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Note 1 
Interlayer thickness dependence of magnetization curve 

 

In order to investigate the sign and strength of the interlayer exchange coupling, we 

investigate the Ir thickness tIr dependence of the magnetization curve using the Kerr microscope 

in the polar configuration. Supplementary Fig. 1a shows the stack structure used for 

investigating the tIr dependence where tIr ranges from 0.4 to 1.5 nm in steps of 0.1 nm. In order 

to unambiguously obtain the second peak of the interlayer exchange coupling oscillation, a 

stack with a large effective perpendicular anisotropy energy density (Keff > −Jint/tT) was used. 

As shown in supplementary Fig. 1b, the stack with tIr = 1.2 nm shows the second peak of the 

interlayer exchange coupling field µ0Hint defined by a magnetic field that induces the spin flip-

like antiferromagnetic (AFM)-ferromagnetic (FM) transition, which is consistent with previous 

work1. Based on this experimental result, we chose tIr to be 1.2 nm for this work in the main 

text. Possibly, one could use the first peak of the oscillation corresponding to tIr = 0.5-0.6 nm 

which exhibits much larger interlayer exchange coupling. However, such a thin Ir layer causes 

a large difference in magnetic properties such as Keff between the top and bottom ferromagnets 

since we need a relatively thick Pt layer (at least 1 nm) to make the entire system exhibit a 

perpendicular easy axis. The large difference presumably produces an additional contribution 

to pinning. Therefore, we opted to use the second peak rather than the first peak. 
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Supplementary Figure 1 | Ir thickness dependence of Kerr hysteresis curve. a, Stack structure 

employed for investigating the Ir thickness dependence of the interlayer exchange coupling. The unit 

of the number shown in parentheses is a nanometer (nm). b, Ir thickness dependence of the Kerr 

hysteresis loops and the oscillation of interlayer exchange coupling field µ0Hint. 
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Note 2 
Intensity comparison of Kerr rotation angle 

 

To independently confirm the strong compensation of the two layers, we compare the Kerr 

intensity for the FM bi-layer and SyAFM systems at room temperature using the same 

conditions. Supplementary Fig. 2 shows the intensity comparison of the Kerr rotation angle. 

We clearly see the conspicuous decrease of the Kerr rotation angle for the SyAFM system with 

90% compensation, which is independent evidence of the AFM coupling. Additionally, we can 

barely detect the switching of the magnetization for a more compensated state (indicated by 

“More than 90%”). The contrast for the domain state imaging becomes too low, which makes 

the domain and skyrmion tracking challenging albeit image processing. Thus, we designed the 

maximum compensation as 90% for our analysis. 

 

 



6 

 

-10 -5 0 5 10

1400

1600

1800

2000

2200

Ke
rr 

in
te

ns
ity

 (a
rb

. u
ni

ts
)

µ0Hz (mT)

 FM bi-layer
SyAFM systems

 90%
 More than 90%

at 300 K 

 

Supplementary Figure 2 | Intensity comparison of the Kerr rotation angle for the FM bi-layer and 

SyAFM systems at room temperature. 
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Note 3 
Temperature dependence of interlayer exchange coupling 

 

Here we investigate the temperature dependence of the interlayer exchange coupling to 

ascertain if there is the possibility that the AFM coupling vanishes with temperature. Hall 

measurements using the Van der Pauw method were employed for high accuracy 

measurements. Supplementary Fig. 3a and b show the transverse resistance Rxy along the 

current flow direction as a function of out-of-plane magnetic fields, and its derivative, 

respectively. Based on the peak indicating the interlayer exchange coupling field in 

supplementary Fig. 3b, we deduce that the change of coupling strength is less than 10 mT 

(corresponding to the step of µ0H) for a 10 K temperature change. In general, the temperature 

dependence of interlayer exchange coupling is expressed as an effective power-law2, 

𝑓𝑓(𝑇𝑇) = 1 − 𝑥𝑥𝑇𝑇𝑛𝑛,      (S1) 

where n can be roughly approximated as 1.5 on the basis of the experimental observation3–6. 

Hence, within the range of temperatures used in this work, the change of coupling strength is 

less than approximately 10 mT for all the stacks as well, meaning that the decoupling of 

SyAFM skyrmions does not occur for the entire temperature range studied. Also, note that the 

decoupling or the difference in domain size between FMs leads to a drastic enhancement of the 

Kerr intensity, which has never been observed in our system (at least, the size difference and 

its time scale is less than the resolution of a Kerr microscope), indicating the strong enough 

coupling against thermal agitation. 
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Supplementary Figure 3 | Hall measurement for the temperature dependence of the interlayer 

exchange coupling. a, Transverse resistance Rxy as a function of out-of-plane magnetic fields for three 

temperatures (black: 290K, red; 295 K, and blue; 300K.). b, Derivative of Fig. 3a. The peak corresponds 

to the strength of the interlayer exchange coupling field. 
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Note 4 
Rigid body description of skyrmion motion 

in synthetic antiferromagnets 

 

To investigate theoretically the influence of the compensation of the SyAFM system on 

the thermal dynamics of skyrmions, we employ a rigid body description. As such, the dynamics 

are described by two degrees of freedom, the position of the skyrmion, instead of 2N spin 

degrees of freedom. This greatly reduces the complexity of the problem and allows for an 

analytical calculation of the diffusion constant in the absence of pinning. 

The rigid body description of the dynamics of localized magnetic textures was first 

established by Thiele7 and relies on the ansatz 𝐒𝐒(𝐫𝐫, 𝑡𝑡) = 𝐒𝐒(𝐫𝐫 − 𝐑𝐑(𝑡𝑡)). Applying this ansatz to the 

stochastic Landau-Lifshitz-Gilbert equation (see the Materials and Methods) yields for an FM 

skyrmion the following equation of motion, 

𝐆𝐆 × 𝐯𝐯 + 𝛼𝛼𝛼𝛼𝐯𝐯 = 𝐅𝐅th.           (S2) 

This equation was termed Thiele equation and has proven to be quite successful in predicting 

the dynamics of FM skyrmions8. The first term is the topology-dependent gyrocoupling term 

and the second term describes friction of the skyrmion. The thermal force 𝐅𝐅𝑡𝑡ℎ was first added 

by Schütte et.al.9 It has a zero mean and its autocorrelation is given by �𝐹𝐹𝜇𝜇𝑡𝑡ℎ(𝑡𝑡)𝐹𝐹𝜈𝜈𝑡𝑡ℎ(𝑡𝑡′)� =

2𝑘𝑘B𝑇𝑇𝑇𝑇𝑇𝑇𝛿𝛿𝜇𝜇𝜇𝜇𝛿𝛿(𝑡𝑡 − 𝑡𝑡′). In a FM bi-layer system with saturation magnetizations |M1| and |M2| the 

parameters in the Thiele equation read 

𝛤𝛤 =
|𝑀𝑀1| + |𝑀𝑀2|

2𝛾𝛾
∫ (𝜕𝜕𝑥𝑥𝐒𝐒)2 + �𝜕𝜕𝑦𝑦𝐒𝐒�

2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  and  𝐆𝐆 =
|𝑀𝑀1| + |𝑀𝑀2|

𝛾𝛾
4𝜋𝜋𝜋𝜋𝐞𝐞𝑧𝑧.            (S3) 

In the above expression, 𝑄𝑄 = 1 (4𝜋𝜋)⁄ ∫ 𝐒𝐒 ⋅ (𝜕𝜕𝑥𝑥𝐒𝐒 × 𝜕𝜕𝑦𝑦𝐒𝐒)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  is the topological charge of the 

skyrmion. 
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The MSD predicted by Eq. (S2) scales linearly on time and the slope is given by two times 

the diffusion constant, which reads9 

𝐷𝐷difFM = 𝑘𝑘B𝑇𝑇
𝛼𝛼𝛼𝛼

𝛼𝛼2𝛤𝛤2 + 𝐺𝐺2
.           (S4) 

The validity of this expression in the limit of large values of the Gilbert damping parameter 

and low temperatures has been demonstrated in preceding works10,11. Contributions from the 

coupling to the magnonic heat bath that were predicted by a recent study12 are neglected here, 

because they do not have a qualitative impact on the dynamics. 

The effective equation of motion describing the dynamics of AFM skyrmions differs from 

Eq. (S2). It was demonstrated that instead they are described by a massive equation of motion 

that lacks a gyrocoupling term13: 

𝑀𝑀
𝜕𝜕𝐯𝐯
𝜕𝜕𝜕𝜕

+ 𝛼𝛼𝛼𝛼𝐯𝐯 = 𝐅𝐅th.            (S5) 

M is here the mass of the AFM skyrmion and leads to a non-linear dependence of the MSD at 

low times. The diffusion constant, i.e. the half of the slope of the MSD in the long time limit, 

however, is not impacted by the finite mass, and it follows 

𝐷𝐷difAFM =
𝑘𝑘B𝑇𝑇
𝛼𝛼𝛼𝛼

.           (S6) 

This expression was derived in Ref. 14 and its validity in atomistic spin simulations was 

demonstrated therein. 

Here, we want to establish an effective description for the dynamics of skyrmions in 

SyAFMs. This is done in a heuristic manner and leads to the derivation of Eq. (1), whose 

validity is demonstrated using atomistic spin simulations. Depending on the compensation 

𝑚𝑚Com = 1 − |𝑀𝑀1 + 𝑀𝑀2| (|𝑀𝑀1| + |𝑀𝑀2|)⁄  of the bi-layer system, the system can be varied from a 
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FM to an AFM one. Likewise, the description of the dynamics of the skyrmions in the system 

transforms from Eq. (S2) to Eq. (S5). We make the ansatz that this transformation is linear in 

𝑚𝑚Com and, henceforth, the effective equation of motion for a SyAFM skyrmion reads 

𝑚𝑚Com𝑀𝑀
𝜕𝜕𝐯𝐯
𝜕𝜕𝜕𝜕

+ (1 −𝑚𝑚Com)𝐆𝐆 × 𝐯𝐯 + 𝛼𝛼𝛼𝛼𝐯𝐯 = 𝐅𝐅th          (S7) 

with G and Γ as in Eq. (S3). For an FM bi-layer, we have 𝑚𝑚Com = 0 and thus the mass term 

vanishes and the prefactor to the gyrocoupling term becomes one. For an AFM bi-layer, we 

have 𝑚𝑚Com = 1 and the gyrocoupling term vanishes. As such, the compensation changes the 

effective topological charge of the skyrmion. The impact of the varying compensation on the 

diffusive motion is twofold: first, it impacts the timescale of the non-linear MSD for short times, 

and second, it impacts the diffusion constant via 

𝐷𝐷dif
SyAFM = 𝑘𝑘B𝑇𝑇

𝛼𝛼𝛼𝛼
𝛼𝛼2𝛤𝛤2 + 𝐺𝐺2(1 −𝑚𝑚Com)2

.          (S8) 

Again, the limits 𝑚𝑚Com = 0 and 𝑚𝑚Com = 1 reproduce the formula for the FM skyrmions (S4) and AFM 

skyrmions (S6). Eq. (S8) predicts that diffusive motion is maximal if 𝛼𝛼 = |𝐺𝐺(1 −𝑚𝑚Com)| 𝛤𝛤⁄ . This 

implies a shift of this maximum from 𝛼𝛼 = |𝐺𝐺| 𝛤𝛤⁄  for FM skyrmion to zero for AFM skyrmions. 
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Note 5 
Size evaluation of skyrmions 

 

 As can be seen in supplementary videos 2 and 3 as well as supplementary Fig. 4a and 

(b), the profile of magnetic skyrmions is not always completely circular and deforms with time. 

Therefore, we used the radius of gyration of its Gaussian-like profile, Rg, to evaluate the size 

of the skyrmion following the previous work14, 

𝑅𝑅g2 =
1
𝑁𝑁
�(𝐫𝐫𝑖𝑖 − 〈𝐫𝐫〉)2
𝑁𝑁

𝑖𝑖=1

          (S9) 

where ri corresponds to the pixel coordinates regarding the core of the skyrmion. Also, to obtain 

object’s actual radius RS, we corrected the values using RS = √2Rg which is a relationship 

between the actual radius and the gyration of radius for a uniform circle. After determining RS 

for each frame and skyrmion, we define the averaged radius of the skyrmion as Rsk.ave ≡ ⟨𝑅𝑅S⟩ 

taking the average over all the values. The error bar was calculated from the standard deviation. 

The estimated average diameter (2Rsk.ave) is shown by the blue-colored bar in supplementary 

Fig. 4a and b, where we confirmed that the estimated average diameter roughly matches the 

skyrmion size in the end. 
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Supplementary Figure 4 | Size variation of the skyrmions. a, Skyrmions for FM bi-layer system at 

345.6 K and 353.6 K. b, Skyrmions for SyAFM system with 90% compensation at 304.1, 304.5, and 

304.7 K. 
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Note 6 
Quantitative evaluation of interfacial Dzyaloshinskii-Moriya interaction 

 

 Here, we quantitively evaluate the interfacial Dzyaloshinskii-Moriya interaction and 

the Gilbert damping constant from measurements of the spin-wave dispersion relation. The 

experiments using Brillouin light scattering spectroscopy (BLS) have been conducted using a 

conventional, wave vector resolved BLS system in backscattering geometry using a single 

mode laser with λ = 491 nm wavelength. The detected spin-wave wave vector k can be selected 

by changing the angle of incidence 𝜃𝜃 with respect to the film normal: 𝑘𝑘 = 2 2𝜋𝜋
𝜆𝜆

sin𝜃𝜃. Data 

acquisition and evaluation is performed as detailed in Refs. 15 and 16. 

Supplementary Fig. 5a shows the dispersion relation measured at an external field of 

300 mT applied in the film plane perpendicular to the measured spin-wave wave vectors (a.k.a 

Damon-Eshbach geometry). The fit to the dispersion relation includes the contributions 

symmetric and antisymmetric under reversal of the wave vector detailed in Ref. 15 (used 

parameters for the symmetric part are γ = 28 GHz T-1, AS =12 pJ/m, MS = 1.0 T, µ0HU = 1.15 

T, µ0Hz = 0.3 T). 

Supplementary Fig. 5b shows only the frequency difference under wave vector reversal 

Δf = f (k) − f (−k) = 2γ/MS⋅Di⋅k which is best suited to extract the interfacial DMI constant Di. 

From a fit to the Stokes and Anti-Stokes data, we find Di = 0.059 ± 0.006 mJ m-2 and Di = 

0.049 ± 0.008 mJ m-2, respectively. 

Supplementary Fig. 5c shows the linewidth measured at low angles of incidence (k ≈ 0, 

ferromagnetic resonance limit) for various magnetic fields between 0.2 T and approx. 0.5 T. 

From the field-dependent BLS frequency spectra, we extract the resonance frequency and 

corresponding field linewidth. The comparably large scatter of the data is probably due to the 

large values of the field linewidth and the resulting instabilities of the setup during the field 
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sweep. The linewidth is related to the Gilbert damping parameter via: 

𝜇𝜇0∆𝐻𝐻 =  𝜇𝜇0∆𝐻𝐻0 +
2𝛼𝛼
𝛾𝛾
𝑓𝑓          (S10) 

From the linear fit to the data, we find μ0ΔH0 ≈ 40 mT, α = 0.022±0.05. 

 

 

Supplementary Figure 5 | Quantitative evaluation of spin-wave resonances. a, The dispersion relation 

measured at an external field of µ0Hz = 300 mT. b, The frequency difference under wave vector reversal. 

c, The linewidth of the spin-wave resonances measured at low angles of incidence. 

  



16 

 

Note 7 
Chirality evaluation for bi-layer systems 

 

 In order to evaluate the chirality of our SyAFM bi-layer systems, we use micromagnetic 

simulations with the software MuMax17. We show the parameter list used for the simulation in 

supplementary Table 1, corresponding to the experimental value for the SyAFM system with 

90% magnetic compensation. Note that the interlayer magnetic dipole interaction (stray field 

effect between the top FM and the bottom FM layers) to compete with the interfacial DMI and 

the interlayer exchange coupling would play a key role in determining the chirality of the 

system in the case of a relatively small DMI. Thus, we employ the custom fields functionality 

to incorporate the interlayer exchange coupling field, allowing us to separate the top and bottom 

FM layers with a finite non-magnetic interlayer18. As a consequence, the interlayer magnetic 

dipole interaction is successfully taken into account in our simulation. 

 To reveal the effect of interlayer exchange coupling and magnetic compensation on the 

domain wall (DW) chirality, we make a two-dimensional (2D) phase diagram of the DW angle 

by varying these parameters. The built-in function “two domain” is used to initialize the domain 

state for antiparallel configuration between the top and bottom FM layers with the DW at the 

center. Then, we also use the built-in function “relax” to obtain an equilibrium DW angle. 

 Supplementary Fig. 6a, b, and c show the DW angle, φ for the up-down DW of the top 

FM layer, for the down-up DW of the bottom FM layer, and the corresponding domain 

configuration, respectively. The φ is defined as an azimuthal angle with regard to the x-axis 

shown in supplementary Fig. 6c. In supplementary Fig. 6a and b, the white circles present the 

experimental parameter for the stacks used in this work. Concerning the Jint dependence, we 

find the stable AFM coupling DW for the Jint roughly larger than 5 µJ m-2. The φ changes with 
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increasing Jint and saturates above some threshold Jint depending on the magnetic compensation, 

mCom. As the experimentally obtained Jint is unambiguously larger than the threshold Jint, 

hereafter, we focus on the compensation ratio dependence of φ. Based on the simulation, we 

can divide the phase into four regions regarding chirality. 1: Left-handed Néel for mCom larger 

than 90%, 2: Bloch-Néel (left-handed) hybrid for mCom between 90 and 60%, 3: Right-handed 

Néel for mCom less than 60%, 4. Hybrid Néel for the FM bi-layer system as shown in 

supplementary Fig. 6c. The interfacial DMI determines the chirality for the highly compensated 

state simply because both the volume dipole and interlayer dipole interactions are small, even 

if the DMI magnitude is relatively small. The obtained left-handed chirality for the highly 

compensated state is consistent with our current-induced collective DW motion. Decreasing 

mCom gradually increases the contribution of both dipole interactions; thus, the DW chirality 

gradually changes. With further decreasing mCom, intriguingly, the DW chirality is determined 

by the interlayer dipole interaction due to the flux closure for domain-domain wall interaction19 

by overcoming the volume dipole contribution, which is a unique feature for the bi-layer system. 

The chirality is right-handedness in our case (as MS for the top layer is larger than the bottom 

counterpart). On top of this, the AFM coupling between DWs induces coherent right-handed 

chirality for the SyAFM systems. In contrast, the hybrid Néel DW is stabilized for the FM bi-

layer system as previously demonstrated19. In summary, we demonstrate that the Néel DW is 

stable in the stacks except for the mCom = 75% case, which would have the Bloch-Néel hybrid 

DW chirality. 
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Supplementary Table 1 | Micromagnetic simulation parameter list  

World size 
(top, interlayer, bottom thickness) 

512x256x3 nm3  
(1 nm, 1 nm,1 nm) 

Cell size 2x2x1 nm3 
Periodic boundary condition 32x32x0  

Spontaneous magnetization, MS (top, bottom) (1.0+x, 1.0-x) T 

Effective perpendicular anisotropy field, µ0HK
eff 45 mT 

Interfacial DMI, Di  -0.05 mJ m-2 
Exchange stiffness, AS 6 pJ m-1 

Interlayer exchange coupling energy Jint x mJ m-2 

Gilbert damping, α 1 

External perpendicular magnetic field µ0HZ 0.1 mT 

 
Initialization 

two domain 
top: (0, 0, 1, 1, 1, 0, 0, 0.5, -1) 

bottom: (0, 0, -1, 1, 1, 0, 0, 0.5, 1) 
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Supplementary Figure 6 | The 2D phase diagram of the domain wall (DW) angle φ defined as an 

azimuthal angle on the basis of the x-axis. a, Up-down DW for a top FM layer. The third and fourth 

quadrants are used. Red, green, and blue colors correspond to −180, −90, and 0 degrees, respectively. 

b, Down-up DW for a bottom FM layer. The first and second quadrants are used. Red, green, and blue 

colors correspond to 180, 90, and 0 degrees, respectively. c, Domain and DW configuration for various 

values of the magnetic compensation. 
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