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Defects, i.e. inhomogeneities of the underlying lattice, are ubiquitous in magnetic materials and
can have a crucial impact on their applicability in spintronic devices. For magnetic skyrmions, local-
ized and topologically non-trivial spin textures, they give rise to a spatially inhomogeneous energy
landscape and can lead to pinning, resulting in an exponentially increased dwell time at certain
positions and typically a strongly reduced mobility. Using atomistic spin dynamics simulations, we
reveal that under certain conditions defects can instead enhance thermal diffusion of ferromagnetic
skyrmions. By comparing with results for the diffusion of antiferromagnetic skyrmions and using a
quasi-particle description based on the Thiele equation, we demonstrate that this surprising finding
can be traced back to the partial lifting of the impact of the topologigal gyrocoupling, which governs
the dynamics of ferromagnetic skyrmions in the absence of defects.

I. INTRODUCTION

Magnetic skyrmions are topologically protected spin
configurations where the directions of the magnetic mo-
ments span the whole unit sphere, forming a nanoscale
particle-like object with finite topological charge Q =
1

4π

∫
n · (∂xn× ∂yn) d2r, with n being the magnetic or-

der parameter [1–3]. Due to their small size, robustness,
controllable creation and annihilation [4], and high mo-
bility [5, 6], skyrmions are suitable candidates for infor-
mation carriers in future nanoscale magnetic logic and
memory devices [7–9]. The observation of thermally-
induced Brownian motion [10–12] has also attracted con-
siderable attention because of its possible application for
probabilistic computing [10, 13, 14].

However, designing effective skyrmion devices requires
an thorough understanding of the interactions between
skyrmions and defects, as defects are almost unavoidable
in magnetic materials and can significantly affect the mo-
tion of skyrmions. Previous works have demonstrated
that defects, such as vacancies [15], enhanced exchange
strength [16], single-atom impurities [17, 18], and inho-
mogeneities of the magnetic anisotropy [19, 20], can func-
tion as pinning sites, slowing down or capturing driven
skyrmions in ferromagnetic systems. The same has been
shown for current-driven antiferromagnetic skyrmions in
a racetrack in presence of a hole [21] and local variation
of the magnetic anisotropy [22]. Furthermore, the impact
of pinning is not limited to current-induced skyrmion dy-
namics, but has also been observed for the Brownian mo-
tion of ferromagnetic skyrmions, only driven by thermal
fluctuations [10, 23, 24]. While pinning can be detrimen-
tal when trying to move them, it can also be advanta-
geous for precisely positioning a skyrmion in a long-term,
stable memory device, preventing it from drifting away
due to diffusion.
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However, driven ferromagnetic skyrmions display
unique characteristics due to a Magnus-type force, typ-
ically referred to as gyrocoupling, which causes them to
move at a certain angle to the driving force. If driven
by electric currents, the angle between the skyrmion ve-
locity and the current direction is called skyrmion Hall
angle [3], in analogy to the conventional Hall effect [25].
Particle-based simulations have shown that the skyrmion
Hall angle is not fixed and depends on the magnitude of
the applied driving force in both random [26] and periodic
[27, 28] pinning environments, due to the impact of the
gyrocoupling being (partly) lifted. In contrast, antiferro-
magnetic skyrmions do not experience a Hall effect due
to being comprised of two interdependent topological ob-
jects with opposite topological charges pertaining to each
sublattice. When the skyrmion is propelled, the oppos-
ing Magnus forces nullify each other, as demonstrated in
[29, 30]. Several studies have investigated the influence of
the topological properties of skyrmions on their thermal
diffusion, including recent works such as Refs. [31–34].
The absence of gyroscopic motion in antiferromagnetic
skyrmions is also reflected in their thermally-induced mo-
tion, which is generally higher than that of ferromagnetic
ones [35], which experience diffusion suppression due to
their gyrocoupling [29, 36].

Moreover, suppression of the gyroscopic motion of fer-
romagnetic skyrmions has also been observed experimen-
tally and in theoretical calculations [37, 38], where fer-
romagnetic skyrmions in one-dimensional channels were
found to display enhanced diffusion as compared to free
diffusion. A similar behavior was reported by Ref. [23]
in micromagnetic simulations of ferromagnetic skyrmion
diffusion in granular films.

Here we investigate the impact of pinning on the ther-
mally activated motion of ferromagnetic and antifer-
romagnetic skyrmions. For this purpose, we consider
an anti- and ferromagnetically coupled bilayer with de-
fects arising from a local variation of the perpendicu-
lar magnetic anisotropy, and discuss the diffusive be-
havior in the pinning environment created by the de-
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fects. Our investigation are conducted through atom-
istic spin dynamics simulations based on the stochastic
Landau–Lifshitz–Gilbert (LLG) equation. We study the
impact of both, periodic and random arrangements of de-
fects, and reveal that ferromagnetic skyrmions experience
enhanced diffusion for low Gilbert damping and temper-
atures and defect strengths near the depinning threshold.
Conversely, antiferromagnetic skyrmions generally shows
a reduction of thermal diffusion due to pinning. Their
behavior is successfully compared to that of a classical
Brownian particle in a periodic pinning array based on an
equation proposed by Lifson-Jackson [39, 40]. The com-
monalities and differences between the ferromagnetic and
antiferromagnetic skyrmion diffusion in the pinning envi-
ronment are linked to their different topological charges,
as can be explained within a rigid-body approach using
Thiele’s formalism [41, 42].

II. METHODS

The system being modeled is a bilayer in which the in-
teractions between atomistic magnetic moments are de-
scribed via an extended Heisenberg Hamiltonian [43]

H =
1

2

∑
i 6=j

ST
i JijSj −

∑
i

diS
2
i,z . (1)

Here, i and j are indices for nearest neighbor sites
and Si denotes a unit vector describing a localized
magnetic moment. The diagonal elements of the ex-
change coupling tensor Jij includes Heisenberg exchange
via Jij = 1

3TrJij , while the antisymmetric part mod-
els the Dzyaloshinsky-Moriya interaction (DMI) Dij ·
(Si × Sj) = 1

2Si
(
Jij − J T

ij

)
Sj . The DMI vectors Dij

are situated in the plane and undergo a clockwise rota-
tion around their nearest neighbor sites while also being
oriented perpendicular to the connection vector of neigh-
boring lattice sites. The inter-layer exchange parameters
are fixed at Jij = 100 meV, |Dij | = 30 meV. The intra-
layer exchange contributes with ±100 meV for ferromag-
netic (+) and antiferromagnetic (−) coupling. Note that
the intra-layer DMI is set to zero. The last term intro-
duces uniaxial anisotropy, which is oriented perpendicu-
lar to the bilayer.

The interplay of these interactions leads to the forma-
tion of metastable Néel-type skyrmions, which possess a
topological charge of Q = 1 for ferromagnetic coupling
and Q = 0 for antiferromagnetic coupling, respectively.
Choosing high values for the interactions is beneficial as
it enhances the thermal resistance of skyrmions, mak-
ing them less susceptible to thermal fluctuations. The
ability to perform simulations at elevated temperatures,
as a result of increased thermal robustness, makes it
more computationally efficient to simulate the diffusion
of skyrmions over lengths of multiple lattice constants.

To investigate the impact of defects on the behavior of
thermally driven skyrmions, a non-homogeneous energy

landscape is created by introducing a spatial variation
in the magnitude of the anisotropy energy di. This al-
lows for modeling of atomic defects in the magnetic ma-
terial, which affects both anti-ferromagnetic and ferro-
magnetic skyrmions equally. Going forward, dDefect and
d0 = 15 meV refer to the anisotropy energy at defect and
non-defect sites respectively.

The dynamics of the magnetic moments is calculated
using the stochastic Landau-Lifshitz-Gilbert (sLLG)
equation [44, 45]

∂Si
∂t

= − γ

(1 + α2)µs
Si × (Hi + αSi ×Hi) , (2)

with α being the Gilbert damping parameter, µs the
atomic magnetic moment, and γ representing the gyro-
magnetic ratio. The local effective field Hi = − ∂H

∂Si
+ ζi

incorporates the contribution from the Hamiltonian as
well as a stochastic field ζi accounting for thermal fluc-
tuations. ζi has zero mean and its autocorrelation is
given by

〈ζµi (t)ζνj (t′)〉 = 2αµskBTδijδµνδ(t− t′)/γ ,

where kB is the Boltzmann constant, T is temperature
and µ, ν denote Cartesian coordinates [46].

The numerical integration of the sLLG is accom-
plished via an GPU-accelerated implementation of
Heun’s method with a fixed time step of ∆t = 0.1 fs.
[43]. The simulation comprises 64× 64× 2 magnetic mo-
ments with periodic boundary conditions along the x and
y axis. Following Ref. [32–34, 36, 47], the trajectories of
skyrmions are obtained by monitoring the out of plane
component of the magnetization.

Mesoscopically, the motion of localized magnetic tex-
tures can be described in terms of a rigid-body ap-
proach. The effective equation of motion for ferromag-
netic skyrmions, known as Thiele equation [41], can be
derived from the LLG equation reading

G× V + αDV = F . (3)

Here, V is the velocity of the skyrmion, F represents
the force exerted on it, G = −4πQµs/γa

2e⊥ is the gy-
rocoupling vector perpendicular to the plane with lattice
constant a, and αD describes dynamic friction. The first
term in Eq. (3) leads to a motion perpendicular to the
direction of force, linking the non-trivial topology of the
skyrmion to its motion. The second term models dissi-
pation of energy to the heat bath due to its proportion-
ality to the damping parameter. The friction coefficient
depends on the specifics of the spin configuration and is
calculated via D = µs/(2γa

2)
∫

(∂xS·∂xS+∂yS·∂yS) d2r
for skyrmions with rotational symmetry [31, 34].

In order to account for the effect of thermal fluctua-
tions, the force is supplemented with a stochastic force
F th, which has zero mean and an autocorrelation func-
tion given by 〈F th

µ (t)F th
ν (t′)〉 = 2kBTαDδµνδ(t−t′) mak-

ing Eq. (3) a Langevin-type equation of motion [48,
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49]. The mean-squared-displacement 〈[R(t)−R(0)]
2〉 =

4Dt, calculated using an ensemble average over multiple
trajectories, allows to determine the free diffusion coeffi-
cient of ferromagnetic skyrmions in the absence of exter-
nal forces [36, 48, 49]:

DFM
0 = kBT

αD

(αD)2 +G2
. (4)

Due to the presence of the gyrocoupling term, an unusual
relationship between friction and diffusion coefficient is
observed. Normally, higher friction leads to decreasing
diffusion coefficients, but here, an increasing friction can
lead to enhanced diffusion. Throughout this study, the
free diffusion coefficient in absence of any potential is
indicated by a zero in the index.

In the same way, an equation of motion for antiferro-
magnetic spin structures can be formulated reading [42]

M V̇ + αDV = F . (5)

The crucial difference to the ferromagnetic Thiele equa-
tion is the absence of the gyrocoupling term. Addition-
ally, the antiferromagnetic Thiele equation includes a
mass term with the skyrmion mass M , which gives the
skyrmion a momentum. This momentum results from the
fact that the antiferromagnetic order parameter, the Néel
vector, also experiences inertia [50]. It has been shown
[29, 51] that antiferromagnetic skyrmions exhibit behav-
ior analogous to a classical massive particle in a viscous
medium, as demonstrated by the diffusion coefficient:

DAFM
0 =

kBT

αD
. (6)

One can see that the antiferromagnetic diffusivity is gen-
erally higher compared to the ferromagnetic skyrmion,
since the gyrocoupling in Eq. (4) suppresses the diffu-
sion coefficient.

In a recent work [32] it was demonstrated that the cou-
pling of magnetic textures to thermally excited magnons
gives rise to an additional contribution to the damping
and the stochastic force. This contribution can be in-
corporated in the effective equations (3) and (5) and,
subsequently, in Eqs. (4) and (6). To achieve this, it is
necessary to add a term linear in temperature to the αD
term. The impact of this magnon-induced friction is most
pronounced at high temperatures and low values of the
Gilbert damping parameter. Here, however, we neglect
this term in the analytical calculations, since for the pa-
rameters considered we expect only a minor contribution
to the skyrmion dynamics.

The effective diffusion coefficient Deff in an arbitrary
non-uniform potential cannot be expressed analytically.
However, it can be estimated using the Lifson-Jackson
equation for the case of a periodic energy landscape,
which is relevant for our periodic defect arrangement
[39, 40]. The Lifson-Jackson equation yields the effec-
tive diffusion coefficient of a classical particle in a one-
dimensional spatially-dependent periodic potential U(x),

whose dynamics is governed by the overdamped Langevin
equation, and reads

Deff =
D0

〈eU/kBT 〉〈e−U/kBT 〉 . (7)

Here, D0 denotes the free diffusion coefficient in absence
of any potential, and 〈. . . 〉 =

∫
. . . dx represents the av-

erage over one period.

III. RESULTS

Having established the theoretical foundations, we now
turn to the results of our analysis. First, we investigate
the diffusion of single skyrmions in the presence of atomic
defects placed periodically on a grid with a spacing of
four lattice constants. To put that into perspective, the
diameter of a skyrmion is roughly 13 lattice constants.

An analysis of the positional occupation statistics of
diffusing skyrmions can provide insights into the defect-
induced potential [24]. This is because the population
probability histogram p(x, y)dxdy, which represents the
probability of finding a diffusing skyrmion in a small area
around the location (x, y), is related to the potential via
the Boltzmann distribution, U(x, y) ∝ −kBT ln p(x, y)
[52]. In Fig. 1, a small section of the computed proba-
bility density is displayed on the left. By comparing the
positions of the defects, represented by orange dots, with
the probability density, it can be seen that a skyrmion
tends to congregate around these defects, which demon-
strates their pinning effect. The energy landscape (with
min(U) = 0) of a section with 4 defects is displayed
on the right, with a peak height of 2.5 meV right be-
tween next-nearest neighbor defects. Adjacent pinning
sites are most easily transitioned along the x or y di-
rections, with an energy barrier of 1.5 meV. Note that
for the parameters chosen here, the anisotropy energy
difference between a defect and a normal site is also
∆d = d0 − dDefect = 1.5 meV or dDefect/d0 = 0.9. If the
thermal energy is not significantly higher than this en-
ergy barrier, effectively only four escape paths remain for
the diffusing skyrmion, due to the exponential behaviour
of the depinning process.

The presence of the defect potential is also manifested
in the diffusion coefficient of the skyrmions, which deter-
mines their thermal mobility. This is demonstrated in
Fig. 2, where the dependence of the diffusion coefficient
on the defect strength is depicted. The defect strength is
controlled by altering the amplitude of the anisotropy en-
ergy dDefect at the defect’s locations, and the horizontal
axis is expressed in terms of the ratio between the defect’s
anisotropy energy and the uniform anisotropy energy d0

of the surrounding atoms. This means that a lower ratio
dDefect/d0 corresponds to a higher defect strength. It is
also important to note that the diffusion coefficients in
the lower plot have been normalized by their respective
free diffusion coefficients according to equations (6) and
(4). Normalizing the data in this way allows for a direct
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Figure 1. Probability density representing the likelihood of
finding a skyrmion at a given point (left) and a small sec-
tion of the corresponding energy landscape (right) of the pe-
riodic defect arrangement. The orange dots indicate defect
locations and have a distance of 4 lattice constants. Simu-
lations were performed at α = 0.1 and kBT = 1 meV and a
defect anisotropy reduced by a factor of dDefect/d0 = 0.9 or
d0 − dDefect = 1.5 meV.

comparison of the effective diffusion coefficients in the
presence of defects to those in the absence of defects.

The diffusion coefficients in absence of defects
(dDefect/d0 = 1) are consistent with the analytical predic-
tions for free diffusion as given in equations (4) and (6)
and represented by the dotted lines for reference. Apart
from that there is a significant difference in the diffusion
coefficients of ferromagnetic (left) and antiferromagnetic
(right) skyrmions. The diffusivity of antiferromagnetic
skyrmions decreases continuously as the defect strength
increases. Besides, the ratio of diffusivity to free diffusion
seen in the lower right plot is independent of α. The sim-
ilarity to a classic Brownian particle exhibiting decreased
mobility due to pinning is evidenced by the solid line rep-
resenting the expectation of the Lifson-Jackson equation
7. The latter is evaluated from the one-dimensional es-
cape paths seen in the potential in Fig. 1 and using the
proportionality between the defect anisotropy and energy
landscape.

The behavior of ferromagnetic skyrmions in the left
part of Fig. 2 deviates from this trend, displaying peculiar
characteristics. Unlike the antiferromagnetic skyrmion,
the degree to which the ferromagnetic diffusivity is af-
fected appears to depend on the damping. When the
damping is low (α = 0.1), the ferromagnetic diffusion
coefficient of the skyrmion initially increases with in-
creasing defect strength before eventually converging to
zero. The observed rise in thermal mobility above the
expectation for free diffusion suggests that the typical
diffusion suppression [36] caused by gyrocoupling in fer-
romagnetic skyrmions is partially counteracted in this
case. For high damping (α = 1), the increase in mobility
does not occur. Instead, the diffusivity of the ferromag-
netic skyrmion also continually decreases as the defect
strength increases, and its behavior is well described by
the Lifson-Jackson equation.
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Figure 2. Anti- and ferromagnetic diffusion coefficients versus
defect strength for various α. Defect strength is expressed by
the ratio between the defects anisotropy energy dDefect and
the global anisotropy energy d0. Symbols represent simulation
results at kBT = 1 meV in a periodic defect configuration α
as labeled. The diffusion coefficients on the bottom graphs
are normalized by the expectation of free diffusion, see Eqs.
(6) and (4). Data is compared to free diffusion (dotted lines)
and the Lifson-Jackson equation (solid lines).

Instead of changing the underlying energy landscape
by altering defect strength, we hold defect strength con-
stant but change thermal energy, which also determines
the influence of the defects on the skyrmion. The de-
pendence of diffusivity on temperature can be seen in
Fig. 3 for anti- and ferromagnetic skyrmions. Again, the
effective diffusion coefficients in presence of defects are
shown in terms of the relative deviation from free diffu-
sion. One can see that the antiferromagnetic skyrmion
displays reduced diffusivity across the board. The agree-
ment between the prediction of the Lifson-Jackson equa-
tion 7 and the simulation results suggests that – as long
as the Gilbert damping parameter is not too small – an-
tiferromagnetic skyrmions behave like classical particles
in a viscous medium, the dynamics of which are governed
by the overdamped Langevin equation [40].

Ferromagnetic skyrmions follow this trend only at high
damping, α = 1. For lower values of α, its diffusion coeffi-
cient exceeds the expected value for free diffusion, rather
than falling below it. One can see that this is more pro-
nounced as α decreases. Note that the increase in diffu-
sivity is at its largest around kBT = 1.5 meV, which coin-
cides with the energy barrier between two neighbouring
defects (see Fig. 1). This behaviour is similar to what
was recently observed for domain walls in ferromagnets,
where the maximum and the subsequent drop in the dif-
fusion coefficient with rising temperature was interpreted
as a Walker breakdown of Brownian domain wall dynam-
ics [53]

The dependence on damping is more closely investi-
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Figure 3. Diffusion coefficients of anti- and ferromagnetic
skyrmions in the periodic defect configuration versus ther-
mal energy for various α as labeled. The diffusion coefficients
are normalized by their respective free diffusion coefficients
according to Eqs. (6) and (4). The prediction of the Lifson-
Jackson equation (7) is represented by the solid line. Simula-
tions performed with dDefect/d0 = 0.9.

gated in Fig. 4, where one can see diffusion coefficients
of anti- and ferromagnetic skyrmions for a range of differ-
ent damping parameters in the periodic pinning array. It
appears that the ferromagnetic diffusion coefficient does
not change significantly over three orders of magnitude of
the damping parameter. The effect of enhanced diffusion
increases as α decreases when comparing the effective
diffusion coefficients in the periodic defect array to free
diffusion (dotted line). However, the ferromagnetic dif-
fusion suppression is not entirely lifted as the diffusivity
still falls way below the antiferromagnetic curve.

An explanation to why the anti- and ferromagnetic
skyrmions behave either similar or completely opposite
depending on damping is provided by Thiele’s equations
(3) and (5). As damping increases, the mass and gy-
rocoupling terms become less significant, as they are not
dependent on α, unlike the friction term. As a result, the
dynamics of both the anti- and ferromagnetic skyrmions
are effectively controlled by the same equation of motion
in the overdamped limit. However, in the case of low
damping, the gyrocoupling term, which is only present
in the ferromagnetic Thiele equation, becomes more sig-
nificant and starts to have a greater impact on the dy-
namics, leading to a deviation from the antiferromagnetic
skyrmion. The transition region at which this deviation
occurs can be approximated by examining the ratio be-
tween D and G, which is roughly 1 for the skyrmions
under consideration, and can be roughly seen in Fig. 4.
However, our simulations revealed that this difference is
less pronounced when skyrmions are subject to pinning.
An explanation is given by considering the defect-induced
energy landscape in Fig. 1. Since the jumps between
pinning sites preferably occur where the energy gap be-
tween them is smallest, skyrmions tend to move in one-
dimensional channels. As a result, the gyroscopic motion
of ferromagnetic skyrmions cannot fully develop and its
effects are impeded, meaning that the suppression of the

10−2 10−1 100

damping α

10−3

10−2

10−1

100

D
ef

f
(a

2 /
ps

)

AFM
FM

Figure 4. Anti- and ferromagnetic diffusion coefficients versus
α. Diffusion coefficients obtained from simulations performed
at kBT = 1 meV and dDefect/d0 = 0.9. Dotted lines indicate
the prediction of free diffusion according to Eqs. [6] and [4].

diffusion is partly lifted. The resulting increase in diffu-
sivity outweighs the usually hindering effect imposed by
the defects as seen in Fig. 2 for certain defect strengths.
The diffusion in one-dimensional channels has been stud-
ied experimentally in Ref. [37], where it was observed
that ferromagnetic skyrmions exhibit increased diffusion
under this constraint.

This effect is similar to what is observed from a
skyrmion under an applied active drive. In the absence
of any obstructions, the Hall angle of a driven skyrmion
remains unchanged, regardless of the strength of the driv-
ing force [54, 55]. However, when the skyrmion encoun-
ters single, periodic, or random defects, its Hall angle be-
comes more complex. As reported in Refs. [15, 26, 56] us-
ing both, continuum and particle-based approaches, the
Hall angle of the skyrmion is at its lowest when the driv-
ing force reaches the depinning threshold. Beyond this
point, the angle gradually increases with each increase in
driving force, before reaching a saturation point at the
free pinning angle. This behavior has been observed in
previous experimental studies (Ref. [5, 6, 57]). The Mag-
nus force causes a skyrmion to be redirected as it moves
through a pinning site, resulting in a change in direction
towards the driving force. As the applied drive increases,
the skyrmion moves more quickly reducing the extent of
the change in direction. This can result in skyrmion mo-
tion that exceeds the velocity attainable from the applied
forces alone [56].

The change in behavior of thermally-driven ferromag-
netic skyrmions in the presence of pinning is in line with
previous observations [23, 37, 38]. Our results, displayed
in Figures 2 and 3, show a noticeable increase in diffusiv-
ity, which suggests a decrease in the Magnus force. The
greatest suppression of the Magnus force is seen when
the thermal energy matches the depinning threshold at
1.5meV, as shown by comparing the temperature depen-
dence of the diffusion coefficient in Fig. 3 to the energy
landscape in Fig. 1.
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Figure 5. Diffusion coefficients versus defect strength of ferro-
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fects. Symbols represent simulation results at kBT = 1 meV
and α as labeled. The diffusion coefficients on the right graph
are normalized by the expectation of free diffusion, see Eq.
(4).

In contrast to ferromagnetic skyrmions, antiferromag-
netic skyrmions do not exhibit the skyrmion Hall effect
[29]. As demonstrated in Ref. [22], current driven anti-
ferromagnetic skyrmions interacting with a vacancy tend
to slow down, and this is also observed for the thermally
driven antiferromagnetic skyrmions investigated here.

Our findings discussed so far demonstrate that ferro-
magnetic skyrmions exhibit enhanced diffusion in a pe-
riodic defect environment. However, real magnetic thin
films are unlikely to have a perfectly ordered arrangement
of atomic defects. To account for this, we are abandon-
ing the assumption of periodicity and instead looking at
defects that are distributed randomly throughout the bi-
layer. We have chosen the probability that a lattice site
is a defect in a way that maintains the same overall defect
density as before in the periodic defect arrangement. To
calculate the diffusion coefficient, we calculate the mean
squared displacement as an ensemble average of different
skyrmion trajectories, as previously mentioned. How-
ever, in this case, we utilize different, randomly generated
defect configurations for each trajectory.

Fig. 5 depicts the dependence of the ferromagnetic dif-
fusion coefficient on defect strength in a random pinning
environment. All trends coincide with the previous ob-
servation of ferromagnetic skyrmions in a periodic defect

array seen in Fig. 2. Therefore, the phenomenon of en-
hanced diffusivity is not limited to periodic defect pat-
terns but is present in general pinning environments.

IV. CONCLUSION

In this study, we investigated the behavior of ferro- and
antiferromagnetic skyrmions under periodic and random
pinning conditions. Our results reveal that, in contrast to
normal Brownian particles, pinning can enhance the ther-
mal mobility of ferromagnetic skyrmions at low Gilbert
damping. This effect depends on the strength of the pin-
ning defects and temperature, with the greatest increase
in diffusion occurring when the thermal energy coincides
with the energy of transition between pinning sites. For
high damping, the ferromagnetic skyrmion exhibits re-
duced diffusion only. In contrast to this, the Brownian
motion of antiferromagnetic skyrmions in a periodic pin-
ning environment is consistent with the Lifson-Jackson
model, which predicts reduced diffusion independent of
damping. Thiele’s equations of motion can explain the
similarities and differences in diffusion behavior between
anti- and ferromagnetic skyrmions based on their distinct
topological properties. The reason why damping plays
a crucial role can be traced back to the fact that the
gyrocoupling and mass term, which define the distinct
characteristics of anti- and ferromagnetic skyrmions re-
spectively, become more prominent with higher damping
and less pronounced with lower damping. These find-
ings align with previous observations of ferromagnetic
skyrmions driven by current rather than temperature
[26–28], indicating that under the influence of defects,
the Hall angle or gyroscopic motion is dependent on the
active drive and the Magnus force can be nearly entirely
suppressed at the depinning threshold.
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