., [30], for the Fermi-Dirac integral of order −1 as the statistics function). However,

in our context, we expect more technical challenges due to multiple domains (in the

case of the PSC model) and various species. Furthermore, developing new nonlinear

estimates to handle general statistics functions will be crucial.
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5. Simulation results

In Chapter 2, we derived suitable drift-diffusion equations for vacancy-assisted charge

transport in crystalline semiconductors. Chapter 3 extended these equations to describe

the transport in perovskite solar cells and TMDC-based memristive devices. Then, we

translated the continuous model into discrete counterparts and proved the existence of

discrete solutions in Chapter 4. Finally, in this chapter, we complement our theoretical

results with numerical experiments.

We can realize the simulations with the help of commercial software packages (see,

e.g., [77, 81, 117]). Major drawbacks of commercial software are the limitation in

flexibility and transparency. Thus, there is also a rise in (partially) open-access software

tools to simulate vacancy-assisted charge transport in perovskite solar cells in one

dimension [28, 44, 138]. To our knowledge, no open-access software exists for simulating

vacancy-assisted charge transport in TMDC-based memristive devices. As another

alternative, we rely in this thesis on the open source software ChargeTransport.jl

[DA7] for simulating charge transport in semiconductors via the Voronoi finite volume

method as implemented in VoronoiFVM.jl [DA8]. The packages are written in the

programming language Julia, which received remarkable attention in recent years due

to its exceptional performance capabilities, combining high-level syntax with execution

speeds comparable to low-level languages [20].

This chapter starts by verifying properties of the finite volume schemes, such as a

special case of the entropy-dissipation inequalities and the spatial convergence rate

(Section 5.1). Furthermore, we pay particular attention to the large time behavior

and the decay of a relative free entropy with respect to the steady state solution

for physically meaningful setups of PSCs and TMDC-based memristive devices. We

continue in Section 5.2 with a study of volume exclusion effects and its influence on a

PSC setup with MAPI as perovskite material by comparing the electric potential, the

vacancy carrier density and the current-voltage curves of a charge transport model

based on two different ionic current densities. Lastly, we validate in Section 5.3 the

vacancy-assisted model with experimental hysteresis and pulse measurement data found

in literature for lateral 2D MoS2-based memristive devices, strongly corroborating

the relevance of vacancy dynamics in TMDC devices. While Section 5.1 considers

exclusively the drift-diffusion models with time-independent Dirichlet conditions, we
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5. Simulation results

use time-dependent boundary conditions in Section 5.2 and Section 5.3. In these

sections, we supply the PSC model with ohmic contact boundary conditions (see

Section 3.1.3.1). For the TMDC-based memristors, we simulate the Schottky boundary

conditions (see Section 3.2.2.1) as well as the image-charge-induced Schottky barrier

lowering conditions (see Section 3.2.2.2). For all simulations, we use the backward

Euler method for the time discretization, as explained in Section 4.1.2. Moreover, the

linear system of equations resulting from applying the Newton method is solved via

a sparse LU factorization [DA8]. In the following, when referring to the Lp norms,

1 ≤ p ≤ ∞, we specifically refer to the discrete approximations [149] of these norms

at a fixed time tm. All Julia files to generate and visualize the simulation data are

available in [DA1], which can be used to verify the presented results.

The main parts of this chapter are based on [DA2, DA3, DA5]. To be more precise,

Section 5.1.1 is published in [DA2], the findings of Section 5.2 are based on [DA3] and,

lastly, Section 5.3 can be found in [DA5].

5.1. Large time behavior, convergence order and

entropy decay

In this section we are interested in the large time behavior of both non-dimensionalized

charge transport models (P), (PIC), (PBC) and (M), (MIC), (MBC), introduced at

the end of Section 3.1.4 and Section 3.2.3, respectively. We refer to the solutions for

t → +∞ as steady state solutions, denoted by (φ∞
n , φ

∞
p , φ

∞
a , ψ

∞), and introduce an

entropy with respect to the steady state solutions

E∞(t) =
λ2

2

∫
Ω

|∇(ψ − ψ∞)|2 dx+
∑

α∈{n,p,a}

δE,α

∫
Ωα

Hα(nα, n
∞
α ) dx, (5.1)

where Hα(x, y) = Φα(x)−Φα(y)−Φ′
α(y)(x−y) (see (3.41)). The steady state densities

can be calculated via the non-dimensionalized state equations n∞
α = Fα (zα(φ

∞
α − ψ∞))

(see (Pf) and (Mf)) from the steady state solutions. In both charge transport models,

electrons and holes migrate throughout the device, i.e., Ωn = Ωp = Ω. For PSC devices,

the vacancy domain is Ωa = Ωintr, whereas for TMDC-based memristive devices, we

define Ωa = Ω. The quantity δE,α ≥ 0 denotes the dimensionless concentration

parameter. Comparing the previously defined continuous entropy functionals (3.42),

(3.48) with (5.1), we set for the perovskite application δE,n = δE,p = δ and δE,a = 1. In

the case of memristive devices, we define δE,n = δn, δE,p = δnδp and δE,a = 1.

The non-negative, dimensionless functional E∞ in (5.1) can be seen as a measure
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5.1. Large time behavior, convergence order and entropy decay

of the distance between a solution at time t and the model’s steady state, which

vanishes if and only if the solution at time t and the steady state coincide almost

everywhere. Furthermore, from an analytical point of view, E∞ may help to prove the

convergence of the discrete solution to the discrete steady state [34]. Tracing back the

non-dimensionalizations and assumptions in Section 3.1.4 and Section 3.2.3, we can

formulate a dimensionalized version of (5.1)

E∞(t) =
1

2

∫
Ω

εs|∇(ψ − ψ∞)|2 dx+
∑

α∈{n,p,a}

∫
Ωα

Hα(nα, n
∞
α ) dx, (5.2)

where we now use the dimensionalized state equation (2.3) to calculate the steady state

densities n∞
α . In the case of Fn = Fp = exp and Fa = F−1, the following functions

enter Hα

Φα(x) = kBTx

(
log

(
x

Nα

)
− 1

)
− zαEαx, for α ∈ {n, p}, (5.3a)

Φa(x) = kBT

(
x log

(
x

Na

)
+ (Na − x) log

(
1− x

Na

))
− zaEax. (5.3b)

We note that the functions in (5.3) are exactly the contributions entering the thermo-

dynamic free energy (2.49). This means, we extend the contributions of the relative

entropy with respect to the steady state such that they are consistent with the physical

free energy in Section 2.6.2.

5.1.1. Perovskite solar cells

We consider the perovskite charge transport model, formulated in (P), (PIC), (PBC)

with its discrete counterpart (DP), (DF) (see Section 4.1.2 and Section 4.1.3). In the

following, we start with a toy problem resulting from the perovskite application with

non-physical choices of the dimensional parameters and end with a realistic study of

the large time behavior of the perovskite model at a constant applied voltage. This

scenario corresponds in a physical sense to investigating the influence of preconditioning

[51] a PSC before current-voltage measurements.

5.1.1.1. Initial test problem

Within this section, we assume a one-dimensional and dimensionless domain Ω = (0, 6)

and set ΩHTL = (0, 2),Ωintr = (2, 4), ΩETL = (4, 6). We chose 511 interior nodes per

subdomain, and additional points at the outer x = 0, 6 and inner boundaries x = 2, 4,

resulting in a total of 1537 nodes with a grid spacing h ≈ 3.9× 10−3. The time domain

is given by [0, 80], which we discretize with a uniform time step of ∆t = 1.0× 10−1.
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5. Simulation results

We set the rescaled Debye length to λ = 1, the mobility parameter to ν = 1, the

concentration parameter to δ = 1, and the photogeneration parameter to γ = 0.

Equal boundary values. In the first setup, we study the implications of Remark 3.6,

i.e., we assume constant boundary functions φD, ψD ∈ W 1,∞(Ω) and the absence

of external generation of electrons and holes. To this end, we have a constant

doping C = 0.1 and no photogeneration and recombination, i.e., G = R = 0. The

Dirichlet functions (PBCb) are chosen as constant functions φD = 0.5 and ψD =

arcsinh(C/2) + 0.5 in the whole domain Ω. The sinusoidal initial conditions (IC) for

the electron and hole quasi Fermi potentials, as well as for the electric potential, and

the constant initial condition for the vacancy quasi Fermi potential, along with the

steady state solutions, are depicted in Figure 5.1 (left). In Figure 5.1 (right), we show

the respective steady state densities.

Figure 5.1.: Steady state solutions (φ∞
n , φ

∞
p , φ

∞
a , ψ

∞) with the respective initial conditions

(IC) as dotted lines (left) and the associated steady state densities (right) for a three-layer

test problem with equal boundary values. (From [DA2] with modifications.)

Since for these specific choices, we have 0 = ∇φD = ∇ψD and G = 0, Remark 3.6

indicates that the relative entropy with respect to the Dirichlet boundary values

(3.42) does not increase in time, i.e., d
dt
E ≤ 0. This result can be numerically verified,

as shown in Figure 5.2 (left in blue). Due to a non-constant steady state electric

potential ψ∞ (Figure 5.1, left in blue) and the choice ψD = arcsinh(C/2) + 0.5, we

have |∇(ψ − ψD)| ̸= 0 for all time steps. Thus, the relative entropy with respect to

the boundary values (3.42) (Figure 5.2, left in blue) levels off after an initial decrease.

Furthermore, the relative entropy with respect to the steady state (5.1) (Figure 5.2,

left in green) as well as the quadratic L2 errors between the steady state and a solution

at time t (Figure 5.2, right) decay exponentially with a similar slope, reaching machine

precision at a similar time. Hence, the expected exponential convergence towards
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5.1. Large time behavior, convergence order and entropy decay

steady state, as stated in Remark 3.6, is confirmed through numerical simulations

for the two measures (relative entropy with respect to steady state and quadratic L2

errors) for the deviation of a solution at time t from the steady state.

Figure 5.2.: Left: Time evolution of the relative entropy with respect to the Dirichlet

boundary functions (3.42) as well as the relative entropy with respect to the steady state

(5.1). Right: Time evolution of the quadratic L2 errors between the computed and the

steady state solutions. All quantities are calculated for a three-layer test problem with

equal boundary values. (From [DA2] with modifications.)

Non-equal boundary values. In most applications, the constraint of having equal

boundary values is too limiting. Therefore, we examine in the following the large time

behavior of solutions and the relative entropy when non-equal boundary values are

considered.

Figure 5.3.: Steady state potentials with the respective initial conditions as dotted lines

(left) and the associated steady state densities (right) for a three-layer test problem with

non-equal boundary values. (From [DA2] with modifications.)

We assume that the doping C is a piecewise constant function given by 0.5 in ΩETL
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5. Simulation results

and by −0.5 in ΩHTL ∪ Ωintr. The boundary values are set to φD|x=0 = 1, φD|x=6 = 0,

ψD|x=0 = arcsinh(−0.5/2) + 1, ψD|x=6 = arcsinh(0.5/2). We choose quadratic initial

conditions for the electron and hole quasi Fermi potentials, as well as the electric

potential and a constant initial condition for the vacancy quasi Fermi potential.

The initial conditions are additionally to the steady state solutions depicted in Fig-

ure 5.3 (left) as black dotted lines. Furthermore, Figure 5.3 (right) shows the steady

state densities. For this setup, the relative entropy with respect to the steady state

and the quadratic L2 errors are shown in Figure 5.4 (left and middle). Also, for

non-equal boundary values, these curves decay exponentially as before and reach

machine precision with a similar slope, even though this setup is not covered by

Remark 3.6.

Finally, we complete this section with an investigation of the spatial convergence

behavior. Suppose n∗ ∈ N is given, then 2 · 2n∗−1 − 1 interior nodes are chosen in each

of the three subdomains along with four additional boundary nodes at x = 0, 2, 4, 6.

In total, we have ntot = 3 · (2 · 2n∗−1 − 1) + 4 nodes. We calculate a reference solution

on a grid with n∗ = 9 corresponding to 1537 nodes with a grid spacing h∗ ≈ 3.9× 10−3.

The L2 errors between the solution un∗ , for n∗ = 2, . . . , 8, and the reference solution

projected onto the coarser mesh evaluated at the final time are shown in Figure 5.4

(right). Since for the final time tF = 80, the system is already within machine precision

of the steady state, the error shown is purely due to the spatial discretization. We

observe second-order convergence in the L2 norm.

Figure 5.4.: Time evolution of the relative entropy (5.1) for non-equal boundary values (left)

and of the quadratic L2 errors between steady state and solutions at time t (middle). On

the right, the L2 error with respect to the grid spacing h is shown. All quantities are

calculated for a three-layer test problem with non-equal boundary values. (From [DA2]

with modifications.)

Next, we discuss the large time behavior and the entropy decay for a physically

meaningful PSC setup.
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5.1. Large time behavior, convergence order and entropy decay

5.1.1.2. PSC preconditioning scan protocol

In the following, we choose the rescaling factors and non-dimensionalized parameters

introduced in Section 3.1.4 in such a way that the resulting solutions correspond to a

realistic three-layer PSC device with MAPI as perovskite material, indicating that

the vacancy carrier evolving in Ωintr corresponds to iodide vacancies. In particular, we

allow for regionwise-constant parameters in the whole domain Ω, non-zero band-edge

energies and a present photogeneration. We use the parameter set provided in [44, 48],

which is summarized in Table B.1. The one-dimensional domain Ω = (0, 700) nm is

subdivided into ΩETL = (0, 100) nm, Ωintr = (100, 500) nm, and ΩHTL = (500, 700) nm.

The mesh is given by 385 nodes with a uniform grid spacing in each layer, namely,

hETL ≈ 0.78 nm, hHTL ≈ 1.6 nm in the transport layers, and hintr ≈ 3.1 nm in the

perovskite layer. The uniform time mesh is built with a step size of ∆t = 0.5 s and

the final time is given by tF = 220 s.

Figure 5.5.: Steady state potentials (left) and the associated steady state densities (right)

with the respective initial conditions as black dotted lines for a PSC three-layer device with

realistic parameters including photogeneration and non-equal boundary values. (From

[DA2] with modifications.)

In experimental measurements, a PSC device typically undergoes a preconditioning

protocol [51] where it is held at a constant voltage for several seconds, allowing ionic

charges to equilibrate. Subsequently, scan protocols involving an applied voltage

varying with time are applied to investigate the device’s physics. Mathematically,

during the preconditioning protocol, time-independent boundary conditions are applied.

Then, when accurately modeling the scan protocol, the time-dependent voltage is

incorporated via the Dirichlet boundary conditions (3.7a). Thus, the steady state

potentials and their respective densities depicted in Figure 5.5 (left and right) can

be considered as the solutions after a successful preconditioning scan and before a

voltage-varying measurement protocol. In the presented configuration, the constant

101



5. Simulation results

applied voltage is chosen such that the steady state electric potential ψ∞ remains

constant. This behavior of a constant ψ∞ can be well observed in Figure 5.5 (left, in

blue). The chosen initial conditions (black dotted lines) correspond to a solution of

the charge transport model with a non-constant vacancy concentration (see Figure 5.5,

right). As before, we consider the large time behavior of the quadratic L2 errors and

the relative entropy with respect to the steady state. It is worth noting that we now

consider the dimensional form of this functional, given in (5.2), supplied with (5.3).

Specifically, this implies that non-zero band-edge energies enter the relative entropy

with respect to the steady state.
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Figure 5.6.: Time evolution of the relative entropy with respect to the steady state (5.2) (left)

and of the quadratic L2 errors between the computed and the steady state solutions (right).

All quantities are calculated for a PSC three-layer device with realistic parameters including

photogeneration and non-equal boundary values. (From [DA2] with modifications.)

It is worth noting that the presented setup is not covered by Remark 3.6. Still,

Figure 5.6 indicates an exponential decay towards zero of the dimensionalized relative

entropy with respect to the steady state (5.2) and the quadratic L2 errors. In contrast

to the observations made in the previous section, where the relative entropy and the

quadratic L2 errors reach machine precision with a similar slope, the relative entropy

vanishes faster in this example. This may be explained by a present photogeneration

rate or by the additional terms in (5.3) due to non-zero band-edge energies, which

influence the convergence behavior. Nevertheless, we see again, as in the previous

setups, a similar and exponential convergence rate of the two introduced measures,

the relative entropy (Figure 5.6, left) and the quadratic L2 errors (Figure 5.6, right),

for the deviation of a solution at time t from the steady state.

We conclude our study on the large time behavior of the relative entropy and the

quadratic L2 errors for vacancy-assisted charge transport with a physically reasonable
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5.1. Large time behavior, convergence order and entropy decay

memristive device application.

5.1.2. Memristive devices

Usually, when analyzing memristive devices, periodic piecewise linear and time-

dependent voltage cycles are applied to identify the origin of the hysteretic behavior of

the current-voltage curve, which is crucial for understanding the underlying switching

mechanisms of the device. For example, Section 5.3 deals with such a study and

relates the I-V hysteresis to forming local vacancy depletion zones. Most of these

studies consider time-dependent boundary conditions modeling ohmic, Schottky, or

Schottky barrier lowering contacts (via a time-varying applied voltage) as described in

Section 3.2.2. However, to gain further insight into the device behavior and reliability,

we investigate the large time behavior of solutions at a given constant voltage U∗ within

a voltage cycle. In this context, the initial conditions correspond to the solutions at

a time t∗ > 0, which represents the time after the completion of one voltage cycle,

and when the voltage U∗ is once again reached, as illustrated in Figure 5.7. Starting

from t = t∗, we study in the following the large time behavior of these solutions. It

is important to note that the initial configuration at t = t∗ is a consequence of the

previously applied voltage cycle and the specific initial conditions chosen at t = 0 s.

Therefore, the initial condition at t = t∗ is not chosen arbitrarily.

Figure 5.7.: Illustration of the applied voltage as a function of time applied at the right

contact. After a given threshold voltage U∗, the applied voltage is chosen to be constant.

The time regime of interest for a large time behavior study is highlighted in gray.

In this example, we choose again the rescaling factors and non-dimensionalized pa-

rameters introduced in Section 3.2.3 such that the resulting solutions correspond to a

realistic TMDC-based memristive device with MoS2 as TMDC material. Consequently,

we assume the transport of sulfur vacancies additionally to the electron and hole

transport. We use the parameter set S1 (Table B.3, Table B.4), and as a representative

voltage at the beginning of the second cycle, we choose U∗ = 1.6 V and a start time

t∗ = 10.72 s, following Figure 5.7.
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5. Simulation results

In contrast to the PSC setup, we have solely one domain Ω = [0.0, 1.0] µm, on which

all potentials evolve. We consider a non-uniform grid spacing with 213 nodes, a

minimum spacing of hmin ≈ 3× 10−4 µm near the contact boundaries, and a maximum

spacing of hmax ≈ 2× 10−2 µm in the bulk. For the temporal discretization, we use

non-uniform time steps between ∆tmin = 1.0 µs and ∆tmax = 5.0× 10−1 s with an end

time tF = 250 s and a total number of 1005 nodes. The boundary values are set to

φD = 0 V, ψD = (En−ϕ0(x1))/q = −4.001 V at the left contact and to φD = U∗ = 1.6

V, ψD = (En − ϕ0(x2))/q + U∗ = −2.401 V at the right contact.

We set the average vacancy concentration Ca as the ratio of the overall vacancy charge

to the measure of the device domain, i.e.,

Ca =
1

|Ω|

∫
Ω

na(x, t) dx =
1

|Ω|

∫
Ω

n0
a(x) dx, for all t ≥ 0, (5.4)

which is constant in space and time due to the conservation of mass, as mentioned

in Remark 3.2. We observe that the initial condition n0
a = NaFa(ηa(φ

0
a, ψ(x, 0))) is

directly connected to Ca. For MoS2 as the TMDC material and the selected device

geometry, DFT calculations [106, 195] predict average vacancy concentrations Ca up

to ≈ 1× 1025 m−3. The precise value of the average vacancy concentration Ca is not

only a matter of numerical interest (due to the initial condition), but also serves as a

critical physical parameter, strongly depending on the device’s microstructure. In the

following, we assume Ca ≈ 6.4× 1023 m−3. This choice will be shown in Section 5.3.1

to align well with experimental measurements found in literature.

Figure 5.8.: Steady state potentials (left) and associated densities (right) with the respective

initial conditions as black dotted lines for a realistic TMDC memristor. In this case, we

have an average vacancy concentration of Ca ≈ 6.4× 1023 m−3.

Figure 5.8 shows the steady state solutions (left) and the associated densities (right)

along with the initial conditions as black dotted lines. In the vacancy quasi Fermi
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5.1. Large time behavior, convergence order and entropy decay

potential initial condition (Figure 5.8, right, third row), we observe a decrease at the

left electrode, leading to a local depletion region of vacancies in this regime. As time

evolves, this depletion region moves towards the right contact, also portrayed in the

steady state vacancy density in Figure 5.8 (right, third row). For further details on

the physical interpretation, we refer to Section 5.3.1. Furthermore, in Figure 5.9, we

observe an exponential decay of the relative entropy with respect to the steady state

(5.2) (left) and the quadratic L2 errors (right), both approaching zero. Similar to the

physically relevant perovskite example in Section 5.1.1.2, both measures vanish at

different times, although with a similar and exponential rate.
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Figure 5.9.: Time evolution of the relative entropy with respect to the steady state (5.2) (left)

and of the quadratic L2 errors between the computed and the steady state solutions (right)

for a realistic TMDC memristor. In this case, we have an average vacancy concentration

of Ca ≈ 6.4× 1023 m−3.

The number of vacancy sites significantly relies on the fabrication process of each

memristive device. Therefore, we investigate how the large time behavior depends

on the average vacancy concentration Ca which is directly connected to the choice

of initial condition, as described in (5.4). We performed simulations for different

values of Ca between 4.5 × 1014 − 1.0 × 1027 m−3 and visualized in Figure 5.10 the

convergence times, i.e., the time at which the relative entropy and the quadratic L2

errors reach machine precision. We use the backward Euler method for all average

vacancy concentrations and adjust the time steps non-uniformly for varying Ca.

For all considered Ca a decay of the relative entropy and the quadratic L2 errors is

witnessed. In the range of 1.0× 1024 m−3 < Ca < 1.0× 1025 m−3, we see a peak in the

convergence time for both, the relative entropy and the quadratic L2 errors, differing by

a factor of 2. Interestingly, this range corresponds to the physically meaningful regime

for Ca. However, for small average vacancy concentrations (Ca < 1.0× 1021 m−3) and
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5. Simulation results

large average vacancy concentrations (Ca > 1.0× 1026 m−3), the relative entropy and

the quadratic L2 errors reach machine precision much faster. The observed peak in

the convergence time can be better understood by examining the density profiles for

a small (Ca ≈ 1.0 × 1017 m−3) and a large (Ca ≈ 1.0 × 1027 m−3) average vacancy

concentration, corresponding to values, where the convergence times for the relative

entropy and the quadratic L2 errors are comparably small (see Figure 5.10).
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Figure 5.10.: Convergence times defined as the time at which machine precision is reached of

the relative entropy with respect to the steady state (5.2) (left) and of the quadratic L2

errors between the computed and the steady state solutions (right) in dependence of the

average vacancy concentration Ca.

Figure 5.11.: Steady state densities with initial conditions for a realistic TMDC-based

memristive device with an average vacancy concentration of Ca ≈ 1.0× 1017 m−3 (left)

and a concentration of Ca ≈ 1.0× 1027 m−3 (right).

For smaller average vacancy concentrations (Figure 5.11, left), we clearly see that
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5.2. Volume exclusion effects in perovskite charge transport modeling

the initial electron and hole densities remain close to the steady state configuration.

Although there is a more pronounced trend of forming depletion zones at the left

contact for the initial condition and at the right contact for the steady state of the

vacancy density, in comparison to Figure 5.8 (right), the vacancy density appears to

be so small that the steady state solution is quickly reached for all carriers.

Contrarily, we observe discrepancies in the initial conditions and steady state densities

of electrons and holes for larger average vacancy concentrations (Figure 5.11, right).

However, unlike the physically realistic case of Ca ≈ 6.4 × 1023 m−3, depicted in

Figure 5.8, these differences appear to be minor, allowing the steady state solution to

be reached more rapidly. Additionally, the scenario of moving local depletion zones is

not observed at all.

Summarizing, for the memristive devices, we also observe an exponential decay of the

relative entropy with respect to the steady state (5.2) and the quadratic L2 errors

towards zero for all chosen average vacancy concentrations. This study underlines

the importance of selecting initial conditions that are physically justified and aligned

with the specific characteristics of the device. In the regime 1.0× 1024 m−3 < Ca <

1.0 × 1025 m−3, which corresponds to values near those predicted in literature, the

relative entropy and the quadratic L2 errors vanish slower. In this range, the vacancy

dynamics clearly influences the dynamics of electrons and holes, as reflected by the

larger convergence times. For smaller and larger vacancy concentrations, we observe

faster convergence times. However, these concentration values tend to underestimate

the influence of vacancy dynamics, as seen in Figure 5.11.

5.2. Volume exclusion effects in perovskite charge

transport modeling

So far, we gained in this chapter insight into the large time behavior and the entropy

decay of two vacancy-assisted charge transport models. However, as indicated in

Section 2.4.3, when considering volume exclusion effects, the question arises of choosing

the mobility or the diffusion coefficient as constant, while the other remains density-

dependent. This section comprehensively compares two different ionic current densities,

where we either assume a given mobility or diffusion coefficient. We will first carefully

design a reasonable benchmark for perovskite solar cells. Then, in the framework

of this benchmark, we will discuss the influence of the two different ionic current

densities on the electric potential, the vacancy carrier density and the current-voltage

characteristics for a model based on the ohmic contact boundary conditions, described

in Section 3.1.3.1.
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5.2.1. Design of benchmark

Until now, we assumed a constant mobility µa and a density-dependent diffusion

coefficient Da in the model formulations and in the numerical analysis of the implicit-

in-time TPFA finite volume schemes (restated from (2.37))

ja,ND = −zaqµaUT

(
ga

(
na

Na

)
∇na +

za
UT

na∇ψ
)
. (5.5)

Indeed, there exist approaches [15, 44, 51] where, instead of a constant mobility, a

density-dependence of the mobility is incorporated into the model, while the diffusion

coefficient Da is regarded as constant (restated from (2.38))

ja,MD = −zaqDa

∇na +
za

UTga

(
na

Na

)na∇ψ

 . (5.6)

In the following, we call ja,ND a current density based on nonlinear diffusion and ja,MD a

current density with a modified drift. Following the discussion in Section 2.4.3, suppose

that the mobility and the diffusion coefficient of both descriptions are proportional, i.e.,

µaUT ∼ Da. Then, the nonlinear diffusion current density ja,ND and the modified drift

current density ja,MD are also proportional with respect to the diffusion enhancement

ga (restated from (2.39))

ja,ND ∼ ga

(
na

Na

)
ja,MD. (5.7)

Now, we aim to understand the implications that the multiplication with the diffusion

enhancement ga in (5.7) has. To this end, we further assume that the vacancy

concentration na is approximately equal to the fixed average vacancy concentration Ca,

which is incorporated into the model via the right-hand side of the Poisson equation

(3.1d) through the doping C = −Ca in the intrinsic layer, i.e., na ≈ Ca. Then, the

diffusion enhancement can be approximated by

ga

(
na

Na

)
≈ ga

(
Ca

Na

)
=

1

1− Ca

Na

=
1

1− ϵ
, (5.8)

where we introduce the dimensionless scaling factor

ϵ =
Ca

Na

=
average anion vacancy density

maximum anion vacancy density
. (5.9)

Here, Na is the saturation limit and a model parameter entering the state equation

(2.3). If ϵ tends to zero (ga ↘ 1), we neglect the finite size of ions, resulting in
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5.2. Volume exclusion effects in perovskite charge transport modeling

a Boltzmann relation between na and φa (see Remark 2.3 and the right column in

Figure 5.12). Contrarily, if ϵ tends to 1 (ga ↗ +∞), then ionic movement is suppressed,

which can be well observed in Figure 5.12 (left column), and, thus, the model reduces

to the classical van Roosbroeck system [204]. Since ga ≥ 1, the relation in (5.7) along

with (5.8) indicates a slower evolution of the vacancy profile in the case of the modified

drift current density and large choices of ϵ.

In the following, a small ϵ indicates low exclusion, while a larger ϵ indicates high

exclusion. We can calculate a lower bound for the scaling factor ϵ, introduced in (5.9).

To do this, we introduce the largest possible vacancy density Na, which is the ideal

density of halide sites in a unit cell (see (2.31) and the subsequent discussion). Defining

ϵ := Ca/Na, we indeed have ϵ ≤ ϵ, since Na ≤ Na. However, the precise choice of ϵ

is strongly dependent on the perovskite material. For clarity, we assume a constant

average vacancy concentration Ca. Thus, we can consider variations in ϵ to represent

different maximum vacancy densities Na, where Ca < Na < Na. A choice of Na < Na

indicates that only a certain percentage of ion sites, rather than all, becoming vacant

is sufficient to, e.g., reproduce experimentally observed accumulation (see Figure 5.12,

middle column).

Figure 5.12.: Simulation of three possible equilibrium vacancy density configurations depend-

ing on the choice of the saturation limit Na, portrayed in the perovskite layer (highlighted

in red). The first row shows the vacancy density at the ETL/perovskite interface while

the second row corresponds to the vacancy density at the perovskite/HTL interface. The

simulation is based on the parameter set in Table B.2 and the device domain in Figure 5.13.

We use the parameter set in Table B.2 with Ca = 1.0× 1024 m−3 and Na = 1.21× 1028

m−3. With µa = 1× 10−14 m2/(Vs) and Da = 2.59× 10−16 m2/s, we have µaUT = Da.

This choice of mobility and diffusion coefficient shows in the simulations that, given

sufficient relaxation time, we receive the same steady state solution for the PSC charge

transport based either on the flux (5.5) or the flux (5.6). Thus, of particular interest

is the simulation of current-voltage scan protocols, where the model is far from an

equilibrium state. To this end, we simulate a three-layer PSC device, where the
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perovskite is sandwiched between two doped non-perovskite semiconductor transport

layers. To be more precise, MAPI is used as the perovskite material, while PCBM is

chosen for the electron and PEDOT:PSS for the hole transport layer. A schematic of

the device architecture is shown in Figure 5.13. We note that the iodide vacancies

move solely within the perovskite (red area), whereas electrons, holes, and the electric

potential are defined across the whole device. The simulations are performed in one

dimension. Furthermore, we apply a linear I-V scan protocol with a scan rate of 40

mV/s for an applied bias between 0 V and 1.2 V via the time-dependent Dirichlet

conditions (3.7a), meaning that the scan ends at t = 30 s. During the scan, the outer

boundary conditions for the ohmic contacts vary with time, and the steady state is

not reached.

Figure 5.13.: Schematic diagram of the simulated PSC device configuration with ohmic

contacts as described in Section 3.1.3.1. The electron transport layer (blue) is given by

PCBM, whereas for the hole transport layer (green) PEDOT:PSS is used. As perovskite

material (red layer), we use MAPI. (From [DA3].)

We validate the solutions calculated with ChargeTransport.jl [DA7] with addi-

tional simulations performed in the open source tool Ionmonger [44, 50]. While

ChargeTransport.jl uses a finite volume method for the spatial discretization as

described in Chapter 4, Ionmonger is based on a finite element method written in

Matlab. The same non-uniform grid spacing as introduced by [44, 48] is used, whereas

a uniform time mesh is utilized in ChargeTransport.jl and an adaptive one in

Ionmonger. Information on the flux discretizations can be found in [DA6]. To primar-

ily focus on the impact of the different current density descriptions, other effects, such

as photogeneration and surface recombination, are neglected in the simulations. In

the following, we look closer at the numerical performances of the solutions for the

two current densities introduced in (5.5) and (5.6) for the described setup.

5.2.2. Discussion of results

Figure 5.14 shows the evolution of the electric potential within the perovskite layer

(area shaded in red). Additionally, the evolution of the vacancy density in the vicinity

of each perovskite/transport layer interface is depicted in Figure 5.15. Both profiles

are visualized for a model based on the nonlinear diffusion current density (5.5) and a
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5.2. Volume exclusion effects in perovskite charge transport modeling

model based on the modified drift current density (5.6) for two choices of ϵ reflecting

low and high volume exclusion. The colored lines correspond to a solution calculated

with ChargeTransport.jl, whereas the black dotted lines indicate respective solutions

calculated with Ionmonger. Brighter colors indicate a later time. First, both software

tools based on different discretization techniques yield near-identical results. Hence,

we can compare the impact of the different current density descriptions independent

of the numerical method.

Figure 5.14.: Evolution of the electric potential ψ in the perovskite layer solving the PSC

charge transport model based on the nonlinear diffusion (5.5) (first column) and for the

model based on the modified drift current density (5.6) (second column). The first row

shows the case of ϵ = 0.01 (low exclusion) and the second row of ϵ = 0.9 (high exclusion).

The arrows indicate the direction of increasing time. (From [DA3] with modifications.)

Not surprisingly, for ϵ = 0.01, no difference in the electrostatic potential evolution
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(Figure 5.14, first row) and in the vacancy density profiles (Figure 5.15, top set of

four) can be observed. We can explain this behavior using (5.8), which shows that

for ϵ = 0.01, ga ≈ 1. Consequently, both current density descriptions coincide, as

indicated by the relationship (5.7) and the equality µaUT = Da. This particular case

is also described in Remark 2.3.

Figure 5.15.: Evolution of the vacancy density na at the left and right perovskite/transport

layer interface for the PSC charge transport model based on the nonlinear diffusion current

density (5.5) (first column) and for a model based on the modified drift current density

(5.6) (second column). The first set of rows shows the case of ϵ = 0.01 and the second

set of rows (below the line) corresponds to ϵ = 0.9. The arrows indicate the direction of

increasing time. No differences can be observed in the case of low exclusion, whereas a

slower evolution of the ion profile can be observed in the case of high exclusion and a

modified drift current density. (From [DA3] with modifications.)

Contrarily, for high volume exclusion (larger ϵ), the modified drift current density (5.6)
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causes a slower decrease of the ion density at the right perovskite interface (Figure 5.15,

second set of rows). Again, this behavior can be explained via the relation (5.7) and

the equality µaUT = Da. Moreover, the diffusion enhancement ga enters the diffusion

part of the nonlinear diffusion current density ja,ND, defined in (5.5). In this case, as ga
increases (larger ϵ), the diffusion of the vacancies in case of nonlinear diffusion current

density (5.5) also increases. Therefore, it is only in the case of both high exclusion and

modified drift current density (Figure 5.15, second set of rows) that we see a slower

evolution.

Figure 5.16.: Difference between calculated electrostatic potentials depicted in Figure 5.14

based on either a modified drift or a nonlinear diffusion approach, i.e., the error ψMD−ψND

is shown for ϵ = 0.01 (left) and ϵ = 0.9 (right). The scale of the y-axes differs by two

orders of magnitudes. (From [DA3] with modifications.)

Furthermore, the difference in the calculated electric potentials, i.e., ψMD − ψND, is

approximately two orders of magnitude larger for high volume exclusion (Figure 5.16).

Both configurations (nonlinear diffusion and modified drift) start with the same

initial condition, so the difference in electric potentials is negligible at t = 0 s.

However, for later times t, the difference ψMD − ψND attains a peak at both of the

perovskite/transport layer interface. A similar behavior can be observed in the

vacancy density differences, depicted in Figure 5.17. The largest differences occur near

the junction between the perovskite and transport layers. Again, for high volume

exclusion, the difference in vacancy densities (Figure 5.17) is approximately two orders

of magnitude larger. In case of high excluded-volume effects, the difference between

the calculated vacancy densities at the end time t = 30 s is significantly larger than at

previous times (Figure 5.17, right), agreeing with the previously made observations

concerning Figure 5.15.
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This trend of increasing error can be likewise observed for different choices of ϵ in

Figure 5.18, where the L∞ error between the calculated electric potentials and the

vacancy densities with respect to ϵ are depicted. Both L∞ errors are increasing with

higher effects of excluded-volume for all visualized times t > 0 s. The difference in the

vacancy densities seems most visible for larger times and larger ϵ (Figure 5.18, right)

and increases the most for the end time t = 30 s.

Figure 5.17.: Difference between calculated vacancy densities depicted in Figure 5.15 based

on either a modified drift or a nonlinear diffusion approach scaled by the average vacancy

density for ϵ = 0.01 (left) and ϵ = 0.9 (right). The scale of the y-axes differs by two orders

of magnitudes. (From [DA3] with modifications.)

Figure 5.18.: L∞ error between the electric potentials (left) and the vacancy densities (right)

calculated from a model based on either a nonlinear diffusion (5.5) or a modified drift

current density (5.6) for different values of ϵ. (From [DA3] with modifications.)

It is worth noting that the end time t = 30 s corresponds to the end of the scan
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protocol rather than the time when a steady state solution is reached. Holding the

perovskite solar cell at the constant end voltage U = 1.2 V while increasing the time

allows us to calculate the steady state solutions as t approaches infinity. Figure 5.19

(first row) shows that for low exclusion effects, the quadratic L2 errors between the

steady state and a solution at time t reach machine precision at a similar time for

both current density descriptions. However, the steady state solution is attained more

slowly when using the modified drift approach for cases with high volume exclusion

effects, as shown in Figure 5.19 (second row). In this case, the resulting quadratic L2

errors take approximately two to three times longer to vanish with the modified drift

current density.

Figure 5.19.: Time evolution of the quadratic L2 errors between the computed solutions

at time t and the steady state solutions for low exclusion (first row) and high exclusion

effects (second row). The steady state solution is calculated for a constant applied voltage

U = 1.2 V. For high volume exclusion effects, the steady state solution is reached at

different converging times.

Lastly, the influence of the different current density descriptions on the current-voltage

curves without illumination is investigated in Figure 5.20 and Figure 5.21. Again, the

colored curves correspond to solutions calculated with ChargeTransport.jl, while

black dotted lines are the solutions received using Ionmonger. Brighter colors indicate

higher volume exclusion, reflected in the choice of ϵ.

Figure 5.20 illustrates for low exclusion effects (ϵ = 0.01) that the currents for either

a nonlinear diffusion (5.5) or a modified drift current density (5.6) are identical.

Moreover, for a model based on the modified drift current density (Figure 5.20, left),

the impact of volume exclusion in the I-V curves becomes already observable for smaller

choices of ϵ (ϵ = 0.5). In contrast, for the nonlinear diffusion approach, differences

in the I-V curve become only apparent for larger values (Figure 5.20, right, ϵ = 0.9).

However, both current density approaches reveal in Figure 5.20 that as ϵ increases, the
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corresponding I-V characteristics shifts to the left, indicating that the current starts

to flow at a lower voltage. The trends in the currents can be explained, as in [47], in

terms of the distribution of the electric potential across the cell.

Figure 5.20.: Current-voltage curves for modified drift (left) and nonlinear diffusion (right)

for variations of ϵ. The arrows indicate the direction of increasing ϵ. For larger values of ϵ

the diode opens earlier. (From [DA3] with modifications.)

Figure 5.21.: Simulated I-V curves for modified drift (left) and nonlinear diffusion (right) for

variations of ϵ in comparison with measurements [29]. (From [DA3] with modifications.)

At earlier times (t = 0, 9 s in Figure 5.14), it can be seen that low exclusion leads to

smaller potential drops within the perovskite layer and larger potential drops within

the neighboring transport layers. Large drops can suppress recombination (by keeping

minority carriers away from recombination sites) by forming barriers. However, at

later times (t = 24, 30 s), we observe that the electric field at the perovskite/HTL

interface decreases for increasing ϵ. Smaller positive fields/larger negative fields allow

more holes from the transport layer to enter the perovskite, leading to increased

116



5.3. Role of vacancy dynamics in two-dimensional memristive devices

recombination and higher currents, as shown in Figure 5.20. For the modified drift

current density, at large ϵ, a negative electric field also emerges across the bulk of the

perovskite due to the slower migration of ions (see Figure 5.15, second set of rows),

further enhancing the currents.

Figure 5.21 compares the simulated I-V curves to the measurements from [29] for

the same device setup, as illustrated in Figure 5.13. Indeed, Figure 5.21 shows that

in comparison to the experimental measurements, the difference between nonlinear

diffusion or modified drift current density are minor. However, it is important to

note that for the sake of simplicity, this study excluded other effects, such as surface

mechanisms or general trap states.

In summary, our study reveals that when dealing with high exclusion, the modified

drift current density leads to a slower evolution of the vacancy profile, affecting the

electric potential profile and the I-V characteristics. While this indicates a greater

influence of volume exclusion effects on model predictions based on a modified drift

current density description, in our specific comparison with a measurement curve, this

influence is negligible. Nevertheless, additional physical effects or other scan protocols

may exhibit a different behavior depending on whether a charge transport model is

based on nonlinear diffusion or modified drift current densities.

5.3. Role of vacancy dynamics in two-dimensional

memristive devices

We end this chapter by analyzing the origin of hysteresis, the influence of vacancy

dynamics, and image-charge-induced Schottky barrier lowering for TMDC-based

memristive devices. The discussion includes the cases of vanishing Schottky barriers and

significant Schottky barrier heights. In addition, we examine the case without vacancy

migration, leading to the classical semiconductor device equations [204]. Furthermore,

the simulations are compared with experimental studies found in literature.

We use physically realistic parameters for MoS2 as representative material, as stated

in Table B.3. This includes the relative permittivity εr, the band-edge energies En, Ep,

and the effective densities of states Nn, Np. While the abovementioned parameters are

obtained directly from the literature and used for all simulations, other parameters

such as the mobilities µn, µp, µa, the intrinsic Schottky barriers ϕ0, and the vacancy

energy level Ea are expected to be highly sensitive to the sample’s microstructure.

These parameters are stated in Table B.4 for the two considered simulation scenarios.

The measurements are from [150] and were performed on MoS2-based memristive
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devices fabricated with a mechanical shear exfoliation technique followed by a plasma

treatment step to induce sulfur vacancies. Auger-electron spectroscopy measurements

are performed on these devices, confirming vacancy migration. We refer to [150] for

further information on the fabrication and measurement processes.

In the following, we have a one-dimensional device geometry, as illustrated in Figure 3.2

(bottom right), and apply a periodic piecewise linear voltage at the right contact, as

shown in Figure 5.22. The scan protocol depends on the maximum voltage, the sweep

rate and the number of cycles, specified in Table B.4. We denote the left contact by

x1 and the right contact by x2.

Figure 5.22.: Illustration of the time-dependent periodic piecewise linear voltage applied at

the right contact for three consecutive voltage cycles.

5.3.1. Vacancy depletion and mobility

For the first case, we consider the parameter set S1 (Table B.3 and Table B.4) with

negligible Schottky barriers ϕ0(x1) = ϕ0(x2) = 1 meV. We supply the model with the

classical Schottky boundary model (Section 3.2.2.1). The minimum and the maximum

applied voltages are Umin = −13 V, Umax = 13 V, and one cycle lasts 10.4 s.

Figure 5.23 shows eight consecutively simulated I-V curves (middle). Additionally,

we see a comparison of the experimentally measured curve with the second cycle

simulation (left) and with two simulated I-V cycles without vacancy migration (right).

The magnitude of the measured curve |I| (Figure 5.23, gray circles) is smooth with

approximately equal maximum current magnitudes at Umin and Umax. While |I(U)| is
more or less symmetric around U = 0 V, the right hysteresis branch (U > 0 V) has a

slightly larger area compared to the left branch (U < 0 V). The hysteresis direction is

clockwise in the right and counterclockwise in the left branch (Figure 5.23, right).

The second cycle I-V curve closely mirrors the characteristics of the measured curve,

including the hysteresis direction and the transitions from the low-resistive state (LRS)

to the high-resistive state (HRS) and vice versa (Figure 5.23, left).
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Figure 5.23.: Comparison between the simulated second cycle I-V with a symmetric I-V

measurement curve from [150] (left) and illustration of eight consecutively simulated

current-voltage cycles (middle). Furthermore, simulations without vacancy migration are

compared to the measurements (right). The simulations are based on the parameter set

S1 (Table B.3 and Table B.4). (Left and middle figure from [DA5] with modifications.)

In Figure 5.23 (middle), we observe a notable difference in the I-V curves of the first

cycle (light blue) compared to the following seven cycles (dark blue). Particularly,

the first cycle I-V curve is highly asymmetric, with an initial rise in the current,

which quickly saturates and almost remains constant until Umax is reached. In the

left hysteresis branch (U < 0 V) of the first cycle I-V curve (light blue) a current

crossing is visible, resulting in a change of the hysteresis direction from clockwise to

counterclockwise indicated by arrows. The consecutive I-V curves (dark blue) behave

differently, compared to the initial cycle. However, they consistently reproduce the

I-V characteristics of the measured curve.

Moreover, we do not observe at all a hysteretic behavior when simulating the charge

transport without accounting for vacancy migration (Figure 5.23, right). Furthermore,

neglecting vacancy migration results in an underestimation of the current magnitude

by a factor of two orders.

The different I-V characteristics for the initial cycle and the subsequent ones in

Figure 5.23 (middle) arise from variations in the initial vacancy quasi Fermi potential

φa configuration at the beginning of each cycle. At the beginning of the first cycle

(t = 0 s, U = 0 V), the system is in equilibrium, wherein all quasi Fermi potentials

remain constant, i.e., φα = φp = φa = 0 V, as shown in the band diagram (Figure 5.24,

left). Similarly, at the beginning of the second cycle (t = 10.4 s, U = 0 V) the electrons

and holes still remain close to their initial configuration at t = 0 s (Figure 5.24, right).

Contrarily, the small vacancy mobility results in a deviation from equilibrium of φa at

the left contact as seen in Figure 5.24 (right, yellow dotted). Such a non-equilibrium

configuration is reproducibly reached after each cycle following the first one.
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Figure 5.24.: Simulated band diagram of the initial equilibrium configuration at t = 0 s,

and an applied voltage U = 0 V (left) and of the non-equilibrium configuration at the

beginning of the second cycle at t = 10.4 s (U = 0 V). (From [DA5] with modifications.)

This difference between the first and the subsequent hysteresis loops can be linked to

a more general dynamic phenomenon, which will become clearer in the subsequent

discussion. We focus on the second cycle I-V curve as a more reproducible and repre-

sentative I-V curve. Figure 5.25 shows the vacancy density at selected applied voltages

during the second cycle. Additionally, its steady state limit, i.e., the configuration

attained under a constant applied voltage as t→ +∞, is shown in gray.

Figure 5.25.: Vacancy density configurations na for selected positions in the second cycle I-V

curve shown in Figure 5.23 (left, darkblue), together with its steady state limit (gray).

(From [DA5] with modifications.)
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At the beginning of the cycle, the previously discussed drop in the vacancy quasi Fermi

potential results in a local depletion of vacancies at the left contact (na ≪ 1010 m−3,

Figure 5.25, U = 1.6 V). Initially, this depletion zone limits the current, but it vanishes

quickly as the voltage increases (Figure 5.25, U = 5.1 V). Therefore, the device is in a

high-conductance state at the beginning of the second cycle. As the applied voltage

increases, the current also increases until a depletion zone forms at the right contact

(Figure 5.25, U = 11.2 V). This depletion zone limits the current just before Umax = 13

V is reached and grows, while the voltage decreases again (Figure 5.25, U = 11.2 V,

U = 9.6 V, U = 4.4 V). The forming of the depletion zone at the right contact reduces

the current, and, hence, the device is in the low-conductance state.

At U = 0 V, the system strives to restore equilibrium where no depletion zone exists.

Because of the small vacancy mobility, the depletion zone is not entirely annihilated

at the beginning of the left hysteresis branch (Figure 5.25, U = −2.6 V) leading to a

mirrored vacancy density configuration similar to the one at the beginning of the right

cycle (Figure 5.25, U = 1.6 V). This implies that the I-V curve is overall symmetric

around U = 0 V, and the device starts in a high-conductance state at the beginning of

the left hysteresis branch, portraying the behavior of the measured curve Figure 5.23

(left).

Next, we examine how the vacancy mobility µa impacts the I-V curve. As µa approaches

zero or infinity, we expect the vacancy density to remain stationary. Further simulations,

as detailed in [DA5], confirm this and reveal that significant hysteresis occurs only

within the range of µa ≈ 10−15 m2/(Vs) to µa ≈ 10−12 m2/(Vs). Selected hysteresis

curves with varying mobilities are portrayed in Figure 5.26.

As the mobility exceeds small values µa ≥ 10−15 m2/(Vs), clockwise oriented hysteresis

in both branches can be observed (Figure 5.26, first row). A transition of the hysteresis

direction occurs in the left hysteresis branch from clockwise to counterclockwise at

mobilities around µa ≈ 10−14 m2/(Vs) (Figure 5.26, µa = 3 × 10−14 m2/(Vs) and

µa = 5 × 10−14 m2/(Vs)). During this transition, the current in the left hysteresis

branch intersects at a crossover voltage Uc (Figure 5.26, µa = 3 ·10−14 m2/(Vs)), which

moves towards U = 0 V as the mobility increases until the entire left hysteresis branch

is directed counterclockwise (Figure 5.26, second row). Origin of this transition is

the shorter time required for vacancies with a larger mobility to reach a steady state,

which causes a faster annihilation of the depletion zone before U < 0 V is reached.

Further increasing the vacancy mobility (Figure 5.26, second row) results in the

formation of maxima at voltages U < Umax (and U > Umin), a symmetric I-V curve,

and an overall reduced maximum current. This behavior reflects the formation

dynamics of the depletion zone: In the high-mobility regime, the depletion zone can
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form before Umin or Umax is reached, leading to maxima at earlier voltages and a drop

in the current. Simultaneously, the vacancy density is close to its steady state limit,

resulting in the symmetry around U = 0 V and Uc ≈ 0 V.

Figure 5.26.: Example hysteresis loops of the second cycle I-V simulation for selected vacancy

mobility values. (From [DA5] with modifications.)

Additional simulations in [DA5] reveal that the crossover voltage consistently converges

to Uc = 0 V after a sufficiently large number of voltage cycles. Higher mobility values

result in faster reaching Uc = 0 V, requiring fewer cycles. Moreover, variations in the

voltage sweep rate solely shift the range of mobilities for which hysteresis becomes

observable.

In summary, the hysteresis and its symmetry originate from the formation and

annihilation dynamics of the vacancy depletion zone. Hysteresis occurs in a small

vacancy mobility range, in which the vacancies are sufficiently mobile to follow the

other carriers but slow enough to be in non-equilibrium. Furthermore, the asymmetry

and intersection in the left hysteresis branch are volatile features, influenced by both

vacancy mobility and the number of cycles, vanishing after enough voltage cycles.

In this example, the intrinsic Schottky barriers are so small that SBL is negligible.
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However, SBL is debated as a substantial mechanism contributing to hysteresis [150,

226, 262]. Therefore, the influence of SBL on the I-V curve is explored next.

5.3.2. Schottky barrier lowering

For the second case, we consider a similar parameter set S2 (Table B.3 and Table B.4)

as before but introduce intrinsic Schottky barriers ϕ0(x1) = 0.144 eV and ϕ0(x2) = 0.11

eV with a slightly smaller value at the right contact. The case with SBL refers to the

Schottky barrier lowering model in Section 3.2.2.2, while without/no SBL refers to the

Schottky boundary model in Section 3.2.2.1. The minimum and maximum applied

voltages are Umin = −10 V, Umax = 10 V and one cycle lasts 8 s. This section deals

exclusively with the second cycle I-V curves.

Figure 5.27 shows a comparison of the experimentally measured curve [151] with

the simulated I-V with Schottky barrier lowering (left), without SBL (middle), and

without vacancies (right). We observe good agreement of the measured I-V curve

with the simulated I-V with SBL (Figure 5.27, left). Both have the same clockwise

direction in the right branch and a counterclockwise direction in the left branch. In

comparison to the measured I-V curve in Figure 5.23 (left), the asymmetry around

U = 0 V of the measured curve in this section (Figure 5.27, left) is more pronounced,

the two maximum current magnitudes are different, and the right hysteresis area is

smaller than the left area.

Figure 5.27.: Comparison between measurements of an asymmetric hysteresis curve from

[150] and simulations with SBL (left) and without SBL (middle). Furthermore, simulations

without vacancy migration based on both considered boundary models are compared to

the measurements (right). The simulations are based on the parameter set S2 (Table B.3

and Table B.4). (Left and middle figure from [DA5] with modifications.)

In contrast, the current-voltage characteristics without SBL (Figure 5.27, middle)

shows a qualitative different behavior. Without SBL, the hysteresis direction of the
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right branch is counterclockwise. Furthermore, we have significant differences in the

maximum currents and the hysteresis areas of the left and right branches. Additionally,

if we neglect vacancies (Figure 5.27, right), the current magnitude is underestimated

by a factor of two orders and no hysteresis can be observed. For both boundary models

(with and without SBL), the absence of vacancies results in identical I-V curves.

In equilibrium (t = 0 s), SBL reduces the contact barriers by approximately 25 % and

18 %. This results in new equilibrium barrier values of ≈ 0.11 eV (without SBL: 0.144

eV) at the left and ≈ 0.09 eV (without SBL: 0.11 eV) at the right contact, altering

the electron band-edge boundary values (Figure 5.28, left). A similar reduction can

be noticed in the band-edges of holes and vacancies. Next, we investigate how the

barrier change at the left |∆ϕ(x1)| and at the right contact |∆ϕ(x2)| entering the

SBL boundary model evolves over time. The barrier change ∆ϕ is incorporated into

the model through the electric potential boundary condition (3.30), (3.31) via the

relation ∆ϕ = −q∆ψ. Figure 5.28 (middle) shows the applied bias and the changes

in the Schottky barrier heights with respect to time during the first two voltage

cycles. In our one-dimensional case, the condition ∇νψr < 0 in (3.31) indicates an

upwards bending of the band-edges. Initially, for a positive bias, the band-edges at the

left contact are bent upwards (∇νψr < 0), leading to an increased Schottky barrier

change |∆ϕ(x1)| > 0. Meanwhile, at the right contact, ∇νψr becomes positive, i.e.,

∇νψr ≥ 0, indicating a downwards bent band-edge. Consequently, the change in

the right Schottky barrier remains zero, i.e., ∆ϕ(x2) = 0, during most of the right

hysteresis cycle (U > 0). When the bias becomes negative, the situation reverses: The

change in Schottky barriers is ∆ϕ(x1) = 0 and |∆ϕ(x2)| > 0 during most of the left

hysteresis cycle (U < 0).

Figure 5.28.: Equilibrium electron band-edge with and without SBL (left) and the Schottky

barrier change along with the applied voltage with respect to time (middle). Furthermore,

a comparison between the simulated I-V curves with SBL (Figure 5.27, left) and without

SBL but with reduced intrinsic Schottky barriers are shown (right). (From [DA5] with

modifications.)
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An additional I-V simulation was performed without SBL using the reduced equilibrium

Schottky barriers obtained from the simulation with SBL as intrinsic Schottky barriers

ϕ0, (Figure 5.28, right; No SBL, reduced barrier). The resulting I-V curve aligns

closely with the one obtained with SBL. This comparison shows that the hysteresis is

primarily governed by the formation of the depletion zone as described in the previous

section. Consequently, while SBL significantly affects the I-V curve, it does not explain

the origin of hysteresis in this example.

Further simulations in [DA5] with varying intrinsic Schottky barriers at the left or

right contact show a symmetric I-V curve for identical left and right Schottky barrier

values. However, as the Schottky barrier heights at the left and right contacts differ,

increasing asymmetry becomes noticeable in the I-V curve. Depending on the specific

barrier values, this asymmetry can change the hysteresis direction in either the left or

right branch. Other features were observed, such as the formation of a maximum at

U < Umax and a reduction in maximum current with increasing barrier difference.

The analysis of the current-voltage dynamics resulting from asymmetric Schottky

contacts is also investigated in [DA5]. There, the I-V curves show an initial asymmetry

that decreases slightly but remains constant during more than 100 voltage cycles.

Higher vacancy mobilities led to a faster convergence to this stable configuration,

although it did not alter the underlying asymmetry. This observation suggests that

the asymmetry in the hysteretic I-V characteristics, resulting from different Schottky

barriers, is a non-volatile feature. This finding contrasts with the volatility observed

in Section 5.3.1 for the case of negligible Schottky barriers.

5.3.3. Pulse simulation

For applications such as analog computing and the emulation of synaptic behavior,

the devices are operated by applying repetitively short voltage pulses accompanied

by a low-amplitude voltage pulse to read out the resistance via the current. Running

such pulse simulations is challenging and computationally expensive due to the broad

range of timescales involved. Each pulse lasts just a few microseconds to milliseconds,

while the entire set of pulses can extend over many seconds to minutes. Moreover, the

detailed behavior depends significantly on the pulse parameters, resulting in different

maximum currents and symmetry of the set and reset currents. Like the I-V curve

simulations, the pulse simulations start from an ideal equilibrium configuration, which

is not necessarily ensured in the measurements. Considering these challenges, the

pulse simulations in [DA5] show that our vacancy-assisted charge transport model

can reproduce the overall experimental pulse-update behavior of two representative

devices from [150].
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5.3.4. Summary and conclusion

Our findings indicate that the hysteresis in both types of I-V characteristics, with

and without significant Schottky barriers, arises from mobile charged vacancies. The

vacancy dynamics leads to the formation and annihilation of a vacancy depletion

region, locally reducing the conductivity and limiting the current. With this switching

process, we can match experimentally observed I-V curves and explain other features,

such as the formation of a maximum at U < Umax [118, 206, 207], hysteresis crossing

[118], and different hysteresis directions [118, 150, 207].

Experimental studies have previously often explained different hysteresis directions

with different switching mechanisms [118, 150, 262]. However, our simulations reveal

that the vacancy depletion mechanism can account for both hysteresis directions,

depending on minor changes in parameters like Schottky barriers, mobilities, and

sweep cycles. In all our simulations, the hysteresis crossing results from slightly

modifying the vacancy’s dynamic response rather than an entirely new mechanism.

Moreover, our study reveals that, while SBL notably affects the I-V curves, we did not

identify any configuration where solely the effect of SBL reproduces the experimental

measured I-V curve. Indeed, we showed that we can link the hysteresis behavior

to the vacancy dynamics by modifying the Schottky barriers and using the classical

Schottky boundary model. This result offers new insights into the frequently discussed

hypothesis that SBL might be a primary mechanism for hysteresis in such devices

[150, 226, 262]. In conclusion, our study highlights the importance of considering

vacancy-assisted migration when designing and analyzing lateral memristive devices.
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As the central concepts have been outlined in the preceding chapters, we will now sum-

marize and draw conclusions based on the insights gained from this thesis. Additionally,

we will provide an overview of potential avenues for future investigations.

6.1. Conclusion

A well-structured derivation and formulation of charge transport models, comple-

mented by physically consistent numerical discretizations and simulations, are valuable

tools for theoretical analysis. Furthermore, these tools can potentially guide future

technological advancements, including developing technologies like perovskite solar

cells and memristive devices. These innovations are promising in addressing our time’s

escalating global energy challenges.

In Chapter 2, we started with deriving general semi-classical macroscopic drift-diffusion

equations. The resulting equations allow for an arbitrary number of mobile vacancies.

Furthermore, they effectively include the physics of mobile point defects, particularly

their nonlinear dynamics and volume exclusion effects, which capture the density

saturation prescribed by the material’s structure. Then, we continued in Chapter 3

by formulating drift-diffusion charge transport models tailored to PSCs and TMDC

memristors. Moreover, we developed a self-consistent framework to account for image-

charge-induced Schottky barrier lowering, which allows us to capture the influence

of the applied voltage and the charge carriers on the Schottky barriers. In addition

to these developments, we formulated in Chapter 4 implicit-in-time finite volume

schemes based on the excess chemical potential flux as TPFA which preserves relevant

physical properties such as positivity of densities or constant equilibrium quasi Fermi

potentials. We looked closer to the numerical analysis of the discrete schemes, by

proving an entropy-dissipation inequality which helped us to establish the existence of

discrete solutions at every time step. Finally, in Chapter 5, we performed numerical

simulations with ChargeTransport.jl [DA7]. These simulations allow us to validate

and test our theoretical findings.

Our numerical experiments consistently demonstrate an exponential decay towards

the discrete steady state solution for two error measure functionals. Moreover, the
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relative entropy concerning non-zero band-edge energies exhibits an exponential con-

vergence towards zero for both charge transport models. Our investigations also

reveal that varying initial vacancy densities notably impact the convergence time

towards the steady state, emphasizing the critical importance of aligning material

parameters with existing literature for meaningful comparisons. Furthermore, we

conducted a numerical comparison between two ionic current density descriptions

when incorporating volume exclusion effects in a perovskite solar cell setup, using

MAPI as the perovskite material. Notably, both models recover special cases of the

charge transport model in the limit of ignoring the finite size of ions or suppressing

ionic movement. In cases with high exclusion effects, we observed that the modified

drift current density results in a slower evolution of the ion profile. This highlights the

significant influence of volume exclusion effects on model predictions, particularly in

scenarios involving a modified drift current density description. Lastly, we validated

our charge transport model with I-V and pulse measurements found in literature for

lateral 2D MoS2-based memristive devices. These experiments strongly corroborated

the relevance of vacancy dynamics in TMDC devices and offered a new perspective

on the switching mechanisms. The insights gained from this study can also extend

the functional behavior of 2D TMDC memristive devices, making them promising

candidates for future neuromorphic computing applications.

6.2. Outlook

So far, we established a framework for describing and numerically solving the charge

transport in crystalline semiconductors with additional vacancy migration. However,

in addition to vacancy migration, other effects discussed in the literature influence the

current-voltage characteristics and, consequently, the device performance. For instance,

the impact of trap states has been explored in the context of perovskite-based solar

cells (see, e.g., [110, 147, 183]) and TMDC memristors (see, e.g., [64, 113, 231]). From

a modeling perspective, this involves coupling the drift-diffusion model to another

continuity equation for the trap density, as proposed for perovskites in [77, 182]. Both,

vacancy-assisted migration and charged trap states, alter the overall charge density,

influencing the total device current. Thus, quantitative physical models can help by

separating such effects, which are experimentally challenging to access or distinguish.

Concerning the discretization schemes, investigating the model behavior with non-zero

and even irregular band-edge energies, as successfully applied in LED simulations

[73], is from a mathematical and physical point of view of interest in the future.

Additionally, studying the impact of time-dependent Dirichlet functions aligned with
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physically realistic measurement techniques for PSCs and TMDC memristors can be

a topic of future research. Within the scope of this thesis, we also did not discuss

the convergence of the schemes for charge carriers evolving on different timescales.

Furthermore, we have omitted an examination of the parameter sensitivity of physical

parameters, following existing literature for the perovskite solar cells. Given this

consideration, a logical next step involves a theoretical study of PSCs, similar to

our approach for the TMDC memristive devices, by validating the model through

experimental measurements. The presented ideas naturally extend this thesis and

underline the importance of the interplay between theoretical findings, such as the

modeling and discretization, and physical measurements.
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Within Chapter 2, we formulated the hypotheses (H1) and (H2), which deal with the

regularity of the electrons and holes statistics functionsFn,Fp : R → (0,∞) are C1- diffeomorphisms;

0 < F ′
α(η) ≤ Fα(η) ≤ exp(η), η ∈ R, α ∈ {n, p},

(H1)

and the regularity of the vacancy statistics functionFa : R → (0, 1) is a C1- diffeomorphism;

0 < F ′
a(η) ≤ Fa(η) ≤ exp(η), η ∈ R.

(H2)

In this chapter, we show in Appendix A.1 that the examples of Fermi-Dirac and

Boltzmann statistics (2.20), (2.21), and (2.23) indeed satisfy these assumptions. Then,

we deal with the estimates concerning statistics and entropy functions (Lemma 3.3

and Lemma 3.4). We provide the proof of Lemma 3.3 in Appendix A.2 and Lemma 3.4

in Appendix A.3, which are stated under the assumption of (H1), (H2), and/or (H3).

The hypothesis (H3) reads

lim
x→+∞

Hα(x, y0)

F−1
α (x)

= +∞, for y0 ≥ 0 and α ∈ {n, p}, (H3)

where Hα(x, y) = Φα(x) − Φα(y) − Φ′
α(y)(x − y) is the relative entropy, defined in

(3.41). We proceed by proving Grönwall’s lemma (Lemma 3.8) in Appendix A.4 and

a discrete integration by parts in Appendix A.5. Lastly, we establish two auxiliary

results. One is needed for the proof of Lemma 4.12 (see Appendix A.6), and the

other is required for the proofs of existence in Theorem 4.15 and Theorem 4.16 (see

Appendix A.7).

A.1. Boltzmann and Fermi-Dirac statistics

functions

We relate the Fermi-Dirac integral of order 1/2 in (2.20), and the Boltzmann ap-

proximation (2.21) to the hypotheses (H1) and (H3). Furthermore, we relate the

Fermi-Dirac integral of order −1 in (2.23) to the hypothesis (H2).
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Lemma A.1. (Boltzmann) Assume that the statistics for electrons and holes is the

Boltzmann statistics (2.21), namely,

Fα(η) = eη , η ∈ R , α ∈ {n, p}.

Then, Fα satisfies (H1) and (H3). □

Lemma A.2. (Fermi-Dirac of order −1) Assume that the statistics for vacancies is

the Fermi-Dirac integral of order −1 in (2.23), namely,

Fa(η) = F−1(η) =
1

exp(−η) + 1
, η ∈ R .

Then, Fa satisfies (H2). □

Lemma A.3. (Fermi-Dirac of order 1/2) Assume that the statistics for electrons and

holes is the Fermi-Dirac integral of order 1/2 in (2.20), namely,

Fα(η) = F1/2(η) =
2√
π

∫ ∞

0

ξ1/2

exp(ξ − η) + 1
dξ , η ∈ R , α ∈ {n, p}. (A.1)

Then, Fα satisfies (H1) and (H3).

We only give a proof in the case of the Fermi-Dirac statistics of order 1/2 since the

results are essentially trivial for the other statistics functions.

Proof of Lemma A.3. Let α ∈ {n, p}. First, observe that Fα is smooth and strictly

increasing with limits 0 and +∞, when η → −∞ and η → +∞, respectively. Then,

F1/2(η) exp(−η) =
2√
π

∫ ∞

0

ξ1/2

exp(ξ) + exp(η)
dξ ≤ 2√

π

∫ ∞

0

ξ1/2 exp(−ξ) dξ = 1.

Moreover,

F ′
1/2(η) =

2√
π

∫ ∞

0

ξ1/2 exp(ξ − η)

(exp(ξ − η) + 1)2
dξ ≤ F1/2(η).

This proves (H1). Now let us focus on the behavior at infinity of F1/2. We claim the

existence of constants c1, c2 > 0 such that

c1η
3/2 ≤ F1/2(η) ≤ c2η

3/2, for η ≥ 1. (A.2)

With (A.2) we can conclude F−1
1/2(s) = O(s2/3) for s→ +∞. Therefore, the associated

entropy function behaves like O(s5/3) and (H3) readily follows. To see that (A.2) is
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indeed satisfied, we consider (A.1) on the two intervals [0, η] and [η,+∞), where the

respective integrals are denoted by I1, I2. This yields F1/2(η) =
2√
π
(I1 + I2) with

I1 =

∫ η

0

ξ1/2

exp (ξ − η) + 1
dξ and I2 =

∫ ∞

0

(z + η)1/2

exp(z) + 1
dz,

where we substitute z = ξ− η in I2. We bound I1 and I2 separately. On the one hand,

since 0 ≤ exp (ξ − η) ≤ 1 for ξ ≤ η, we obtain

1

3
η3/2 ≤ I1 ≤

2

3
η3/2.

On the other hand, we split I2 into an integral over [0, η] and one over [η,+∞) and

bound each term

I2 =

∫ η

0

(z + η)1/2

exp z + 1
dz +

∫ ∞

η

(z + η)1/2

exp z + 1
dz

≤ 21/2η1/2
∫ η

0

1

exp z + 1
dz + 21/2

∫ ∞

η

z1/2

exp z + 1
dz.

But, ∫ η

0

1

exp z + 1
dz ≤

∫ η

0

exp(−z)dz ≤ 1

and ∫ ∞

η

z1/2

exp z + 1
dz ≤

∫ ∞

0

z1/2

exp z
dz = Γ(3/2),

where Γ is the Euler’s Gamma function, satisfying Γ(3/2) =
√
π
2
. Hence, assuming

η ≥ 1, we receive for I2

0 ≤ I2 ≤
√
2
(
η1/2 +

√
π

2

)
≤

√
2η3/2

(
1 +

√
π

2

)
.

With c1 =
2

3
√
π
and c2 =

2√
π
(2
3
+
√
2(1 +

√
π
2
)) the claim in (A.2) is shown.

A.2. Proof of Lemma 3.3

Lemma 3.3. One has the following bounds on the entropy functions Φ′
α = F−1

α in

(3.40) and Hα(x, y) = Φα(x)− Φα(y)− Φ′
α(y)(x− y) in (3.41).
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(i) Let α ∈ {n, p}. Further, let Fα be a statistics function satisfying (H1) and Hα

be the associated relative entropy function. Then, for any ε > 0 and y0 ≥ 0,

there exists a constant cy0,ε > 0 such that

x ≤ cy0,ε + εHα(x, y), for all x ≥ 0, y ∈ [0, y0].

(ii) Let Fa be a statistics function satisfying (H2) and Φa be the associated entropy

function. Then, for any ε > 0, there exists a constant cε > 0 such that

x ≤ cε + εΦa(x), for all x ≥ 0. (A.3)

Proof. First, we show (i). Let Fα with α ∈ {n, p} be a statistics function satisfying

(H1) and Hα be the associated relative entropy function. Let ε > 0 and y0 ≥ 0. We

note that the Legendre transform of the strictly convex function x 7→ εHα(x, y) exists

as a sum of a strictly convex and convex function. The Legendre transform reads

L(z) = supx∈R (xz − εHα(x, y)). For x ≥ 0 and y ∈ [0, y0] one has

x ≤ sup
x∈R

(x− εHα(x, y)) + εHα(x, y),

where we evaluated the Legendre transform at 1. The value is exactly given by

L(1) = x̄− εHα(x̄, y) with x̄ = Fα

(
1
ε
+ F−1

α (y)
)
. In turn, one has

x ≤ cy0,ε + εHα(x, y), for all x ≥ 0, y ∈ [0, y0],

for cy0,ε := Fα

(
1
ε
+ F−1

α (y0)
)
> 0 since Fα is increasing.

For (ii), where Fa is a statistics function satisfying (H2) and Φa is the associated

non-negative entropy function, an analogous calculation will prove the estimate

x ≤ cε + εΦa(x), for all x ≥ 0,

with cε := Fa

(
1
ε

)
> 0, where we use now the Legendre transform of x 7→ εΦa(x), given

as L(z) = supx∈R (xz − εΦa(x)).

A.3. Proof of Lemma 3.4

Lemma 3.4. Let Fα with α ∈ {n, p} be a statistics function satisfying (H1) and (H3).

Then, for any ε > 0 and y0 ≥ 0, there exists a constant cy0,ε ≥ 0 such that

max{F−1
α (x), 0} ≤ cy0,ε + εHα(x, y), for all x ≥ 0, y ∈ [0, y0].
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Proof. Let us consider Fα with α ∈ {n, p} as a statistics function satisfying (H1) and

(H3). Let ε > 0 and y0 ≥ 0. Because of (H3) there exists x0 ≥ 0, depending on y0 and

ε such that

0 ≤ F−1
α (x) ≤ εHα(x, y0), for all x ≥ x0. (A.4)

Furthermore, the calculation ∂yHα(x, y) = −Φ′′
α(y)(x − y) ≤ 0 reveals that y 7→

Hα(x, y) is non-increasing for all y ∈ [0, y0], y ≤ x, due to the convexity of Φα. This

eventually implies that (A.4) does not only hold for y = y0, but also for y ∈ [0, y0]

with y0 ≤ x. Hence,

0 ≤ F−1
α (x) ≤ εHα(x, y), for all y ∈ [0, y0], x ≥ max{x0, y0} =: x̄.

This proves the claim with cy0,ε = 0 in case of x ≥ x̄. For 0 ≤ x ≤ x̄ we have

F−1
α (x) ≤ F−1

α (x̄),

since F−1
α is monotonously increasing. Due to the positivity of εHα(x, y), the claim

directly follows with cy0,ε = F−1
α (x̄). Hence, in total, we set cy0,ε := min{0,F−1

α (x̄)},
which ends the proof.

A.4. Proof of Grönwall’s lemma

Lemma 3.8. (Grönwall’s lemma) Let tF ∈ R≥0 and suppose that u, g, a : [0, tF ] → R
are sufficiently smooth functions such that

u′(t) + g(t) ≤ a(t)u(t), for t ∈ [0, tF ], (A.5)

where a, g are non-negative on [0, tF ]. Then,

u(t) +

∫ t

0

g(s) ds ≤ u(0) exp

(∫ t

0

a(s) ds

)
, for t ∈ [0, tF ]. (A.6)

Proof. Additionally, let h : [0, tF ] → R be a sufficiently smooth function. We can

establish our claim directly by demonstrating that if

h′(t) ≤ a(t)h(t), for t ∈ [0, tF ], (A.7a)

then

h(t) ≤ h(0) exp

(∫ t

0

a(s) ds

)
, for t ∈ [0, tF ]. (A.7b)
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To see that our original claim (A.6) follows from (A.7), we define h(t) = u(t)+
∫ t
0
g(s) ds.

Due to the assumption (A.5), we have for t ∈ [0, tF ]

h′(t) = u′(t) + g(t) ≤ a(t)u(t) ≤ a(t)h(t) + a(t)

∫ t

0

g(s) ds ≤ a(t)h(t),

since both functions, a and g, are non-negative. This means that h satisfies (A.7a).

Thus, from (A.7b), it follows for t ∈ [0, tF ]

u(t) +

∫ t

0

g(s) ds = h(t) ≤ h(0) exp

(∫ t

0

a(s) ds

)
= u(0) exp

(∫ t

0

a(s) ds

)
,

which proves the claim (A.6). To conclude the proof, we demonstrate that (A.7a)

indeed implies (A.7b). We define h̃(r) = exp(−
∫ r
0
a(s) ds)h(r), for r ∈ [0, t]. From

(A.7a) the non-negativity of h̃′ follows, i.e.,

h̃′(r) = exp

(
−
∫ r

0

a(s) ds

)
(h′(r)− a(r)h(r)) ≤ 0, for r ∈ [0, t].

Integrating h̃′ from 0 to t gives us h̃(t)− h̃(0) ≤ 0, where

h̃(t)− h̃(0) = exp

(
−
∫ t

0

a(s) ds

)
h(t)− h(0), for t ∈ [0, tF ],

which shows (A.7b) after rearranging terms and multiplication with exp(
∫ t
0
a(s) ds).

A.5. Proof of a discrete integration by parts

Lemma A.7. (Discrete integration by parts) Let (T , E , {xK}K∈T ) be an admissible

mesh and the finite difference operator DK,σ be given by (4.5).

(i) Let ψm = (ψmK)K∈T be the approximation of the electric potential ψ at time tm

and ψD = (ψDK)K∈T be the approximation of the boundary data ψD ∈ W 1,∞(Ω).

Similarly, we define the approximation of some function u as u = (uK)K∈T .

Then, ∑
σ∈E

DK,σuDK,σ(ψ
m −ψD) = −

∑
K∈T

∑
σ∈EK

DK,σu(ψ
m
K − ψDK).

(ii) Let α ∈ {n, p} and the flux approximation Jmα,K,σ be given by (DF). Furthermore,

let φmα = (φmα,K)K∈T and φD = (φDK)K∈T be the approximations of the electron

and hole quasi Fermi potentials at time tm and the boundary data φD ∈ W 1,∞(Ω),

respectively. Then,∑
σ∈E

Jmα,K,σDK,σ(φ
m
α −φD) = −

∑
K∈T

∑
σ∈EK

Jmα,K,σ(φ
m
α,K − φDK), for α ∈ {n, p}.
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(iii) Let φma = (φma,K)K∈Ta be the approximation of the vacancy quasi Fermi poten-

tial φa at time tm and Jma,K,σ be the corresponding flux approximation (DF).

Furthermore, let ψD = (ψDK)K∈T be the approximation of ψD ∈ W 1,∞(Ω). Then,∑
σ∈Ea

Jma,K,σDK,σ(φ
m
a −ψD) = −

∑
K∈Ta

∑
σ∈EK

Jma,K,σ(φ
m
a,K − ψDK).

In case of the PSC model, we have Ta = Tintr and Ea = E int
intr, whereas in case of

the TMDC memristor model, we have Ta = T and Ea = E .

Proof. All proofs rely on the same idea: We reorder the sums by using the local

conservativity of the finite difference operator DK,σ in (4.5) and the flux approximation

Jmα,K,σ in (DF) for α ∈ {n, p, a}, i.e., for σ = K|L it holds

0 = Jmα,K,σ + Jmα,L,σ = DK,σu+DL,σu.

Therefore, it suffices to prove (i). We begin by splitting the sum on the left-hand side∑
σ∈E

DK,σuDK,σ(ψ
m −ψD) =

∑
σ∈E int

DK,σuDK,σ(ψ
m −ψD)

+
∑
σ∈ED

DK,σuDK,σ(ψ
m −ψD)

+
∑
σ∈EN

DK,σuDK,σ(ψ
m −ψD) =: S1 + S2 + S3,

and use the definition of the finite difference operator (4.5) to rewrite S1 for σ = K|L

S1 =
∑
σ∈E int

DK,σuDK,σ(ψ
m −ψD) =

∑
σ∈E int

DK,σu
(
ψmL − ψmK − ψDL + ψDK

)
=

∑
σ∈E int

(
DK,σu

(
ψmL − ψDL

)
−DK,σu

(
ψmK − ψDK

))
= −

∑
σ∈E int

(
DL,σu

(
ψmL − ψDL

)
+DK,σu

(
ψmK − ψDK

))
,

where DK,σu = −DL,σu since DK,σ is locally conservative. It is important to note

that we count edges twice when summing over cells. Therefore, we obtain

S1 = −
∑
K∈T

∑
σ∈EK∩E int

DK,σu
(
ψmK − ψDK

)
,

which proves the claim for all interior faces. Furthermore, we can rewrite S2 such that

S2 =
∑
σ∈ED

DK,σuDK,σ(ψ
m −ψD) =

∑
σ∈ED

DK,σu
(
(ψDσ − ψmK)− (ψDσ − ψDK)

)
= −

∑
K∈T

∑
σ∈EK∩ED

DK,σu
(
ψmK − ψDK

)
,
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which proves the claim for all faces located at the Dirichlet boundary. Lastly, due to

the definition of the finite difference operator DK,σ for σ ∈ EN , we have

0 =
∑
σ∈EN

DK,σuDK,σ(ψ
m −ψD) = −

∑
K∈T

∑
σ∈EK∩EN

DK,σu
(
ψmK − ψDK

)
.

Thus, we proved (i) for all σ ∈ E .

A.6. Auxiliary result needed to establish

Lemma 4.12

In this section, we establish a technical result which is crucial for the proof of bounds

satisfied by the quasi Fermi potentials of electrons and holes, see Lemma 4.12.

Lemma A.8. Let α ∈ {n, p}. Assume that the statistics function Fα satisfies the

hypothesis (H1). Let us define Kα : (x, a) ∈ R2 7→ Kα(x, a) ∈ R with

Kα(x, a) = log(Fα(x− a))− x,

and Dα : (x, y, a, b) ∈ R4 7→ Dα(x, y, a, b) ∈ R with

Dα = (x− y)
[
B
(
Kα(x, a)−Kα(y, b)

)
Fα(x− a)−B

(
Kα(y, b)−Kα(x, a)

)
Fα(y− b)

]
.

Then, for all Φ,Ψ ∈ R, the function ΥΦ,Ψ : R → R defined by

ΥΦ,Ψ(x) = inf
{
Dα(x, y, a, b); −Φ ≤ y ≤ Φ,−Ψ ≤ a, b ≤ Ψ

}
verifies

lim
x→−∞

ΥΦ,Ψ(x) = +∞ and lim
x→+∞

ΥΦ,Ψ(x) = +∞.

Proof. Let Φ and Ψ be given. First, we remark that the function Kα is non-increasing

with respect to both of its variables a and x, where x 7→ Kα(x, a) is non-increasing

due to (H1). We note that the Bernoulli function B is also non-increasing on R. The
regularity of the functions Kα and Fα ensure that there exist positive constants λ, µ, µ

such that for all −Φ ≤ y ≤ Φ, −Ψ ≤ b ≤ Ψ

−λ ≤ Kα(y, b) ≤ λ and µ ≤ Fα(y − b) ≤ µ.

This implies the following inequalities, for x ∈ R, y ∈ [−Φ,Φ] and a, b ∈ [−Ψ,Ψ],

B
(
Kα(x,−Ψ) + λ

)
≤ B

(
Kα(x, a)−Kα(y, b)

)
≤ B

(
Kα(x,Ψ)− λ

)
,

−B
(
−λ−Kα(x,−Ψ)

)
≤ −B

(
Kα(y, b)−Kα(x, a)

)
≤ −B

(
λ−Kα(x,Ψ)

)
,
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yielding the following bounds on Dα(x, y, a, b)/(x− y)

Dα(x, y, a, b)

x− y
≥ B

(
Kα(x,−Ψ) + λ

)
Fα(x−Ψ)−B

(
−λ−Kα(x,−Ψ)

)
µ,

Dα(x, y, a, b)

x− y
≤ B

(
Kα(x,Ψ)− λ

)
Fα(x+Ψ)−B

(
λ−Kα(x,Ψ)

)
µ.

(A.8)

First, we consider the case that x ≤ −Φ. We can deduce from (A.8) that

Dα(x, y, a, b)

x− y
≤ B

(
Kα(−Φ,Ψ)− λ

)
Fα(x+Ψ)−B

(
λ−Kα(−Φ,Ψ)

)
µ.

But, due to (H1), lim
x→−∞

Fα(x+Ψ) = 0, which implies that, for −x large enough, the

right-hand side of the last inequality is negative. Thus, for such x with x ≤ y we have

Dα(x, y, a, b) ≥ (x− y)
[
B
(
Kα(−Φ,Ψ)− λ

)
Fα(x+Ψ)−B

(
λ−Kα(−Φ,Ψ)

)
µ
]
,

and, by taking the infimum in y ∈ [−Φ,Φ], we obtain

ΥΦ,Ψ(x) ≥ (x+ Φ)
[
B
(
Kα(−Φ,Ψ)− λ

)
Fα(x+Ψ)−B

(
λ−Kα(−Φ,Ψ)

)
µ
]
.

As the first product in the right-hand side tends to 0, while the second one tends to

+∞, we deduce that

lim
x→−∞

ΥΦ,Ψ(x) = +∞.

We may now consider that x ≥ Φ. From (A.8), we deduce that

Dα(x, y, a, b)

x− y
≥

(
B
(
Kα(Φ,−Ψ) + λ

)
Fα(x−Ψ)−B

(
−λ−Kα(Φ,−Ψ)

)
µ
)
.

For x sufficiently large, the right-hand side of the last inequality is positive and

ΥΦ,Ψ(x) ≥ (x− Φ)
(
B
(
Kα(Φ,−Ψ) + λ

)
Fα(x−Ψ)−B

(
−λ−Kα(Φ,−Ψ)

)
µ
)
.

Therefore, we get

lim
x→+∞

ΥΦ,Ψ(x) = +∞.
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A.7. Auxiliary result needed to establish the

existence of discrete solutions

In Lemma A.9, we relate the scalar product between a continuous vector field Pm(X)

and the vector of quasi Fermi potentials X, as defined in (4.29), with the discrete

entropy-dissipation inequalities (see Theorem 4.5 and Theorem 4.6). This auxil-

iary result is crucial in proving the existence of discrete solutions, as formulated in

Theorem 4.15 and Theorem 4.16.

Lemma A.9. Let Pm : RθX → RθX with θX = 2Card(T ) + Card(Tintr) (resp. θX =

3Card(T )) be a continuous vector field, where the components are related to the

continuity equations (DPa), (DPb), and (DPc) (resp. (DMa), (DMb), and (DMc)) as

follows. For the electron and hole components, we put every term of the equations

(DPa) and (DPb) (resp. (DMa) and (DMb)) on the left-hand side and rescale by

a factor δτm/ν (resp. δnτ
m/ν and δnδpτ

m/ν). The vacancy-related components are

given by (DPc) (resp. (DMc)), rescaled by τm. Furthermore, let X denote the vector

containing the unknown quasi Fermi potentials at time step m as defined in (4.29).

Then, the following inequality holds for any ε > 0

(1− ετm)ET (X)− ET (X
m−1) + τmDT (X)− τmcε,Ω,ξ ≤ Pm(X) ·X, (A.9)

where cε,Ω,ξ corresponds to the constant from the entropy-dissipation inequality in

Theorem 4.5 (resp. Theorem 4.6) and Xm−1 denotes the solution at time step m− 1.

Proof. In the following, we will only prove the claim for the PSC charge transport

model, as the proof for the TMDC-based memristor model is analogous. The claim was

already established within the proof of Theorem 4.5, where we defined the following

remainder terms

S1 =
δ

2ν

∑
α∈{n,p}

∑
σ∈E

mσ

dσ
nα,σ (Dσφ

D)2, S2 =
z2a
2

∑
σ∈E int

intr

τσna,σ (Dσψ
D)2,

S3 =
δγ

ν

∑
K∈T

mKGK (φp,K − φn,K) .

With this, we can bound the dissipation rate defined in (4.14) as follows

DT (X)− S1 − S2 − S3 ≤
δ

ν

∑
α∈{n,p}

∑
K∈T

∑
σ∈EK

Jα,K,σ(φα,K − φDK)

+
δ

ν

∑
K∈T

mK

(
RK − γGK

)
(φp,K − φn,K)

+
∑

K∈Tintr

∑
σ∈EK

Ja,K,σ(φa,K − ψDK).

(A.10)
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The recombination and photogeneration term of the right-hand side of (A.10) is equal

to the difference of the recombination-related term of the dissipation DT (X), i.e.,

δ/ν
∑

K∈T mKRK

(
φmp,K − φmn,K

)
, and S3. The remaining terms can be easily estimated

by tracing back the reformulations within the proof of the entropy-dissipation inequality.

For example, for the vacancies, we define DT ,a(X) := z2a/2
∑

σ∈E int
intr
τσna,σ(Dσφa)

2 (see

(4.31)). We can show the following inequality by using (a2 − b2)/2 ≤ a(a − b), the

definition of the discrete flux (4.11) dependent on nmα,σ, and a discrete integration by

parts (see Lemma A.7(iii))

DT ,a(X)− S2 =
z2a
2

∑
σ∈E int

intr

τσna,σ(Dσφa)
2 − z2a

2

∑
σ∈E int

intr

τσna,σ (Dσψ
D)2

≤ z2a
∑
σ∈E int

intr

τσna,σDK,σφaDK,σ

(
φa −ψD

)
≤ −

∑
σ∈E int

intr

Ja,K,σDK,σ

(
φa −ψD

)
≤

∑
K∈Tintr

∑
σ∈EK

Ja,K,σ
(
φa,K−ψDK

)
.

A similar calculation can be applied to relate the remaining terms in (A.10). Moreover,

within the proof of Theorem 4.5, we established (see (4.18) up to a division by τm)

ET (X)− ET (X
m−1)

τm
≤ δ

∑
α∈{n,p}

∑
K∈T

mKzα
(
φα,K − φDK

) nα,K − nm−1
α,K

τm

+
∑

K∈Tintr

mKza
(
φa,K − ψDK

) na,K − nm−1
a,K

τm
.

(A.11)

We observe that the right-hand sides of (A.10) and (A.11) are equal to scaled scalar

product, given by (Pm(X) ·X)/τm,

Pm(X) ·X
τm

=
∑

α∈{n,p}

∑
K∈T

(φα,K − φDK)
(
δmKzα

nα,K − nm−1
α,K

τm
+
δ

ν

∑
σ∈EK

Jα,K,σ

)
+
δ

ν

∑
K∈T

mK

(
RK(φp,K − φn,K)− γGK(φp,K − φn,K)

)
+

∑
K∈Tintr

(φa,K − ψDK)
(
mKza

na,K − nm−1
a,K

τm
+

∑
σ∈EK

Ja,K,σ

)
.

(A.12)

Here, we used zn = −1 and zp = 1 and defined RK := R(nn,K , np,K). Thus, by

combining (A.10) and (A.11) we can deduce the estimate

ET (X)− ET (X
m−1)

τm
+ DT (X)− (S1 + S2 + S3) ≤

Pm(X) ·X
τm

. (A.13)
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Moreover, we verified within the proof of Theorem 4.5 (see (4.23))

S1 + S2 + S3 ≤ εET (X) + cε,Ω,ξ. (A.14)

Substituting now (A.14) into (A.13) shows

ET (X)− ET (X
m−1)

τm
+ DT (X)− (εET (X) + cε,Ω,ξ) ≤

Pm(X) ·X
τm

.

Finally, multiplying the last inequality by τm and rearranging terms completes the

proof.
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All model parameters used for the simulations in Chapter 5 are summarized in this

chapter. Appendix B.1 contains the parameters for the perovskite solar cell application

and Appendix B.2 for the TMDC-based memristive devices.

B.1. Perovskite solar cells

We use Table B.1 in Section 5.1.1.2 to simulate a three-layer PSC device domain with

TiO2 as electron transport layer material and spiro-OMeTAD as material for the hole

transport layer. Apart from Na = 1.0× 1027 m−3 and Ea = −4.45 eV, the parameter

values are from [44, 48].

Physical quantity Symbol Value Unit

TiO2 MAPI spiro-OMeTAD

Layer thickness 100 400 200 nm

Relative permittivity εr 10 24.1 3

Conduction band-edge energy En −4.0 −3.7 −3.4 eV

Valence band-edge energy Ep −5.8 −5.4 −5.1 eV

Vacancy energy level Ea – −4.45 – eV

Eff. conduction band DoS Nn 5× 1025 8.1× 1024 5× 1025 m−3

Eff. valence band DoS Np 5× 1025 5.8× 1024 5× 1025 m−3

Max. vacancy density Na – 1.0× 1027 – m−3

Doping density Cn 1.0× 1024 0.0 0.0 m−3

Doping density Cp 0.0 0.0 1.0× 1024 m−3

Average vacancy density Ca – 1.6× 1025 – m−3

Electron mobility µn 3.89× 10−4 6.62× 10−3 3.89× 10−5 m2/(Vs)

Hole mobility µp 3.89× 10−4 6.62× 10−3 3.89× 10−5 m2/(Vs)

Vacancy mobility µa – 3.39× 10−16 – m2/(Vs)

Radiative recombination coeff. r0,rad 6.8× 10−17 3.6× 10−18 6.3× 10−17 m3/s

SRH lifetime, electrons τn 1.0× 10100 3.0× 10−9 1.0× 10100 s

SRH lifetime, holes τp 1.0× 10100 3.0× 10−7 1.0× 10100 s

SRH trap energy Eτ −5.0 −4.55 −4.1 eV

Inc. photon flux Fph 0.0 1.4× 1021 0.0 1/(m2s)

Absorption coefficient αg 0.0 1.3× 107 0.0 1/m

Table B.1.: Parameter values from [44, 48] for the simulation of a three-layer perovskite

solar cell at a temperature T = 298 K with TiO2 as electron transport layer material and

spiro-OMeTAD as hole transport layer material.
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Furthermore, the simulations in Section 5.2 are based on Table B.2, where the

parameters are from [28]. In this setup we use PCBM as electron transport layer

material and PEDOT:PSS as hole transport layer material.

Physical quantity Symbol Value Unit

PCBM MAPI PEDOT:PSS

Layer thickness 85 300 30 nm

Relative permittivity εr 3 23.0 4

Conduction band-edge energy En −3.8 −3.8 −3.0 eV

Valence band-edge energy Ep −6.2 −5.4 −5.1 eV

Eff. conduction band DoS Nn 1× 1025 1.0× 1025 1× 1026 m−3

Eff. valence band DoS Np 1× 1025 1× 1025 1× 1026 m−3

Doping density Cn 2.09× 1024 0.0 0.0 m−3

Doping density Cp 0.0 0.0 2.09× 1024 m−3

Average vacancy density Ca – 1.0× 1024 – m−3

Electron mobility µn 1.0× 10−7 2.0× 10−3 1.0× 10−5 m2/(Vs)

Hole mobility µp 1.0× 10−7 2.0× 10−3 1.0× 10−5 m2/(Vs)

Vacancy mobility µa – 1.0× 10−14 – m2/(Vs)

Radiative recombination coeff. r0,rad 6.8× 10−17 3.6× 10−18 3.6× 10−18 m3/s

SRH lifetime, electrons τn 1.0× 10100 1.0× 10−7 1.0× 10100 s

SRH lifetime, holes τp 1.0× 10100 1.0× 10−7 1.0× 10100 s

SRH trap energy Eτ −5.0 −4.6 −4.05 eV

Table B.2.: Parameter values from [28] for the simulation of a three-layer perovskite solar

cell at a temperature T = 300 K with PCBM as electron transport layer material and

PEDOT:PSS as hole transport layer material.

We note that with a lattice constant of a = 6.28 × 10−10 m (see [65]), we have an

ideal halide density of Na = 1.21× 1028 m−3. In the simulations in Section 5.2, when

Na = 1.0 × 1026 m−3 (ϵ = 0.01), we choose Ea = −4.66 eV and for Na = 1.1 × 1024

m−3 (ϵ = 0.9), we set Ea = −4.16 eV. For all other choices of the tuple (Na, Ea) we

directly refer to the simulation files in [DA1]. In both parameter sets in Table B.1 and

Table B.2, we set the doping to C = Cn in the electron transport layer, C = −Ca in

the intrinsic perovskite layer and C = −Cp in the hole transport layer.

B.2. TMDC-based memristive devices

In the following, we have the material-dependent parameters collected from literature

summarized in Table B.3. The sample specific parameters for the simulations in

Section 5.1.2, Section 5.3.1 and Section 5.3.2 are summarized in Table B.4.

We calculate the valence band-edge energy with the relation Ep = En − Eg and the

effective conduction and valence band densities of states Nn, Np via (2.19) by inserting
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the effective masses from Table B.3. The saturation limit Na can be estimated by

the volume V and the number of sulfur sites in a 2H MoS2 unit cell, see Figure 2.4.

With the lattice constants a = 0.316 nm and c = 1.229 nm from [215], we have

Na ≤ 4/V ≈ 4× 1028 m−3. Lastly, we use an n-type, i.e., positive background doping

concentration C = 1.0 × 1021 m−3. This concentration value improves numerical

stability and is sufficiently small to have no significant influence on the results.

Physical quantity Symbol Value used Range Unit Reference

Channel length 1 – µm [150]

Channel width 10 – µm [150]

Channel thickness 0.015 – µm [150]

Relative permittivity εr 10 – [130]

Image-force permittivity εi 10 ≥ εr [156, 176]

Conduction band-edge energy En −4.0 [−4.3,−3.7] eV [53, 104, 153, 184, 251]

Band gap Eg 1.3 – eV [159]

Valence band-edge energy Ep −5.3 – eV

Electron effective mass m∗
n 0.55 – m0 [257]

Electron effective mass m∗
p 0.71 – m0 [257]

Eff. conduction band DoS Nn 1× 1025 – m−3

Eff. valence band DoS Np 1.5× 1025 – m−3

Max. vacancy density Na 1× 1028 ≤ 4× 1028 m−3

Electron mobility µn – [1.0×10−5, 1.0×10−2] m2/(Vs) [151, 197, 256, 261]

Hole mobility µp – [1.0×10−5, 1.0×10−2] m2/(Vs) [151, 197, 256, 261]

Doping density C 1.0× 1021 – m−3

Table B.3.: Summary of the MoS2 material parameters collected from the literature for a

layer thickness of ≈ 15 nm and a constant temperature T = 300 K and comparison with

the values used in the simulations. Here, m0 denotes the electron rest mass.

Next, the sample-specific parameters are summarized in Table B.4. The used intrinsic

vacancy energies result in average vacancy concentrations of Ca ≈ 6.4 × 1023 m−3

(Ea = −4.32 eV) and Ca ≈ 5.4× 1023 m−3 (Ea = −4.33 eV). These average vacancy

concentrations align well with DFT calculations [106, 195], which predicted areal

densities of up to ≈ 4.6 × 1017 m−2. The areal densities should be divided by the

channel thickness to obtain the average volumetric density, resulting in average vacancy

concentrations Ca up to ≈ 1× 1025 m−3.

We can relate the fitted vacancy mobilities µa to the vacancy activation energies ∆Ha

via the Genreith-Schriever hopping model [93] which relates the vacancy mobility µa,

the electric field strength E, the drift velocity vd and the activation energy ∆Ha via

µa = minE{(∂vd/∂E)(∆Ha, E)}. Assuming a vanishing entropy of migration Sa = 0,

an attempted frequency of v0 = 1.0 × 1012 Hz (see [59]) and setting the hopping

distance to the lattice constant a = 0.316 nm (see [215]), the chosen vacancy mobilities

in Table B.4 can be translated to the activation energies Ha = 0.53 ± 0.01 eV (for
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S1) and Ha = 0.503± 0.001 eV (for S2). This matches particular well with previous

estimations Ha = 0.6 eV for the devices [150]. In case of the parameter set S1 one

cycle lasts 10.4 s, while for S2 one cycle takes 8 s.

Physical quantity Symbol S1 S2 Unit

Left Schottky barrier ϕ0(x1) 1.0× 10−3 0.144 eV

Right Schottky barrier ϕ0(x2) 1.0× 10−3 0.110 eV

Intrinsic vacancy energy Ea −4.32 −4.33 eV

Electron mobility µn 2.5× 10−4 2.15× 10−3 m2/(Vs)

Hole mobility µp 2.5× 10−4 2.15× 10−3 m2/(Vs)

Vacancy mobility µa 5× 10−14 1.15× 10−13 m2/(Vs)

Voltage amplitude Umax 13 10 V

Table B.4.: Sample-specific parameter sets S1 and S2 obtained from the simulation fits to

the experimental data in Figure 5.23 (right) with S1 and in Figure 5.27 (left) with S2. A

sweep rate of 5 V/s was used for all fits.
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[240] P. Vágner, C. Guhlke, V. Miloš, R. Müller, and J. Fuhrmann. “A contin-

uum model for yttria-stabilized zirconia incorporating triple phase boundary,

lattice structure and immobile oxide ions”. Journal of Solid State Electro-

chemistry 23.10 (2019), pp. 2907–2926. doi: 10.1007/s10008-019-04356-9

(cit. on pp. 10, 27).

[241] R. S. Varga. Matrix Iterative Analysis. 2nd ed. Springer-Verlag, Berlin Hei-

delberg, 2000. doi: 10.1007/978-3-642-05156-2 (cit. on p. 85).

[242] P. S. Vassilevski, S. I. Petrova, and R. D. Lazarov. “Finite Difference Schemes

on Triangular Cell-Centered Grids with Local Refinement”. SIAM journal

on scientific and statistical computing 13.6 (1992), pp. 1287–1313. doi: 10.

1137/0913073 (cit. on pp. 6, 63).

[243] H. K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid

Dynamics: The Finite Volume Method. 2nd ed. Pearson Education Limited,

Harlow, 2007 (cit. on p. 71).

[244] A. Walsh, D. O. Scanlon, S. Chen, X. G. Gong, and S.-H. Wei. “Self-

Regulation Mechanism for Charged Point Defects in Hybrid Halide Per-

ovskites”. Angewandte Chemie International Edition 54.6 (2015), pp. 1791–

1794. doi: 10.1002/anie.201409740 (cit. on p. 20).

[245] D. Walter, A. Fell, Y. Wu, T. Duong, C. Barugkin, N. Wu, T. White, and

K. Weber. “Transient Photovoltage in Perovskite Solar Cells: Interaction

of Trap-Mediated Recombination and Migration of Multiple Ionic Species”.

The Journal of Physical Chemistry C 122.21 (2018), pp. 11270–11281. doi:

10.1021/acs.jpcc.8b02529 (cit. on p. 38).

[246] J. Wesselingh and R. Krishna. Mass transfer in multicomponent mixtures.

Delft University Press, Delft, 2000 (cit. on pp. 13, 14).

[247] World Meteorological Organization, Press Release. Global temperatures set to

reach new records in next five years. https://public.wmo.int/en/media/

press-release/global-temperatures-set-reach-new-records-next-

five-years (accessed 2023-10-20). 2023 (cit. on p. 1).

171

https://www.statista.com/topics/3104/artificial-intelligence-ai-worldwide/
https://www.statista.com/topics/3104/artificial-intelligence-ai-worldwide/
https://doi.org/10.1038/s41565-022-01228-8
https://doi.org/10.1007/s10008-019-04356-9
https://doi.org/10.1007/978-3-642-05156-2
https://doi.org/10.1137/0913073
https://doi.org/10.1137/0913073
https://doi.org/10.1002/anie.201409740
https://doi.org/10.1021/acs.jpcc.8b02529
https://public.wmo.int/en/media/press-release/global-temperatures-set-reach-new-records-next-five-years
https://public.wmo.int/en/media/press-release/global-temperatures-set-reach-new-records-next-five-years
https://public.wmo.int/en/media/press-release/global-temperatures-set-reach-new-records-next-five-years


Bibliography

[248] D. Wrzosek. “Volume Filling Effect in Modelling Chemotaxis”. Mathematical

Modelling of Natural Phenomena 5.1 (2010), pp. 123–147. doi: 10.1051/

mmnp/20105106 (cit. on p. 22).

[249] P. Würfel and U. Würfel. Physics of Solar Cells: From Basic Principles to

Advanced Concepts. 3rd ed. Wiley-VCH Verlag GmbH & Co, Weinheim, 2016

(cit. on p. 18).

[250] J. Xiang, Y. Li, F. Huang, and D. Zhong. “Effect of interfacial recombination,

bulk recombination and carrier mobility on the J–V hysteresis behaviors of

perovskite solar cells: a drift-diffusion simulation study”. Phys. Chem. Chem.

Phys. 21 (32 2019), pp. 17836–17845. doi: 10.1039/C9CP03548F (cit. on

p. 63).

[251] J. Xiao, Y. Zhang, H. Chen, N. Xu, and S. Deng. “Enhanced Performance of a

Monolayer MoS2/WSe2 Heterojunction as a Photoelectrochemical Cathode”.

Nano-Micro Letters 10 (2018), pp. 1–9. doi: 10.1007/s40820-018-0212-6

(cit. on p. 145).

[252] X. Yan, J. H. Qian, V. K. Sangwan, and M. C. Hersam. “Progress and Chal-

lenges for Memtransistors in Neuromorphic Circuits and Systems”. Advanced

Materials 34.48 (2022), p. 2108025. doi: 10.1002/adma.202108025 (cit. on

pp. 4, 43).

[253] J. Yang, H. Kawai, C. P. Y. Wong, and K. E. J. Goh. “Electrical Doping

Effect of Vacancies on Monolayer MoS2”. The Journal of Physical Chemistry

C 123.5 (2019), pp. 2933–2939. doi: 10.1021/acs.jpcc.8b10496 (cit. on

p. 22).

[254] S. Yu. “Neuro-inspired computing with emerging nonvolatile memorys”.

Proceedings of the IEEE 106.2 (2018), pp. 260–285. doi: 10.1109/JPROC.

2018.2790840 (cit. on p. 3).

[255] Z. Yu and R. Dutton. SEDAN III – A one-dimensional device simulator.

www-tcad.stanford.edu/tcad/programs/sedan3.html. 1988 (cit. on pp. 6,

63, 72).

[256] Z. Yu, Z.-Y. Ong, S. Li, J.-B. Xu, G. Zhang, Y.-W. Zhang, Y. Shi, and X.

Wang. “Analyzing the Carrier Mobility in Transition-Metal Dichalcogenide

MoS2 Field-Effect Transistors”. Advanced Functional Materials 27.19 (2017),

p. 1604093. doi: 10.1002/adfm.201604093 (cit. on p. 145).

172

https://doi.org/10.1051/mmnp/20105106
https://doi.org/10.1051/mmnp/20105106
https://doi.org/10.1039/C9CP03548F
https://doi.org/10.1007/s40820-018-0212-6
https://doi.org/10.1002/adma.202108025
https://doi.org/10.1021/acs.jpcc.8b10496
https://doi.org/10.1109/JPROC.2018.2790840
https://doi.org/10.1109/JPROC.2018.2790840
www-tcad.stanford.edu/tcad/programs/sedan3.html
https://doi.org/10.1002/adfm.201604093


Bibliography

[257] W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee. “Thickness

and strain effects on electronic structures of transition metal dichalcogenides:

2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te)”. Phys. Rev. B 85 (3

2012), p. 033305. doi: 10.1103/PhysRevB.85.033305 (cit. on p. 145).

[258] A. van der Zande et al. “Grains and grain boundaries in highly crystalline

monolayer molybdenum disulphide”. Nature Materials 12.6 (2013), pp. 554–

561. doi: 10.1038/nmat3633 (cit. on pp. 4, 22).

[259] M. Zeman, J. van den Heuvel, M. Kroon, J. Willemen, B. Pieters, J. Krč, and
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Zusammenfassung

Angesichts der Klimakrise ist es entscheidend, verstärkt auf technologischen Fortschritt

zu setzen, um den steigenden CO2-Ausstoß zu reduzieren. Zwei vielversprechende

Halbleitertechnologien, die in diesem Kontext hervorstechen, sind Perowskit-basierte

Solarzellen und auf Übergangsmetall-Dichalkogenide (TMDC) basierende memristive

Bauteile. Diese Technologien könnten eine Schlüsselrolle beim Ausbau erneuerbarer

Energien oder bei der Entwicklung energieeffizienterer Hardware spielen. In beiden

Materialien, Perowskit und TMDC, belegen experimentelle Studien die Existenz und

Akkumulation von Vakanzen, Leerstellen in der Kristallstruktur, die in den Halblei-

termaterialien migrieren können. Dieser zusätzliche Effekt und sein Einfluss auf das

Verhalten der Bauteile sind bislang nicht hinreichend erforscht worden.

Deswegen hat sich die vorliegende Dissertation als Ziel gesetzt, auf umfängliche theoreti-

sche Art den Effekt des zusätzlichen Vakanzentransports in Halbleitern zu untersuchen.

Dabei setzen wir uns mit der Herleitung, der Modellierung, der numerischen Diskreti-

sierung und schlussendlich mit der numerischen Simulation auseinander. Im ersten

Schritt leiten wir Drift-Diffusions Gleichungen her, um den Ladungstransport in Mate-

rialien mit zusätzlicher Vakanzenbewegung zu beschreiben. Die Herleitung basiert auf

thermodynamischen Konzepten wie dem Maxwell-Stefan-Diffusionsmodell und dem

großkanonischen Ensemble. Besonderes Augenmerk legen wir darauf, die vakanzenba-

sierte Migration und Akkumulation physikalisch korrekt darzustellen. Anschließend

formulieren wir gekoppelte Systeme partieller Differentialgleichungen, die den Ladungs-

transport in Perowskit-Solarzellen und TMDC-Memristoren modellieren. Aufbauend

auf diesen kontinuierlichen Gleichungen diskretisieren wir die Transportgleichungen

mithilfe des Finite-Volumen-Verfahrens. Durch das Anwenden der Entropie-Methode

können wir die Existenz von diskreten Lösungen für unsere zugrundeliegenden dis-

kreten Modelle nachweisen. Diese Dissertation schließt mit Simulationen ab, die

wir mithilfe von ChargeTransport.jl durchführen, einer von uns entwickelten Soft-

ware, die in der Programmiersprache Julia verfasst wurde. Dabei untersuchen wir

das Langzeitverhalten der diskreten Lösungen für das Perowskit-Solarzellen und das

TMDC-Memristor Transportmodell. Zusätzlich diskutieren wir den Einfluss zweier

unterschiedlicher Modellierungsansätze der Vakanzenstromdichte auf den Ladungs-

transport in Perowskit-Solarzellen. Des Weiteren vergleichen wir unsere Simulationser-

gebnisse zum vakanzenbasierten Ladungstransport in TMDC-basierten memristiven

Bauteilen mit experimentellen Messungen aus der Literatur.
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