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Abstract – We use the quantum work statistics to characterize the controlled dynamics governed
by a counterdiabatic driving field. Focusing on the Shannon entropy of the work probability
distribution, P (W ), we demonstrate that the thermodynamics of a controlled evolution serves
as an insightful tool for studying the non-equilibrium dynamics of complex quantum systems.
In particular, we show that the entropy of P (W ) recovers the expected scaling according to
the Kibble-Zurek mechanism for the Landau-Zener model. Furthermore, we propose that the
entropy of the work distribution provides a useful summary statistic for characterizing the need
and complexity of the control fields for many-body systems.
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Introduction. – From studies of fundamental phe-
nomena to the development of practical quantum devices,
achieving breakthroughs in virtually all areas requires ad-
vanced techniques to manipulate complex systems. The
need for coherent control is ubiquitous. This demand has
precipitated the development of several techniques to co-
herently engineer the dynamics of quantum systems [1,2]
and their experimental demonstration [3–7]. Shortcuts-
to-adiabaticity, which are particularly elegant approaches
stemming from the adiabatic theorem, have been the focus
of sustained recent interest [1]. These approaches consider
the quantum evolution from the outset and reverse engi-
neer the dynamics to attain a specific target and therefore,
in principle, do not require any complex optimization to
be performed [8,9], although such optimization can signif-
icantly enhance their efficacy and implementability [10].

While the obvious motivation, from a practical stance,
is to design control protocols to achieve a particular aim, it
is intuitive that understanding the requirements to render
a system controllable will provide a deeper understanding
of the system at hand [11]. In the case of a shortcut-to-
adiabaticity, since at least the start and end points coin-
cide with the adiabatic states, this intuition implies that
assessing the control protocols themselves can provide a
versatile tool to examine the complex non-equilibrium dy-
namics being suppressed [12–21].
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We follow this ethos by assessing the work statistics as-
sociated with controlled evolutions generated by a coun-
terdiabatic field, complementing previous studies that
examined the work distribution, with a particular focus
on its fluctuations as a useful indicator for the thermody-
namic cost of control [21]. As a key figure of merit we
use the entropy of the distribution [22], which provides
a useful summary tool characterizing the work statistics
and, therefore, goes beyond the typically considered first
and second moments. We demonstrate that the thermo-
dynamics of a controlled evolution can be used to examine
the non-equilibrium dynamics being suppressed and also
provides a further means to characterize the complexity of
the control.

Quantum work statistics. – Defining work in a
quantum mechanically consistent way has proven to be a
subtle issue [23]. We will consider the two-point measure-
ment approach [24], where the work done is a stochastic
variable given by the probability distribution

P (W ) =
∑
n,m

pnpm|nδ [(W − (Em(t) − En(0)], (1)

where pn is the probability of getting an initial outcome
n and pm|n is the subsequent conditional probability of
recording outcome m from the second energy measure-
ment. This approach to defining work has proven to be
very useful, allowing to recover and extend results from
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classical stochastic thermodynamics and allowing to ex-
amine the highly non-trivial role that quantum coherence
can play [23]. We will use eq. (1) to examine the character-
istics of a controlled evolution that achieves an adiabatic
dynamics in a finite time. This is particularly interest-
ing since, naively, if we only look at the start and end
of the protocol, by construction, the work performed will
be precisely the adiabatic work, implying that the control
was thermodynamically free. However, several works have
demonstrated that this view is not entirely accurate and
that there is an unavoidable thermodynamic cost associ-
ated with achieving control [12,13,15,18–21].

We will focus on arguably the simplest protocol to
achieve a finite time adiabatic dynamics through coun-
terdiabatic [8] or transitionless [9] driving. Consider the
Hamiltonian given by its spectral decomposition

H0(t) =
∑

n

εn(t)|φn(t)〉〈φn(t)|. (2)

We can achieve a perfect adiabatic dynamics by adding an
additional control term to suppress the non-equilibrium
excitations generated due to the finiteness of the
drive [8,9],

H1(t) = i
∑

n

(
|φ̇n〉〈φn| − 〈φn|φ̇n〉|φn〉〈φn|

)
, (3)

where for brevity we have dropped the explicit time de-
pendence and here, and throughout, we assume units such
that � = 1. In what follows, we will assume that the sys-
tem begins in an eigenstate, specifically the ground state,
|ψ(0)〉 = |φ0(0)〉, of H0. To compute the work distribution
we need the evolution of the state after the initial measure-
ment, which for an arbitrary process requires to explicitly
simulate the correct time-ordered dynamics. However, by
construction the controlled evolution precisely tracks the
adiabatic ground state, i.e., |ψ(t)〉 = U(t)|ψ(0)〉 = |φ0(t)〉,
and therefore the calculation of pm|n is greatly simplified
being given by

pm|n = |〈Φm(t)|φn(t)〉|2, (4)

where |Φm(t)〉 are the eigenstates of the full generator,
i.e., H0 + H1 and clearly also Em entering eq. (1) are
the corresponding energy eigenvalues. To ensure the pro-
tocol realizes an adiabatic dynamics with respect to the
bare Hamiltonian, the condition H1 = 0 is enforced at
the start and end points of the drive. Therefore, at
these points the work distribution will be precisely that
of an adiabatic protocol and thus provide no further in-
sight. However, examining the properties of eq. (1) during
the controlled evolution can reveal clear signatures of the
non-equilibrium dynamics being suppressed. Remarkably,
however, the average of the work distribution, 〈W 〉, during
the control protocol is precisely the same as the adiabatic
work [21]. This establishes that not all moments of the
distribution provide insight into the thermodynamics of
the control protocol.

In order to capture the richness of the full distribution,
we focus on a recently proposed summary statistic to char-
acterize P (W ) by computing its Shannon entropy

HW = −
∑
W

P (W ) lnP (W ). (5)

As shown in ref. [22], HW can be bounded by two distinct
contributions, one stemming from the entropy of the ini-
tial state and a second directly related to the coherence
generated by the driving protocol. Thus, due to our as-
sumption that the system begins in an eigenstate of H0,
the entropy of P (W ) for the controlled dynamics can be
related purely to the coherence generated in the eigenbasis
of the generator [22].

With these tools we now show that the work distri-
bution, and in particular the entropy HW , provides an
insightful metric for characterizing the thermodynamics
of control and that the properties of P (W ) allows to ex-
plore, in a very general manner, the dynamical response of
the system to arbitrary drives. We first demonstrate that
the entropy of the controlled work distribution admits a
scaling in line with the predictions of the Kibble-Zurek
mechanism [25,26]. This establishes that the controlled
evolution provides a versatile means to study generic non-
equilibrium dynamics and complements recent studies on
the thermodynamics of traversing a quantum phase tran-
sition [27–32]. As a second application, we propose to
use HW as a proxy for the complexity of the control by
assessing the work distribution arising from different im-
plementations of counterdiabatic driving for many-body
systems. Specifically we compare the full counterdiabatic
term, eq. (3), with a control field which is tailored for only
a specific eigenstate, explicitly showing that the latter, ar-
guably more simple control Hamiltonian, generally results
in a smaller HW .

Kibble-Zurek scaling. – We begin by considering a
two-level driven system as captured by the Landau-Zener
(LZ) model1

HLZ(t) =
Δ
2
σx +

g(t)
2
σz , (6)

where σi are the Pauli matrices. We fix the time-
dependent part of eq. (6) to have the form g(t) = g0 +
gd

(
t

τQ

)
, i.e., a linear ramp, although remark that our re-

sults are qualitatively unaffected for other choices of ramp-
ing profile. Despite its simplicity, the LZ model captures
a remarkably versatile range of physical phenomena [33]
and will serve to demonstrate the key insights achievable
by examining the thermodynamics of control. In particu-
lar, due to the avoided crossing in the energy spectrum of
eq. (6), the LZ model is known to be the minimal model
capturing the dynamics of a quantum phase transition ac-
cording to the Kibble-Zurek mechanism [34,35]. Several

1While we follow the usual naming convention for eq. (6), it has
been noted in several works that a more accurate name is Landau-
Zener-Stückelberg-Majorana model [33].
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Fig. 1: (a) Work distribution for the LZ model. Darker, blue
points are the ground state and lighter, red points are for the
excited state. Solid lines correspond to the analytic values.
We fix the quench duration τQ = 1. (b) Entropy of the dis-
tribution, HW , vs. total protocol duration. White dashed
lines delineate the transition between adiabatic and impulse
regimes from usual Kibble-Zurek arguments [34,36]. (c) Size of

the impulse regime showing the scaling of τ
2/3
Q in line with pre-

dictions [14]. Here tc is the time at which the protocol reaches
the avoided crossing, i.e., τQ/2, and t∗ is the point where the
rate of change of the entropy is maximum. All plots assume a
linear ramp with g0 = −10, gd = 20, Δ = 0.5.

works have explored the dynamics of control for systems
described by eq. (6), including using information about
the transition between adiabatic and impulsive regimes to
tailor more suitable control protocols [36].

In fig. 1(a) we show the explicit work distribution,
P (W ) for the controlled evolution, where the points

are numerically evaluated, but due to the simplicity of
the model P (W ) can be readily determined analytically,
shown with the continuous solid lines. We clearly see a
change in behavior around the avoided crossing where the
distribution becomes double peaked, reflecting the fact
that need-for and cost-of control maximize in this re-
gion [20,21]. It is important to stress that 〈W 〉 for this dis-
tribution precisely coincides with the adiabatic work [21].
This highlights that the first moment of the distribution
provides no useful insights, however, from fig. 1(a) it is
evident that this will not be the case for higher-order
moments.

We can employ eq. (5) to more carefully examine the
characteristics of the distribution, particularly in the re-
gion in which P (W ) becomes more complex due to the
counterdiabatic driving field. In fig. 1(b) we show the en-
tropy of P (W ) as a function of quench duration where
we can clearly see a transition between two regions. The
darker, blue region corresponds to distributions with al-
most zero entropy, indicating that the distribution is δ-
peaked, i.e., only a single eigenstate of the dynamical
Hamiltonian is playing a role. However, a significant
change in the entropy of the distribution occurs as the
system approaches the avoided crossing. Here we see
the entropy quickly increases and saturates to its maxi-
mal value of ln 2. This transition is clearly reminiscent
of the adiabatic-impulse approximation [26]. The super-
posed dashed, white lines correspond to the analytical ex-
pressions for the adiabatic-impulse crossover times that
can be directly computed by the usual Kibble-Zurek ar-
guments [34,36] and shows good agreement with the char-
acteristics of HW .

Rather than the heuristic arguments typically employed
to determine the scaling behavior, we can use HW to esti-
mate the the crossover between the adiabatic and impulse
regimes as the time, t∗, when the rate of change of HW

is maximal. By direct computation we find that the value
of t∗ is similar to the crossover times delineated by the
white dashed lines in fig. 1(b). Extending the ramp dura-
tion, τQ, to much larger values allows to examine how the
extent of the impulse regime scales with the quench dura-
tion. Figure 1(c) shows the size of the impulse regime,
|tc − t∗|, where tc is the time at which the ramp hits
the avoided crossing point, i.e., g(tc) = 0, with the solid
line establishing that the scaling is proportional to τ

2/3
Q ,

which is in excellent agreement with the Kibble-Zurek
predictions2.

We remark that signatures of Kibble-Zurek scaling
have been reported in the moments of the work distribu-
tion [28]. However, our analysis is distinct since it focuses
explicitly on the controlled evolution where, by construc-
tion, the dynamics is perfectly adiabatic with regards to

2Notice that the LZ model shares the essential features of the
quantum Ising model which exhibits a characteristic τ

1/2
Q scaling. As

discussed in ref. [14], however, the bare LZ model admits a scaling
with exponent 2/3.
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the bare Hamiltonian. Our results highlight that the
non-equilibrium dynamics can be studied by examining
the controlled evolution, however, this necessitates looking
at higher-order moments of the work distribution [21].
While we have focused on counterdiabatic driving, it is
relevant to ask whether other approaches that transiently
leave the adiabatic manifold but still achieve the same adi-
abatic start and end points also allows to quantitatively
study the non-equilibrium dynamics being suppressed.
While a careful analysis on a technique by technique basis
would be required, we have verified that a similar behav-
ior to the results reported here can be achieved for local
counterdiabatic driving [37]. Our analysis indicates that,
while counterdiabatic driving may suffer limitations asso-
ciated with the difficulty of its implementation for all but
the simplest of systems, it nevertheless provides a useful
and versatile tool for exploring generic non-equilibrium
dynamics.

Complexity of the control. – We next assess how
the entropy of P (W ) can be used as a proxy for the com-
plexity of the applied control. Equation (3) ensures no
transitions between any eigenstates occur. However, in
most circumstances not every state will need to be driven
in a transitionless manner [12,13]. In particular, if the
system is initialised in an eigenstate of H0 then only tran-
sitions from this state need to be suppressed. Therefore,
we can achieve the same level of control by employing a
control Hamiltonian tailored to the specific state via

Hn
1 (t) = i

[
d
dt

|φn〉〈φn|, |φn〉〈φn|
]
. (7)

It follows from similar arguments outlined in ref. [21] that
the average work of the state evolved according to H0+Hn

1

still coincides exactly with the adiabatic work. However,
this Hamiltonian is, at least in some sense, “simpler” than
eq. (3) since it only suppresses transitions away from a
specific eigenstate and in general requires a lower ener-
getic overhead to implement [13]. In what follows, we
demonstrate that HW allows to make this intuition more
quantitative.

We consider the Ising, HI , and the Lipkin-Meshkov-
Glick (LMG), HLMG, models which correspond to many-
body systems with different interaction ranges,

HI = −
L∑

i=1

[
g(t)σz

i − σx
i σ

x
i+1

]
, (8)

HLMG = −
L∑

i=1

g(t)σz
i − 1

L

∑
i<j

σx
i σ

x
j , (9)

where for the former we assume periodic boundary con-
ditions. In the thermodynamic limit both models host a
quantum phase transition at g(t) = 1 and we set

g(t) = g0 + gd sin2

(
πt

2τQ

)
. (10)

Fig. 2: (a) Entropy of the distribution, HW , for the Ising model
for a fixed number of spins, L = 5, as a function of quench dura-
tion. (b) Entropy of the distribution, HW , for the LMG model
for a fixed quench duration, τQ = 1, for various sized systems.
Both panels assume the smooth sinusodial ramp, eq. (10), with
g0 = 2 and gd = −1.2. The transparent mesh corresponds to
the full CD driving term, eq. (3), while the solid planes are
when the control is achieved using eq. (7).

In fig. 2 we compare the entropy of the work distribu-
tions for the two realizations of a controlled evolution asso-
ciated with implementing H1 or Hn

1 . In panel (a), we con-
sider the Ising model of fixed size L = 5 and examine how
the entropy, and therefore the complexity, of the distribu-
tion, changes for various quench durations. The transpar-
ent mesh shows HW when the control is achieved using the
full counterdiabatic Hamiltonian, eq. (3), while the solid
plane corresponds to employing eq. (7). Evidently, for
long quench durations approaching the adiabatic limit the
entropy of the distributions coincide as HW → 0. While
both distributions have the same average value regardless
of the speed of the protocol, fast quenches demonstrate
the significant difference between the two. We find HW is
larger when the full H1 is employed, indicating that the
work distribution is more complex for this driving proto-
col. In contrast, for control achieved via Hn

1 , the entropy of
the distribution saturates to a value � ln 2 during the dy-
namics when the control term is active. Panel (b) demon-
strates that a qualitatively similar behavior is exhibited
when the protocol duration, τQ, is fixed and the system
size varies. Here, we examine the LMG model where for
the ramp given by eq. (10) the ground-state energy gap
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closes as the system is driven. Consequently the need for
control techniques to suppress unwanted transitions in-
creases [13] and we see that the entropy of the controlled
work distribution arising from H1 grows with system size.
Computing HW corresponding to Hn

1 , however, we find it
is consistently lower and again tends to saturate close to
� ln 2, indicating a simpler distribution. This establishes
that the thermodynamics of control, and in particular the
entropy of the work probability distribution, is a useful
summary tool to capture and characterize differences in
protocols that achieve the same evolution.

Conclusions. – We have examined the quantum work
distribution for controlled evolutions governed by coun-
terdiabatic Hamiltonians. Since, by construction, the
generator gives rise to a perfectly adiabatic dynamics, de-
termining the probability distribution becomes particu-
larly simple and serves to provide useful insight, both in
terms of the non-equilibrium dynamics being suppressed
and the resource intensiveness of the control. We demon-
strated this through two exemplary settings: regarding
the former, we showed that non-equilibrium dynamics
captured by the Kibble-Zurek mechanism can be readily
studied by examining the work statistics of the controlled
evolution. For the latter, we showed that the work prob-
ability distribution allows to define an ad hoc notion of
complexity. Through explicit examples of the quantum
Ising and LMG models, we showed that distinct Hamil-
tonians that nevertheless achieve the same evolution can
have significantly different thermodynamic behaviors. In
both settings, the Shannon entropy of the work distribu-
tion, HW , served as the key summary statistic. By focus-
ing on an initial state that is an eigenstate of the initial
Hamiltonian, HW can be directly related to the coherences
generated by the controlled drive through the framework
of ref. [22] and, therefore, our approach may provide an
alternative means to quantify the cost of control by di-
rectly relating it to the thermodynamic cost of creating
coherence [38]. It would be interesting to examine how
our results are affected for systems initialized in mixed
states, e.g., thermal states where the inclusion of a finite
temperature will naturally lead to an increase in the en-
tropy of the work distribution. However, since the pop-
ulations are conserved when undergoing counterdiabatic
driving we expect that the entropy will admit a splitting
between two distinct contributions, one arising from the
initial mixedness of the state and the other due to the
coherence generated by the control protocol, in line with
the results from ref. [22]. Finally we remark that our re-
sults can also be applied to classical systems undergoing
counterdiabatic driving [39,40] where the work statistics
will again provide information regarding complexity of the
control. Our results further strengthen the motivation to
use control as more than a means-to-an-end, establishing
that the controlled dynamics provides an insightful tool
to study the equilibrium and non-equilibrium properties
of complex systems.
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