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A common approach to studying the perfor-
mance of quantum error correcting codes is to
assume independent and identically distributed
single-qubit errors. However, the available ex-
perimental data shows that realistic errors in
modern multi-qubit devices are typically neither
independent nor identical across qubits. In this
work, we develop and investigate the proper-
ties of topological surface codes adapted to a
known noise structure by Clifford conjugations.
We show that the surface code locally tailored
to non-uniform single-qubit noise in conjunction
with a scalable matching decoder yields an in-
crease in error thresholds and exponential sup-
pression of sub-threshold failure rates when com-
pared to the standard surface code. Further-
more, we study the behaviour of the tailored sur-
face code under local two-qubit noise and show
the role that code degeneracy plays in correct-
ing such noise. The proposed methods do not re-
quire additional overhead in terms of the number
of qubits or gates and use a standard matching
decoder, hence come at no extra cost compared
to the standard surface-code error correction.

1 Introduction

Instances of topological quantum error correcting
codes (QECCs) have shown tremendous success in
providing a guideline towards realizing fault-tolerant
logical qubits [1-8]. Compared to other, more so-
phisticated prescriptions they are comparably exper-
imentally viable due to the local structure of stabi-
lizers and low-weight syndrome measurement oper-
ations. The most famous among these is the sur-
face code [1-4], which only requires four-qubit par-
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ity measurements, admits fast and efficient decod-
ing, and exhibits one of the highest thresholds among
quantum codes with a two-dimensional qubit archi-
tecture.

As other topological QECCs, the surface code
turns a collection of noisy qubits into a more robust
logical qubit by redundantly encoding information in
a non-local way. Assuming that single-qubit errors
occur independently with probability p, the error rate
of the logical qubit can be made arbitrary small when
p is below a threshold value py, > 0 [1, 9, 10].
For a standard Calderbank-Shor-Steane (CSS) sur-
face code in the presence of depolarizing noise and
assuming error-free parity measurements, the error
threshold is estimated to be around py, =~ 16%
when a perfect-matching algorithm is used for decod-
ing [11-13].

With the actual experimental implementation of
quantum error correcting codes moving closer to re-
ality [14-19], interest is shifting towards devising
schemes for quantum error correction that would re-
spect physical desiderata that arise from properties
of the chosen hardware implementation. This re-
flects several aspects of the code design. In par-
ticular, the performance of an error correcting code
heavily depends on the structure of noise affecting
the physical constituents. In order to accommodate
this, steps have been taken recently to adapt quan-
tum error correcting codes and decoding procedures
to such kind of errors [11, 20-26]. Given some clas-
sical knowledge of structures that errors commonly
take, the error correction procedure can be tailored
to more efficiently handle such structured noise, re-
sulting in dramatically reduced logical error rates
and increased thresholds. For instance, the noise
threshold of the standard CSS surface code is no-
ticeably reduced when physical qubits experience bi-
ased noise [11], e.g., qubits are more prone to de-
phasing than bit flips. Simply adapting the aspect ra-
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tio of the surface code allows to noticeably enhance
the code performance [27]. References [11, 20, 22—
24] employ a more involved procedure, referred to
as Clifford deformation, to tailor the code stabilizers
and a decoder to a given noise structure. The two
prominent examples are the XY [22, 24, 28] and the
XZ7X [11, 29] codes, both significantly outperform-
ing the CSS surface code for biased noise in terms of
the threshold and sub-threshold scaling. Tailoring an
error correction strategy to a known noise structure
hence plays a crucial role for protecting quantum in-
formation, and is expected to be increasingly impor-
tant as technological development progresses.

Research within the field of QECCs typically as-
sumes that all physical qubits that make up the code
are identical, that is, every qubit experiences noise
that can be modelled as an independent and identi-
cally distributed (iid) process. In experimental real-
ity, however, this assumption often turns out to be un-
realistic. In modern quantum chips [30-32], noise
characteristics vary notably from one qubit to an-
other [33-36], which significantly compromises the
performance of existing error correcting schemes [33,
36]. In certain devices, qubits not only have dif-
ferent error rates, but are also prone to different
types of Pauli errors [34], with Rigetti’s Aspen-M-
2 [32, 34] and IBM’s Washington [31, 34] being two
such examples. Furthermore, experimental bench-
marks show that errors can correlate across multi-
ple qubits, either due to direct interactions [37, 38],
such as unwanted cross-talk [36, 39—42], or via cou-
pling to a common bosonic bath [43]. Recent ex-
periments have proven that such correlated errors
have a crucial effect on the efficiency of surface-code
quantum error correction [36]. An optimal code de-
sign should respect a known non-iid noise structure
of a particular device. However, despite the appar-
ent practical importance, the performance and opti-
mization of QECCs in the presence of non-iid er-
rors have been barely investigated. Several works
have discussed correction of multi-qubit correlated
errors [43-48], while the research of QECCs under
non-identically distributed errors has been ignored
until very recently and is limited to only a few publi-
cations [33, 34, 36, 49, 50].

In this work, we investigate the error correcting
capabilities of the surface code in the presence of
non-iid noise and propose ways to adapt the error
correction procedure to more efficiently battle such
noise. Firstly, we design a Clifford-deformed ver-
sion of the surface code tailored to efficiently cor-

rect non-identically distributed Pauli errors when
used in conjunction with a scalable perfect-matching
decoder [51]. We numerically benchmark the per-
formance of the noise-tailored code versus non-
optimized CSS surface codes and demonstrate that
(i) the sub-threshold logical error rates are exponen-
tially suppressed as a function of the code distance
and (ii) the threshold grows monotonically as noise
becomes less uniform across qubits. Secondly, we
show that similar improvements in error correcting
capabilities of the surface code can be achieved by
modifying input parameters of a matching decoder in
a situation where qubits experience non-identically
distributed total error rates. Finally, we study the
behaviour of the surface code under a combination
of single-qubit and local two-qubit errors. We show
that the code stabilizers can be adapted to a known
correlated noise structure to make syndrome config-
urations plausible for efficient perfect-matching de-
coding. Strikingly, our numerical simulations suggest
that the sub-threshold scaling can be significantly im-
proved even when no information about the noise
structure is provided to the decoder. Instead, it suf-
fices to merely account for code degeneracy [52], i.e.,
for a number of equivalent shortest-path logical op-
erators, which is determined by a combination of a
surface code geometry and a noise model. We expect
this framework to be useful when tailoring codes to
physical needs that arise in superconducting, trapped-
ion, or photonic architectures.

The remainder of this article is organized as fol-
lows. Section 2 introduces the standard surface code
and a decoder based on a minimum weight perfect
matching (MWPM) algorithm [51, 53, 54] and shows
that the code can be locally transformed by a pro-
cess known as Clifford deformation. Section 3 intro-
duces a variant of the surface code designed to correct
non-identically distributed Pauli errors. In Sec. 4, we
study the performance of the surface code under cor-
related errors between nearest-neighbor data qubits
and point out a crucial role of code degeneracy for
correcting such errors. We conclude in Sec. 5 by dis-
cussing potential directions for improving the perfor-
mance of noise-tailored error correcting codes.

2 Qverview of the surface code

In order to appreciate the idea of tailoring the code
design to noise of a known structure, we start by re-
viewing elements of the surface code. The basic idea
of a QECC is to redundantly encode the state of a sin-
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gle logical qubit into a larger array of noisy physical
qubits. Encoding is achieved by fixing N —1 indepen-
dent parity check operators, or stabilizers, on N bare
qubits, with the remaining degrees of freedom corre-
sponding to the logical qubit. Throughout the course
of computation, errors are detected by measuring sta-
bilizers and subsequently corrected. If bare qubit er-
rors are sufficiently rare, i.e., occur with probability
below the threshold value pyy,, the logical error rate
can be made arbitrary small by increasing a number
of physical qubits in the code. The challenge is to de-
sign practical QECCs that allow to detect and correct
the most common errors in realistic experimental set-
tings. Among other choices, the surface code offers
particularly high thresholds while requiring only par-
ity checks within sets of nearest-neighbor qubits in a
two-dimensional qubit layout. Below we describe the
basic operation of the surface code and the decoding
procedure.

2.1 CSS surface code

The surface code is a stabilizer quantum error cor-
recting code formed of qubits placed on the edges of
a 2D square lattice, as shown in Fig. 1. Particularly,
the surface code of d; x do qubits arranged on lat-
tice L contains N = dydy + (d1 — 1)(d2 — 1) qubits
and has a distance d = min(dy, dz). Since the orig-
inal surface code is a CSS code, it is referred to as
the CSS surface code, following the nomenclature of
Ref. [20]. The code space of the surface code is de-
scribed by its stabilizer group S, which is an Abelian
subgroup of the N-qubit Pauli group Py, the group
generated by products of single-qubit Pauli operators
together with suitable scalar factors. Particularly, the
stabilizer group of the standard surface code is gen-
erated by two types of stabilizers, namely, star and
plaquette operators defined as

Ay:=]]Xi and Bo:=1][%; (1)
i€Q Jjeu

respectively. Here and in the following, X;, Y; and
Z; denote the respective qubit Pauli operators applied
to qubit with vertex label ¢ € L. We will also use
X, Y, Z for the abstract Pauli operators when the sup-
port is not specified. ¢ and [J denote cells as sub-
sets of L of four nearest-neighbor qubits and form,
respectively, primal and dual sub-lattices illustrated
in Fig. 1. Operators on the logical qubit are defined
as chains of single-qubit Pauli operators connecting
opposite edges of the lattice and commuting with all

Fig. 1: The CSS surface code. Physical qubits are ar-
ranged on the edges on a rectangular lattice and shown
with orange circles. Star and plaquette stabilizers are de-
fined in Eq. (1) and shown with blue and salmon tiles, re-
spectively. Logical X (Z) operators are chains of single-
qubit Pauli operators shown in red (blue).

stabilizers. Measuring stabilizers hence does not re-
veal information about the state of the logical qubit.
With the above definition (1), a logical X (Z) oper-
ator corresponds to any chain of single-qubit X (Z)
operators connecting top and bottom (left and right)
edges of the lattice in Fig. 1. Basis state vectors of
the logical qubit are then defined in a standard way,

Z0), = +D0),, Z[1), =), (2

and, by construction, obey

X10), =11, X 1), =10} (3)

Stabilizers (1) are measured throughout the com-
putation and the result of their measurement, also
called the error syndrome, indicates which error has
occurred. We note that stabilizer measurement is it-
self a process prone to errors and the measurement
apparatus can in principle return incorrect eigenval-
ues. In such a case, repetitive extraction of syn-
dromes is necessary to define the correct syndrome
configuration. Here we restrict our analysis to a sim-
pler case of perfect syndrome measurements and only
consider errors that occur in data qubits. The code
tailoring techniques introduced in this paper only re-
quire single-qubit Clifford rotations on data qubits.
Since no additional multi-qubit operations are in-
volved, such code tailoring does not introduce addi-
tional error propagation paths between the qubits of
the code. Hence, the gain in performance observed
for perfect stabilizer measurement will preserve on
the fault-tolerant regime too.

For the CSS surface code defined according to
Eq. (1), a single-qubit X (Z) error commutes with
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all star (plaquette) stabilizers and therefore only cre-
ates pairs of defects, or anyons, in the dual (primal)
sub-lattice. Decoding is performed by finding the
most probable chains of errors corresponding to a
measured syndrome. The most commonly used de-
coder is based on the MWPM algorithm. It first con-
structs an input graph by assigning each measured
defect a vertex, with weighted edges corresponding
to chains of errors connecting two defects. Assum-
ing that single-qubit X and Z errors occur with equal
probability p, weights w; ; > 0 between vertices ¢, j
are chosen according to

’U)iyj = —log Pi,j7 (4)

where
P, j = pltt (5)

is the probability of connecting two stabilizers that
have horizontal distance /,, and vertical distance [, by
the shortest chain of single-qubit errors. Substituting
Eq. (5) into Eq. (4) and ignoring a common coeffi-
cient —log(p) > 0, the edges of the input graph are
weighted according to the Manhattan distance

Wwi,5 = le + l27 (6)

which is the distance induced by the vector /;-norm.

The algorithm then searches for a perfect match-
ing such that the sum of the weights of the edges is
minimal, corresponding to a maximally probable er-
ror chain, and returns indices of defects that should
be locally paired by the correction. MWPM in its
standard implementation assumes single-qubit X and
Z errors independently, hence decoding takes place
separately in dual and primal sub-lattices. Pauli Y
errors create pairs of defects in the two sub-lattices si-
multaneously, which compromises the capabilities of
the standard matching decoder. Certain modified ver-
sions of the MWPM algorithm can, to some extent,
take correlations beyond the paradigm of independent
X and Z errors into account and therefore demon-
strate the improved decoding efficiency in the pres-
ence of Y errors [24, 55]. For simplicity, here we will
focus on the matching algorithm in its standard form.
However, we note that Clifford deformation methods
suggested in this paper can in principle be combined
with more advanced versions of the MWPM decoder,
e.g. those taking into account correlations between
deformed sub-lattices [55] or allowing for parallel de-
coding [56].

Finally, there are classes of decoders not based on
matching algorithms. As such the tensor-network de-
coder of Ref. [57] is capable of finding the optimal

code-capacity thresholds, however, for the price of
runtime scaling exponentially with the code size, ren-
dering it incompatible with fast on-the-go error cor-
rection in real quantum hardware.

2.2 Clifford-deformed surface codes

In the previous Section, we have constructed a CSS
surface code according to the stabilizers of Eq. (1).
Equivalently, one can choose an alternative set of sta-
bilizers by applying single-qubit Clifford transforma-
tions to the stabilizers of the CSS code. Building on
the steps taken in Ref. [20] we refer to any code de-
rived in such a way as a Clifford-deformed QECC.

In a Clifford-deformed surface code, the quantum
states of each of the physical qubits ¢ € L of the code
are conjugated with a unitary U € C,/U (1) from the
single-qubit Clifford group of order 24. The Clifford
group is the group of unitaries that maps Pauli opera-
tors onto Pauli operators under conjugation. Specifi-
cally, the Hadamard gate H maps Pauli X to Pauli Z
operators, while Hy 7z = H v/Z H (both contained in
the Clifford group) intertwines between Pauli Y and
Z. In what follows, the term Clifford deformation
will refer to a replacement of a qubit Pauli operator
by a different Pauli operator according to one of those
conjugations [58].

Any set of operators derived via Clifford defor-
mations—in the form of Clifford conjugations—will
form legitimate code stabilizers, since such conjuga-
tions preserve commutativity. Indeed, applying a uni-
tary U; € C1/U (1) to Pauli operators X and Z mea-
sured on qubit ¢ transforms the operators as

X — U; XU/,

7
Z — U, ZU], ™)

and preserves anti-commutation,
(UXU, UzUY = {X,Z} =0.  (8)

Since operators measured on other qubits are intact,
commutation of stabilizers is preserved and a unitary
U; can be chosen for each qubit 7 independently.

Therefore, the surface code admits local Clifford
deformations that can be chosen independently for
each physical qubit. In the focus of this work are new
instances of Clifford-deformed surface codes, follow-
ing up on and building upon Ref. [22]. We start by
discussing examples of uniformly deformed surface
codes in Sec. 2.3 and subsequently introduce noise-
tailored local deformations in Sec. 3.
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Surface codes tailored to biased noise in the

Fig. 2:
(a) XZZX and (b) XXZZ configurations. (a) In the
XZZX code, each code stabilizer is the product of two
Pauli X (on horizontally located qubits) and two Pauli
Z (on vertically located qubits) operators. Logical

X (Z) operator is shown with solid red (blue) line and
corresponds to a product of single-qubit X (Z) Pauli
operators. (b) In the XXZZ code the stabilizers are of
two types. Stabilizers on even diagonals are products of
Pauli X operators on qubits to the north and west and
Pauli Z operators on qubits to the south and east, as
shown with plain tiles. Stabilizers on odd diagonals dif-
fer by interchanging X and Z Paulis and are shown with
shaded tiles. Logical X and Z operators are products of
alternating X and Z single-qubit Pauli operators.

2.3 Surface codes for biased noise

Clifford-deformed surface codes have demonstrated
an exceptional performance when physical qubits are
affected by biased noise [11, 22]. Consider an error
model in which each qubit is independently subject
to a diagonal Pauli channel £ of the form

E(p) == (1=p)1+p. X pX+p,Y pY +p.ZpZ, (9)

where p,,py,p. € [0,1] are the probabilities of the
corresponding single-qubit Pauli error and p = p, +
py + p- € [0,1] is a physical qubit error rate. This
being a random unitary process, it is clear that £ is
a valid quantum channel for all allowed parameters.
In particular, noise biased towards dephasing corre-
sponds to p, > pg, py.

Reference [22] has used a modified surface code,
where the transformation Hy z has been applied to all
qubits of the code. Such transformation leaves Pauli
X unchanged, while transforming the plaquette sta-
bilizers to

Bo=]lY: (10)

jed
The resulting code is therefore referred to as the XY
code. Alternatively, the XZZX code [11] can be ob-
tained from the CSS code by applying a Hadamard
transformation to qubits on even rows of the code.
This effectively replaces both the star and plaquette

Fig. 3: Noise-tailored surface codes in the (a) MHHM
and (b) MMHH configurations. On each given qubit,
stabilizers measure Pauli operators corresponding to
medium and high rate errors. (a) Operators H; and M;
correspond to high-rate and medium-rate Pauli errors of
qubit ¢ € L they are measured on. Stabilizer s of the
MHHM code measures operators M; (H;) on qubits 7 in
the neighborhood of s located to the horizontally (verti-
cally) from it. Logical X and Z operators are products
of Pauli operators corresponding to medium and high
rate local errors, respectively. (b) As in (a), operators
M; and H; are chosen locally accordingly to error rates
of a given qubit. Stabilizers of the MMHH code located
on even diagonals (solid tiles) differ from the stabilizers
located on odd diagonals (dashed tiles) by interchanging
operators M; and H;. For brevity, subscripts of single-
qubit operators composing stabilizers of (b) and logical
operators in (a,b) are omitted in the figure.

stabilizers by
Ay = Bo = XwZsZnXe, (11)

where single-qubit Pauli operators acting on north,
east, west, and south qubits within each stabilizer,
and given the respective indices, are oriented as
shown in Fig. 2 (a).

The improved performance of the deformed codes
originates from the amount of information available
to the decoder. As an illustration, assume an infinitely
biased noise described by a phase-flip channel

E'(p) == (1 —p)l+pZpZ. (12)

Since Pauli Z operators commute with all stabiliz-
ers B of the form (1), the dual sub-lattice of the
CSS code never detects such error events and hence
does not provide any useful information to the de-
coder. On the other hand, transforming dual stabi-
lizers according to Eq. (10) doubles the amount of
useful syndrome information available to the decoder
in the XY code. Similarly, Pauli Z errors always cre-
ate defects in either dual or primal sub-lattice of the
XZ7ZX code, depending on which physical qubit has
been affected by an error event.

The important difference between the two codes
is in the decoder that can be employed to find the
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correct error configuration. In the case of the XY
code, a single-qubit Z error event simultaneously cre-
ates two pairs of anyons in both sub-lattices. When
decoding such syndrome configurations, decoders
based on perfect matching [24] behave suboptimally,
even when correlations are partially taken into ac-
count [55]. Hence, although both the primal and dual
sub-lattices of the code contain information about the
occurred errors, decoding such configurations require
alternative, usually much more computationally de-
manding methods, such as the maximum likelihood
decoding [28, 57]. On the other hand, the same
single-qubit Z error only creates anyons in one of
the sub-lattices of the XZZX code at a time, mak-
ing it well-suitable for perfect-matching decoding.
Below we will aim at constructing codes that admit
efficient decoding with MWPM algorithms as they,
due to their fast performance, can potentially be im-
plemented for practical error correction in quantum
hardware.

2.4 Tailoring aspect ratios

The XZZX code as in Fig. 2 (a), i.e., defined on
a non-rotated lattice, performs non-optimally on a
square-shaped lattice due to the structure of logical
operators. For a square surface code of distance
d, the probabilities of logical X and Z errors are
PED(X) = O(pd) and PCV(Z) = O(p?), respec-
tively. Hence, for biased noise with

n= pz/pa: > 1, (13)

the logical errors of a square-shaped XZZX code oc-
cur predominantly due to the logical Z error,

P(SQ) ~

fail ™

(59 (Z) > PG (X)), (14)

The failure rate of the code can be minimized by
arranging the qubits on a rectangular lattice with an
aspect ratio A = d;/dy = O[log(p./pz)], as in
Fig. 2 (a). For a rectangular surface code containing
the same number of qubits as a distance-d squared
code,

>+ (d-1)?=didy+ (dy —1)(da — 1), (15)
the logical failure rate obeys
P ~ PW(Z) ~ PO (X) <« PED, (16)

leading to greatly suppressed logical failure rates in
the regime of a large bias [27]. Furthermore, all
paths connecting two anyons labelled by ¢ and j in

the XZZX code are realized with an equal probabil-
ity

Pyj = pipt. (17)
Weights of the input matching decoder graph (4)
hence yield a weighted Manhattan distance,

Wi,j = — 10g(p;r)lac - log(pz)lz- (18)

For completeness, we introduce an alternative con-
figuration of the surface code that yields optimal log-
ical error rates on a square lattice for arbitrary noise
bias. We refer to this code as the XXZZ code owing
to the stabilizers configuration shown in Fig. 2 (b).
For such a code, logical operators X and Z are prod-
ucts of alternating per-qubit Pauli X and Z opera-
tors. For sufficiently large lattices, the probabilities of
logical errors X and Z are, therefore, approximately
equal independently of the noise bias,

PEY(X) x PEV(Z) & (pop.)?/>. (19)

Therefore, the aspect ratio A = 1 can be kept con-
stant for any bias [59].

3 Non-identically distributed errors

Physical qubits that constitute a QECC are conven-
tionally assumed to be identical. However, avail-
able measurement data shows that noise characteris-
tics in modern multi-qubit devices can vary signifi-
cantly from one qubit to another, with some qubits
being noisier that others [33-36, 49, 60-63]. In addi-
tion, different qubits within one device can be prone
to different types of Pauli errors, e.g., such that some
qubits are more susceptible to phase flips, while oth-
ers are more prone to bit flips [34]. The probabilities
of different Pauli error channels can be expressed us-
ing qubit coherence times 77 (relaxation time) and
T5 (dephasing time) as

t

Px = Py = i(l _e_TT)y

1 _t .t (20)
D: = Z(l—ke i —2e T2).
Hence, qubits limited by their 7} are more prone to
X and Y errors, while qubits limited by 75 are more
prone to Z errors. Experimental data shows that co-
herence times 77 and 75 depend heavily on hardware
platform, design and manufacturing parameters of a
particular device. As such, the parameter 77 /75 is
relatively uniform across qubits in superconducting
chips from Google Quantum Al and Zuchongzi [35].
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On the other hand, in devices such as Rigetti’s Aspen-
M-2 [32] and IBM’s Washington [31], coherence
times of different qubits within the same chip are
vastly different, as shown by the calibration data pre-
sented in Ref. [34]. The noise model that takes into
account non-uniformities in total and relative Pauli
error rates captures the differences in the noise pa-
rameters of real qubits.

In this Section, we assume that noise channels
of individual qubits can be measured. In Subsec-
tions 3.1-3.3, we construct and benchmark Clifford-
deformed surface codes locally tailored to efficiently
correct non-uniform Pauli noise. In Subsection 3.4,
we show that non-uniform total noise can be more ef-
ficiently corrected when the MWPM decoder is pro-
vided with information about local error rates of indi-
vidual qubits. In Subsection 3.5, we combine the two
methods for correcting an arbitrary non-identically
distributed noise.

3.1 Noise-aware Clifford deformations

Our aim is to consider Clifford deformations such
that the most probable syndrome configurations for
a given noise model are maximally compatible with
perfect-matching decoding. As discussed in the pre-
vious section, the efficiency of such an MWPM de-
coder is compromised by interactions between the
dual and primal lattices, i.e., by single-qubit Pauli
error events that simultaneously create defects in all
four stabilizers surrounding the qubit. One can min-
imize such events by applying noise-tailored local
Clifford deformations introduced earlier in Sec. 2.2.

Definition 1 (Clifford deformed codes for non-uni-
form Pauli diagonal noise). Consider a qubit lo-
cated at site i € L and a set of stabilizers S; which
have that qubit in their support. The qubit is sub-
ject to Pauli diagonal noise channels with weights
p&z),pg),pg) € [0,1]. Define H; € {X,,Y;, Z;} as
the Pauli opemtor reﬂectmg the mazimum weight
h; = max{px ,pyl),pz } in the Pauli channel
and M; as the Pauli opemtor correspondmg to
medium weight m; = max{pm ,py ,p }\{h}
In the MHHM code, stabilizers from S; located
east and west (north and south) of qubit i mea-
sure operators M; (H;) on that qubit, as illus-
trated in Fig. 3 (a). The MMHH code is similar,
but with stabilizers chosen as in Fig. 3 (b).

As an example, consider qubit ¢ with pg(f) < pg) <
pg(f). Then, in the MHHM code the stabilizers lo-

cated horizontally and vertically from qubit ¢ mea-
sure Pauli Y and Z operators on that qubit, respec-
tively. The commutativity of stabilizers is guaranteed
by the anti-commutativity of Y and Z, as in Eq. 8.
Since for each qubit the transformation (7) can be
chosen independently, the MHHM and the MMHH
codes can always be constructed according to known
error rates of qubits in the code. We refer to two pos-
sible layouts of a code locally optimized for perfect-
matching decoding as the MHHM [Fig. 3 (a)] and
MMHH [Fig. 3 (b)] surface codes due to their simi-
larity to the XZZX [Fig. 2 (a)] and XXZZ [Fig. 2 (b)]
codes, respectively.

3.2 A paradigmatic toy example

The exact model of how the noise bias varies from
one qubit to another depends heavily on a particu-
lar hardware implementation of physical qubits. Our
aim here is to provide a convincing argument that tai-
loring the code to local noise structure can be advan-
tageous for decoding. We first demonstrate the pro-
posed scheme on a simple toy model. Assume that
the probabilities of low (I), medium (m), and high-
rate (h) errors are identical across qubits, but for each
qubit located at site ¢ € L we choose

0,50, p0Y = mi({m, 1Y), (21)

where 7; denotes a random permutation applied at a
qubit ¢, i.e., for each qubit we randomly assign low,
medium, and high rates to different Pauli errors. This
1S not meant to be a realistic noise model, but has
been designed to explain the functioning of the ap-
proach. Using the known rates of Pauli errors at each
individual qubit, one can transform the CSS surface
code into the MMHH or MHHM code by applying
local Clifford deformations to it. It is easy to see that
the Clifford-deformed MMHH (MHHM) code in the
presence of the noise described by Eq. (21) is equiva-
lent to the XXZZ (XZZX) code affected by the noise
with m; = 1. Put another way, noise-informed Clif-
ford deformations effectively undo the permutations
applied to errors in Eq. (21), turning the surface code
into one of the biased-tailored codes.

3.3 A more realistic noise model

We will now investigate the code performance in a
more realistic error model, where the total error prob-
abilities as well as the relative probabilities of differ-
ent Pauli errors vary between qubits. For a qubit lo-
cated at site ¢ € L we generate the error probabilities
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in two steps. First, we choose the error probabilities
according to

P ~ N(0.5,0p), (22)

where k = {x,y, 2} and N (i, op) is a truncated at
0 and 1 normal distribution with mean p and stan-
dard deviation op. Next, we normalize Pauli error
probabilities p,(;) on local error rates p(*) of individ-

ual qubits,
> =, (23)
k=X,Y,Z

where p is also generated according to the normal
distribution

P(i) ~ N(p7p0tot) (24)

for each site ¢ € L. This process generates the prob-
abilities of low, medium, and high rate errors inde-
pendently for each qubit and randomly assigns these
probabilities to Pauli errors. Noise in our model is
hence characterized by an average error rate p and a
pair of parameters 0 = (op, oyot) defining, respec-
tively, variations in types of Pauli errors and in total
error rates of qubits. We will refer to the noise model
described by o = (op > 0,0) as uniform total noise,
and to the noise model with 0 = (0,04, > 0) as
uniform Pauli noise. A trivial case of o = (0,0) cor-
responds to the iid error model. Knowing the rates
of Pauli errors of each qubit, the noise-tailored sur-
face codes can now be constructed according to the
patterns of Fig. 3, as in the previous toy example.

3.3.1 Benchmarking locally-tailored codes

We have numerically simulated and assessed the
performances of the CSS code, the XXZZ code,
and noise-tailored MHHM and MMHH codes us-
ing a modified version of the QECSIM Python pack-
age [64]. First, we benchmark the performance of
the error correcting codes using a matching decoder
with input weights defined according to the Manhat-
tan distance. For square-shaped codes (CSS, XXZZ,
MMHH), we use the MWPM algorithm with the stan-
dard Manhattan weights calculated as in Eq. (6). The
MHHM code performs optimally on a rectangular lat-
tice due the structure of its logical operators, simi-
larly to the XZZX code under biased noise. Hence,
for decoding a syndrome of the MHHM code we use
the weighted Manhattan distance metrics similar to
Eq. (18),

w; j = —log(pn)lz — log(pm)l., (25)

Otot 0 0 0.5 0.5
op 0 0.5 0 0.5
Manhattan distance metrics
CSS 0.162 0.163 0.166 0.164
MMHH 0.164 0.185 0.165 0.185
MHHM 0.164 0.187 0.164 0.188
Dijkstra distance metrics
CSS 0.163 0.168 0.178 0.181
MMHH 0.162 0.190 0.177 0.205
MHHM 0.165 0.190 0.178 0.206

Table 1: Error correction thresholds of different sur-
face codes determined in Appendix A. The first col-
umn provides the thresholds observed for a uniform to-
tal error model described by o = (1/2,0). The sec-
ond column corresponds to a non-uniform error rate with
o =(0,1/2). In the third column, both total and Pauli
error rates vary between qubits. We benchmark the per-
formance of decoders with weights determined accord-
ing to two distance metrics. The first metrics is defined
according to the Manhattan distances of Eq. (6) [CSS
and MMHH] and Egq. (25) [MHHM]. The second metrics
uses the known local error rates and calculates shortest
weighted paths calculated with Dijkstra algorithm.

where (pp,) and (p,,) are the probabilities of high-
and medium-rate errors averaged over all qubits in
the code.

Figure 4 (a) demonstrates the comparison between
sub-threshold logical error rates of different vari-
ants of the surface code versus a code distance d.
The noise-tailored codes clearly demonstrate expo-
nentially suppressed logical failure rates when com-
pared to the CSS and XXZZ codes. We also sum-
marize the error correction thresholds for four de-
scriptive sets of parameters o in Table 1. We ob-
serve that when the code stabilizers are tailored to
non-uniform Pauli noise the thresholds are improved
as well. As expected, the advantage of using the
locally-tailored MHHM and MMHH codes over the
CSS and XXZZ codes grows as we increase op,
both in terms of thresholds [Fig. 9] and sub-threshold
scaling [Fig. 4 (a)]. On the contrary, changing oot
does not affect the error correction capabilities of the
codes; both the threshold and sub-threshold scaling
remain intact as we vary giot. In Appendix A, we ex-
plore the decoding capabilities of different codes for
a wider range of parameters o and discuss the thresh-
olds calculation procedure in more detail.
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Fig. 4 Sub-threshold logical failure rates vs. code dis-
tance d of squared-shaped surface codes. (a) Tailoring
codes stabilizers to local Pauli noise. Green and blue
curves correspond to, respectively, the CSS and noise-
tailored MMHH codes. The curves are derived using
a standard MWPM decoder with the Manhattan dis-
tance defined in Eq. (6). Data is shown for p = 0.1 and
otot = 1/2 in Eq. (22). Solid and dashed lines corre-
spond to op = 0.125 and op = 0.5, respectively. The
XXZZ and XZZX codes yield logical error rates identi-
cal to those of the CSS code, while the MHHM code
demonstrates a scaling similar to that of the MMHH
code. These curves are hence not shown. (b) Tailoring
a matching decoder to local total noise. Black (purple)
curve correspond to the MHHM code in conjunction with
a decoder using the Manhattan (Dijsktra) distance met-
rics. Solid and dashed lines correspond to noise models
with ogot = 0.25 and oot = 0.5, respectively.

3.4 Noise-aware matching decoder

The improved performance of the surface code ob-
served in Fig. 4 (a) and Appendix A is achieved solely
by adapting the code stabilizers, while the decoder
uses the distance metrics of Eqgs. (6) and (25). That
is, no information about local error rates has been
provided to the decoder. However, a decoder can as
well be tailored to more reliably decode error syn-
dromes by utilizing the available information about
the error model [33]. Here we investigate the be-
haviour of the surface codes in conjunction with a de-
coder that uses the local error rates of each qubit. The
weights of the matching graph are calculated accord-
ing to the probabilities of the shortest weighed paths
using Dijkstra algorithm, which we implement with
the PyMatching package [65].

Our numerical simulations show that implement-

ing a noise-aware decoder instead of the one based on
the Manhattan distance does not noticeably improve
error correction capabilities of the code against non-
uniform Pauli noise, that is, both threshold and sub-
threshold scaling are nearly unaffected when we vary
op at a fixed oiot. In contrast, such a modification
yields improvement in the presence of non-uniform
total errors, i.e., when we increase o¢o;. As such, Ta-
ble 1 demonstrates noticeably higher error thresholds
enabled by a noise-aware decoder compared to the
case of Manhattan distance for ooy = 0.5. As we
show in Fig. 4 (b), the sub-threshold error rates also
scale more favourably when Dijkstra metrics is used,
with logical error rate decreasing as ooz grows. We
explain this behaviour by the fact that errors become
less random when oyt 1s increased. As an illustra-
tive example, consider a situation where the total er-
ror probabilities of certain qubits are close to zero. In
such a case, the decoder knows that errors should not
take place on these qubits and makes a more infor-
mative decision about locations of errors, resulting
in more accurate decoding. For a detailed compari-
son of the two decoders, we refer the reader to Ap-
pendix B and figures therein.

3.5 Correction of non-uniform errors

Summarizing this Section, we considered two types
of non-uniformity in qubit noise: variation in relative
Pauli error rates and variation in total error rates of
qubits. We have shown that the former can be coun-
tered by applying noise-aware Clifford deformations
to the code stabilizers, and the latter can be corrected
more efficiently by making the decoder noise-aware.
The advantage of tailoring the code stabilizers be-
come more apparent as we introduce stronger vari-
ations in Pauli noise (increase op), while using the
noise-aware decoder becomes more advantageous as
we introduce stronger variations in total noise (in-
crease o). Importantly, the modifications to the
code stabilizers and the decoder input weights are in-
dependent and can hence be implemented simultane-
ously to correct arbitrary non-identically distributed
noise. Further steps can be made along the same lines
of research. As such, the residual correlations that
take place between the dual and primal sub-lattices
due to low-rate Pauli errors can be partially taken into
account by an advanced version of the MWPM de-
coder [55]. Furthermore, local Clifford deformations
can in principle be combined with belief propagation
or belief matching [23], which might lead to an im-
proved accuracy, but are likely to be much more com-
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putationally demanding than the fast matching de-
coder used in our simulations. We leave the question
of designing alternative decoding algorithms outside
of the scope of this paper. Finally, we note that here
we have focused on investigating the properties of the
surface code on a non-rotated lattice, as in Fig. 1. The
sub-threshold scaling can be further improved by ap-
plying analogous local Clifford deformations on the
surface code with rotated geometry. In particular, it
has been shown that the number of physical qubits
required to achieved a given logical error rate is re-
duced by half when the rotated code configuration is
used [66].

4 Correlated errors and code degener-
acy

We now turn to the case where correlated errors
are present between data qubits of the surface code.
For concreteness, we focus on two-qubit interactions
between nearest-neighbour qubits. Such two-qubit
noise is architecture specific and occurs due to var-
ious physical mechanisms. In superconducting chips,
unwanted cross-talk correlations can take place when
a CNOT gate is executed via cross-resonance (CR)
technique [67, 68]. Qubits involved in the CR gate
can not be efficiently isolated from their environment
and are inevitably exposed to neighbouring qubits via
a ZZ interaction [40, 69]. Particularly, in the con-
text of surface-code error correction, a CNOT gate
between data and ancilla qubits can cause unwanted
Z Z error between the data qubit involved in the gate
and one of the neighbouring data qubits [39]. Sim-
ilar cross-talk noise is ubiquitous in other hardware
platforms as well. In silicon spin qubits, ZZ cross-
talk errors can occur due to microwave-induced phase
shifts [41]. In a trapped ion system, laser intensity
spillover onto the neighbouring ions during gate ap-
plications can lead to unwanted X X -type cross-talk
errors between the qubits involved in the desired gate
and their neighbours [70].

The effect of correlated noise on surface-code error
correction has been analysed in a very recent exper-
imental work [36]. The authors have benchmarked
correlations that occur between data qubits during
the operation of a 39-qubit Google Sycamore quan-
tum processor and concluded the crucial importance
of taking nearest-neighbour correlated errors into ac-
count for accurate estimations of the performance of
error correction protocols. On the other hand, corre-
lated errors on qubits located further apart are less

probable and expected to have less destructive ef-
fect on the error correction fidelity, as discussed in
Ref. [43]. Hence, our focus here is on local two-qubit
errors only.
Consider qubits subject to a combination of single-
qubit depolarizing noise
1

553)@)—3 S ok pok, (26)
k=X.Y,Z

and two-qubit noise of the form

EP(p) =pxx Y. XmXipXmXi
leENm

+p22 Y. ZmZipZm 2.
lENM

(27)

Here, N,, C L is a set of all nearest neighbors of
m € L and pxx,pzz € [0,1] are the probabilities
of correlated two-qubit bit- and phase-flip errors, re-
spectively. Our choice of two-qubit noise model (27)
is motivated by experimental data, showing that X X
and ZZ are the most ubiquitous types of two-qubit
errors omnipresent in various hardware platforms, as
discussed above. The total noise channel affecting
qubit m then reads

E(p) = (1 =p1—p2)p

28
+ &V (p) + p2£82 (p), (28)

where p; and p2 = pxx + pzz are the probabilities
of single- and two-qubit errors, respectively.

In a weakly interacting regime, pa/p; < 1, the
dynamics are dominated by single-qubit errors and
the probability of connecting two defects via the most
probable chain of errors reads

Iy +1,
P = ( I >Plf”+lz- (29)

This expression is identical to Eq. (5) up to a pre-
le +1,
la
ber of shortest strings of single-qubit errors connect-
ing two stabilizers and will be referred to as the de-
generacy factor. As explained in Ref. [13]—and con-
firmed by our simulations—accounting for degener-
acy does not have effect on correcting single-qubit er-
rors in the surface code with the standard geometry.
Hence the degeneracy factor was omitted in the pre-
vious sections, leading to the Manhattan distance of
the form (6). On the other hand, below we will show
that accounting for degeneracy is crucial for efficient

factor , which takes into account the num-
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Fig. 5: Surface codes tailored for a known two-qubit
noise channel. (a) Two-qubit phase-flip and bit-flip er-
rors between nearest neighbors create anyons within one
of the sub-lattices, as shown with green tiles, and can be
efficiently decoded. (b) In the presence of, e.g., XZ cor-
relations, the code stabilizers can be Clifford-deformed
to maintain the same decoding capabilities as in (a).

correction of correlated errors, or when correction is
performed on the rotated surface-code lattice.
Assume now a regime of strong interactions, where
p2/p1 > 1. From Fig. 5 (a), it is straightforward to
check that the noise described by the quantum chan-
nel (27) flips dual and primal stabilizers of the CSS
code in pairs, producing a syndrome well suitable for
the MWPM decoder. The probability of connecting
the defects within each sub-lattice via a chain of two-
qubit errors can be deduced from Fig. 5 (a) and reads

Py, = ((lm f_rrlzz)/2> pl2m7 (30)

where [,,, = max(l,,!,) and the pre-factor accounts
for the degeneracy of shortest strings composed of
two-qubit errors. The input weights of the MPWM
can then be approximated by taking into account
single- and two-qubit error stings and read

wl(fljeg%orr) = —log(P + P), (31)
which is valid to the lowest order in the limits of
weak (p2/p1 < 1) and strong (p2/p1 >> 1) coupling
regimes [71].

We numerically investigate the performance of the
CSS surface code in the presence of noise described
by a quantum channel of Egs. (28) and (27) with
pxx = pyy = 0.5. We benchmark the performance
of the surface code accompanied by a matching de-
coder that uses (i) the standard Manhattan distance
metrics of Eq. (6) and (ii) distance determined ac-
cording to Eq. (31), i.e., that takes single- and two-
qubit errors with the corresponding degeneracies into
account. As expected, the latter decoder yields much
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Fig. 6: Simulated logical error rates versus code distance
in the presence of nearest-neighbor correlations. Qubits
are affected by a combination of single-qubit depolariz-
ing noise and local two-qubit bit- and phase-flip errors,
as described by Eq. (28). When used in conjunction with
the standard CSS code, such two-qubit noise produces
stabilizers defects in pairs, making the syndrome well
suitable for the MWPM decoder. The blue (squares)
curve corresponds to the MWPM with edges weighted
according to the standard Manhattan distance (6). The
green (circles) curve corresponds to the weights that
take syndrome degeneracy into account, i.e., defined ac-
cording to Eq. (32). The red (diamonds) curve corre-
sponds to a decoder that explicitly takes into account
the probability of two-qubit errors, as in Eq. (31). Data
is shown for p = 0.125 and p; = 0.25p.

more efficient error correction capabilities when two-
qubit errors are present, see Fig. 6. This result is in
agreement with the observation of Ref. [43].

Our simulations, however, show a surprising fea-
ture of error correction in the presence of correlated
two-qubit noise: the term P, in Eq. (31) is, in fact,
redundant, and ignoring it has vanishingly small ef-
fect on the performance of the decoder, as shown in
Fig. 6. Instead, merely accounting for syndrome de-
generacy in Eq. (29) is responsible for the suppressed
logical error rates. Ignoring the probability of con-
necting two defects by a chain of two-qubit errors Ps,
Eq. (31) reduces to

ngg =1, +1,—log (lw l+ ly>, (32)

where we have omitted a constant shift —logp; >
0. As we show in Fig. 6, matching decoders with
weights defined according to Eqgs. (31) and (32) per-
form nearly identically, meaning that no information
about the magnitudes of single- and two-qubit noise
is required by the decoder to efficiently decode a syn-
drome in the presence of correlated two-qubit noise.

To explain this peculiar feature, we first turn to the
case of single-qubit noise present in two configura-
tions of the surface code: the standard [Fig. 7 (a)]
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Fig. 7: Examples of logical X operators of the (a) non-
rotated and (b) rotated surface codes. Single- and two-
qubit errors are shown schematically with red dots and
blue dumbbells, respectively. In (a), single-qubit error
can form only d different shortest-path logical opera-
tors, while the number of shortest-path logical operators
formed by two-qubit errors is highly degenerate. For the
rotated surface code of (b), the situation is reversed, i.e.,
the number of logical errors due to single-qubit errors is
highly degenerate.

and the rotated [Fig. 7 (b)] surface codes. The ef-
fect of the syndrome degeneracy in two such config-
urations has recently been investigated in Ref. [13].
The authors have shown that taking syndrome degen-
eracy into account improves the decoding accuracy
for the case of the rotated surface code, but has no ef-
fect for the standard code, which agrees well with our
numerical simulations provided in Appendix C. The
difference in effect that syndrome degeneracy has on
decoding can be attributed to degeneracy of logical
operators produced by single-qubit errors. Figure 7
shows examples of such logical operators realized by
shortest chains of single-qubit errors in the two con-
figurations. While the standard surface code only
supports d such logical errors, the rotated code can
support a much larger number of them due to a high
degree of logical operator degeneracy. Intuitively,
in the former case a minimum-length path of single-
qubit errors that traverses at least d/2 qubit locations
occurs with much higher probability due to degener-
acy. Hence, to adequately assess the error probabil-
ities, degeneracy has to be taken into account in the
case of the rotated code.

A similar, but opposite effect takes place when
correlated errors are present in the system: Lo-
cal two-qubit errors form highly-degenerate shortest-
path logical operators in the non-rotated code, while
the rotated code only supports d shortest two-qubit
chains, see Fig. 7. Hence, taking the degeneracy into
account in Eq. (32) has a positive effect of decod-
ing two-qubit errors in the non-rotated surface code,
which agrees with the results of Fig. 6. Following

the same logic, one can expect that taking degener-
acy into account for decoding similar correlated er-
rors in the rotated code will have negligible effect
of the accuracy. This also agrees well with our nu-
merical simulations provided in Appendix C. Hence,
taking code degeneracy into account plays a similar
and important role for decoding single-qubit error on
the rotated code as for decoding two-qubit error on
the non-rotated code. Put another way, turning on
correlated errors can be thought of as partial rota-
tion of the code in the context of logical operator de-
generacy. To summarize, Ref. [13] has shown that
the choice of boundary conditions influences decoder
performance. Here, we generalize this observation
by showing that the performance is determined by
a combination of the error model and the boundary
conditions.

As shown in Fig. 5 (a), the standard CSS surface
code used in conjunction with a MPWM decoder is
well suited for correcting two-qubit noise described
by a quantum channel (27). It is, however, not un-
reasonable to assume an experimental setup, or an al-
gorithm, where the leading two-qubit error takes the
form of an X Z channel, e.g., due to design aspects of
a particular hardware implementation, or as a hook
error copied from an ancilla qubit during stabilizer
measurements [72]. Such a two-qubit error of XZ-
type described by a quantum channel

> (XmZipZiXom
leENm (33)

+ Zn XX, Zm)

creates four defects in both dual and primal sub-
lattices of the CSS code, hence compromising the
performance of a matching decoder. To maintain
the compatibility with a decoder, the code can be
Clifford-deformed. For example, as we show in
Fig. 5 (b), the XZZX obeys the same dynamics un-
der XZ correlations as the CSS code under two-qubit
bit-flip and phase-flip channel (27). Hence, knowing
the type of the leading two-qubit noise, the surface
code can be made compatible with the MPWM de-
coder under such noise by choosing an appropriate
Clifford deformation.

As we have shown above, a MWPM decoder can
efficiently handle correlated nearest-neighbor errors
of certain types without the need of adjusting the de-
coding procedure to a known structure of the noise.
Instead, merely taking syndrome degeneracy into ac-
count effectively adjusts the matching decoder to a
noise model. Physical qubits in the surface code can
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in principle be affected by correlated errors other than
two-qubit Pauli errors. In the future, it will be inter-
esting to investigate if a similar argument holds when
qubits are affected by correlated errors of different
structures.

5 Conclusion

In conclusion, we have studied the performance of
Clifford-deformed surface codes in the presence of
non-identically distributed and correlated two-qubit
errors. In both cases the sub-threshold logical error
rates are shown to be exponentially suppressed com-
pared to the standard codes. Hence, the code foot-
print, i.e., the number of physical qubits required to
achieve a target logical error rate, is exponentially
smaller than in the case of the CSS code. Impor-
tantly, the improved decoding accuracy is achieved
using a fast matching decoder that does not require
numerically extensive pre-processing and can poten-
tially be implemented in real quantum hardware. We
have studied the performance of matching decoders
with input parameters defined according to different
distance metrics and shown the advantage of using
the shortest weighted paths as graph weights in the
case of non-uniform qubit error rates. Our aim has
been to demonstrate the principle of noise-tailored lo-
cal Clifford deformations. To this aim, we have used
simple error models as test cases. This can be seen as
a further substantial step towards designing quantum
error correction schemes optimized for a particular
hardware implementation. Finally, we have investi-
gated the connection between code degeneracy and
structures of the noise affecting qubits in the rotated
and non-rotated surface code configurations. This in
turn allowed us to identify cases where taking code
degeneracy into account has a positive effect on de-
coding accuracy.

In this work, we have considered the performance
of noise-tailored surface codes for simple code ca-
pacity noise models where only the data qubits are
subject to error. As a direction for further work,
it would be interesting to investigate noise-tailored
codes under more realistic circuit level noise mod-
els for which it is assumed every location in the error
correction circuit has the potential to introduce errors.
At the circuit level, an important design consideration
is the choice of two-qubit entangling gates. If an en-
tangling operation turns one species of Pauli errors
to another, it can trigger error propagation events that
cause the noise channel to become unbiased. This can

diminish the benefits of bias-tailoring. Fortunately,
bias-preserving hardware implementations of entan-
gling gates have been proposed that are designed
to maintain the system’s noise-asymmetry. For in-
stance, it is shown in Ref. [73] that bias-preserving
gates can be achieved using stabilized cat qubits in
driven nonlinear oscillators. This architecture has
been demonstrated to integrate well with the XZZX
code [29], and it would be interesting to investi-
gate similar schemes in the setting of the Clifford-
deformed codes explored in this work.

The notion of Clifford deformations makes sense
also for other topological quantum error correcting
codes beyond the toric or surface codes. For exam-
ple, various instances of Clifford-deformed 3D codes
have been studied in [74]. Bias-tailoring has also
been shown to be a useful technique for quantum low
density parity check codes [75]. Many of the devel-
oped ideas of Clifford-deformed codes beyond the iid
setting readily carry over to other codes as well, giv-
ing rise to new sets of commuting stabilizers that are
adapted to the noise model. It also seems perfectly
conceivable that coherent errors can be addressed in
a way similar to the one described here. Addition-
ally, it would be interesting to investigate the influ-
ence of Clifford deformations on the performance of
other decoders such as the union find decoder and be-
lief matching. It is the hope that the present work can
contribute to the line of thought of bringing notions
of quantum error correction closer to ideas on actual
quantum hardware development, and to think about
quantum error correction in more physically moti-
vated terms.
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A Error thresholds calculation

We obtain the threshold estimates of Table 1 using the critical exponent method described in Refs. [79, 80].
Specifically, for physical error rates near the threshold we fit the logical error rate to the function Py : R™ — R
with

Pst() = By + Biz + Baa?, (34)

where ;
z = (p—pm)™" . (35)

Here, d is the code distance, p is the single-qubit error rate, and By, B1, Bo, «, (3 are fitting parameters.

Figure 8 shows near-threshold logical failure rates and threshold estimates of different codes. The thresholds
are also summarized in Table 1. We see that the noise-tailored surface codes demonstrate error correcting
thresholds exceeding those of the CSS code by ~ 2.3% for op = 0.5. In Fig. 9 we compare the thresholds
of the codes for a wider range of values op. We observe increasing thresholds of the noise-tailored codes
as op grows. On the other hand, we see little to no difference between error thresholds derived for non-
uniform (oot = 0.5) and uniform (ooy = 0) total error rates, meaning that Clifford deformations do not help
with correcting variations in total error rates.
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Fig. 8: Logical error rates of the (a,d) CSS and (b,e) MMHH, and (c,f) MHHM surface codes in the presence of
non-identically distributed Pauli errors with op = 0.5. In panels (a)—(c) the total qubit noise is nonuniform with
otot = 0.5. In panels (d)—(f) the total qubit noise is uniform. The syndromes are decoded using MWPM with
distance metric calculated according to the Manhattan distance. Error bars show one standard deviation.
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Fig. 9: Error correction thresholds of the CSS (red squares) and MMHH (blue circles) surface codes versus the
standard deviation op in Eq. (22) with oto,t = 1/2. Thresholds are calculated using a MWPM matching decoder
with input weights defined according to the Manhattan distance. The threshold of the MMHH increases with the
variation in relative Pauli noise described by op, while the threshold of the CSS code remains constant.

Accepted in {uantum 2023-07-31, click title to verify. Published under CC-BY 4.0. 18



B Shortest-path matching

Figure 10 provides estimation of the error-correction threshold of different codes in the case when we use a
noise-aware decoder and define the input weights according to the Dijkstra distance. In contrast to the decoder
that uses Manhattan distance metrics, the decoder with Dijkstra-based metrics demonstrates a clear improve-
ment of the error correction thresholds as oot grows, see Figs. 10 and 11.
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Fig. 10: Same as Fig. 8, but for a matching decoder that uses input weights defined according to the shortest
weighted paths. The parameters of the noise used for simulations are identical to those used in Fig. 8.
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Fig. 11: Error correction thresholds of the MMHH code versus the standard deviation of the total error rate oyt
in Eq. (24) with op. Red squares and blue circles correspond to matching decoders that use input weights defined
according to the Manhattan and Dijkstra distance metrics, respectively. Other codes demonstrate qualitatively similar
behaviour and are not shown.
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C Code geometry and syndrome degeneracy

In Fig. 12, we investigate the impact of code geometry and syndrome degeneracy. One can observe a quali-
tatively opposite behaviour when degeneracy is accounted for decoding error syndromes in rotated and non-

rotated surface codes.
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Fig. 12: Numerically simulated logical failure rates of the surface code with and without syndrome degeneracy taken
into account. Different panels correspond to (a,c) non-rotated and (b,d) rotated surface codes in the presence of
(a,b) single-qubit and (c,d) two-qubit Pauli errors. In the presence of single-qubit errors, adding the degeneracy term
has little, negative effect on the decoding fidelity when the non-rotated code (a) is used, while noticeably enhances it
in the rotated code (b). When the code is subject to two-qubit errors, adding the degeneracy term has an opposite
effect, as shown in (c,d). Here, code stabilizers are chosen according to Fig. 5, such that only one of the sub-lattices
is affected by a single two-qubit error event. To generate the data in panels (a,b,c) the physical error rate is set to

p=0.1 and in (d) p = 0.05.
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D Carbon footprint of numerical simulations

The carbon footprint associated with the numerical simulations in this paper are summarised below.

Numerical simulations

Total Kernel Hours [h] 917323
Thermal Design Power Per Kernel [W] 5.75
Total Energy Consumption Simulations [kWh] 5275
Average Emission Of CO; in Germany [kg/kWh]  0.56
Were The Emissions Offset? Yes
Total CO,-Emission [kg] 2954

Guidance on the reporting the carbon cost of scientific research can be found in Ref. [81].
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