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Two levels of topology in skyrmion lattice dynamics
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Skyrmions are localized, topological spin structures that can be described as quasiparticles. Skyrmions in thin
films are an ideal model system to study Brownian motion and lattice formation in two dimensions. They follow
an equation of motion, the Thiele equation, which includes a topology-dependent chiral term, linear in velocity,
causing a skyrmion Hall effect and a drastic reduction of the diffusion coefficient for individual skyrmions, as
compared to normal Brownian particles. Using Brownian dynamics simulations, we show that this topological
suppression of the diffusion can be partially lifted in two-dimensional lattices of skyrmions. Counterintuitively,
this causes enhanced diffusive properties with increasing particle density, similar to odd-diffusive Brownian
particles. We show how the topological charge of the skyrmions influences the dynamics of topological lattice
defects, which also affects the dynamics of the phase formation.
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I. INTRODUCTION

Topology is a concept that defines quantities which remain
invariant under continuous deformations of an object. Con-
cepts of topology have been successfully applied in many
areas of physics, ranging from, e.g., classical mechanics
(Foucault pendulum) through cosmology and particle physics
(Kibble-Zurek mechanism) to polymer physics (knots), as
well as transport phenomena (quantum Hall effect) and
topological defects (solitons) in condensed matter [1–6].
Two-dimensional representatives of the latter include topolog-
ical lattice defects associated with the melting dynamics in
two dimensions [7] and topological magnetic textures called
skyrmions [8].

Magnetic skyrmions are localized topological spin struc-
tures, where the spin directions span the entire unit sphere
[9–11]. They exhibit quasiparticle dynamics, are easily dis-
placed when applying electric currents, and can be individu-
ally created and deleted [12,13]. Therefore, they have emerged
as promising candidates for realizing novel spintronic devices
[14–16] and applications based on the stochastic dynamics of
skyrmions have been conceived for probabilistic computing
[17,18], Brownian reservoir computing [19] and token-based
computing [20].

The topological charge of skyrmions plays a crucial role in
their dynamics. The Thiele equation [21] describes skyrmion
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dynamics on the quasiparticle level, where the topology leads
to a chiral term, linear in skyrmion velocity, typically referred
to as gyrocoupling. This chiral term is responsible for the
emergence of the skyrmion Hall effect, the transverse mo-
tion of skyrmions when driven by electric currents [22,23],
and for the drastic reduction of their diffusion coefficient, as
compared to normal Brownian particles [24], an effect that is
called topological suppression of diffusion.

Skyrmions in thin films can form lattices strictly con-
fined in two dimensions [25,26]. As such, they are ideal
candidates [27,28] for studying Brownian dynamics, and
phase transitions in two dimensions, which are otherwise
difficult to observe [29–33]. Two-dimensional melting can
be described within the Kosterlitz-Thouless-Halperin-Nelson-
Young (KTHNY) theory [7,34–36]. This theory separates the
melting of two-dimensional crystals into two distinct phase
transitions, which are associated with the unbinding of lat-
tice defects, the disclinations, dislocations, and dislocation
pairs, with the former two being topological in nature. The
dissociation of dislocation pairs into individual dislocations
is associated with the quasicrystalline to hexatic transition,
whereas the dislocations dissociating into disclinations mark
the hexatic to isotropic liquid transition. The hexatic phase
is notable for having quasi-long-ranged sixfold orientational
correlations, despite the translational correlations being short
ranged. While there has been extensive research on such phase
transitions and defect dynamics in colloids [37–40], it remains
to be discovered how the dynamics of these phase transitions
are modified if the constituents of the lattice are chiral.

In this paper, we investigate the role of the topological
charge of skyrmions on the dynamics of lattice defects in their
ensembles. We study the skyrmions via Brownian dynamics
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simulations, regarding them as quasiparticles. We solve their
equations of motion numerically at finite temperatures, in-
cluding a skyrmion-skyrmion interaction potential to model
two-dimensional lattice formation [28,41]. Surprisingly, we
find that the diffusion of skyrmions can increase with increas-
ing quasiparticle density, which means that the topological
suppression of diffusion can be partially lifted in skyrmion
ensembles. Furthermore, we show that the diffusion coeffi-
cient of the skyrmions correlates with the diffusion of the
topological defects of the lattice, whose dynamics drive the
freezing and melting processes according to KTHNY theory.

II. THEORY

The KTHNY theory builds the basis for understanding
melting processes in two dimensions based on topological
arguments [7]. The characteristics of the system phases can be
captured using correlation functions. One typically considers
the spatial orientation correlation function, defined as g6(r) =
〈�∗

6 (r)�6(0)〉 [35], or the dynamical orientation correlation
function [42]

g6(t ) = 〈�∗
6 (t )�6(0)〉 (1)

with the local bond-order parameter

�6, j = 1

n j

∑
k

e−6iθ jk , (2)

where θ jk is the angle of the bond connecting the particle j
with a neighboring particle k relative to a reference direction.
The number of neighbors of particle j is denoted by n j , and
can be found using Voronoi tessellation. The functions g6 are
a measure of the correlation of the local lattice orientation
in space or time, respectively. The local lattice orientation
is the orientation of the lattice around a particle formed by
the neighboring particles. The decay of both the spatial and
dynamical orientation correlation function can be used to de-
termine the phase of a two-dimensional lattice.

Topological defects, where particles have a different num-
ber of neighbors, play an important role in determining the
orientation correlation function, and thereby the phase of the
system. Circular particles in two dimensions form a hexagonal
lattice leading to close packing. Moving two next-nearest
neighbors closer to each other results in two particles hav-
ing seven neighbors and two particles having five neighbors,
known as a dislocation pair. A dislocation is a pair of particles
with five and seven neighbors, and its topology can be deter-
mined by encircling the defect along the particle bonds. If this
loop contains an additional step along one direction compared
to the other ones, this extra step is called the Burgers vector
and describes the topology of this defect. The Burgers vector
can be considered as a topological charge since dislocations
can only annihilate when two of them with opposite Burgers
vectors form a dislocation pair. An individual particle with
five or seven neighbors surrounded by particles with six neigh-
bors is called a disclination [33]. Those with five and seven
neighbors have opposite topological charges, called bond an-
gle in this context, which annihilate by forming a dislocation.
Examples of these defects are shown in Fig. 1. The phase
transition from the quasicrystalline to the hexatic phase is
associated with unbinding dislocation pairs into individual

FIG. 1. Examples of topological defects in a lattice. Colors
indicate number of neighbors according to Voronoi tessellation,
five neighbors in green, six in blue, and seven in orange. Red
circles highlight exemplary lattice defects: (a) a dislocation pair,
(b) a topologically nontrivial dislocation, (c) topologically nontrivial
disclinations with seven neighbors (upper), and with five neighbors
(lower).

dislocations. These dislocations unbind into disclinations at
the phase transition from the hexatic to the isotropic liquid
phase [7].

The phase of the system is determined by static control pa-
rameters, such as the density and the temperature. The speed
of the phase transition is governed by the creation, annihila-
tion, and diffusive movement of the topological defects, which
is influenced by the dynamics of the particles. Here, these
particles are skyrmions characterized by a finite topological
charge,

Q = 1

4π

∫
S · (∂xS × ∂yS) d2r, (3)

where S denotes the spin-vector field of unit length [8], and
the integral is performed over the area of a skyrmion in the
two-dimensional plane.

When this spin structure is treated as a quasiparticle, its
equation of motion is known as the Thiele equation [21]

G × vi + αDvi = F i, (4)

for the velocity vi of the skyrmion with index i. This equa-
tion is numerically solved using Heun’s method for each
skyrmion. We use the parameters |G|/kB = 2.272 ns K nm−2

and D/kB = 3.396 ns K nm−2 determined in Ref. [43], de-
scribing nanometer-sized skyrmions in a model system
(Pt0.95Ir0.05)/Fe/Pd(111) in an external magnetic field of
0.5 T.

In Eq. (4), the first term is the gyrocoupling term with
the vector G = Ge⊥ orthogonal to the plane in which the
skyrmions move. For a discrete spin model, the magnitude
of this vector is G = 4πQμs/(γVc), where μs is the spin
magnetic moment, γ is the gyromagnetic ratio, and Vc is
the size of the two-dimensional unit cell in the atomistic
model of skyrmions. The vector G is a result of the nontrivial
topology of the skyrmion and causes a circular motion. For
normal Brownian particles, such a term has been discussed
in so-called odd-diffusive or odd-viscosity systems [44,45].
In the absence of this term, Eq. (4) becomes an overdamped
Langevin equation describing normal Brownian motion.

The Thiele equation can be derived by applying a rigid-
body approach to the microcopic equation of motion for the
spin dynamics, the Landau-Lifshitz-Gilbert (LLG) equation.
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That equation has two components, a precession around the
effective field, and a relaxation towards that effective field.
The latter is a damping term, the strength of which is given by
the damping constant α. This magnetic damping leads to the
second term in Eq. (4), where the dissipation tensor D is

Dμν = μs

γVc

∫
∂μS · ∂νS d2r, (5)

with μ, ν ∈ {x, y}. For axially symmetric skyrmions consid-
ered here, the dissipation tensor is diagonal.

The vector F i = F i,sk-sk + F i,th describes the force acting
on the skyrmions. The effective skyrmion-skyrmion inter-
action term F i,sk-sk is determined from a Lennard-Jones
potential U (r) = 4ε[(σ/r)12 − (σ/r)6]. The well depth is
ε/kB = 8 K, the size of the particle is σ = 3.19 nm and the
cutoff distance of the potential is rcut = 10 nm.

It has been shown that a Lennard-Jones potential with the
given parameters can lead to a hexatic phase [46] similar
to systems of purely repulsive disks [47]. Skyrmions in dif-
ferent systems may show different interaction potentials. In
Ref. [48], a local minimum was found at short distances in the
interaction potential between skyrmions in the present system,
justifying the use of the Lennard-Jones potential. References
[49,50] use decaying exponential interactions, while Ref. [28]
uses a repulsive power law to model skyrmion-skyrmion in-
teractions. The interaction potential between skyrmions is
strongly influenced by the microscopic spin interactions in the
system, but we confirmed that the qualitative conclusions from
the simulations do not depend on whether the long-ranged
decay is exponential or of the power-law form discussed here,
as long as the skyrmion-skyrmion interaction is isotropic.

Diffusive skyrmion dynamics is modeled by stochas-
tic forces with 〈Fi,th,μ〉 = 0 and 〈Fi,th,μ(t )Fj,th,ν (t ′)〉 =
2αkBTDμνδi jδ(t − t ′) [43,51]. To analyze the diffusive mo-
tion we use the mean-square displacement (MSD)

MSD(t ) = 〈[ri(t0 + t ) − ri(t0)]2〉, (6)

where ri is the position of the skyrmion with ṙi = vi. For
normal diffusion the MSD increases linearly with time and the
diffusion coefficient is defined as D = limt→∞ MSD(t )/(4t ).
From Eq. (4), the diffusion coefficient of a free skyrmion can
be calculated as [24,51–53]

D = kBT
αD

G2 + (αD)2
. (7)

For nontrivial topology G 
= 0, the low-α dependence is
D ∝ α, whereas otherwise it is D ∝ 1/α, as for normal Brown-
ian particles. As the free-diffusion coefficient with finite topo-
logical charge is much lower than with no topological charge,
one speaks of topological suppression of diffusion [24].

This suppression can be understood as follows. According
to Eq. (4), applying a force to a skyrmion causes it to move
under an angle relative to the applied force. The velocity com-
ponent perpendicular to the applied force is a consequence
of the gyrocoupling, the component parallel to the force is
governed by the dissipative term. The angle between the
force and the velocity is called the skyrmion Hall angle θ =
arctan[G/(αD)] [23]. As mentioned above, the magnitude
of the thermal force F i,th is not influenced by the gyro-
coupling G since on infinitesimal timescales the gyroscopic

motion proceeds along equipotential lines perpendicular to
the forces, meaning that it does not affect thermalization.
However, the thermal force displaces the skyrmion by �x =
Fi,th/

√
G2 + (αD)2�t , which is reduced due to the nontrivial

topology of the skyrmion.
Interestingly, the topological suppression of diffusion can

be lifted when the motion of the skyrmions is confined. The
simplest example in this context is the motion along one
axis with an one-dimensional harmonic potential limiting the
motion perpendicular to that axis. Detailed analytical and
numerical calculations are presented in Appendix A. At short
times, the standard deviation of the skyrmion position from
the deterministic path is given by Eq. (7) in both components
along and perpendicular to the axis of unconfined movement.
In the long-time limit, the MSD along the confined direction
saturates and is no longer diffusive. While the motion along
the unconfined direction remains diffusive, we observe that
the diffusion coefficient increases,

D = kBT

αD . (8)

Here, the influence of the topological charge of the skyrmion
vanishes. Since the diffusion increases, we call this phe-
nomenon lifting of the topological suppression.

III. RESULTS

We now study the diffusive motion of interacting skyrmion
ensembles by simulating 5016 skyrmions starting with ther-
malized skyrmion lattices at T = 20 K. We vary the skyrmion
density and compare the diffusion for skyrmions with gyro-
coupling G present and absent to attribute emergent effects to
the chiral motion of the skyrmions. For G = 0, we use a damp-
ing constant of α = 0.1, for G 
= 0, we compare the cases
of α = 0.1 and 0.01. Since not all simulated systems show
a linear increase of MSD with time in the long-time limit of
our simulation, calculating a diffusion constant is not possible.
Instead, we calculate the MSD for a fixed time t1 = 16.19 ns
to compare the diffusion of skyrmion lattices with different
densities. Figure 2 compares the resulting MSD for skyrmion
ensembles with and without gyrocoupling. For low densities,
all curves reach the limit of free diffusion given by Eq. (7).
Without gyrocoupling, the diffusion decreases monotonously
with increasing density and, especially for low densities, it
decreases exponentially as has been shown theoretically for
colloids [54]. For G 
= 0, the skyrmion-skyrmion collisions
lift the topological suppression, and the diffusion increases
at small densities. This effect is analogous to the skyrmion
diffusing in a one-dimensional harmonic potential. However,
the diffusion of skyrmions with finite topological charge stays
below the normal Brownian motion of particles with G = 0,
meaning that the topological suppression is only partially
lifted. At higher densities, the restriction of the movement also
observed without gyrocoupling becomes dominant, and the
diffusion starts to decrease after a maximum. The maximum
occurs at a lower density for the larger value of α.

When increasing the skyrmion density even further, one
observes a transition into the quasicrystalline phase, where
all three curves show a rapid decrease in MSD at the same
threshold density, indicating that the phase of the system is
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FIG. 2. Influence of the gyrocoupling on the diffusion of
skyrmions. The MSD is calculated at time t1 as a function of
skyrmion lattice density n. Dashed lines show analytical values for
free diffusion according to Eq. (7) multiplied with 4t1 to get the
average MSD, using parameters from Ref. [43].

independent of the skyrmion dynamics. A calculation of the
spatial correlation function g6(r) also shows no difference
between curves of the same density and confirms the phase
transition around the drop in MSD; see Appendix E for details.
However, note that we could not resolve the hexatic phase
with the chosen step size in density.

Enhanced self-diffusion in lattices of Brownian particles
was recently predicted for odd-viscosity systems [44,45], and
suggested to occur in skyrmionic systems [55]. In Ref. [45], it
was also found that increasing the density causes a reduction
of the Hall angle, confirming our finding that topological
effects can be suppressed in skyrmion lattices. This suggests
that the lifting of topological suppression depends on the ratio
of G/(αD), which is equal to tan θ for free diffusion. We
present a calculation of the skyrmion Hall angle in lattices
based on our data in Appendix B, where we also find a drastic
reduction with increased lattice density.

The dynamics of the individual particles plays also a criti-
cal role in understanding the movement of topological lattice
defects shown in Fig. 1.

In Fig. 3, we analyze the MSD dynamics of these dif-
ferent types of topological defects numerically. We use a
damping constant of 0.1, with the skyrmion density being
n = 0.09 nm−2 and the temperature T = 20 K. As indicated
by the high MSD in Fig. 2, at these parameter values the
system is in the isotropic liquid phase where all three types
of topological defects are present. It is immediately clear that
the gyrocoupling of the skyrmions reduces the diffusion com-
pared to normal Brownian quasiparticles for all topological
defects. This can be explained by the suppressed diffusion of
skyrmions due to the gyrocoupling term and it shows that the
diffusion of lattice defects is reduced by the topology of the
skyrmions.

Irrespective of the constituents of the lattice, the MSD of
the lattice defects increases with their size, i.e., dislocation
pairs consisting of four skyrmions diffuse faster than dis-
locations, which are made of two skyrmions. This effect is
in accordance with results found for colloids where larger
defects such as dislocation pairs also diffuse faster [37,39].

FIG. 3. Effect of the skyrmion topology on the thermal motion
of lattice defects. The MSD is calculated for different topolog-
ical defects in skyrmion lattices with and without gyrocoupling.
Damping constant α = 0.1, density n = 0.09 nm−2, and temperature
T = 20 K.

Since the diffusion for large defects is much faster than for
the individual skyrmions, the diffusion is mediated by de-
fects jumping between different clusters of skyrmions, with
larger defects consisting of more skyrmions being able to
jump easier. We observed a reduced number of jumps, and
thus, reduced lattice defect diffusion as a consequence of the
skyrmions’ finite topological charge; see Appendix C.

In the MSD, it is also visible that larger defects show a
more subdiffusive behavior, which is especially noticeable for
dislocation pairs, where the increase of MSD with time is
minimal. These observations show that lattice defects of dif-
ferent topologies differ in their diffusive behavior, indicating
that both the topology of the lattice defect and the constituents
are relevant in describing the defects’ diffusion, having major
implications for the dynamics of melting skyrmionic systems.
It turns out that the topology of the constituents affects the
dynamics of phase formation. This process is initially slower
because of the topological suppression of the diffusion, but it
speeds up as the number of collisions between the particles
increases and the suppression is lifted. In Appendix D, we
show melting and freezing processes, where we make use of
orientational correlation functions and show the influences of
topology on these systems.

IV. CONCLUSION

To conclude, we have studied the twofold impact of topol-
ogy on skyrmion lattice dynamics by Brownian dynamics
simulations of the stochastic Thiele equation. We showed
that while the topology of skyrmions slows down their free
diffusive motion, collisions with other skyrmions can lift this
topological suppression of diffusion. Consequently, increas-
ing the skyrmion lattice density enhances the mobility of the
skyrmions for sufficiently low lattice densities, in analogy
to what was recently discovered in odd-diffusive systems
[44,45]. Additionally, we have revealed that the speed of the
diffusive motion has a maximum at some intermediate density
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that decreases for larger damping parameters, followed by a
decline and a sudden drop at the phase transition into the solid
phase.

The effect of topology on skyrmion diffusion further af-
fects the diffusive properties of topological defects in the
skyrmion lattice. The topological suppression of the diffusion
of skyrmions decreases the diffusion rate of the corresponding
lattice defects. Consequently, freezing and melting processes
driven by the dynamics of these defects become slower due to
the topological charge of the skyrmions.

Magnetic skyrmions in thin films are an ideal playground
to study lattice formation in two dimensions, linking the field
of spintronics with the physics of soft matter and phase tran-
sitions in low dimensions. Since the density of skyrmions
and their interactions can be controlled by external magnetic
fields [28], temperature and field sweeps will make it possible
to study the dynamics of melting and freezing processes in
detail, uncovering the role of the two levels of topological
properties in skyrmion lattices experimentally.
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APPENDIX A: SKYRMION DIFFUSION
IN CONSTRAINED GEOMETRIES

In skyrmion lattices, the movement of any particular
skyrmion is restricted by the presence of other skyrmions,
which create a temporally varying nonhomogeneous energy
landscape for said skyrmion. As we have shown in the main
text using simulations, this nonhomogeneous energy land-
scape gives rise to the peculiar phenomenon that the diffusive
motion of the skyrmions in lattices can be higher than the free
diffusion. We attribute this to the fact that the suppression of
the diffusion by the gyrocoupling [24] is itself, at least partially,
lifted in skyrmion lattices.

While our line of reasoning in the main text is mostly
qualitative (we draw parallels to existing literature on this
[44,45,55]), we aim to provide a more quantitative explanation
of the lifting of the suppression of the diffusion by performing
analytical calculations in what follows. However, the tempo-
rally varying and complex nature of the energy landscape of
a single skyrmion within a skyrmion lattice renders analyti-
cal calculations very complicated, so we consider a simpler
system instead, i.e., we model a single skyrmion in a har-
monic potential along one spatial direction. As demonstrated

below and in Refs. [56,57], this simple system allows for
an unambiguous demonstration of the lifting of the diffusion
suppression.

Without loss of generality, we assume that the harmonic
potential reads as U (x, y) = κy2/2, with κ being the spring
constant of the harmonic potential and x and y the position
of the skyrmion. The emerging force is thus given by F =
−κyey. In matrix form, the stochastic Thiele equation [21] for
such a force reads as(

αD −G
G αD

)
v +

(
0 0
0 κ

)
r = F th. (A1)

This expression can be cast into the form v = −�r + σF th

with � and σ being 2 × 2 matrices that read as

� = κ

(αD)2 + G2

(
0 G
0 αD

)
, (A2)

σ = 1

(αD)2 + G2

(
αD G
−G αD

)
. (A3)

This is a linear stochastic equation of motion that has the
formal solution [58]

r(t ) = e−�t r(0) +
∫ t

0
e−�(t−t ′ )σF th(t ′) dt ′. (A4)

The mean value and the second moments calculated from this
expression read as

〈r(t )〉 = e−�t 〈r(0)〉 , (A5)

〈r(t )r(t )T〉 = e−�t 〈r(0)〉 (e−�t 〈r(0)〉)T

+
〈 ∫ t

0
e−�(t−t ′ )σF th(t ′) dt ′

×
( ∫ t

0
e−�(t−t ′′ )σF th(t ′′) dt ′′

)T〉
. (A6)

Note that we have used the fact that the mean value of the
stochastic force vanishes.

Hereinafter, we assume that the skyrmion is initially lo-
cated in the potential minimum, i.e., y(0) = 0. Moreover,
since the system is invariant under translations along the x
axis, we can set x(0) = 0 without loss of generality. As a con-
sequence, 〈r(0)〉 ≡ 0 and the first term of the second moments
vanishes.

Using the rules for matrix exponentials, we compute

e−�t =
⎛
⎝1 G

αD

(
e−κ αD

(αD)2+G2 t − 1
)

0 e−κ αD
(αD)2+G2 t

⎞
⎠. (A7)

Inserting this into the formula for the second moments and
using the fact that 〈F th(t )FT

th(t ′)〉 = 2αkBTD1δ(t − t ′), we
get

〈x2(t )〉 = 2
kBT

αD

[
t + G2

2αDκ

(
1 −

(
2 − e−κ αD

(αD)2+G2 t
)2)]

,

(A8)

〈y2(t )〉 = kBT

κ

(
1 − e−2κ αD

(αD)2+G2 t
)
. (A9)
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Performing a Taylor expansion up to first order in time
around t = 0, the above expressions reduce to the relations
for free, two-dimensional Brownian motion, i.e., 〈x2(t )〉 =
〈y2(t )〉 = 2kBT αD

(αD)2+G2 t . At longer timescales, 〈y2(t )〉 con-
verges to kBT/κ (this can also be obtained using the
equipartition theorem), while 〈x2(t )〉 increases linearly in time
with a greatly increased diffusion coefficient that reads as

Deff = kBT

αD . (A10)

This effective diffusion coefficient for a skyrmion in a
harmonic potential is the same as the one for a free Brownian
particle in the absence of gyrocoupling. That is why we con-
clude that the presence of the potential effectively suppresses
the impact of the gyrocoupling on Brownian motion at longer
timescales, thus increasing the diffusive motion as compared
to the free case, where the diffusion is reduced by the gyro-
coupling. The fact that the diffusion suppression at low times
is not lifted can be understood as follows: The absolute value
of the velocity of a skyrmion as a consequence of a force F is
v = F/

√
G2 + (αD)2, whether F is deterministic or stochas-

tic. As the thermal force exerted on an individual skyrmion is
independent of the gyrocoupling, the instantaneous velocity
as a consequence of a force will always be lowered by the
gyrocoupling. In other words, the mean-squared displacement
for small time differences is always lowered by a finite G.

In Fig. 4, we show the time-resolved data of the second
moments of both the x and y directions for different choices
of α. For the force, we used a value of κ/kB = 1 K nm−2.
For the x direction it is visible that after an initially lower
diffusion, where skyrmions with high values of α diffuse
faster, the skyrmions start to show superdiffusion, before
diffusing normally again with a higher diffusion constant.
For this increased diffusion constant, low α skyrmions show
stronger diffusion than ones with high α. For the y direction,
all skyrmions show a bounded MSD. The skyrmions diffuse
normally until they reach this upper bound.

The validity of Eq. (A10) is demonstrated in Fig. 5, where
we present the effective diffusion constant Deff in the long-
time limit as a function of the damping constant α. It is
noticeable that the diffusion constant along the x axis is in-
creased by orders of magnitude as compared to the one for
free diffusion. Furthermore, Deff ∝ 1/α, which is what one
would expect for free diffusion of skyrmions with G = 0. The
free-diffusion constant for topologically nontrivial skyrmions
is D ∝ α for low values of α. In contrast to skyrmions within
a harmonic potential, where the impact of the gyrocoupling on
the diffusive motion is fully lifted, we find that for skyrmions
in lattices the impact of gyrocoupling is still visible and thus
only partially lifted. This is shown in Fig. 2 of the main text
where simulations with and without the gyrocoupling term do
not produce the same diffusion coefficient. We attribute this
to the fact that the potential of a single skyrmion in a lattice is
much more complex than the case considered above and that
it is varying with time. Qualitatively, it can be understood as
follows: As shown above, the presence of a potential along
some axis leads to a reduction of the diffusion along this axis
and a drastic enhancement along the perpendicular axis. Since
the potential is constantly changing, the axes along which
diffusive motion is increased or decreased are changing as

FIG. 4. Second moments 〈x2〉 and 〈y2〉 for skyrmion diffusion
in a one-dimensional harmonic potential. Squares show data points,
lines show the analytical curve according to Eqs. (A8) and (A9),
respectively.

well. This means that the Brownian motion of some skyrmion
along any given axis can be either increased or decreased,
as compared to the free diffusion, depending on the current
configuration of the neighboring skyrmions. On average, this
can lead to an overall increase or decrease of the Brownian

FIG. 5. Diffusion constant Deff for a skyrmion constricted by a
one-dimensional harmonic potential.

013097-6



TWO LEVELS OF TOPOLOGY IN SKYRMION LATTICE … PHYSICAL REVIEW RESEARCH 6, 013097 (2024)

motion, depending on the average configuration of the neigh-
boring skyrmions.

APPENDIX B: EFFECTIVE GYROCOUPLING
AND SKYRMION HALL ANGLE

The diffusion of skyrmions in a lattice increases compared
to free diffusion as presented in the main text. We explain this
with the diffusion suppression by the gyromotion being lifted.
We can assign an effective gyrocoupling G̃ to skyrmions for
describing the diffusive motion in lattices, which is strictly
lower than the gyrocoupling in free-diffusive systems, indicat-
ing the suppression of topological properties. This allows us
to calculate an effective skyrmion Hall angle in lattices. Due
to a reduced effective gyrocoupling, we expect the skyrmion
Hall angle to also diminish in magnitude in ensemble systems.

To calculate the effective skyrmion Hall angle in our sys-
tem, we need to compare the diffusion constant in skyrmion
systems with and without gyrocoupling present. Skyrmions
with a nonzero gyrocoupling G have a free-diffusion coeffi-
cient of [24,51–53]

DG 
=0 = kBT
αD

G2 + (αD)2
, (B1)

whereas skyrmions with G = 0 would have a diffusion coeffi-
cient of

DG=0 = kBT

αD . (B2)

Here, α is the damping constant and D is the dissipation.
An important quantity for characterizing the strength of the
topology is the fraction of the gyrocoupling G to the skyrmion
friction αD, as it is directly related to the skyrmion Hall angle
θ [22]:

θ = arctan

( G
αD

)
. (B3)

In lattices, we can define effective quantities for the dissipa-
tion D̃, the gyrocoupling G̃, and skyrmion Hall angle θ̃ .

FIG. 6. Effective skyrmion Hall angle θ̃ . Dissipation coefficients
were obtained by a linear fit to the time-resolved mean-squared
displacement for α = 0.1 with and without gyrocoupling, using the
same parameters as in Fig. 2 of the main text.

We note that the effective dissipation D̃ has two distinct
factors affecting its particular value. First, the value may
change due to neighboring skyrmions distorting its spin
configuration. As the dissipation tensor can be calculated as
an integral over the spin configuration [43], the value may
change as a consequence. We do not take these into account
in our simulations. The second source for potential changes
in D̃ comes from the fact that the skyrmions’ movement
is restricted in a lattice, and thus effective friction is much
higher than for free diffusion. By comparing Eq. (B2) to
Fig. 2 from the main text, one can see that D decreases
exponentially, thus D̃ increases exponentially with skyrmion
density at low densities. In our calculations we assume that
skyrmions with different gyrocouplings are affected equally,
and thus D̃G 
=0 = D̃G=0, which we justify with respect to
equal equilibrium properties presented later. Under this
assumption, we can calculate

DG=0

DG̃ 
=0
= G̃2 + (αD̃)2

(αD̃)2
=

(
G̃

αD̃

)2

+ 1, (B4)

G̃
αD̃

=
√

DG=0

DG 
=0
− 1, (B5)

and thus we get the effective skyrmion Hall angle

θ̃ = arctan

√
DG=0

DG 
=0
− 1. (B6)

To obtain the diffusion constants, we fitted the time-
resolved mean-square displacement data. We note that in the
main text we argue that we could not fit all the curves for
all densities due to the curves not being exactly linear. While
this is true, our method here only requires an approximation
of a diffusion constant. The result can be seen in Fig. 6.
We observe that for low densities, the skyrmion Hall angle
decreases with density, showing that the presence of other
skyrmions also affects the skyrmion Hall angle. We did not
include the data in the quasicrystalline regime, as the mean-
square displacement ceases to increase over time, with the
diffusion constant becoming 0 for all systems. The method
for calculating the skyrmion Hall angle presented here hence
is invalid in that regime.

The skyrmion Hall angle diminishes by about a factor of
2 in our lattices at most. This shows that even though the
suppression of diffusion is partially lifted, the effective gy-
rocoupling G̃ is not zero. Unlike in the previously discussed
case of a one-dimensional harmonic potential, we only see a
partial suppression of the topological properties in skyrmion
lattices. In Ref. [45], a reduction of the Hall angle to zero
is reported for very high densities. While we can confirm a
strong reduction in the skyrmion Hall angle, we cannot access
the solid phase skyrmion Hall angle with our method, and
therefore do not see a reduction to zero.

APPENDIX C: DIFFUSION OF LATTICE DEFECTS

In the main text, we attributed the faster diffusion of larger
lattice defects to the more frequent jumps being observed
during their motion. We confirm this by calculating the distri-
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TABLE I. Probability of observing jumps of topological defects
during a time step of 2.416 × 10−5 ns.

Dislocation pairs Dislocations Disclinations

G 
= 0 26.7% 0.192% 4.92 × 10−5

G = 0 36.5% 1.41% 6.83 × 10−5

bution of distances traveled in an individual time step of our
simulation with �t = 2.416 × 10−5 ns. We find that almost
all distance differences are either very small, or at least as
large as the distance d ≈ 3.19 nm, which is the size of the
skyrmions. We can formulate a criterion for jumping, with the
traveled distance being at least d/2, to be considered a jump.
The probability of jumping during a single time step for the
different topological defects is shown in Table I. With this we
can confirm that the larger MSD shown in Fig. 3 of the main
text is associated with larger jumping likelihood, and jumping
likelihood is increased with the size of the topological defect
and the absence of gyrocoupling.

APPENDIX D: MELTING AND FREEZING
OF SKYRMION LATTICES

In the main text, we discussed diffusive properties in ther-
mal equilibrium and showed the partial lifting of topological
suppression, but did not examine out-of-equilibrium effects.
In the following, we show two different nonequilibrium sce-
narios for skyrmion lattices, where the lifting of topological
suppression is a relevant aspect for the time evolution of the
entire system. Specifically, we show a system melting from
a perfect hexagonal skyrmion lattice, and the freezing of a
thermalized skyrmionic system.

As described in the main text, we model the tempera-
ture influence as a stochastic force exerted on the individual
skyrmions. The force has zero mean and a covariance
of 〈Fi,th,μ(t )Fj,th,ν (t ′)〉 = 2αkBTDμνδi jδ(t − t ′). These forces
are a result of the skyrmions coupling to the spin heat bath.
In our simulations, we assume instantaneous change in this
heat-bath temperature, either from low temperatures to high
temperatures in the case of melting the skyrmion lattice, or
from high to low temperatures for freezing of the skyrmion
lattice. We note that while an instantaneous change in the heat-
bath temperature is not physically plausible, this choice can
be justified since the equilibration of the spin lattice is much
faster than the equilibration of the skyrmion lattice system.

In these simulations, we quantify aspects of the orien-
tational order in the system, and how it is affected by the
dynamical parameters of the skyrmions. In equilibrium, one
can use the orientation correlation function g6(t ) which only
depends on the time difference between the two considered
configurations. However, since our simulations are not in
equilibrium, we have to use different measures. We define

g6(t, t ′) = 〈�6(t )�∗
6 (t ′)〉

as an orientational measure, which relates two specific points
in time. The average is over all skyrmions, but not over
time. The quantity �6 is the bond order parameter. Note that
g6(t, t ) = 〈|�6|2〉(t ).

FIG. 7. (a) Dynamical orientation correlation function g6(t, 0)
for the melting process of skyrmion lattices with various combina-
tions of gyrocoupling G and damping constant α. (b) MSD for a
skyrmion lattice in the melting process for various combinations of
G and α. Thin lines indicate analytic calculations for free diffusion
for the corresponding curves.

To study the melting process of a skyrmion lattice ex-
plicitly, we initialize a perfect hexagonal skyrmion lattice,
corresponding to zero temperature, and then simulate the
diffusive behavior at constant temperature T = 20 K and
density n = 0.09 nm−2 with and without gyrocoupling. The
skyrmions in the initial configuration have a distance of
3.58 nm to their nearest neighbor. This combination of tem-
perature and density places the system in the isotropic liquid
phase in equilibrium, as demonstrated and discussed in Ap-
pendix E. In Fig. 7 we show g6(t, 0) as well as the MSD of
the skyrmions as a function of time with respect to the initially
ordered lattice at time t0 = 0. Immediately one observes that
the presence or absence of gyrocoupling changes the role of α

on the diffusive behavior. While for the high-damping case,
α = 1, the curves with G = 0 and G 
= 0 are very similar,
lowering α leads to clearly distinct behaviors. For G = 0, low-
ering α simply accelerates the melting process by increasing
the diffusive motion of the individual skyrmions. For G 
= 0,
the melting process is initially slower, g6(t, 0) stays at high
values for longer, and the MSD is reduced. Only at later
times, the melting process speeds up and the MSD reaches
values even surpassing the high-damping case. Meanwhile,
the orientation correlation falls rapidly, becoming lower than
for the high-damping case. This shows that even though the
free diffusion of these skyrmions is slower than for skyrmions
at high damping, the lattice melts faster.
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FIG. 8. (a) Orientational order measure 〈|�6|2〉(t ) for a skyrmion
lattice in the freezing process for various combinations of G and α.
(b) MSD for a skyrmion lattice in the freezing process for various
combinations of G and α. The temperature is T = 1 K.

As the skyrmions were initialized at a distance close
to the minimum of the interaction potential, the MSD ini-
tially increases linearly with time with no large influence
by the interactions. This is similar to the simulation in a
one-dimensional harmonic interaction potential, as there the
diffusion constant is initially low, behaving similarly to free
diffusion. As soon as the influence of the interactions in-
creases, the G = 0 and G 
= 0 with α = 1 cases show a
significant reduction in the slope of the MSD, whereas the
low-damping case with gyrocoupling shows an enhancement
of the diffusion. Note that the changes in the diffusion constant
show up as a y offset on the log-log scale, whereas a differ-
ence in slopes indicates local subdiffusive or superdiffusive
behavior. By direct comparison, the gyrocoupling causes an
increase in diffusive behavior in skyrmion lattices compared
to free diffusion. However, the diffusion does not surpass
the diffusion of skyrmions with G = 0, indicating that the
increase of diffusion is the result of the lifting of topological
suppression of diffusion.

We now discuss the case of freezing skyrmion lattices
and examine the effects of lifting of topological suppression.
Figure 8 shows these simulations, which are started in the
isotropic liquid phase previously equilibrated at T = 20 K.
The simulations themselves are performed at T = 1 K, which
with the density of 0.09 nm−2 sets this system in the qua-
sicrystalline phase in equilibrium. In Fig. 8(a), the average
bond order 〈|�6|2〉(t ) is shown. Again, the high-damping case
shows little difference between the cases with and without
gyrocoupling. Lowering α with G = 0 increases the speed of
the freezing process, as 〈|�6|〉 increases faster, whereas with
G 
= 0, lowering α speeds up the process in the later stages
of freezing. Regarding the MSD, one can see that the process
of lifting of the topological suppression starts at lower times

compared to the melting process, and G 
= 0 MSD increases
up to the level of skyrmions with G = 0. In this case, a com-
plete lifting of topological suppression is observed, but the
system is no longer diffusive at long times.

A complete lifting of the topological suppression of diffu-
sion suggests that the skyrmion Hall angle vanishes in these
systems. We previously calculated the skyrmion Hall angle
for different skyrmion densities in Appendix B, and noticed
a decrease in the Hall angle with increasing density. One
may also argue that this connection is not simply due to the
skyrmion density, but rather very dependent on the phase of
the system: As one approaches the quasicrystalline phase, the
skyrmion Hall angle decreases, which would be in line with
the observation in this particular simulation.

APPENDIX E: EQUILIBRIUM CORRELATION
FUNCTIONS

In the main text, we claimed that that the spatial correlation
functions in equilibrium do not depend on the values of α and
G. We also made claims about an observed phase transition
around the steep drop in MSD at a particular density, which
we verify using spatial correlation functions in equilibrium.
We want to substantiate these claims by showing the pair
correlation function g(r) and the spatial orientational corre-
lation function g6(r). The pair correlation function g(r) in
two-dimensions is calculated via

g(r) = A

4πrN2

〈 ∑
i

∑
j 
=i

δ(r − ri j )

〉
, (E1)

where A is the system area, N the number of particles, and
ri j the distance between particles i and j. We show the spatial
orientational correlation functions for three chosen densities,
but different choices for G and α in Fig. 9. Figure 10 shows
the pair correlation functions for the same sets of parameters.
The densities were chosen to show three distinct scenarios:
A system in the quasicrystalline phase, a system in the liquid
phase close to the phase transition, and one in the liquid phase
far from the phase transition.

Both figures display nine lines: The same color indicates
that the skyrmion density is the same, while the different
line styles indicate different choices for the parameters of α

and G. However, it is immediately noticeable that the curves
for different line styles overlap each other, confirming that
the choice of the parameters for α and G do not affect the
correlation functions in thermal equilibrium, and therefore the
phase of the system.

We start by discussing the spatial orientational correlation
functions. The blue curves show a clearly finite value for
r → ∞, indicating the quasicrystalline phase. The peaks of
the orange curves decay exponentially, which shows liquid
behavior, as the local lattice orientation becomes uncorrelated
for large distances. For the green curves, only noise can be
observed. This is because the system is so far in the liquid
phase that the decay of the correlation could not be resolved
with our amount of data. This identification of the phases
confirms that the drop in MSD in Fig. 2 of the main text is
associated with a phase transition.
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FIG. 9. Spatial orientational correlation function for three chosen
skyrmion densities n in thermal equilibrium. The colors indicate den-
sity, while line styles show different combinations of α and G. Solid
lines indicate G 
= 0 and α = 0.01, dashed for G 
= 0 and α = 0.1,
and dotted lines for G = 0 and α = 0.1.

We also discuss the behavior of the pair correlation func-
tions g(r) in Fig. 10. One should note that a constant value
of 1 is associated with an entirely unordered system, while
lower or higher values indicate a reduced or increased proba-
bility of finding other particles at said distance, respectively.
All curves show a value of zero close to a distance of zero,
as the particles have a repulsive interaction at short distances.
The blue curves show peaks at specific distances, which can
be associated with the quasicrystalline phase. Because the

FIG. 10. Pair correlation function for three chosen skyrmion den-
sities n in thermal equilibrium. The colors indicate density, while line
styles show different combinations of α and G. Solid lines indicate
G 
= 0 and α = 0.01, dashed for G 
= 0 and α = 0.1, and dotted lines
for G = 0 and α = 0.1.

system is two dimensional, no long-range order can exist
due to the Mermin-Wagner theorem, and the pair correlation
slowly decays to a value of 1 at large distances. As this
decay is very slow, one can associate the blue curves with the
quasicrystalline phase. The orange curves show a faster decay
to 1, with some oscillations around the terminal value. In the
green curves, for a system far in the liquid phase, we see a
very quick decay to 1 after the initial maximum, indicating an
entirely disordered system at relatively small distances.
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