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ABSTRACT

Using variational principles, we investigate elastic rod structures under external loads that

are clamped at one end and free at the other. Their stability properties are analyzed using second

order conditions by generalizing the Jacobi theory of conjugate points. The notion of the index,

which quantifies the dimension of the subspace of variations over which the second variation is

negative, is also generalized to this class of problems. The variational structure of the parameter-

dependent calculus of variations problems can be exploited to detect the changes in the index at

the folds as the parameter is varied, with the assistance of distinguished bifurcation diagrams.

We generalize these plots to cover our current case with fixed-free ends. Furthermore, we extend

the investigation to the problems with discontinuous integrands by generalizing the concept of

conjugate points, index, and distinguished bifurcation diagrams to them. For this purpose,

second-order matching conditions are derived at the points of discontinuity.

These techniques are developed with the aim of employing them in soft robotic applications,

a field that is increasingly gaining popularity. Applications such as Concentric Tube Continuum

Robots (CTCRs) employ intrinsically curved rods to generate flexible mechanisms. We empha-

size the impact of intrinsic curvature, which is often a source of complex mechanics, on the

equilibria of elastic rods and their stability. The interplay between geometric non-linearities,

external load, and intrinsic curvature leads to intriguing and complex behavior such as snap-

back instability. We study the influence of the parameters, such as intrinsic curvature, length, tip

load, and lever arm of the load on this behavior. This study aids in their efficient utilization in

practical applications. We extend this investigation to CTCRs, which resemble an intrinsically

curved elastic rod with slightly different physics. These robots consist of multiple sections, and

their properties change abruptly at the boundary of each section. This research has the potential

to advance the design and control of robots for tackling more complex tasks.

Finally, an open-loop gradient-based navigation is devised to model the robot maneuver

using optimal control techniques. Through this approach, various tasks can be modelled in

terms of objective functions that are subsequently optimized. We consider optimal control of

CTCRs parameterized over pseudo-time, primarily focusing on minimizing the robot’s working

volume during its motion. A numerical strategy to implement this optimization task is also

discussed. This optimal control-based methodology can be adapted to any backbone-based

continuum robots.

Keywords: Jacobi Condition, Stability, Conjugate points, Intrinsic Curvature, Distinguished

Bifurcation Diagram, Hysteresis, Concentric Tube Continuum Robot, Optimal Control.
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CHAPTER 1

Introduction

Rods are slender structures with lengths much greater than their diameters. These structures

exhibit nonlinear behavior, involving large deformations and rotations, while the constituent

material undergoes only smaller strains. In the absence of external forces, these rods assume

a shape referred to as intrinsic shape or natural shape, which can be straight, helical, or any

other shape. Rod-like structures with intrinsic curvatures, such as curly hair, DNA, plant ten-

drils, and cables, are ubiquitous in nature and technology. They are also employed in soft

robotic applications to create compliant mechanisms. Inspiration is often drawn from nature to

mimic the mechanisms, such as that of octopus tentacle or elephant trunk, and to utilize them

in practical applications (Laschi et al., 2012; Majidi, 2014) as they offer increased dexterity and

manipulation capabilities. The recent development of highly deformable elastic materials has

significantly contributed to the development of these mechanisms.

When a naturally straight elastic rod, clamped at one end and with a dead load attached to

the other end, is rotated using the clamp, it exhibits a snap-back instability for certain combi-

nations of length and load. This well-known catapult behavior has the potential to be utilized

in the design of soft robotic arms (Armanini et al., 2017). Likewise, a naturally curved elastic

rod with a tip load may exhibit a snap-back instability when its clamped end is rotated. The

presence of intrinsic curvature introduces additional complexity to the problem, as it leads to

complex mechanics and geometrical non-linearities in elastic rods. In our current research, we

focus on studying these structures. But before going into further depth, we shall present a few

examples highlighting the effect of intrinsic curvature in elastic rods, which are closely linked

to the current research. When a naturally curved elastic wire is held at fixed locations (not

clamped), and one end is slowly twisted, the wire tends to ratchet, i.e., there is an abrupt change

in the torque required to twist the wire. This phenomenon has direct implications in surgical

procedures, such as angioplasty, where thin wires are inserted into blood vessels and guided.

Usually, a smooth twisting action is desired without any sudden rotations. Even though these

guide wires are intended to be straight, the manufacturing processes and coil storage impart a

natural curvature. Warner (1997) numerically studied this behavior using Kirchhoff rod theory.

Another interesting example on the effect of intrinsic curvature can be noticed in an elastic rod

that hangs under its own weight (Miller et al., 2014). For smaller intrinsic curvatures, the rod

adopts planar equilibria. In this instance, the rod is straight near the clamped end and develops

a curled hook at the tips. However, higher intrinsic curvatures lead to non-planar rod equilibria,

1



CHAPTER 1. Introduction 2

which are classified into two types: localized helix, which consists of a helix beneath a straight

portion, and globalized helix, which is wholly composed of a helical portion. The configurations

of curly hair or analogous filamentary structures concur with this behavior. These examples

demonstrate the non-intuitive behavior that intrinsic curvature imparts to the elastic rods. Apart

from its complex effects, intrinsic curvature in elastic rods also offers prospective benefits that

can be harnessed in various applications. For instance, it can enhance the maximum reachout

(distance between the endpoints) of a tip-loaded robotic arm (Sipos and Várkonyi, 2020). A

tip-loaded elastic rod with a natural curvature facilitates more reachout (distance between the

endpoints) compared to a tip-loaded naturally straight rod. On the other hand, the majority of

research on rods with intrinsic curvature has primarily focused on symmetric boundary condi-

tions, which consist of clamped boundary conditions at both ends (Neukirch and Henderson,

2002; Domokos and Healey, 2005; Lazarus et al., 2013b), or rods of infinite length (McMillen

et al., 2002). To date, the investigation of the tip-loaded intrinsically curved elastic rods of finite

length remains limited in scope. This problem is of current interest as naturally curved elastic

structures are increasingly being utilized in the field of soft robotics, such as in the case of Con-

centric Tube Continuum Robots (CTCRs).

Recently developed CTCRs, also called active cannulas, consist of perfectly concentric elas-

tic tubes of different stiffness and pre-curvatures (Rucker et al., 2010). These tubes are usually

made of materials such as Nitinol alloy, which can undergo significant elastic deformations

without showing any sign of plasticity. The ends of the tubes are fixed to the actuators in the

base, which can either mechanically translate or rotate the tubes independently. The concentric

tubes are constrained to assume the shape of a common centerline referred to as the backbone,

which can be controlled by relatively sliding and rotating the tubes one inside the other using

the actuators. The robot’s tip, equipped with an instrument, is steered by appropriate relative

slides and twists of the tubes at its root. The slim diameters of order 2mm and compliant nature

of CTCRs encouraged many researchers to utilize them in confined spaces, such as in minimally

invasive surgeries (Burgner et al., 2011; Burgner et al., 2013; Alfalahi et al., 2021). Overall, this

CTCR backbone is analogous to the naturally curved elastic rod with slightly different mechan-

ics and, consequently, it inherits certain aspects of their behavior.

This thesis primarily aims to explore the behavior of intrinsically curved rod structures when

subjected to a conservative tip load. In the first part, we focus on tip-loaded intrinsically curved

elastic rods that are clamped at one end and attached to a dead load at the other. We commence

with the Hamiltonian formulation of elastic rods (Dichmann et al., 1996) to obtain the equilibria

for varying clamp angles. In this formulation, the spatial orientation of the rod is characterized

using quaternions. The equilibria are numerically examined using parameter continuation with

AUTO-07p software package. The second part extends this formulation to determine the equi-

libria of CTCRs when attached to a dead load. In the final part, using the equilibria from the

second part, we propose an optimal control-based navigation strategy for CTCRs. However,

the mere determination of the equilibria is insufficient, and further analysis of their stability is

necessary.
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Generally, a flexible rod under a load can exhibit multiple equilibria. Then, a natural ques-

tion arises about which equilibria are stable. The stability analysis of rod equilibria using vari-

ational principles has a long history. The variational structure of the problem correlates the

stability of the equilibria to the local minimum of the energy functional. The absence of con-

jugate points, often termed as the Jacobi condition, along with the Legendre’s strengthened

condition is the necessary condition for the equilibria to be the local minimum of the functional

(Bolza, 1904; Gelfand and Fomin, 1963). Furthermore, Morse (1951) extended this concept

to define an index, which quantifies the maximal dimension of the subspace of variations over

which the second variation is negative. This index is equal to the number of the conjugate

points. The equilibria are stable as long as the index is zero. Maddocks (1984) investigated

the stability properties of elastic rods under various boundary conditions and found many pre-

viously unknown configurations of elastic rods. This analysis employs the nodal properties of

the functions. The exact form of equilibria is not assumed, and Euler angles are employed. In

his subsequent study, Maddocks (1987) employed restricted quadratic forms to address the sta-

bility of elastic rods subject to isoperimetric constraints. The notion of the isoperimetric index

was later developed by Manning et al. (1998) for the constrained variational problems, which

is determined by counting the number of conjugate points for an appropriately projected sec-

ond variation. A numerical strategy to determine these conjugate points was also outlined here.

This study is aimed at analyzing the stability of DNA minicircles. Subsequently, Manning and

Hoffman (2001); Hoffman et al. (2002); Hoffman and Manning (2009) extended this idea to a

variety of constrained elastic rod problems. In the literature, there are also alternative methods

to analyze the stability properties. For example, Kuznetsov and Levyakov (2002); Levyakov

and Kuznetsov (2010) determined the stability properties of planar rod equilibria under various

boundary conditions using the exact solutions expressed in terms of Jacobi elliptic integrals. The

second-order variation is represented as a quadratic form using the basis of the eigenfunctions

of an auxiliary Sturm-Liouville operator. The stability analysis reduces to determining whether

a certain interval contains eigenvalues of this operator. As already pointed out, this approach

requires analytic solutions, which are available only for the planar cases. Kumar and Healey

(2010); O’Reilly and Peters (2011); Lazarus et al. (2013a); Majumdar and Raisch (2014) have

employed other alternative techniques for stability analysis. The majority of the existing lit-

erature on stability analysis has either focused on cases with Dirichlet boundary conditions at

both ends or simple planar cases. However, a gap exists in the literature regarding the stability

analysis of 3D elastic rods under fixed-free boundary conditions. This thesis aims to address

this research gap by investigating their stability. Moreover, we generalize the concept of Morse

index to this class of problems.

The highly flexible CTCRs also exhibit multiple equilibria under a given load, and there-

fore, their stability properties must be evaluated. This is further complicated by the fact that

CTCRs consist of multiple sections, each with different overlapping tubes. As a result, we have

a system of concentric rods whose properties such as stiffness, and intrinsic curvature change

abruptly at the boundary between the sections. This kind of problem is classified as a varia-

tional problem with discontinuous integrand. In the past, Bliss and Mason (1906), and Graves
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(1930) extended Jacobi condition to these variational problems with discontinuous integrand

using matching conditions, while Cole (1940) extended the definition of the index to include

these problems. Recently, O’Reilly and Peters (2011); Lane (2012) studied these problems in

the context of elastic rods. In the present study, we analyze the stability properties of CTCR

with multiple sections by extending Jacobi condition to them. Furthermore, the notion of Morse

index is also extended to these problems.

In general, the variational problems depend on the parameter and yield a family of parameter-

dependent equilibria. These parameters either describe the functional or boundary conditions.

Such problems are termed parameter-dependent variational problems. Bifurcation diagrams,

consisting of a plot of a particular projection of the solutions, provide insights into the stability

information as this parameter is varied. Standard Bifurcation Theory (Golubitsky and Scha-

effer, 2014) predicts that folds in the parameter in these diagrams correspond to the exchange

of stability. Distinguished bifurcation diagrams additionally convey the direction of stability

exchange at the fold in parameter through its specific shape. In a previous study, Maddocks

(1987) utilized the variational structure of the problems and derived the ordinate for these bifur-

cation diagrams. This analysis considered only the homogeneous boundary conditions, and the

bifurcation parameter appears in the integrand. Hoffman (2005) extended this concept to derive

bifurcation diagrams for parameter-dependent variational problems with fixed-fixed ends, where

the parameter appears in boundary conditions. The shape of the diagrams accurately predicted

the increase or decrease of the Morse index at the folds, and unstable equilibria, which have an

index greater than zero could be easily identified. In our current research, we verify if these

diagrams also agree with the cases of fixed-free ends. Furthermore, we broaden their scope to

functionals with discontinuous integrands. Later, we employ these diagrams to study the hys-

teresis behavior in the tip-loaded elastic rods and CTCRs.

CTCRs are mainly intended for use in confined spaces such as body cavities. These appli-

cations necessitate the development of effective path planning and control strategies to perform

tasks with a high degree of precision. For its attainment, accurate mechanical models, numeri-

cal methods, and optimal control techniques are the key. Confined spaces often impose several

challenges on robot navigation. The robot must steer clear of delicate tissues and hard obstacles

such as bones. The contact with the obstacles is challenging to model, and the robot’s behavior

cannot be predicted precisely. In most surgical procedures, minimum or no tissue damage is

intended. Therefore, the robot must deviate as minimally as possible from its narrow working

space and avoid interference with the neighboring regions. Therefore, paths with a minimum

working space, i.e., a minimum deviation from a mean curve, are highly desirable. One signif-

icant aspect of the CTCR is the follow-the-leader (FTL) strategy, where the robot is deployed

telescopically such that the backbone always lies along the path traced by prior tip locations.

This strategy occupies a minimal working space during its deployment and is an ideal solution

for operating in minimum working volumes. In the simpler setup for this deployment, the un-

stressed tubes of the robot section must be either in the shape of circular arcs or in the shape of

helical arcs with equal torsions. The robot backbone then assumes the shape of a uniform curve
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like a circular or helical arc under specific control parameters. The sections are then extended

along this arc’s tangent allowing the robot’s body to follow the path previously traced by the

tip (Gilbert et al., 2015; Garriga-Casanovas and Rodriguez y Baena, 2018). This deployment

fails when the constituent tubes have unequal torsions or the robot tip is mounted to a non-zero

load. The working space must lie along this helical curve so that this FTL deployment can

reach it, which is not the case in general. Many tasks, for example, cardiac ablation (Yip et al.,

2017), require the tip to move continuously to neighboring points, resulting in the deviation

from the FTL configuration. Besides, working just with FTL configurations limits the robot’s

working space and degrees of freedom. So, suitable optimal control techniques are necessary to

maneuver the robot such that the desired objective of operating at minimum working volume is

fulfilled. In the third part of the thesis, we intend to mathematically model the robot maneuver

by casting it as an optimal control problem. There are several combinations of control param-

eters, i.e., lengths and rotations of the tubes, which guide the robot tip to a specific point or to

accomplish a task. This flexibility increases with the increase of tubes in the CTCR. Thus, it

would be more beneficial to choose the optimal set of these control parameters over which the

intended performance indicators are better. We focus on tasks such as minimizing the working

volume and reaching a target orientation.

In the past, optimal control techniques have been employed in designing CTCRs to select

design parameters based on the available workspace and anatomical constraints (Bergeles et al.,

2015). Derivative-free optimization methods such as Nelder-Mead (Baykal et al., 2015; Granna

et al., 2016) or particle swarm methods (Granna, 2019) are extensively used. Gradient-based

optimization techniques are used only for simpler models (Lyons et al., 2009; Flaßkamp et al.,

2019), where analytical derivatives are available. These methods lead to local minima rather

than to global minima. But, they are computationally fast and useful in real-time operations.

Tasks such as moving to a nearby point can usually be planned with local optimization meth-

ods. Recently, the use of nonlinear programming methods for CTCR path planning has been

proposed by Flaßkamp et al. (2019) in planar robots, where the analytical representation of the

robot states is available. In the final part of the thesis, we aim to model some simple navigation

tasks using the optimal control techniques, with the aid of the CTCR equilibrium equations.

Since the analytical form of the states is not unavailable, they are determined numerically inside

the optimization framework.

This thesis is structured into three parts. Part 1 presents the study concerning the mechanics

of elastic rods, Part 2 examines the mechanics of CTCRs, and Part 3 focuses on the optimal

control of CTCRs. Each chapter is organized as follows.

Chapter 2 gives a brief overview of the variational principles that are required throughout the

thesis. We describe unconstrained conjugate point theory and an index for the calculus of vari-

ations problem subject to fixed boundary conditions at one end and free boundary conditions

at the other. Here, we also present the distinguished bifurcation diagram for the parameter-

dependent variational problems in which the varying parameter is present in the boundary con-
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ditions at the fixed end.

Chapter 3 contains a description of the Kirchhoff theory of elastic rods. We discuss kine-

matics, strains, equilibrium equations, and constitutive law. We review the quaternions, which

relate the orientation of the rod cross-section to the fixed laboratory frame. Then, we derive the

Hamiltonian form of equilibria for elastic rods clamped at one end and attached to a conservative

tip load that exerts a tip force as well as a moment due to the arm of loading. Then, we present

the Hamiltonian form of the Jacobi equations and provide a suitable numerical algorithm to

compute the conjugate points.

Chapter 4 is devoted to the numerical procedures employed in solving the equilibrium equa-

tions. The AUTO-07p software is employed for numerical parameter continuation and orthogo-

nal collocation. This chapter provides a concise review of these methods, offering insights into

how the problem is implemented in AUTO-07p.

In Chapter 5, we study the prototypical model of an elastic rod with a tip load and investi-

gate its hysteresis behavior. We compute the conjugate points and assign the Morse index to the

equilibria. Distinguished bifurcation diagrams are plotted, and their prediction on the exchange

of stability near folds is verified.

We commence part 2 with chapter 6 discussing the mechanics of CTCRs. We model the

equilibria of the CTCRs with a load attached using the Hamiltonian formulation. The Jacobi

condition is extended to these cases of functional with discontinuous integrand. We also present

a numerical algorithm to compute the conjugate points for this class of problems.

In Chapter 7, we present some examples which demonstrate the hysteresis behavior in the

CTCRs. Conjugate points are computed for these equilibria across the sections. Surface plots

are plotted against several parameters to gain better insight into the hysteresis behavior and its

dependence on the parameters.

We begin part 3 with chapter 8 briefing the preliminaries of optimal control problem and

Nonlinear Programming problem.

In Chapter 9, we model the navigation of CTCR by casting it as an optimal control problem.

We proposed several objective functions here, required for efficient navigation. And in Chapter

10, present some prototype navigation tasks to test out the proposed optimal control approach.

Finally, Chapter 11 provides a conclusion, including a summary of the work and suggestions

for future research.
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Variational principles and their
Application to Elastic Rods
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CHAPTER 2

Variational Principles including Second-Order Conditions

In this chapter, we present the conjugate point theory for unconstrained calculus of variations

problems. The results for the problems with both ends subject to fixed (or Dirichlet) boundary

conditions can be found in any standard textbook on the calculus of variations (Bolza, 1904;

Gelfand and Fomin, 1963; Hestenes, 1966; Sagan, 1969; Caratheodery, 1967). However, the

results for the case of fixed boundary conditions at one end and free (or Neumann) conditions at

the other end are not so common. Therefore, we extend conjugate point theory to cover this case.

To solve the given variational problem, we must choose a function space and associated norm.

In our problem, we choose the function space C1[0, l] (the set of continuously differentiable

functions) with weak norm:

∥y∥1 = sup
0<s<l
∥y(s)∥ + sup

0<s<l
∥y′(s)∥,

which is also called the C1- norm. The C0- measure is defined in the C1[0, l] function space as

∥y∥0 = sup
0<s<l
∥y(s)∥.

It is used for dealing with so-called strong extremals in the language of the classic calculus of

variations.

2.1 Standard Calculus of Variations Problem

Let ζ ∶ s Ð→ Rp be a continuous and differentiable function in the interval [0, l], where s is

an independent parameter. Given a continuous mapping L ∶ Rp × Rp × [0, l] → R, the classic

calculus of variations problem is to minimize a functional of the form

J(ζ) = ∫
l

0
L(ζ,ζ′, s)ds, (2.1)

with both the ends s = 0 and s = l subject to either fixed or free boundary conditions. At the

fixed end, the state ζ is imposed a fixed value, while at the free end, no conditions are imposed

on the state ζ.

9
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2.1.1 Euler-Lagrange Equations and their Hamiltonian Form

The first-order necessary condition for ζ(s) to be a stationary point is the vanishing first varia-

tion given by

δJ(ζ)[h] = ∫
l

0
(−( ∂L

∂ζ′
)
′
+ ∂L
∂ζ
) ⋅ hds + [ ∂L

∂ζ′
⋅ h]

l

0

= 0.

Here ⋅ represents the dot product between two column vectors u ⋅ v = uTv. The variations h

are functions in C1[0, l] and perturb the solution ζ satisfying the imposed boundary conditions.

Provided that the minimizer is piecewise smooth, the coefficient of an arbitrary variation h

vanishes, fetching the famous Euler-Lagrange equations

−( ∂L
∂ζ′
)
′
+ ∂L
∂ζ
= 0. (2.2)

In addition, the first-order condition leads to Natural boundary condition at any free end

∂L
∂ζ′
= 0.

A variant of the problem, in which the functional to be minimized has an additional boundary

term at any free end, say s = l, of the form

J(ζ) = ∫
l

0
L(ζ,ζ′, s)ds +B(ζ(l)),

where the boundary term B(ζ(l)) is a smooth scalar function of ζ(l). In this context, the

first-order condition appears as

δJ(ζ)[h] = ∫
l

0
(−( ∂L

∂ζ′
)
′
+ ∂L
∂ζ
) ⋅ hds + [ ∂L

∂ζ′
⋅ h]

l

0

+ ∂

∂ζ
B(ζ) ⋅ h∣

s=l
= 0.

Subsequently, we obtain the Euler-Lagrange equations (2.2) and slightly revised Natural bound-

ary condition at the free end s = l

∂L
∂ζ′
+ ∂

∂ζ
B(ζ) = 0. (2.3)

The solutions to the Euler-Lagrange equations with the corresponding boundary conditions are

called critical points, equilibria, or extrema. The extrema of J with respect to the C0- norm are

called strong extrema or strong minima, whereas the extrema of J with respect to C1- norm are

called weak extrema or weak minima.

The equilibria correspond to the solutions of the Euler-Lagrange equations (2.2), which

take the form of second-order Ordinary Differential Equations (ODEs). On the other hand, the

Hamiltonian form (Goldstein, 1951) offers an elegant way of representing them as first-order

ODEs. Generally, the Hamiltonian system is expressed in terms of canonical variables ζ and p,
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in which the canonical momentum p ∈ Rp is defined as

p ∶= ∂

∂ζ′
L(ζ,ζ′; s).

If the function L(ζ,ζ′, s) is strictly convex with respect to ζ′, then the derivative ζ′ can be

expressed as a function of canonical variables ζ,p:

ζ′ = ϕ(ζ,p, s). (2.4)

Then, the Hamiltonian H is defined as the Legendre transform of the function L, and is given

by

H(ζ,p; s) ∶= ϕ(ζ,p) ⋅ p −L(ζ,ϕ(ζ,p, s), s).

Consequently, the equilibria are obtained as solutions of a system of first-order ODEs from the

Hamiltonian H(ζ,p, s) as

⎡⎢⎢⎢⎢⎣

ζ

p

⎤⎥⎥⎥⎥⎦

′

=
⎡⎢⎢⎢⎢⎣

0 I

−I 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

Hζ

Hp

⎤⎥⎥⎥⎥⎦
, (2.5)

where Hζ and Hp are partial derivatives of the function H(ζ,p, s) with respect to the variables

ζ and p respectively. And 0 and I are the zero matrix and the identity matrix, respectively,

in Rp×p. At the free end, say s = l, the Natural boundary condition (2.3) in terms of the

Hamiltonian phase variables ζ,p read

p(l) + ∂

∂ζ
B(ζ(l)) = 0,

and the Dirichlet boundary conditions are expressed directly in terms of the variable ζ.

2.1.2 Corner Points or Broken Extremal

So far, we have assumed that the function ζ(s) is smooth in the interval [0, l]. Now, we shall

relax this requirement and derive the first-order conditions. Let us consider a scenario where the

function ζ(s) is continuous in [0, l], but its derivative ζ′(s) is discontinuous at a known point c ∈
[0, l]. These points are referred to as corner points, and the extremals with these corner points

are termed broken extremals. The integrand L(ζ,ζ′, s) is assumed to be a continuous function

of s in [0, l]. The necessary conditions for a broken extremal are well-known Weierstrass-

Erdmann conditions (Bolza, 1904; Gelfand and Fomin, 1963), and the results are stated here

without proof:
∂L
∂ζ′
∣
s=c−
= ∂L
∂ζ′
∣
s=c+

, (2.6a)

L − ζ′ ⋅ ∂L
∂ζ′
∣
s=c−
= L − ζ′ ⋅ ∂L

∂ζ′
∣
s=c+

. (2.6b)
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Here, the notations c− and c+ indicate the evaluation of the expression on the left and right sides

of the point c respectively. The first condition (2.6a) is required for establishing the existence of

the weak minima, whereas the second condition (2.6b) is required for establishing the existence

of the strong minima. If L(ζ,ζ′, s) is a convex function of ζ′ ∈ Rp, the relations (2.4) and (2.6a)

implicate

ζ′(c+) = ζ′(c−).

Hence, the extremal solution cannot have a corner point. If a curve ζ is a strong extremum, then

Lζ′ and ζ′ ⋅ Lζ′ − L must be continuous at each corner point. A strong minima can be a weak

minima, whereas the weak minima need not necessarily be a strong minima. We shall always

assume that L(ζ,ζ′, s) is a strict convex function of ζ′ and Lζ′ζ′ is strictly positive definite.

Then, (2.6b) is satisfied whenever (2.6a) is satisfied, and any weak minima is alternatively a

strong minima (Bolza, 1904).

2.2 Second-Order Conditions: Fixed-Fixed ends

This section discusses the well-established second-order conditions for unconstrained calculus

of variations problems that are subjected to fixed (or Dirichlet) boundary conditions at both

ends. The critical points ζo obtained as a solution to the Euler-Lagrange equations (2.2) with

the boundary conditions

ζ(0) = fo, ζ(l) = fl,

are classified if they are local minima after analyzing the second variation of the functional

J(ζ). Here, fo and fl are given constants. In problems of mechanics, typically the functional

J corresponds to energy, and local minima represent stable configurations. Therefore, the terms

locally stable and local minima are used interchangeably throughout this thesis. The second

variation of the functional J at an equilibrium point ζo is

δ2J(ζo)[h] =
1

2
∫

l

0
(h′ ⋅Ph′ + h ⋅Ch′ + h′ ⋅CTh + h ⋅Qh)ds, (2.7)

where P,C and Q are p × p Hessian matrices evaluated at the extremal ζo given by

P = ∂2

∂ζ′2
L(ζo,ζ′o, s) ≡ Lζ′ζ′(ζo,ζ′o, s),

C = ∂2

∂ζ′∂ζ
L(ζo,ζ′o, s) ≡ Lζζ′(ζo,ζ′o, s),

Q = ∂2

∂ζ2
L(ζo,ζ′o, s) ≡ Lζζ(ζo,ζ′o, s).

(2.8)

For brevity, the dependence of P,C and Q on s is not explicitly shown. The matrices P and Q

are symmetric, whereas the matrix C may not be. The second-order necessary condition for ζo
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to be local minima of the functional J is

δ2J(ζo)[h] ≥ 0. (2.9)

The variations h in the solutions must satisfy the boundary conditions, and accordingly, belong

to the class of admissible variations:

A ≡ {h(s) ∈ C1[0, l]) ∶ h(0) = 0 = h(l)} . (2.10)

On applying integration by parts on (2.7), we obtain

δ2J(ζo)[h] =
1

2
∫

l

0
(− d
ds
(Ph′ +CTh) +Ch′ +Qh) ⋅ hds + [ (Ph′ +CTh) ⋅ h]

l

0

.

The boundary terms vanish at s = 0 and s = l leading to an alternate form of the second variation

δ2J[h] = 1

2
⟨Sh,h⟩, (2.11)

where S is the second-order self-adjoint differential operator:

Sh ≡ − d
ds
(Ph′ +CTh) +Ch′ +Qh, (2.12)

and ⟨⋅, ⋅⟩ denotes the standard inner-product in L2- space. This system of ODEs along with the

boundary conditions on h (2.9) is called the accessory boundary value problem or Jacobi differ-

ential equations, and its solutions are called accessory extremals. Now, we state an integration

by parts result of this Jacobi operator S as a lemma that is frequently used in subsequent results.

Lemma 2.2.1. For any two-vector valued continuous functions u,v,

⟨Su,v⟩ = ⟨u,Sv⟩ + [ (Pv′ +CTv) ⋅ v]
l

0
− [ (Pu′ +CTu) ⋅ v]

l

0
. (2.13)

Proof. On applying integration by parts twice on the L.H.S and bearing in mind that P = PT

and Q =QT , we obtain

⟨Su,v⟩ =∫
l

0
(− d
ds
(Pu′ +CTu) +Cu′ +Qu) ⋅ vds,

=∫
l

0
(Pu′ +CTu) ⋅ v′ + (Cu′ +Qu) ⋅ vds − [ (Pu′ +CTu) ⋅ v]

l

0
,

=∫
l

0
(Pv′ +CTv) ⋅ u′ + (Cv′ +Qv) ⋅ uds − [ (Pu′ +CTu) ⋅ v]

l

0
,

=∫
l

0
(− d
ds
(Pv′ +CTv) +Cv′ +Qv) ⋅ uds + [ (Pv′ +CTv) ⋅ u]

l

0

− [ (Pu′ +CTu) ⋅ v]
l

0
,

=⟨Sv,u⟩ + [ (Pv′ +CTv) ⋅ u]
l

0
− [ (Pu′ +CTu) ⋅ v]

l

0
.



CHAPTER 2. Variational Principles including Second-Order Conditions 14

This lemma also proves the self-adjoint nature of the S operator for the functions u,v ∈ A,

i.e.,

⟨Su,v⟩ = ⟨u,Sv⟩.

The Jacobi differential operator S can be represented in the Hamiltonian form (Caratheodery,

1967) using the Hamiltonian H as

⎡⎢⎢⎢⎢⎣

h

k

⎤⎥⎥⎥⎥⎦

′

=
⎡⎢⎢⎢⎢⎣

0 I

−I 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

Hζζ Hζp

Hpζ Hpp

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

h

k

⎤⎥⎥⎥⎥⎦
,

where the additional variable k is the variation in the momentum p, and it satisfies

k = Ph′ +CTh.

A necessary condition for the second variation quadratic functional (2.11) to be non-negative

is that

P ≡ Lζ′ζ′ > 0, ∀s ∈ [0, l], (2.14)

i.e., the matrix P is positive definite, and this condition is also known as Legendre’s strengthened

condition. We shall always assume thatL(ζ,ζ′, s) satisfies this condition in addition to the strict

convexity of L(ζ,ζ′, s) with respect to ζ′. Then, the sufficient condition that the critical points

ζo correspond to a non-negative second variation is the absence of conjugate points with respect

to the Jacobi differential equations (2.12), which are defined as follows.

Definition 2.2.1. The point σ ∈ [0, l] is said to be a conjugate point with respect to the functional

δ2J(ζo)[h] if there exists a non-trivial solution h to

Sh = 0, 0 < s < σ, h(0) = h(σ) = 0. (2.15)

This sufficient condition is also termed as Jacobi condition. Morse (1951) extended this

condition to define an index, which quantifies the maximal dimension of subspace over which

the quadratic functional δ2J is negative and is given by the number of conjugate points. The

Jacobi condition (2.15) can be included in the eigenvalue problem:

Sh = ρ(σ)h, s ∈ [0, σ], h(0) = h(σ) = 0. (2.16)

When σ is the conjugate point, this eigenvalue problem has a zero eigenvalue. The eigen-

values ρ depend continuously on σ. The combination of Legendre’s strengthened condition,

Sturm-Liouville problem, and Rayleigh quotients give rise to the following set of properties (see

e.g., (Manning et al., 1998) (presented in Appendix 1)):

Property 1: For any σ, the operator S has countable infinity of isolated eigenvalues ρ1(σ) ≤
ρ2(σ) ≤ ⋅ ⋅ ⋅ ≤ ρ∞(σ), each with finite multiplicity.
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Property 2: Each eigenvalue is a monotonically decreasing function of σ.

Property 3: For σ sufficiently close to 0, ρi(σ) > 0 for all ∀i.

By the last property, the eigenvalues ρi(σ), i = 1, . . . ,∞ are all positive for σ close to 0.

As the point σ is moved from 0 towards l, the value of the eigenvalues ρi(σ), i = 1, . . . ,∞
decrease in accordance with Property 2. Upon encountering the first conjugate point, the small-

est eigenvalue ρ1 reaches zero and undergoes a sign change from positive to negative during

the traversal. In this manner, n th eigenvalue ρn(σ) transitions from a positive to a negative

value upon traversing the n th conjugate point. Therefore, the index I defined as the number of

conjugate points gives the number of negative eigenvalues of (2.16). It denotes the dimension

of the basis, over which the functional (2.11) yields a negative value. If I = 0, there are no neg-

ative eigenvalues, and δ2J[h] is non-negative for all h ∈ A. If I > 0, there exists a subspace of

variations spanned by the eigenfunctions of negative eigenvalues over which δ2J[h] is negative.

2.3 Second-Order Conditions: Fixed-Free ends

This section will delve into the relatively less explored second-order conditions pertaining to the

case of fixed-free ends. Consider a variational problem where a functional of the form

J(ζ) = ∫
l

0
L(ζ,ζ′, s)ds +B(ζ(l)),

is minimized subject to fixed boundary conditions at the end s = 0 and free boundary conditions

at the other end s = l. The critical points ζo obtained as the solution the Euler-Lagrange

equations (2.2) with the boundary conditions

ζ(0) = fo,
∂

∂ζ′
L(ζ,ζ′, l) + ∂

∂ζ
B(ζ(l)) = 0, (2.17)

can be classified as local minima, if the second variation functional evaluated as

δ2J(ζo)[h] =
1

2
∫

l

0
(h′ ⋅Ph′ + h ⋅Ch′ + h′ ⋅CTh + h ⋅Qh)ds +Bh(l) ⋅ h(l), (2.18)

is non-negative. The matrices P,Q and C are same as defined previously (2.8), and the addi-

tional term B is the matrix ∂2B
∂ζ2 evaluated at the free end s = l and is symmetric in nature. The

new set of boundary conditions (2.17) leads to the following class of admissible variations

B = {h ∈ C1[0, l] ∶ h(0) = 0, Ph′(l) +CTh(l) +Bh(l) = 0}. (2.19)

The condition Ph′ +CTh +Bh(l) ≡ Lζ′ζh(l) +Lζ′ζ′(l)h′(l) +Bh(l) = 0 is the result of the

linearization of the Natural boundary condition at the end s = l. After applying integration by
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parts on (2.7), we obtain

δ2J(ζo)[h] =
1

2
∫

l

0
(− d
ds
(Ph′ +CTh) +Ch′ +Qh) ⋅ hds

+ [ (Ph′ +CTh) ⋅ h]
l

0
+Bh(l) ⋅ h(l).

The boundary terms vanish and the second variation takes the form

δ2J(ζo)[h] ≡
1

2
⟨Sh,h⟩, (2.20)

where S is the second-order differential Jacobi operator defined in the same manner as be-

fore in (2.11). The terms containing the matrix B have no contribution in the second variation

functional δ2J[h], as it is cancelled by the boundary term of the allowable variation h at s = l
from (2.19).

Given the Legendre’s strengthened condition P > 0, the absence of conjugate points ensures

the non-negativity of the second variation functional (2.20). In this context of fixed-free cases,

the notion of a conjugate point is somewhat altered as given below.

Definition 2.3.2. For a simple case of p = 1, a point l∗ ∈ [0, l] is defined to be a point conjugate

to l with respect to the functional δ2J(ζo)[h] if there exists a non-trivial solution h ∶ [0, l]→ R
satisfying

Sh = 0, h(l∗) = 0,
h(l) = 1, h′(l) = 0.

A one-point boundary condition must be stated at the boundary where the requirements on

the derivatives are specified in the given variational problem.

Conjugate point (Higher dimension): The solution of Jacobi operator h ∶ [0, l] → Rp is a

member of 2p- parameter family with p parameters at each boundary s = 0 and s = l. Choose a

boundary with Natural boundary condition, i.e., s = l in our case and determine the p-parameter

family of solutions h(s) emanating from this end

h(s) = a1h(1) + ⋅ ⋅ ⋅ + aph(p), a1, . . . , ap ∈ R,
h(1), . . . ,h(p) ∈ Rp.

The point l∗ ∈ [0, l] is conjugate to l if a non-trivial solution h(s) satisfies

Sh = 0, h(l∗) = 0, Ph′(l) +CTh(l) +Bh(l) = 0. (2.21)

The boundary condition Ph′(l) +CTh(l) +Bh(l) = 0 is accommodated by using a basis of

solutions for h(l).
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Definition 2.3.3. Let

h(1) = (h(1)1 , h
(1)
2 , . . . , h(1)p ) ,

h(2) = (h(2)1 , h
(2)
2 , . . . , h(2)p ) ,

....

h(p) = (h(p)1 , h
(p)
2 , . . . , h(p)p )

be a set of p solutions to the system where i th solution corresponds to the initial conditions

h(i)(l) = ei, Ph(i)′(l) +CTh(i)(l) +Bh(i)(l) = 0, i = 1, . . . , p.

A point l∗ is said to be conjugate point to l if the accessory extremal h(s), which is the linear

combination of the basis vectors h(i)(s), i = 1, . . . , p, vanishes at s = l∗. This condition is

satisfied when the determinant

RRRRRRRRRRRRRRRRRRRRRRR

h
(1)
1 (s) h

(1)
2 (s) . . . h

(1)
p (s)

h
(2)
1 (s) h

(2)
2 (s) . . . h

(2)
p (s)

. . . . . .

h
(p)
1 (s) h

(p)
2 (s) . . . h

(p)
p (s)

RRRRRRRRRRRRRRRRRRRRRRR

= 0,

at s = l∗.

Next, we will present the proofs for the conditions on the S operator, which ensures that the

equilibrium ζo corresponds to local minima. For the sake of simplicity, we don’t include the

boundary term B(ζ(l)) in the subsequent analysis, i.e., B(ζ(l)) = 0, and the matrix B is a zero

matrix. Nonetheless, the presented results can be straightforwardly extended to the cases with

the non-zero B(ζ(l)).

Theorem 2.3.1. If the matrix P is strictly positive definite, and the interval [0, l] contains no

point conjugate to l, then the second variation quadratic functional δ2J(ζo)[h] is positive for

all h(s) ∈ B.

Proof. This proof parallels the proof for fixed-fixed boundary conditions presented by Gelfand

and Fomin (1963) and is slightly generalized. Let W ∶ sÐ→ Rp×p be an arbitrary differentiable

symmetric matrix. Without affecting the values of the second variation integral (2.7), we can

add the following term

0 = ∫
l

0

d

ds
(Wh ⋅ h)ds − [Wh ⋅ h]l

0
,

0 = ∫
l

0
W′h ⋅ h +Wh′ ⋅ h +Wh ⋅ h′ds + (W(l)h(l) ⋅ h(l) −W(0)h(0) ⋅ h(0)).

The matrix function W(s) is chosen such that the boundary terms vanish. For the current case

with fixed-free ends, we have h(0) = 0 at the fixed end, and we require h(l) ⋅W(l)h(l) = 0 at

the free end. The latter condition is satisfied for any non-trivial h(l)when W(l) is a zero matrix

of order p, denoted by O. This condition also holds if W(l) is a skew-symmetric matrix, but it
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contradicts the symmetric matrix assumption of W(s) and, therefore, is disregarded. Then, the

integral (2.7) becomes

δ2J(ζo)[h] = ∫
l

0
Ph′ ⋅ h′ + (C +W)h ⋅ h′ + (C +W)T h′ ⋅ h + (Q +W′)h ⋅ hds.

The integrand can be expressed as a perfect square of the form

δ2J(ζo)[h] = ∫
l

0
(P1/2h′ + (Q +W′)1/2 h) ⋅ (P1/2h′ + (Q +W′)1/2 h)ds,

if the matrix W(s) is chosen to be the solution of

P1/2 (Q +W′)1/2 = (C +W)T , (2.22a)

Ô⇒ Q +W′ = (C +W)P−1 (CT +W) . (2.22b)

Since P is assumed to be a positive definite symmetric matrix, its square root P1/2 exists and

is also positive definite. Moreover, its inverse P−1/2 exists. The expression (2.22b) is called

Matrix Ricatti equation, and the second variation integral takes the form

δ2J(ζo)[h] = ∫
l

0
(P1/2h′ + (Q +W)Q−1/2h) ⋅ (P1/2h′ + (Q +W)Q−1/2h)ds,

= ∫
l

0
P (h′ +P−1/2 (Q +W)Q−1/2h) ⋅ (h′ +P−1/2 (Q +W)Q−1/2h)ds,

where the integrand is a perfect square and is always non-negative. This expression

P1/2h′ + (Q +W)Q−1/2h,

vanishes only for the trivial solution h(s) = 0. If the Matrix Ricatti equation has a continuous

solution W(s) defined over the interval [0, l], then the second variation is positive definite.

Substituting

CT +W = −PU′U−1 Ô⇒ PU′ +CTU +WU =O, (2.23)

where U is a new unknown matrix results in

− d
ds
(PU′ +CTU) + (CU′ +QU) =O, (2.24)

which is the matrix form of the Jacobi operator S. Now, consider the boundary term at s = l.
In the present case, the matrix W(l) is chosen to be a zero matrix, and the relation (2.23) yields

the boundary condition

W(l) =O Ô⇒ PU′(l) +CTU(l) =O.

This is a matrix form of the linearized Natural boundary condition at the boundary s = l. The

columns in matrix U can be interpreted as the basis of the variations h. If [0, l] contains no point

conjugate to l, then (2.24) has a solution U(s) which is non-singular in [0, l]. Therefore, the
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Matrix Ricatti equation (2.22b) has a solution given by (2.23). Thus, there exists a matrix W(s)
that transforms the integrand to a perfect square, producing a non-negative second variation

δ2J(ζo)[h].

Theorem 2.3.2. If the matrix P is positive definite and the interval [0, l] contains a point con-

jugte to l, then the second variation quadratic functional δ2J(ζo)[h] is not positive for all

h ∈ B.

Proof. Suppose there exists a point s = l∗ conjugate to s = l in 0 < s < l. Consequently, there

exists a non-null accessory extremal h(s) satisfying h(l∗) = 0 and Ph′(l) +CTh(l) = 0. Let

γ(s) be a continuous arc defined as

γ(s) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, 0 < s < l∗,
h(s), l∗ < s < l,

and is depicted in Figure (2.1).

s=ls=0 s=l*

Fig. 2.1 The broken accessory extremal γ(s) ∈ B

The second variation δ2J(ζo) along the arc γ is given by

δ2J(ζo)[γ] =
1

2
∫

l

0
Sγ(s) ⋅ γ(s)ds,

= 1

2
∫

l

l∗
Sh(s) ⋅ h(s)ds,

= 1

2
[ (P(s)h′(s) +CT (s)h(s)) ⋅ h(s)]l

∗

l
= 0.

However, this arc γ(s) has a corner point at s = l∗, as h′(l∗−) ≠ h′(l∗+). If the matrix P(s)
is positive definite, then by Weierstrass-Erdmann conditions (2.6a), the arc γ with a corner

point cannot be the local minimizer. But, the second variation functional δ2J is zero along the

present broken extremal γ(s). Therefore, there must exist another arc h(s) ∈ B which is a local

minimizer and further reduces the second variation δ2J < 0, thereby proving the theorem.
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Similar to the prior scenario, the Jacobi condition on a fixed-free case can be used to de-

fine the notion of Morse index, which quantifies the maximal subspace of variations h over

which δ2J[h] is negative. The present Jacobi condition can be reformulated into the following

eigenvalue problem

Sh = ρ(l∗)h, l∗ < s < l, Ph′(l) +CTh(l) = 0,
h(l∗) = 0.

(2.25)

Therefore, ρ(l∗) is a zero eigenvalue when l∗ is a conjugate point. As long as the S operator

is self-adjoint, the properties mentioned in the prior section can be generalized to this scenario

with minor modifications. The eigenvalues ρ(l∗) continuously depend on l∗. Using the combi-

nation of Legengre’s strengthened condition, Sturm-Liouville problem, and Rayleigh quotients,

the following set of properties (Appendix 1) are defined:

Property 1 For any given l∗ ∈ [0, l], the operator S has a countably infinite number of eigen-

values. ρ1(l∗) ≤ ρ2(l∗) ≤ . . . , each with finite multiplicity.

Property 2 Each eigenvalue ρj(l∗), j = 1,2, . . . ,∞ is monotonically increasing with l∗.

Property 3 For l∗ sufficiently close to l, ρj(l∗) > 0, for all j = 1,2, . . . ,∞.

The eigenvalues are positive for l∗ sufficiently close to l (by Property 3). As the point l∗ is

moved from l to 0, each eigenvalue ρj , j = 1,2, . . . ,∞ decreases owing to property 2. When

l∗ transverses the conjugate point for the first time, the lowest eigenvalue ρ1 changes its sign

from positive to negative. Similarly, the eigenvalue ρn crosses zero, as the l∗ transverses n th

conjugate point. As a result, the index I given by the number of conjugate points corresponds

to the number of negative eigenvalues of (2.25) and represents the dimension of space of eigen-

functions over which the functional δ2J is negative.

2.4 Distinguished Bifurcation Diagram

Calculus of Variation problems are often expressed in terms of system parameters, leading to

a parameter-dependent family of equilibria. These parameters are typically involved in either

the integrand or the boundary conditions. In the past, Maddocks (1984, 1985, 1987) studied the

stability of rod equilibria by casting them as parameter-dependent variational problems. Gen-

erally, bifurcation diagrams were employed in the analysis of these problems, where a specific

projection of the solutions conveys the stability exchange information. The key to predicting

stability changes is selecting the appropriate projection to plot. The structure of the variational

problem can be exploited to study the second variation without verifying the Jacobi condition by

employing distinguished bifurcation diagrams. The stability properties of the solutions can be

deduced from this diagram with a little observation and without any additional analysis. Mad-

docks (1987) derived the ordinate of bifurcation diagrams for parameter-dependent variational

problems. In this instance, only homogeneous boundary conditions are considered, and the bi-
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furcation parameter appears either in the integrand of the functional or as a Lagrange multiplier

in a constrained calculus of variations problem. This concept is later expanded to the varia-

tional problems with non-homogeneous boundary conditions (Rogers, 1997), where the varying

parameter appears in the boundary conditions. In this case, both ends are subjected to fixed

boundary conditions. In this section, we verify these distinguished bifurcation diagram for the

unconstrained calculus of variations problem if one of the fixed ends is set free.

Consider an unconstrained parameter-dependent variational problem:

J(ζ, ξ) = ∫
l

0
L(ζ,ζ′, s)ds +B(ζ(l)), (2.26)

subject to a parameter-dependent Dirichlet boundary condition at the end s = 0

ζ(0) = ζo(ξ),

and Natural boundary condition at the other end s = l, where ξ ∈ R is the parameter. The critical

points (ζ(s, τ), ξ(τ)) obtained as a solution to the Euler-Lagrange equations

−L′ζ′ +Lζ = 0, ζ(0) = ζo(ξ), p(l) + ∂

∂ζ
B(ζ(l)) = 0, (2.27)

exist as a continuous curve of solutions along a branch for some pseudo-arclength parameteri-

zation τ satisfying

∣ζ̇(s, τ)∣2 + ∣ξ̇(τ)∣2 = 1.

Chapter 4 provides a more extensive discussion on pseudo-arclength τ . The notation ζ̇(s, τ)
denotes the derivative with respect to pseudo-arclength τ , and ζ′(s, τ) denotes the derivative

with respect to arc length s. These critical points (ζ(s, τ), ξ(τ)) must satisfy the second-order

necessary condition

δ2J(ζ, ξ)[h] ≡ 1

2
⟨Sh,h⟩ ≥ 0, ∀h ∈ B, (2.28)

so that they correspond to minima of the functional J(ζ, ξ). This condition can also be inter-

preted as a requirement that the linear eigenvalue problem:

Sh = µh,
h(0) = 0,
Ph′(l) +CTh(l) +Bh(l) = 0,

(2.29)

has only non-negative eigenvalues. The matrices P,C and Q that appear in the operator S
depend on the pseudo-arclength τ and the parameter ξ through ζ(s, τ) and ζ′(s, τ). Conse-

quently, the operator S is assumed to have eigenvalues and eigenfunctions that depend smoothly

on pseudo-arclength τ . Parameter-dependent variational problems yield a family of extremals,

and in the case of a single parameter ξ, they correspond to a curve of solutions. Sometimes,
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these solutions are characterized by folds, the points at which the slope of this curve is vertical.

Before delving into further details, we briefly describe the folds.

The Euler-Lagrange equations can also be represented as a stationary point of the derivative

of the functional J(ζ(τ), ξ(τ))

Jζ(ζ(τ), ξ(τ)) = 0. (2.30)

Differentiating (2.30) with respect to pseudo-arclength τ along the solution branch fetches

Jζζ ζ̇ + Jζξ ξ̇ = 0.

A point (ζ(τo), ξ(τo)) is called a fold if ξ̇(τo) = 0. As ∣ζ̇∣2 + ξ̇2 = 1, the vector ζ̇ is the null

vector of the Hessian matrix Jζζ . A simple fold in addition also satisfies

ξ̈(τo) ≠ 0,
d

dτ
Jξ∣

τ=τo
≠ 0,

and zero is a simple eigenvalue of the operator Jζζ . Standard bifurcation theory conveys that

the folds in this solution curve indicate the exchange of stability (see e.g., (Golubitsky and

Schaeffer, 2014)). At these points, one of the eigenvalues of (2.29) transitions from a positive

value to a negative value, or vice versa. By employing the variational structure, the direction

of this change can be correlated to the derivative of the eigenvalues with respect to pseudo-

arclength τ . We shall demonstrate that the eigenvalue problem (2.29) has a zero eigenvalue for

the critical points at a fold. We proceed by differentiating the Euler-Lagrange equations (2.27)

and the non-linear boundary conditions with respect to τ to yield

Sζ̇ = 0,

ζ̇(0) ≡ dζo
dξ

ξ̇, Pζ̇′(l) +CT ζ̇(l) +Bζ̇(l) = 0.
(2.31)

On comparing this boundary value problem (BVP) with the eigenvalue problem (2.29), we

observe that it has a zero eigenvalue when ξ̇ = 0, i.e., at a fold. The eigenvalue µ changes its

sign as a fold point is traversed, and µ̇ (≡ ∂µ
∂τ ) gives the direction of change. The expression for

µ̇ is obtained by differentiating the eigenvalue problem (2.29) with respect to pseudo-arclength

τ as

Sη̇ + Ṡη = µ̇η + µη̇,
η̇(0) = 0, Pη̇′(l) +CT η̇′(l) +Bη̇′(l) + Ṗη(l) + ĊTη′(l) + Ḃη′(l) = 0.

(2.32)

Here, the term Ṡη is interpreted as

Ṡη = − d
ds
(Ṗη′ + ĊTη) + Ċη′ + Q̇η, (2.33)

where the matrices Ṗ, Ċ, Q̇ denote the derivatives of the matrices P,C,Q respectively with
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respect to pseudo-arclength τ . We assume that the µ = 0 is a simple eigenvalue at the fold,

and therefore, ζ̇ is the corresponding eigenvector η. Taking the L2-inner product of the equa-

tion (2.32) at this fold point with eigenvector ζ̇ yields the expression

µ̇⟨ζ̇, ζ̇⟩ = ⟨Sη̇, ζ̇⟩ + ⟨Ṡζ̇, ζ̇⟩. (2.34)

We use the integration by parts (2.13) to simplify the terms in this expression. The first term in

R.H.S ⟨Sη̇, ζ̇⟩ can be rewritten as

⟨Sη̇, ζ̇⟩ = ⟨Sζ̇, η̇⟩ − [ (Pη̇′ +CT η̇ +Bη̇) ⋅ ζ̇]
l

0
+ [ (Pζ̇

′ +CT ζ̇ +Bζ̇) ⋅ η̇]
l

0
.

At the fold, Sζ̇ = 0 and the boundary terms satisfy η̇(0) = 0, ζ̇(0) = 0, and Pζ̇
′(l)+CT ζ̇(l)+

Bζ̇(l) = 0. Additionally, by employing the relation (2.32), the terms η̇(l) and η̇′(l) can be

eliminated. After the transformations, we arrive at

⟨Sη̇, ζ̇⟩ = − (Pη̇′ +CT η̇ +Bη̇) ⋅ ζ̇∣
s=l
= (Ṗη′ + ĊTη + Ḃη) ⋅ ζ̇∣

s=l
.

Now consider the remaining term ⟨Ṡζ̇, ζ̇⟩. On differentiating (2.31) with respect to pseudo-

arclength τ , we get the relation ⟨Ṡζ̇, ζ̇⟩ = −⟨Sζ̈, ζ̇⟩ and the boundary conditions

ζ̈(0) = ∂
2ζo
∂ξ22

ξ̇2 + ∂ζo
∂ξ

ξ̈ = ∂ζo
∂ξ

ξ̈, (2.35a)

ζ̈(l) ≡ Pζ̈ +CTζ̈′ +Bζ̈′ + Ṗζ̇ + ĊTζ̇′ + Ḃζ̇′ = 0. (2.35b)

Consequently, the term −⟨Sζ̈, ζ̇⟩ can be rewritten using integration by parts result (Lemma (2.13))

as

−⟨Sζ̈, ζ̇⟩ = −⟨ζ̈,Sζ̇⟩ + [ (Pζ̈
′ +CT ζ̈ +Bζ̈) ⋅ ζ̇]

l

0

− [ (Pζ̇
′ +CT ζ̇ +Bζ̇) ⋅ ζ̈]

l

0

.

By enforcing the boundary conditions (2.31) that the boundary term Pζ̇
′ +CT ζ̇ +Bζ̇ at s = l

vanishes, and that ζ̇(0) at the fold is zero along with the relations (2.35a), P = PT , we deduce

−⟨Sζ̈, ζ̇⟩ = (Pζ̇
′ +CT ζ̇ +Bζ̇) ⋅ ζ̈∣

s=0
+ (Pζ̈

′ +CT ζ̈ +Bζ̈) ⋅ ζ̇∣
s=l
,

= ξ̈ (∂ζo
∂ξ
⋅Pζ̇

′)
RRRRRRRRRRRs=0
+ (CT ζ̇ +Bζ̇) ⋅ ζ̈∣

s=0
+ (Pζ̈

′ +CT ζ̈ +Bζ̈) ⋅ ζ̇∣
s=l
,

= ξ̈ (∂ζo
∂ξ
⋅Pζ̇

′)
RRRRRRRRRRRs=0
+ (Pζ̈

′ +CT ζ̈ +Bζ̈) ⋅ ζ̇∣
s=l
,

= ξ̈ (∂ζo
∂ξ
⋅Pζ̇

′)
RRRRRRRRRRRs=0
− (Ṗζ̇

′ + ĊT ζ̇ + Ḃζ̇) ⋅ ζ̇∣
s=l
.

In the last step, the relation (2.35b) is utilized in eliminating the ζ̈ and ζ̈
′

terms. Finally, the
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expression for the derivative µ̇ (2.34) after assuming ζ̇ as a unit vector, takes the form

µ̇ = ⟨Sη̇, ζ̇⟩ − ⟨S̈ζ̇, ζ̇⟩ − (Ṗζ̇
′ + ĊT ζ̇ + Ḃζ̇) ⋅ ζ̇∣

s=l
+ (Ṗη′ + ĊTη + Ḃη) ⋅ ζ̇∣

s=l
,

= ξ̈ (∂ζo
∂ξ
⋅Pζ̇

′)
RRRRRRRRRRRs=0

.

(2.36)

Near the fold point, the eigenvector η ≡ ζ̇ and ξ̇(0) = 0. For the function P = Lζ′ζ′ , which is a

symmetric matrix, one can write

ζ̇
′ ⋅Lζ′ζ′

∂2ζo
∂ξ2

RRRRRRRRRRRs=0
= (ζ̇′ ⋅Lζ′ζ′

∂ζo
∂ξ
+Lζζ′

∂ζo
∂ξ

ξ̇ ⋅ ∂ζo
∂ξ
)
RRRRRRRRRRRs=0

,

= (Lζ′ζ′ ζ̇
′ ⋅ ∂ζo
∂ξ
+Lζζ′

∂ζo
∂ξ

ξ̇ ⋅ ∂ζo
∂ξ
)
RRRRRRRRRRRs=0
= d

dτ
(Lζ′ ⋅

∂ζo
∂ξ
)
RRRRRRRRRRRs=0

.

(2.37)

In the end, on substituting the relation (2.37) in (2.36), the expression for the µ̇ can be rewritten

as

µ̇ = ξ̈ d
dτ
(Lζ′ ⋅

∂ζo
∂ξ
)
RRRRRRRRRRRs=0

. (2.38)

We define the plot of [Lζ′ ⋅
∂ζo

∂ξ
] vs. ξ as a distinguished bifurcation diagram for our ξ-dependent

variational problem. The sign of ξ̈ determines if the fold is opening to the right or the left. The

sign of [Lζ′ ⋅
∂ζo

∂ξ
] gives the direction of traversal at the fold. This combined qualitative informa-

tion predicts if µ̇ is increasing or decreasing as it crosses the fold point, as illustrated in Figure

2.2. In brief, in a simple fold opening to the left on the bifurcation diagram, the lower branch

has its index, i.e., the number of conjugate points lower than that on the upper branch. Likewise,

the number of conjugate points increases in the lower branch of the fold opening to the right.

Index 
increases 

by 1

Index 
increases 

by 1

Parameter ξ

Fig. 2.2 The direction of index change in a distinguished bifurcation diagram for a parameter-
dependent variational problem with one end fixed and the other end free.

In this chapter, we presented several mathematical tools, such as conjugate points, Morse
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index, and distinguished bifurcation diagrams to analyze the stability of variational problems

subject to fixed-free boundary conditions. Now, we shall use Kirchhoff elastic rods to put these

techniques into practice in the real world. In the next chapter, we briefly present the Kirchhoff

elastic rods and determine their equilibria along with their stability properties.
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CHAPTER 3

Kirchhoff Elastic Theory of Rods

The formulation of elastic rods used in the examples is based on the Kirchhoff rod theory. In

the Special Cosserat rod theory (Antman, 2006), the rod deforms such that the cross-sections

remain planar throughout the process. These deformations may include flexure, torsion, axial

tensions, and shear of the cross-section with respect to the axis. Kirchhoff rod theory, on the

other hand, enables only flexure or torsion. In this chapter, we review the Kirchhoff rod theory

commencing with kinematic equations.

3.1 Kinematics

An elastic rod is described as an orientable curve in 3D space using a centreline r ∶ [0, l] ∋
s Ð→ R3 and an orientation frame spanned by the orthonormal unit vectors called directors

di ∶ sÐ→ R3, i = 1,2,3. The independent variable s is the arc length of the unstressed rod. The

centerline r(s) is often interpreted as the centroid of the material cross-section at s which is

spanned by the directors d1(s) and d2(s) with d3(s) = d1(s)×d2(s) giving the normal of the

cross-section. This director frame is connected to a fixed, right-handed laboratory, orthonormal

frame with basis {ei} ∈ R3, i = 1,2,3 through a proper rotation matrix R(s) ∈ SO(3) by the

relation

di(s) =R(s)ei, i = 1,2,3. (3.1)

The rotation matrix R(s) ∈ SO(3) is given in terms of direction cosines of {di(s)} for i =
1,2,3 as

R(s) =

⎡⎢⎢⎢⎢⎢⎢⎣

d1(s) ⋅ e1 d2(s) ⋅ e1 d3(s) ⋅ e1
d1(s) ⋅ e2 d2(s) ⋅ e2 d3(s) ⋅ e2
d1(s) ⋅ e3 d2(s) ⋅ e3 d3(s) ⋅ e3

⎤⎥⎥⎥⎥⎥⎥⎦

. (3.2)

The rate of change of r(s) with respect to s gives the stretch vector v(s) ∈ R3 as

v (s) = r′ (s) ,

where ()′ denotes the differentiation with respect to arc length s. The first two components of

v(s) with respect to the director frame, v1(s) ≡ v(s) ⋅ d1(s) and v2(s) ≡ v(s) ⋅ d2(s), corre-

spond to transverse shearing, whereas the third component, v3(s) ≡ v(s) ⋅ d3(s), corresponds

to stretching or compression of the rod.

27
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The rate of change of the director frame {d1,d2,d3} with respect to the arc length s is

characterized through the Darboux vector u ∈ R3 as

d′i (s) = u (s) × di (s) , i = 1,2,3.

Here, × denotes the cross product between two vectors. The vector u(s) is equivalent to the

angular velocity of the director frames measured with respect to arc length s instead of time.

The first two components of u(s) with respect to the director frame, u1(s) ≡ u(s) ⋅ d1(s)
and u2(s) ≡ u(s) ⋅ d2(s), represent bending strains, whereas the third component, u3(s) ≡
u(s) ⋅ d3(s), represents twist (or torsion). Throughout this thesis, we are interested in strain

components along the directors {d1,d2,d3}, and we will use u to denote the triad of compo-

nents [u1, u2, u3].

3.2 Force and Moment Balance Laws

In rod mechanics, rod configurations under the action of loads are studied. These loads are

transmitted along the rod cross-section as internal force n(s) ∈ R3 and internal moment m(s)
∈ R3 at r(s). The rod may be subject to an external distributed force f(s) ∈ R3 and an external

distributed moment l(s) ∈ R3. Then the force and moment balance laws read

n′(s) + f(s) = 0, (3.3a)

m′(s) + r′(s) × n(s) + l(s) = 0. (3.3b)

The local components mi(s) ≡ m(s) ⋅ di(s), i = 1,2 are called bending moments, and the

component m3(s) ≡ m(s) ⋅ d3(s) is called twisting moment in the rod. We use m to denote

the triad of these components m ≡ [m1,m2,m3]. Similarly, the first components of ni(s) ≡
n(s) ⋅ di(s), i = 1,2 are called shearing forces and n3(s) ≡ n(s) ⋅ d3(s) is called tension.

3.3 Constitutive Relations

Constitutive relations connect the kinematic variables u(s) and v(s) along the rod with the

transmitted forces n(s) and moments m(s). We are particularly interested in inextensible and

unshearable cases, where the d3-axis is constrained to the tangent of the rod centerline r(s) as

shown in Figure (3.1), which is mathematically written as

r′(s) = d3 (s) , (3.4)

or equivalently

v1(s) = v2(s) = 0, v3(s) = 1.

This restriction is to be satisfied no matter what load is applied to the rod, and the strain v(s) is

no longer a variable and does not appear in the constitutive relations.
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e1

e3

e2

Fig. 3.1 Inextensibility and unshearability constrains the d3−axis to be the tangent of the posi-
tion vector r.

We consider the unstressed configuration or lowest energy configuration to be the reference

state. Let û ≡ [û1(s), û2(s), û3(s)] be the triplet of strain components in its unstressed configu-

ration. We also use the terms intrinsic shape or precurvature to denote this triad. The unstressed

rod is straight when û1(s) ≡ û2(s) ≡ 0. In addition, it is untwisted if the component û3(s) ≡ 0.

If the component ûi, i = 1,2 is independent of s and has a fixed non-zero value, and further, if

the third component û3 ≡ 0, the rod’s centreline is in the form of a circular arc. In this scenario,

if the third component û3 is also independent of s and has a fixed non-zero value, then the rod’s

centerline is in the form of a helix.

We consider the rods that satisfy hyperelastic constitutive law. A convex strain energy den-

sity function W ∶ {w, s} → R+, w = [w1,w2,w3] exists such that it satisfies ∂W (0,s)
∂wi

= 0, i =
1,2,3, ∀s, and the moment components are given by

mi(s) =
∂

∂wi
W (wi, s), i = 1,2,3, (3.5)

where the shifted strain argument wi ≡ ui − ûi describe the deformation from intrinsic shape ûi.

For a simple linearly elastic constitutive model where the strain energy density function is given

by

W (ui − ûi, s) =
3

∑
i=1

1

2
Ki(s) (ui(s) − ûi(s))2 , (3.6)
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the moment components are

mi =
∂W

∂wi
=Ki(s) (ui(s) − ûi(s)) , i = 1,2,3. (3.7)

Here, Ki ∶ s → R for i = 1,2 are called bending stiffnesses and K3 ∶ s → R is called tor-

sional stiffness of the rod. If the material composing the rods is homogeneous and isotropic,

then the constants in the stiffness are interpreted to be K1=EI1, K2=EI2 and K3=GJ , where

Ii ∈ R, i = 1,2 is the area moment of inertia about di- axis, E ∈ R is the Young’s Modulus of

the material, J ∈ R is area polar moment of inertia about the rod axis (d3-axis), G = E/2(1+ν)
is the Shear modulus of the material, and ν is the Poisson’s ratio.

In all examples presented in this thesis, we assume that the rods are uniform Ki(s) = Ki,

ûi(s) = ûi, i = 1,2,3. If these uniform rods are intrinsically straight and are of circular cross-

section, they follow a transversely isotropic constitutive law, and these tubes have equal bending

stiffnesses K1 = K2. If the uniform rods have a non-zero intrinsic curvature and are of circular

cross-section, they are assumed to follow a constitutively transversely isotropic constitutive law,

and these tubes still have equal bending stiffnesses K1 =K2.

3.4 Euler Parameters or Quaternions

The director frame {d1,d2,d3} is connected to the fixed frame {e1,e2,e3} through a SO(3)
matrix (3.2). There are several choices to parameterize the matrices in SO(3). The most com-

mon way is through a three-parameter representation of Euler angles. Due to the topology of

SO(3), a set of three parameters cannot provide a global representation. A polar singularity

arises when working around certain values of these parameters. Furthermore, Euler angles also

employ trigonometric functions, which are computationally expensive and slower. Alternatively,

Quaternions also referred to as Euler parameters, can be employed, and they mitigate the men-

tioned issues. Quaternions q ∈ R4 with unit norm constraint ∣q∣2 = 1 characterize the orientation

of the director frame in 3D space (Shuster, 1993). Its drawback is that the unit norm constraint

must be maintained throughout the solution path, and therefore, it appears in the governing

equations. According to Euler’s theorem (Goldstein, 1951), any central orientation can be de-

scribed as a simple rotation by an angle θ about a fixed axis. Let a = [a1e1+a2e2+a3e3] be this

fixed axis. Then, the component of the associated quadruplet of quaternions q = [q1, q2, q3, q4]T

are

q1 = a1 sin(θ/2), (3.8a)

q2 = a2 sin(θ/2), (3.8b)

q3 = a3 sin(θ/2), (3.8c)

q4 = cos(θ/2). (3.8d)
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The components of directors di ∈ R3, i = 1,2,3 with respect to the fixed coordinate system

{e1,e2,e3} can be expressed in terms of the quaternions q as

d1 =
1

∣q∣2

⎡⎢⎢⎢⎢⎢⎢⎣

q21 − q22 − q23 + q24
2 (q1q2 + q3q4)
2 (q1q3 − q2q4)

⎤⎥⎥⎥⎥⎥⎥⎦

, (3.9a)

d2 =
1

∣q∣2

⎡⎢⎢⎢⎢⎢⎢⎣

2 (q1q2 − q3q4)
−q21 + q22 − q23 + q24
2 (q2q3 + q1q4)

⎤⎥⎥⎥⎥⎥⎥⎦

, (3.9b)

d3 =
1

∣q∣2

⎡⎢⎢⎢⎢⎢⎢⎣

2 (q1q3 + q2q4)
2 (q2q3 − q1q4)
−q21 − q22 + q23 + q24

⎤⎥⎥⎥⎥⎥⎥⎦

. (3.9c)

Thus, q as a function of s, gives the local frame {d1,d2,d3} along its arc length s. As a

result, the strain components ui(s), i = 1,2,3, are obtained in terms of the quaternions and their

derivatives (Dichmann et al., 1996) as

ui(s) =
2

∣q∣2
Biq ⋅ q′, i = 1,2,3, (3.10)

where Bj , j = 1,2,3 are 4 × 4 skew symmetric matrices given by

B1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.11a)

B2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.11b)

B3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.11c)

These matrices, when applied on q ∈ R4 yield vectors that are orthogonal to each other as well

as orthogonal to q(s)

Biq ⋅Bjq = 0, i ≠ j, i = 1,2,3,
Biq ⋅Biq = ∣q∣2 = 1, i = 1,2,3,
Biq ⋅ q = 0, i = 1,2,3,
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3.5 Work done by External forces

We consider a problem where a massless elastic rod is clamped at one end, and a dead load is

applied at the other end, as shown in Figure 3.2. The terminal load exerts a force F ∈ R3 and

a moment Υ(q(l)) × F ∈ R3 at the tip s = l, where Υ(q(l)) is the arm vector connecting the

point of attachment at tip s = l and point of application of the concentrated conservative force

F. This arm is tied to the director frame at the tip s = l as

Υ(q(l)) ≡∆1d1(q(l)) +∆2d2(q(l)) +∆3d3(q(l)), (3.12)

where ∆1,∆2 and ∆3 are the scalar components of the arm in the payload’s frame, and the

vector ∆ ≡ [∆1,∆2,∆3] represents them. Subsequently, the stored potential energy resulting

from this applied tip load F is given by

El = F ⋅ (r(l) +Υ(q(l))) . (3.13)

s=0

e3

e2

e1

F

d3(0)

d2(0)

d1(0)

s d3(s)

d1(s)
d2(s)

d3(l)
d1(l)

d2(l)

 ϒ(q(l))

s=l

e2

Fig. 3.2 Schematic showing an elastic rod with a tip load acting through a lever arm

3.6 Variational Problem

A variational principle is applied to determine the equilibrium configurations of the elastic rod

for the specified boundary conditions. From now on, we write the strain components u in the

energy density function W explicitly in terms of quaternions q(s) and their derivatives q′(s)
using the relations (3.10) as

W (ui − ûi, s) =W (
2

∣q∣2
Biq ⋅ q′ − ûi, s) , i = 1,2,3.
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The equilibrium configurations are the constrained critical points of the total energy functional,

which is the sum of elastic strain energy and stored potential energy (3.13)

∫
l

0
W ( 2

∣q∣2
Biq ⋅ q′ − ûi, s)ds +F ⋅ (r(l) +Υ(q(l))) , (3.14)

subject to the pointwise inextensibility and unshearability constraint:

r′ − d3 = 0.

The fixed quaternion norm constraint can be implemented either as a holonomic constraint (only

function of states)

q ⋅ q − 1 = 0, (3.15)

or as a non-holonomic constraint (function of states and their derivatives)

q ⋅ q′ = 0. (3.16)

We proceed with the latter case which leads to impetus-striction treatment of the problem (Dich-

mann and Maddocks, 1996). The constraint (3.16) is equivalent to (3.15) if the boundary con-

ditions are specified at any boundary. This constrained variational problem is formulated as an

unconstrained variational problem using the Lagrange multipliers λ ∶ s → R3, η ∶ s → R. We

require that the functional

J =∫
l

0
L(r, r′,q,q′, s)ds,

=∫
l

0
W ( 2

∣q∣2
Biq ⋅ q′ − ûi, s) +λ ⋅ (r′ − d3) + ηq ⋅ q′ds +F ⋅ (r(l) +Υ(q(l)))

(3.17)

is stationary for the equilibrium configurations. The integrand in this functional L is referred to

as the Augmented Lagrangian.

3.7 Equilibrium Configurations

The application of Euler-Lagrange equations (2.2) on the Augmented Lagrangian functional

L (3.17) gives the rod equilibria. In this section, we verify whether the equilibrium equations

agree with the force-balance laws (3.3) (for e.g. see (Rogers, 1997)). The Euler-Lagrange

equations with respect to the state r(s) lead to

λ′ = 0, (3.18)

and the Natural boundary condition at the free end s = l lead to

λ(l) +F = 0.
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This is equivalent to the force-balance equations (3.18) with a zero distributed load f , and the

Lagrange multiplier λ(s) can be physically interpreted as the internal force n(s) described

in (3.3a), and it maintains a constant value of −F. Now consider the Euler-Lagrange equations

with respect to the variable q(s):

−(Wu
∂u

∂q′
+ ηq)

′
+Wu

∂u

∂q
+ ηq′ − ∂

∂q
(λ ⋅ d3) = 0. (3.19)

After writing the expressions for Wu and derivatives, the equation (3.19) becomes

3

∑
i=1

2m′i
Biq

∣q∣2
=

3

∑
i=1
−mi (

2Biq
′

∣q∣2
+ 2ui

q

∣q∣2
) + η′q − ∂

∂q
(λ ⋅ d3) . (3.20)

We project these equations onto Bjq-space (j = 1,2,3) to recover the moment balance laws.

Taking the inner product of (3.20) with Bjq results in

2m′j =
3

∑
i=1
−2miukϵijk −

∂

∂q
(λ ⋅ d3) ⋅Bjq, j = 1,2,3,

where ϵijk is the standard permutation symbol. The last term can be rewritten as

∂

∂q
(λ ⋅ d3) ⋅Bjq = (

∂d3

∂q
)
T

λ ⋅Bjq = (
∂d3

∂q
)Bjq ⋅λ

= 2ϵj3kdk ⋅λ,

which leads to the equilibrium equations

m′j =
3

∑
i=1
−mjukϵijk − ϵj3kdk ⋅λ, j = 1,2,3.

This expression reduces to

m′1 = −u2m3 + u3m2 + d2 ⋅λ, (3.21a)

m′2 = u1m3 − u3m1 − d1 ⋅λ, (3.21b)

m′3 = −u1m2 + u2m1, (3.21c)

which are equivalent to moment-balance laws (3.3b) in the fixed frame. So far, the stated results

have been thoroughly established. However, the subsequent result on the Natural Boundary

condition constitutes a novel contribution. The projection of the Natural Boundary condition

Wu
∂u

∂q′
+ ηq(l) + ∂

∂q
(F ⋅Υ(q(l))) = 0

onto Biq(l)/2, i = 1,2,3 produces

(2WuiBiq(l) + ηq(l) +
∂

∂q
(F ⋅Υ(q))) ⋅Biq(l)/2 = 0, i = 1,2,3, (3.22)
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which further yields

mi(l) + (
∂

∂q
(∆1d1(l) +∆2d2(l) +∆3d3(l)) ⋅F) ⋅Biq(l) = 0, i = 1,2,3.

We use the derivatives of the directors di(q) (Dichmann et al., 1996) (presented in Appendix

B), and project them onto the Biq-space to obtain the following expressions:

∂d1

∂q
⋅B1q/2 = 0,

∂d1

∂q
⋅B2q/2 = −d3,

∂d1

∂q
⋅B3q/2 = d2,

∂d2

∂q
⋅B1q/2 = d3,

∂d2

∂q
⋅B2q/2 = 0,

∂d2

∂q
⋅B3q/2 = −d1,

∂d3

∂q
⋅B1q/2 = −d2,

∂d3

∂q
⋅B2q/2 = d1,

∂d3

∂q
⋅B3q/2 = 0.

(3.23)

All the variables are evaluated at the end s = l. On substituting the terms from (3.23), we obtain

mi(l) +F ⋅ (ϵijk∆jdk(q(l))) = 0, i = 1,2,3.

The term inside the brackets can be written as a vector cross product Υ (q(l)) × di in the

following manner

mi(l) − (F ⋅ (∆1d1(l) +∆2d2(l) +∆3d3(l)) × di(l)) = 0, i = 1,2,3.

In the end, we obtain the balance of the moments along the directors di, i = 1,2,3 at the tip s = l

mi(l) + (Υ (q(l)) ×F) ⋅ di(l) = 0, i = 1,2,3.

3.8 Hamiltonian Formulation of Rods

The Hamiltonian form of the equilibria (Dichmann et al., 1996) provides the equilibria as a

simple set of first-order ODEs. This form is convenient for both numerical computations and

analysis. In addition, this formulation yields additional conserved quantities (also called inte-

grals), which can serve as benchmarks for validating numerical computations. Consequently,

this formulation is employed in this work to reap these benefits. We limit ourselves to the linear

hyperelastic rods with a quadratic form of elastic energy density.

The Hamiltonian formulation involves the standard Legendre transform W ∗(m, s) (Gold-

stein, 1951) of the constitutive function W (w, s), which is assumed to be strictly convex with

respect to w, where w = u− û is the shifted strain argument. The variable conjugate to the w in

case of hyperelastic rods is the triad of the components of the moment along the director frame

m

m = d

dw
W (w, s).
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Owing to the strict convexity condition of W , this relation can be inverted to solve for w

w ≡ u − û = Φ(m).

Then, the Legendre transform is then defined to be

W ∗(m) ∶= m ⋅Φ(m) −W (Φ(m)).

For the simple case of quadratic strain energy function of the form

W (ui − ûi, s) =
3

∑
i=1

1

2
Ki(s) (ui(s) − ûi(s))2 , (3.24)

the Hamiltonian variables are given by

mi =Ki (ui(s) − ûi(s)) , Φ(m) ≡ ui(s) − ûi(s) =mi/Ki,

and the associated Legendre transform reads

W ∗(m) =
3

∑
i=1
miûi +m2

i /2Ki.

Let us derive the Hamiltonian formulation of the equilibria for our current tip-loaded elastic rod

system, which has the Augmented Lagrangian of the form

L(r, r′,q,q′, s) =W ( 2

∣q∣2
Bjq ⋅ q′ − ûj , s) +λ ⋅ (r′ − d3) + ηq ⋅ q′.

The phase variables in this Hamiltonian formulation include the states r and q, along with their

corresponding conjugate momenta n and µ. The internal force n and the impetus µ are defined

using the Augmented Lagrangian L as

n ≡ ∂L
∂r′
= λ, (3.25a)

µ ≡ ∂L
∂q′
= 2Wui

Biq

∣q∣2
+ ηq, i = 1,2,3. (3.25b)

The dot product of (3.25b) with q gives the expression for the Lagrange multiplier η

µ ⋅ q = η. (3.26)

Similarly, the dot product of (3.25b) with Biq/2 gives the components of the internal moment

m in terms of Hamiltonian variables

µ ⋅Biq

2
=Wui ≡mi, for i = 1,2,3. (3.27)
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The Hamiltonian of the system is obtained after taking a Legendre transform of the Aug-

mented Lagrangian L, which is obtained as

H (r,q,n,µ, s) = n ⋅ r′ +µ ⋅ q′ −L(r, r′,q,q′, s)

= n ⋅ r′ + (2Wui

Biq

∣q∣2
+ ηq) ⋅ q′ −W ( 2

∣q∣2
Bjq ⋅ q′ − ûj , s)

− n ⋅ (r′ − d3) − ηq ⋅ q′

= n ⋅ d3 +
i=3
∑
i=1
miûi +

1

2
m ⋅K−1m.

(3.28)

The system of equations that govern the equilibria are obtained from the Hamiltonian H with

phase variables ζ,p as

⎡⎢⎢⎢⎢⎣

ζ

p

⎤⎥⎥⎥⎥⎦

′

=
⎡⎢⎢⎢⎢⎣

0 I

−I 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

Hζ

Hp

⎤⎥⎥⎥⎥⎦

which for the present context of elastic rods take the form

r′(s) = ∂H
∂n
= d3, (3.29a)

n′(s) = −∂H
∂r
= 0, (3.29b)

q′(s) = ∂H
∂µ
=

3

∑
j=1
(K−1jj mj + ûj)

1

2
Bjq, (3.29c)

µ′(s) = −∂H
∂q
=

3

∑
j=1
(K−1jj mj + ûj)

1

2
Bjµ −

∂d3

∂q

T

n, (3.29d)

where the derivative ∂d3

∂q is given by

∂d3

∂q
= 2

⎡⎢⎢⎢⎢⎢⎢⎣

q3 q4 q1 q2

−q4 q3 q2 −q1
−q1 −q2 q3 q4

⎤⎥⎥⎥⎥⎥⎥⎦

, (3.30)

and the components mi, i = 1,2,3 are written in terms of phase variables µ and q using the

relation (3.27).

3.9 Conserved Quantities

The three components of internal force n along the fixed frame are conserved due to the trans-

lational symmetry of the Hamiltonian system. Similarly, the three components of m+ r×n are

conserved due to the rotational symmetry of the Hamiltonian system about the three fixed axes.

The norm of the quaternion q is a conserved quantity by construction (∣q∣ = 1). Moreover, the
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quantity µ ⋅ q + 2r ⋅ n is also conserved, as illustrated below

d

ds
(µ ⋅ q + 2r ⋅ n) = µ′ ⋅ q +µ ⋅ q′ + 2n ⋅ r′ + 2n′ ⋅ r,

=
3

∑
j=1
(K−1jjmj + ûj)

1

2
Bjµ ⋅ q −

∂d3

∂q

T

n ⋅ q

+
3

∑
j=1
(K−1jjmj + ûj)

1

2
Bjq ⋅µ + 2n ⋅ d3,

= −n ⋅ ∂d3

∂q
q + 2n ⋅ d3 = 0.

The expressions for the derivatives are used from (3.28). The skew-symmetric nature of Bi

(i = 1,2,3) matrices is utilized in the second step. Euler’s theorem for homogeneous functions

gives the relation ∂d3

∂q q = 2d3, and is used in the last step. The quantity µ ⋅ q is also an expres-

sion for the Lagrange multiplier η (3.26). Suppose the rod has translation symmetry along its

arc length s. Its constitutive law has no explicit dependence on s. For a quadratic strain energy

function, this condition is satisfied when the stiffnessesKi (i = 1,2,3) and unstressed strains ûi
(i = 1,2,3) are constant. Under these conditions, the Hamiltonian H is also a conserved quan-

tity. We employ some of these conserved quantities to validate the accuracy of our numerical

results.

3.10 Boundary Conditions

Here is a summary of the boundary conditions for an elastic rod clamped at the s = 0 and free at

the other end s = l. The fixed boundary conditions at the clamped end s = 0 are

r(0) = [0,0,0]T ,
q(0) = q0,

(3.31)

and we have 7 Natural boundary condition at the free end s = l. Physically, six of these condi-

tions pertain to force-moment balance at the tip s = l

n(l) +F = 0, (3.32a)

mi(l) + (Υ(q(l)) ×F) ⋅ di(q(l)) = 0, i = 1,2,3. (3.32b)

The last three conditions (3.32b) are the resultant of the projection of 4-dimensional Natural

boundary condition with respect to the variable q onto Biq(l)- space, and the details are already

presented in section 3.7. Its projection on the flat direction q(l) is implemented using the

conserved quantity µ ⋅ q + 2r ⋅ n

µ(0) ⋅ q(0) + 2r(0) ⋅ n(0) = µ(l) ⋅ q(l) + 2r(l) ⋅ n(l)
Ô⇒ µ(0) ⋅ q(0) = µ(l) ⋅ q(l) + 2r(l) ⋅ n(l).
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The quantity µ(0) ⋅ q(0) ≡ η(0) can be specified as any value, and its specification assigns

a value to the Lagrange multiplier η and removes the gauge freedom in µ (Li and Maddocks,

1996). So, we impose

µ(l) ⋅ q(l) + 2r(l) ⋅ n(l) = 0. (3.33)

in our numerical computations.

3.11 Hamiltonian Form of Jacobi Equations

The equilibria ζo obtained as the solutions to the (3.29) with the boundary conditions (3.31),(3.32b)

and (3.33) must satisfy the Legendre’s strengthened condition (2.14) along with the Jacobi con-

dition to represent the local minima of the functional

∫
l

0
W ( 2

∣q∣2
Bjq ⋅ q′ − ûj , s)ds +F ⋅ (r(l) +Υ(q(l))) .

This requirement implies that the matrixWζ′ζ′ must be positive definite. However, in our current

problem where ζ ≡
⎡⎢⎢⎢⎢⎣

r

q

⎤⎥⎥⎥⎥⎦
, the matrix Wζ′ζ′ is of the form

Wζ′ζ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 K11 0 0 0

0 0 0 0 K22 0 0

0 0 0 0 0 K33 0

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and is only positive semi-definite. We avoid this problem by decoupling r from the variational

problem for stability analysis. The state r has no explicit contribution in the elastic strain energy

W (u − û, s), and it acts only through boundary conditions. It acts indirectly through q by

inextensibility and unshearability constraint (r′ = d3). Its conjugate momentum n is a constant

function n(s) = −F. We eliminate the variables r and n by substituting these relations in the

functional

∫
l

0
Lds = ∫

l

0
W( 2

∣q∣2
Bjq ⋅ q′ − ûj , s) +F ⋅ d3ds +F ⋅Υ(q(l)). (3.34)

As a result, we have a new decoupled Hamiltonian function H̄ for the functional, which depends

only on q and µ as the phase variables as

H̄(q,µ, s) = −F ⋅ d3 +
i=3
∑
i=1
miûi +

1

2
m ⋅K−1m.
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Even so, we have a semi-definite matrix Lq′q′

Lq′q′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K11 0 0 0

0 K22 0 0

0 0 K33 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and it arises due to the limitation imposed on the norm of the quaternions q. Rogers (1997)

mitigated this problem by restricting the variations hq, which ensures the unit-norm constraint:

q ⋅ q = 1. Subsequently, hq must satisfy

q ⋅ hq = 0 Ô⇒ hq ∈ q⊥.

There are many choices of the basis for q⊥, and we choose the basis {B1q,B2q,B3q} for our

computations. Any arbitrary variation hq ∈ R4 can be projected on to the q⊥ using the following

Π matrix leading a projection in R3.

Π = [B1q,B2q,B3q]
T
≡

⎡⎢⎢⎢⎢⎢⎢⎣

q4 q3 −q2 −q1
−q3 q4 q1 −q2
q2 −q1 q4 −q3

⎤⎥⎥⎥⎥⎥⎥⎦

, (3.35)

The second variation along the projected space is obtained by substituting h̄ = ΠTh in the

second variation

δ2J[h] = 1

2
∫

l

0
h′ ⋅ΠLq′q′Π

Th′ + h′ ⋅ [ΠLq′q′Π
′T +ΠLq′qΠ

T ]h

+ h ⋅ [Π′Lq′q′Π
T +ΠLq′qΠ

T ]h′

+ h ⋅ [Π′Lq′q′Π
′T +ΠLqqΠ

T +ΠLqq′Π
′T +Π′Lq′qΠ

T ]h.

The quadratic form of this expression can be rewritten in terms of the Jacobi operator as

δ2J[h] = ⟨h, S̄h⟩,

where S̄ is given by

S̄h = − d
ds
[P̄h′ + C̄Th] + C̄h + Q̄h,

and

P̄ = ΠLq′q′Π
T ,

Q̄ = Π′Lq′q′Π
′T +ΠLqqΠ

T +ΠLqq′Π
′T +Π′Lq′qΠ

T ,

C̄ = Π′Lq′q′Π
T +ΠLqq′Π

T .
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Then, the projected matrix Lq′q′ on ΠT -space

P̄ =
⎛
⎜⎜⎜
⎝

K11 0 0

0 K22 0

0 0 K33

⎞
⎟⎟⎟
⎠
, (3.36)

is always positive definite. Therefore, the Legendre’s strengthened condition is satisfied as long

as the allowed variations are in q⊥ - space. Furthermore, this condition guarantees that the

weak minima ζo also qualifies as a strong minima (subsection 2.1.2). The linearization of the

Hamiltonian form of the equilibria gives the Hamiltonian form of the Jacobi operator S,

⎡⎢⎢⎢⎢⎣

hq

hµ

⎤⎥⎥⎥⎥⎦

′

=
⎡⎢⎢⎢⎢⎣

Hqq Hqµ

Hµq Hµµ

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

hq

hµ

⎤⎥⎥⎥⎥⎦
, (3.37)

where hq,hµ are the variations in the q and µ respectively. The expressions for the Hessian

matrices are detailed in Appendix C. When the variations hq are restricted to q⊥− space, (3.37)

corresponds to the Hamiltonian form of the S̄.

Jacobi condition Given the positive definiteness of P̄, the absence of conjugate points in

the interval [0, l] is the sufficient condition for the equilibrium ζo to be stable. We compute

the conjugate points in the following manner. Firstly, the boundary with the Natural boundary

condition (s = l) is selected, and the initial value problems (IVP) are solved towards the other

end (s = 0) for a basis of initial values for hq and a zero vector for hµ. Nevertheless, the flat

direction of hq is not of interest, and the basis is chosen in the q⊥- space. As a result, three sets

of eight first-order IVPs are solved towards s = 0 with the following sets of initial values at s = l

hq(l) = Biq(l), i = 1,2,3.

and the hµ(l) components satisfying the linearized boundary condition (3.32b)

hµ(l) ⋅Biq(l) +µ(l) ⋅Bihq(l) + (
∂

∂q
Υ(q(l)) ×F ⋅ di(l)) ⋅ hq(l) = 0, i = 1,2,3,

(3.38)

and the linearized integral (3.33)

µ(l) ⋅ hq(l) + q(l) ⋅ hµ(l) = 0. (3.39)

The algebraic system (3.38) and (3.39) is solved to obtain the initial values for the components

hµ(l).

The components corresponding to the IVP solution hq(s) for i th set of IVP are denoted as
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hq
(j) (j = 1,2,3). These four components are arranged as rows in the 4 × 3 matrix along s as

[hq
(1)(s) hq

(2)(s) hq
(3)(s)] .

This matrix is projected onto q⊥- space by left multiplying with the matrix ΠT (3.35) to give a

3 × 3 matrix:

ΠT [hq
(1)(s) hq

(2)(s) hq
(3)(s)] .

We refer to this matrix as stability matrix. A point σ is called a conjugate point of l if the de-

terminant of this 3 × 3 stability matrix vanishes for any σ ∈ [0, l]. To analyze the stability of

the equilibria determined by the 14-dimensional Hamiltonian system, we need to solve a 24-

dimensional IVP. One approach is to couple both systems, resulting in a (24 + 14)-dimensional

BVP. Alternatively, one can first solve the 14-dimensional Hamiltonian system BVP and then

address the 24-dimensional IVP separately. The second approach is more computationally effi-

cient since the BVP is of smaller size, and IVPs can be solved more quickly compared to BVPs

of the same size.

To sum up, we have presented the Hamiltonian form of equilibria for an elastic rod clamped

at one end and attached to a dead load at the other end that exerts combined force and moment.

The conserved quantities that arise out of this method are also presented. In addition, a numer-

ical implementation for the Jacobi condition was also detailed. This machinery is helpful in

numerically investigating the rod equilibria and their associated stability properties. The fol-

lowing chapter will delve into the details of the numerical computations utilized to investigate

the elastic rods.



CHAPTER 4

Numerical Continuation

In this thesis, we compute rod equilibria while systematically varying parameters and investigate

their behavior. These parameters describe either material properties, geometric properties, or

boundary conditions. Parameter continuation software AUTO-07p (Doedel et al., 2007) is em-

ployed for this study. This continuation technique numerically solves the parameter-dependent

boundary value problems (BVPs) that are reduced to nonlinear algebraic equations by discretiza-

tion. As the parameter changes, nonlinear phenomena such as folds and bifurcations may arise,

and this method can detect them. Previous versions of the software AUTO-07p have been suc-

cessful in computing robust solutions for elastic rod models, and have been widely used in the

field (Dichmann et al., 1996; Healey and Mehta, 2005). In this chapter, we briefly provide an

overview of the parameter continuation method (Doedel et al., 1991a,b), and then provide some

details of numerical computations utilizing AUTO-07p.

4.1 Parameter Continuation

Consider a nonlinear algebraic system of the form

g(x, γ) = 0, g ∶ RNd ×RÐ→ RNd ,

γ ∈ R,
(4.1)

where γ is the system parameter, and Nd is the dimension of the given problem. Parameter

continuation explores the solution space of (4.1) as the parameter γ is varied, and studies their

dependence on the parameter. The system can have more than one parameter. Nevertheless,

in numerics, only one parameter is varied at a time while maintaining others fixed. Infinite-

dimensional problems like BVPs are converted to the finite-dimensional algebraic system of

the form (4.1) after discretizing using orthogonal collocation (see later section (4.2)). In this

scenario, the dimension of the problem Nd depends on the dimension of the state in the BVP,

the number of discretization intervals, and the number of collocation points within each interval.

For simplicity, we take y = [x, γ] and, then rewrite (4.1) as

g(y) = 0, g ∶ RNd+1 Ð→ RNd . (4.2)

A solution yo of (4.2) is said to be regular if the Jacobian of the algebraic system gy(yo) is

of rank Nd. Then it follows from the Implicit Function Theorem that a unique solution branch

43
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y = [x(τ), γ(τ)] passes through the regular solution yo, for some choice of parameterization

τ of the branch. Along this solution branch, the components x can be expressed in terms of the

other component γ, i.e., the state x can be expressed as x(γ).

The principle of parameter continuation is to start from a known initial regular solution

yo and compute a nearby solution on the solution branch through a perturbation in γ. This

process is repeated multiple times until a full set of branched continued solutions is obtained.

Let p(y(τ), τ) = 0 be the function of parameterization. Our goal is to determine the continuous

curve of solutions satisfying

g(y(τ)) = 0,
p(y(τ), τ) = 0,

around a known solution yo = [xo, γo]. Suppose that the direction vector ẏ is known at yo,

where (̇) denotes the derivative with respect to τ . The next solution y(τo + ∆τ) is obtained

through the Newton iterative method which consists of solving ∆y from

⎡⎢⎢⎢⎢⎣

gy(y(i))
py(y(i))

⎤⎥⎥⎥⎥⎦
∆y =

⎡⎢⎢⎢⎢⎣

g(y(i))
p(y(i))

⎤⎥⎥⎥⎥⎦
, (4.3)

followed by setting

y(i+1) = y(i) +∆y.

These two steps are carried out iteratively until the solution converges. As an initial approxima-

tion,

y(0)(τo +∆τ) = yo + ẏ∆τ (4.4)

is used. The direction vector at the new point ẏ1 is found after the convergence of Newton’s

iteration using the relation
⎡⎢⎢⎢⎢⎣

gy

py

⎤⎥⎥⎥⎥⎦
ẏ1 =

⎡⎢⎢⎢⎢⎣

0

pτ

⎤⎥⎥⎥⎥⎦
.

The vector is then normalized to the unit norm, i.e., ∣ẏ1∣ = 1. This procedure is applied in a

similar manner to the next point and is run iteratively.

There are several choices of parameterization functions p(y(τ), τ). Natural parameter

continuation employs the simple choice of γ as a parameter, i.e., p(y(τ), τ) = γ − τ . However,

this method fails in the vicinity of the solutions where the Jacobian gy becomes singular. We

briefly discuss a simpler version of these singular points called simple folds or simple limit

points, which are frequently encountered in the present investigation.

Simple Fold: A solution (xo, γo) is called a simple fold (or simple limit point) if

dimN(g0
x) = 1, g0

γ /∈ R(g0
x).
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Here, N(g0
x) and R(g0

x) denote, respectively, the Null Space and the Range of g0
x. Differenti-

ating g(x(τ), γ(τ)) = 0 with respect to τ gives the relation

gxẋ + gγ γ̇ = 0.

The parameterization is chosen such that

∣ẋ∣2 + γ̇2 = 1.

and, hence, at a fold (x0, γ0), γ̇0 = 0, and as dimN(g0
x) = 1, we have N(g0

x) = span{ẋ0}.

The ∆y required for the Newton iterative procedure (4.3) is not available near the fold point

due to the singular nature of the Jacobian matrix, and the continuation fails to proceed further. To

compute past the fold, other methods like Norm continuation or Pseudo-arclength continuation

can be chosen. In Norm continuation, parameterization function p(y(τ), τ) = ⟨y(τ),y(τ)⟩−τ2

is used. Even this method has some limitations and fails near higher-order fold points.

The popular Pseudo-arclength continuation (Keller, 1977) utilizes the parametrization func-

tion:

p(y(τ), τ) = ∣ẏ∣2 − 1. (4.5)

This theoretical tool is approximated for computations as

(y1 − yo) ẏ −∆τ = 0.

Geometrically, this method looks for a solution y1 to g(y) in a hyperplane perpendicular to a

unit vector ẏ, and that is at a distance ∆τ from yo. This method works for every regular solution

point yo (including folds) provided that ∆τ is sufficiently small.

The Newton iteration step for solving the equations now includes solving

⎡⎢⎢⎢⎢⎣

gx(xi, γi) gγ(xi, γi)
x0
∗ γ̇

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

∆x

∆γ

⎤⎥⎥⎥⎥⎦
= −
⎡⎢⎢⎢⎢⎣

g(xi, γi)
(xi − xo)

∗
ẋo + (γi − γo) γ̇0 −∆τ

⎤⎥⎥⎥⎥⎦
.

The next direction vector [ẋ1, γ̇] is defined by the equations

gxẋ1 + gγ γ̇ = 0, (ẋ0)∗ ẋ1 + γ̇oγ̇1 = 1.

Therefore, the direction vector [ẋ1, γ̇] required for the next step is obtained by back substituting

at the end of Newton iterations. This direction vector must then be normalized to a unit vector.

This process is carried out iteratively along the τ and is capable of proceeding beyond the

singular points such as simple folds without any issues.
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4.2 Orthogonal Collocation

Collocation methods convert an infinite-dimensional problem into a finite-dimensional problem

over a discretized space, facilitating the numerical computation of the solutions. Consider a

system of first-order Ordinary Differential Equations (ODEs) of the form:

d

ds
x(s) = f(x(s), γ), s ∈ [0,1],

x(⋅, ⋅), f(⋅, ⋅) ∈ RNd ,

γ ∈ R,

(4.6)

subject to the boundary conditions

b(x(0, γ),x(1,γ), γ) = 0, b(⋅, ⋅, ⋅) ∈ RNb .

AUTO-07p solves BVPs using orthogonal collocation with piecewise continuous polynomial

functions (Ascher et al., 1981). This means the unknown function is approximated as a poly-

nomial of a specified degree in the given subintervals. The interval [0,1] is discretized into n

steps as

s0 = 0 < s1 < . . . sk < sk+1 < . . . sn = 1,

with the stepsize hk = sk − sk−1 for 1 ≤ k ≤ n. The collocation solution P (x) is determined as

a set of polynomial functions

P (x) = (Pm
1 , P

m
2 , ..P

m
n ),

where each term Pm
k is a polynomial amsm+am−1sm−1+⋯+ao ∀s ∈ [sk−1, sk], k = 1,2, . . . , n

with the coefficients a0, a1,⋯am being Nd-dimensional vectors. Therefore, a m th degree col-

location polynomial is described using (m + 1)nNd scalar variables. These functions satisfy

continuity at the mesh boundaries

Pm
k (x(tk)) = Pm

k+1(x(tk+1)), k = 1, . . . , n − 1,

leading to (n − 1)Nd algebraic equations. The collocation solution P (x) is required to satisfy

the given differential equations at the Gauss collocation points within each interval [sk−1, sk]

Pm′
k (zj,i) = f(Pm

k (zj,i), γ), j = 1,2, . . . ,m.

The collocation points zj,i in each sub-interval are the roots of the mth degree Legendre

polynomial (Gauss points). Table 4.1 presents collocation points for degrees from m = 2 to

m = 5. These points provide the necessary algebraic equations to determine the collocation

polynomials. This method is equivalent to using an implicit Runga-Kutta method. Additionally,

the polynomials Pm
k meet the boundary conditions, and the (m+1)nN variables are determined
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No. of collocation
points

Legendre Polynomial
Collocation points (zeros of the Legendre’s
polynomial translated from [−1,1] to [0,1] )

2 1
2(3x

2 − 1) 1
2 −

1
2
√
3
, 1

2 +
1

2
√
3

3 1
2(5x

3 − 3x) 1
2 −

1
2

√
3
5 , 1

2 , 1
2 +

1
2

√
3
5

4 1
8(35x

4 − 30x2 + 3)
1
2 −

1
2

√
3
7 +

2
7

√
6
5 , 1

2 −
1
2

√
3
7 −

2
7

√
6
5 ,

1
2 +

1
2

√
3
7 −

2
7

√
6
5 , 1

2 +
1
2

√
3
7 +

2
7

√
6
5

5 1
8(63x

5 − 70x3 + 15x)
1
2 −

1
6

√
5 + 2
√

10
7 , 1

2 −
1
6

√
5 + 2
√

10
7 ,

1
2 ,

1
2 +

1
6

√
5 − 2
√

10
7 , 1

2 +
1
6

√
5 + 2
√

10
7

Table 4.1 Collocation points in [0,1]

by the resulting set of algebraic equations:

Collocation ∶mnNd,

Continuity ∶ (n − 1)Nd,

Boundary conditions ∶ Nb(= Nd).

This method is implemented in AUTO-07p by introducing Lagrange basis polynomials in

each subinterval [sj−1, sj]. For any given distinct m node points s(1), ...s(m) in the interval

[sj−1, sj], define

lj,i(s), j = 1, . . . , n, i = 0,1, ...m,

by

lj,i(s) =
m

∏
k=1,k≠i

s − s(i)
s(k) − s(i)

.

The local polynomial is then written in the form of a Lagrange interpolating polynomial as

pj(s) =
m

∑
i=0
lj,ix

(i)
j−1,

where x
(i)
j−1 is the value of x at i th node point in the interval [sj−1, sj]. The nodes are chosen

as the roots of the orthogonal polynomials (Table 4.1). If the m collocation points are chosen

as the roots of m th order Legendre orthogonal polynomial, then the order of accuracy of the

collocation method is m, i.e.,

max
[0,1]
∣x(s) − pj(s))∣ = O(hm),
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and we have superconvergence at the meshpoints tk (Doedel, 2007)

max
k
∣x(sk) − pj(sk))∣ = O(h2m).

Now, we require an additional pseudo-arclength parameterization equation to complete the con-

tinuation setup. The pseudo-arclength equation (4.5) used for computation purposes appears

as

∫
1

0
(x(s) − xo(s)) ∗ ẋods + (γ − γo) ∗ γ̇ − τ = 0,

where (xo, γ), is the previously known computed point on the solution branch, and (ẋo, γ̇) is the

normalized direction vector of the branch at that point. Then, the discretized pseudo-arclength

equation is of the form

n

∑
j=1

m

∑
i=0
ωj,i (x(i)j−1 − (xo)(i)j−1) ∗ (xo)(i)j + (γ − γo) ∗ γ̇o − τ = 0,

where ωj,i are the Lagrange quadrature coefficients. The (m + 1)N algebraic equations from

the discretized BVP are solved along with the discretized pseudo-arclength equation using a

sufficiently small value of τ . Its value should not be too large so that some of the folds are un-

detected, nor too small so that it consumes more computational time and resources. AUTO-07p

employs an efficient method to solve this linear system of equations (Doedel et al., 1991b). It

condenses some parameters using Gauss elimination and separately solves the resultant decou-

pled system.

4.3 Solving a BVP using AUTO-07p

Now, we will provide a brief overview of the AUTO-07p software. This tool solves the parameter-

dependent BVPs expressed in the ODEs of the form

d

ds
x(s, γ) = g(x(s,γ),γ), s ∈ [0,1],

x(⋅, ⋅), g(⋅, ⋅) ∈ RNd ,

γ ∈ RNp ,

(4.7)

subject to boundary conditions

b(x(0,γ),x(1,γ),γ) = 0, b(., ., .) ∈ RNb .

Here, we use γ to represent the vector of system parameters [γ1, γ2, . . . γNp], Nd to denote the

dimension of the problem, andNb to indicate the number of boundary conditions. These param-

eters are included either through the algebraic system g(⋅, ⋅), or through boundary conditions

b(⋅, ⋅, ⋅).
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To solve a BVP, the user has to provide an ANSI-C (filename.c), or a FORTRAN source

file (filename.f90) that gives the problem description (4.7). It includes the expressions for

the right hand side g(., .) of (4.7), the boundary conditions b(⋅, ⋅, ⋅), and a known initial point

xo(., .) for continuation. The dependence of the problem on the parameters γ is also included

here. Continuation can be carried out in the system itself g(., .), or in boundary conditions

b(⋅, ⋅, ⋅).

Continuation is executed with options provided in a constants file (c.filename), which

controls all variables aspects of the run. The control aspects of a run, such as the number of dis-

cretization mesh intervals (NTST), the number of collocation points per interval (NCOL), solver

precision, step size, the number of steps along a solution branch, choice of branch, selection of

parameter γk for continuation, and so on, are regulated by this file. It also includes instructions

to report the solution for a specific parameter value and to terminate the continuation at a certain

parameter value. For each solution, the state variables x(⋅, ⋅), and the vector of system parame-

ters γ are printed out. By default, these solutions are printed in the file fort.8, and if specified,

they are also printed in the file s.filename. Some examples of these auto-files are provided in the

provided code (Appendix D).
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CHAPTER 5

Hysteresis in Tip-Loaded Cantilevers: Equilibria and their Stability

In this chapter, we use the proposed machinery from Chapter 3 to determine the equilibria of

tip-loaded cantilevers along with their stability properties. We incorporate a parameter in this

system and formulate it as a parameter-dependent variational problem. Then, we investigate the

parameter’s influence on the equilibria with the aid of distinguished bifurcation diagrams. The

parameter we have employed defines the rotation and induces the 2π - periodicity in the system.

The primary focus is to understand the effect of intrinsic curvature on rod equilibria before

exploring the more complex CTCR systems. To date, very few studies have been undertaken in

the closely connected field of research. For instance, Armanini et al. (2017) investigated similar

catapult behavior in tip-loaded intrinsically straight elastic rods.

5.1 Setup

An inextensible and unshearable massless elastic rod of circular cross-section is clamped at one

end and connected to a dead load at the other, as shown in Figure 5.1. The dead load exerts a

downward force F ≡ −F2e2 and a moment Υ(q(l))×F due to an offset of the loading at the tip

s = l. Just, recall that Υ(q(l)) (3.12) is the lever arm of the load in the fixed frame and is given

by ∆1d1(q(l))+∆2d2(q(l))+∆3d3(q(l)), where ∆1,∆2 and ∆3 are the components of the

arm in the {d1,d2,d3} frame at the tip s = l. The clamped end is quasi-statically rotated about

its horizontal tangent by an angle θ, and the rod response is examined. As a result, we have a

parameter-dependent variational problem with the parameter being θ. We carry out numerical

d3(0)

d2(0)

θ

s=l

s=0

s

e3

e2

e1

e3

e2

e1

d3(s)
d1(s)

d2(s)

-F2e2

 ϒ(q(l))

Fig. 5.1 Schematic of the setup
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ee

e

31

2

F2=4.0

F2=1.0

F2=0.0

F2=3.0

F2=2.0

Fig. 5.2 Rods with small intrinsic curvature. The tip of an isotropic rod is a single point (purple),
whereas the tips of rods with intrinsic curvature û1 = 0.1 and 0.2 trace closed smooth curves (in
green for two intrinsic shaped rods at load F2).

continuation along this parameter using AUTO-07p. The rod is assumed uniform with stiffnesses

K1(s) =K2(s) = 1.0, K3(s) = 1.0/1.3, (5.1)

and a minimum energy intrinsic shape corresponding to the Darboux vector û(s) = [û1,0, û3].

This rod system is modeled using the Hamiltonian formulation of the rod equilibria (3.29),

and the solutions are numerically continued along the parameter θ from a known initial solution

using the following set of boundary conditions:

r(0) = [0,0,0]T , q(0) = [0,0, sin θ
2
, cos

θ

2
]
T

,

n(l) +F = 0,
mi(l) + (Υ(q(l)) ×F) ⋅ di(q(l)) = 0, i = 1,2,3,
µ(0) ⋅ q(0) = 0.

(5.2)

The simple, known, straight solution is initially taken as an initial guess. Parameter continuation

is carried out sequentially to the required system parameters such as û1, û3, length l, arm ∆ and

tip load F2. In the final step, solutions are continued along θ, fixing the values of the remaining

parameters.
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F2=0.0

F2=1.0

F2=1.4

F2=2.0

F2=3.0

Fig. 5.3 Rod with higher intrinsic curvature. High intrinsic curvatures lead to unstable equilibria
(red segments) for intermediate loads F2.

For isotropic rods subjected to a pure concentrated tip loading (∆ = [0,0,0]) (no moment

corresponding to an offset load); there is a unique equilibrium with a planar centerline for dif-

ferent rotations of the clamped end θ. The rod centerlines depend only on the magnitude of

tip load F and are independent of θ. Meanwhile, when the intrinsic curvature and twist of the

rod are varied to non-zero values, distinct equilibrium centerlines are obtained for different val-

ues of θ. Lower intrinsic curvatures û1 and twists û3 result in equilibria consisting of smooth,

continuously varying centerlines with their tip tracing closed curves, as shown in Figure 5.2.

With increasing tip loads, these traces get smaller and eventually converge to a point. Further

increase in the intrinsic curvatures results in the equilibrium solution sets with folds. Multiple

equilibria exist for certain values of θ, and some of these are unstable. Traditionally, the folds

are known to be associated with the presence of snap-back instability, where the rod snaps to

the adjacent stable equilibrium. Since the equilibria depend on their history, the term hysteresis

is used interchangeably to refer to this phenomenon. We examine the stability of the equilibria

in the subsequent analysis and determine if the rod snaps. In Figure 5.3, the trace shown in red

corresponds to unstable equilibria, and the rod would snap to the nearest stable configuration.

Figure 5.4 shows the planar projections of rod configuration as the clamped end is rotated in the

clockwise direction as seen towards −e3 direction. The snap motion occurs around θ = π where

the rod centerline appears curving upwards. The red tip trace depicts the snap motion. Interest-

ingly, this snapping behavior vanishes for higher tip loads such as F2 = 3.0. In the following

sections of this chapter, we will show a comprehensive description and analysis of this behavior,

exploring its dependence on system parameters such as rod length, tip load, torsion, and arm.
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(a) e1 − e2 plane as seen in -e3 direction

e1e3

e2

(b) e2 − e3 plane as seen in -e1 direction

Fig. 5.4 Planar projections of the rod centerlines with the tip trace as its clamped end is rotated
about the horizontal tangent F2 = 1.0 and l = 1.75. The trace represented in cyan corresponds
to a smooth motion whereas that of red corresponds to an assumed snapping displacement.

5.2 Distinguished Bifurcation Diagram

As described in Chapter 2 (section 2.4), the qualitative information about the stability exchange

near the folds can be deduced from the distinguished bifurcation diagrams. The ordinate in

these diagrams is given by

Lζ′ ⋅
∂ζo
∂ξ

RRRRRRRRRRRs=0
.

In the present case, the parameter ξ ≡ θ acts at the boundary s = 0 through the boundary

condition ζo ≡ qo(θ) = [0,0, sin θ/2, cos θ/2]T . Subsequently, the expression for the ordinate

in this θ-dependent variational problem is then evaluated as

Lq′ ⋅
1

2
[0,0,− cos θ

2
, sin

θ

2
]
T

/2 = µ ⋅ 1
2
[0,0,− cos θ

2
, sin

θ

2
]
T

,

= µ ⋅B3q(0)/2 ≡m3(0).
(5.3)

The tangential component of the internal moment m3(≡ m ⋅ d3) at s = 0 plotted against the

parameter θ serves as the corresponding distinguished bifurcation diagram.

5.3 Numerical Examples

Hysteresis in the angle θ occurs under specific conditions of length, load, and intrinsic curva-

tures. In the current study, we examine the dependence of this hysteresis on system parameters

by analyzing bifurcation diagrams for three possible scenarios: 1) varying force at a fixed length,

2) varying length at a fixed load, and 3) varying the intrinsic torsion component or the lever arm

of the load. By investigating these factors, a better understanding on the effect of intrinsic cur-

vature on hysteresis behavior can be gained.
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5.3.1 Fixed Length and Varying Load

Consider an elastic rod with parameters û = [1.5,0,0], length l = 1.7, and ∆ = [0,0,0]. Pa-

rameter continuation is performed along the clamp angle θ by increasing the value of F2 in

steps from 0 to 5.1. The value of m3(0) is evaluated from the computed solutions and plotted

as a function of θ for different values of F2 to give the corresponding distinguished bifurcation

diagrams. The diagrams for the cases of F2 = 0.8,2.0 and 3.5 are presented in Figure 5.5. The

curves corresponding to F2 = 0.8 and F2 = 3.5 have no folds, and the equilibria are stable for

all values of θ. The stability is verified through Jacobi condition by showing that these equi-

libria have no conjugate points, as depicted in Figures 5.6a, 5.6b. Note that the strengthened

Legendre’s condition (3.36) is always satisfied. Conjugate points are computed as described in

the section 3.11 for the equilibria denoted as ’o’ in Figure 5.5. On the other hand, the diagram

for F2 = 2.0 consists of two folds. The equilibria corresponding to the θ in the region between

the folds are unstable, as verified by the presence of conjugate points as shown in Figure 5.6c.

It indicates an exchange of stability and the presence of a hysteresis region. The distinguished

bifurcation diagram (Figure 2.2 in Chapter 2) predicts that the upper branch in the fold opening

left side and the lower branch in the fold opening right side are unstable. In our situation, the

region between the folds tallies with these unstable branches.

Bifurcation diagrams are obtained for a range of values of tip load F2 from 0 to 5.0 and plot-

ted as a contour surface, as shown in Figure 5.7. We refer to this plot as a bifurcation surface.

This surface is sliced by the planes F2 = 0.8,2.0 and 3.5, which gives the planar bifurcation

diagrams already displayed in Figure 5.5. Another orthogonal plane θ = π cuts the surface,

resulting in a curve that can be interpreted as a bifurcation diagram when the parameter F2 is

varied at a fixed θ. It demonstrates how an intrinsically curved rod with the clamped end at θ = π
behaves with the increasing tip load F2. Typically, the rod equilibria are planar for θ = 0 and

θ = π under vertical tip load. In the former case, the rod centerline curves downwards, and in

the latter case, it curves upwards. We draw some preliminary conclusions through Bifurcation

theory (Golubitsky and Schaeffer, 2014), relying primarily on the plots and without extensive

analysis. As the tip load F2 increases, the planar equilibria of the rod experience two pitchfork

bifurcations, one being supercritical at Fsuper and the other being subcritical at Fsub. Bifurca-

0 π/3 2π/3 π 4π/3 5π/3 2π
−2

−1

0

1

2

Rotation of clamped end θ

m
3(
0)

F2=0.8
F2=2.0
F2=3.5

Fig. 5.5 The distinguished bifurcation diagram for tip loads F2 = 0.8,2.0 and 3.5. The points
on the curve at intervals of π/3 are chosen for computing conjugate points(in Figure 5.6).
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Fig. 5.6 The computation of conjugate points for the equilibria corresponding to θ = kπ/3
k = 1, . . . ,5 indicated in Figure 5.5. For the cases of F2 = 0.8 and F2 = 3.5, there are no
conjugate points, and the equilibria are stable for all θ. On the other end, the diagram for
F2 = 2.0 has two folds. The equilibria for θ = π corresponding to the region between the folds
have a conjugate point (indicated by the red point) and are unstable. The remaining equilibria
do not have any conjugate points and are stable.

tion theory predicts that the trivial solution loses its stability at supercritical pitchfork bifurcation

Fsuper, and gains stability at the subcritical pitchfork bifurcation Fsub. That is planar configura-

tion (straight black line) loses its stability at Fsuper and assumes stable non-planar configuration

(indicated by the black curved portion). On further increasing F2, the planar configuration be-

comes stable at Fsub. Therefore, the equilibria along the trivial line segment connecting Fsuper

and Fsub are unstable. This is in agreement with our prediction as the straight line corresponds

to θ = π lies in the unstable region between the folds. We observe snapping behavior if the tip

load F2 satisfies Fsuper < F2 < Fsub.

The bifurcation surfaces are plotted for different values of l, for a fixed û and ∆ in Fig-

ure 5.8. The surfaces corresponding to lower values of l have no folds, and the plane θ = π cuts

the surface, resulting in a straight line as shown in Figure 5.8a. The snap-free solution paths are
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Fig. 5.7 The surface plot of the responsem3(0) for continued solutions for an intrinsic curvature
û = [1.5,0,0] and length l as a function of parameter θ and tip load F2. The planes F2 = 0.8,2.0
and 3.5 cut the surface resulting in smooth m3(0) vs. θ curves.

obtained for any tip load F2 for this value of l. When the value of l exceeds a critical value,

folded surfaces start appearing and are demonstrated by planar bifurcation curves on the plane

θ = π as shown in Figure 5.8b,5.8c,5.8d. The values of Fsuper and Fsub are dependent on l, and

consequently, the functions Fsuper(l) and Fsub(l) are used. As the value of l is increased, the

distance between the bifurcation points, i.e., Fsuper(l) and Fsub(l), increases. Let us say we

have a tip load F o
2 at length l1 such that F o

2 > Fsub(l1). In this case, snapping does not occur

as θ is varied. If the length is increased to l2, the value of Fsub(l2) also increases. It can be

raised to l2 such that F o
2 < Fsub(l2). Then, with the same tip load of F o

2 but with a longer rod

l2, snapping can be witnessed.
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Fig. 5.8 The surface plot of m3(0) for continuation solutions as a function of input angle θ and
tip load F2 for four different values of l. The contours obtained as the plane θ = π cuts the
surface are also portrayed.
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5.3.2 Fixed Load and Varying Length

Now, we slightly modify the prior scenario, in which the tip load F2 is held constant, and the

rod length l is varied. The value of l is varied in increments from 0 to 3.5 for fixed values of

F2, and the continuation solutions along θ are obtained for each of the length steps. The value

of m3(0) is evaluated for the computed solutions, and a bifurcation surface as a function of l

and θ is plotted. The bifurcation surfaces obtained for different values of F2 are depicted in

Figure 5.10. The stability information embedded in these surface plots is the same as that in

the prior case. The plane θ = π cuts the surface and gives a bifurcation diagram. Here, it can

be interpreted as the bifurcation diagram when length l is varied at a fixed tip load F2 with

the clamped end held at θ = π. The straight line (in red) corresponds to a trivial solution: the

rod’s planar configuration at θ = π curving upwards. The planar configuration at θ = π loses

its stability at lsuper and buckles into a non-planar equilibrium as the value of l increases. The

planar configuration restabilizes when the value of l is increased past lsub. Here, the snapping

behavior is observed as the clamped angle θ is varied for values of l that satisfy lsuper < l < lsub.
The evolution of the rod’s centerline as the clamped end is rotated about the horizontal tangent

for F2 = 1.0 and l = 2.5 is shown in Figure 5.9. On comparing it with the snapping case of

F2 = 1.0 and l = 1.7 presented in Figure 5.4, we can observe that an increase in the value of l

causes the rod to bend inwards and guide around the snapping region.

e1
e
3

e2

(a) e1 − e2 plane as seen in −e3 direction

e1e3

e2

(b) e2 − e3 plane as seen in -e1 direction

Fig. 5.9 Planar projections of the rod centerlines with the tip trace as its clamped end is rotated
about the horizontal tangent with a tip load F2 = 1.0 and length l = 2.5. The tip trace is displayed
in cyan.



CHAPTER 5. Hysteresis in Tip-Loaded Cantilevers: Equilibria and their Stability 60

m
3(
0)

(a) F2 = 0.8

m
3(
0)

(b) F2 = 1.0

m
3(
0)

(c) F2 = 1.2

l

(d) F2 = 1.4

Fig. 5.10 The surface plot of the ordinate m3(0) for continued solutions as a function of the
parameter θ and length of the rod l for different values of tip load F2. The contour plots obtained
as the θ = π plane slices the surface are shown in red.
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5.3.3 Varying Intrinsic Torsion Component or Arm of the load

In the section, we slightly vary the torsion component to a non-zero value and examine its

influence on the bifurcation surfaces depicted in Figure 5.8c and Figure 5.10c from previous

examples. We consider the torsion û3 = 0.01 and carry out the continuation at a fixed load

F2 = 1.2, and for a range of l in [0,3.1]. The bifurcation surface for the solutions is plotted

as shown in Figure 5.11a. The symmetric surface for the case of û3 = 0 in Figure 5.10c trans-

formed into a non-symmetric surface, as illustrated in Figure 5.11a and is more evident when

m
3(
0)

(a) Fixed F2 = 1.2 and varying length l

m
3(
0)

(b) Fixed l = 1.7 and varying load F2

Fig. 5.11 The torsion û3 acts as a symmetry-breaking parameter.
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(b) The regions of the bifurcation diagram corresponding to l = 1.7 based on the index.

Fig. 5.12 Bifurcation diagram for fixed F2 = 1.2, and û = [1.5,0,0.1].

the plane θ = π bisects it to fetch two disconnecting, non-symmetric curves (in red). Likewise,

continuation solutions are obtained for load l = 1.2, and a range of tip load F2 in [0,5.1], and

the bifurcation surface is plotted. Here, the symmetric surface in Figure 5.8c also transformed

to an asymmetric surface, as depicted in Figure 5.11b, and the bifurcation curve on the plane

θ = π separates into two disconnecting curves. Both of these findings lead to the conclusion that

the torsion û3 acts as an imperfect bifurcation parameter, breaking the symmetry in the system

about θ = π.

The bifurcation diagram on the θ = π plane in Figure 5.11a depicts the response of the elas-

tic rod when its length l is varied while maintaining constant F2 at constant θ = π. If the rod

equilibrium lies on the lower curve, it just stays on it when l is varied. However, if the equilib-

rium lies on the upper closed curve, it snaps to the lower curve when the value of l is varied past

the folds. For û3 = 0, these curves are connected, and the equilibrium varies smoothly along

the upper or lower pitchfork curve as the value of l is varied. Moreover, when û3 is non-zero,

it imparts a preferred direction to these equilibria, i.e., the lower curve in this case. The same

arguments apply to the bifurcation plot in Figure 5.11b, where the value of F2 is varied at a fixed

l of 1.7.

Let us further increase the value of û3 to 0.1 and conduct the continuation along θ maintain-

ing the tip load constant F2 = 1.2 for different values of l ∈ [0,3.1]. Surprisingly, we obtained

the bifurcation diagrams with four folds for intermediate values of l, as depicted in Figure 5.12.

We observe that the number of folds rose from two to four as the value of l increased from 1.6 to

1.7. Further, an increase in the value of l to 1.8 decreased the folds back to two. The bifurcation

diagram with four folds corresponding to l = 1.7 is shown in Figure 5.12b, where the folds di-
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(a) No conjugate points exists for the equilibria labelled 1,2,6,7
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(b) One conjugate point (denoted in ’o’) exists for the equilibria labelled 3 and 5.
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(c) Two conjugate points (denoted in ’o’) exist for the equilibria labelled 4.

Fig. 5.13 Computation of conjugate points for the equilibria labeled in Figure 5.12b.

vide the diagram into different regions. The Morse index (section 2.3) is assigned to each region

after computing the conjugate points for equilibria as illustrated in Figures 5.13a,5.13b,5.13c.

The index in the upper branch increases by one if the fold opens to the left and decreases by

one if it opens to the right. Therefore, it agrees with the prediction of distinguished bifurcation

diagrams (Figure 2.2 in section 2.4). The planar views of rod centerlines for some values of θ

along the bifurcation diagram are displayed in Figure 5.14. The five equilibria corresponding

to θ = π are also illustrated in this figure along with their index. The only configurations with

index 0 are stable and can realistically exist.

Now, we turn our attention to the effect of the load arm ∆ = [∆1,∆2,∆3] on the hystere-

sis behavior of the current clamped-rod setup. We study its impact on the bifurcation surfaces

obtained for the case of ∆ = [0,0,0] in Figure 5.8c and Figure 5.10c (from previous sub-

sections 5.3.1 and 5.3.2). The centerlines of an unstressed uniform rod with intrinsic curvature
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Fig. 5.14 Planar views of the equilibria for the given values of θ. The parameter θ = π corre-
sponds to five equilibria. The red colored label corresponds to index 2, the blue corresponds to
index 1, and the black to index 0.

û = [û1,0,0] are planar and lie in the fixed d2−d3. Therefore, non-zero value of the components

∆2 or ∆3 gives the arm which lies in this fixed d2−d3 plane. Figure 5.15 shows the bifurcation

surfaces obtained for these in-plane components ∆ ≡ [0,0.01,0.0] and ∆ = [0,0.0,0.01]. No

qualitative difference is visible in these plots in comparison with that in Figure 5.10c. Now con-

sider the other component ∆ = [0.01,0.0,0.0], which gives the arm non-planar with the plane

of an unstressed elastic rod. The bifurcation surface for F2 = 1.2, û = [1.5,0,0] is obtained as

shown in Figure 5.16, and it looks qualitatively similar to the bifurcation surfaces in Figure 5.11.

The symmetry in the surface is lost, and the bifurcation diagram along the plane θ = π separates

into two disconnecting curves. Here, the component of the arm ∆1 acts as a symmetry-breaking

agent in a similar manner as the torsion component û3.

m
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0)

(a) ∆ = [0,0.01,0].

m
3(
0)

(b) ∆ = [0,0.0,0.01].

Fig. 5.15 The effect of in-plane arm on the bifurcation surface of fixed F2 = 1.2 and varying
length l.
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(b) Fixed l = 1.7 and varying load F2

Fig. 5.16 The out-of-plane component of the load arm ∆1 acts as a symmetry-breaking agent.



CHAPTER 5. Hysteresis in Tip-Loaded Cantilevers: Equilibria and their Stability 66

We further increase the value of ∆1 to 0.1 and carry out the continuation. The length of the

rod is fixed at l = 1.6, and the magnitude of tip load F2 is varied. In this numerical experiment,

we notice that bifurcation diagrams with four folds emerge for intermediate values of F2, as

shown in Figure 5.17. As the value of F2 is increased from 1.3 to 1.4, the number of folds

increases from two to four. Further, an increase in the value of F2 from 1.4 to 1.7, led to a de-

crease in the folds to two. The regions in the bifurcation diagrams are assigned the Morse index,
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(a) Bifurcation diagrams for and l = 1.6 and three different values of F2.
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(b) Bifurcation diagrams for F2 = 1.2. The plot consists of different regions separated by folds. Each
region is assigned an index equal to the number of conjugate points the equilibrium in that region pos-
sesses.

Fig. 5.17 Bifurcation diagrams for the arm of the load ∆ = [0.1,0,0].
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Fig. 5.18 Planar views of the rod centerlines for different values of θ. The parameter θ=3.0
corresponds to five rod equilibria. The color of the label is based on the index. The red color
corresponds to index 2, blue corresponds to index 1, and black to index 0.
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after computing the conjugate points for the equilibria. Their computations for some equilibria

are shown in Figures 5.19a,5.19b,5.19c. The planar projections of centerlines of the equilibria

in different regions along this curve are displayed in Figure 5.18. In summary, it can be deduced

that the torsion component û3 and the arm component ∆1 have a similar qualitative effect on

the hysteresis behavior on the current clamped rod system. They induced symmetry-breaking

and also resulted in the emergence of index 2 equilibria.
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(a) No conjugate point exists for the equilibria labelled 1,2,6,7.

0 0.4 0.8 1.2 1.6

0

0.5

1

Length of the rod s

D
et
er
m
in
an
t
of

th
e
S
ta
b
ili
ty

M
at
ri
x

5

3

(b) One conjugate point (denoted in o) exists for the equilibria labelled 3,4 and therefore have index 1.
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(c) Two conjugate points (denoted in o) exist for the equilibria labelled 3,4 and therefore have index 2.

Fig. 5.19 The conjugate points for the equilibria for the labels given along the bifurcation dia-
gram in Figure 5.18
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5.4 Conserved Quantities: Benchmark for Numerical Solutions

While performing numerical computation, one must ensure that the solutions converge and de-

pict the actual system. We utilize the conserved quantities arising out of the Hamiltonian for-

mulation 3.9 as benchmarks for verifying both the convergence and accuracy of the numerical

solutions. The convergence is indirectly verified by considering the conserved quantities instead

of comparing states at each discretization. We utilize the quantities q ⋅ q − 1, µ ⋅ q + 2r ⋅ n and

Hamiltonian H for this purpose. The elastic rod under consideration is uniform (constant stiff-

nesses K1, K3 and intrinsic shape û), and as a consequence, the Hamiltonian H is conserved

along the arc length s. We generate various continuation solutions using different numbers of

mesh intervals and different numbers of Gauss collocation points and plot the corresponding

conserved quantities, as given in Figures 5.20, 5.21 and 5.22. NTST denotes the number of

mesh intervals, and NCOL denotes the number of Gauss collocation points. For this analysis,

we consider the rod equilibrium pertaining to the parameters û = [1.5,0,0], L = 1.7, F2 = 1.15,

∆ = [0.02,0,0] and θ = π
2 .

The spikes in the plots correspond to the discretized time steps, and they increase with the

increase in NTST and NCOL. The quantities q ⋅ q − 1, µ ⋅ q + 2r ⋅ n and H were found to be

constant with an order of error depending on the mesh size and collocation. For instance, when

using a lower mesh interval of 10 and collocation points of 2, these quantities were constant

with an error of order 10−6 − 10−5. Doubling the number of mesh intervals to 20 reduced the

error to the order 10−7 for all three quantities. Similarly, doubling the collocation points to 4

further reduced the error from a order of 10−7 to 10−9. So, it can be inferred that the solutions
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Fig. 5.20 Plot of the norm of the quaternions q ⋅ q − 1 for a computed equilibrium where the
interval has been discretized into NTST steps, and NCOL collocation points have been used.
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Fig. 5.21 Plot of the integral µ ⋅ q + 2r ⋅ n for a computed equilibrium where the interval has
been discretized into NTST steps, and NCOL collocation points have been used.
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Fig. 5.22 Plot of the Hamiltonian H for a computed equilibrium where the interval has been
discretized into NTST steps, and NCOL collocation points have been used.

converge with increasing mesh size and collocation points. In most of our computations in this

chapter, we used 20 mesh intervals and 4 collocation points. Smaller mesh sizes and a higher

number of collocation points give accurate results. But, they take longer computational time,

and the solution files require larger computer storage.
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5.5 Outlook

The impact of intrinsic curvature on the behavior of elastic rods subjected to tip loads was ex-

plored in this chapter. Emphasis was laid on studying the hysteresis phenomenon that arises

when the clamp end is rotated. Bifurcation surfaces were utilized to study their relationship

with the rod length and tip load. The main finding of this chapter is that an initial increase in

parameters such as rod length or tip load leads to the appearance of hysteresis behavior. Nev-

ertheless, as the parameters continue to increase further, this hysteresis behavior disappears.

Another takeaway is that the impact of the non-zero lever arm of the tip load, or torsion com-

ponents of the intrinsic curvature, was found to have a symmetry-breaking effect on the rod

equilibria. In addition, these system parameters also led to equilibria with an index of two. In

these situations, distinguished bifurcation diagrams accurately predicted the change in the in-

dex near folds. Therefore, they can be employed in determining the stability of the equilibria

without actually resorting to the computation of conjugate points. Nonetheless, the index for at

least one equilibrium along the solution path must be determined by conjugate point computa-

tion to employ these diagrams. The next part will focus on the hysteresis behavior in a more

complex elastic rod system of CTCR, which behaves as an elastic rod with intrinsic curvature

with slightly complicated physics. In CTCRs, we have multiple sections with various intrinsic

curvatures. As a result, they resemble elastic rods with piecewise intrinsic curvatures.
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CHAPTER 6

Concentric Tube Continuum Robot

6.1 Introduction

A Concentric Tube Continuum Robot (CTCR) is a system of two or more concentrically ar-

ranged elastic tubes of different stiffnesses and precurvatures (Rucker et al., 2010). Figure 6.1

displays its prototype, while Figure 6.2 displays its schematic. Each tube’s end is connected to

an actuator in the control unit at the base. The actuators mechanically control the tubes by rela-

tively sliding and rotating the tubes one inside the other. The tubes are made of Nitinol, a shape

memory alloy that undergoes large elastic deformations without any plasticity. The constituent

tubes of the robot are restricted to take the shape of a common centerline referred to as the

backbone. This backbone describes a smooth curve in the space, which depends on the imposed

slides and rotations of the tubes by the control unit. An instrument such as a cutting tool, a

needle, or a probe can be mounted at the robot’s tip and maneuvered for several tasks. Because

of their thin size and dexterity, these devices are useful for applications in confined spaces, such

as minimally invasive surgeries. The spatial deformation of these continuum robots depends on

the stiffnesses and the precurvatures of the constituent tubes, external loading, relative sliding,

and twisting of the tubes at the base.

1cm

Fig. 6.1 A CTCR prototype consisting of three telescopic Nitinol tubes (adapted from (Rucker
et al., 2010)).
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The mechanical model for CTCRs (Rucker et al., 2010), which determines the equilibrium

configurations for imposed lengths and the rotations of the tubes at the base, was developed

using Kirchhoff Rod theory. This model incorporated the torsional compliance of the tubes but

did not account for external loads. Geometric exact model (Rucker et al., 2010) was employed to

model the CTCRs under the influence of external loads where force and moment balance on the

constituent tubes is performed to obtain CTCR equilibria. However, the information about the

stability of the equilibrium was not provided here. Ha et al. (2015) cast the problem of CTCR

subjected to external loads as an optimal control problem and examined the stability properties

of the resulting equilibria. In the current work, we consider a CTCR with a payload such as an

instrument that exerts a tip load, and formulate it as a variational problem. The equilibria are

determined by the stationary points of this variational problem, and their stability is determined

by analyzing the second variation of the functional. These CTCRs consist of different sections,

namely N -tube overlap, N − 1 tube overlap, and so on, up to 1-tube overlap. As a result, the

variational problem exhibits discontinuities in its integrand. We provide the required matching

conditions at these points of discontinuity and analyze their stability properties. Furthermore,

we generalize the notion of the index and distinguished bifurcation diagrams to CTCRs, as

described for elastic rods in the previous part.

6.2 Variational Formulation

In this section, we discuss the kinematic model of the CTCR (Rucker et al., 2010), which is

based on the Kirchhoff Rod theory. Consider a CTCR system consisting of N concentric tubes

of different stiffnesses, precurvatures, and lengths. These tubes are identified with integers from

1 to N , with the innermost tube being 1 and the outermost being N . The notations and the

properties used for elastic rods in Chapter 3 are utilized in the present context as well. The

CTCR centerline is regarded as an elastic rod and a similar modelling approach is employed.

The centerline r and local orientation frame {d1,d2,d3} are described in terms of an indepen-

dent parameter s, which is the arc length of the undeformed CTCR centerline. We impose hard

loading at s = 0 for mathematical simplicity, i.e., the rotations of tubes directly at s = 0 are

specified instead of at the actuators in the control unit. Let l1, l2, . . . , lN be the lengths of the

tubes with the property l1 ≥ . . . lN and the innermost tube being the longest, and a schematic

for the case of N = 3 is shown in Figure 6.2. The properties associated with i th tube are

denoted using the superscript [i]. Each tube is modelled as a Kirchhoff Rod, and therefore, con-

sists of its own centerline r[i](s) and a local frame {d[i]1 (s),d
[i]
2 (s),d

[i]
3 (s)}. The tubes are

considered to be massless, unshearable, inextensible, linearly elastic, and have a stiffness K[i]

s

l1
l�

l�

θ1 θ2 θ3

0

Fig. 6.2 Schematic of a three-tube CTCR with tubes of lengths l1, l2 and l3 rotated by θ1, θ2
and θ3 respectively
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of the form diag(K[i]11 ,K
[i]
11 ,K

[i]
33 ) and precurvature û[i] ∈ R3 defined in its material frame

{d[i]1 ,d
[i]
2 ,d

[i]
3 }. The different lengths lk partition the total length intoN segments Sk of length

Lk = lk − lk+1 ≥ 0 such that Sk consists of k concentric tubes for k = 1, . . . ,N , as shown in

Figure 6.2. The section SN is located at the proximal end, whereas the section S1 is located at

the distal end. The constituent tubes of the CTCR deform while being constrained to share a

common centerline curve in 3D space referred to as the backbone, and hence, the tangents of

all the tubes, i.e., their d[i]3 -axes coincide. As these tubes are torsionally compliant, torsional

displacement exists. Subsequently, the relative rotation of the tubes leads to different orienta-

tions of the director frames d[i]1 (s) and d
[i]
2 (s). We consider the material frame attached to the

innermost tube (labelled i = 1) in its reference unstressed state as backbone reference for our

formulations and computations. The relative rotation of the constituent tubes about the common

tangent is evaluated with respect to this reference frame.

As a notational convenience, we use a specific step function K̃[k](s) to extend the tubes to

a zero function beyond its length lk as

K̃[k](s) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

K[k](s), s ∈ [0, lk],
0, s ∈ (lk, l1].

(6.1)

Here, lk is the length of the k-th tube calculated from s = 0 and is related to the lengths of the

overlapping regions Li as lk = ∑N
i=k Li.

The backbone reference tube is described similarly to the previous part (Chapter3), employ-

ing a centerline r ∶ s → R3 and an orientation frame {d1,d2,d3} characterized by quaternions

q ∶ s → R4. Let u(s) = [u1, u2, u3] be the triad of components of the Darboux vector of back-

bone defined in its material frame {d1,d2,d3} i.e., ui ≡ u ⋅di for i = 1,2,3 and is expressed in

terms of q(s) as

ui(s) =
2

∣q∣2
Biq ⋅ q′, i = 1,2,3, (6.2)

where Bi, i = 1,2,3 are the same 4×4 matrices (3.11) defined in the section 3.4. Let α[i] ∶ s→ R
be the relative angle between the director frames of ith tube and that of the reference (tube 1)

about the common tangent d3(s). In a k-tube overlap portion, there are k − 1 relative angle

functions α[i](s) where 2 ≤ i ≤ k. These relative angle functions are represented in a column

vector form α(s) ∈ Rk−1 ≡ [α[2](s)....α[k](s)]T . By definition, α[1](s) ≡ 0, and therefore, is

not included in α. For mathematical convenience, we consider the triad u as a column vector.

The Darboux vector u(s), defined within a director frame {d1,d2,d3}, is related to another

director frame {D1,D2,D3}, which is rotated by a smoothly varying angle Θ ∶ s → R about

the common d3-axis through the relation

U(Θ, s) =R(Θ(s))u(s) + [0 0 Θ′(s)]T , (6.3)
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where R(Θ(s)) ∈ SO(3) is a rotation matrix about d3-axis given by

R(Θ) =

⎡⎢⎢⎢⎢⎢⎢⎣

cosΘ sinΘ 0

− sinΘ cosΘ 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

.

Then, the elastic strain energy density of a i th tube defined in terms of the Darboux vector of

the reference tube u and the angle between the frames α[i] reads

E
[i]
str(u, α[i], α[i]′, s) =

1

2
(U(α[i], s) − û[i]) ⋅ K̃[i](s) (U(α[i], s) − û[i]) ,

= 1

2

⎛
⎜⎜⎜
⎝
u +

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

α[i]′

⎤⎥⎥⎥⎥⎥⎥⎦

−RT (α[i])û[i]
⎞
⎟⎟⎟
⎠
⋅ K̃[i](s)

⎛
⎜⎜⎜
⎝
u +

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

α[i]′

⎤⎥⎥⎥⎥⎥⎥⎦

−RT (α[i])û[i]
⎞
⎟⎟⎟
⎠
.

(6.4)

The orthogonality property of R(α[i]) matrix and the diagonal nature of the stiffness matrix

K[i] results in the relation

R(α[i])T K̃[i](s)R(α[i]) = K̃[i](s).

Then, the strain energy density of i th tube (6.4) becomes

E
[i]
str(u, α[i], α[i]′, s) =

1

2

⎛
⎜⎜⎜
⎝
u +

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

α[i]′

⎤⎥⎥⎥⎥⎥⎥⎦

−RT (α[i])û[i]
⎞
⎟⎟⎟
⎠
⋅ K̃[i](s)

⎛
⎜⎜⎜
⎝
u +

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

α[i]′

⎤⎥⎥⎥⎥⎥⎥⎦

−RT (α[i])û[i]
⎞
⎟⎟⎟
⎠
.

The function E[i]str(u, α[i], α[i]′, s) is quadratic and convex with respect to u as well as α[i]′.

Consequently, the following inverse relations can be obtained

∂

∂u
E
[i]
str ≡ m[i] = K̃[i](s)

⎛
⎜⎜⎜
⎝
u +

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

α[i]′

⎤⎥⎥⎥⎥⎥⎥⎦

−R(α[i])û[i]
⎞
⎟⎟⎟
⎠
,

Ô⇒ u +

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

α[i]′

⎤⎥⎥⎥⎥⎥⎥⎦

−R(α[i])û[i] = K̃[i](s)−1m[i],

∂

∂α[i]′
E
[i]
str ≡ β[i] =K

[i]
3 (u3 + α

[i]′ − û[i]3 ) Ô⇒ α[i]′ = β
[i]

K
[i]
3

− u3 + û[i]3 .

Each tube has an internal force n[i] and a moment m[i] transmitted along its length, and

these vectors satisfy the force-moment balance equations (3.3). As each tube is considered to be

hyperelastic, the term ∂
∂uE

[i]
str gives the triad of components of the internal moment in the i th

tube m[i] along the backbone frame {d1,d2,d3} frame, represented as m[i] ≡ [m[i]1 ,m
[i]
2 ,m

[i]
3 ].

Here, m[i]k = m[i] ⋅ dk, for k = 1,2,3. This moment m[i] vanishes when the strain satisfies

u =R(α[i])û−[0,0, α[i]′]T , where α[i] is the stationary point of the functional ∫ l1
0 E

[i]
strds. The
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term β[i] can be interpreted as a twist moment in the i th tube, i.e., m[i] ⋅d3. We assume that no

other interactions other than the mechanical contact occur between the tubes. For simplification,

we use [0 0 α[i]′(s)]T = ᾱ[i]′. Then, the total elastic strain energy stored in the system of

N perfectly concentric tubes is just the sum of strain energies of its constituent tubes given by

Estr(u,α,α′, s)

= 1

2
∫

l1

0

N

∑
i=1
(U(α[i], s) − û[i]) ⋅ K̃[i](s) (U(α[i], s) − û[i])ds,

= 1

2
∫

l1

0

N

∑
i=1
(u(s) + ᾱ[i]′ −R(α[i])T û[i]) ⋅ K̃[i](s) (u(s) + ᾱ[i]′ −R(α[i])T û[i])ds,

= 1

2
∫

l1

0
u(s) ⋅

N

∑
i=1

K̃[i](s)u(s) − 2u ⋅
N

∑
i=1

K̃[i](s) (RT (α[i])û[i] − ᾱ[i]′)

+
N

∑
i=1
(û[i] − ᾱ[i]′) ⋅ K̃[i](s) (û[i] − ᾱ[i]′)ds.

After adding and subtracting the following term to the integrand

1

2
(RT (α[i])û[i] − ᾱ[i]′) ⋅

N

∑
i=1

K̃[i](s) (RT (α[i])û[i] − ᾱ[i]′) ,

we obtain

Estr(u,α,α′, s) =
1

2
∫

l1

0
u(s) ⋅

N

∑
i=1

K̃[i](s)u(s) − 2u ⋅
N

∑
i=1

K̃[i](s) (RT (α[i])û[i] − ᾱ[i]′)

+ (RT (α[i])û[i] − ᾱ[i]′) ⋅
N

∑
i=1

K̃[i](s) (RT (α[i])û[i] − ᾱ[i]′)

+
N

∑
i=1
(û[i] − ᾱ[i]′) ⋅ K̃[i](s) (û[i] − ᾱ[i]′)

− (RT (α[i])û[i] − ᾱ[i]′) ⋅
N

∑
i=1

K̃[i](s) (RT (α[i])û[i] − ᾱ[i]′)ds.

This expression can be written as a strain energy of a single-composite elastic rod (Rucker et al.,

2010) as

Estr(u,α,α′, s) = ∫
l1

0
W(u,α,α′)ds,

= ∫
l1

0

1

2
(u − ~u) ⋅Keff (u − ~u) +C(α,α′)ds,

(6.5)
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where

Keff =
N

∑
i=1

K̃[i](s), (6.6a)

~u(α,α′) =Keff
−1

N

∑
i=1

K̃[i](s)
⎛
⎜⎜⎜
⎝
RT (α[i])û[i] −

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

α[i]′

⎤⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠
, (6.6b)

C(α,α′) = 1

2

N

∑
i=1

⎛
⎜⎜⎜
⎝
û[i] −

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

α[i]′

⎤⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠
⋅ K̃[i](s)

⎛
⎜⎜⎜
⎝
û[i] −

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

α[i]′

⎤⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠
− 1

2
~u ⋅Keff ũ. (6.6c)

The integrand W is stationary when u = ~u(α,α′), and α(s) is the extremal of the functional

∫ l1
0 C(α,α′)ds. The functionW(u,α,α′) resembles an energy density function of an elastic

rod with a stiffness Keff and unstressed Darboux vector ~u. The strain energy function W is

the sum of convex functions of u and α[i]′, and therefore, is also convex with respect to u and

α[i]′. Thus, the internal moment in the composite rod, which is the sum of internal moments

in its constituent tubes m[i] (i = 1, . . . ,N), is related to the u in the similar fashion as that of

hyperelastic rods ((3.5) in section 3.3) and is given by

m(s) =
N

∑
i=1

m[i] = ∂

∂u
W(u,α,α′, s) =Keff(s) (u − ~u(α,α′, s)) . (6.7)

Essentially, the unloaded CTCR backbone behaves as a hyperelastic rod which assumes mini-

mum energy at u = ~u(α,α′, s), where α(s) simultaneously satisfies the extremum condition of

the functional ∫ l1
0 C(α,α′)ds.

The CTCR structures are very thin, extremely flexible, and highly sensitive to external loads.

Different scenarios of loading are possible during their operation. For instance, in applications

like surgeries, tissues exert cutting forces as well as contact forces. These scenarios are chal-

lenging to model; therefore, we study these structures by restricting ourselves to the simple

setting of a conservative tip load. Consider a CTCR system carrying a small payload like a

surgical instrument at its tip s = l1, as shown in Figure 6.3. Recall from section 3.5 that the

payload exerts a constant force F and a moment Υ(q(l1))×F at the end s = l and increases the

 ϒ(q(l1))

s=l1

s
s=0

e3

e2

e1

s=l2
s=l3

Fig. 6.3 Schematic showing a CTCR with a tip load F through a lever arm Υ(q(l)).
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potential energy of the system by

Eload = F ⋅ (r(l1) +Υ(q(l1))) ,

for an arm of the load in the fixed laboratory frame Υ(q(l1)), which in terms of local director

frame at s = l reads

Υ(q(l1)) =∆1d1(q(l1)) +∆2d2(q(l1)) +∆3d3(q(l1)).

The tip-loaded CTCR equilibria are determined by employing a similar methodology as that

of elastic rods presented in Chapter 3 (Section3.5). We have a system of perfectly concentric

unshearable, and inextensible tubes. As a consequence, the resulting composite rod system also

behaves with the same property. First, we explicitly write u in terms of q and q′ and later

determine the stationary points of the total energy

∫
l1

0
W (2Bjq ⋅ q′

∣q∣2
,α,α′, s) +F ⋅ (r(l1) +Υ(q(l1))) , (6.8)

adhering to the constraints of pointwise inextensibility and unshearability and the unit-norm of

the quaternions q:

r′(s) − d3(s) = 0, q(s) ⋅ q′(s) = 0. (6.9)

So, we consider the minimization of the following associated functional J ∈ R

J (r,q,α) = ∫
l1

0
W (2Bjq ⋅ q′

∣q∣2
,α,α′, s) + ηq ⋅ q′ +λ ⋅ (r′ − d3)ds

+F ⋅ (r(l1) +Υ(q(l1))) ,

= ∫
l1

0
L (q,α,q′,α′, s)ds +F ⋅ (r(l1) +Υ(q(l1))) ,

where λ ∈ R3 and η ∈ R are the Lagrange multipliers associated with the pointwise con-

straints (6.9). The integrand, referred to as Augmented Lagrangian L ∶ s→ R reads

L (r,q,α, r′,q′,α′, s) =W (2Bjq ⋅ q′

∣q∣2
,α,α′, s) + ηq ⋅ q′ +λ ⋅ (r′ − d3) . (6.10)

The strain energyW , as depicted in (6.5) depends on the stiffness matrix K̃[k](s), which is dis-

continuous at the boundary of the sections s = lk for k = 2, . . . ,N ; consequently, the Augmented

Lagrangian L is also discontinuous at these points.

6.3 Discontinuous Integrand

In the variational problems with discontinuous coefficients, additional matching conditions must

be incorporated to determine the equilibria and their stability properties. Just recall that the
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stationary points are the extremals of the calculus of variations problem

J(ζ) = ∫
l1

0
L(ζ,ζ′, s)ds,

with both the ends, s = 0 and s = l1, subject to either fixed or free boundary conditions. Suppose

the integrand function L(ζ,ζ′, s) is discontinuous at a known point lc ∈ [0, l1]. In the current

scenario of CTCR, the point lc corresponds to lk, k = 2,3, . . . ,N −1, i.e., the boundary between

the sections. For the sake of simplicity, we discuss the system with just one point of discontinuity

here. Nevertheless, these conditions are still applicable in cases with more than one point of

discontinuity. The function ζ(s) is continuous within the interval [0, l1], and we determine the

essential conditions on its derivative ζ′(s) for ζ(s) to qualify as an extremal. The functional L
can be decomposed about the discontinuous point lc as

J(ζ) = ∫
l1

0
L(s)ds = ∫

lc

0
L1(ζ,ζ′, s) + ∫

l1

lc
L2(ζ,ζ′, s)ds. (6.11)

On applying the first-order necessary condition for the stationary points on J(ζ), we obtain

δJ(ζ)[h] = ∫
lc

0
((−∂L1

∂ζ′
)
′
+ ∂L1
∂ζ
) ⋅ h + [∂L1

∂ζ′
⋅ h]

lc

0

+ ∫
l1

lc
((−∂L2

∂ζ′
)
′
+ ∂L2
∂ζ
) ⋅ h + [∂L2

∂ζ′
⋅ h]

l1

lc

= 0.

This condition is satisfied for the critical points which are the solutions of Euler-Lagrange equa-

tions in each section

(−∂L1
∂ζ′
)
′
+ ∂L1
∂ζ
= 0, ∀s ∈ [0, lc],

(−∂L2
∂ζ′
)
′
+ ∂L2
∂ζ
= 0, ∀s ∈ [lc, l1],

(6.12)

along with the boundary conditions

∂L1
∂ζ′
⋅ h∣

s=0
= 0, ∂L1

∂ζ′
⋅ h∣

s=l1
= 0, (6.13)

and the matching conditions

∂L1
∂ζ′
∣
s=l−c
= ∂L2
∂ζ′
∣
s=l+c

. (6.14)

In other words, the state ζ and the term ∂L
∂ζ′ are continuous across the boundaries of point of

discontinuity s = lc, and these are termed as matching conditions. In terms of the Hamiltonian

terminology, the phase variables ζ and p are continuous across the point of discontinuity s = lc.
And if the functions L1 and L2 are convex in ζ′, then the derivative ζ′ is continuous across

the point s = lc. The extremal solutions do not possess corner points, even when the integrand

L(ζ,ζ′, s) exhibits discontinuities as a function of s.
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Let us now verify whether these first-order conditions are consistent with Force-balance

equations. The first-order conditions (6.12), (6.13) with respect to the state r yield

λ′(s) = 0,
λ(l1) +F = 0.

The Lagrange multiplier λ(s) ∈ R3 which enforces the inextensibility and unshearability con-

straint, corresponds to the internal force vector n acting along the backbone composite rod. This

internal force is the sum of the internal forces along the constituent tubes

n(s) = n[1](s) + n[2](s) + ⋅ ⋅ ⋅ + n[N](s),

and satisfies the force balance law (3.3a). Here, n[k](s), k = 1,2, . . . ,N is the internal force

vector along the k th tube. Because of the contact forces with the other tubes, n[k] is not

constant along the length of the tube. However, their total sum n(s) remains conserved. The

contact forces between the tubes collectively result in a net force of zero in the entire system of

tubes. The corresponding matching condition: (6.14)

n(l−k) = n(l+k), k = 2, . . . ,N,

denotes the balance of the internal forces at the boundary between the sections.

Similarly, the Euler-Lagrange equations and the Natural boundary Conditions with respect

to the variable q give

−(Wu
∂u

∂q′
+ ηq)

′
+Wu

∂u

∂q
+ ηq′ − ∂

∂q
(λ ⋅ d3) = 0,

Wu
∂u

∂q′
+ ηq(l1) +

∂

∂q
(F ⋅Υ(q(l1))) = 0,

(6.15)

respectively. Projecting these equations onto [B1q,B2q,B3q]-space and then carrying out the

similar calculations as in the section 3.7, we obtain the balance of the internal moment m along

the backbone and at the tip s = l. The internal moment along the backbone m is the sum of

internal moments along each tube

m(s) = m[1](s) + m[2](s) + ⋅ ⋅ ⋅ + m[N](s).

The matching conditions (6.14) with respect to q projected on [B1q,B2q,B3q]- space:

m(l−k) = m(l+k), k = 2, . . . ,N,

leads to the balance of moments across the boundary between the sections. The Natural bound-

ary conditions with respect to q at the tip s = l can be physically interpreted as the balance of

moments as shown for the case of elastic rods (section (3.27)).
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When we get to the final term α[k], the associated Euler-Lagrange equations gives

− (K[k]33 (u3 + α
[k]′ − û3))

′
=K[k]11 (u1 cosα

[k] + u2 sinα[k] − û[k]1 ) (u1 sinα
[k] − u2 cosα[k])

−K[k]11 (u1 sinα
[k] − u2 cosα[k] − û[k]2 ) (u1 cosα

[k] + u2 sinα[k]) .

From now on, we use K instead of K̃ as we consider only CTCR tube sections. After rewriting

the expression in terms of Darboux vector components in k th tube’s frame U(α[k], s) using the

relation 6.3, we obtain

− (K[k]33 (U3 − û[k]3 ))
′
= −K[k]11 (U1 − û[k]1 )U2 +K[k]11 (U2 − û[k]2 )U1.

The term K[k] (U − û[k]) gives the components of moment along the k th tube material frame

(m̄1, m̄2, m̄3). Note, that mp, p = 1,2,3 denotes component with respect to CTCR backbone

(inner tube material frame). As a consequence, we obtain

m̄
[k]′
3 = m̄[k]1 U2 − m̄[k]2 U1,

which is equivalent to a component of the balance law of k th tube 3.3b in the fixed laboratory

frame. The Natural boundary condition at the free end s = lk is

∂L
∂α[k]′

∣
s=lk
≡ m̄[k]3 (lk) = 0, k = 2, . . . ,N,

and it corresponds to the zero-twisting moment of each tube at the end. The remaining boundary

terms on α[k] are coupled from its neighboring section. The matching conditions

m̄
[i]
3 (l

−
k) = m̄

[i]
3 (l

+
k), i < k, k = 2, . . . ,N,

gives the balance of twist moment m̄[i]3 in i th tube across the boundary between the sections.

6.4 Hamiltonian Formulation of Equilibria

Now, we shall represent the CTCR equilibria described as the second-order Euler-Lagrange

equations in the Hamiltonian form. As already pointed out, this form has the advantage of rep-

resenting the equilibria in the compact form of first-order ODEs, which are easy to implement

in numerical packages such as AUTO-07p, Python, and matlab. Furthermore, the additional

conserved quantities resulting from this formulation can be employed for testing the accuracy

and convergence of the numerical methods.

In this formulation, the Hamiltonian phase variables are r, q, α[i], i = 2,3, . . . ,N and their
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corresponding momenta n, µ, β[i], i = 2,3, . . . ,N , where the momenta are defined as

n = ∂L
∂r′
= λ, (6.16a)

µ = ∂L
∂q′
=Wuj

2Bjq

∣q∣2 + ηq, j = 1,2,3. (6.16b)

β[i] = ∂L
∂α[i]′

=
m3K

[i]
33 +K

[i]
33 (∑N

j=1K
[j]
33 (û

[j]
3 − α[j]′))

∑N
j=1K

[j]
33

−K[i]33 (û
[i]
3 − α

[i]′) , i = 2, . . . ,N.

(6.16c)

The variables associated with relative twisting angles α[i] are denoted as a column vector in

Rk−1 space using bold symbols and by dropping the superscript [i]. For example,

β = [β[2], β[3], . . . , β[N]]
T
, α′ = [α[2]′, α[3]′, . . . , α[N]′]

T
.

By definition, α[i] is the relative angle of orientation between ith tube and innermost tube 1st

tube, so α[1] and its conjugate momentum β[1] are identically zero and not included in α and

β. The energy functionW is convex with respect to α[i]′, and so is the function L. Hence, the

relation (6.16c) can be inverted to obtain α[i]′ as a function ϕ[i] ∈ R in terms of system variables

and the momenta as

α[i]′ = ϕ[i] (r,q,α,n,µ,β, s) ,

= ΣN
i=2β

[i]

K
[1]
33

+ β
[i]

K
[i]
33

− m3

K
[1]
33

+ û[i]3 − û
[1]
3 .

(6.17)

The dot product of µ with Biq/2 results in the component of the internal moment along the

robot backbone’s director frame.

µ ⋅Biq/2 =Wui ≡mi ≡m ⋅ di, i = 1,2,3. (6.18)

The Legendre transformation of the Lagrangian function L gives the Hamiltonian function of

the CTCR system

H (r,q,α,n,µ,β, s) =

⎡⎢⎢⎢⎢⎢⎢⎣

r

q

α

⎤⎥⎥⎥⎥⎥⎥⎦

′

⋅

⎡⎢⎢⎢⎢⎢⎢⎣

n

µ

β

⎤⎥⎥⎥⎥⎥⎥⎦

−L(r, r′,q,q′,α,α′, s),

After expressing the variables in terms of the Hamiltonian variables, we obtain the Hamiltonian

H as

H(r,q,α,n,µ,β, s) = n ⋅ d3 + m ⋅ ũ +β ⋅ϕ +
1

2
m ⋅Keff

−1m −C(α,ϕ), (6.19)

where the terms ũ,Keff and C (α,ϕ) are defined in (6.6). Then, the associated Hamiltonian

system of equations governing the equilibria of an N -tube CTCR section can be derived from
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the Hamiltonian 6.19 as

r′ = ∂H
∂n
= d3, (6.20a)

n′ = −∂H
∂r
= 0, (6.20b)

q′ = ∂H
∂µ
=

3

∑
j=1
(K−1eff jjmj + ũj)

1

2
Bjq, (6.20c)

µ′ = −∂H
∂q
=

3

∑
j=1
(K−1eff jjmj + ũj)

1

2
Bjµ −

∂d3(q)
∂q

T

n, (6.20d)

α[i]
′ = ∂H

∂β[i]

=
∑N

j=2 β
[j]

K
[1]
33

− m3

K
[1]
33

+ β
[i]

K
[i]
33

+ û[i]3 − û
[1]
3 , i = 2,3, . . . ,N.

(6.20e)

β[i]
′ = − ∂H

∂α[i]

= K
[i]
11 û

[i]
1

∑N
j=1K

[j]
11

N

∑
j=1

K
[j]
11 û

[j]
1 sin (α[i] − α[j]) + K

[i]
11 û

[i]
1

∑N
j=1K

[j]
11

(m1 sinα
[i] −m2 cosα

[i])

+ K
[i]
11 û

[i]
1

∑N
j=1K

[j]
11

N

∑
j=1

K
[j]
11 û

[j]
2 cos (α[i] − α[j]) − K

[i]
11 û

[i]
2

∑N
j=1K

[j]
11

(m1 cosα
[i] +m2 sinα

[i]) ,

i = 2,3, . . . ,N.
(6.20f)

The components mi, i = 1,2,3 are obtained using the relation (6.18) and the derivative ∂d3

∂q is

same as that for the case of elastic rods (3.30).

6.5 Conserved Quantities

The Hamiltonian system 6.20 has a close resemblance with that of the elastic rod system 3.29,

and as a consequence, inherits some of the conserved quantities. The three components of

internal force n and m + r × n along the fixed frame are conserved. However, these quantities

are not conserved along the constituent tubes (n[i] and m[i]). The quantity q ⋅ q is a conserved

quantity by construction. In addition, the quantity µ ⋅ q + 2r ⋅ n also remains conserved, and

its proof is the same as that presented in section 3.9. Suppose the CTCR exhibits translation

symmetry along its arc length s. In that instance, the constitutive law has no explicit dependence

on s. For a quadratic strain energy function, this condition is satisfied when the stiffnesses K[i]

and unstressed strains ûi are constant functions of s. The Hamiltonian H of each section is thus

a conserved quantity.

6.6 Boundary Conditions and Matching Conditions

The equilibria of the CTCR system clamped at one end s = 0 attached to a dead load at the other

end s = l are obtained after solving the Hamiltonian system (6.20) employing the appropriate
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boundary conditions. The Dirichlet boundary conditions at s = 0 read

r(0) = [0,0,0]T , q(0) = qo,

α[i](0) = α[i]o , i = 2,3, . . . ,N.
(6.21)

where qo, α
[i]
o are some parameters, and the Natural boundary conditions at the other end s = l

in terms of physical quantities read

n(l1) +F = 0,
mi(l1) +Υ(q(l1)) ×F) ⋅ di = 0, i = 1,2,3,
β[j](lj) = 0, j = 2,3, . . . ,N.

(6.22)

We are short of a boundary condition to complete the system and solve it. The conserved

quantity

µ ⋅ q + 2r ⋅ n (6.23)

is utilized to account for the additional boundary condition. So, we use

µ(0) ⋅ q(0) = µ(l1) ⋅ q(l1) + 2r(l1) ⋅ n(l1) = 0. (6.24)

We are free to choose any value for this quantity (Dichmann et al., 1996). In addition, the

following matching conditions are imposed at the boundary between the k- tube section and the

(k − 1)- tube section

r(lk−) = r(lk+), q(lk−) = q(lk+), α[i](lk−) = α[i](lk+) for k − 1 < i < N,
n(lk−) = n(lk+), µ(lk−) = µ(lk+), β[i](lk−) = β[i](lk+) for k − 1 < i < N.

(6.25)

6.7 Second-Order Conditions

The critical points ζo obtained as solutions to the Euler-Lagrange equations (6.12), along with

boundary conditions (6.13) and matching conditions (6.14), represent local minimum of the

functional (6.11) with a point of discontinuity at s = lc, if they satisfy the second-order condition

δ2J(ζo)[h] =
1

2
∫

l1

0
(h′ ⋅Ph′ + h ⋅Ch′ + h′ ⋅CTh + h ⋅Qh)ds ≥ 0. (6.26)

Just recall that P,C and Q are p × p Hessian matrices evaluated at the extremal ζo given by

P = ∂2

∂ζ′2
L(ζo,ζ′o, s) ≡ Lζ′ζ′(ζo, ζ ′o, s),

C = ∂2

∂ζ′∂ζ
L(ζo, ζ ′o, s) ≡ Lζζ′(ζo,ζ′o, s),

Q = ∂2

∂ζ2
L(ζo,ζ′o, s) ≡ Lζζ(ζo,ζ′o, s),

(6.27)
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and the matrices P and Q are symmetric, whereas the matrix C may not be. Followed by the

integration by parts and substitution of boundary conditions, this second-order condition (6.26)

can be alternatively written as

δ2J(ζo)[h] =
1

2
⟨Sh,h⟩ =1

2
⟨Sh,h⟩1 +

1

2
⟨Sh,h⟩2

+ ((P′h +CTh) ⋅ h)
lc−
− ( (Ph′ +CTh) ⋅ h)

lc+
≥ 0,

where ⟨⋅, ⋅⟩1,⟨⋅, ⋅⟩2 are the standard L2-inner product in [0, lc] and [lc, l1] respectively. The

boundary term is the linearized matching condition. We postulate that the variations h must

satisfy

(Ph′ +CTh)∣
lc−
= (Ph′ +CTh)∣

lc+
, (6.28)

and refer to them as secondary matching conditions. Accordingly, we have a new set of admis-

sible variations as

Bdis ≡ {h(s) ∈ C0[0, l1] ∶ h(0) = 0,Ph′(l1) +CTh(l1) = 0,
Ph′(lc−) +CTh(lc−) = Ph′(lc+) +CTh(lc+)}. (6.29)

For simplicity, the Hessian matrix due to the boundary term B (section 2.3) is omitted here and

in subsequent results. However, the findings can be easily extended to incorporate them. Our

claim (6.28) would support the self-adjointness property of the S operator as shown below.

Corollary 6.7.1. The Jacobi operator is self-adjoint along the h ∈ Bdis, i.e., ⟨Sha,hb⟩ =

⟨Shb,ha⟩ ∀ha,hb ∈ Bdis.

Proof. We use the results from Lemma (2.13) and write the L.H.S as

⟨Sha,hb⟩ = ⟨Sha,hb⟩1 + ⟨Sha,hb⟩2,

= ⟨Shb,ha⟩1 + ⟨Shb,ha⟩2 + [(Phb
′ +CThb) ⋅ ha]

l1

lc−
+ [(Phb

′ +CThb) ⋅ ha]
lc+
0

+ [(Phb
′ +CThb) ⋅ ha]

l1

lc−
+ [(Phb

′ +CThb) ⋅ ha]
lc+
0
.

The variables ha,hb satisfy the conditions (6.29), and therefore the boundary terms vanish,

leading to the self-adjointness property of S operator

⟨Sha,hb⟩ = ⟨Shb,ha⟩1 + ⟨Shb,ha⟩2 = ⟨Shb,ha⟩. (6.30)

The conditions for second-order variations in variational problems with discontinuous inte-

grands have been derived by various authors in the past (Bliss and Mason, 1906; Graves, 1930;

Cole, 1940). In the words of Hamiltonian formalism, the variations in conjugate momenta p are

continuous across the point of discontinuity s = lc. Using these new matching conditions, we

present a revised definition of the conjugate point as
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Definition 6.7.4. A point l∗ ∈ [0, l1] is conjugate to the point l1, if there is a nontrivial solution

to

Sh = 0, Ph′(l1) +CTh(l1) = 0, h(l∗) = 0,

satisfying

(Ph′ +CTh) ∣
lc−
= (Ph′ +CTh) ∣

lc+
(6.31)

at the point of discontinuity s = lc.

The calculation methodology of the conjugate point is the same as that described in the 2.3.3

in the previous part, augmented by an additional matching condition 6.31.

Theorem 6.7.3. If P is positive definite throughout the interval [0, l], and the interval contains

no point conjugate to l, then the functional is positive for all variations h ∈ C1[0, l1] satisfying

h(0) = 0, Ph′(l1) +CTh(l1) = 0 and (Ph′ +CTh) ∣
lc−
= (Ph′ +CTh) ∣

lc+
.

Proof. The proof of this theorem is identical to that of the previous theorem (2.3.1) and is

slightly modified to include the matching conditions. Let W ∶ s Ð→ Rp×p be an arbitrary

differentiable symmetric matrix. Without affecting the values of the integral (6.26), we can add

the following term

0 = ∫
l1

0

d

ds
(Wh ⋅ h)ds − [Wh ⋅ h]

l1

0

,

0 = ∫
l1

0
W′h ⋅ h +Wh′ ⋅ h +Wh ⋅ h′ds + (W(l1)h(l1) ⋅ h(l1) −W(0)h(0) ⋅ h(0))

+ [W(lc+)h(lc+) ⋅ h(lc+) −W(lc+)h(lc+) ⋅ h(lc+)],

The boundary term h(0) vanishes, and the matrix W(l1) is chosen as a zero matrix such that

the boundary term W(l1)h(l1) ⋅ h(l1) is zero for any h(l1). The last term does not contribute

to the integrand as long as

W(lc−)h(lc−) ⋅ h(lc−) =W(lc+)h(lc+) ⋅ h(lc+)
Ô⇒ W(lc−)h(lc−) =W(lc+)h(lc+),

(6.32)

is satisfied. Then the second variation becomes

δ2J(ζo)[h] = ∫
l1

0
Ph′ ⋅ h′ +Ch′ ⋅ h +CTh ⋅ h′ +Qh ⋅ h +W′h ⋅ h +Wh ⋅ h′ +Wh′ ⋅ hds,

+ [W(lc+)h(lc+) ⋅ h(lc+) −W(lc+)h(lc+) ⋅ h(lc+)],

= ∫
lc

0
Ph′ ⋅ h′ + (C +W)h ⋅ h′ + (C +W)T h′ ⋅ h + (Q +W′)h ⋅ hds

+ ∫
l1

lc
Ph′ ⋅ h′ + (C +W)h ⋅ h′ + (C +W)T h′ ⋅ h + (Q +W′)h ⋅ hds.
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If the W(s) is chosen to be the solution of

P1/2 (Q +W′)1/2 = (C +W)T ,
Ô⇒ Q +W′ = (C +W)P−1 (CT +W) ,

then the integrand can be written a sum of perfect squares

∫
lc

0
P (h′ +P−1/2 (Q +W)Q−1/2h) ⋅ (h′ +P−1/2 (Q +W)Q−1/2h)ds

+∫
l1

lc
P (h′ +P−1/2 (Q +W)Q−1/2h) ⋅ (h′ +P−1/2 (Q +W)Q−1/2h)ds.

Here, the integrand is always non-negative and is zero only when h(s) ≡ 0. On substituting

CT +W = −PU′U−1,

where U is a new unknown matrix, we obtain the matrix form of the Jacobi equations

− d
ds
(PU′ +CTU) + (CU′ +QU) = 0, (6.33)

The matrix W(s) satisfies the boundary conditions as well as the matching conditions (6.32)

PU′(lc−) +CTU(lc−) = PU′(lc+) +CTU(lc+).

The matrix U is invertible, if the interval [0, l1] contains no conjugate point. Then, a solution

to Matrix Ricatti equations W(s) exists which satisfies the boundary conditions and matching

conditions. Therefore, a matrix W(s) which can convert the integrand to a perfect square

(always non-negative) exists.

Theorem 6.7.4. If P is positive definite throughout the interval [0, l1], and this interval contains

point conjugate to l1, then the second variation quadratic functional is not necessarily positive

for all h ∈ Bdis.

Proof. Suppose there exists a point s = l∗1 conjugate to s = l1 on 0 < s < l1. Then, there exists

a non-null accessory extremal h(s) satisfying h(l∗1) = 0 and Ph′(l1)+CTh(l1) = 0. Let γ(s)
be a continuous arc defined as

γ(s) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, 0 < s < l∗1 ,
h(s), l∗1 < s < l1.

Two cases are possible as depicted in Figure (6.4). In the first case l∗1 < lc, the second variation
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s=0 s=l1s=0 s=lc s=l1
0

1 1

0

|h|
|h|

s=l*
s=lc
s=l*

Fig. 6.4 The broken accessory extremal γ(s) ∈ B with a point of discontinuity integrand at s = lc

δ2J(ζo) along the arc γ takes the value of zero as

δ2J(ζo)[γ] =
1

2
⟨Sγ(s), γ(s)⟩

= 1

2
⟨Sγ(s), γ(s)⟩1 +

1

2
⟨Sγ(s), γ(s)⟩2,

= 1

2
[ (P(s)h′(s) +CT (s)h(s)) ⋅ h(s)]

lc−

l∗1

+ 1

2
[ (P(s)h′(s) +CT (s)h(s)) ⋅ h(s)]

l1

lc+
,

= 0.

The value of the integral is zero along the non-trivial h(s), as it is the solution of Sh = 0

satisfying the matching conditions. In the second case l∗1 > lc, the value of the integral is

also zero, and the solution satisfies the matching conditions at trivial solution h(s) = 0. If

P(s) is positive definite, then by Weierstrass-Erdmann conditions (2.6a), the arc γ(s) with a

corner point cannot be the local minimizer. However, the functional δ2J is zero along this

curve. Therefore, another minimizing arc may exist that further reduces the value of the second

variation δ2J < 0, proving the theorem.

Jacobi operator of discontinuous systems S with the secondary matching conditions is self-

adjoint and regular, and therefore, it has the same spectral properties as that of the continuous

systems. The set of properties defined in the previous part for the variational problems with

fixed-free ends (section 2.3) can be adapted to these problems with discontinuous integrand by

including the matching conditions. Likewise, the notion of Morse index can be extended to the

problems with discontinuous integrand as

Definition 6.7.5. Morse index of a variational problem with discontinuous integrand is equal

to the number of conjugate points given as per the definition (6.7.4).

6.8 Distinguished Bifurcation Diagram

We already verified in section 2.4 if the distinguished bifurcation diagrams are consistent with

the variational problems, where one end is fixed and the other end is free. Let us investigate if

they also align with problems having discontinuous integrand. Consider a parameter-dependent
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variational problem of the form

J(ζ, ξ) = ∫
l1

0
L(ζ,ζ′, ξ, s)ds, (6.34)

with a known point of discontinuity at s = lc subject to a parameter-dependent fixed boundary

conditions at s = 0 and free boundary conditions at s = l. The critical points (ζ(s, τ), ξ(τ))
obtained as a solution of the Euler-Lagrange equations

−L′ζ′ +Lζ = 0, ζ(0) = ζo(ξ), p(l1) = 0, (6.35)

and the matching conditions:

ζ(lc−) = ζ(lc+), p(lc−) = p(lc+), (6.36)

minimizes the functional (6.34) if they satisfy the second-order condition

δ2J(ζ)[h] ≥ 0, ∀h ∈ Bdis. (6.37)

Here, τ is some parameterization along the family of equilibria and Bdis is the set of admissible

variations (6.29). Applying the same approach elucidated in the section 2.4, a linear eigenvalue

problem can be embedded in the Jacobi condition as

Sη = µη,
η(0) = 0, Pη′(l1) +CTη(l1) = 0,
Pη′(lc−) +CTη(lc−) = Pη′(lc+) +CTη(lc+),

(6.38)

and this problem must have only non-negative eigenvalues µ to satisfy the second-order condi-

tion (6.37). At the fold point, the eigenvalues change sign. Differentiating the Euler-Lagrange

equations, nonlinear boundary conditions (6.35) and the matching conditions (6.36) with respect

to pseudo-arclength τ results in the BVP

Sζ̇ = 0,

ζ̇(0) = dζo
dξ

ξ̇, ṗ(l1) ≡ Pζ̇′(l1) +CT ζ̇(l1) = 0,

Pζ̇
′(lc−) +CT ζ̇(lc−) = Pζ̇

′(lc+) +CT ζ̇(lc+).

(6.39)

This BVP coincides with the eigenvalue problem with zero eigenvalue µ = 0 when ξ̇ = 0. We

also assume that µ = 0 is the simple eigenvalue at the fold, and ζ̇ is the corresponding eigen-

vector. Then, the expression for µ̇ is evaluated by differentiating the eigenvalue problem (6.38)
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with respect to pseudo-arclength τ as

Sη̇ + Ṡη = µ̇η + µη̇,
η̇(0) = 0, ṗ(l1) ≡ Pη̇′(l1) +CT η̇′(l1) + Ṗη(l1) + ĊTη(l1) = 0,
Pη̇′(lc−) +CT η̇′(lc−) + Ṗη(lc−) + ĊTη(lc−)

= Pη̇′(lc+) +CT η̇′(lc+) + Ṗη(lc+) + ĊTη(lc+),

(6.40)

where the notation Ṡ is defined same as in (2.33). Taking the L2-inner-product of the equation

(6.40) with ζ̇ and bearing in mind that η ≡ ζ̇ near the fold yields the expression for µ̇ as

µ̇⟨ζ̇, ζ̇⟩ = ⟨Sη̇, ζ̇⟩ + ⟨Ṡζ̇, ζ̇⟩. (6.41)

The first term ⟨Sη̇, ζ̇⟩ simplifies after integrating by parts (Lemma (2.13)) with the given bound-

ary conditions and matching conditions.

⟨Sη̇, ζ̇⟩ =⟨Sζ̇, η̇⟩ + (Pη̇′ +CTη) ⋅ ζ̇∣
s=lc−
+ [ (Pη̇′ +CTη) ⋅ ζ̇]

l1

lc+
.

Subsequently, we utilize the fact that ζ̇ is the zero eigenvector of S, and eliminate the η̇ terms

using the relations (6.40) to get

⟨Sη̇, ζ̇⟩ = − (Ṗη′ + ĊTη) ⋅ ζ̇∣
s=lc−
− [ (Ṗη′ + ĊTη) ⋅ ζ̇]

l1

lc+
. (6.42)

The differentiation of (6.39) with respect to pseudo-arclength τ enables ⟨Ṡζ̇, ζ̇⟩ = −⟨Sζ̈, ζ̇⟩.
Furthermore, we derive the following results on the boundary conditions and matching condi-

tions at the fold by differentiating (6.39) with respect to τ

ζ̈(0) = ∂
2ζo
∂ξ22

ξ̇2 + ∂ζo
∂ξ

ξ̈ = ∂ζo
∂ξ

ξ̈,

ζ̈(l1) ≡ Pζ̈
′ +CTζ̈ + Ṗζ̇

′ + ĊT ζ̇′ = 0,

Pζ̈
′(lc−) +CTζ̈(lc−) + Ṗζ̇

′(lc−) + ĊT ζ̇(lc−)
= Pζ̈

′(lc+) +CTζ̈(lc+) + Ṗζ̇
′(lc+) + ĊTζ̇(lc+).

(6.43)

The application of lemma (2.13) with boundary conditions and matching conditions, and recall-

ing that ζ̇ is the zero eigenvector of S at the fold, we obtain

−⟨Sζ̈, ζ̇⟩ = −⟨ζ̈,Sζ̇⟩ + [ (Pζ̈
′ +CT ζ̈) ⋅ ζ̇]

lc−

0

− [ (Pζ̇
′ +CT ζ̇) ⋅ ζ̈]

lc−

0

+ [ (Pζ̈
′ +CT ζ̈) ⋅ ζ̇]

l1

lc+
− [ (Pζ̇

′ +CT ζ̇) ⋅ ζ̈]
l1

lc+
,

= ξ̈ (∂ζo
∂ξ
⋅Pζ̇

′)
RRRRRRRRRRRs=0
+ (Ṗζ̇

′ + ĊT ζ̇) ⋅ ζ̇∣
s=lc−
+ [ (Ṗζ̇

′ + ĊT ζ̇) ⋅ ζ̇]
l1

lc

.

(6.44)
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If we assume that ⟨ζ̇, ζ̇⟩ = 1 and on substituting (6.42), (6.44) in (6.41), the expression for µ̇

becomes

µ̇ = ξ̈ (∂ζo
∂ξ
⋅Pζ̇

′)
RRRRRRRRRRRs=0
+ (Ṗζ̇

′ + ĊT ζ̇) ⋅ ζ̇∣
s=lc−
+ [ (Ṗζ̇

′ + ĊT ζ̇) ⋅ ζ̇]
l1

lc

− (Ṗη′ + ĊTη) ⋅ ζ̇∣
s=lc−
− [ (Ṗη′ + ĊTη) ⋅ ζ̇]

l1

lc+
,

= ξ̈ (∂ζo
∂ξ
⋅Pζ̇

′)
RRRRRRRRRRRs=0

.

The term (∂ζo

∂τ ⋅Pζ̇
′) can be modified and written as d

dτ (Lζ′ ⋅
∂ζo

∂ξ ) as previously illustrated (2.37)

in section 2.4 . Ultimately, we get the expression for µ̇ as

µ̇ = ξ̈ d
dτ
(Lζ′ ⋅

∂ζo
∂ξ
)
RRRRRRRRRRRs=0

, (6.45)

which is the same expression as (2.38) in section 2.4, we derived for a variational problem with

continuous coefficients. The qualitative information predicting if µ̇ is increasing or decreasing

as it traverses the fold point is identical to that illustrated in Figure (2.2) for a ξ vs (Lζ′ ⋅
∂ζo

∂ξ )
plot.

6.9 Stability of the Hamiltonian System of CTCR

6.9.1 CTCR with a Single section

The CTCR equilibria ζo obtained as a stationary point of the energy functional 6.8 is minimum

only if its second variation is non-negative along the variations satisfying linearized boundary

conditions. Proceeding with the similar reasoning presented in the section 3.11, we eliminate the

variables r and n in the functional. They have no explicit contribution to the elastic-tube system,

and they act indirectly through q by inextensibility and unshearability constraint (r′ − d3) = 0.

The energy functional

∫
l1

0
W (u,α,α′, s)ds +F ⋅ (r(l1) +Υ(q(l1))) ,

is reformulated such that its dependence on r is eliminated in the following manner

∫
l1

0
W (u,α,α′, s) +F ⋅ r′ds + +F ⋅Υ(q(l1)) +F ⋅ r(0),

= ∫
l1

0
W (u,α,α′, s) +F ⋅ d3(q)ds +F ⋅Υ(q(l1)) + constant.

Henceforth, the energy density W̄ ≡ W + F ⋅ d3 explicitly depends only on the variables

q,α. The strengthened Legendre’s condition (3.36) requires the positive definiteness of the
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W̄ζ′ζ′ matrix for any k-tube section where ζ ≡
⎡⎢⎢⎢⎢⎣

q

α

⎤⎥⎥⎥⎥⎦
. However, the matrix

P ≡ W̄ζ′ζ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Keff 11 0 0 0 0 . .

0 Keff 22 0 0 0 . .

0 0 Keff 33 0 0 . .

0 0 0 0 0 . .

0 0 0 0 K
[2]
33 . .

. . . . . . .

. . . . . . K
[k]
33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is only positive semi-definite owing to the degeneracy of the state q. As already pointed out in

section 3.11, this degeneracy arises due to the four-dimensional q representation of the three-

dimensional subspace of directors ∈ SO(3), and we apply the same approach to mitigate it. The

variations orthogonal to q at swhich spans {B1q(s),B2q(s),B3q(s)} are considered. Hence,

hq = ψ1B1q+ψ2B2q+ψ3B3q for some scalars ψ1, ψ2 and ψ3. After performing the identical

calculations as in section 3.11 for this change of variables, the matrix P transforms to

P̄ ≡ W̄ζ′ζ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Keff 11 0 0 0 0 .

0 Keff 22 0 0 0 .

0 0 Keff 33 0 0 .

0 0 0 K
[2]
33 . .

. . . . . .

. . . . . K
[k]
33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which is positive definite for each k-tube section. Then, it is required to demonstrate the absence

of conjugate points in order for the equilibria to be local minima. As the matrix P̄ is positive

definite, this resulting weak minima also qualifies as a strong minima (subsection 2.1.2).

The equilibrium equations (6.20c-f) are linearized to give the following Hamiltonian form

of the Jacobi equations:

hq
′ = [ ∂

2H

∂q∂µ
]hq + [

∂2H

∂µ∂µ
]hµ + [

∂2H

∂α∂µ
]hα + [

∂2H

∂β∂µ
]hβ,

h′µ = [−∂
2H

∂q∂q
]hq + [

−∂2H
∂µ∂q

]hµ + [
−∂2H
∂α∂q

]hα + [
−∂2H
∂β∂q

]hβ,

hα
′ = [ ∂

2H

∂q∂β
]hq + [

∂2H

∂µ∂β
]hµ + [

∂2H

∂α∂β
]hα + [

∂2H

∂β∂β
]hβ,

hβ
′ = [−∂

2H

∂q∂α
]hq + [

−∂2H
∂µ∂α

]hµ + [
−∂2H
∂α∂α

]hα + [
−∂2H
∂β∂α

]hβ.

(6.46)

The expressions for these Hessian matrices for the cases of the three-tube section, two-tube

section, and one-tube section are given in Appendix C. The equations corresponding to r and

its conjugate momentum n are not included here since the energy functional no longer depends
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on these states. The value of n(s) is replaced with the constant −F vector. The absence of

conjugate points is the requirement for an equilibrium to be stable (Jacobi condition). The com-

putation of conjugate points is already shown in Chapter 3 (section 3.11). First, consider the

case where the robot has only a single section with N tubes, which has a fixed end at s = 0 and

a free end at s = lN . Later, we extend it to CTCRs with multiple sections.

The Jacobi equations (6.46) are solved as an IVP with a basis of initial conditions at the free

end s = lN towards the fixed end s = 0. The basis for hq is chosen to be the basis of q⊥-space.

For a section with N tubes, (N − 1)+ 3 sets of IVPs are solved with the following sets of initial

conditions on hq and hα

hq(lN) = [B1q], hα(lN) = [0, . . . ,0]T ,
hq(lN) = [B2q], hα(lN) = [0, . . . ,0]T ,
hq(lN) = [B3q], hα(lN) = [0, . . . ,0]T ,
hq(lN) = [0], hα(lN) = [1, . . . ,0]T ,

. . . ,

hq(lN) = [0], hα(lN) = [0, . . . ,1]T .

The value of hβ(lN) is taken as zero vector for all these sets of IVPs, whereas the value of

hµ(lN) is an algebraic system satisfying the linearized boundary conditions

hµ(lN) ⋅Biq(lN) +µ(lN) ⋅Bihq(lN) + (
∂

∂q
(Υ(lN) ×F) ⋅ di(lN)) ⋅ hq(lN) = 0, i = 1,2,3,

(6.47)

and the linearized integral 6.23

µ(lN) ⋅ hq(lN) + q(lN) ⋅ hµ(lN) = 0. (6.48)

The solutions hq(s) and hα(s) are collected, and the components of the solutions correspond-

ing to hq(s) are projected onto the q⊥-space by multiplying with [B1q(s),B2q(s),B3q(s)]T

matrix to give a three-dimensional projected components. This projected hq(s) and hα(s) for

each given set of initial values are arranged as the rows in the matrix along the arc length s of

the CTCR. We call this matrix stability matrix. A point σ is called the conjugate point to lN if

the determinant of this stability matrix vanishes for any σ ∈ [0, lN ].

6.9.2 CTCR with Multiple sections

Now, let us extend the conjugate point computations to the CTCRs that consist of multiple

sections using matching conditions. Consider the CTCR consisting of N-sections, each section

Sk consists of k− tube overlap and is represented along arc length as s ∈ [lk+1, lk]. Each section

has a different number of variables i.e., the section Sk has q, α[2], α[3], . . . , α[k]. We know

that as the number of tubes k increases, the dimension of the equilibrium equations increases.

Similarly, the dimension of the Jacobi equations also increases with the number of tubes k. The
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Jacobi equations are solved from the free end as an IVP from s = l1 towards the end s = 0. The

Jacobi equations of a one-tube section, i.e., that of a rod with a basis of initial values on hq are

solved in the same manner as elucidated in the section 3.11. The following matching conditions

are imposed near the boundaries between the sections Sk and Sk−1:

hq∣
s=lk−

= hq∣
s=lk+

, hµ∣
s=lk−

= hµ∣
s=lk+

,

hα[j] ∣
s=lk−

= hα[j] ∣
s=lk+

, h
β[j] ∣s=lk−

= h
β[j] ∣s=lk+

, 2 < j < k, for k = 2,3, . . . ,N.

The initial conditions for the states hµ and hβ are same as presented (6.47),(6.48) in previous

subsection 6.9.1. The (N − 1) + 3 sets of IVPs are solved using the following sets of initial

conditions

hq(l1) = [B1q], hα[2](l2) = 0,hα[3](l3) = 0, . . . ,hα[N−1](lN−1) = 0,
hq(l1) = [B2q], hα[2](l2) = 0,hα[3](l3) = 0, . . . ,hα[N−1](lN−1) = 0,
hq(l1) = [B3q], hα[2](l2) = 0,hα[3](l3) = 0, . . . ,hα[N−1](lN−1) = 0,
hq(l1) = [0], hα[2](l2) = 1,hα[3](l3) = 0, . . . ,hα[N−1](lN−1) = 0,
hq(l1) = [0], hα[2](l2) = 0,hα[3](l3) = 1, . . . ,hα[N−1](lN−1) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . .

hq(l1) = [0], hα[2](l2) = 0,hα[3](l3) = 0, . . . ,hα[N−1](lN−1) = 1.

The solutions hq and hα are collected, and the hq components are projected on to q⊥-

space. This projected hq(s) and hα(s) for each given set of initial values are arranged as rows

of the matrix along the arc length s of the CTCR, leading to the stability matrix along the length

of each section of the CTCR. Now, the conjugate point is defined as the point l∗1 for which the

determinant of this matrix vanishes for any l∗1 ∈ [0, l1].

6.10 Summary

We reviewed the kinematic model of CTCR and presented the Hamiltonian formulation of the

CTCR equilibria. Conjugate points were employed for assessing the stability properties of the

resulting equilibria. The cases of CTCRs with multiple sections can also be included in this anal-

ysis. A numerical implementation for the corresponding computation has also been presented.

The concept of distinguished bifurcation diagrams was also extended to these problems for sta-

bility determination. In the next part, we apply these concepts to CTCR with multiple sections

and study the effect of tip load on the CTCR equilibria and resulting hysteresis behavior.
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CHAPTER 7

Numerical Examples: Hysteresis in CTCRs

This chapter presents a few numerical examples illustrating the hysteresis behavior in CTCRs.

We leverage the framework developed in the previous chapter for this demonstration. We model

the CTCR as a parameter-dependent variational problem where the parameter describes the

boundary conditions at the root s = 0. Typically, the system is 2π- periodic about this parameter.

By numerically continuing in this parameter, we obtain a family of equilibria; sometimes, these

solutions are characterized by folds. These folds represent the region of hysteresis. The stability

properties of the equilibria are determined with the aid of conjugate points. The distinguished

bifurcation diagrams can also employed to determine the direction of stability near these folds.

First, we present examples of simple cases of Two-Tube CTCR. Subsequently, we extend the

discussion to a more complex Three-Tube CTCR.

7.1 Two-Tube CTCR

Consider an example consisting of a two-tube robot. It has two sections: a section with two-

tube overlap (of length L2) and a section with one tube (of length L1). The properties of the

constituent tubes of the CTCR (Burgner-Kahrs et al., 2014) used for our numerical experiments

are listed in Table 7.1. The governing equations describing the equilibria of the two-tube section

of the CTCR (6.20) read

r′ = d3, (7.1a)

n′ = 0, (7.1b)

q′ =
3

∑
j=1
(K−1eff jjmj + ũj)

1

2
Bjq, (7.1c)

µ′ =
3

∑
j=1
(K−1eff jjmj + ũj)

1

2
Bjµ −

∂d3

∂q

T

n, (7.1d)

α[2]′ = K
[1]
33 +K

[2]
33

K
[1]
33 K

[2]
33

β[2] − m3

K
[1]
33

+ û[2]3 − û
[1]
3 , (7.1e)

β[2]′ = K
[1]
11 K

[2]
11

K
[1]
11 +K

[2]
11

û
[1]
1 û

[2]
1 sinα[2] + K

[2]
11 û

[2]
1

K
[1]
11 +K

[2]
11

(m1 sinα
[2] −m2 cosα

[2]), (7.1f)

97



CHAPTER 7. Numerical Examples: Hysteresis in CTCRs 98

Option Tube 1 Tube 2

Bending Stiffness K[i]11 (×104N.mm2) 0.009 0.102
Torsion Stiffness K[i]33 (×104N.mm2) 0.009/1.3 0.102/1.3
Precurvature vector (mm−1) [1/35,0,0] [1/70,0,0]
Maximum Length (mm) 220 110

Table 7.1 Parameters of the two-tube CTCR .

where the vector ũ ≡ [ũ1, ũ2, ũ3]T is given by

ũ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(K[1]11 û
[1]
1 +K

[2]
11 (û

[2]
1 cosα[2] − û[2]2 sinα[2])) /(K[1]11 +K

[2]
11 )

(K[1]11 û
[1]
1 +K

[2]
11 (û

[2]
1 sinα[2] + û[2]2 cosα[2])) /(K[1]11 +K

[2]
11 )

(K[1]33 (û
[1]
3 ) +K

[2]
33 (û

[2]
3 − α[2]′)) /(K

[1]
33 +K

[2]
33 )

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (7.2)

The ODEs are solved with the following set of boundary conditions (as described in section

6.6).

r(0) = [0,0,0]T , q(0) = qo, α[2](0) = α[2]o ,

n(l1) +F = 0,
µ(l1) ⋅Biq(l1)/2 + (Υ(q(l1)) ×F) ⋅ di(l1), i = 1,2,3.
µ(l1) ⋅ q(l1) + 2r(l1) ⋅ n(l1) = 0,
β[2](l2) = 0

Generally, this BVP can be solved in [0, l1] as a 16- dimensional problem using step function

for K[2](s). Nevertheless, the majority of the numerical methods cannot handle discontinuous

function solutions and pose severe challenges due to convergence issues. So, we employ the

alternative method of coupled boundary conditions where the BVP for the two-tube overlap

is solved for s ∈ [0, l2] and that of the one-tube overlap for s ∈ [l2, l1], where l2 = L2 and

l1 = L1 + L2. And the boundary conditions are coupled at the boundary between the section

s = l2 as

r∣
s=l−2
= r∣

s=l+2
, q∣

s=l−2
= q∣

s=l+2
,

n∣
s=l−2
= n∣

s=l+2
, µ∣

s=l−2
= µ∣

s=l+2
.

Thus, a BVP with 16 first-order ODEs corresponding to the two-tube overlap section and 14

first-order ODEs corresponding to the one-tube section must be solved numerically. The disad-

vantage of this approach is the increased dimension of the problem.

In our numerical experiments, we consider only varying orientations of the CTCR backbone

about the tangent at the root s = 0. The CTCR is positioned so that the tangent of its backbone

d3 at the proximal end s = 0 is aligned along the fixed e3- axis. If θ is the angle between the
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d1-axis of the backbone with the fixed e1- axis, the quaternion q at the root s = 0 reads

q(0) ≡ qo = [0,0, sin
θ

2
, cos

θ

2
]
T

. (7.3)

7.1.1 Distinguished Bifurcation Diagram

We employ the distinguished bifurcation diagrams (section 6.8) to analyze the stability charac-

teristics of the robot configurations. In the current problem, the varying parameter is either the

relative angle between the tubes at the root α[2]o or the rotation of the CTCR backbone at the

root s = 0 (θ in q(0) ≡ [0,0, sin θ
2 , cos

θ
2]). In the former case, the ordinate in these bifurcation

diagrams (2.38) is given by

(Lα[2]′ ⋅
∂α[2](0)
∂α
[2]
o

) ∣
s=0
= β[2](0).

In the latter case, where θ serves as the varying parameter, the ordinate is

(Lq′ ⋅
∂

∂θ
q) ∣

s=0
= µ(0) ⋅ ∂

∂θ
q(0),

= µ(0) ⋅ 1
2
[0,0, cos θ

2
,− sin θ

2
]
T

,

= µ(0) ⋅B3q(0)/2 ≡m3(0),

(7.4)

which is a tangential component of the bending moment at s = 0 and is the same as that for the

elastic rod (5.3).

7.1.2 Hysteresis in an Unloaded CTCR

We begin by discussing about a well-known snapping phenomenon (Gilbert et al., 2016) that oc-

curs in the unloaded CTCRs when the relative angle between the tubes at the root s = 0 α[2](0)
(= α[2]o ) is varied. The operator controls the CTCR by altering the rotation of the tubes at the

root s = 0 and the lengths of sections L1 and L2. For the current numerical experiment, the

orientation of the backbone, i.e., the reference inner tube at root s = 0 is fixed at θ = 0, while

the parameter α[2]o is varied. As no load is attached to the tip, the one-tube section behaves as

a rigid rod, and its length L1 does not affect the equilibrium of the two-tube section. Continu-

ation is performed in the parameter α[2]0 from 0 to 2π, while considering different values of L2

within the interval [0,1.8]. The CTCR backbone, when α[2]o = 0 consists of piecewise circular

arcs, and the corresponding state is supplied as an initial guess to initiate the continuation. The

ordinate β[2](0) is plotted from the continued solutions in terms of the control parameters α[2]o

and L2 to yield the bifurcation surface as shown in Figure 7.1. Also, the β[2](0) vs. α[2]o bi-

furcation diagrams for L2 = 0.6 and L2 = 0.75 are shown by the corresponding planes bisecting

the surface, and their planar versions are displayed in Figure 7.2a. The folded region appears

symmetric about the plane α[2]o = π. The stability exchange information near the folds is ver-
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α 0
[2]

2

Fig. 7.1 The surface plot of ordinate β[2](0) as a function of α[2]o and L2.

ified by computing the conjugate point for certain equilibria along the diagram, following the

procedure described in section 6.9 and is depicted in Figure 7.2b. The equilibrium labelled as 3

at α[2]o , located between the folds has one conjugate point (index 1), whereas the equilibria with

the remaining labels have zero conjugate points (index 0). The change in index at the folds con-

curs with the prediction of the theory of distinguished bifurcation diagrams (section 2.4), which

suggests that the index increase in the upper part of the fold opening to the left and vice versa.

The region between the folds is unstable, leading to a discontinuous curve of stable equilibria.

Consequently, the unstable equilibrium snaps to the adjacent stable equilibrium when operated

through this parameter space.

The system exhibits symmetry about the α[2]o = π plane, and the solutions of Jacobi equa-

tions are identical for α[2]o = π−b and α[2]o = π+b for any b ∈ [0, π]. This is why the determinant

of the stability matrix vs. arc length plots in Figure 7.2b coincide for α[2]o = π/2 and α[2]o = 3π/2.

Moreover, it’s worth noting that the determinant has a constant value of one along the one-tube

section. In this section, there are no elastic deformations and, consequently, the stability matrix

remains unchanged and retains its identity matrix form.

Figures 7.1 and 7.2 indicate that when the length of the section, L2 exceeds a critical value

Lcrit, folds emerge in the bifurcation diagrams, implying a hysteresis behavior. From the per-

spective of physics, the hysteresis region can be interpreted as the region in which the accumu-

lated elastic strain energy in the tubes is released abruptly. As a result, the CTCR backbone

moves from a stable configuration to an adjacent stable one resulting in a snapping motion.

This motion is not desired during the operations and must be avoided. On the other hand, there
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Fig. 7.2 a) The distinguished bifurcation diagrams on the planes L2 = 0.6 and L2 = 0.75. The
folds are denoted by ∆. Some equilibria along the curve are chosen to determine their stability
and labelled with integers. b) The determinant of the stability matrix along different sections
is shown in different colors. The equilibrium corresponding to label 3 has a conjugate point
(marked as "o") and is unstable. The remaining equilibria have no conjugate points and are
stable.

has been a growing interest in utilizing the elastic instability phenomena in CTCRs for har-

nessing applications. For instance, researchers are exploring the use of snapping for ablation

purposes (Alfalahi et al., 2021) or cutting and suturing procedures (Riojas et al., 2018). In any

case, the study of the snapping behavior and its dependence on the parameters helps for the

efficient utilization of CTCRs.

Figure 7.1 also reveals an intriguing observation when the plane α[2]o = π intersects the

surface, yielding a plot containing a pitchfork. This plot can be interpreted as a pitchfork bifur-

cation diagram when L2 is varied while keeping α[2]o fixed at π. It exhibits characteristics of a

supercritical pitchfork bifurcation at Lcrit which leads to an unstable trivial solution and a stable

non-trivial solution. In this diagram, the straight line represents the trivial solution, whereas the

curved parts of the pitchfork correspond to the non-trivial solutions. The β[2](0) vs. α[2]o bifur-

cation diagram for L2 > Lcrit features folds, whereas the diagram for L2 < Lcrit have no folds.

The value of Lcrit denotes the pitchfork bifurcation point and can be evaluated by carrying out

the bifurcation analysis (Gilbert et al., 2016) on the equations governing α[2](s). For unloaded

robots, the equations governing the α[2](s) can be decoupled from the system resulting in the
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following second-order equations

α[2]′′ − (K
[1]
33 +K

[2]
33 )K

[1]
11 K

[2]
11

(K[1]11 +K
[2]
11 )K

[1]
33 K

[2]
33

û
[1]
1 û

[2]
1 sinα[2] = 0,

α[2](0) = α[2]o α[2]′(l2) = 0,

which have a trivial solution of α[2](s) = π when α[2]o = π. This system of equations is analo-

gous to Euler’s elastica with its coordinate offset by a value of π. The solutions bifurcate when

the linearized equations are non-invertible, which arises when

Lcrit =
2k − 1

2

π√
σ
, k = 1,2 . . . , where σ = (K

[1]
33 +K

[2]
33 )K

[1]
11 K

[2]
11

(K[1]11 +K
[2]
11 )K

[1]
33 K

[2]
33

û
[1]
1 û

[2]
1 . (7.5)

The first bifurcation mode with k = 1 gives the value of Lcrit, which has a value of 0.682 for the

parameters in Table 7.1.

7.1.3 Effect of Tip Load

Let us now investigate the effect of tip load on the hysteresis region. We apply a concentrated

tip load F = fe1 + fe2 (∆ = [0,0,0]) at the tip of a one-tube section of length L1 = 0.5.

Parameter continuation is carried out for a load value of f = 0.003 along the parameter α[2]o for

α 0
[2]

Fig. 7.3 The plot of β[2](0) obtained from the continued solutions with a tip load F = fe1+fe2
for f = 0.003 in terms of control parameters α[2]o and L2. The planes L2 = 0.6 and L2 = 0.75 cut
the surface resulting in distinguished bifurcation diagrams. Another orthogonal plane α[2]o = π
intersects the surface and gives two curves (in black).
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(b) Computation of conjugate points

Fig. 7.4 a) The distinguished bifurcation diagrams when a CTCR with sections L2 = 0.6 and
L2 = 0.75 and a tip load fe1 + fe2 for f = 0.003. The fold points are shown in ∆. b)
The equilibrium corresponding to label 3 has a conjugate point (in "o") and is unstable. The
remaining equilibria have no conjugate points and are stable.

different values of L2. The resulting bifurcation surface is illustrated in Figure 7.3. Unlike the

previous case, the bifurcation surface is not symmetric, and the pitchfork bifurcation diagram

appearing on the plane α[2]o = π (in Figure 7.1) is now separated into two disconnected curves

as shown in Figure 7.3. This finding implies that the tip load acts as an imperfect bifurcation

parameter, breaking the system’s symmetry. We also observe that the location of the fold in

Figure 7.4a shifted slightly left of π compared to the unloaded case depicted in Figure 7.2a.

Some points along the bifurcation diagram in Figure 7.4a are chosen for stability determination

and are labelled. Figure 7.4b illustrates the computation of conjugate points for these equilibria.

In the earlier case, when α
[2]
o = π, there are three equilibria, one of which is unstable. In

the current case, there is only one stable equilibrium. On comparing the determinant of the

stability matrix vs. arc length s plots (Figure 7.4a and Figure 7.4b), we notice a significant

difference between the cases of α[2]o = π/2 and α[2]o = 3π/2. These plots no longer coincide as

the system lost its symmetry about α[2]o = π plane. Additionally, we notice in Figure 7.4b that

the determinant of the stability matrix along the one-tube section is not constant, in contrast to

the preceding example without a tip load. The one-tube section experiences elastic deformations

due to the tip load, varying the stability matrix along its arc length.
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α 0
[2]

(a) Bifurcation surface
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(b) Distinguished bifurcation diagrams for L2 = 0.6 and 0.75.

Fig. 7.5 a) The plot of ordinate β[2](0) for the continued solutions as a function of L2 and α[2]o

with a tip load fe1 + fe2 for f = 0.01. The distinguished bifurcation diagrams on the planes
L2 = 0.6 and L2 = 0.75 are shown. b) The corresponding bifurcation diagrams have no folds.

The presence of the tip load not only shifts the location of the fold in the diagram but also

alters its characteristics. For instance, consider the bifurcation diagram at L2 = 0.75. This di-

agram exhibits folds for both cases of f = 0 (Figure 7.1) and f = 0.003 (Figure 7.3). When

the load is increased to f = 0.01, the bifurcation surface changes gradually with the cusp pierc-

ing out of the plane of L2 = 0.75 in Figure 7.5a. As a result, we obtain the foldless path for

L2 = 0.75 as shown in Figure 7.5b. The plane α[2]o = π cuts the bifurcation surface and gives

imperfect pitchfork curves. These curves are more separated compared to the previous case of

f = 0.003 given in Figure 7.3. In summary, the tip load acts as a stabilizing agent for certain

unstable equilibria, or conversely, destabilizes some stable equilibria. Moreover, it results in the

asymmetrical behavior of the CTCR system with respect to the rotation parameter α[2]o .
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7.2 Three-tube CTCR

In this example, we consider a three-tube CTCR, which consists of three sections. The govern-

ing equations describing the relative rotation of the tubes in the three-tube section are given by

α[2]
′ = β

[2] + β[3]

K
[1]
33

− m3

K
[1]
33

+ β
[2]

K
[2]
33

+ û[2]3 − û
[1]
3 , (7.6a)

α[3]
′ = β

[2] + β[3]

K
[1]
33

− m3

K
[1]
33

+ β
[3]

K
[3]
33

+ û[3]3 − û
[1]
3 , (7.6b)

β[2]
′ = K

[2]
11 û

[2]
1

K
[1]
11 +K

[2]
11 +K

[3]
11

(K[1]11 û
[1]
1 sinα[2] +K[3]11 û

[3]
1 sin (α[2] − α[3])

+m1 sinα
[2] −m2 cosα

[2]),
(7.6c)

β[3]
′ = K

[3]
11 û

[3]
1

K
[1]
11 +K

[2]
11 +K

[3]
11

(K[1]11 û
[1]
1 sinα[3] +K[2]11 û

[2]
1 sin (α[3] − α[2])

+m1 sinα
[3] −m2 cosα

[3]),
(7.6d)

and the governing equations for the remaining state variables r,n,q and µ are same as that of

previous example 7.1 with the vector ũ taking the form

ũ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K
[1]
11 û

[1]
1 +K

[2]
11 (û
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33 +K
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33 +K
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The corresponding boundary conditions are

α[2](0) = α[2]o , α[3](0) = α[3]o ,

β[2](l2) = 0, β[3](l3) = 0,

At the end s = l3, all state variables except α[3](s) and β[3](s) are coupled to those of the

two-tube section which has the governing equations of the form (7.1). The states are coupled

to the one-tube section in the same way as that of the previous problem. As a result, we have

a 48-dimensional first-order ODE system. The properties of the CTCR (Burgner-Kahrs et al.,

2014) used for the numerical experiment are given in Table 7.2.

For three-tube CTCRs, three rotation parameters can be varied, namely the relative angle

between the tubes at the root α[2]o , α[3]o and the rotation of the CTCR backbone at the root θ. If
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Table 7.2 Parameters of the CTCR used in the examples.

Option Tube 1 Tube 2 Tube 3

Bending Stiffness K[i]11 (×104N.mm2) 0.009 0.102 0.733
Torsion Stiffness K[i]33 (×104N.mm2) 0.009/1.3 0.102/1.3 0.733/1.3

Precurvature vector (mm−1) [1/35,0,0] [1/70,0,0] [1/160,0,0]
Maximum Length (mm) 330 220 110

the parameter α[k]o , k = 1,2 is varied, the ordinate of distinguished bifurcation diagram is

(Lα[k]′ ⋅
∂α[k](0)
∂α
[k]
o

) ∣
s=0
= β[k](0), k = 1,2.

When the orientation of the CTCR backbone about the e3- axis θ is varied, the ordinate remains

the same as in the previous case (section 7.1.1(7.4)), which is m3(0).

7.2.1 Hysteresis in an Unloaded CTCR

Hysteresis behavior in an unloaded two-tube CTCR has been extensively studied (Gilbert et al.,

2016), and some details are already provided in the previous section 7.1. Analytical formulae

for critical section lengths are available (7.5). However, when the robot consists of multiple

sections, the relative angles function α[k](s), k = 2, . . . ,N couple across the sections, and the

determination of the hysteresis region becomes increasingly difficult. We illustrate this effect

through a numerical example using a three-tube CTCR. Figure 7.6 depicts the schematic of a

three-tube CTCR .

o o

Fig. 7.6 The schematic of the three-tube CTCR. Tubes 1,2 and 3 are shown in green, blue, and
red, respectively. The user varies the relative angle between the material frame of the tubes at
the root s = 0, i.e., α[2]o and α[3]o .
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Fig. 7.7 Bifurcation surface of a CTCR with only a three-tube section L3 = 0.5, L2 = 0. The bi-
furcation diagrams at α[3]o = k π

3 , k = 1, . . . ,5 and α[2]o = 3.0 are indicated by the corresponding
planes bisecting the surface.

Consider an unloaded three-tube CTCR with sections L3 = 0.5 and L2 = 0.3. The two-tube

section lengthL2 is lower than the critical length for snap-back instability (L2 < L2,crit ≡ 0.692)
evaluated in the preceding example). Here, Lk,crit denotes the critical length of the k th tube

section for snap-back instability in an unloaded CTCR. If a section-length is higher than Lk,crit,

snapping occurs in this system as the values of α[k](0), k = 2,3 are varied in [0,2π]. We prove

that the section length L3 is lower than the L3,crit by numerical continuation followed by plot-

ting a bifurcation surface, as depicted in Figure 7.7. For plotting this surface, continuation is

first carried out along the parameter α[3]o from 0 to 2π. For each of these equilibria, solutions are

then continued along α[2]o from 0 to 2π. The value of β[2](0) is plotted against the parameters

α
[2]
o and α[3]o to give a surface plot. Since no folds appear in any fixed planes of α[2]o , α[3]o , or

on the surface, it can be concluded that the length L3 < L3,crit. In other words, if only a single

three-tube section or a two-tube section of these lengths exists, snapping does not occur when

the tubes are relatively rotated from 0 to 2π. As no tip load is considered, the single-rod section

has no effect on the equilibria, and its length L1 is irrelevant in the present context.

The bifurcation surface for section-lengths L3 = 0.5 and L2 = 0.3 is shown in Figure 7.8.

In this analysis, α[2]o is the varying parameter, and β[2](0) is the ordinate in the distinguished

bifurcation diagram. The top view of the surface illustrates how the hysteresis region varies

in the plane of parameters α[2]o and α[3]o . The bifurcation diagrams for a fixed value of α[3]o at

regular intervals of π/3 are shown on their respective planes. Their planar versions are presented

in Figure 7.8c. We notice that only the bifurcation diagram for the plane α[3]o = π exhibits folds,

while the remaining do not. Furthermore, another plane α[3]o = 3.0 intersects the bifurcation
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surface and results in a plot of β[2](0) vs. α[3]o (in red) that has a fold. However, this plot is not

the distinguished bifurcation diagram since the ordinate should be β[3](0) instead of β[2](0).

(a) The bifurcation surface.

(b) Top view of the bifurcation surface.
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Fig. 7.8 The bifurcation surface plot of β[2](0) in terms of α[2]o and α[3]o for the sections L3 =
0.5 and L2 = 0.3. The bifurcation diagrams at α[3]o = k π

3 , k = 1, . . . ,5 (in blue) and α[2]o = 3.0
(in red) are indicated by the corresponding planes bisecting the surface, and their planar versions
are presented in (c).
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Fig. 7.9 a) The distinguished bifurcation diagram along the plane α[2]o = 3.0 in Figure 7.8a (Red
dotted curve is shown as a solid curve in the Figure 7.8a). b) The conjugate point computation
for the equilibria in different regions of the diagram shown in (a). The determinant of the
stability matrix along different sections is shown in different colors.

The value of β[3](0) is plotted to give the correct bifurcation diagram as shown in Figure 7.9a.

We have two sets of bifurcation diagrams, namely β[2](0) vs. α[2]o plot and β[3](0) vs. α[3]o

plot. The stability properties of the equilibria in the latter plot are determined using conjugate

points as shown in Figure 7.9b. The branches of the curve are represented using the indices

based on the number of conjugate points they possess. It is also worth noting that the CTCR

system is 2π periodic in α[i]o , i = 2,3. As a result, the left and right branches of the diagram

have the same index of 0. Then, the index value alternates between 1 and 0 in successive folds

as the index cannot be negative. In both the plots of β[2](0) vs. α[2]o and β[3](0) vs. α[3]o , the

index increased in the upper branch of the fold opening left as predicted. Therefore, we have

a region between the folds corresponding to index 1, which is unstable equilibria. The CTCR

snaps between either side of this region when operated in this regime.

Now, let us consider a scenario where the lengths of the sections L2 and L3 are varied such

that their sum, L2 +L3, is maintained at a constant value of 0.8. Consider sections with lengths

L2 = 0.4 and L3 = 0.4. Continuation is performed along the parameter α[2]o for different values

of α[3]o within [0,2π] interval. Figure 7.10 shows the corresponding bifurcation surface consist-

ing of ordinate β[2](0) plotted against the parameters α[2]o and α[3]o . The difference between the

color contrasts in Figure 7.10 illustrates the inverted S-shaped hysteresis region. This contrast

is not so pronounced in the previous case (Figure 7.8b). Additionally, the planes of constant

α
[3]
o at regular intervals of π/3 slice the surface resulting in bifurcation plots, and their planar
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versions are presented in Figure 7.10c. All these diagrams have S-shaped folds, indicating that

the snapping occurs when α[2]o is varied from 0 to 2π for any fixed value of α[3]o ∈ [0,2π]. How-

ever, in the previous case, snapping occurs only within a band of values of α[3]o around π when

(a) The bifurcation surface.

(b) Top view of the bifurcation surface.
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Fig. 7.10 a) The bifurcation surface for the sections L3 = 0.4 and L2 = 0.4. The bifurcation
diagrams at α[3]o = k π

3 , k = 1, . . . ,5 (in blue) and α
[2]
o = 3.0 (in red) are indicated by the

corresponding planes bisecting the surface. The planar diagrams are displayed in (c).
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e3

e1

e2

Fig. 7.11 The surface traced by the CTCR when α[3]o is varied from 0 to 2π at a fixed α[2]o = 3.0
for L2 = 0.5 and L3 = 0.3. The surface corresponding to the unstable equilibria is indicated in
magenta. The CTCR configurations for α[3]o = 0, π/3,2π/3, π,4π/3 and 5π/3 are also shown.

α
[2]
o is varied from 0 to 2π. In addition, the plane α[2]o = 3.0 intersects the surface and yields a

β[2](0) vs. α[3]o plot with four folds. The ordinate β[3](0) is plotted to generate the bifurcation

diagram as shown in Figure 7.12a. Figure 7.12b and 7.12c illustrate the computation of conju-

gate points for the equilibria in different regions of the bifurcation diagram, and the branches

are assigned an index. The index oscillates between 0 and 1 across the four folds. Hence, the

CTCR snaps twice when α[3]o is varied from 0 to 2π while keeping α[2]o fixed at the value of 3.0.

Figure 7.11 shows a visual representation of the surface traced by the CTCR and some of its

configurations during this process. The surface shown in magenta corresponds to the unstable

equilibria, and these equilibria jump to the closest stable equilibrium located on the cyan surface.

Now, we further investigate the system by varying the lengths of the sections to L3 = 0.3

and L2 = 0.5. Figure 7.13 displays the bifurcation surface for these section lengths. There are

S-shaped folds on constant α[3]o planes, and their planar versions are shown in Figure 7.13c.
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(a) Distinguished bifurcation diagram when α[3]o is varied at a fixed α[2]o of 3.0.
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(b) Computation ofconjugate points for equilibria labelled 1,2,4,5,6 and 8.
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(c) Computation of conjugate points for equilibria labelled 3 and 7.

Fig. 7.12 a) The distinguished bifurcation curve along the plane α[2]o = 3.0 in Figure 7.10a
(red dotted curve represents the solid red curve in the Figure 7.10a). Equilibria from different
regions of the curve are chosen for stability determination. The equilibrium in the pink and
yellow regions is unstable as they have a conjugate point (shown in red dot). The remaining
equilibria have no conjugate points and are stable

On comparing with Figure 7.10c, we observe that the unstable region (the distance between the

folds) widens from the first case to the third case. Additionally, the strong S-shaped contrasting

border between the surfaces in the top view in Figure 7.13 emphasizes the presence of hystere-

sis in the system. The plane α[3]o = 3.0 slices the surface and gives rise to two non-connecting

curves (in red). Thus, a continuous folded curve on the plane in the previous cases (red curves

in Figure 7.8a and Figure 7.10a) separated into two disconnected curves. Specifically, in this

situation, the lower curve has no folds, whereas the upper curve forms a closed curve with two

folds. The stability exchange along the closed curve is analyzed by plotting the β[3](0) vs. α[3]o

plot as shown in Figure 7.14. It can be inferred that a closed bifurcation diagram must be in

the 8-shaped curve as given to account for the increase in the index at one fold and the decrease
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(a) The bifurcation surface

(b) Top view of bifurcation surface
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(c) Distinguished bifurcation diagrams along the planes

Fig. 7.13 The bifurcation surface for the sections of L3 = 0.4 and L2 = 0.4. The bifurcation
diagrams at α[3]o = k π

3 , k = 1, . . . ,5(in blue) and α
[2]
o = 3.0 (in red) are indicated by the

corresponding planes bisecting the surface. The planar views of these plots are shown in (c).
The plane α[2]o = 3.0 cuts the surface yielding two disconnected curves.

in the index at the other. There are two possibilities for CTCR behavior on this plane. If the

equilibrium lies on the lower curve, it remains on this lower curve without any snap motion as

the parameter α[3]o is varied in [0,2π]. On the other hand, if the CTCR equilibria lie on the
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(a) Distinguished bifurcation diagram for the closed curve traced on the plane α[2]o = 3.0 in Figure 7.13
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(b) Conjugate points for the equilibria at the labels

Fig. 7.14 a) The distinguished bifurcation diagram for the closed loop along the plane α[2]o = 3.0
in Figure 7.13a. (The red closed curve in 7.13a is shown as a blue curve here). b) The stability
of equilibria separated by the folds is determined through conjugate points.

upper curve, the CTCR snaps to the lower curve when the parameter α[3]o is varied beyond the

folds.

From the findings in these three cases, we conclude that the section lengths affect the snap-

ping behavior of the CTCR. The coupling across the sections leads to an unpredictable snapping

behavior. The hysteresis region is commonly circumvented by shortening the section lengths

and navigating around this region. However, the current examples infer that the individual sec-

tion lengths can be varied without altering the total length to evade or induce hysteresis in the

CTCR system.
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7.2.2 Effect of Tip Load and its Direction on the Hysteresis Behavior

In the third case, we study the influence of tip load and its direction on the hysteresis behavior

of the three-tube CTCRs. The snapping behavior of a tip-loaded intrinsically curved elastic

rod when its clamped end is rotated has been already reported in Chapter 5. CTCR backbone

behaves as an intrinsically curved elastic structure for any fixed relative angle parameters α[2]o

and α[3]o . Hence, CTCRs subject to rotating tip loads may exhibit hysteresis behavior. Moreover,

the CTCR consists of piecewise spatially curved elastic rod structures. A combination of these

effects, along with the additional player, relative rotation between the tubes, further increases

the complexity of the system. For the current numerical experiment, we consider the three-tube

CTCR with properties given in Table 7.2. The response of the CTCR under a rotating tip load

can be studied either by fixing the CTCR orientation at s = 0 and varying the load direction or

by fixing the load direction and varying the CTCR’s orientation at s = 0. Both approaches are

equivalent, but the latter is chosen as it mimics the many realistic scenarios where the loads such

as gravity are in a fixed direction, and the robot’s orientation varies. The tangent of the CTCR

backbone is aligned along the fixed e3- axis and is rotated by angle θ about it.

A wide range of parameter space and loading cases is possible. However, this example’s

primary objective is to illustrate potential hysteresis created by rotating tip loads. Therefore, we

have chosen to focus on a specific case with predefined parameters. We consider section lengths

of L1 = 0.6, L2 = 0.45 and L3 = 0.45 and fix the relative angle between the tubes at the root:

α
[2]
o = 5π

6 and α[3]o = 7π
6 . A tip load F = −F2e2 with a lever arm ∆ = [0,0.1,0]) is applied. First,

the CTCR equilibrium for a zero tip load for the given control parameters is obtained through

continuation. Subsequently, the solutions are continued along the load parameter F2 from 0 to

0.13. For each of these intermediate solutions, continuation is again performed along the angle

m
3(
0)

Fig. 7.15 The plot of ordinate m3(0) for continued solutions along θ for F2. The distinguished
bifurcation diagrams for F2 = 0.02, F2 = 0.04 and F2 = 0.12 are shown.
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(b) The equilibria with labels 2 and 5 in the above figure have one conjugate point whereas those with
remaining labels have no conjugate points.

Fig. 7.16 Distinguished bifurcation diagram for a case with the tip load F2 = 0.04 and the
conjugate point computations for the labelled equilibria.
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Fig. 7.17 The robot centerlines for the equilibria with labels in the Figure 7.16a.

parameter θ from 0 to 2π. The ordinate m3(0) is evaluated from the computed solutions and is

plotted as a function of F2 and θ to obtain a bifurcation surface as shown in Figure 7.15. The

bifurcation diagrams for the loads F2 = 0.02,0.04 and 0.12 are also shown on their respective

planes. At lower loads, such as F2 = 0.02, there are no folds, and therefore, there is no sign of

hysteresis, and the robot’s tip moves smoothly tracing a closed continuous curve. With a slightly

higher load of 0.04, hysteresis suddenly appears in the system. Interestingly, the bifurcation di-
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agram for this case, as shown in Figure 7.16a has more than two folds. The four folds divide the

diagram into five distinct regions. An equilibrium from each region is picked, labelled, and the

index is assigned after computing the conjugate points as illustrated in Figure 7.16b. The CTCR

snaps twice as its backbone is completely rotated about the horizontal tangent. The centerlines

of the CTCR backbone for the labelled points in Figure 7.16a are shown in Figure 7.17.

We now turn to the case of higher tip load F2 = 0.12. In this case, the bifurcation diagram

shown in Figure 7.18a exhibits more than four folds. The stability of the equilibria in these dif-

ferent regions is analyzed by computing the conjugate points, as depicted in Figures 7.18b,7.18c.

In comparison to the bifurcation diagram of F2 = 0.04 (Figure 7.16a), we observe that only one

hysteresis region exists here. As the load is increased, the first hysteresis region diminishes (left
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(a) Distinguished bifurcation diagram.
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(b) The equilibria labelled 1,3,4 and 6 have one conjugate point.
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(c) The equilibria labelled 2 and 5 have two conjugate points.

Fig. 7.18 Distinguished bifurcation diagram for a case with the tip load F2 = 0.12 and the
conjugate point computations for the labelled equilibria.
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Fig. 7.19 a) The CTCR configurations corresponding to the points 1,2 and 3 (α[2]o = 3.0, α[2]o =
0.8, F2 = 0.04) from Figure 7.16a. b) The CTCR configurations corresponding to points 4,5 and
6 (α[2]o = 3.0, α[2]o = π, F2 = 0.04) from Figure 7.16a. CTCR configurations with zero tip load
for the same control parameters are also displayed for comparison.

folded region in Figure 7.16a), eventually vanishing completely when F2 = 0.12. In addition,

multiple unstable equilibria appear for the current load case as presented in Figure 7.19. The

significant aspect of this example is the emergence of equilibria with an index of 2. There is

an increase in the index in the upper branch of the fold opening left and the lower branch of

the fold opening right, which aligns with the predictions of distinguished bifurcation diagram

(discussed in Figure 2.2).



119 7.2. Three-tube CTCR

Summarizing the findings, we conclude that the CTCR inherits the hysteresis characteristics

from intrinsically curved elastic structures. The piecewise spatially curved elastic structures of

CTCR increase the complexity of the problem, and the behavior is non-intuitive. Lower loads

resulted in two hysteresis regions which were reduced to one region for higher loads. This study

holds the potential to explore the utilization of CTCR as a catapult in surgical procedures, where

an instrument or manipulator applies the tip load and cuts the tissue during the snap motion. We

determined the stability properties of various equilibria using conjugate points and also estab-

lished a correlation with the shape of distinguished bifurcation diagrams in parallel. So, one can

just employ these diagrams to determine the stability properties of equilibria without resorting

to conjugate point computation. Nonetheless, the index for one equilibrium along the path must

be evaluated to utilize these diagrams.
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7.3 Convergence Studies

As the tubes of the CTCR under consideration are uniform in arc length s, the Hamiltonian of

each CTCR sectionH remains constant. In addition to the HamiltonianH , conserved quantities

discussed in the section 6.5 such as µ⋅q+2r⋅n, q⋅q can be utilized to test the numerical accuracy

and convergence of the solutions. We consider an equilibrium corresponding to the parameters

θ = 2π/3,α[2]o = 5π/6, α[3]o = 7π/6, L1 = 0.75, L2 = 0.45, L3 = 0.45 and evaluate the three con-

served quantities for different number of mesh intervals (NTST) and collocation points (NCOL).

Figures 7.20, 7.21 and 7.22 show, respectively, the evaluated Hamiltonian H , µ ⋅ q + 2r ⋅ n and

q ⋅ q − 1 along three sections for different values of NTST and NCOL. The Hamiltonian H is

conserved along each section within an order of accuracy, as shown in Figure 7.20. Clearly, the

accuracy is dependent on the number of mesh intervals and the number of collocation points.

The accuracy is in the order of 10−6 − 10−5 during continuation with 5 mesh intervals and 2

collocation points, which is further enhanced by reducing the step size and increasing the num-

ber of collocation points, or by using a combination of both. It improved to an order of 10−9
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Fig. 7.20 The plot of Hamiltonian H along each section for different numerical parameters.
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Fig. 7.21 The plot of µ ⋅ q + 2r ⋅ n along each section for different numerical parameters.

for NTST=40 and NCOL=4. Likewise, the values of the remaining quantities µ ⋅ q + 2r ⋅ n and

q ⋅q−1 remained close to zero, and their accuracy also improved with the decreasing stepsize or

the increasing number of collocation points. For NTST=40 and NCOL=4, the accuracy of these

quantities improved to even finer values of 10−13 − 10−11. This improvement in accuracy with

decreasing stepsize indirectly indicates the convergence of numerical solutions. If the solutions

are converging, the numerical solution of the state approaches the actual state with decreasing

stepsize, resulting in a more accurate evaluation of the conserved quantities.

Figures 7.20, 7.21 and 7.22 also point out that the order of accuracy varies between different

sections of the CTCR. Higher accuracy is observed in the three-tube section, whereas lower

accuracy is observed in the one-tube section for any discretization (NTST and NCOL). Fur-

thermore, when comparing the results with those of the elastic rod problem in Figure 5.21 and

Figure 5.22 (in Chapter 5), it is evident that higher accuracy is observed for smaller mesh sizes
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Fig. 7.22 The plot of the quantity q ⋅q−1 along each section for different numerical parameters.

and fewer collocation points for higher-dimensional CTCR problem. For example, an accuracy

of order 10−9 is obtained for 40 mesh intervals and 4 collocation points (in Figure 5.22), while

similar accuracy is obtained in the current CTCR case with only 10 mesh intervals and 4 collo-

cation points(in Figure 7.20c). The continuation method of current 48-dimensional BVP with

NTST mesh points and NCOL collocation points includes solving a 48×(NCOL+1)×NTST+1-

dimensional algebraic system using Newton iteration (section 4.2). In the case of elastic rods,

this algebraic system is 14×(NCOL+1)×NTST+1, which is nearly 1/4 the size of the CTCR.

Therefore, if the stopping criteria on the error usually given by the sum of the squares of the

residuals, is the same for both cases, the elastic rod with 4 times the mesh intervals as that of

CTCR would fetch comparable algebraic systems and yield results with the same order of ac-

curacy. This finding suggests that using smaller mesh sizes and fewer collocation points can

provide relatively accurate results for problems with larger dimensions, which saves computa-

tional time and storage.

7.4 Outlook

We have explored the hysteresis behavior exhibited by the tip-loaded CTCRs. The stability

of the CTCR equilibria has been examined through computation of the conjugate points and
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distinguished bifurcation diagrams. The effect of section lengths of CTCR on its hysteresis

behavior has been examined using bifurcation surfaces. It is useful in designing tasks in which

the robot maintains a constant total length while strategically adjusting its section lengths to

either approach or evade the hysteresis region. The impact of the tip load and its direction

have also been highlighted. This study is also instrumental in devising tasks that either evade

or exploit snapping phenomena for more advantageous applications. The conserved quantities

were employed to verify the accuracy and convergence of the numerical solutions.
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CHAPTER 8

Optimal Control Problem

8.1 Introduction

Significant research has been conducted on employing the CTCRs in minimally invasive surg-

eries (Burgner et al., 2011; Burgner et al., 2013; Burgner-Kahrs et al., 2014; Swaney et al., 2014;

Mitros et al., 2021). Suitable control strategies and accurate mechanical models are crucial for

performing these surgical tasks with great accuracy and precision. The previous parts have fo-

cused on developing the mechanical model of CTCRs and analyzing the stability properties of

the resulting equilibria. In this part of the thesis, we take a step further by deploying optimal

control techniques to model the maneuvering task of these robots. We conceptualize robot nav-

igation as an open-loop gradient-based optimization problem, leveraging the mechanical model

established in the previous part.

In this chapter, we offer concise overviews of optimal control problem, Non-Linear pro-

gramming (NLP), and a few NLP algorithms. These concepts are key for establishing the robot

navigation setup. More comprehensive details can be found in the standard textbooks Nocedal

and Wright (2006); Betts (2010); Bryson and Ho (2018).

Consider a system with a set of state variables x ∶ t → Rn, where time t is an independent

parameter. A set of control variables c ∶ t → Rm drives the system from a specified initial state

t = 0 to a desired final state t = tF . These state and control variables are governed by the system

of first-order Ordinary Differential Equations (ODEs), referred to as state or system equations

d

dt
x(t) ≡ ẋ(t) = f(x(t),c(t)), (8.1)

with the initial conditions

x(0) = xo. (8.2)

The goal of optimal control problem is to find a suitable trajectory for the control variables

c(t) that enhances the system’s performance over the time interval [0, tF ]. This task is accom-

plished by expressing the performance in sets of objective functions and minimizing them. The

objective function is often characterized by the state at the final time tF (known as Mayer term)

M = ϕ (x(tF ), tF ) , (8.3)

127
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or, in terms of the state trajectory x(t) and control trajectory c(t) (known as Lagrange term)

L = ∫
tF

0
Ψ (x(t),c(t), t)dt, (8.4)

where ϕ is the scalar function of the state x at final time tF , and Ψ is the scalar function of the

state x and control variables c at time t. In some problems, the final time tF is specified; in

other problems, it is a variable. We consider only the cases where the final time tF is known.

The solution to this optimal control problem is approached by writing the augmented per-

formance index by adjoining the system dynamics using the Lagrange multiplier Λ ∈ Rn as

J̄ = ϕ(x(tF ), tF ) + ∫
tF

0
Ψ (x(t),c(t)) +Λ ⋅ (f(x(t),c(t)) − ẋ(t))dt. (8.5)

The Lagrange multiplier Λ is also referred to as costates or adjoint variables in optimal control

terminology. The stationary point of this functional is obtained by imposing the condition that

the first variation vanishes (i.e., δJ̄ = 0). Consequently, the following necessary conditions for

the stationary points (or extremum) are obtained:

ẋ(t) =HΛ, (8.6a)

Λ̇(t) = −Hx, (8.6b)

Hc = 0, (8.6c)

whereH is the Hamiltonian function given by

H(x,Λ,c, t) = Ψ (x(t),c(t)) +Λ ⋅ f(x(t),c(t)). (8.7)

The subscripts denote the partial derivative ofH with respect to the argument. This Hamiltonian

function is different from that one that appears in the calculus of variations problems (2.1). The

first term (8.6a) is the same as the system equations (8.1). The second term (8.6b) gives the

evolution of costates. The boundary conditions for the costate variables Λ are specified only at

the final time tF

Λ(tF ) = [
∂ϕ

∂x
]
t=tF

. (8.8)

The last term (8.6c) is the optimality condition or control equations, which gives the algebraic

equations for the control functions. It is a simplified version of Pontyragin maximum principle

c = argv∈U minH.

where U defines the domain of feasible controls. The maximum principle (Bryson and Ho,

2018) states that the control variables c(t) must be chosen so that the Hamiltonian function

H is minimized at every instant of time. The optimal trajectory x(t), c(t) corresponds to

the extremum of H. The two-point Boundary Value Problem (BVP) with boundary conditions

(8.2),(8.8) and algebraic equations (8.6c), must be solved to obtain the optimal solutions.
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In addition, the states x(t) and control variables c(t) are limited by the environment and

design constraints, and they are subject to the inequality constraints like

xmin ≤ x(t) ≤ xmax,

cmin ≤ c(t) ≤ cmax,

and the path constraints

pmin ≤ p(x(t),c(t)) ≤ pmax.

The majority of the optimal control problems are non-linear, and therefore, analytical solutions

are not available. Consequently, numerical methods are employed to solve these problems using

computers. Any numerical method utilizes some Newton-based iteration methods to solve for

a finite set of unknown variables. However, the current optimization problem (8.5) is infinite-

dimensional, which should be converted to finite-dimensional. Therefore, the computational

techniques typically require a combining optimization method with discretization techniques.

There are two approaches to carry out this task, namely Indirect method, and Direct method.

In the Indirect method, also referred to as Optimize-then-Discretize approach, the optimal

solutions are characterized as a set of ODEs (8.6) with appropriate BCs (8.2),(8.8) as discussed

previously in this section. The two-point BVP, along with the algebraic equations, is solved

using techniques such as shooting methods (Betts, 2010). The time domain is discretized into

time steps, and the solution is approximated as a piecewise polynomial over these steps. As

a result, an algebraic system of equations is obtained, which is solved by a suitable Newton-

iterative method. However, this method is applicable only when the objective functions are

available analytically. It requires extra costate variables to be solved, increasing the dimension

of the problem to be solved. Another drawback is the requirement of the initial guess for these

costates and the frequent occurrence of discontinuities in the optimal control.

On the other hand, the Direct Method approach transforms the infinite-dimensional system

(8.1) into a set of finite-dimensional algebraic constraints using a collocation scheme (Hargraves

and Paris, 1987; Enright and Conway, 1992; Betts, 1998). The objective functions, which were

the functions of continuous states x(t) and control variables c(t) are now functions of their

discretized versions. Subsequently, we obtain an NLP problem, involving the minimization of

a finite-dimensional discretized objective function, subject to constraints arising from finite-

dimensional discretized state equations. This NLP is then solved for a finite set of variables.

This method is also termed as Discretize-then-Optimize approach. We employ this strategy to

model the robot navigation problem, which is elaborated on in the next chapter.

8.2 Direct Transcription and Collocation

Collocation is used to transcribe differential system equations (8.1) into a set of algebraic con-

straints. A comprehensive description of collocation has been already presented in the sec-
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tion 4.2, and we will briefly recall it here. The time domain [0, tF ] is meshed into N intervals:

0 = t0 < t1 < t2. . . . . < tN = tF .

The state x(t) is approximated as a polynomial of a certain degree with certain points in each

mesh interval [tk, tk+1] (called collocation points), and the system equations (8.1) are imposed

at these points. As a result, we have algebraic constraints at these points. The objective function,

which is in the form of an integral, is numerically integrated over this mesh to obtain an alge-

braic objective function. A simple transcription technique involves using just one collocation

point, typically located at the midpoint of the mesh interval. In this case, the objective func-

tion is numerically integrated through the Trapezoidal method. Higher order Gauss- Lobatto

methods (Herman and Conway, 1996) can also be employed, and in this case, the numerical

integration is determined by the sum of weights of the variables x(t) and c(t) at the collocation

points.

8.3 The Non-Linear Programming Problem (NLP)

Essentially, all numerical methods for solving the optimization problem incorporate a sort of

Newton method to solve for a finite set of unknowns. The previous section 8.2 already explained

how an optimal control problem can be translated into a finite-dimensional NLP problem with

state variable X ∈ RN . Contrary to the optimal control problem, no dynamics are involved here,

and the independent parameter t is no longer present. The current objective is to choose X to

minimize the scalar objective function:

F (X), F ∶ RN → R,

subject to M equality constraints

C(X) = 0, C ∶ RN → RM ,

where M ≤ N . The Lagrangian of the problem is

L(X,Λ) = F(X) −Λ ⋅C(X),

which is a scalar function of N variables and M Lagrange multipliers. The necessary condition

for the point (X∗,Λ∗) to be the minimizer of the constrained optimum is that it satisfies

∇XL(X,Λ) = g(X) −Λ ⋅G(X) = 0, (8.10a)

∇ΛL(X,Λ) = −C(X) = 0, (8.10b)

where g(X) is the gradient of the objective function F (X), and G(X) is the gradient of

the equality constraint vector C(X). The system (8.10) is solved numerically using Newton-
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Raphson method to determine (X∗,Λ∗). Newton’s step from the iterate is given by

⎡⎢⎢⎢⎢⎣

X(k+1)

Λ(k+1)

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

X(k)

Λ(k)

⎤⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎣

∆X

∆Λ

⎤⎥⎥⎥⎥⎦
,

where (∆X,∆Λ) is the solution of Newton-KKT system

⎡⎢⎢⎢⎢⎣

∇XXL(X(k),Λ(k)) ∇XΛL(X(k),Λ(k))
∇ΛXL(X(k),Λ(k)) ∇ΛΛL(X(k),Λ(k))

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

∆X

∆Λ

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

g(X(k)) −Λ(k) ⋅G(X(k))
−C(X(k))

⎤⎥⎥⎥⎥⎦
,

Ô⇒
⎡⎢⎢⎢⎢⎣

∇XXL(X(k),Λ(k)) −GT (X(k))
G(X(k)) 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

∆X

∆Λ

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

g(X(k)) −Λ(k) ⋅G(X(k))
−C(X(k))

⎤⎥⎥⎥⎥⎦
.

This last expression is referred to as the Kurush-Kuhn-Tucker (KKT) system which is rewritten

as

⎡⎢⎢⎢⎢⎣

HL(X(k)) −GT (X(k))
G(X(k)) 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

∆X

∆Λ

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

g(X(k)) −Λ(k) ⋅G(X(k))
−C(X(k)).

⎤⎥⎥⎥⎥⎦
. (8.11)

Here, HL is the Hessian of the Lagrangian

HL(X) = ∇2
XF −

M

∑
i=1

Λi∇2
XCi.

The KKT matrix (8.11) must be non-singular to yield a successful iterate.

The given NLP problem can be generalized to the cases where inequality constraints are

imposed; the M inequality constraints are of the form

C(X) ≥ 0.

At the optimal point X∗, the constraints are of two types. The constraints that are strictly

satisfied, i.e., Ci(X∗) > 0, i ∈ I, are called inactive constraints. The constraints that are on

the bounds, i.e., Ci(X∗) = 0, i ∈ E , are called active constraints. At the optimal solution, the

Lagrange multipliers associated with active constraint must satisfy

Λi ≥ 0.

The series of equality-constrained sub-problems are solved with an estimated guess of active

constraints. If the active constraint is correct, the solution to the equality-constrained problem

is also the solution to the inequality-constrained problem. Otherwise, the solution procedure is

repeated after making another guess of estimated active constraints.

If the active set of constraints is known, then the problem is solved as an equality-constrained

optimization problem, ignoring the inactive constraints. However, detecting the active set of
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constraints is not easy and requires the repeated solution of the KKT system with the addition

and removal of constraints.

In summary, the general NLP problem requires finding X ∈ RN to minimize

F (X),

subject to the m constraints

CL,i ≤ Ci(X) ≤ CU,i, i = 1, . . .M,

and bounds

XL,i ≤Xi ≤XU,i, , i = 1, . . .N.

Here the subscript i is the component of each vector. In this formulation, the equality constraints

are imposed by setting CL,L = CU,j .

8.4 NLP Algorithms

In general, various methods are available for solving the NLP problems. Here, we discuss

the two most commonly used traditional algorithms: Sequential Quadratic Programming(SQP)

method and Interior-points method. The fundamental idea underlying these algorithms is pre-

sented here. The modern methods have more additional complexities (Nocedal and Wright,

2006).

8.4.1 Sequential Quadratic Programming

Sequential Quadratic Programming (Boggs and Tolle, 1995) is one of the most powerful algo-

rithms for solving smooth, constrained, non-linear optimization problems. It is not a single al-

gorithm but a conceptual method that forms the basis of many modern optimization algorithms.

As discussed in the section (8.3), solving an NLP problem requires finding a search direction

∆X in each Newton’s iteration. Alternatively, each Newton’s iteration step at (X(k),Λ(k)) can

be interpreted as finding the minimum of

F (X(k)) + 1

2
∆XTHk∆X + gT

k ∆X, (8.12)

subject to the linearized constraints

Gk∆X = −Ck, (8.13)

where gk = ∇XF (X(k)) and Gk = ∇XC(X(k)). This problem (8.12) is also referred to as a

quadratic programming (QP) subproblem. If the matrix Gk is invertible, and the matrix Hk is
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positive definite, the QP subproblem has a unique solution (∆X, l(k)) that satisfies

Hk∆X + gk −GT
k l
(k) = 0, (8.14a)

Gk∆X +Ck = 0. (8.14b)

On comparing this expression with the KKT system (8.11), we find that l(k) = Λ(k+1). If we

subtract the Λ(k) ⋅G from both sides of the Newton-KKT iteration (8.11), we obtain

⎡⎢⎢⎢⎢⎣

Hk −GT
k

Gk 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

∆X

Λk+1

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

−gk
−Ck

⎤⎥⎥⎥⎥⎦
. (8.15)

Therefore, the new iterate (Xk + ∆X,Λ(k+1)) is the solution of the quadratic programming

problem (8.12). The SQP methods solve a sequence of these QP sub-problems. The inclusion

of inequality constraint in SQP is complicated and a rough sketch of the approach is presented

here. The inequality constraints can also be considered in this SQP algorithm by formulating it

as

minimize F (X(k)) + 1

2
∆XTHk∆X + gT

k ∆X, (8.16)

subject to the linearized constraints

∇Ci(X)∆Xk+1 +Ci(Xk+1) = 0, i ∈ E , (8.17a)

∇Ci(X)∆Xk+1 +Ci(Xk+1) ≥ 0, i ∈ I. (8.17b)

The solution of this QP problem also gives an estimate of the set of Lagrange multipliers and

active constraints. This active set at the solution of (8.16),(8.17) constitutes our guess at the

solution of the nonlinear program. The SQP method should accurately identify this guess that

does not alter at subsequent iterations, leading to an equality-constrained optimization behavior.

8.4.2 Interior Point Method

Interior Point Methods, also called Barrier methods are another powerful technique for solving

large-scale optimization problems which are linear, non-linear convex, or non-convex (Potra and

Wright, 2000). We begin by recalling the NLP problem that is rewritten as

minimize F (X), (8.18)

subject to

CE(X) = 0, (8.19a)

CI(X) − s = 0, (8.19b)

s ≥ 0. (8.19c)

The inequalities are transformed into equality using a vector s of slack variables. There are

two types of methods in this interior-point approach, namely, Continuation method and Barrier
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method. In the former approach, the KKT conditions for the NLP problem are written as

∇XF (X) −GT
Ey −GT

I z = 0, (8.20a)

SZ − µe = 0, (8.20b)

CE(X) = 0, (8.20c)

CI(X) − s = 0, (8.20d)

together with s ≥ 0 and z ≥ 0. Here, GE and GI are the jacobian matrices of the functions CE

and CI respectively, and y and z are the associated Lagrange multipliers. The matrices S and

Z are diagonal matrices whose diagonal entries are s and z respectively, and e is the vector of

ones [1, . . . ,1]T . This system is solved for a sequence of positive {µk} that converges to zero,

while maintaining s, z > 0. The Newton-iteration step for this system of equations is

⎛
⎜⎜⎜⎜⎜
⎝

∇2
XXL 0 −GE −GI

0 Z 0 S

GE 0 0 0

GI −I 0 0

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

∆X

∆s

∆y

∆z

⎞
⎟⎟⎟⎟⎟
⎠

= −

⎛
⎜⎜⎜⎜⎜
⎝

∇XF (X) −GE(X) ⋅ y −GI(X) ⋅ z
SZ − µe
CE(X)

CI(X) − s

⎞
⎟⎟⎟⎟⎟
⎠

, (8.21)

where L is the Lagrangian associated with (8.18), (8.19a):

L = F (X) − y ⋅CE(X) − z ⋅ (CI(X) − s).

This system is called the primal-dual system. After determining the vector (∆X,∆s,∆y,∆z),
the new iterate is evaluated as

X(k+1) =X(k) + pmax
s ∆X, s(k+1) = s(k) + pmax

s ∆s,

y(k+1) = y(k) + pmax
z ∆y, z(k+1) = z(k) + pmax

z ∆z,
(8.22)

where

pmax
s =max{p ∈ [0,1] ∶ s + p∆s ≥ (1 − τ)s} , (8.23a)

pmax
z =max{p ∈ [0,1] ∶ z + p∆z ≥ (1 − τ)z} , (8.23b)

with τ ∈ [0,1]. This condition (8.23), referred to as fraction to the boundary rule prevents the

variables s and z from approaching their lower bound zero quickly. This process is repeated at

each new iterate until convergence.

The second approach of interior-point methods corresponding to the minimization problem

(8.18),(8.19a) constitutes the barrier problem

minimize F (X) − µ
m

∑
i=1

log si,

subject to CE(X) = 0, CI(X) − s = 0,
(8.24)

where µ is a positive parameter, and log(.) is a natural logarithm function. The minimization
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of the barrier function prevents components of s from getting too close to zero. This is because

− log t → ∞ as t → 0. This barrier approach consists of finding solutions to (8.24) for a

sequence of positive {µk} that converges to zero. Then the corresponding KKT conditions are

∇XF (X) −GT
Ey −GT

I z = 0, (8.25a)

−µS−1e + z = 0, (8.25b)

CE(X) = 0, (8.25c)

CI(X) − s = 0. (8.25d)

These conditions differ from the continuation method only in the second term. Multiply-

ing (8.25b) with S gives the same KKT system as that of the previous one (8.20), and an identical

iterative approach (8.22),(8.23) can be implemented to yield solutions.

8.5 Multi-Objective Optimization or Pareto Optimization

A Multi-Objective optimization problem (Marler and Arora, 2004) is an objective problem con-

sisting of more than one objective function and is mathematically formulated as

minimize [f1(X), f2(X), . . . , fk(X)] ,

subject to

gj(X) ≤ 0, j = 1,2, . . . ,m,
hi(X) = 0, l = 1,2,3, . . . , e,

where k is the number of objective functions, m is the number of inequality constraints and

e is the number of equality constraints. We often encounter problems consisting of objective

functions with competing effects. There is no single solution to these problems, and it helps to

model the decision-maker’s preferences. A solution is called non-dominating if none of the ob-

jectives can be further optimized without degrading the other objective functions. For instance,

we may reach a situation where an objective’s value can be optimized only after devaluing other

objectives. These solutions are called Pareto optimal solutions. The boundary defined by all

these optimal solutions is termed as Pareto optimal front. In short, the goal of Multi-Objective

Optimization is to find solutions as close as possible to the Pareto-optimal front. There are var-

ious methods to accomplish this namely, weighted sum method, ϵ-Constraint method, Weighted

Metric method, and non-traditional methods like Genetic Algorithms. In the present work, we

do not perform any multi-objective optimization. We have multiple objectives in our system,

and we study its behavior when different weights are given to these objectives. It will be helpful

for the decision-maker to plan strategies (Ehrgott, 2005) on varying these weights to yield a

more optimal solution.
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CHAPTER 9

Optimal Control Problem for CTCRs

This chapter presents some robot maneuvering tasks cast as optimal control problems. The robot

navigation is modeled as an optimization problem by quantifying it in terms of performance

metrics. Several objective functions are designed according to the tasks, offering comprehensive

explanations. Additionally, we outline the numerical solution strategy to solve the resultant

optimization problem. Some portion of this work is already presented (Dhanakoti et al., 2022)

9.1 N-tube Robot

We recall the mechanical model of the CTCR from Chapter 6. The Hamiltonian system of an

N -tube CTCR governing their equilibrium configurations is given by

r′ = d3, in ]0, l1[, (9.1a)

n′ = 0, in ]0, l1[, (9.1b)

q′ ==
3

∑
j=1
(K−1eff jjmj + ũj)

1

2
Bjq, in ]0, l1[, (9.1c)

µ′ =
3

∑
j=1
(K−1eff jjmj + ũj)

1

2
Bjµ − [

∂

∂q
d3(q)]

T

n, in ]0, l1[, (9.1d)

α[i]
′ =
∑N

j=2 β
[j]

K
[1]
33

− m3

K
[1]
33

+ β
[i]

K
[i]
33

+ û[i]3 − û
[1]
3 , i = 2,3, . . . ,N. in ]0, li[, (9.1e)

β[i]
′ = K

[i]
11 û

[i]
1

∑k
j=1K

[j]
11

(
N

∑
j=1

K
[j]
11 û

[j]
1 sin (α[i] − α[j])

+m1û
[i]
1 sinα[i] −m2û

[i]
1 cosα[i]), i = 2,3, . . . ,N.

in ]0, li[, (9.1f)

This first-order system is solved to obtain the backbone structure of the robot using the following

boundary conditions

r(0) = [0,0,0]T , q(0) = [0,0, sin θ1
2
, cos

θ1
2
]
T

,

n(l1) +F = 0, mi(l1) + (Υ(q(l1)) ×F) ⋅ di = 0, i = 1,2,3.

α[i](0) = (α[i]o ) , β[i](li) = 0, i = 2,3, . . .N.

(9.2)

137
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By solving the resultant (BVP) (9.1),(9.2), the equilibrium configuration of the robot, i.e., its

states r(y; s) and q(y; s) are obtained as a function of control parameter vector y which is

defined as

y ∶= [L1, . . . , LN , θ1, . . . , θN ] ∈ R2N .

Here, θi = θ1 + α[i]o , i = 2, . . . ,N is the angle of rotation of the i-th tube at the base s = 0. As a

result, a CTCR with N tubes has 2N control parameters determining its spatial configuration.

9.2 System Kinematics in Pseudo-time

We describe the robot’s motion in space as a function of time. The tubes are considered suffi-

ciently stiff, and inertial effects are negligible. Hence, we assume a quasi-static model, as the

speed with which the robot moves is irrelevant. The motion is parameterized over time like

pseudo-time parameter t ∈ T ∶= [0,1]. Then, the control parameters y at time t are written as

function y(t). In addition, a control rate vector w(t) = [w1(t), . . . ,wN(t), β1(t), . . . , βN(t)]
is introduced to characterize the system equations or system dynamics defined as

ẏ(t) =w(t), y(0) = yo, (9.3)

where yo is the vector of control parameters at initial time t = 0. The rates wi ∶ T → R and βi ∶
T → R, i = 1, . . . ,N model the traverse and rotational velocities of each tube, respectively. The

system dynamics (9.3) ensures the continuity of control parameters on the entire time interval

T . The control parameters corresponding to the rotation of the tubes θi, i = 1, . . . ,N can assume

any real value (being 2π-periodic), whereas the feed parameters Li, i = 1, . . . ,N can take only

non-negative values and are bounded by the maximum length of the tubes Li,max resulting in

the inequality constraint,

0 ≤ Li(t) ≤ Li,max ∀t i = 1, . . . ,N. (9.4)

The presence of hysteresis regions in these robots (as described in Chapter 7) is not desirable

during their operations. These situations can be mitigated by using the tubes below a critical

length Lcrit. These values are found by carrying out the numerical experiments as carried out

in Chapter 7 for the given tip load.

9.3 Objective Functions

We quantify robot navigation as an objective function that must be minimized. Here, we con-

sider a few prototypical objectives that describe simple tasks. The primary goal of many robot

tasks is to guide it in such a way that its tip reaches a desired location rtar ∈ R3 and orientation

qtar ∈ R4 at the final time t = 1. However, it may not always be feasible to attain a configura-

tion simultaneously satisfying the position and orientation requirements, especially with a small

number of tubes, say, N ≤ 3. As a result, the required criterion is incorporated by prioritizing

the actions using a weighting term λ̄. It is included as a Mayer term (8.3) in the optimal control
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problem as

M1(y; λ̄) ∶= ∣r(y(1), l1) − rtar∣2 + λ̄∣q(y(1), l1) − qtar∣2, (9.5)

where λ̄ is the weighing term useful for prioritizing between tip position and orientation, and ∣ ⋅ ∣
is the Euclidean norm. The robot state r(y(t); s, t),q(y(t); s, t) is obtained after solving the

BVP (9.1)–(9.2) with control parameters y(t) and specified tip load F. Alternatively, reaching

the target position and orientation could be specified as equality constraints. However, due to

the limited attainable combinations of position and orientation, this strategy would render the

optimization task infeasible. Therefore, an appealing strategy is to relax this constraint and in-

clude a penalty term in the objective function to account for deviations from the desired position

and orientation.

An alternative approach is to utilize only the desired tangent of the tip, i.e., d3(y(1), l1),
instead of the entire orientation (q(y(1), l1)) in the objective function. This relaxed ver-

sion imposes condition only on a single tangential director-axis d3 instead of all three direc-

tors dk, (k = 1,2,3) allowing for rotations around the tangent of the robot tip. This task is

formulated as maximizing the scalar product of the director and a specified target direction,

i.e., d3(y(1), l1) ⋅ ntar. Instead, this task can also be accomplished by minimizing the norm

∣d3(y(1), l1) − ntar∣2. Both of these approaches have an equivalent effect, and we choose the

former approach due to the relatively simpler implementation of the dot product. Then, the

objective function is of the form:

M1(y, λ̄) ∶= ∣r(y(1), l1) − rtar∣2 − λ̄d3(y(1), l1) ⋅ ntar. (9.6)

Path tracing: Certain applications may require the robot to maneuver such that its tip fol-

lows a prescribed curve rpath(t) and orientation npath(t). These problems are addressed by

including a Lagrange term (8.4) in the objective function:

J1(y, λ̄) ∶= ∫
1

0
(∣r(y(t), t) − rpath(t)∣2 − λ̄d3(y(t), l1) ⋅ npath(t))dt. (9.7)

This operation can also be realized by constraining the deviation from the prescribed path curve.

∣r(y(t), t) − rpath(t)∣2 < tolr, (y(t), l1) ⋅ npath(t) < tolo. (9.8)

As already mentioned, many configurations of the robot that satisfy the given constraint re-

quirement are not feasible and attainable, and the optimization may fail if tolr is set too small.

Moreover, this approach requires an initial solution that fulfills all the constraints, and providing

such a solution may not always be feasible in practice. A flexible optimization approach can be

utilized by using the combination of both approaches where we minimize the objective function

satisfying the constraints on other functions.

Covered volume: Another key factor to take into account is the robot’s working volume, i.e.,

the space traversed by its backbone while executing a job. Minimizing the working volume is
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Fig. 9.1 Schematic showing the Deviation from the FTL configuration

particularly beneficial when operating in confined or constrained spaces. The working volume

may be quantified in a variety of ways. One potential method is the accumulated deviation from

the reference Follow the Leader (FTL) configuration, denoted as r(yFTL, s). The CTCRs can

be deployed in an FTL strategy where the tubes are sequentially extended such that the body of

the robot traces its tip (Gilbert et al., 2015; Garriga-Casanovas and Rodriguez y Baena, 2018).

Ideally, this strategy occupies the minimum working volume. However, this strategy can be

employed only for deploying or removing the CTCR during the initial or final stages of a task

as the robot deviates from the reference curve when its tip navigates to adjacent locations. The

operational space is defined as the volume within which the robot’s tip is required to move.

After the robot is initially deployed using the FTL strategy, it initiates operations by moving

to the nearby locations within the operation space. The robot should perform tasks centered

around the initial FTL configuration with minimum deviation from it. We take the r(yFTL, s)
configuration as a reference curve and measure the robot’s deviation from this configuration,

providing a rough estimate of the working volume. The smaller the deviation from the reference

is, the less likely the interference with neighbouring objects such as tissues. The associated

objective is

J2(y) ∶= ∫
1

t=0
∫

l1(t)

s=0
d(r(yFTL, s), r(y(t), s))dsdt, (9.9)

where d(r̂, r(s) is the distance of r(s)) from the reference configuration r̂. It is defined as the

distance to the arc length projection

d(r̂, r(s)) = ∣r̂(s′) − r(s)∣ with ∫
s′

σ=0
r̂′(σ)dσ = s. (9.10)
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Fig. 9.2 Schematic showing the swept area by the CTCR.

Note that in the FTL configuration, the innermost tube can be assumed to have an infinite length,

such that the FTL arc length always exceeds s, and the projection (9.10) is well-defined.

An alternative way to quantify the working volume of the robot is to consider the region swept

by the robot’s backbone during navigation (shown in Figure 9.2). The area swept by points on

the CTCR corresponding to the normalized arc length (s/lk) is considered as swept area and is

mathematically given by

J2(y) ∶= ∫
1

t=0
∫

ΣLi(t)

s=0
r′(s, t) × ∂

∂t
r′(s, t)dsdt. (9.11)

Unlike the prior case, where navigation is centered around the FTL reference curve, there is no

preferred center for the working region here.

Regularization: In addition, the square of the L2-norm of the w(t) vector is included as a

regularization term in the objective function to avoid high-frequent instabilities,

J3(w) ∶= ∫
1

t=0
∣w(t)∣2 dt.

Furthermore, the solution can be further restricted by path constraints of the form

gl ≤ g(Y, t) ≤ gu, (9.12)

where g ∈ Rg is an objective function in terms robot’s state and control parameters. For instance,

imposing constraints on the robot tip orientation during a task, as illustrated in (9.8), exemplifies

one such scenario.

In total, we define the overall objective as a linear combination of the individual contribu-
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tions discussed above,

J(y,w) = λ̄0M1(y, λ̄) + λ̄1J1(y, λ̄) + λ̄2J2(y) + λ̄3J3(w).

Depending on the application, certain objective terms can be more important than others and

may be emphasized by a corresponding selection of the weights λ̄i (i = 0,1,2,3). In the end,

we formulate the optimal control problem as

min
y∈H1(T ),w∈L2(T )

J(y,w), (9.13)

subject to equality constraints (9.3) and inequality constraints (9.4) and (9.12).

9.4 Discretization

The direct method approach is employed to numerically solve the current CTCR navigation

problem. We discretize the optimal control problem (9.13) in pseudo-time t and arc length s

and transform it into an NLP problem (section 8.3) to be solved (Nocedal and Wright, 2006;

Betts, 2010). We divide the time interval [0,1] into m sub-intervals at time points 0 = t0 <
t1 ⋅ ⋅ ⋅ < tm = 1, in the simplest case with equidistant steps of length ti+1 − ti = 1

m . The objective

function is then approximated on these time intervals using the trapezoidal rule as

Jm = λ̄0M1 +
1

m
(1
2
j̄(0) +

m−1
∑
i=1

j̄(ti) +
1

2
j̄(1)) ,

where j̄(t) = λ̄1J1 + λ̄2J2 + λ̄3J3. The state r(s),q(s) of the robot is obtained for the controls

y(tk) at the time points tk by discretizing and solving the BVP problem (9.1) using suitable

collocation methods Kierzenka and Shampine (2001, 2008), thereby converting the infinite-

dimensional problem to a finite-dimensional algebraic system. From the robot state, the objec-

tive functions j(tk) are evaluated, where the integrals along the robot’s length arising in (9.9)

are approximated again using the trapezoidal rule. The ODEs (9.3) in the system dynamics are

approximated using central differences as

yi(tk+1) − yi(tk)
tk+1 − tk

=wi(tk+1/2),

for i = 0, . . . ,m − 1 in terms of the pseudo-velocities wi(tk+1/2).

The direct discretization results in a nonlinear program with 4Nm variables and 2Nm

equality constraints. This NLP problem is numerically solved using matlab fmincon library

employing either SQP or interior-points algorithm.

9.5 Supply of Gradients

The Gradient-based optimization techniques rely on gradient information of the objective func-

tions and constraints with respect to the NLP variables. Supplying these gradients improves
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the accuracy and computational speed of the optimization process. The required gradients are

computed separately and then provided to the subroutines within the matlab program. However,

it is often impractical and time-consuming to compute these derivatives analytically. As cer-

tain objective terms are functions of solutions of the BVP, analytical derivatives are not readily

available. Instead, derivatives can be obtained through algorithmic differentiation (Griewank

and Walther, 2008) or approximated using finite difference methods. Automatic differentiation

involves a set of techniques based on the systematic application of chain rule to obtain deriva-

tives of functions. Computer programs evaluate any mathematical functions through a set of el-

ementary operations (such as addition, subtraction, multiplication, and division) and elementary

functions (exp, log, sin). By applying the sequence of chain rule of calculus to these operations,

we can obtain the derivatives of the functions analytically to working precision. Nonetheless,

this approach cannot be implemented directly in our case as some objective functions depend

on the solutions of the BVP and require some adjustments.

The objective function g(y,c) depends on the state y(s) and the control parameters c ∈ RC ,

where the state y(s) is solution of a two-point BVP

y′ = f(y,c; s), s ∈ [0, l] (9.14a)

b0(y(c,0)) = 0, bl(y(c, l)) = 0. (9.14b)

The BVP is numerically solved to yield the vector Y ∈ RM , a finite-dimensional discretized

version of the solution y(s) over the meshed interval of [0, l]. Here, M = dimension of y ×
(Number of mesh intervals + 1). Since this solution depends on the control parameters c, we

write it as a function Y(c). Then, the objective g(y,c) is approximated over this mesh as

G(Y(c),c) using suitable collocation schemes. The functions such as (9.9), which contain in-

tegrals, are computed using numerical integration. The required gradients dg
dc are approximated

employing the following methods and provided.

9.5.1 Using BVPs

The most straightforward approach utilizes finite differences, where the components of gradient
dg
dc are approximated through a forward difference scheme as

dg

dci
≈ G(Y(c + ϵei)) − G(Y(c))

ϵ
, i = 1, . . .C,

or through a central difference scheme as

dg

dci
≈ G(Y(c + ϵei)) − G(Y(c − ϵei))

2ϵ
, i = 1, . . .C,

where ϵ is a small scalar, and the vector ei is the direction of perturbation in c. Here, ei ∈ RC is

a column vector with one in ith row and zeros in the remaining rows. The value of ϵ should be

chosen so that it is small enough to give a good approximation to the derivatives. But, it should

not be too small to avoid round-off errors.
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The central difference scheme provides a more accurate approximation of the derivative.

However, solving a BVP is a time-consuming process, and the central difference scheme ne-

cessitates solving twice as many BVPs as the forward difference schemes. Hence, the forward

difference scheme is generally favored over the central difference scheme in problems consisting

of many variables and when accuracy is not a critical concern.

9.5.2 Using IVPs

Gradients can also be approximated using finite differences through an indirect approach. In

the given BVP (9.14), some variables at the end s = 0 are given as boundary conditions, while

some are unknown. We denote the unknown variables yu,0 ∈ RUk. Now, we consider an IVP

by removing all the specified boundary conditions at the end s = l and specifying unknown

variables at s = 0. Then, the functions g and bl are also functions of yu,0 and so, we write them

as bl(c,yu,0) and g(c,yu,0). A slight disturbance ∆c in the control parameters c perturbs the

state y by ∆y and unknown variables yu,0 by ∆yu,0. As a result, the boundary conditions at

the other end s = l are altered by

∆bl =
dbl

dc
∆c + dbl

dyu,0
∆yu,0.

The boundary condition bl is imposed, and the perturbation ∆c does not affect its value. There-

fore, the perturbation ∆bl is set to zero, leading to the relation:

∆yu,0 = − [
dbl

dyu,0
]
−1
dbl

dc
∆c. (9.15)

A minor perturbation in c results in a perturbation in yu,0 such that the imposed boundary

conditions at the end s = l are maintained.

Now consider the function g(y(c),c). A perturbation ∆c in the control variable c leads to

a perturbation

∆g = [dg
dc
]∆c + [ dg

dyu,0
]∆yu,0. (9.16)

Using the relation (9.15) for ∆yu,0 in (9.16), we obtain

∆g = [dg
dc
]∆c + [ dg

dyu,0
]∆yu,0,

= [dg
dc
]∆c − [ dg

dyu,0
] [ dbl

dyu,0
]
−1
dbl

dc
∆c,

⎡⎢⎢⎢⎢⎣
[dg
dc
] − [ dg

dyu,0
] [ dbl

dyu,0
]
−1
dbl

dc

⎤⎥⎥⎥⎥⎦
∆c.
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Then, the gradient component dg
dc for a perturbation ∆c = ϵei is approximated as

dg

dc
=
⎡⎢⎢⎢⎢⎣
[dg
dc
] − [ dg

dyu,0
] [ dbl

dyu,0
]
−1
dbl

dc

⎤⎥⎥⎥⎥⎦
.

The required matrices dg
dc ,

dbl

dc ,
dg

dyu,0
, and dg

dyu,0
are evaluated using finite differences as

dg

dci
≈ G(Y(c + ϵei),yu,0)) − G(Y(c),yu,0))

ϵ
, i = 1, . . .C,

dbl

dci
≈ bl(Y(c + ϵei),yu,0) − bl(Y(c),yu,0)

ϵ
, i = 1, . . .C,

dG
dyu,0

≈ G(Y(c),yu,0 + ϵui)) −G(Y(c),yu,0)
ϵ

, i = 1, . . . Uk,

dbl

dyu,0
≈ bl(Y(c),yu,0 + ϵui)) −G(Y(c),yu,0))

ϵ
, i = 1, . . . Uk.

Here, ui ∈ RUk is a column vector with one in the i th row and zeros in the remaining rows. The

state Y(c) or Y(c + ϵei) is evaluated by solving an IVP, using initial conditions which include

boundary conditions at the end s = 0 and variables yu,0. The BVP for the state y(c) is already

solved to evaluate the objective g(y(c),c), and the values of yu,0 are readily available. In total,

we need to evaluate C + Uk sets of IVPs to evaluate the gradient dg
dc . On the contrary, only C

sets of BVPs are required to approximate the gradient using the prior approach described in the

subsection 9.5.1. However, IVPs are quicker to solve compared to BVPs. The shooting method

techniques used to solve BVPs consist of multiple Newton steps which depend on initial guess

and convergence criteria. In contrast, IVPs are solved using Runga-Kutta methods, which do

not involve any iterative Newton methods.

9.5.3 Automatic Differentiation

Generally, the numerical computation of a BVP consists of meshing the time domain and tran-

scribing it into a finite-dimensional algebraic system of the form:

F (Y,c) = 0, F ∶M ×C →M, (9.17)

where Y ∈ RM is the discretized state y(s) over the mesh. Then, the gradient of the function

G(Y,c) with respect to c reads

dG
dc
= GY Yc + Gc, (9.18)

where GY ∈ RM×1 and Gc ∈ RM×C are the partial derivatives of the function G with respect to

the state Y and control parameter c respectively. Since, G is a function of Y and c, the gradients

Gc and GY can be evaluated. However, computing Yc is not a straightforward process and is

evaluated from the collocation equations of the BVP (9.18). After differentiating (9.17) with
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respect to c, we obtain

FYYc +Fc = 0,

where FY is a M ×M matrix, and Fc is a M × C matrix. Then, for an invertible FY, the

gradient Yc is evaluated as

Yc = −F−1Y Fc. (9.19)

On substituting 9.19 in 9.18, we get

dG
dc
= −[GY F−1Y ]Gc +Fc = −GY [F−1Y Fc] + Gc.

As indicated by the different parenthesizing, this expression can be evaluated in two ways. In

the first method (also termed as Adjoint Gradient Computation), the matrices are multiplied first

Γ = [GY F−1Y ] ∈ RM×1, which corresponds to a solution of adjoint equation

FYΓ̃T = GTY , (9.20)

and then we multiply Γ̃ with Gc. Combining everything, we get

dG
dc
= −ΓFc + Gc.

The last step involves the multiplication of M × 1 matrix with M × C, and it requires M × C
evaluations. The adjoint problem (9.20) can use the intermediate elementary operations that

result from Newton’s step of solving (9.17), and its solution would not be harder.

In the second method, the matrix Λ̃ = F−1Y Fc is evaluated and then substituted in (9.18) to

give −GY Λ̃ + Gc. The multiplication of M ×M matrix by a M ×C requires M2C evaluations

and costsO(M2C). Evaluating gradients GY using either method is not always straightforward.

Moreover, calculating the jacobian FY ∈ RM×M becomes challenging for larger systems.

In summary, a gradient-based optimization framework has been developed to model various

robot navigation tasks. The numerical algorithm to solve the resultant system has also been

outlined. In the next chapter, this methodology will be applied to model several prototypical

tasks for CTCRs.
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Case studies

In this chapter, we test the proposed optimal control-based navigation framework using a three-

tube CTCR. The mechanical properties of the constituent tubes of the CTCR are listed in Ta-

ble 10.1. We consider test tasks like controlling the robot to guide its tip to a desired location

and orientation, moving along a desired path. These numerical examples are solved with mat-

lab’s fmincon library, employing either an SQP or a interior point algorithm (section 8.4). All

the presented numerical computations and results are in dimensionless units. In our context, for

instance, if 1 unit force corresponds to 1 Newton, then 1 unit length corresponds to 100mm.

10.1 Minimum Working Volume

In the first example, we consider maneuvering the robot such that its tip moves from an initial

point rinit to a target point rtar with a minimum working volume.

10.1.1 Using deviation term from the FTL curve

To gain a better understanding of the objective functions in the optimization framework, we

focus only on a subset of them and investigate their interplay. In the current example, only the

objectives that quantify the target-pursuit M1(y, λ̄), working volume J2(y), and regularization

term J3(w) are included. Subsequently, the resultant optimization task involves minimizing the

combined objective:

J(y,w) = λ̄0M1(y, λ̄) + λ̄2J2(y) + λ̄3J3(w).

Each section’s length Li is also subjected to an upper bound, as the rod lengths are finite.

0 ≤ Li(t) ≤ 0.8.

Option Tube 1 Tube 2 Tube 3

Bending Stiffness K[i]11 (×104N.mm2) 1.0 1.2 1.4
Torsion Stiffness K[i]33 (×104N.mm2) 1.0/1.3 1.2/1.3 1.4/1.3
Precurvature vector (mm−1) [1/200,0,0] [1/125,0,0] [1/100,0,0]
Maximum Length (mm) 330 220 110

Table 10.1 Parameters of the CTCR used in the examples.

147
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Moreover, this bound serves to prevent the occurrence of snapping during intermediate

paths. In some instances, the BVP solver utilized within the optimization problem may en-

counter issues attributed to the singular Jacobian matrix of the BVP collocation equations,

resulting in an abrupt termination of the solver. Typically, these situations arise in the close

vicinity of the hysteresis regions. As a consequence, the optimization task remains incomplete.

Therefore, this bound is crucial in preventing the optimization solver from reaching these un-

desirable intermediate iterations. In these numerical experiments, we set λ̄ = 0 in (9.5), as the

tip’s orientation is irrelevant here. The effectiveness of the proposed minimum deviation objec-

tive (9.9) in reducing the working volume is examined by comparing the cases with different

values of λ̄2. Throughout this numerical testing, the weights λ̄0 and λ̄3 are held constant at

their set values: λ̄0 = 400, λ̄3 = 5. The investigation is conducted with distinct values of λ̄2:

0, 20, and 50. The curve corresponding to the follow-the-leader configuration with controls

yFTL = [0.5,0.5 + π,0.5 + π,0.4,0.6,0.5] is employed as the reference or mean curve, and for

evaluating the objective (9.9). For this numerical experiment, initial control parameters are set

at y(0) = [0.5,3.64,3.84,0.4,0.6,0.5], and a target point rtar = [−0.4,0.0,1.0] is specified.

No tip load F = 0 is applied for this present example (Dhanakoti et al., 2022). CTCR configu-

rations corresponding to the initial parameter y(0) are given as initial guesses for all time steps

tk ∈ [0,1]. The optimization is executed with these parameters and the initial states, discretizing

the time interval [0,1] into 10 equal steps.

Figure 10.1 displays the evolution of CTCR configurations for the resulting optimal solu-

tions. The state at each mesh point tk is obtained by solving BVP (9.1) and is plotted. From

this plot, it is evident that the primary goal of reaching the prescribed target rtar has been ac-

complished in all cases. At these solutions, the target pursuit objective M1(y,0), which is the

distance between the tip at final time t = 1 is close to zero, typically in the order of 10−4. Nev-

ertheless, they followed different paths depending on the value of λ̄2. Figure 10.2 portrays the

evolution of control parameters y as a function of time t.

When the coefficient of the minimum deviation measure J2, i.e., λ̄2, is zero, the goal is to

steer the robot tip to the target rtar with a minimal regularization term. This scenario arises

when the control parameters follow a linear function of time t. The plots of control parameters

for λ̄2 = 0 in Figure 10.2 appear as straight lines and support this argument. For non-zero values

of λ̄2, the robot minimizes the deviation measure J2 by navigating along different paths. The

reduction in the objective functions can be qualitatively observed in Figure 10.1, and quantitative

results are presented in Table 10.2. The comparison of results between the interior points and

SQP algorithms is also given in this table. Clearly, the SQP algorithm occasionally leads to

different local minima with higher objective J . Additionally, we observe that the deviation

from FTL measure J2 decreases as the value of λ̄2 increases. Moreover, the value of the optimal

objective function J , which is the value of J at the optimal solutions, increases with an increase

in λ̄2.
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Fig. 10.1 The CTCR navigation with its tip traversing from rint to rtar for different values of
λ̄2 and zero tip load. The robot’s sections are shown in distinct colors. Solid lines depict the
initial and final states, while light dotted lines represent intermediate states. Traces of the tip
for different penalization λ̄2 are depicted by dashed lines in green, magenta, and cyan colors,
accompanied by arrows indicating the direction of tip motion.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

2

3

4

Time t

θ i
(t

)

Plot of rotation of tubes as a function of time t

θ1 θ2 θ3 :λ̄2=0
θ1 θ2 θ3 :λ̄2=200
θ1 θ2 θ3 :λ̄2=500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

Time t

L
i(

t)

Plot of lengths of tubes as a function of time t

L1 L2 L3 :λ̄2=0
L1 L2 L3 :λ̄2=200
L1 L2 L3 :λ̄2=500

Fig. 10.2 The evolution of the control parameters y(t) for different values of λ̄2 and zero tip
load.
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λ̄2
Interior points SQP

Deviation term
J2

Objective
J

Deviation term
J2

Objective
J

0 0.1626 22.2913 0.1350 37.7769
20 0.0889 23.4912 0.0744 74.7285
50 0.0572 26.5512 0.0490 84.6655
100 0.0391 26.3962 0.0347 27.5167
200 0.0283 30.9722 0.0250 30.3194

Table 10.2 Effect of the penalizing weight λ2 on the deviation term (as calculated in (9.9) and
the objective J

A closer inspection of Figure 10.2 reveals an interesting pattern in the evolution of control

parameters y(t). For non-zero λ̄2, the angular components of the control parameters (θi(t))
appear almost straight and deviate very slightly from the straight lines for the case of λ̄2 = 0.

On the other hand, the length control parameters Li(t), for non-zero λ̄2, are non-straight and

deviate significantly from the straight lines observed for the case of λ̄2 = 0. This finding sug-

gests that the objective function J2 is more sensitive to variations in the length control Li(t)
compared to that of the angle controls θi(t). As a result, the optimization algorithm is predom-

inantly influenced by alterations in Li(t) rather than in θi(t). For higher λ̄2, the lengths of the

sections reduce during the initial phase of the motion and subsequently elongate to reach the

target during the final phase, thereby reducing the deviation measure J2. We also notice that the

control parameters at the final time t = 1 are different for each path, and yet they correspond to

the same tip position within a certain tolerance. As highlighted earlier, the various combinations

of control parameters at the final time t = 1 can lead to the same tip location. These end control

parameters depend on the nature of the objectives under consideration.

Now, we incorporate a concentrated tip load into the setup and perform the optimization.

A load F = −0.1e1 − 0.15e2 − 0.12e3 is applied to the tip (∆ = [0,0,0]), and optimization is

performed with the same penalizing weights as before. Figure 10.3 illustrates the evolution of

the robot configurations with the tip load during this maneuver, and Figure 10.4 displays the

control parameters y vs. time t plot. The optimal solutions exhibit qualitative similarities to

those of the previous unloaded case, and similar qualitative trends are noted. For instance, the

length controls Li(t) decrease during the initial phase of the motion and increase during the

final phase. Figure 10.5 shows the plot of deviation from FTL as time t evolves. The area under

this curve corresponds to the value of the objective J2, which decreases as λ̄2 increases. The

value of J2 depends on the deviation from the reference FTL curve as well as CTCR’s length

(L1 + L2 + L3). The smaller value for λ̄2 = 200 is due to the smaller length of CTCR in the

intermediate steps, as evident from Figures 10.3,10.4. Additionally, the angle controls θi(t)
remain relatively straight and deviate only slightly compared to length controls Li(t), which

exhibit significant deviations from the straight lines observed for λ̄2 = 0. However, the results

quantitatively differ. The tip load deforms the robot’s shape, leading to different values of ob-

jective functions. Consequently, the optimal solutions yield different sets of control parameters

y(t).
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Fig. 10.3 The CTCR navigation with its tip traversing from rint to rtar for different values of
λ̄2 and with a non-zero tip load. The description of the elements in the plot is identical to that
of Figure 10.1. The load vector is also indicated at initial and final states.
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Fig. 10.4 The evolution of the control parameters y(t) for different values of λ̄2 in a scenario
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Fig. 10.5 The plot of the deviation from the FTL term (9.10) vs. time for different values of λ̄2.

The conserved quantities (discussed in section 6.5 ) are employed to set tolerances in the

BVP solvers embedded within the optimization setup. The states of the robot are solved as a

BVP using the bvp4c function inside the optimization scheme. This BVP solver employs a col-

location formula to compute solutions. The numerical solution is based on the mesh of points at

which the given ODEs are satisfied. Matlab adaptively varies this mesh size based on the resid-

ual of the solutions, ensuring that the computed solution is an exact representation of the given

problem within a certain tolerance. Relative tolerance is the measure of the residual relative to

the size of the function. We set these tolerance values by comparing the Hamiltonian H of the

CTCR (6.19) (not to be confused with the Hamiltonian function of the optimal control problem)

along the BVP solutions for different values of tolerance. Figure 10.6 shows the comparison of

errors in the Hamiltonian for various values of relative tolerance. The error in Hamiltonian is

on the order of 10−5 with a relative tolerance of 10−2, and it improves to an order of 10−9 as the

tolerance is tightened to 10−5. Additionally, there is a rise in the number of mesh points (shown

in circles) for this tolerance setting.

Now, we shall discuss the effect of using gradients computed through finite differences

(using IVPs subsection 9.5.2) and Automatic Differentiation (subsection 9.5.3). Table 10.3 pro-

vides a comparison of the values of the objectives J for the optimal solutions computed using

both of these methods. In all cases, the overall objective J computed using Automatic Differen-

tiation is lower than that computed using finite differences. The gradients approximated through

finite differences bring the system closer to the minimum value. However, as the optimization

progresses, approaching further closer to the minimum becomes increasingly challenging. The

deviation of the approximated gradients from the actual gradients hinders the accurate determi-

nation of the minimizing direction. As a consequence, the system may not continue its approach

towards the optimal value. In addition, the current problem is highly nonlinear and has multiple

local minima. It is also possible that the solver gets trapped in a region around a local optimal

solution. The inaccuracies in the approximated minimizing directions might hinder the system

from escaping this trapped region.
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Fig. 10.6 Error in the Hamiltonian of CTCR for different relative tolerances in BVP solver.

λ̄2 J (using Finite differences) J (using Automatic Differentiation)

0 20.8425 19.2343
20 23.6093 21.4892
50 24.4342 23.4240
100 26.0259 25.5992

Table 10.3 Effect of the gradients computed using Finite Differences (IVPs) and Automatic
Differentiation on the optimization task.
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10.1.2 Sweep area

Now, we utilize the sweep area (9.11) as a working volume measure and perform the optimiza-

tion. A concentrated load F = −0.1e1 − 0.15e2 − 0.12e3, which is the same as the prior case,

is applied to the tip (∆ = [0,0,0]) for this study. The evolution of the control parameters and

the CTCR configurations for the resulting optimal solutions are presented in Figure 10.7 and

Figure 10.8, respectively. In addition, Table 10.4 presents the computed value of sweep area J2
and the overall objective J at the optimal solutions. An increase in penalizing weights leads to

a decrease in the sweep area measure J2, highlighting the optimization framework’s effective-

ness. Similar to the cases in the preceding section 10.1.1, the sweep area objective function is

sensitive to the length controls Li(t). The swept area of CTCR is minimized by reducing its

length in its initial phase of motion and then elongating it in the final phase. For higher values

of λ̄2, the optimization leads to a path where Li(t) is initially reduced close to zero length and

subsequently increased in the final stage. The θi vs. t plots are straight and deviate very slightly

compared to Li vs. t plots. Its value is smaller in comparison to the deviation from the FTL

objective for the identical path.

λ̄2 Sweep area J2 Final Objective J

0 0.4566 22.4121
5 0.3316 22.855
10 0.2117 23.8461
20 0.1987 25.8542
40 0.1479 29.2434

Table 10.4 Effect of the penalizing term λ̄2 on the sweep area and the objective.
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(a) Projection in e2-e3 plane (b) Projection in e1-e2 plane 
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Fig. 10.8 The loaded robot navigating with its tip traversing from rint from rtar for different
penalization of sweep area. The initial and final states of the robot are illustrated in solid lines
whereas the intermediate states are illustrated in light dotted lines. The traces of the tip for
different penalization λ̄2 are shown in dashed lines of green, magenta, and cyan colors, accom-
panied by arrows indicating the direction of the tip motion.
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10.1.3 Restricting the length-control parameters

In all the illustrated examples, a common observation is that the objective J2 (deviation term as

well as sweep area) is more sensitive to variations in the length controls Li(t) than to variations

in the rotation controls θi(t). Therefore, we conduct the study by restricting the length controls

Li(t). In this scenario, we assume that the objective function J2 depends exclusively on the

rotation controls θi(t). We assume that the gradient of this objective function has only com-

ponents with respect to angle controls θi(t) and no components related to the length controls

Li, i.e., ∂J
∂Li
= 0. Consequently, the search directions during intermediate optimization stages

are primarily influenced by changes in the angle controls θi(t) rather than the length controls

Li(t). Figure 10.9 displays the CTCR configurations obtained for this optimization problem,
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Fig. 10.9 The navigation of the loaded robot with its tip reaching rtar from rint for different λ̄2.
The robot’s sections are shown in different colors black, red, and blue corresponding to sections
with 3, 2, and 1 tube, respectively.
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whereas Figure 10.10a displays the evolution of the control parameters. On comparing with

Figure 10.3b, we notice that the angle control parameters θi(t) are not straight and deviate sig-

nificantly from straight lines. On the other hand, the length controls Li(t) are straight as their

evolution is solely dictated by the regularization term (J3). Higher values of the penalizing

weights λ̄2 are necessary to notice any significant qualitative changes in the robot path. Fig-

ure 10.10b depicts the plot of evolution of the objective deviation from FTL (J2). The area

under the curve significantly decreases with the increase in the weight λ̄2. The deviation tends

to approach zero during intermediate time steps when subjected to higher penalization. This

indicates that the CTCR configuration closely aligns with the reference FTL curve at interme-

diate steps during the maneuver. These findings suggest that by constraining the length controls

and emphasizing the rotation controls, it is possible to steer the robot closer to the FTL curve,

thereby reducing the working volume for a given task.
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Fig. 10.10 Robot navigation when its length controls Li(t), i = 1,2,3 are restricted. a) The
evolution of control parameters y(t) for different values of λ2. b) The plot of deviation from
the FTL vs. t. The area beneath this curve represents the value of the objective J2 (9.10).
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10.2 Fixed Tip Orientation with Adjustable Position

In this example, we extend the optimization framework to include the robot’s tip orientation

d3(y(t), l1), as well as the target path rpath(t) in the maneuvering task. We intend to steer the

robot tip close to a prescribed path rpath(t) and tip orientation path npath(t). The straight line

between the initial point rinit and the target rtar is specified as target path rpath(t) ∀t ∈ [0,1]:

rpath(t) = (1 − t) ∗ rinit + t ∗ rtar, (10.1)

and a fixed tip orientation of d3(y(t), l1) is provided as npath(t). The covered volume objec-

tive J2 is not considered here: since the tip is constrained to move along a path rpath(t), they

might have conflicting actions against each other. In addition, we can gain a proper insight into

their individual effects by focusing on fewer objectives. The current goal of steering the robot

such that its tip stays close to a fixed tip orientation can be formulated either as (i) a deviation

penalty in the objective, or (ii) an inequality constraint.

In the first case, the optimization problem reads

Minimize J(y,w) = λ̄0M1(y, λ̄) + λ̄1J1(y, λ̄) + λ̄3J3(w),

subject to the constraints

yi(tk+1) − y1(tk)
tk+1 − tk

=wi(tk+1/2),

0 ≤ Li(tk) ≤ 0.9.

The penalizing weights λ̄o = 5, λ̄1 = 400, λ̄2 = 0, λ̄3 = 40 and an initial configuration with

control parameters y(0) = [0.5,3.64,3.84,0.4,0.6,0.5] are used for all cases in this section.

We study the effect of penalization for deviation of the tip orientation by exploring cases with

weights λ̄ = 0,1 and 5. The time interval [0,1] is discretized into 10 equal intervals, and the

optimization is performed over this mesh. The rpath(tk) is obtained at mesh points tk using

(10.1). The target point rtar is chosen as [−0.265,0.2324,1.45]T .

The robot’s motion is depicted in Figure 10.11a after obtaining the equilibria for the resultant

optimal solutions at the mesh points tk. The evolution of the angle between the tip tangent and

the target vector ntar:

Θ(t) = cos−1 (d3(y(t), l1) ⋅ ntar) , (10.2)

is also shown in Figure 10.11b. When λ̄ = 0, the goal is to steer the robot tip to a target rtar,

while remaining close to the specified path rpath(t) without accounting for tip orientation. The

tip is constrained to move along the straight line connecting rinit and rtar by penalizing its

deviation from this path. Using non-zero penalization weights λ̄ in (9.7), the robot tip is guided

closely to the specified target vector ntar. The Θ(t) reaches its maximum value at the final time
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Fig. 10.11 a) The evolution of the CTCR as its tip moves from an initial point rinit to a target
rtar = [−0.01,0.12,0.78]T . The initial states and the final states are shown in solid lines,
whereas intermediate states are shown in dotted lines. The traces of the tip for different values
of λ̄ are shown. b) The plots of the angle Θ vs. t for different values of λ̄.

t = 1 during the navigation. When the tip’s deviation from ntar is penalized by using λ̄ = 1, the

maximum value of Θ(t) is decreased to approximately 7○. Upon increasing the penalization λ̄

to 5, the maximum angle is further reduced to around 5○. We can also notice that the CTCR

configurations at the final time t = 1 are different for different cases of λ̄. However, they point to

the same tip location within different tolerances, but different tip orientations, as evident from

the final states (t = 1) in Figure 10.11a and the values of Θ(1) in Figure 10.11b.
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We now formulate the robot navigation using an inequality constraint on Θ(t), which de-

notes the angle between the tip tangent d3(y(t), l1) and the target vector ntar. A tolerance

angle θtol is imposed, and penalizing term λ̄ = 0 is chosen in the objective function in (9.6). The

inequality condition:

Θ(t) ≤ θtol, or cosΘ(t) ≥ cos θtol, (10.3)

ensures the tip alignment. The plots of robot navigation for different values of θtol are depicted

in Figure 10.12a. In Θ vs. t plot (Figure 10.12b), it is evident that for higher values of θtol, the
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Fig. 10.12 a) The evolution of the CTCR as its tip moves from initial point rinit to rtar =
[−0.01,0.12,0.78]T . The traces of the tip for different values of λ̄ are depicted. b) The plots of
the angle Θ vs. t for different values of θtol.
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inequality constraint remains inactive, i.e., the value of Θ(t) never reaches this specified toler-

ance θtol for any t ∈ [0,1]. When the value of θtol is reduced to 10○, the inequality constraint

becomes active, attaining θtol value only at the final time t = 1. Further reduction of θtol to 5○ ac-

complishes our objective, with the maximum value of Θ(t) solely attained at the final time t = 1.

In certain scenarios, it may not be possible to steer these robots to configurations with a

desired tip point and orientation. For example, consider a task where a robot tip is required to

reach a farther target point rtar = [−0.265,−0.55,1.45]T with a minimum deviation of its tip

from its initial tip tangent direction. We solve this optimization problem using an inequality

constraint. Optimization is performed with three cases of θtol, namely no constraint θtol = 180○,
θtol = 15○, and θtol = 7○. Figure 10.13 portrays the evolution of robot configurations and Θ(t)
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Fig. 10.13 The evolution of the CTCR as its tip moves from an initial point rinit to rtar =
[0.160,0.167,0.767]T with its tip orientation restricted through the inequality constraint Θ ≤
θtol. a) The time evolution of the robot state for different values of θtol. b) The Θ vs. t plot
during the navigation for different values of θtol.
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during this navigation task. When no inequality constraint is imposed on the tip orientation, the

primary goal of guiding the robot tip to rtar is accomplished. However, when the inequality is

enforced with a tolerance of 15○, the optimization algorithm fails to determine a local minimum

solution in which the tip reaches the target rtar. The robot attains a configuration where its tip

approaches close to the target rtar without violating the inequality constraint. On further tight-

ening the tolerance to 7○, the distance between the final tip position and rtar increases. From

Figure 10.13b, we notice that the inequality constraint in the cases of θtol = 15○ and θtol = 7○ is

active for a brief period of motion in the time interval [0,1], unlike the prior case, where it is

active only momentarily at t = 1.

In these circumstances, the solutions cannot be further improved without compromising any

objectives, and therefore, they lie on the pareto front or pareto outcome (Section 8.5). One of

the competing objectives must be degraded to attain the desired goal. In the present context, if

reaching the target point is the primary goal, then the value of θtol must be further increased.

10.3 Fixed Tip Position with Adjustable Orientation

In the final example, we intend to direct the robot tip to a prescribed orientation ntar while

maintaining its position fixed. The prescribed path in (9.7) is provided as a single point for this

purpose, i.e., rpath(t) = rinit = rtar, which means the robot’s tip is required to remain at this

location throughout the maneuver. Optimization is performed by penalizing the deviation of the

robot tip from the target rtar. The penalizing terms λ̄0 = 400, λ̄1 = 100, λ̄2 = 0 and λ̄3 = 5,

and an initial configuration with control parameters y(0) = [0.5,3.64,3.84,0.4,0.6,0.5] are

used for the implementation. Figure 10.14 shows the evolution of robot configurations as its

tip tangent approaches the target ntar = [0,0,1]T while ensuring that the tip remains closer

to the target rtar. We implemented the optimization by employing λ̄ = 0 in intermediate path

and λ̄ = 2,3 at the final time. In every situation, aligning the tip precisely along the specified
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Fig. 10.14 a) The maneuver of the CTCR with its tip staying close to the initial point rinit ≡
rtar and the tip tangent (in magenta) approaching the target ntar = [0,0,1]T (in black). b)
The enlarged view of the region around the tip is shown clearly indicating the target ntar and
intermediate tip tangents during the maneuver.
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Fig. 10.15 The plot of Θ as a function of time t. Its value approaches ≈ 5○ at the final time
(t = 1).

target ntar may not be feasible. In these instances, the tip aligns as closely as possible with the

target orientation ntar. In this illustration, the tangent of the robot tip at the final time t = 1

is [0,0.08,0.99]T and is indeed closer to ntar. In addition, the tip deviates slightly from rtar

during the maneuver. The evolution of the angle between the tip tangent and the target vector Θ

is displayed in Figure 10.15. We notice that the angle Θ decreases, indicating that the robot tip

is aligning with ntar. The value of Θ approaches zero, although never quite reaches it in this

example.

10.4 Outlook

We formulated an open-loop, gradient-based navigation method for steering CTCRs in various

tasks, which encompass tip path, tip orientation, and covered volume considerations. The ob-

tained numerical results align with the expected outcomes and intuition. These optimization

problems simulate several surgical tasks and may aid in the planning of precise and dexterous

activities. For instance, the second example where the robot is guided to follow a specified path

while maintaining a prescribed tip orientation, simulates gentle insertion of a needle into tissue

with slight orientation adjustments. The third example, where the robot maintains its tip loca-

tion while changing its orientation, mimics the cutting or tearing operation, where the robot tip

holds a piece of tissue and changes its orientation with minimal positional adjustments. The pre-

sented examples illustrate the wide range of precise and dexterous activities achievable through

optimization techniques.
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CHAPTER 11

Conclusions and Future work

We have investigated the behavior of tip-loaded intrinsically curved elastic rod structures clamped

at one end using variational principles. Intrinsic curvature is often neglected in studying rod

problems as it stimulates complicated mechanics and geometrically nonlinear behavior. This

study is of scientific significance as it has potential applications in the rapidly evolving field of

soft robotics. Many soft robotic devices utilize intrinsically curved rods or a combination of

them to generate flexible mechanisms, such as in CTCRs. We have presented the mechanical

model of the elastic rods and CTCRs subject to a tip load and analyzed their stability properties.

Furthermore, we integrated this mechanical model with the optimal control techniques to cast

the robot navigation as an open-loop optimal control problem.

The equilibria of these relevant elastic rod structures were obtained as stationary points of

an energy functional, resulting from strains in the elastic rods as well as the work performed

by external forces and moments. We adapted the classic Jacobi condition Bolza (1904), gen-

erally shown only for fixed-fixed boundary conditions, to the problems with fixed-free bound-

ary conditions to verify if these equilibria are local minimizers. The Jacobi operator of this

class of problems has similar properties (self-adjoint) as that of the case with fixed-fixed ends,

and, as a consequence, we extended the notion of Morse index to them. To replicate the real-

world application, we expressed the variational problem in terms of varying parameters at the

clamped end. In our applications, this parameter characterized the rotation, and the system is

2π- periodic about it. We verified that if distinguished bifurcation diagrams also agree with

the unconstrained calculus of problems subject to fixed-free boundary conditions, and when the

parameter acts through non-homogenous boundary conditions. Additionally, we generalized the

concepts of Jacobi condition, the notion of the index, and distinguished bifurcation diagrams to

the problems with the discontinuous integrand by utilizing the matching conditions at the points

of discontinuity.

The results discussed in Chapter 5 have revealed new insights into the impact of intrinsic

curvature on the hysteresis behavior of tip-loaded elastic rods. We applied Kirchhoff Rod theory

to model the elastic rods, and the Hamiltonian formulation of the equilibria Dichmann et al.

(1996) provided the equilibria for varying clamp angles. Their stability was analyzed by com-

puting the conjugate points. For smaller curvatures, the rod exhibited only stable equilibria,

whereas, for higher curvatures, it exhibited several unstable equilibria, implicating a snap-back

instability. The rod assumed multiple spatial equilibria for the same clamp angle, depending
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on its history, and hence; for this reason, we used the term hysteresis. Interestingly, only the

intermediate values of the loads or rod lengths resulted in this hysteresis behavior. The increase

in the tip load or tube length destabilized some equilibria and later stabilized them. This result is

in stark contrast to the case of naturally straight rods, where an increase in length or load never

had a stabilizing effect on the equilibria. For instance, in the case of intrinsically straight rods,

if we increase the tip load or rod length beyond the critical buckling point, the trivial solutions

become unstable and do not stabilize with a further increase in load or length. The bifurcation

surface plots presented a better understanding of the dependence of hysteresis on the system

parameters. In all cases, we found that the snapping region only existed as an isolated island

within the parameter space. These findings have implications for the design and control of a soft

robotic arm where its length or tip-load can be varied to approach or evade the snapping motion.

Another significant finding was the impact of the torsion component and the arm of the lever

arm on the hysteresis behavior. Both parameters acted as symmetry-breaking parameters of the

system. In addition, for some values of these parameters, we obtained five spatial equilibria for

the same clamp angle, three of which are unstable. In this scenario, the distinguished bifurcation

diagrams accurately predicted the index for these equilibria. However, the index of one equi-

librium must be determined using conjugate points along the solution path to employ these plots.

We limited our study to rod lengths smaller than the full circle. A further extension would

be to consider studying full circle or n-circles. For such problems, the problem of self-contact

should also be addressed. Multiple equilibria with an index greater than two are expected. In

these cases, the distinguished bifurcation diagrams come in more handy. Finally, extending the

study to elastic rods with mass or elliptic cross-sections could yield interesting results. Another

possible extension would be to include the constrained case where the free end of the elastic rod

is held at a fixed location (not clamped) instead of a dead load. This scenario would mimic the

ratchet behavior of the guide wires (Warner, 1997). This so-called isoperimetric case would

represent a slight generalization of the study by Manning et al. (1998).

The extended Jacobi condition was used to analyze the stability of CTCR configurations

subject to tip loads. The backbone of CTCRs is analogous to a naturally curved elastic rod for

any fixed imposed angles of the tubes at the root and, therefore, inherits its non-linear charac-

teristics. Moreover, it consists of multiple sections with piecewise properties, further increasing

the complexity. In CTCRs, snapping can occur when the relative rotation of tubes is varied or

when the tip load changes its direction and a combination of them. The former case is well

known. We studied the effect of tip load on hysteresis behavior using distinguished bifurcation

diagrams. The ability of the tip load to act as a stabilizing agent or a destabilizing agent facil-

itates better for snapping-related tasks. We investigated the hysteresis behavior in a three-tube

CTCR and demonstrated the effect of coupling between the sections and the tip load. In such

instances, multiple instances of hysteresis were observed as the parameter was varied from 0 to

2π. Distinguished bifurcation diagrams are less informative when only two folds are present.

The 2π periodicity of the system with respect to the bifurcation parameter, coupled with the

property of the bifurcation diagrams indicating that stability changes at the fold, allows us to
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demonstrate that the index oscillates between 0 and 1 between two folds. However, these dia-

grams are useful when there are more than two folds. In all these instances, the prediction of

the index in the diagrams is verified through the computation of conjugate points. These results

have the potential to enhance planning for more complex tasks with CTCRs. In addition, the

conserved quantities arising from the Hamiltonian formulation were used to verify numerical

accuracy and convergence. The impact of mesh size and the collocation points on the accuracy

was highlighted. These quantities can be employed as benchmarks for setting several parame-

ters within the numerical framework. For example, the effect of gradients supplied to Newton’s

method via finite differences or analytical expressions can also be verified.

The effect of clearances between the concentric tubes on the CTCR equilibria and their equi-

libria would be a natural extension of this work. In addition, the isoperimetric case where the

tip of the CTCR is held (either clamped or fixed) would be an interesting case to be considered.

This scenario is relevant in medical procedures where the manipulator at the tip holds onto tis-

sue while performing tasks such as cutting or suturing.

We integrated the mechanical model of the CTCR with optimal control techniques to math-

ematically cast the robot’s navigation as a constrained optimal control problem. A numerical

approach was described to solve the problem, and the results demonstrate the feasibility of

this method for optimization-based navigation tasks. The proposed objectives, particularly the

minimum deviation objective and sweep area, achieved the desired tasks and exhibited the an-

ticipated qualitative behavior. Some objectives may have conflicting aims in certain situations,

where they should be penalized and degraded accordingly. The study also incorporated cases

involving tip orientation during CTCR navigation, which has been previously under-explored in

the literature. This investigation facilitates the design and planning of more complex tasks.

The current optimization framework often minimizes the covered volume or deviation term

by shortening and elongating the robot in the initial and final period of motion in many instances.

The effect of suppressing the dependence of this objective on length parameters, i.e.,Li(t) was

also examined. The presented objectives may have less conflicting effects on each other when

highly flexible CTCRs with more tubes are used. In such situations, multiple configurations

can satisfy the required objectives, enabling a compromise solution that meets the requirements

of conflicting objectives. However, it is computationally complex to solve problems with more

than three tubes. Additionally, our study did not incorporate obstacle avoidance. It can be in-

cluded in the current framework by adding an objective function given by Lyons et al. (2009);

Flaßkamp et al. (2019).

The current optimization framework did not address the snapping-related issues but instead

avoided them by imposing constraints on the length of the tubes. The stability of the equilib-

ria was not determined in the optimal control framework, and the path obtained might lead to

a snapping motion. However, the BVP solver in the optimization framework failed near the

points closer to folds as the Jacobian of the collocation equations approached singularity in this
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vicinity, causing an abrupt termination of the optimization program in matlab. A mathematical

mechanism that keeps the system away from the fold-bifurcations is necessary to obtain the

snap-free path. The conjugate point computation has the potential to serve as a proximity mea-

sure to the unstable region and can be used as a concept of proof to guide the system away from

the unstable regime. For example, the determinant of the stability matrix at the fixed end, i.e.,

s = 0 in our case, can serve as a measure of proximity to the unstable regime. The closer this

value is to zero, the closer the system is to the hysteresis region. This measure can be employed

in optimal control frameworks to ensure that the system operates far from unstable regimes.

Furthermore, this approach can be employed to guide the system close to the unstable regions.

In these scenarios, the snapping can be utilized for energy-harnessing applications.
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Appendix A

Strum-Liouville Problem

We first present the results of the standard Sturm-Liouville operator usually applied on a scalar

variable y(s). A second-order self-adjoint operator given by

Ly(s) ≡ − d
ds
[p(s) d

ds
y(s)] − q(s)y(s),

and satisfying the following boundary conditions in the Hilbert space L2(0, l)

α1y(0) + α2y
′(0) = 0, α2

1 + α2
2 > 0,

β1y(l) + β2y′(l) = 0, β21 + β22 > 0,

is called Sturm-Liuoville operator (Teschl, 2012). The functions p(s), q(s) and p′(s) are as-

sumed to be continuous real functions and the p(s) is positive definite for all s ∈ [0, l]. We have

α2 = 0 for Dirichlet boundary conditions, α1 = 0 for Neumann boundary conditions, and a com-

bination of these conditions for Natural boundary conditions. Then, consider the eigenvalue

problem

Ly = ρ(s)y, d

ds
(p(s)dy

ds
) + q(s)y(s) + ρy(s) = 0.

The combination of comparison and separation theorems (Teschl, 2012) leads to the following

properties on the eigenvalues ρ and the eigenfunctions y(s).

1. The eigenvalues ρ1, ρ2, . . . are real and can be numbered so that

ρ1 < ρ2 < ρ3 < . . . ρn . . .∞.

2. Corresponding to each eigenvalue ρn, there exists an unique eigenfunction yn(s) with ex-

actly n − 1 zeros in the interval [0, l].

3. These normalized eigenfunctions form an orthonormal basis under the inner product in

L2([0, l])

⟨yn(s), ym(s)⟩ = ∫
l

0
yn(s)yn(s)ds = δn,m.
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The presented Sturm-Liouville problem for a scalar valued function y(s) can be extended to the

our required vector of functions y(s) after some matrix and operator arithmetic (for e.g. see

Manning et al. (1998)(Appendix)) as long as the operator S is self-adjoint.

Now, we will summarize the properties stated in Chapter 2. First, consider the case with

fixed-fixed boundary conditions where the variations h(s) belong to the class of admissible

variations:

Ad ≡ {h(s) ∈H2[0, l]) ∶ h(0) = 0 = h(σ)} .

Property 1 For a given σ, the operator S has countably infinite number of eigenvalues:

ρ1(σ) ≤ ρ2(σ) ≤ . . . each with finite multiplicity.

Given the Legendre’s strengthened condition, this property is a direct consequence of the

Sturm-Liouville operator.

Property 2 Each eigenvalue ρm(σ) is monotonically decreasing function of σ.

We need some machinery to prove this property. Let ρi be the i th smallest eigenvalue and hi
corresponding eigenfunctions. We define a sequence of subspaces as

A1 = {h ∈ A([0, σ]) ∶ ∥h∥2 = 1},
A2 = {h ∈ A([0, σ]) ∶ ∥h∥2 = 1, ⟨h,h1⟩ = 0},
A3 = {h ∈ A([0, σ]) ∶ ∥h∥2 = 1, ⟨h,h1⟩ = ⟨h,h2⟩ = 0},

and so on. Am is the allowed variation orthogonal to first m eigenfunctions. Then, the eigen-

values of the operator S are given by the variational principle

ρm(σ) = min
h∈Am

⟨Sh,h⟩
⟨h,h⟩ . (A.1)

Consider σ1 < σ2 and define a function ji(s) in the interval [0, σ2] by appending a zero

function to the eigenfunction hi on [0, σ1] as

ji(s) =
⎧⎪⎪⎨⎪⎪⎩

hi(s, σ1), 0 ≤ s < σ1
0, σ1 < s ≤ σ2

, i = 1,2, ...m.

Now choose ak not all zero so that ∑m
k=1 akjk is orthogonal to h1(s;σ2), . . . hm−1(s;σ2) on

[0, σ2]. Then, according to A.1, we have

ρm(σ2) ≤ ∫
σ2

0
[

m

∑
i=1
aiji(s)]S[

m

∑
i=1
aiji(s)]ds.

The integrand vanishes for the appended zero function and therefore, the integration limits can
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be changed to [0, σ1]

ρm(σ1) ≤ ∫
σ1

0
[

m

∑
i=1
aihi(s, σ1)]S[

m

∑
i=1
aihi(s, σ1)],

hi are orthogonal eigenfunctions of S and, therefore

ρm(σ2) ≤
m

∑
i=1
aiakρk(σ)∫

σ2

0
hihkds =

m

∑
i=1
(ai)2 ρk(σ) ≤ ρm(σ1).

Property 3 For σ sufficiently close to 0, the eigenvalues of S are all positive.

The Sturm-Liouville operator can be asymptotically written as a Taylor expansion around

s = 0, and consider only zeroth order terms i.e., p(s) ≈ p(0) and q(s) ≈ q(0)

Ly(s) ≡ − d
ds
[p(0) d

ds
y(s)] − q(0)y(s),

and, consequently, the following eigenvalue problem is obtained

p(0)h′′ + (q(0) + ρ)h = 0. (A.2)

This equation (A.2) has non-trivial solutions of the form

h(s) = a sin (
√
q(0) + ρ) s + b cos (

√
q(0) + ρ) s, q(0) + ρ > 0,

and the boundary condition h(0) = h(σ) = 0 fetches the relation

ρn = −q(0) +
n2π2

σ2
.

For σ very close to zero, the value of ρn is positive for all n.

Now consider the second-order differential operator corresponding to the case with fixed-

free boundary conditions where the variations h(s) belong to the class of admissible variations:

Bd ≡ {h(s) ∈H2[0, l]) ∶ h(l∗) = 0, h′(l) = 0, h(l) = 1} .

Property 1: For a given l∗, the operator S has countably infinite number of eigenvalues:

ρ1(l∗) ≤ ρ2(l∗) ≤ . . . each with finite multiplicity. The second-order Jacobi operator is

a Sturm-Liouville operator for this new set of boundary conditions as long as the Legendre’s

strengthened condition is satisfied. Therefore, the eigenvalues of the S satisfy ρ1 < ρ2 < . . . .

Property 2: Each eigenvalue ρm(l∗) is monotonically decreasing function of l∗.

This proof is a similar generalization of the previous case. If ρi is the i th smallest eigenvalue
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and hi corresponding eigenfunctions. We define a sequence of subspaces as

B1 = {h ∈ A([l∗, l]) ∶ ∥h∥2 = 1},
B2 = {h ∈ A([l∗, l]) ∶ ∥h∥2 = 1, ⟨h,h1⟩ = 0},
B3 = {h ∈ A([l∗, l]) ∶ ∥h∥2 = 1, ⟨h,h1⟩ = ⟨h,h2⟩ = 0},

and so on. Bm is the allowed variation orthogonal to first m eigenfunctions. Then, the eigenval-

ues of the operator S are given by the variational principle

ρm(σ) = min
h∈Am

⟨Sh,h⟩
⟨h,h⟩ . (A.3)

Consider l∗2 < l∗1 and define a function ji in the interval [l∗2 , l] by joining a zero function to the

eigenfunction hi on [l∗1 , l]

ji(s) =
⎧⎪⎪⎨⎪⎪⎩

hi(s, (l∗1)), l∗1 < s ≤ l,
0, l∗2 ≤ s < l∗1 .

Now choose ak not all zero so that ∑m
k=1 akjk is orthogonal to h1(s; l∗2), . . . hm−1(s; l∗2) on

[l∗2 , l]. Then, according to A.3, we have

ρm(l∗2) ≤ ∫
l

l∗2
[

m

∑
i=1
aiji(s)]S[

m

∑
i=1
aiji(s)]ds.

The integrand vanishes for the appended zero function and therefore, the integration limits can

be changed to [l∗1 , l]

ρm(l∗2) ≤ ∫
l

l∗1
[

m

∑
i=1
aihi(s, l∗1]S[

m

∑
i=1
aihi(s, l∗1)].

Here, hi are orthogonal eigenfunctions of S and, therefore

ρm(l∗2) ≤
m

∑
i=1
aiakρk(l∗2)∫

l∗2

0
hihkds =

m

∑
i=1
(ai)2 ρk(σ) ≤ ρm(l∗1),

and by changing the integration limits (ρ1, l) followed by the similar calculations, we obtain

ρm(l∗2) ≥ ρm(l∗1).

Property 3: For l∗ sufficiently close to l, the eigenvalues of S are all positive.

The Sturm-Liouville operator can be asymptotically written as a Taylor expansion around

s = l and consider only zeroth order terms i.e., p(s) ≈ p(l) and q(s) ≈ q(l)

Ly(s) ≡ − d
ds
[p(l) d

ds
y(s)] − q(l)y(s),
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and as a result, we yield the following eigenvalue problem

p(l)h′′ + (q(l) + ρ)h = 0.

This equation has non-trivial solutions of the form

h(s) = a sin (
√
q(l) + ρ) s + b cos (

√
q(l) + ρ) s, q(l) + ρ > 0,

and the boundary conditions h(l∗) = 0 and h′(l) = 0 results in

ρn = −q(l) +
(2n − 1)2π2

4 (l − l∗)2
, n = 1,2, . . . ,∞.

For l∗ sufficiently close to l, the value of ρn is positive for all n.
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Appendix B

Derivatives of Directors

This appendix records the derivatives of directors with respect to q and their projection on

B1q, i = 1,2,3. The directors of the frame with a quadratic normalization are given by

d1 =
1

∣q∣2

⎡⎢⎢⎢⎢⎢⎢⎣

q21 − q22 − q23 + q24
2 (q1q2 + q3q4)
2 (q1q3 − q2q4)

⎤⎥⎥⎥⎥⎥⎥⎦

, d2 =
1

∣q∣2

⎡⎢⎢⎢⎢⎢⎢⎣

2 (q1q2 − q3q4)
−q21 + q22 − q23 + q24
2 (q2q3 + q1q4)

⎤⎥⎥⎥⎥⎥⎥⎦

,

d3 =
1

∣q∣2

⎡⎢⎢⎢⎢⎢⎢⎣

2 (q1q3 + q2q4)
2 (q2q3 − q1q4)
−q21 − q22 + q23 + q24

⎤⎥⎥⎥⎥⎥⎥⎦

.

Then, the expressions for the derivative take the form

∂d1

∂q
= 2

∣q∣2

⎡⎢⎢⎢⎢⎢⎢⎣

q1 −q2 −q3 q4,

q2 q1 q4 q3,

q3 −q4 q1 −q2

⎤⎥⎥⎥⎥⎥⎥⎦

− d1

∣q∣4
[q1 q2 q3 q4] ,

∂d2

∂q
= 2

∣q∣2

⎡⎢⎢⎢⎢⎢⎢⎣

q2 q1 −q3 −q4,
−q1 q2 −q3 q4,

q4 q3 q2 q1

⎤⎥⎥⎥⎥⎥⎥⎦

− d2

∣q∣4
[q1 q2 q3 q4] ,

∂d3

∂q
= 2

∣q∣2

⎡⎢⎢⎢⎢⎢⎢⎣

q3 q4 q1 q2,

−q4 q3 q2 −q1,
−q1 −q2 q3 q4

⎤⎥⎥⎥⎥⎥⎥⎦

− d3

∣q∣4
[q1 q2 q3 q4] .

Dichmann et al. (1996) expressed these derivatives elegantly as

(∂d1

∂q
)
T

= 2

∣q∣2
B3q⊗ d2 −

2

∣q∣2
B2q⊗ d3,

(∂d2

∂q
)
T

= 2

∣q∣2
B1q⊗ d3 −

2

∣q∣2
B3q⊗ d1,

(∂d3

∂q
)
T

= 2

∣q∣2
B2q⊗ d1 −

2

∣q∣2
B1q⊗ d2.
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The projections of these derivatives on the {B1q,B2q,B3q} space by taking the dot-product

gives

∂d1

∂q
⋅B1q/2 = 0,

∂d1

∂q
⋅B2q/2 = −d3,

∂d1

∂q
⋅B3q/2 = d2,

∂d2

∂q
⋅B1q/2 = d3,

∂d2

∂q
⋅B2q/2 = 0,

∂d2

∂q
⋅B3q/2 = −d1,

∂d3

∂q
⋅B1q/2 = −d2,

∂d3

∂q
⋅B2q/2 = d1,

∂d3

∂q
⋅B3q/2 = 0.



Appendix C

Hessian Matrices

This appendix presents the expressions for Hessian matrices that appear in the Jacobi equations.

C.1 Hessian matrices of the Elastic Rods

The expressions for the Hessian matrices of the elastic Rods are

∂2H

∂q2
=

3

∑
j=1

1

4Kj
Bjµ⊗Bjµ −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−n3 0 n1 −n2
0 −n3 n2 n1

n1 n2 n3 0

−n2 n1 0 n3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (C.1)

∂2H

∂q∂µ
= ∂2H

∂µ∂q

T

=
3

∑
j=1

1

4Kj
Bjµ⊗Bjq −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 u3 −u2 u1

−u3 0 u1 u2

u2 −u1 0 u3

−u1 −u2 −u3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (C.2)

∂2H

∂µ2
=

3

∑
j=1

1

4Kj
Bjq⊗Bjq, (C.3)

where u1, u2, u3 are the three components of the strain

u =K−1m + û,

and n1,n2 and n3 are the three components components of constant internal force n(s) = F

along directors d1,d2 and d3 respectively.

C.2 Hessian matrices of the Two-Tube CTCR section

The Hessian for this case is similar to the three-tube section, with strains taking the form

u =Keff
−1m + ũ,
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and the effective stiffness Keff

Keff =K[1] +K[2] =

⎡⎢⎢⎢⎢⎢⎢⎣

K
[1]
11 +K

[2]
11 0 0

0 K
[1]
11 +K

[2]
11 0

0 0 K
[1]
33 +K

[2]
33

⎤⎥⎥⎥⎥⎥⎥⎦

,

where

ũ =Keff
−1
⎛
⎜⎜⎜
⎝
K[1]û[1] +K[2]

⎛
⎜⎜⎜
⎝
û[2] −

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

α[2]
′

⎤⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟
⎠
.

The expressions for α[2]′ is given in terms of Hamiltonian phase variables as

α[2]′ = K
[1]
33 +K

[2]
33

K
[1]
33 K

[2]
33

β[2] − m3

K
[1]
33

+ û[2]3 − û
[1]
3 .

∂2H

∂q2
= 1

Keff1
B1µ⊗B1µ +

1

4Keff2
B2µ⊗B2µ +

1

4Keff3
B3µ⊗B3µ

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−n3 0 n1 −n2
0 −n3 n2 n1

n1 n2 n3 0

−n2 n1 0 n3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

∂2H

∂µ2
= 1

4Keff1

B1q⊗B1q +
1

4Keff2

B2q⊗B2q +
1

4Keff3

B3q⊗B3q,

∂2H

∂α2
== − K

[1]
11 K

[2]
11

K
[1]
11 +K

[2]
11

û
[1]
1 û

[2]
1 cosα[2] + K

[2]
11 û

[2]
1

K
[1]
11 +K

[2]
11

(m1 cosα
[2] +m2 sinα

[2]),

∂2H

∂β2
= 1

K
[1]
33

+ 1

K
[2]
33

,

∂2H

∂q∂µ
= ∂2H

∂µ∂q

T

= 1

4Keff1

Bjµ⊗Bjq +
1

4Keff2

Bjµ⊗Bjq +
1

4Keff3

Bjµ⊗Bjq

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 u3 −u2 u1

−u3 0 u1 u2

u2 −u1 0 u3

−u1 −u2 −u3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

∂2H

∂q∂α
= −K

[2]
11 û

[2]
1

Keff
(û[2]1 sinα[2]B1µ − û[2]1 cosα[2]B2µ) ,

∂2H

∂q∂β
= B3q/2K[1]33 ,
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∂2H

∂µ∂α
= K

[2]
11 û

[2]
1

Keff
(û[2]1 sinα[2]B1q − û[2]1 cosα[2]B2q) ,

∂2H

∂µ∂β
= −B3µ/2K[1]33 ,

∂2H

∂α∂β
= 0.

C.3 Hessian Matrices of the Three-Tube CTCR section

The Hessian for this case is similar to the three-tube section, with strain u taking the form

u =Keff
−1m + ũ,

and the effective stiffness Keff as

Keff =K[1] +K[2] +K[3] =

⎡⎢⎢⎢⎢⎢⎢⎣

K
[1]
11 +K

[2]
11 +K

[3]
11 0 0

0 K
[1]
11 +K

[2]
11 +K

[3]
11 0

0 0 K
[1]
33 +K

[2]
33 +K

[3]
33

⎤⎥⎥⎥⎥⎥⎥⎦

,

where

ũ =Keff
−1
⎛
⎜⎜⎜
⎝
K[1]û[1] +K[2]

⎛
⎜⎜⎜
⎝
û[2] −

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

α[2]
′

⎤⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠
+K[3]

⎛
⎜⎜⎜
⎝
û[2] −

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

α[3]
′

⎤⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟
⎠
.

The expressions for α[2]′ and α[3]′ in terms of Hamiltonian phase variables are

α[2]
′ = β

[2] + β[3]

K
[1]
33

− m3

K
[1]
33

+ β
[2]

K
[2]
33

+ û[2]3 − û
[1]
3 ,

α[3]
′ = β

[2] + β[3]

K
[1]
33

− m3

K
[1]
33

+ β
[3]

K
[3]
33

+ û[3]3 − û
[1]
3 .

Then, the Hessian matrices are given by

∂2H

∂q2
= 1

4Keff1

B1µ⊗B1µ +
1

4Keff2

B2µ⊗B2µ +
1

4Keff3

B3µ⊗B3µ

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−n3 0 n1 −n2
0 −n3 n2 n1

n1 n2 n3 0

−n2 n1 0 n3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

∂2H

∂µ2
= 1

4Keff1

B1q⊗B1q +
1

4Keff2

B2q⊗B2q +
1

4Keff3

B3q⊗B3q,
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∂2H

∂α2
=
⎡⎢⎢⎢⎢⎣

Hα[2]α[2] Hα[2]α[3]

Hα[3]α[2] Hα[3]α[3]

⎤⎥⎥⎥⎥⎦
,

∂2H

∂β2
=
⎡⎢⎢⎢⎢⎢⎣

1

K
[1]
33

+ 1

K
[2]
33

1

K
[1]
33

1

K
[1]
33

1

K
[1]
33

+ 1

K
[3]
33

⎤⎥⎥⎥⎥⎥⎦
,

where

Hα[2]α[2] = −
K
[1]
11 û

[1]
1

Keff
(K[1]11 û

[1]
1 cos(α[2] − α[1]) +K[3]11 û

[3]
1 cos(α[2] − α[3]))

+m1û
[2]
1 cosα[2] +m2û

[2]
1 sinα[2],

Hα[3]α[3] = −
K
[1]
11 û

[1]
1

Keff
(K[1]11 û

[1]
1 cos(α[2] − α[1]) +K[3]11 û

[3]
1 cos(α[2] − α[3]))

+m1û
[3]
1 cosα[3] +m2û

[3]
1 sinα[3],

Hα[2]α[3] = −
K
[2]
11 K

[3]
11 û

[2]
1 û

[3]
1 cos(α[2] − α[3])
Keff

,

∂2H

∂q∂µ
= ∂2H

∂µ∂q

T

= 1

4Keff1

Bjµ⊗Bjq +
1

4Keff2

Bjµ⊗Bjq
1

4Keff3

Bjµ⊗Bjq

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 u3 −u2 u1

−u3 0 u1 u2

u2 −u1 0 u3

−u1 −u2 −u3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

∂2H

∂q∂α[2]
= [−K

[2]
11 û

[2]
1

Keff
(û[2]1 sinα[2]B1µ − û[2]1 cosα[2]B2µ)] ,

∂2H

∂q∂α[3]
= [−K

[3]
11 û

[3]
1

Keff
(û[3]1 sinα[3]B1µ − û[3]1 cosα[3]B2µ)] ,

∂2H

∂q∂β
= [B3q/2K[1]33 B3q/2K[1]33 ] ,

∂2H

∂µ∂α[2]
= [K

[2]
11 û

[2]
1

Keff
(û[2]1 sinα[2]B1q − û[2]1 cosα[2]B2q)] ,

∂2H

∂µ∂α[3]
= [K

[3]
11 û

[3]
1

Keff
(û[3]1 sinα[3]B1q − û[3]1 cosα[3]B2q)] ,

∂2H

∂µ∂β
= [−B3µ/2K[1]33 −B3µ/2K[1]33 ] ,

∂2H

∂α∂β
=
⎡⎢⎢⎢⎢⎣

0 0

0 0

⎤⎥⎥⎥⎥⎦
.



Appendix D

Code Availability

The examples presented in the thesis were implemented either using AUTO-07p or Matlab-

R2023b. The codes utilized for them are available at https://github.com/chekri/

PhD_Thesis. The examples featured in parts 1 and 2 of the thesis, focusing on parameter

continuation, have been implemented using AUTO-07p. The software package AUTO-07p can

be easily installed, and the source file of its latest version was also provided. AUTO-07p exam-

ples are provided along with the script files, and they can be executed using a single command

from terminal. Python codes are employed to generate the plots from the obtained solutions,

and they are also available here. Detailed instructions on running these programs were also fur-

nished. If further details on these codes are required, contact me at chekri.dsp@gmail.com. The

examples featured in part 3 of this thesis, which constitute optimization methodologies have

been implemented using Matlab-R2023b.
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Zusammenfassung

Mithilfe von Variationsrechnung untersuchen wir das Verhalten elastischer Stabtragwerke

unter äußeren Lasten, die an einem Ende eingespannt und am anderen Ende frei sind. Die Sta-

bilitätseigenschaften der Gleichgewichte werden unter Verwendung von Bedingungen zweiter

Ordnung durch Verallgemeinerung der Jacobi’sche Theorie der konjugierten Punkte analysiert.

Der Indexbegriff, der die Dimension des Unterraums der Variationen quantifiziert, über dem die

zweite Variation negativ-definit ist, wird auf diese Klasse von Problemen erweitert. Die Vari-

ationsstruktur der parameterabhängigen Variationsrechnung wird ausgenutzt, um die Änderun-

gen des Index an den Falten in Spezielle Bifurkationsdiagramme vorherzusagen. Wir verallge-

meinern diese Diagramme auf Probleme mit aktuellen feste-frei Enden. Außerdem untersuchen

wir die Stabilität von Variationsproblemen mit diskontinuierlichen Integranden, indem wir das

Konzept der konjugierten Punkte, des Index und der Spezielle Bifurkationsdiagramme auf diese

erweitern. Zu diesem Zweck werden Anpassungsbedingungen zweiter Ordnung an den Un-

stetigkeitsstellen hergeleitet.

Diese Techniken werden mit dem Ziel entwickelt, sie in Soft-Roboter-Anwendungen einzuset-

zen, einem Bereich, der zunehmend an Beliebtheit gewinnt. Einige Anwendungen wie Concen-

tric Tube Continuum Robots (CTCRs), verwenden intrinsisch gekrümmte Stäbe, um flexible

Mechanismen zu erzeugen. Das Zusammenspiel von geometrischen Nichtlinearitäten, externen

Lasten und intrinsischer Krümmung führt zu faszinierendem und komplexem Verhalten, wie

z.B. der Snap-Back-Instabilität. Die Untersuchung der Abhängigkeit dieses Verhaltens von Pa-

rametern wie Eigenkrümmung, Länge, Spitzenlast und Hebelarm der Last hilft bei der effizien-

ten Nutzung in praktischen Anwendungen. Wir erweitern diese Untersuchung auf CTCRs, die

einem in sich gekrümmten elastischen Stab ähneln, aber eine etwas andere Physik aufweisen.

Diese Forschung hilft bei der Entwicklung und Steuerung von Robotern für komplexere Auf-

gaben. Diese Roboter bestehen aus mehreren Abschnitten und ihre Eigenschaften ändern sich

abrupt an den Grenzen der einzelnen Abschnitte.

Schließlich wird eine gradientenbasierte Navigation mit offenem Regelkreis eingesetzt, um

das Robotermanöver mit optimalen Kontrollmethoden zu modellieren. Mit diesem Ansatz wer-

den mehrere komplexe Aufgaben in Form von Zielfunktionen quantifiziert, die optimiert wer-

den. Wir betrachten die optimale Steuerung von CTCRs, die über Pseudozeit parametrisiert

sind, und konzentrieren uns dabei auf die Minimierung des Arbeitsvolumens des Roboters

während seines Betriebs. Eine numerische Strategie zur Durchführung der resultierenden Opti-

mierung wird ebenfalls vorgestellt.
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