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ARTICLE INFO ABSTRACT

Dataset link: https://github.com/carinahauslad
en/PredictingCompliance

Behavioral and experimental economics have conventionally employed text data to facilitate the interpretation
of decision-making processes. This paper introduces a novel methodology, leveraging text data for predictive
analytics rather than mere explanation. We detail a supervised classification framework that interprets patterns

é?sd(mmmmn' in chat text to estimate the likelihood of associated numerical outcomes. Despite the unique advantages of
92 experimental data in correlating textual and numerical information for predictive modeling, challenges such
D83 as limited sample sizes and potential data skewness persist. To address these, we propose a comprehensive

methodological framework aimed at optimizing predictive modeling configurations, particularly in small
Ié}el}::z gﬁ;" experimental behavioral research datasets. We also present behavioral experimental data from a preregistered

tax evasion game (n=324), demonstrating that chat behavior is not influenced by experimenter demand
effects. This establishes chat text as an unbiased variable, enhancing its validity for prediction. Our findings
further indicate that beliefs about others’ dishonesty, lying attitudes, and risk preferences significantly impact
compliance decisions.

Supervised classification
Experimental research
Tax evasion

Compliance

dataset where the numeric decision serves as a label for the chat text,
positioning it as a valuable resource for predictive modeling.

1. Introduction

Behavioral experimental research aims to identify the factors that
influence behavior. While regression analysis has traditionally been
the standard method used for theory development, it may not always
be effective for practical problem-solving. Think of tax compliance
or compliance with rules in organizations. Audit systems can either
randomly check for submission or apply some kind of risk management.
These systems aim at identifying individuals or situations with a high
probability of non-compliance to target their auditing resources to these
cases. Doing so increases the share of identified non-compliance while
keeping their auditing resources constant.

Behavioral experimental data offers a promising opportunity for
making predictions; however, the research community has yet to fully
explore its potential in this regard. Most behavioral experiments are
structured so that (numeric) decision data is collected alongside process
data, such as text generated through group chats. A vital consideration
is that these experiments often incentivize participants to engage in text
chats directly related to their decisions, ensuring dependence between
the chat text and the numeric variable. Consequently, this creates a

* Correspondence to: Stampfenbachstrasse 48, 8006 Zurich, Switzerland.
E-mail address: carinah@ethz.ch (C.I. Hausladen).

This unique characteristic makes experimental data an excellent
candidate for supervised learning, which is not often the case with
real-world text data, as it rarely possesses this characteristic. Although
behavioral research often has access to gold-standard labeled data,
this property remains largely underutilized. Instead, text data is typ-
ically treated as process data and not directly connected to the deci-
sion data. For example, some studies (van Elten & Penczynski, 2020;
Fochmann, Kocher, Miiller, & Wolf, 2019; Kocher, Schudy, & Spantig,
2018; Mobnica Capra, 2019) assign hand-assigned labels derived from
theoretical reasoning to chat texts, while others (Andres, Bruttel, &
Friedrichsen, 2019; Ménica Capra, 2019) use word clouds to distinguish
between treatment groups. Only a few studies (Arad & Penczynski,
2018; Burchardi & Penczynski, 2014; Georgalos & Hey, 2019; Penczyn-
ski, 2019) have leveraged (semi-)supervised learning to assign labels
to text data. However, their approach differs from ours as they assign
labels by hand and do not directly connect the decision data with the
process data, which is the focus of our paper.
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However, experimental data often poses challenges, such as small
sample sizes and imbalanced label distributions. To address these is-
sues, we present a methodological framework that systematically com-
pares various classification setups, leveraging the unique character-
istics of the dataset. Our approach tests standard NLP classification
setups and tailors the methodology to construct dependent variables
in different ways and evaluate predictive performance based on these
variables.

In addition, we propose a novel approach to ensure the robustness
and generalizability of the classifier. Typically, machine learning clas-
sifiers are validated by splitting the available data into training and
testing sets, with the testing set used to evaluate the classifier’s out-of-
sample performance. If the classifier performs well on the testing set,
the machine learning community generally considers it predictive and
suitable for use in various contexts. However, even the most advanced
machine learning models may not be able to account for all possible
scenarios due to a lack of training data. One approach to addressing this
challenge is to test the model on increasingly challenging test datasets,
simulating new and unpredictable scenarios. While these datasets can
be generated artificially, they may not capture the complexity and nu-
ances of real human behavior. Here, we suggest that the experimental
community is uniquely positioned to generate more realistic and chal-
lenging test datasets. Experiments offer a highly controlled behavioral
setting where experimenters can vary different parameters and collect
decision data. By introducing additional variations in experimental de-
sign and decision data, we can create increasingly challenging datasets
that can serve as a robust testbed for machine learning classifiers. To
generate a robust test set for evaluating our classifier’s out-of-context
performance, we design and conduct a behavioral experiment that
intentionally varies three key parameters from the original experiment
on which the initial classifier was trained. By deliberately manipulating
these parameters, we can create a challenging test set that pushes the
limits of our classifier’s ability to accurately predict outcomes in novel
contexts.

To summarize, our paper makes several contributions to the re-
search community. Firstly, we propose utilizing behavioral experimen-
tal data for supervised learning. Secondly, we present a methodological
framework tailored to the unique properties of experimental data.
Thirdly, we propose and test a novel approach to ensure the robustness
and generalizability of the classifier, highlighting the experimental
community’s unique position to achieve this. Lastly, we collect and
evaluate behavioral experimental data and investigate the linguistic
predictors of (non)compliance.

The structure of this paper is as follows: In the second section, we
outline the general approach for setting up and comparing machine
learning models. This section explains the process of translating text
data into numerical form for embedding, the selection of classifiers, and
the methods used for evaluating and comparing the models. In the third
section, we describe the experiments conducted to train and test differ-
ent machine learning models, including the model specifications and
results. Next, we analyze the newly collected behavioral experimental
data. Finally, we discuss our findings, draw practical implications, and
suggest avenues for future research before concluding the paper.

2. Methods: Model architecture

Supervised learning is a machine learning task where the objective
is to predict a dependent variable y by a set of independent vari-
ables, represented as a vector/matrix of X. This is similar to classical
statistical approaches, such as linear or logistic regressions, which
are frequently used in economics. However, unlike these approaches,
supervised learning can also be applied to text data such as written
chat messages to predict the dependent variable y.

Text classification is a well-studied problem in the field of Natural
Language Processing, resulting in a wide range of feature engineering
techniques and classifiers. However, not all of these methods suit the
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experimental behavioral data we aim to investigate. The following
section describes the different configurations we evaluated to train a
classifier that can effectively learn the association between chat text
and decision data.

2.1. Exploiting unique characteristics of behavioral data for improved clas-
sification performance

Experimental behavioral data exhibit unique characteristics that can
be harnessed to improve classification performance. Consequently, we
generate several variations of the text data and decision data and test
which variation yields the best predictive performance.

Participants in our experiment engaged in group chats prior to
decision-making. This presents an opportunity to explore whether the
collective chat or an individual’s contributions are more predictive of
decisions. Note that in scenarios where three participants chat in a
group, treating the entire group chat as a single input could result in
threefold replication for predicting each member’s independent deci-
sion. Moreover, many researchers manually assign labels or categories
to the text data, which can also be leveraged for predictions. However,
some chat snippets may not have a label assigned because they are
just filler sentences, and excluding them from the input data could
reduce noise and increase accuracy. The data that we use for training
the classifier (Fochmann et al., 2019) provides 34 categories that were
assigned to each chat after being read by a human. These categories
describe various aspects of the chat content, such as specific numerical
propositions or lying strategies (Table S1). To leverage this information,
we estimate a classifier that only uses chat text to which a label was
assigned as input. Consequently, we will experiment with three text
data variations to determine which variation yields the best predictions:
“Chat, group”, reflecting the group’s entire chat log; “chat, subject”,
representing only the messages contributed by the individual; and “chat
with label”, which includes only manually labeled chat excerpts. Each
variation will be tested for its ability to forecast individual decisions
accurately.

In behavioral experiments, decisions are often numeric and con-
tinuous but can be categorized into binary concepts. In behavioral
experiments involving numerical outcomes, such as income reports
from a tax evasion game, continuous data are frequently converted into
binary categories to reflect compliance status. For our study, we predict
tax compliance by establishing a threshold to binarize reported in-
come as either compliant or non-compliant. Although deriving precise
compliance measures is achievable in controlled experiments, real-
world applications, like those used by tax authorities, often prioritize
the detection of non-compliance, even at varied thresholds of income
under-reporting. The selection of a suitable threshold for classification
is critical and may be informed by theoretical frameworks or data-
driven insights. It is imperative to choose a threshold that provides
clear differentiation for the classifier, thus enhancing the reliability
of predictions. In our analysis, we have binarized the reported in-
come data at three distinct thresholds to train the classifier: maximum
compliance, and the average and median levels of reported compliance.

2.2. Preprocessing

For text classification, textual data must first be converted into
numerical format. Prior to this conversion, preprocessing is essential
to ensure data quality and consistency. Our preprocessing, included
the following standard steps: We began with converting all positive
emoticon symbols into a single token “smiley” for uniformity. Fol-
lowing this, we tokenized the content, which involves breaking down
the text into its basic elements or ‘tokens.” This step also included
the removal of punctuation and ‘stopwords’—commonly used words
that offer limited analytical value. We then applied Gensim’s phrase
detection algorithm (Rehurek & Sojka, 2010) to form ’bi-grams’ or
pairs of consecutive words only for frequently co-occurring terms, while
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also considering ‘uni-grams’ or single-word tokens. The subsequent
stage involved ‘lemmatization,” a process where words were converted
to their base or dictionary form for accuracy, contrasting with the
simpler but less precise ‘stemming’ technique. To refine the dataset, we
excluded words that appeared fewer than five times. Furthermore, we
incorporate a spellchecking process to improve text data quality. The
spellchecker used in our study operates on a rule-based system designed
to pinpoint possible errors and make amendments (Naber et al., 2003).

2.3. Embeddings

To use text data for decision prediction, it must be transformed into
numerical input, a process known as embedding. A common and effi-
cient baseline approach for text classification is to represent sentences
as a bag of words or n-grams (Harris, 1954), where words are assigned
either absolute counts or weighted counts. Since some words, like “the”
or “a”, are so frequent that they appear in all documents, they do
not contribute much to distinguishing one document from another.
Therefore, word counts are often re-weighted using “term-frequency”
(tf) or “term-frequency times inverse document-frequency” (tf-idf) to
assign greater weight to rarer words.

However, representing words as individual atomic units has limi-
tations, such as the inability to capture relationships between words.
To address this issue, vector representations can be used, which pre-
serve the meaning of words. In this context, static embeddings are
more suitable, as they require less data than dynamic embeddings.
There are three popular algorithms for training word embeddings,
namely Word2Vec (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013),
GloVe (Pennington, Socher, & Manning, 2014), and fastText (Joulin,
Grave, Bojanowski, & Mikolov, 2017).

Word2Vec uses a neural network to learn word embeddings from
text data, capturing similarities between words based on their contexts.
In contrast, GloVe focuses on co-occurrence probabilities of words
across the entire corpus. By leveraging the co-occurrence matrix (Pen-
nington et al., 2014), GloVe can extract semantic relationships between
words. Finally, fastText improves upon Word2Vec by incorporating
subword information, allowing for embeddings to be trained on smaller
datasets, capturing partial information about the local word order, and
generalizing to unseen words (Joulin et al., 2017).

In addition to training word embeddings on the actual dataset, we
also use pre-trained embeddings. Since text data obtained from labo-
ratory experiments are often limited in size, pre-trained embeddings
trained on larger external datasets can provide additional context and
improve performance.

To derive sentence embeddings from word embeddings, we average
all word embeddings that occurred in the text, which has been shown
to be a stable baseline across various tasks (Banea, Chen, Mihalcea,
Cardie, & Wiebe, 2015; Hu, Lu, Li, & Chen, 2014; Socher, Chen,
Manning, & Ng, 2013). However, a simple mean might not adequately
capture the distribution of word embeddings across a text. To account
for the importance of different features, we apply tf-idf weighting to
individual feature vectors (Kenter & De Rijke, 2015).

In addition to averaging word embeddings to form sentence embed-
dings, we also train paragraph vectors (PV) directly using a technique
called Distributed Memory (PV-DM) (Le & Mikolov, 2014). Rather
than relying on a distributed bag of words, PV-DM involves randomly
sampling adjacent words from a paragraph and predicting a center
word from this set. The input to the prediction includes the context
words and a paragraph ID, allowing the model to learn document-level
information. This approach can capture information about the order of
words in a sentence and the context in which they appear, which may
be important for certain tasks.

2.4. Classifiers

Logistic regression, support vector machines (Joachims, 1998),
or Naive Bayes (Zhang, 2004) are usually considered efficient base-
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lines for text classification. In addition to these models, we test one
nonparametric model, namely k-nearest neighbors (Sun & Chen, 2011),
and non-linear models like Random Forests (Breiman, 1998, 2001)
and XGBoost (Chen, Schonger, & Wickens, 2016). We also test en-
semble techniques such as bootstrap aggregating (Breiman, 1996), and
model stacking (Wolpert, 1992). Furthermore, we also test a 2-layer
perceptron model.

Specifically, a support vector machine finds the decision boundary
to separate different classes by maximizing the margin. A Naive Bayes
classifier utilizes probability theory and Bayes’ theorem to calculate the
probability of each class for a given text and then chooses the class
with the highest score. K-nearest neighbors classification is based on
a majority vote, where a text is assigned to the class with the most
representatives within the nearest neighbors of the point representing
the text in space. A random forest classifier consists of multiple indi-
vidual decision trees, with each tree predicting the class of a given
text. The class with the most votes becomes the model’s prediction
for a given text. XGBoost (Chen & Guestrin, 2016) denotes a specific
implementation of gradient-boosted decision trees designed for speed
and performance.

To improve accuracy, we also implement ensemble techniques such
as bagging, which combines the results of multiple classifiers trained
on different subsamples of the same data set, and model stacking,
which combines the predictions of several base models. The two-layer
perceptron is a simple feedforward neural network composed of an
input layer that receives the text, one hidden layer, and an output layer
that predicts the class.

2.5. Model training

In the process of developing a predictive machine learning model, it
is crucial to split the dataset into distinct sets—training and testing. The
training set is utilized for the model’s learning phase, while the testing
set is reserved for evaluating the model’s predictive capabilities.

The datasets we use possess a nested structure, wherein individual
participants are embedded within groups. To preserve the integrity of
the evaluation, groups part of the training set are entirely excluded
from the testing set. This precaution helps to prevent information
leakage.

For classification tasks with imbalanced outcome categories, strat-
ification is standard to ensure that splits of the data mirror the full
dataset’s dependent variable distribution. This approach safeguards a
model’s external validity and the robustness of inferences. In our study,
stratification during data splitting preserved the ratio of compliant to
non-compliant decisions in both the training and test sets, mirroring
the overall dataset’s distribution.

Moreover, when addressing class imbalance within the dataset,
particularly where a significant skew towards one category exists, it
is a widely accepted method to implement oversampling techniques
(Chawla, Bowyer, Hall, & Philip Kegelmeyer, 2002). For our study,
random oversampling was employed to augment the minority class,
which is the set of compliant decisions.

2.6. Evaluation

To assess the performance of our models, we calculate the standard
performance metrics of accuracy, precision, recall, F1 score, and AUC.
These metrics capture the model’s capacity to distinguish between com-
pliant and non-compliant reports—the central objective of our research.
Our datasets exhibit a significant class imbalance, with non-compliance
as the prevalent category.

Accuracy,

True Positives + True Negatives
Total Observations

quantifies the proportion of correct predictions made by the model
across all observations. This metric, while straightforward, can yield

@

Accuracy =
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a skewed perception of model performance in imbalanced scenar-
ios. A model that predominantly predicts the majority class (non-
compliant) may attain high accuracy, overshadowing its effectiveness
at identifying the minority class (compliant).
Precision quantifies the exactness of the model in predicting com-
pliance,
True Positives

Precision = — —, 2
True Positives + False Positives

where a “True Positive” is a correctly identified compliant case, and
a “False Positive” is a non-compliant case incorrectly labeled as com-
pliant. This metric measures the model’s effectiveness in avoiding the
misclassification of non-compliance.

Recall is the metric that determines the model’s capacity to identify
all actual instances of compliance, calculated as

True Positives
Recall = 3
True Positives + False Negatives )

. This ratio of correctly detected compliant cases to all compliant
instances is key for ensuring that the model captures as many compliant
behaviors as possible. High recall is imperative in studies where failing
to detect compliance can entail significant costs, such as missing out
on identifying taxpayers who accurately report their taxes.

The F1 Score, which harmonizes precision and recall, is given by:

F1 Score = 2 x Prec.is%on X Recall’ )
Precision + Recall

The F1 Score is particularly valuable when it is necessary to manage

a balance between different types of prediction errors in the model’s

performance.

The Area Under the Curve (AUC) of the Receiver Operating Char-
acteristic (ROC) provides a single summary metric of a model’s ability
to distinguish between binary outcomes, such as compliant and non-
compliant reports in tax experiments. Unlike metrics that may depend
on a specific classification threshold or data distribution, AUC re-
mains constant across different data scales and threshold settings. It
effectively captures the probability that the model ranks a randomly
chosen compliant (positive) instance higher than a randomly chosen
non-compliant (non-positive) instance. In our research, we adjust our
model to test various thresholds for defining compliance to identify the
most effective indicator for tax reporting behaviors.

2.7. Step-wise approach

To determine the optimal model configuration from numerous pos-
sible variations without incurring excessive computational costs, we
employed a systematic step-wise selection method. Our procedure un-
folds in three phases:

We initially explore various text data representations and binariza-
tion thresholds to identify the most effective setup. This step determines
the best manner to process and categorize the chat data into binary
outcomes reflective of tax compliance. Following the initial selection,
we proceed to evaluate different embedding techniques to ascertain
which yields the most predictive features for compliance detection.
With the refined data representation and embedding, we then evaluate
a range of classifiers to find the one that offers the best performance
in predicting compliance. The culmination of these steps results in
an optimized model based on the training data from the first tax
compliance experiment. We then apply the most effective classifier to a
second dataset from a subsequent experiment to validate its predictive
power on new, unseen data. For more details on the implementation of
the algorithm, please refer to Table S2 and Table S3.

3. Computational experiments

This section has three parts: First, we evaluate various configu-
rations to train a classifier on data from a tax evasion experiment.
Next, we use this classifier to make predictions in a separate experi-
ment. Finally, we qualitatively assess the potential of chat text from a
behavioral experiment to predict compliance.
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Fig. 1. Declared Income in Tax Compliance Experiment. (Left) Participants’ re-
ported income distribution in a tax game, where 0 indicates full non-compliance and
1000 marks full compliance. Three thresholds (mean: 241, median: 500, max: 1000)
illustrate the thresholds for binarizing the reporting income. (Right) The frequency of
reported incomes categorized by these thresholds demonstrates the discretization of
continuous income data for predictive modeling.

3.1. Identification of the best configuration for training the classifier

We utilize a publicly available dataset, collected by Fochmann and
Wolf (2019), to train and test our configurations. This dataset captures
participant interactions in a tax evasion game, where participants are
presented with a vignette detailing their taxable income (1000 ECU)
and are then asked to discuss whether or not to report their income in
a group chat truthfully. Following the discussion, participants individ-
ually reported their income. The dataset includes information from 141
participants who were grouped into 47 groups, and 855 decisions were
recorded (Fochmann et al., 2019).

Our study aims to predict tax compliance from text communication
by categorizing reported incomes into compliant and non-compliant
classes, using full compliance (1000), mean (241), and median (500)
reported income thresholds (Fig. 1). We assess three data variations:
complete group chats, individual messages, and manually labeled chat
segments. Text data are processed using tokenization, emoticon nor-
malization, punctuation removal, and lemmatization, further refined
by excluding infrequent tokens, resulting in a corpus of 2547 unique
words. Additionally, we evaluate the impact of spellchecking on pre-
processing. The dataset division yields 648 training samples, expanded
to 858 post-oversampling, and 207 testing samples.

Best Combinations of X and y: First, we test several X- and Y-
combinations. For this step, we chose a baseline setup where tf-idf vec-
torized text is input to a support vector machine (SVM). The regulariza-
tion parameter C, the kernel k, and the degree of the polynomial kernel
function d were subject to a five-fold cross-validated grid search, where
we choose C € [-1,4], k € linear, polynomial, radial basis function,
and d € [2,3]. Furthermore, based on the best parameters proposed
by the grid search, the model is refitted ten times to reduce prediction
variance. Within each fit, the classification threshold is chosen such that
it maximizes the F1 score (Lipton, Elkan, & Naryanaswamy, 2014). The
reported model metrics are averaged over the ten fits.

Table 1 presents the optimal performance combinations across dif-
ferent configurations of Data, y, and X Variation. All variations have
higher recall than precision, indicating a tendency towards more falsely
labeled cases as compliant. Generally, a high recall is more readily
attainable for models with limited predictive capability, like ours,
when the minority class is a focal point for precision improvement.
Furthermore, the AUC scores are moderate to low, ranging from 35.5
to 64.5, with 50 indicating a random guess. This suggests that the
model’s ability to differentiate between compliant and non-compliant
instances is not very strong. Interestingly, results are not disparate
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Table 1

Best combinations by input variation.
Variable F1 score precision recall AUC accuracy
Data
original 24.3 21.4 57.1 64.5 76.1
spell checked 24.3 21.4 57.1 64.5 76.1
Y Variation
<max 24.3 21.4 57.1 64.5 76.1
<mean 36.8 25.2 74.1 57.1 50.4
<median 31.2 21.8 81.8 55.6 48.8
X Variation
chat, group 33.6 32.4 44.4 56.6 69.3
chat, subject 36.8 25.2 74.1 57.1 50.4
chat with label 32.4 20.4 100.0 35.5 21.1

Note: Numbers in %. The classifier utilizes tf-idf vectorization as input to an SVM
optimized via a five-fold cross-validation grid search. The model variance was reduced
by tenfold refitting, optimizing for the F1 threshold. Metrics are the means of these
refits. F1 score, precision, and recall for the “compliant” class (= 1) are reported.
<max indicates that a reported income of 0-999 was labeled non-compliant, and only
a report of 1000 was labeled compliant. chat, group indicates that the whole group chat
was used to predict an individual’s decision. chat, group uses group chat for individual
prediction. chat, subject uses a subject’s chat. chat with label uses manually labeled chat
excerpts for prediction.

between the original text and its spellchecked counterpart. This non-
existent difference in performance may be attributed to the fact that the
spellchecker only amended 21.51% of tokens in the dataset. This rela-
tively low proportion of corrections suggests that the text modifications
were insufficient to impact the classification outcomes significantly. Y
Variations refer to different thresholds used to define the binary classi-
fication of the dependent variable. This reclassification alters the data
distribution, making it crucial to evaluate model performance in terms
of the AUC. When applying a compliance threshold of 1000, the model
records its highest AUC at 64.5%, which declines to 57.1% for the
mean and 55.6% for the median threshold. However, Fig. 1 indicates a
scarcity of fully compliant reports, suggesting an extreme imbalance in
the dataset that could hinder the performance of subsequent classifiers.
Binarizing at the mean or median achieves a more balanced label
distribution. Therefore, setting the threshold at the mean is preferred
for training subsequent models. X Variations denote different versions of
chat text data used for modeling. As these do not change the underlying
distribution of labels, we evaluate these variations by comparing F1
scores additionally to AUC. The highest F1 score of 36.8% is achieved
using texts written solely by the subject to predict their decisions.
This score decreases to 33.8% when considering entire group chat
conversations and falls further to 32.4% when using only those chat
excerpts with manually annotated labels. The initial decline in score
can be attributed to the ambiguity introduced when group chat texts,
despite identical, correspond to varied individual decisions, diluting
clear patterns for the classifier to learn from. Further reduction in
score with labeled chat snippets results from the decreased volume
of text data available, which likely limits the classifier’s learning and,
consequently, its performance. Overall, Table 1 implies binarizing Y
based on the mean of the reported income and deploying chat texts
grouped by individuals as input X.

Features. We constructed text features by training embeddings
directly on our corpus and leveraging pre-trained embeddings. The
latter were sourced from deepset.ai,? based on the German Wikipedia
dataset of 2015. To assess the efficacy of these text representations,
we employed a linear logistic regression model, with the dependent
variable binarized at the mean and the chat messages grouped by
subjects.

Before calculating performance metrics, we visually analyze feature
representations using PCA, reducing embedding vectors to two dimen-
sions (Fig. 2). This visualization shows distinctions between corpus-
specific and general corpora language processing in word embeddings.

2 https://www.deepset.ai/german-word-embeddings
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Generally, accurate embedding distances are critical for capturing the
experimental nuances relevant to subsequent classification or clustering
tasks. Experiment-specific embeddings, notably Word2Vec, show tight
clustering due to a focused vocabulary, resulting in denser representa-
tions. In contrast, the wider scope of pre-trained models’ training results
in more dispersed vectors, indicating a capture of generalized language
patterns. Despite distinct training approaches, pretrained Word2Vec
and GloVe demonstrate comparable dispersion in vector representation.
The figure reveals ‘Einkommen’ (income), ‘Risiko’ (risk), and ‘Strafe’
(fine) — three words central to the experiment — in varying proximi-
ties across embeddings. In GloVe, their clustering suggests that global
textual patterns reflect their interrelation. At the same time, their dis-
persion in Word2Vec and experiment-specific embeddings, particularly
Word2Vec, might indicate infrequent co-occurrence or more diverse
contexts within our experimental data.

Table 2 organizes the feature representations in descending order
of their F1 Scores. Similarly to results presented in Table 1, overall
results depict a trend of high recall yet low precision across the models.
Additionally, it is observed that accuracy is frequently below the 50%
mark. This occurrence is attributed to adopting a prediction thresh-
old configured to optimize the F1 score, subsequently influencing the
accuracy detrimentally. Remarkably, a tf-idf weighted Bag of Words
depicts the best F1 score of 56.6%. Leaving out the weighting slightly
diminishes the F1 score to 55.1%. Three variants of Word2Vec exhibit
similarly high F1 scores, spanning from 51.3% to 52.2%. Conversely,
other models, such as Doc2Vec, GloVe, and FastText, exhibit lower
F1 scores ranging from 33.4% to 35.0%. The findings suggest that,
in the context of the experiment, keyword detection capabilities of
simpler models may be more critical for predictive accuracy than the
nuanced semantic comprehension offered by complex word embedding
techniques. We consequently choose to utilize the tf-idf weighted Bag
of Words model for subsequent model training.

Classifiers. All classification models were tuned using a 5-fold
cross-validated grid search to optimize their hyperparameters ( Table
S2). The parameters to be tuned were specific to each model. Based
on the best parameters identified by the grid search, each model was
refitted ten times to reduce prediction variance. The classification
threshold within each fit was selected to maximize the F1 score (Lipton
et al., 2014). The reported model metrics were averaged over the ten
fits.

Like the embedding outcomes detailed in Table 2, the analysis of
various classifiers in Table 3 also reveals a tendency towards higher
recall than precision, with accuracy frequently falling below 50%.
The F1 scores for different models are closely clustered, spanning a
small range from 51.1% to 56.3%. This suggests that the choice of
embeddings may have a more significant impact on performance than
selecting a classifier.

Table 3 shows that the Stacking classifier outperforms other models
based on its F1 score (56.3%). It achieves substantial recall (76.4%),
important for identifying most non-compliant cases, even though it
generates more false positives as indicated by a lower precision. In the
Stacking classifier, ensemble weights determine how much influence
each base model has on the final output. The heavy weighting (83%)
for the Neural Network (NN) in the ensemble suggests that the Stacking
model relies more on the NN for its prediction than on other models in
the ensemble.

The Logistic Regression with Lasso provides slightly lower perfor-
mance metrics, e.g. with an F1 score of 54.5%. The remainder of the
models achieve F1 scores ranging from 51.1 to 52.8%. Our primary
evaluation metric is the F1 score, with a notable difference of 1.8
percentage points between the top two models. This relatively large
margin leads us to choose the stacking classifier for future use.

Monetary Implications. Beyond investigating performance met-
rics, an alternative way to assess the predictive quality of the classifier
is to evaluate its monetary implications. In the context of the tax
evasion experiment that produced the data the classifier was trained
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Fig. 2. Visualization of Word Embeddings with PCA Reduction. The scatter plots illustrate the 2D representation of word embeddings from different algorithms, reduced
in dimensionality, using Principal Component Analysis (PCA). Three sample words — “Einkommen” (income), “Strafe” (fine), and “Risiko” (risk) — are highlighted to facilitate
comparison across the visualizations. “Pre” and “Own” denote embeddings that are pretrained and custom-trained, respectively. The pretrained embeddings were sourced from the
German Wikipedia corpus of 2015, while “Own” embeddings were specifically trained on chat data from a behavioral experiment. Axes ticks are omitted as the focus is on the
relative, not absolute, positioning of words.

Table 2
Performance of different embeddings.
F1 score Precision Recall AUC Accuracy

bag of words (tf-idf) 56.6 42.3 88.3 62.1 53.6
bag of words 55.1 43.1 79.7 60.9 55.6
Word2Vec (pre, tf-idf) 52.2 36.7 94.0 51.5 41.0
Word2Vec (pre, avg) 52.1 37.5 89.3 529 43.7
Word2Vec (own, tf-idf) 51.3 35.0 100.0 45.7 34.8
GloVe (pre, tf-idf) 35.0 22.1 93.0 51.9 32.4
GloVe (pre, avg) 34.8 21.9 94.1 52.1 30.9
Word2Vec (own, avg) 34.7 21.9 91.3 53.4 32.7
Doc2Vec 34.4 23.2 79.1 54.8 40.3
fastText (own, avg) 33.4 20.7 94.4 50.8 26.3

Note: Numbers in %. The table shows results from a logistic regression classifier with a squared Euclidean norm penalty.
Metrics target the “compliant” label. “Pre” denotes pretrained embeddings from the 2015 German Wikipedia corpus. “Own*
indicates embeddings trained on lab experiment chat text. “tf-idf” signifies weighting applied, while “avg” represents an

unweighted average.

Table 3
Performance metrics for all classifiers tested.
F1 score Precision Recall AUC Accuracy

Stacking 56.3 45.5 76.4 60.8 59.4
LLR 54.5 44.8 72.2 58.9 58.9
RF 52.8 55.0 61.1 63.8 67.1
NN 52.8 40.4 79.2 60.7 51.7
XGBoost 51.5 35.3 98.6 47.5 36.2
SVM 51.3 35.0 100.0 54.5 34.8
Bagging 51.3 34.8 100.0 56.7 35.7
KNN 51.1 34.8 100.0 54.2 34.3

Note: Numbers in %. The reported performance metrics are based on the minority class
(label = 1) “compliant”. The table tests the following models: Stacking (an ensemble
model), Random Forest (RF), Neural Network (NN), Logistic Regression with Lasso
(LLR), eXtreme Gradient Boosting (XGBoost), Bagging (another ensemble method), k-
Nearest Neighbors (KNN), and Support Vector Machine (SVM). All models were tuned
with a 5-fold cross-validated grid search to optimize their hyperparameters. The specific
parameters to be tuned were dependent on each model. Based on the best parameters
from the grid search, each model was refitted ten times to reduce prediction variance.
The classification threshold for each fit was selected to maximize the F1 score. Reported
metrics were averaged over the ten fits. Stacking classifier model weights: NN (0.75),
SVM (0.56), RF (0.29), KNN (0.34), LR (0.21), XGB (0.04).

on, participants were informed that tax evasion, if detected, would
need to repay the evaded tax plus an equivalent fine. For the following
example, we set the chance to audit any given individual at 50%.
Our test set comprises 207 cases, from which we select a subset of
103 for auditing based on this probability. In an ideal scenario with
complete visibility into compliance behavior, we could cherry-pick the
103 individuals with the lowest compliance rates for auditing. Doing
so would yield an audited revenue sum of 206,000 ECU (Experimental
Currency Units). On the other hand, if we were to choose individuals for
audit purely at random from our test set — reflecting a scenario where
we audit 103 individuals without any guiding data - the expected
revenue is significantly lower, at 169,800 ECU. However, the scenario
improves with the introduction of our classifier. When we use the

classifier’s insights to select the 103 individuals it deems most likely
non-compliant, the audited revenue climbs to 170,500 ECU. This rep-
resents an incremental rise of roughly 0.41% over a random selection
method. While the improvement is not substantial, it is nonetheless a
step in the right direction, indicating that the classifier can make audit
programs more efficient.

3.2. Testing generalizability via a team coordination experiment

So far, we have identified several factors that contribute to the best
performance of our classification model. Specifically, binarizing the
dependent variable at the mean and grouping the chat texts by subjects
are effective strategies. Regarding text representation, a tf-idf weighted
bag of words is the most reliable representation. Finally, stacking
multiple classifiers outperforms using a single classifier, resulting in an
F1 score of 56.3%. While this score may appear low, it is important to
consider the context of our dataset: we only have a small number of
training samples, and the labels are highly imbalanced. Nevertheless,
our results demonstrate that carefully selecting the model configuration
can lead to significant gains in performance—the lowest F1 score we
observed was 24.4%.

Ideally, this classifier trained generalizes to another experimen-
tal setting. Therefore, we collected chat data via a new behavioral
experiment.® The experimental design was preregistered,* and the cor-
responding software was programmed with oTree® (Chen et al., 2016).

3 The study was approved by the Institutional Review Board/Ethics Com-
mittee of the German Association for Experimental Economic Research e.V.
Approval number No. EUFf7PP5 was obtained, and written informed consent
was obtained from all participants before participating in the study.

4 https://doi.org/10.1257/rct.5049-1.2000000000000002

5 The oTree code is available on Github: https://github.com/carinahauslad
en/PredictingCompliance
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Fig. 3. Reported Surplus Hours in Team Coordination Experiment. (Left) Distri-
bution of surplus hours reported by participants acting as employees in a scenario
where coordinating on higher reported hours increased their salary. Reporting 10 h
indicates full compliance, while 60 h signifies full non-compliance. Key thresholds used
for analysis are marked (min: 10, median: 30, mean: 34). (Right) Categorization of
reported hours using these thresholds to create predictive groups.

Participants were recruited via the MPI Decision Lab,® and the sessions
were conducted online” on servers provided by the latter in May 2020.

The experimental design involved participants taking on the role of
an employee for a fictitious company. Working alongside a team mem-
ber, each participant was tasked with completing a project, with both
team members working the same number of surplus hours. Participants
were allowed to coordinate with their team members via chat about
the number of surplus hours they wished to report. The more surplus
hours reported, the higher the salary the fictitious company would pay.
However, if the reports from the two team members diverged, they
were subject to audit. Consequently, participants were motivated to
use the chat to align their reporting intentions rather than discussing
unrelated topics. Specifically, couples that reported the same amount of
hours were randomly selected for an audit with a probability of 30%.
Participants who were audited and reported more than ten surplus
hours had to pay a fine. The experiment instructions can be found in
the Appendix. The experimental design introduced in this study differs
from that of Fochmann et al. (2019) in three important ways. Firstly,
the context is no longer focused on tax evasion but on reporting surplus
hours in a work-related project. Secondly, the optimal direction of lying
is reversed: while participants were incentivized to underreport in the
tax evasion setting, they were encouraged to overreport in the surplus
hours context. Finally, the size of the reporting group was reduced from
three to two participants.

Data. A total of 324 observations were collected, with participants
being on average 24.8 years old and a female representation of 60%.
The distribution of the stated surplus hours is displayed in Fig. 3, which
shows that the majority of participants reported a compliant amount
of hours, with binarization based on the full compliance benchmark
(10), the mean report (34), and median report (30). On the other hand,
the distribution of the stated income is bimodal, with peaks at the full
compliance benchmark (10) and the full non-compliance benchmark
(60). A comparison of Fig. 3 with Fig. 1 reveals that participants in
the new experiment reported in a more compliant way than those
in Fochmann et al. (2019). To perform the classification task, we
binarized the stated income based on the mean of the reported surplus
hours.

6 https://www.coll.mpg.de/124252/decision-1lab

7 The experiment and payment processes were both conducted online.
Personally identifiable information was excluded ex-post from the decision
data and never used for data analysis.
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Table 4
Out-of-context performance of the pretrained classifier.
F1 score Precision Recall AUC Accuracy
> mean 71.4 55.9 100.0 55.8 55.6
> median 60.5 44.2 97.8 56.6 45.7
> max 46.8 32.4 86.7 56.5 41.0

Note: Numbers in %. Classification was based on a stacking classifier with tf-idf
weighted bag of words as input trained on data from the tax evasion experiment.
F1 score, precision, and recall are reported for the minority label (= 1) “compliance”.

Do the two experiments exhibit structural differences in the way
participants communicate? The answer appears to be yes based on
simple word counts: the text data in Fochmann et al. (2019) counts
2547 unique words, while the text data in the new experiment counts
975 unique words with only 540 tokens in common.

Comparing AUC. To evaluate the model’s generalizability, we
tested its out-of-context performance on the dataset obtained from the
new experimental setup.

Specifically, we extend our analysis to compare the classifier’s per-
formance on a second, distinct dataset with the performance on the
test set from the first experiment. Given that this is an inter-dataset
comparison, the AUC is a more reliable performance indicator than
the F1 score due to its focus on model discrimination. For the chosen
thresholds, binarization at the median yields the highest AUC (56.6%,
Table 4). A slight decrease in AUC is noted when using the maximum
compliance threshold (56.5%) and a further reduction when applying
the mean compliance threshold (55.8%). When binarizing at the mean
threshold, the model’s recall hits 100%, marking full compliance de-
tection. Fig. 3 reveals a balanced label distribution at this threshold,
which typically benefits classifier efficacy. Nonetheless, a recall of
100% warrants investigation for potential overfitting within the model.

The classifier’s performance in the first experiment, with an AUC
of 60.8%, hints at better-than-chance predictive capabilities. When
applying the classifier to the second experiment, the AUC drops to
56.6%. Consequently, while the classifier predicts compliance moder-
ately well in contexts similar to its training environment, transferring
it to an entirely different dataset poses a challenge. The observations
from the data obtained by the new experimental setup are consistent
with the idea that the model’s poor generalization performance is due
to structural differences between the two experiments. Specifically,
participants in the new experiment reported a higher number of com-
pliant instances than in the study by Fochmann et al. (2019), and the
relationship between compliance and chat length was the opposite of
what was observed in the earlier study. In addition, the small number of
common words in both datasets suggests that the language used by the
participants was significantly different. These differences likely account
for the poor performance of the already weak model, which was unable
to generalize to a new context.

3.3. How does language reflect lying intentions?

The previous subsection addressed the generalizability of the clas-
sifier. This subsection addresses its robustness concerning two major
components: Is text an independent predictor in laboratory experi-
ments? Moreover, does the text reflect concepts that previous literature
found to predict lying?

Chat text is an unbiased independent variable. In addressing
the potential for omitted variable bias, we scrutinized participant chat
behavior alterations due to experimenter demand effects, which could
concurrently affect chat interactions and subsequent reports. Our find-
ings reveal a minimal impact, with only 4% of participants (13 in
total) acknowledging a change in their chat behavior due to the exper-
imenter’s presence, underscoring the stability of chat text as a likely
unbiased independent variable in laboratory experiments.

Analysis of 13 open-ended responses, annotated by the first author,
revealed diverse behavior changes among participants. Six participants
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Table 5
Linear Regression.

Dependent variable:
hours stated

Joy 1.090**
(0.367)
Risk Attitude 0.870**
(0.397)
Belief 0.438**
(0.035)
Lab Experience 0.512
(0.744)
Total Words 0.095***
(0.031)
Lying Attitude -0.122
(0.466)
Political Orientation —-0.951
(0.624)
Econ Classes —2.262
(1.975)
Constant -2.036
(6.544)
Observations 324
R2 0.443
Adjusted R? 0.428

Residual Std. Error
F Statistic

16.170 (df = 315)
31.254*** (df = 8; 315)

Note: *p < 0.1; **p < 0.05; ***p < 0.01. Hours stated H € [10,60], where 10 denotes full
compliance. Joy experienced J € [1,10], where 1 denotes no joy. Beliefs B € [0, 100],
where 0 means no overstatement. Risk attitude R € [1,11], where 1 denotes risk
aversion. Political orientation P € [1,9], where 1 denotes left-wing. Econ classes
E € [1,2], where 1 denotes fewer than one class. Lying attitude L € [I,10], where
1 denotes opposition to lying. Lab experience Lab € [1,5], where 1 denotes no lab
participation.

reduced their text length, potentially due to privacy concerns; three
used more formal language, and one increased text length. Crucially,
only two participants showed increased compliance, and one sought to
be more agreeable. We consider only these last three responses critical,
although they represent a small fraction of the sample. The behavior
changes noted in the first ten responses appear to be uncorrelated with
our dependent variable of compliance.

Consequently, we assert that chat text is likely a valid and unbiased
independent variable in laboratory experiments, ensuring the integrity
of our predictive analyses.

Various concepts influence lying. Following the surplus hours
report, participants responded to a series of control questions designed
to capture concepts identified in previous research as relevant to lying
behavior. These questions probed feelings and emotions experienced
during the experiment, attitudes towards risk, and participants’ field
of study, among other factors. We visualized the distributions of the
answers to these questions in S1 and S2. It is unlikely that concepts
with little variation in responses would strongly predict lying behavior
in our experimental setting.

To assess the relationships between the control variables and the
reported surplus hours, we estimated a linear regression (Table 5). We
found four variables to significantly increase the number of surplus
hours stated: Participants who experienced more joy during the experi-
ment also tended to report more surplus hours (Joy = 1.090, p < 0.001).
This result aligns with (Siniver, 2021), who found that happiness was
positively correlated with dishonest behavior. The more risk-prone a
participant stated to be, the higher the reported surplus hours (Risk
Attitude = 0.870, p < 0.005), which is in line with previous litera-
ture (Dulleck et al., 2016; Fochmann et al., 2019; Fochmann & Wolf,
2019) suggesting that a higher willingness to take risks is associated
with lower compliance. Participants who believed that more people
in their group were non-compliant tended to report higher surplus
hours (Belief = 0.438, p < 0.001). This finding is consistent with pre-
vious research (Fochmann, Kolle, Mohr, & Rockenbach, 2020) which
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suggests that non-compliant individuals expect more non-compliance
from others than compliant individuals do. Furthermore, we found that
the more words participants wrote in the chat the more surplus hours
they stated (Total Words = 0.095, p < 0.001). This observation might
be partly explained by anchoring and default effects. The experiment
instructions provided the true amount of surplus hours as a salient
piece of information, which could serve as an anchor for participants’
responses (Tversky & Kahneman, 1974). Sticking with the truth (the
anchor) would require less communication, as no alternative number
needs to be agreed upon.

Furthermore, the coefficients for Lab Experience, Lying Attitude, Po-
litical Orientation, and Econ Classes were not statistically significant at
the conventional levels. The model accounts for 44.3% of the variance
in the dependent variable and is highly significant (F-statistic=31.3,
p < 0.01).

4. Discussion and conclusion

This paper aimed to identify the best configuration for text clas-
sification of behavioral experimental data and to investigate the gen-
eralizability of the classifier. The results showed that the individual’s
text messages were the most predictive of their decisions, and the mean
report as binarization threshold provided the most balanced precision—
recall tradeoff in mapping the decisions to a broader concept. A tf-idf
weighted bag of words was the most effective feature representation.
A stacking classifier outperformed all individual models tested, yield-
ing an F1 score of 56.3% and an AUC of 60.8%, which, although
low, was expected due to the small and heavily skewed dataset. The
generalizability of the classifier was tested by assessing whether it
could be applied to another experimental behavioral setting. The results
indicated that the classifier did not generalize well to a new dataset, as
the AUC dropped to 56.6%.

Overall, while the predictive quality of the classifier was low, the
study provided important insights into the best configuration for text
classification of behavioral experimental data. By varying the configu-
ration, the study demonstrated that a considerable gain in performance
can be achieved. The recommendations in this study can be applied to a
considerably larger dataset, which is necessary to build a more accurate
predictive model. In that way, this study provides a valuable toolbox
for the community.

These findings have practical implications for future research in the
field. Researchers with larger and more diverse datasets can readily
adopt the recommended configuration proposed in this study without
requiring expertise in natural language processing or programming. By
providing specific recommendations and easy-to-use tools, we hope to
facilitate the development of predictive classifiers in the behavioral
community.

Additionally, our behavioral experiment sheds light on several in-
teresting concepts related to participants’ lying behavior. Our findings
show that beliefs about others’ compliance behavior, risk attitudes, joy
experienced, and the total number of words written highly influence a
participant’s decision to comply. These indices suggest an alternative
avenue to predict compliance.

More generally, this paper introduces a strategy to enhance inter-
vention effectiveness based on participants’ (non) compliance. Consid-
ering the diverse responses to interventions (Engel, 2019) and potential
counterproductive effects (Bruno, 1997; Fehr & Rockenbach, 2003;
Gneezy & Rustichini, 2000), we propose real-time predictive models
to discern group attitudes and intentions, utilizing group chats as
a valuable data source. This enables precise, tailored interventions.
For example, groups identified as potentially non-compliant can be
redirected to compliance-enhancing treatments.

Our method has practical implications. We quantified the monetary
implications of our classifier with the experimental context it was
trained on. Our commitment to a no-deception policy in experimental
economics necessitates transparency about employing a classifier in our
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studies. Participants might alter their behavior to communicate more
ambiguously because their communications may affect the likelihood
of being audited. Nevertheless, the observed financial benefits from our
experiment offer insight into how such classifiers might be used in prac-
tice. For instance, previous research attempted to identify tax evasion
based on field data obtained from social media; however, depending
on manually labeled data (Zhang, Nan, Huang, & Liu, 2020, 2021). Our
experimental data, inherently linked between text and outcomes, offers
a unique advantage. We propose utilizing this kind of data for semi-
supervised learning, initially training models on labeled experimental
data and applying these models to assist in labeling real-world data.
This approach aims to streamline and enhance the accuracy of the
labeling process. Additionally, a two-step transfer learning strategy can
be employed. A model pre-trained on a broad corpus can be fine-
tuned with our specific experimental data, capturing the linguistic
patterns associated with tax evasion. Further fine-tuning on a larger
dataset ensures adaptability and robustness, blending domain-specific
insights with real-world diversity. This strategy leverages the strengths
of both datasets, ensuring comprehensive learning. Nevertheless, the
applicability and performance enhancement depends on the congru-
ence between lab and real-world behaviors, underscoring the need for
careful implementation and evaluation.

In conclusion, this paper significantly contributes to natural lan-
guage processing in behavioral experimental data analysis. The study
identified the most effective configuration for text classification and
provided insights into the best practices for feature representation and
model selection. While the predictive performance of the classifier was
low, the study demonstrated the potential for natural language process-
ing in extracting insights from behavioral data. The proposed approach
for assessing compliant decision-making and the potential application
for informing intervention strategies represent novel contributions to
the field. We hope this work inspires further research in this area and
assists researchers in developing more accurate and reliable predictive
models.
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