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The task of learning a probability distribution from samples is ubiquitous across the natural sciences. The output
distributions of local quantum circuits form a particularly interesting class of distributions, of key importance
both to quantum advantage proposals and a variety of quantum machine learning algorithms. In this work, we
provide an extensive characterization of the learnability of the output distributions of local quantum circuits. Our
first result yields insight into the relationship between the efficient learnability and the efficient simulatability of
these distributions. Specifically, we prove that the density modelling problem associated with Clifford circuits
can be efficiently solved, while for depth d = nΩ(1) circuits the injection of a single T -gate into the circuit renders
this problem hard. This result shows that efficient simulatability does not imply efficient learnability. Our second
set of results provides insight into the potential and limitations of quantum generative modelling algorithms. We
first show that the generative modelling problem associated with depth d = nΩ(1) local quantum circuits is hard
for any learning algorithm, classical or quantum. As a consequence, one cannot use a quantum algorithm to
gain a practical advantage for this task. We then show that, for a wide variety of the most practically relevant
learning algorithms – including hybrid-quantum classical algorithms – even the generative modelling problem
associated with depth d = ω(log(n)) Clifford circuits is hard. This result places limitations on the applicability
of near-term hybrid quantum-classical generative modelling algorithms.

Deep generative models have recently empowered many im-
pressive scientific feats, ranging from predicting protein struc-
ture to atomic accuracy [1] to achieving human-level language
comprehension [2]. Consequently, there has been much in-
terest in architecture and algorithm development for proba-
bilistic modelling. Ideally one would like to obtain a rigor-
ous theoretical understanding of these emerging state-of-the-
art models, which requires a suitable theoretical framework.
Such a framework is provided by the problem of distribution
learning: Given samples from an unknown distribution, out-
put some suitable representation of that distribution. Signifi-
cant effort has been devoted to characterizing the complexity
of learning various classes of structured distributions [3–5],
including mixture models [6, 7], output distributions of re-
stricted Boolean circuits [5, 8] and Poisson binomial distri-
butions [9]. However, these classes of distributions are still
somewhat removed from those of most interest to machine
learning practitioners, such as those governing movements in
the stock market, or the outputs of deep generative models.

Simultaneously, the last years have witnessed significant in-
terest in the potential of exploiting quantum devices for ma-
chine learning tasks [10–12]. Of particular interest are hybrid
quantum-classical schemes, in which parameterized quantum
circuits are used as a model class, whose parameters are opti-
mized via classical algorithms [13, 14]. In the context of gen-
erative modelling, the output distributions of quantum circuits
are a particularly natural model class, referred to as quantum
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circuit Born machines (QCBMs) [15, 16]. In particular, it is
known that this model class is expressive enough to contain
many probabilistic graphical models [17, 18], while not be-
ing classically simulatable [19–21]. These facts, along with
a growing body of numerical experiments [22–25], suggest
that hybrid quantum-classical algorithms using QCBMs as a
model class may offer concrete advantages over state-of-the-
art classical generative modelling techniques. However, to
date, there are no rigorous results on the learnability of this
model class which support this intuition.

In order to address this, we provide in this letter a com-
prehensive study of the learnability of the output distributions
of local quantum circuits – i.e., QCBMs. This allows us to
resolve a variety of open questions. Firstly, we provide two
hardness results for the generative modelling problem asso-
ciated with these distributions. The first shows that the out-
put distributions of n qubit quantum circuits of depth nΩ(1)

are not efficiently learnable by any learning algorithm with
access to samples from the unknown distribution. The sec-
ond shows that the output distributions of quantum circuits
of depth ω(log(n)) are not efficiently learnable by algorithms
which use only statistical averages with respect to the un-
known distribution. Most practically relevant algorithms are
indeed of this type. To date, the output distributions of lo-
cal quantum circuits are considered the most promising can-
didate for demonstrating a rigorous complexity theoretic sep-
aration between the power of QCBM-based hybrid quantum-
classical algorithms and purely classical generative modelling
techniques. However, our hardness results show that this is not
possible, and, therefore, place strong limitations on the advan-
tages one might hope to achieve in this setting with near-term
quantum devices.
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FIG. 1. How hard is the task of generator- or evaluator-learning the output distributions of local quantum circuits on n qubits of depth d?
In accord with the intuition that deeper circuits generate more complex distributions, our answer depends on how d scales with n. We find
that for d = ω(log n), even the output distributions of Clifford circuits are not efficiently learnable when given statistical query access to PU

(Theorem 4). When given the sample access, the output distributions of generic local quantum circuits cease to be efficiently learnable at linear
depths d = nΩ(1) and beyond, up to standard cryptographic assumptions (Corollary 1 and Theorem 3).

Secondly, we show clearly that, within the context of distri-
bution learning, classical simulatability of a class of quantum
circuits does not imply efficient learnability. This is in strong
contrast to existing conjectures and known results in other re-
lated settings [22, 26–28]. To do this, we prove that the out-
put distributions of Clifford circuits are efficiently learnable,
while the addition of a single T -gate to the circuit renders
the learning problem hard. As such, while the complexity of
the classical simulation scales with the number of T -gates,
we find that the addition of a single T -gate induces a striking
complexity transition in the corresponding distribution learn-
ing problem.
Setting. — In this Letter, we are concerned with learning
distributions promised to be from a distribution class D. In
particular, we are interested in the properties of learning algo-
rithms that solve the following problem 1:

Problem 1 (Distribution learning) Given a distribution
class D, samples from an unknown distribution P ∈ D,
and ε, δ ∈ (0, 1), output with probability at least 1 − δ, a
representation of a distribution Q satisfying TV(P,Q) ≤ ε.

We will be concerned with two types of representations,
namely generators and evaluators:

• An evaluator for a distribution Q is a computationally
efficient algorithm which, when given some x, outputs
the probability Q(x).

• A generator for a distribution Q is a computationally
efficient algorithm for generating samples from Q.

1 TV denotes here the total variation distance between two probability dis-
tributions, see also the appendix.

We note that the problem of distribution learning with respect
to an evaluator is often referred to as density modelling, while
the problem of learning with respect to a generator is often
referred to as generative modelling. Additionally, we stress
that in the case of generative modelling it is not sufficient for
the learning algorithm to store and later reproduce the sam-
ples it received during the learning phase, or to output a larger
but still bounded set of samples [29]. Indeed, the learning
algorithm is required to output another algorithm – a genera-
tor – which can output as many as samples as desired, from
a distribution which is close in total variation distance to the
unknown target distribution.

We are concerned here exclusively with discrete distribu-
tions over {0, 1}n, and denote the set of all such distributions
by Dn. Given some D ⊆ Dn, we say that an algorithm is a
computationally (sample) efficient algorithm for learning D
with respect to a particular representation (either generators
or evaluators) if it solves the above problem for all P ∈ D,
using O(poly(n, 1/ε, 1/δ)) computational time (samples). If
there exists a computationally efficient learning algorithm for
D with respect to a particular representation, then we say that
D is efficiently learnable with respect to that representation.
If there does not exist a computationally efficient learning al-
gorithm for some class D with respect to a particular repre-
sentation, then we say that D is hard to learn with respect to
that representation.

Our particular focus in this work is on the output distribu-
tions of quantum circuits. More specifically, to any unitary U
we have the associated probability distribution PU , with prob-
abilities

PU(x) :=
∣∣∣ 〈x|U |0⊗n〉

∣∣∣2. (1)

We then consider sets of distributions obtained from all uni-
taries generated by quantum circuits of a specific depth, with
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gates from a specific gate set. Unless otherwise specified, we
consider one-dimensional circuits consisting only of nearest-
neighbour gates, which for convenience we refer to as local
quantum circuits. We are particularly interested in how the
complexity of learning depends on both the gate set, and the
circuit depth. We note that our results generalize and extend
seminal work on learning the output distributions of classical
circuits [5].
Learning Clifford distributions. — We start by studying
the learnability of the output distributions of Clifford circuits.
Our primary motivation for doing so is to better understand
the relation between the complexity of classical simulation
of quantum circuits and their learnability: It is well-known
that by virtue of the Gottesman-Knill theorem, Clifford cir-
cuits can be efficiently classically simulated [30, 31]. Sim-
ilarly, it has been found previously that the algebraic struc-
ture of the Clifford group also facilitates efficient learning of
an unknown stabilizer state [32] or Clifford circuit [27] from
few copies of the unknown quantum state. Furthermore, sta-
bilizer states have been found to be efficiently PAC-learnable
[26, 33] in Aaronson’s framework for PAC-learning quantum
states [34]. In this setting, Ref. [28] finds a sufficient condition
under which the complexity of simulatibility and learnability
are aligned. Here, we ask whether the alignment in the com-
plexity of classical simulation and learning holds also in the
distribution learning setting. Indeed, when studying Clifford
circuits, we find that our learning model is no exception.

Theorem 1 The set DCl of Clifford circuit distributions, for
any depth, is efficiently learnable with respect to generators
and evaluators.

Proof (sketch): Clifford circuit output distributions are uni-
form over affine subspaces of the finite n dimensional vector
space Fn

2. Hence using Gaussian elimination on O(n) samples
recovers the correct affine subspace, and from this the correct
distribution representation, with success rate 1 − exp(−Ω(n)).
�

Hardness of learning Clifford+T -distributions. — Next, we
ask whether this alignment of complexity extends even to
slightly non-Clifford circuits. In particular, on the simula-
tion side, the run-time of the best-known classical algorithms
for simulating T -enriched Clifford circuits will grow exponen-
tially with the number of T gates [12, 35–37]. On the learn-
ing side, a first result for learning output states of unknown
Clifford+T circuits, from copies of the unknown state, has
been obtained in Ref. [27]. They also find an exponential scal-
ing in the number of T gates provided all T gates are applied
in a single layer.

Let us now return to the distribution learning setting. We
consider the class of output distributions arising from T -
enriched Clifford circuits. The following result relies on the
learning parities with noise (LPN) assumption. It posits that
there does not exist an efficient algorithm, quantum or classi-
cal, for learning from classical samples the class of Boolean
parity functions under the uniform distribution when subject
to any constant-rate random classification noise. We note
that this is a canonical assumption for many cryptographic
schemes [38, 39].
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FIG. 2. Example of a circuit used in the proof of Theorem 2. Without
the red box, samples from this circuit are of the form (x, f (x)) where
x is uniformly random and f is the parity function supported on bits
2, 3, 5. With the red box, the samples are of the form (x, y) where
y = f (x) with probability 1 − η and y = ¬ f (x) with probability η.

Theorem 2 Under the LPN assumption, the output distribu-
tions of local Clifford circuits of depth d = nΩ(1) enriched with
a single T-gate are not efficiently learnable with respect to an
evaluator.

Proof (sketch): Ref. [5] gives a class of distributions such
that LPN reduces to evaluator-learning this class. Specifically,
for each parity function, there is a corresponding distribution.
Each such distribution can be realized as the output distribu-
tion of Clifford circuit enriched with a single T gate (see e.g.
Fig. 2). We obtain the stated depth dependence by recompil-
ing the circuit into local gates and using a rescaling argument
to trade circuit-depth for learning complexity. �

We note that a similar hardness result based on the LPN as-
sumption can be obtained for output distributions of Clifford
circuits subject to single-qubit depolarizing noise. The key in-
sight underlying the proof of Theorem 2 is that the LPN noise
can be realized by a single T gate. Moreover, it can be seen
that, if one relaxes the nearest-neighbour requirement on the
Clifford gates, i.e., allowing instead for arbitrary connectivity
between qubits, then one obtains the above hardness result in
Theorem 2 already for depth d = Ω(1).

The sharp transition in complexity between Theorem 1 and
Theorem 2 stands in interesting contrast to the smooth in-
crease in the complexity of classically simulating T -enriched
Clifford circuits: In particular, while T -enriched Clifford cir-
cuits can be simulated efficiently for up to O(log n) many T
gates [37], a single T gate is enough to make distribution-
learning with an evaluator at least as hard as LPN.

The class of T -enriched local Clifford circuits is a subclass
of the class of all local quantum circuits. Hence, the condi-
tional hardness result of Theorem 2 also applies to this more
general class:

Corollary 1 Under the LPN assumption, the output distribu-
tions of local quantum circuits of depth d = nΩ(1) are not effi-
ciently learnable with respect to an evaluator.

Hardness of learning generators. — In the previous sections
we have seen how adding a single T gate can make the task of
learning an evaluator for Clifford distributions at least as hard
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as LPN. This leaves open the question of the complexity of
learning the output distributions of non-Clifford circuits with
respect to a generator. As discussed in the introduction, the
complexity of generator learning is interesting not only from
a purely theoretical standpoint. It also allows us to gain insight
into the potential of quantum generative models (QCBMs).

In Ref. [5], it has been shown that the output distributions
of polynomially sized classical circuits are not efficiently clas-
sically learnable with respect to a generator. In this section,
we establish an analogous result for the output distributions
of quantum circuits by adapting the proof strategy of Ref. [5].
Our result applies to both quantum and classical learning al-
gorithms. In particular, we show that one can embed pseudo-
random functions (PRFs) into the output distributions of local
quantum circuits. In order to establish hardness for quan-
tum learning algorithms, we use “standard-secure" PRFs –
i.e., PRFs secure against quantum adversaries with classical
membership queries [40].

Theorem 3 Assuming the existence of classical-secure
(standard-secure) pseudorandom functions, there is no effi-
cient classical (quantum) algorithm for learning the output
distributions of depth d = nΩ(1) local quantum circuits, with
gates from any universal gate set.

Proof (sketch): Instantiating the proof of Theorem 17 in
Ref. [5] with a standard-secure PRF yields the following: the
output distributions of polynomially sized classical circuits
are not efficiently generator learnable, even by quantum learn-
ing algorithms. Polynomially sized classical circuits can be
realized by polynomially sized local quantum circuits. There-
fore, the output distributions of polynomially sized local quan-
tum circuits can also not be learned efficiently with respect to
a generator. This result can be extended to any universal gate
set by virtue of the Solovay-Kitaev theorem. We obtain the
stated depth dependence by use of a rescaling argument trad-
ing complexity for depth. �

Previous work has suggested, and provided numerical ev-
idence, that learning a generator for quantum circuit output
distributions is hard for classical learning algorithms [22–25].
Theorem 3 provides a rigorous proof for this and, interest-
ingly, shows that these distributions are also hard to learn us-
ing quantum algorithms – including QCBM based learners.
As such, one cannot hope to use the output distributions of
local quantum circuits to prove a probabilistic modelling sep-
aration between QCBM based algorithms and classical algo-
rithms.

We note that our proof technique shares similarities with
that of Ref. [41], where it was shown that learning Boolean
functions generated by constant depth classical circuits is hard
for quantum algorithms, even with quantum examples. How-
ever classes of Boolean functions which are hard to learn can-
not be generically used to create distribution classes which are
hard to learn with respect to a generator [42]. As such, our re-
sults do not follow directly from theirs, despite similarities in
the proof strategies.
Hardness of learning with statistical query algorithms. —
In the previous sections we have established the hardness of

learning the output distributions of polynomial depth circuits.
However, the efficient learnability of shorter circuits remains
open. In this section we show that the hardness results of the
previous sections can be strengthened to hold for the output
distributions of super-logarithmic depth circuits, if one con-
siders a restricted – but practically highly relevant – class of
learning algorithms.

To understand this restriction recall that in Theorem 1 we
have seen an example of a distribution class – namely the out-
put distributions of Clifford circuits – whose intrinsic alge-
braic structure allowed us to devise an efficient learning al-
gorithm. In particular, this algorithm is able to exploit in-
dividual samples from the target distribution, by using the
promise that the target distribution is the uniform distribution
over some affine subspace of Fn

2. However, in the absence of
a strong promise on the structure of the unknown distribution
to be learned, it is a-priori unclear how a learning algorithm
should utilize individual samples from the target distribution.
As such, most generic distribution learning algorithms – i.e.,
algorithms which are not designed specifically for one par-
ticular distribution class – work by using samples from the
unknown distribution to estimate statistical averages with re-
spect to that distribution [43]. Indeed, this is the case for al-
most all gradient based algorithms used in practice, both for
classical neural network model classes (such as RBMs and
GANs) [43] as well as quantum circuit based model classes
such as QCBMs [16, 22].

In order to formally study the properties of such learning
algorithms, we assume that the learning algorithm does not
have access to samples from the unknown distribution P, but
only to approximate statistical averages with respect to P.
More specifically, we assume that the algorithm has access
to a statistical query oracle, which when queried with some
efficiently computable function φ : {0, 1}n → [−1, 1] returns
some v such that |Ex∼P[φ(x)] − v | ≤ τ - i.e., an approximation
of the expectation value of φ with respect to P, up to accu-
racy τ [44]. While in principle one could consider any ac-
curacy parameter τ, we consider at most inverse polynomial
accuracy – i.e., τ = Ω(1/poly(n)) – as in this regime the statis-
tical query oracle can be efficiently simulated from samples,
and query-complexity lower bounds with respect to statistical
queries yield computational complexity lower bounds with re-
spect to sample queries [45].

Theorem 4 There is no query efficient algorithm for learning
from inverse polynomially accurate statistical queries

• DCl at depth ω(log(n)),

• DG at depth ω(logk(n)) where k is a constant depending
on the universal gate setG (which can be as small as 2),

with respect to either generators or evaluators.

Proof (sketch): As shown in Refs. [46, 47] learning pari-
ties in the statistical query model is hard. From this, one can
prove that the output distributions of parity functions on uni-
formly random inputs are also hard to learn from statistical
queries. We have already shown in the proof of Theorem 2
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that the output distributions of parity functions can be real-
ized by linear depth Clifford circuits. Combining these two
facts yields the hardness result for linear depth Clifford cir-
cuits. We then obtain the first claim by applying a rescaling
argument which trades circuit depth for complexity. We ob-
tain the second claim by using robustness properties of the
statistical query oracle, coupled with the Solovay-Kitaev the-
orem to approximate Clifford circuits. �

A first immediate consequence of the above result is that
one cannot hope to use the output distributions of super-
logarithmic depth local circuits to prove a practical sepa-
ration between the power of classical learning algorithms
and QCBM’s, provided one uses previously-proposed QCBM
based learning algorithms based on statistical queries [16, 22].
Additionally, Theorem 3 leaves open the possibility that there
exists some efficient learning algorithm for circuits with depth
less than nΩ(1). However, as hardness in the statistical query
model is often taken as evidence for hardness in the sample
model [44], the above result provides evidence that Theorem 3
could potentially be strengthened to hold for the output dis-
tributions of super-logarithmic depth circuits. At least, any
efficient learning algorithm for such circuits must utilize indi-
vidual samples in a non-trivial way.

Conclusions. — In this letter, we have provided an extensive
characterization of the complexity of learning the output dis-
tributions of local quantum circuits. Apart from being of fun-
damental interest in its own right, this characterization also
contributes to our understanding of the relationship between
the learnability and simulatibility of local quantum circuit out-
put distributions.

Moreover, our results have multiple implications for the
emerging field of quantum machine learning. In particu-
lar, a major focus of current research efforts in this direc-
tion is the identification of problems for which one can rig-

orously prove a separation between the power of quantum and
classical learning algorithms [48]. Previous work has lever-
aged cryptographic assumptions to construct highly fine-tuned
learning problems for which fault-tolerant quantum comput-
ers can obtain an exponential advantage [49–51]. The output
distributions of quantum circuits were a primary candidate
for establishing a separation for a natural learning problem.
However, our work establishes that this is not possible, and,
therefore, implies the need to identify new strategies for prov-
ing practically relevant quantum advantages in machine learn-
ing. In particular, our work complements existing results [52]
that place limitations on the applicability of near-term hybrid
quantum-classical learning algorithms, including QCBMs.

There remain many exciting questions. Firstly, are our
worst-case bounds tight? In particular, can one exhibit effi-
cient learning algorithms for the circuit depths not covered
by our hardness results? Secondly, can one characterize the
sample complexity of the learning tasks we have consid-
ered. Thirdly, in order to gain insight into the performance
of heuristic learning algorithms, it is important to understand
the average-case complexity of learning the output distribu-
tions of local quantum circuits. Additionally, it is interest-
ing to study the learnability of other physically-motivated dis-
tributions, such as those arising from free-fermionic evolu-
tions [53, 54]. Finally, to fully characterize the relationship
between simulatability and learnability, it is of interest to un-
derstand whether hardness of simulation implies hardness of
learning. In particular, are there circuit distributions which are
hard to classically simulate, while being efficiently learnable?
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Appendix A: Preliminaries

We start by giving formal definitions of the objects and problems considered in this work. Throughout we denote by Fn the
set of Boolean functions from {0, 1}n to {0, 1}, by Dn the set of probability distributions over {0, 1}n. A subset D ⊂ Dn
is referred to as a distribution class. For two discrete probability distributions P,Q : {0, 1}n → [0, 1], we denote by
TV(P,Q) := 1

2
∑

x∈{0,1}n |P(x) − Q(x)| the total variation distance between them. The trace distance of two quantum states ρ
and σ is given by 1

2 ‖ρ − σ‖tr , where ‖ · ‖tr denotes the trace norm. Access to distributions is formalized by assuming access to
some oracle that has a specific operational structure. In particular, we use the sample and the statistical query oracle which are
defined as follows.

Definition 2 (Distribution oracles) Given P ∈ Dn, some τ ∈ (0, 1), we define:

1. The sample oracle Samp(P) as the oracle which, when queried, provides a sample x ∼ P.

2. The statistical query oracle Statτ(P) as the oracle which, when queried with a function φ : {0, 1}n → [−1, 1], responds
with some v such that |Ex∼P[φ(x)] − v| ≤ τ.

Let us next define generators and evaluators, the central objects of this work, whose learnability we study. Informally, a generator
for a given distribution P is an algorithm that generates samples from P. Likewise, an evaluator for P is an algorithm that
computes P(x) for all x in the support of P. More precisely:

Definition 3 (Generators) Given some probability distribution P ∈ Dn, we say that a probabilistic (or quantum) algorithm
GenP is a generator for P if GenP produces samples according to P.

Definition 4 (Evaluators) Given some probability distribution P ∈ Dn, we say that an algorithm EvalP : {0, 1}n → [0, 1] is an
evaluator for P ∈ Dn if on input x ∈ {0, 1}n the algorithm outputs EvalP(x) = P(x).

We are interested in learning the output distributions of quantum circuits. To formalize this, we use the framework for
learning a distribution as introduced in Ref. [5]. This definition is analogous to the definition of probably-approximately correct
(PAC) function learning, in that it introduces parameters ε and δ to quantify approximation error and probability of successful
approximation, respectively.

Problem 2 ((ε, δ)-distribution-learning) Let ε, δ ∈ (0, 1) and let D be a distribution class. Let O be a distribution oracle. The
following task is called (ε, δ)-distribution-learning D from O with respect to a generator (evaluator): Given access to oracle
O(P) for any unknown P ∈ D, output with probability at least 1 − δ an efficient generator (evaluator) of a distribution Q such
that TV(P,Q) < ε.

Definition 5 (Efficiently learnable distribution classes) Let D be a distribution class, and let O be a distribution oracle. We
say that D is computationally (query) efficiently learnable from O with respect to a generator/evaluator, if there exists an
algorithm A which for all (ε, δ) ∈ (0, 1) solves the problem of (ε, δ)-distribution learning D from O with respect to a genera-
tor/evaluator, using O(poly(n, 1/ε, 1/δ)) computational steps (oracle queries).

As we are most often concerned with computational efficiency and with the sample oracle, we often omit these qualifiers in this
case, and simply say “D is efficiently learnable". If a distribution class is not efficiently learnable, then we say it is hard to learn.

We are particularly interested in distribution classes induced by quantum circuit classes by measuring each corresponding
quantum circuit in the computational basis. We denote such classes in the following fashion:

Definition 6 (DG(n, d)) Let G be a gate set and let n, d ∈ N. We denote by DG(n, d) the set of output distributions of n-qubit
nearest neighbor quantum circuits with gates from the gate set G at depth d. In particular,DG(n, d) contains those distributions
P ∈ Dn that can be written as

P(x) = |〈x|U |0n〉|
2 , (A1)

where U can be written as a depth d nearest neighbor quantum circuit in one dimension on n qubits composed of gates from G.
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Appendix B: Useful reductions

In this section we provide a variety of lemmata, used in the proofs of our main theorems. We start with an embedding lemma
which, at a high level, allows us to trade circuit depth for computational complexity of learning. More specifically, this lemma
allows us to take a lower bound for learning the output distributions of a class of quantum circuits of a given depth, and obtain a
new smaller lower bound for learning shorter quantum circuits. This allows us to take existing lower bounds for some class of
circuits, and identify the shortest circuit depth which admits a super-polynomial lower bound. The intuition behind this lemma
is illustrated in Fig. 3, and is as follows: Assume learning the output distributions of a given class of quantum circuits takes at
least a certain number of computational steps (or oracle queries). Now consider the class of circuits one obtains by embedding
the original circuits into wider circuits, which act trivially on the extra qubits. Intuitively, learning the output distributions of the
wider quantum circuits should take at least the same number of steps (oracle queries) as for the original circuits. However, as a
function of the number of qubits, both the depth of the wider quantum circuits, and the computational time (number of oracle
queries) required for learning their output distributions, is reduced. We formalize this below:

Lemma 7 (Embedding reduction) Let n ∈ N, ε, δ ∈ (0, 1) and let τ(n) > 0 be a function depending on n. Let f , g : N → N
be functions where f is monotonous and g is strictly monotonous with n ≤ g(n). We call g the stretch. Assume (ε, δ)-learning
DG(n, f (n))

• with respect to a generator from samples requires at least time t(n, ε, δ), and g = O(poly(n)), or

• with respect to any representation requires at least q(n, ε, δ) statistical queries with tolerance τ(n).

Then it requires at least time t(g−1(n), ε, δ) − O(poly(n)) (respectively q(g−1(n), ε, δ) statistical queries with tolerance at least
τ ◦ g−1(n)) to (ε, δ)-learnDG(n, f ◦ g−1(n)) with respect to the corresponding representation.

Proof: To begin, we consider the first claim. LetA be an algorithm that (ε, δ)-learnsDG(n, f ◦g−1(n)) from samples with respect
to a generator in time t∗(n, ε, δ). We now define an algorithm B that makes use of A as a subroutine to (ε, δ)-learn DG(n, f (n))
from samples with respect to a generator. As we will show, its runtime is bounded by t∗(g(n), ε, δ) + O(poly(n)).

Let k ∈ N, denote n = g(k) and let P ∈ DG(k, f (k)) be a distribution to which we are given sample access via Samp(P). We
define algorithm B as follows: B first emulates a sample oracle Samp(Q) to a distribution Q ∈ DG(n, f ◦ g−1(n)) defined as

Q(x1, . . . , xk, xk+1, . . . , xn) =

P(x1, . . . , xk) , if xk+1 = · · · = xn = 0
0 , else

(B1)

by appending n − k zeros to any bit string (x1, . . . , xk) output by Samp(P). Then B invokes A with access to Samp(Q) which
returns a generator GenQ′ for a Q′ ∈ DG(n, f ◦ g−1(n)). B then returns the generator GenP′ which is defined as follows: Run
GenQ′ and receive a sample (x1, . . . , xn). Return (x1, . . . , xk) discarding the remaining n − k bits.

Let us now analyze the correctness of B: By the tensorial structure of quantum circuits, Samp(Q) is a valid sample oracle to
some Q ∈ DG(n, f ◦ g−1(n))). Therefore,A will with probability at least 1 − δ return a generator Gen(Q′), efficient in n, to some
Q′ that is at least 1 − ε close to Q in TV-distance. Now we observe that GenP′ is a generator for the marginal distribution P′ of
Q′ on the first k bits. Hence, assuming that Q′ is a correct ε-approximation to Q, by the contractivity of the TV-distance, we find
that P′ is a valid ε-approximation to P. Moreover, since g(k) = O(poly(k)) by assumption, we find that GenP′ is also efficient in
k. Hence, with probability 1 − δ our algorithm B will find an efficient generator for a distribution that is ε close to the original
distribution P, thus proving the correctness.

We now observe that all steps in the reduction can be implemented with an at most polynomial overhead. Hence, learning
DG(k, f (k)) takes time at most t∗(n, ε, δ) + O(poly(n)) = t∗(g(k), ε, δ) + O(poly(k)), proving the first claim.

The second claim follows from a similar reasoning replacing computational time with oracle queries. Since the claim is in terms
of the query complexity and as such inherently information theoretic, we do not need to impose the stretch g to be polynomial.
Similarly, as the reduction itself does not make any statistical queries we will get the direct mapping of the query complexity
q(n, ε, δ) 7→ q(g−1(n), ε, δ) when applyingA as a subroutine. Moreover, due to the information theoretic nature of the statement
it applies to both generators and evaluators. In particular, it suffices to show the claim for generators, as we can, at least in a
computationally inefficient way, obtain the corresponding evaluators without additional statistical queries.

This means, we only need to adapt the oracle emulation: Assume φ : {0, 1}n → [−1, 1] to be some function queried by A
and let P and Q be as before. To emulate Statτ◦g−1(n)(Q) when queried with φ we query Statτ(k)(P) with θ and return the
corresponding value, where

θ(x1, . . . , xk) = φ(x1, . . . , xk, 0, . . . , 0) . (B2)
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k

f (k) f (k) = f ∘ g−1(n)

k = g−1(n)

n = g(k)

FIG. 3. Illustration of the embedding reduction used in the proof of Lemma 7. Given a class of circuits on k qubits, we can define a new class
of circuits on n = g(k) qubits by embedding the original circuits onto the first k qubits. Intuitively, the number of computational steps (oracle
queries) required to learn the output distributions of the wider circuits, should be at least as many as that required for the original circuits.
However, as a function of the number of qubits in the wider circuits, both the depth and the learning complexity are reduced by the inverse of
the “stretch-factor" g.

We complete the proof by noting that

E
x1,...,xk∼Q

[φ(x1, . . . , xn)] = E
x1,...,xk∼P

[φ(x1, . . . , xk, 0, . . . , 0)] = E
x1,...,xk∼P

[θ(x1, . . . , xk)] , (B3)

and τ ◦ g−1(n) = τ(k) such that this prescription is indeed a valid emulation. The correctness proof is identical to that of the first
claim. �

The same trade-off of depth for complexity also applies to learning with respect to evaluators. In particular, in the special case
of ε = 0, we immediately obtain the following corollary.

Corollary 8 Let n, δ, g, f as before, g = O(poly(n)) and assume that (0, δ)-learningDG(n, f (n)) from samples with respect to an
evaluator requires at least time t(n, δ). Then it requires at least time t(g−1(n), δ) − O(poly(n)) to (0, δ)-learn DG(n, f ◦ g−1(n))
with respect to an evaluator.

Proof: The proof is identical to the first part of the proof of Lemma 7 only that the output of A is, with probability 1 − δ, the
evaluator of Q. Note, as ε = 0 it holds that Q′ = Q and P′ = P. In order to transform EvalQ to the evaluator of the original P
we simply map

EvalP(x1, . . . , xk) = EvalQ(x1, . . . , xk, 0, . . . , 0) . (B4)

The correctness follows from the correctness ofA together with ε = 0. �

In principle, the proof above also works in the case of non-zero ε. However, the output of the algorithm will in general not
be an evaluator in the exact sense of Definition 4. This is because the mapping in Eq. (B4) does not preserve the normalization
of the probability distribution. For practical purposes, however, one can just relax the definition of an evaluator to also apply
to non-negative vectors instead of normalized probability distributions and replacing the TV distance by the `1-norm. Then, the
above proof goes through for ε , 0.

We have stated Lemma 7 in its most general form as we believe that it might be of use on its own. In order to give a concrete
example, we provide a corollary that will also be of use in the proof of Theorem 2.

Corollary 9 Let n > 0 and assume d = O(poly(n)). If there is no efficient algorithm for learning DG(n, d(n)) with respect to a
generator, then there is no efficient algorithm for learningDG(n, d′(n)) with respect to a generator for any d′ = nΩ(1).
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Proof: Let r ∈ N be such that d(n) = O(nr). Then, via Lemma 7 with g(n) = nrs for some s ∈ N, we find that there is no efficient
algorithm for learningDG(n, d′(n)) with d′(n) = Ω(n1/s). The claim then follows since s ∈ N is arbitrary. �

Next we will clarify in which way hardness results for one learning problem can be leveraged to obtain hardness results for a
different distribution class which only approximates the former. This is a crucial tool for lifting lower bounds for circuits with
some specific gate set, to generic universal quantum circuits, since the latter are known to efficiently approximate the former due
to the Solovay-Kitaev theorem. Let us start by introducing some notation.

Definition 10 LetD andH be distribution classes over the domain X and let σ ∈ [0, 1). We sayD is σ-approximately contained
inH (with respect to the total variation distance), and write

D ⊆σ H , (B5)

if for every P ∈ D it exists a Q ∈ H such that TV(P,Q) ≤ σ.

Given this we find the following reduction from the learnability of a class H to the learnability of a approximately contained
classD. Alternatively, this implies that a harndess result onD translates to a corresponding hardness result onH .

Lemma 11 (Approximation reduction) Let D, H and σ as before and D ⊆σ H . Assume that H is (ε, δ)-learnable from
s samples with respect to a representation. Then D is (ε + σ, δ + sσ)-learnable from s samples with respect to the same
representation.

Proof: Let A be an algorithm that (ε, δ)-learns H with respect to a representation from s samples. Then, applying A to D
directly yields an (ε+σ, δ+sσ)-learner with respect to the same representation. We first show this assumingA to be deterministic
before switching to the general case. AssumeA to be deterministic. For any P ∈ H define the event

E(P, ε,A) := {(x1, . . . , xs) | TV(A(x1, . . . , xs), P) < ε} ⊆ Xs . (B6)

We interpret the characteristic function E(x1, . . . , xs) := 1E(P,ε,A)(x1, . . . , xs) as a random variable with respect to a distribution
over Xs.

SinceD ⊆σ H we know that for every Q ∈ D there exists a P ∈ H such that TV(P,Q) ≤ σ. This implies

TV(P⊗s,Q⊗s) ≤ sσ . (B7)

Therefore, it must hold

Pr
A

[
TV

(
AQ, P

)
< ε

]
= Pr

(x1,...,xs)∼Q⊗s
[E] ≥ Pr

(x1,...,xs)∼P⊗s
[E] − sσ = Pr

A

[
TV

(
AP, P

)
< ε

]
− sσ = 1 − δ − sσ , (B8)

whereAQ (AP) is short hand notation for the output of the algorithmAwith oracle access to Samp(Q) (Samp(P)). The inequality
is due to Eq. (B7) and the variational characterization of the TV-distance. Hence, runningA on any Q ∈ D will, with probability
1 − (δ + sσ) return a representation of some P′ with

TV
(
P′,Q

)
≤ TV

(
P′, P

)
+ TV(P,Q) ≤ ε + σ , (B9)

proving the deterministic case.

Now assume A to be a random algorithm. Thus, the randomness in the second part of Eq. (B8), (x1, . . . , xs) ∼ Q⊗s, gets
replaced by (x1, . . . , xs, r1, . . . , rk) ∼ Q⊗s⊗D (and similarly for P) where D is the distribution on k bits induced by derandomizing
A. The claim then follows from the same argument replacing Eq. (B7) by

TV(Q⊗s ⊗ D, P⊗s ⊗ D) ≤ sσ , (B10)

which follows from Eq. (B7) and the factorization of the `1-norm.
The argument is the same in spirit for quantum algorithms, only the formulation of the ‘derandomization’ procedure changes

due to the quantum nature of the algorithm. Recall, that any quantum algorithm A which makes s queries to Samp(Q) can
be written as a quantum circuit acting on a suitable input density matrix encoding the s queries to the oracle and the internal
quantum resources of the algorithm in terms of an auxiliary density matrix. We, therefore, replace Q⊗s ⊗ D from the previous
reasoning by ρ⊗s

Q ⊗ ρA (and likewise for P) where ρQ =
∑

i∈X Q(i)|i〉〈i| is the diagonal mixed state corresponding to Q and ρA is
the density matrix corresponding toA’s auxiliary space. Using the factorization of the trace norm and the fact that both ρQ and
ρP are diagonal in the computational basis we find

1
2

∥∥∥ρ⊗s
Q ⊗ ρA − ρ

⊗s
P ⊗ ρA

∥∥∥
tr

=
1
2

∥∥∥ρ⊗s
Q − ρ

⊗s
P

∥∥∥
tr

= TV(P⊗s,Q⊗s) ≤ sσ . (B11)
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Hence, the claim follows from

Pr
A

[TV(AQ, P) < ε] = Tr
[
Π · ρ⊗s

Q ⊗ ρA
]
≤ Tr

[
Π · ρ⊗s

P ⊗ ρA
]
− sσ = Pr

A
[TV(AP, P) < ε] − sσ , (B12)

where Π is the POVM encoding the application of the quantum algorithm A to the input ρ⊗s ⊗ ρA and then projecting onto the
valid solutions. �

For the proof of Theorem 4 we will need a slightly adjusted version of Lemma 11 which applies to the setting of statistical
query learning.

Lemma 12 (Statistical query approximation reduction) Let D,H be distribution classes over the same domain X , let τ >
σ > 0 and let 0 < γ < τ − σ. Assume D ⊆σ H and that H is (ε, δ)-learnable from q statistical queries with tolerance τ. Then
D is (ε + σ, δ)-learnable from at most q statistical queries with tolerance γ.

Proof: The proof idea is similar to that of Lemma 11 though, by properties of statistical query learning, is technically much
simpler. To begin with assumeA to be an algorithm that (ε, δ)-learnsH with q statistical queries of tolerance τ. Then, applying
A toD directly yields an (ε +σ, δ)-learner forD which uses at most q statistical queries of tolerance γ ≤ τ −σ. To see this, we
first note that by assumption, for any P ∈ D there exists a Q ∈ H such that TV(P,Q) < σ. By the variational characterization of
the total variation distance and the triangle inequlity we hence find that, for any v ∈ [−γ, γ]∣∣∣∣∣ E

x∼P
[φ(x)] + v − E

x∼Q
[φ(x)]

∣∣∣∣∣ ≤ ∣∣∣∣∣ E
x∼P

[φ(x)] − E
x∼Q

[φ(x)]
∣∣∣∣∣ + |v| < σ + τ − σ = τ . (B13)

Thus, any oracle Statγ(P) can be interpreted as a Statτ(Q) oracle. This implies, that when run with access to Statγ(P)
algorithm A will, with probability at least 1 − δ return a representation for some distribution D that is ε close to Q in total
variation distance. By the triangle inequality this is at most ε + σ far from P completing the proof. �

As we are exclusively concerned here with distribution classes associated with local quantum circuits, the following additional
standard results will be useful to us to quantify the extent to which the output distributions of one class of quantum circuits can
be approximated by the output distributions of another class of quantum circuits.

Lemma 13 Let ρ = |ψ〉〈ψ| and σ = |φ〉〈φ| be pure quantum states. Then it holds

‖ρ − σ‖tr = 2
√

1 − |〈ψ|φ〉|2 . (B14)

Proof: (From the proof of Theorem 10 in Ref. [55].) Denote X = ρ − σ. Then X is self-adjoint and tr[X] = 0. Hence X

has eigenvalues λ and −λ. Moreover tr
[
X2

]
= 2λ2 = 2(1 − |〈ψ|φ〉|2). Hence, λ =

√
1 − |〈ψ|φ〉|2 and the claim follows from

‖X‖tr = 2|λ|. �

Lemma 14 Let n ∈ N. Let U and W be unitary circuits on n qubits and let P and Q be the Born distributions corresponding to
U |0n〉 and respectively W |0n〉. Assume ‖U −W‖op < ε. Then it holds TV(P,Q) < ε.

Proof: Denote by ρ = U |0n〉〈0n|U†, σ = Q|0n〉〈0n|Q† and for any M ⊆ {0, 1}n let ΠM =
∑

i∈M |i〉〈i|. Then by the variational
characterization of the trace- and total variation distances it holds

TV(P,Q) = sup
M
|P(M) − Q(M)| = sup

M

∣∣∣tr[ρΠM
]
− tr[σΠM]

∣∣∣ ≤ 1
2
‖ρ − σ‖tr . (B15)

To estimate the last expression we write

‖U |0n〉 − Q|0n〉‖2 =

√
2 − 2Re

(
〈0n|Q†U |0n〉

)
< ε , (B16)

such that √
2 − 2

∣∣∣〈0n|Q†U |0n〉
∣∣∣ ≤ √

2 − 2Re
(
〈0n|Q†U |0n〉

)
< ε . (B17)

We can now combine this with Lemma 13 to obtain

‖ρ − σ‖tr = 2
√

1 −
∣∣∣〈0n|Q†U |0n〉

∣∣∣2 < 2
√
ε2 − ε4/4 ≤ 2ε , (B18)

and hence TV(P,Q) < ε �
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Corollary 15 (Solovay-Kitaev reduction) Let n, d ∈ N, let ε > 0 and let G be a universal gate set. Then there exists a constant
c such that

DU(4)(n, d) ⊆ε DG(n, d′) with d′ = d · logc
(

n · d
ε

)
. (B19)

Proof: By the Solovay-Kitaev theorem [56] there exists for any depth d circuit U with at most n · d gates a depth d′ circuit Q
consisting of gates from G that approximates U in operator norm ‖U − Q‖op < ε. Hence, applying Lemma 14 yields the claim.
�

Note that there exist universal gate sets for which c = 1 in the statement of Corollary 15 [57].

Appendix C: Proof of Theorem 1

As the proof of Theorem 1 will be based on the algebraic structure of Clifford circuits let us review the following properties first.

Definition 16 (Affine subspace) An affine subspace A ⊆ Fn
2 is a set such that for every a, b, c ∈ A and λ ∈ F2 it holds

a + (b − a) + λ · (c − a) ∈ A , (C1)

where all operations are with respect to Fn
2.

In other words, for every a ∈ A the set A − a forms a linear subspace L and A is the set resulting from shifting L by a. This is,
there exists an integer m ≤ n such that for any t ∈ A there exists a full-rank matrix R ∈ Fm×n

2 , such that

A = {Rb + t | b ∈ Fm
2 } . (C2)

We say A has dimension m. The choice of R is not unique.
The output states of Clifford circuits are called stabilizer states. As shown in Refs. [32, 58], up to a global phase, all n-qubit

stabilizer state vectors |ψ〉 can be written in the computational basis as

|ψ〉 =
1
√
|A|

∑
x∈A

(−i)l(x)(−1)q(x)|x〉, (C3)

where A is some affine subspace of Fn
2 and l, q are linear and quadratic functions on Fn

2, respectively. Thus, we find the following
corollary.

Corollary 17 For any P ∈ DCl there exists an affine subspace A ⊆ Fn
2 such that P = UA, where UA is the uniform distribution

on A

UA(x) =

2−d , d = dim(A), x ∈ A
0 , else.

(C4)

For the proof of Theorem 1, we can make use of the following fact (c.f. Ref. [59]).

Lemma 18 Let L ⊆ Fn
2 be a m-dimensional linear subspace with m ≤ n. Let x1, . . . , xk be k ≥ m vectors sampled uniformly at

random from L. Then it holds

Pr
[
span{x1, . . . , xk} = L

]
≥ 1 − 2m−k . (C5)

Lemma 18 can be exploited to learn the affine subspace A from UA as explained in Algorithm 1. This algorithm is a variant of the
more general closure algorithm, which has previously been used to efficiently solve on-line learning problems such as learning
parity functions and integer lattices [60, 61] and which is used as a subroutine for subexponentially learning parities with noise
[62]. The guarantees of Algorithm 1 are as follows.

Input: δ ∈ (0, 1) and access to Samp(UA) for some affine subspace A ⊆ Fn
2,

1: Let k := n + dlog(1/δ)e. Obtain samples {x1, . . . , xk} ∼ UA by querying Samp(UA).
2: Transform the samples x1, . . . , xk to y1, . . . , yk via yi = xi + x1.
3: Use Gaussian elimination to determine from y1, . . . , yk a maximal linearly independent subset of vectors V := {yi1 , . . . , yim }.
4: Form the full rank n × m matrix R by placing vectors from V as columns.
5: Output (R, x1).

Algorithm 1: Affine subspace recovery from samples.
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Lemma 19 (Efficient recovery of affine subspaces) Let A ⊆ Fn
2, δ ∈ (0, 1) be as stated above. Algorithm 1 runs in time

O(poly(n, 1/δ)) and uses O(poly(n, 1/δ)) samples, and outputs, with probability at least 1 − δ, a tuple (R, t) which parametrizes
A.

Proof: The sample complexity is as stated in Algorithm 1. The time complexity follows from the fact that Gaussian elimination
on an n × m matrix, m < n, takes time polynomial in n. It remains to prove the correctness of this algorithm.

Let R′ be such that (R′, x1) parametrizes A. Line 2 transforms each xi ∈ A into a vector yi ∈ L where L := {R′b | b ∈ Fm
2 } is the

linear subspace in A shifted by x1. By assumption the original samples {x1, . . . xk} are uniform on A. A linear transformation of
a uniform distribution is another uniform distribution, such that the new samples {y1, . . . , yk} are uniform on L. From Lemma 18
we obtain

Pr
[
span{y1, . . . , yk} = L

]
≥ 1 − 2m−k ≥ 1 − 2n−k ≥ 1 − 2n−(n+log(1/δ)) = 1 − δ. (C6)

Hence, with probability at least 1 − δ, the columns of R defined in Step 4 provide a basis for L.
To finish the proof assume that R is full rank and denote by A′ the affine subspace parametrized by (R, x1). Then for every

b ∈ Fm
2 it holds

R · b + x1 ∈ span{x1, . . . , xk} ⊆ A (C7)

and hence A′ ⊆ A. Contrarily, since R has full rank |A| = |A′|. Thus A = A′, which completes the proof. �

We now combine these insights to prove the actual statement.

Theorem 1 The set DCl of Clifford circuit distributions, for any depth, is efficiently learnable with respect to generators and
evaluators.

Proof: By Corollary 17, all distributions in DCl take the form of UA for some affine subspace A ⊆ Fn
2. Using Algorithm 1 in

conjunction with Lemma 19 we obtain, with probability 1−δ, a parametrization (R, t) of A in time poly(n, 1/δ) using poly(n, 1/δ)
many samples from UA.

We now get an efficient generator for UA by uniformly at random sampling b ∼ Fm
2 and outputting R · b + t. An efficient

evaluator that computes UA(x) on input x is defined as follows: use Gaussian elimination in order to decide whether x− t ∈ RFm
2 .

If this is the case return 2−d with d = dim(A). Else return 0. Thus it is sample- and computationally-efficient to (ε, δ)-learnDCl
with respect to a generator and evaluator. �

Appendix D: Proof of Theorem 2

Theorem 2 Under the LPN assumption, the output distributions of local Clifford circuits of depth d = nΩ(1) enriched with a
single T-gate are not efficiently learnable with respect to an evaluator.

Proof: For each string s ∈ {0, 1}k let χ(s,k) ∈ Fk be the associated parity function on k bits – i.e. χ(s,k)(x) = x · s for all x ∈ {0, 1}k.
For any η ∈ (0, 1/2) we define the “noisy parity distribution on k + 1 bits" P(s,η,k) ∈ Dk+1 via

P(s,η,k)(x, y) =

2−k · (1 − η) , if y = χs,k(x)
2−k · η , else ,

(D1)

for all s, x ∈ {0, 1}k. Define the distribution Tl as the trivial distribution on l bits - i.e. the distribution with Tl(0l) = 1 and for any
k ≤ n define Dη(n, k) ⊆ Dn+1 as the set of “noisy parity distributions on the first k + 1 bits" – i.e. Dη(n, k) = {P(s,η,k) ⊗ Tn−k | s ∈
{0, 1}k}.

In the proof of Theorem 16 in Ref. [5], the authors show that, under the LPN assumption, there is no efficient algorithm for
learning the noisy parity distributions Dη(n, n) with respect to an evaluator, for any η ∈ (c, 1/2 − c) where c ∈ Ω(1). In other
words, in this parameter range, all algorithms for learning Dη(n, n) with respect to an evaluator require ω(poly(n)) time. By
using similar reasoning to that used in the proof of Lemma 7 – i.e. embedding the noisy parity distributions onto a subset of bits
– one can extend this result to show that, assuming the LPN assumption, any algorithm for learning Dη(n, k) with respect to an
evaluator requires ω(poly(k)) time . As ω(poly(nΩ(1))) = ω(poly(n)) we can conclude that, assuming the LPN assumption, there
exists no efficient algorithm for learningDη(n, nΩ(1)) with respect to an evaluator.

Next, we note that for any s ∈ {0, 1}k, when η = sin2(π/8) ≈ 0.146, the distribution P(s,η,k) is the output distribution of the
quantum circuit on k + 1 qubits given in Fig. 2 with the CNOT gates between the ith and the (k + 1)st qubit for all si = 1. As such,
for any k ≤ n and any s ∈ {0, 1}k, when η = sin2(π/8) the distribution P(s,η,k) ⊗ Tn−k is the output distribution of the quantum
circuit on n + 1 qubits, with the above mentioned circuit from Fig. 2 on the first k + 1 qubits, and no gates on the remaining n− k
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wires. While this circuit contains non-local two-qubit gates, we note that any Clifford unitary U ∈ Cl(2k) can be implemented
exactly using a depth d = O(k) nearest-neighbour Clifford circuit [63]. By recompiling the circuit on the first k + 1 qubits in
this way, we obtain an O(k) depth local “Clifford + one T" circuit whose output distribution is P(s,η,k) ⊗ Tn−k. Using this, the
theorem statement follows from the previously established hardness of learning Dη(n, nΩ(1)) with respect to an evaluator, when
η = sin2(π/8). �

Appendix E: Proof of Theorem 3

We start by defining the notion of a pseudorandom function whose existence is the primary assumption used for Theorem 3. For
more detailed definitions and discussion of these objects, see Refs. [40, 50].

Definition 20 (Classical-secure and standard-secure pseudorandom functions) Let C ⊆ Fn be a set of efficiently computable
functions. We say that C is a classical-secure (standard-secure) pseudorandom function if for all classical-probabilistic (quan-
tum) polynomial time algorithmsA, all polynomials p, and all sufficiently large n, it holds that∣∣∣∣ Pr f∼C

[
AMQ( f ) = 1

]
− Prg∼Fn

[
AMQ(g) = 1

] ∣∣∣∣ < 1
p(n)

, (E1)

where MQ( f ) denotes the membership query oracle, which, when queried with some x ∈ {0, 1}n returns f (x).

At a high level, the above definition says that a set of functions C is classical-secure (standard-secure) if no classical (quantum)
algorithm can, with non-negligible probability, distinguish functions drawn uniformly from C from functions drawn uniformly
from Fn. We note that the assumed existence of both classical-secure and standard-secure pseudorandom functions is standard
in cryptography [64, 65]. We can now recollect the statement of Theorem 3.

Theorem 3 Assuming the existence of classical-secure (standard-secure) pseudorandom functions, there is no efficient classical
(quantum) algorithm for learning the output distributions of depth d = nΩ(1) local quantum circuits, with gates from any universal
gate set.

Proof: Let C ⊆ Fn be a classical-secure (standard-secure) pseudorandom-function. DefineD = {P f | f ∈ C} where

P f (x, y) =

2−n , if y = f (x)
0 , else.

(E2)

In Ref. [5] Theorem 17 the authors show thatD is not efficiently classically learnable with respect to a generator, assuming that
C is classical-secure. Their hardness result can be straightforwardly extended to apply to quantum learning algorithms as well
by requiring C to be standard-secure. To leverage their result to show hardness for the output distributions of quantum circuits,
we will show how to embedD into a suitable class of quantum circuits. To do so recall that any classical Boolean circuit can be
implemented as a quantum circuit via the standard implementation of reversible classical gates together with uncomputation (see
Chapter 3 of Ref. [66]). For a polynomial size classical circuit, this might incur at most a polynomial overhead in the number of
ancilla qubits necessary. Hence, for all f ∈ C ⊆ Fn there exists a polynomial size quantum circuit C f on poly(n) many qubits
whose output distribution is P̃ f with

P̃ f (x, y, z) =

2−n , if z = f (x) and y = 0m

0 , else ,
(E3)

where m = O(poly(n)). Note that any such quantum circuit C f can be turned into a nearest-neighbor circuit by qubit routing
techniques such as using SWAP gates. This will again incur only a polynomial overhead in both size and depth of the circuit.
Denote by D̃ = {P̃ f | f ∈ C} ⊂ Dn+m+1 the class of all such distributions. Since n + m + 1 = O(poly(n)) we find that D̃ is hard to
learn.

Lastly, note that D̃ is a subset of the set of the output distributions of polynomial depth quantum circuits. As such, the output
distributions of polynomial depth quantum circuits are not efficiently learnable with respect to a generator. We can see that this
holds irrespective of the gate set used (as long as it is universal) by combining Corollary 15 and Lemma 11. Finally, using
Corollary 9, we see that already for nΩ(1) deep circuits there cannot exist any efficient classical (quantum) algorithm for learning
the output distribution with respect to a generator. �
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Appendix F: Proof of Theorem 4

Before proving Theorem 4, we recall a connection of distribution and Boolean function statistical query oracles.

Definition 21 (Boolean function statistical query oracle [46]) Let f ∈ Fn be a Boolean function, τ ∈ (0, 1) and let P ∈ Dn
be a distribution. The Boolean function statistical query oracle of f with respect to P and tolerance τ is defined as the oracle
Statτ,P( f ) that, when queried with a function φ : {0, 1}n+1 → [−1, 1] returns some v such that |Ex∼P[φ(x, f (x))] − v| ≤ τ.

Corollary 22 Let f ∈ Fn be a Boolean function and let P ∈ Dn be a distribution. Define the distribution P f ∈ Dn+1 as

P f (x, y) =

P(x) , if y = f (x)
0 , else .

(F1)

Then, for any τ ∈ (0, 1) any statistical query oracle Statτ(P f ) is a Boolean function statistical query oracle Statτ,P( f ) and vice
versa.

Now we are able to prove the theorem.

Theorem 4 There is no query efficient algorithm for learning from inverse polynomially accurate statistical queries

• DCl at depth ω(log(n)),

• DG at depth ω(logk(n)) where k is a constant depending on the universal gate set G (which can be as small as 2),

with respect to either generators or evaluators.

Proof: To prove the first claim we will reduce statistical query learning of parity functions to statistical query distribution
learning of Clifford distributions. For each string s ∈ {0, 1}n let χs ∈ Fn be the associated parity function, and let C = {χs | s ∈
{0, 1}n} be the class of parity functions. For each s ∈ {0, 1}n define Ps = Pχs and denote by D = {Ps | s ∈ {0, 1}n} ⊂ Dn+1 the
class of parity distributions.

As shown in the seminal work of Refs. [46, 47], any algorithm with Boolean function statistical query access of tolerance
Ω(2−n/3) to C, requires at least Ω(2n/3−1) queries for learning the class of parity functions with respect to the uniform distribution,
for any failure probability less than 1/2 − O(2−3n).

We now show that, for any ε < 1/2, a statistical query algorithm for (ε, δ)-learningD with respect to an evaluator or generator
from q many queries implies a statistical query algorithm for (0, δ)-PAC learning C from q many queries. Assume there exists an
algorithm A for (ε, δ)-learning D with respect to an evaluator or generator from q many queries to Statτ(P) and with ε < 1/2.
We then define the algorithmA′ which when given access to Statτ,U(χs), for some unknown s ∈ {0, 1}n, does the following:

1. A′ runs learning algorithmAwhere any query to Statτ(Ps) is simulated by querying Statτ,U(χs). After at most q queries,
A will output an evaluator EvalQ (a generator GenQ) for some distribution Q ∈ Dn+1, which, with probability at least
1 − δ, is at most ε far from Ps.

2. A′ uses EvalQ (GenQ) to find s by brute force. This can be achieved by iterating through all strings s ∈ {0, 1}n, test
TV(Ps,Q) < 1/2 − ε and return s if true. While this step is not computationally efficient, it requires no additional queries
to the oracle.

To see that A′ is correct we note that any two parity distributions are TV(Ps, Pt) = 1/2 far apart. Now, assume A′ runs with
access to χs, then we find with probability 1 − δ that TV(Q, Ps) < ε. Therefore, any t with TV(Pt,Q) < 1/2 − ε also fulfills
TV(Ps, Pt) ≤ TV(Ps,Q) + TV(Q, Pt) < 1/2, where we used ε < 1/2. This implies t = s. Since all queries in A′ are due to A
we conclude thatA′ is an (0, δ) statistical query learner for C with respect to the uniform distribution, which requires at most q
queries. We conclude that for any ε < 1/2 and δ < 1/2, the problem of (ε, δ)-distribution learning D requires at least Ω(2n/3−1)
queries.

Let us now turn to DCl. For any s ∈ {0, 1}n, the distribution Ps is the output distribution of the quantum circuit shown in
Fig. 2, without the red box, and with the CNOT gates determined by the string s. Moreover, any Clifford unitary U ∈ Cl(2n) can
be realized by a depth d = O(n) circuit consisting only of nearest neighbour two-qubit Clifford gates [63]. It therefore follows
that the output distributions of linear depth local Clifford circuits are exponentially hard to learn from statistical queries.

Using Lemma 7 we will now trade the query complexity for the depth at which the hardness sets in. In the previous paragraph,
we have shown that learning depth d Clifford distributions from statistical queries with tolerance τ(n) = Ω(2−n/3) requires at
least q(n) = Ω(2n/3) queries for any depth d(n) = Ω(n). Let n ≤ g(n) = o(2n), d = Ω(n) and define d′(n) = d ◦ g−1(n). Thus
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ω(log(n)) = g−1(n) ≤ n and ω(log(n)) = d′(n). Lemma 7 then implies that learning DCl(n, d′(n)) from statistical queries with
tolerance τ′(n) = τ ◦ g−1(n) requires at least q′(n) = q ◦ g−1(n) many queries with

Ω(2−n/3) = τ′(n) = 2−ω(log(n)) (F2)

q′(n) = 2ω(log(n)) . (F3)

In particular, for any ε, δ < 1/2 any statistical query algorithm for learning super logarithmic depth Clifford circuit distributions
with inverse polynomial tolerance requires super polynomially many queries.

To obtain the second claim we first apply Corollary 15 in conjunction with Lemma 12 to find that the statistical query complexity
for learning DG(n, d logc(n · d/σ)) with tolerance τ > σ is lower bounded by that of learning DCl(n, d) with any tolerance
γ < τ − σ. Now fix any τ ∈ Ω(1/poly(n)), let γ = τ/3 and σ = τ/3 such that γ + σ < τ. As just shown, for any ε, δ < 1/2
we know that (ε, δ)-learning DCl(n, ω(log(n))) requires ω(poly(n)) statistical queries with tolerance at least γ = Ω(1/poly(n)).
Hence, for any ε < 1/2 − σ and δ < 1/2, we find that (ε, δ)-learning DG(n, d) takes ω(poly(n)) many statistical queries of
tolerance τ with

d = ω

(
log(n) · logc

(
n · log(n)

τ

))
= ω

(
logc+1(n)

)
, (F4)

where we have used 1 < τ−1. Setting k = c + 1 completes the proof. Importantly, as noted earlier, for some gate sets c = 1 and
hence k = 2 [57]. �
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