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We examine the effectiveness and resilience of achieving quantum gates employing three approaches
stemming from quantum control methods: counterdiabatic driving, Floquet engineering, and inverse
engineering. We critically analyse their performance in terms of the gate infidelity, the associated resource
overhead based on energetic cost, the susceptibility to time-keeping errors, and the degradation under
environmental noise. Despite significant differences in the dynamical path taken, we find a broadly consistent
behavior across the three approaches in terms of the efficacy of implementing the target gate and the resource
overhead. Furthermore, we establish that the functional form of the control fields plays a crucial role in
determining how faithfully a gate operation is achieved. Our results are demonstrated for single qubit gates,
with particular focus on the Hadamard gate, and we discuss the extension to N-qubit operations.

I. INTRODUCTION

Prompted by Feynman [1], the idea of using quantum
properties of matter and light to process information has given
rise to an extensive research effort. Beyond the implications
for basic science, quantum information technologies would
entail a significant computational speed-up for particular
applications, allowing for solutions problems that are
intractable with current technologies based on classical
systems [2–4]. These quantum advantages have been
theoretically predicted for a variety information processing
tasks, such as search and factoring algorithms, or quantum
cryptography [5]. Experimentally it is now possible to
implement them in systems such as superconducting qubits [6,
7], trapped ions [8], and photons [9].

Several approaches for universal quantum computation
have been developed, chief among them being
measurement-based [10–13], gate-based [1, 14], and adiabatic
models [15, 16]. The relative benefits and drawbacks of each
approach notwithstanding [2–4], gate-based quantum
computation presents an attractive method. Any computation
can be implemented by a relativity small set of gates on
a qubit register [14, 17]. Indeed, small scale quantum
devices are providing remarkable platforms for simulation
of quantum systems [18–21], insights from which can be
greatly enhanced by improving the implementation of the
basic building blocks, i.e. the quantum gates.

Achieving this aim necessitates coherent control of
quantum systems [22–28]. Beyond the basic requirement of
enacting the desired gate operation, we must consider several
additional factors to ensure the scalability and reliability of
these operations. Among these are the resources necessary for
their fast and accurate implementation [29–42], understanding
the spoiling impact of the environment [43–45], and the
impact of operational errors [46, 47]. The assessment of
the energetic efficiency of these devices is crucial in their
design [32] and may enforce practical constraints for their

implementation. The interplay between the performance of
a quantum computing machine and its energetic efficiency
determines a fundamental connection between quantum
information processing and thermodynamics [48, 49].

Following this edict, in this work we consider three
approaches to implement gate operations on quantum systems
through controlled Hamiltonian dynamics. In particular,
we consider the auxiliary evolution approach introduced
in Refs. [50, 51], where a driven auxiliary system is
is coupled to the computational register upon which the
operation is faithfully induced provided the evolution is
adiabatic. We augment this approach with techniques from
shortcuts-to-adiabaticity [22, 23], specifically counterdiabatic
driving (CD) [52–55] and Floquet engineering (FE) [56], that
allow to arbitrarily speed up the implementation. In addition
to these techniques, we consider an inverse engineering
(IE) approach [57] where the computational register is
directly driven by external control fields. We examine these
approaches, both in terms of their resource overhead and
their resilience to systematic errors stemming from imperfect
timekeeping and environmental effects. We find that all
are effective in achieving the target gate operation and we
highlight the importance that the choice of control pulse plays
in all cases. However, more significant differences emerge
when considering other performance metrics and therefore we
find that the optimal choice of how to realise such controlled
quantum gates will ultimately be dictated by the constraints of
a given architecture.

II. PRELIMINARIES

A. Control protocols

Here we outline the three control techniques that are the
focus of the present work. As shown in Fig. 1 for the auxiliary
evolution approach we consider two approaches to speed
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FIG. 1. (a) Shows the auxiliary control setting based on the
protocol from Ref. [51]. Here an auxiliary qubit is coupled to
the computational register, with control fields acting only on this
auxiliary system. We assume the driven qubit can also experience
environmental effects while the computational qubit is completely
isolated. (b) Shows the setup for the Inverse Engineering setting.
The Hamiltonian is designed without any additional resources, and
thus the computational qubit is driven directly and can be subject to
environmental noise.

up the dynamics (i) counterdiabatic driving (CD) and (ii)
Floquet Engineering (FE); we also consider a third controlled
implementation where the computational register is directly
driven via (iii) inverse engineering (IE).

1. Auxiliary Evolution with Control

The first method we consider for implementing unitary
gates is the adiabatic approach [50] where an auxiliary qubit
is coupled to a computational register upon which we wish
to perform the gate operation. By driving this auxiliary qubit
adiabatically, the desired gate operation can be effected on the
computational register. To that end, we consider the general
total Hamiltonian (for the register and auxiliary qubit)

H(t) =
∑

k

Pk ⊗ Hϕk (t), (1)

where Pk are projectors derived from the rotation axis of the
desired unitary acting on the computational register, while
Hϕk (t) is the angle-dependent driving Hamiltonian acting on
the auxiliary qubit, given by

Hϕk (t) = −
[
cos(θ fλ)σz + sin(θ fλ)

[
cos (ϕk)σx + sin (ϕk)σy

]]
.

(2)
where λ ≡ λ(t) is the time-dependent control parameter. The
angles ϕk are dictated by the specific gate being implemented
and we will examine an exemplary choice in the proceeding
section.

This approach necessitates that the auxiliary qubit is
driven adiabatically, which in general requires long timescales
leaving the system open to errors from environmental effects.
Counterdiabatic driving [52, 55] allows us to arbitrarily
speed up the evolution while still achieving perfect adiabatic
dynamics by introducing additional term(s) to the system
Hamiltonian. The CD term is equivalent to the addition of

an adiabatic gauge potential to the system Hamiltonian [26].
In general, the CD term for a Hamiltonian, H0, is given by

HCD = λ̇Aλ = i
∑
m,n

|m⟩ ⟨m|Ḣ0 |n⟩ ⟨n|
En − Em

, (3)

where |k⟩ and Ek are the Hamiltonian’s instantaneous
eigenstates and eigenvalues. Evolving the system with
the total Hamiltonian H = H0 + HCD gives rise to a
transitionless dynamics in finite time. The exact evaluation
of Eq. (3) requires the complete knowledge of the spectrum
of the system Hamiltonian at all times, often limiting its
applicability. However, Ref. [26, 56] propose to approximate
the exact adiabatic gauge potential given in Eq. (3) with a
nested commutator expansion

A
(l)
λ = i

l∑
k=1

αk [H[H, ...[H︸       ︷︷       ︸
2k−1

, ∂λH]]], (4)

where l denotes the order of the expansion and, for an arbitrary
system in the limit of l→ ∞, one obtains the exact expression
given in Eq. (3). The coefficients, αk, are determined by
minimizing the action

S l = Tr[Ĝ2
l ], Ĝl = ∂λĤ − i[Ĥ, Âl

λ]. (5)

This approach is particularly effective when dealing with
many-body systems as it allows to truncate the complexity of
the control fields [56]. For a single two-level system, as will
be the focus of the present work, we find that Eq. (4) is already
identical to the full counterdiabatic term, Eq. (3), for l=1, i.e.
only the first term in the sum is required to achieve perfect
control. However, our main interest in employing Eq. (4) is
because it provides a means to engineer a Floquet Hamiltonian
which approximately mimics the action of adiabatic gauge
potential [56] and therefore opens up new possibilities in
terms of feasible experimental implementations [58].

Floquet theory allows to design an effective Hamiltonian
that stroboscopically mimics the dynamics of another,
potentially more complex or experimentally unfeasible
Hamiltonian. In order to achieve this, we need only to
oscillate the original driven Hamiltonian and its derivative
with respect to the driving parameter. Such a Floquet
Hamiltonian can stroboscopically recreate the dynamics of the
full CD Hamiltonian H = H0 + λ̇A

(l)
λ with a comparatively

reduced operator set. The explicit form of the Hamiltonian
that implements this is

HFE
ϕ =

[
1 +

ω

ω0
cos(ωt)

]
Hϕ(λ)

+ λ̇

 ∞∑
k=1

βk sin((2k − 1)ωt)

 ∂λHϕ(λ),
(6)

where βk are Fourier coefficients of the expansion of the
Floquet Hamiltonian that are chosen to match the terms of the
adiabatic gauge potential expansion, ω0 = 2π/τ is a reference
frequency and we take ω to be much greater than ω0, whose
ratio defines the number of driving cycles for the evolution.
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2. Inverse Engineering

As an alternative approach to auxiliary control, we consider
directly driving the computational register. The evolution
of a closed quantum system obeys the time-dependent
Schrödinger equation and an arbitrary initial state is connected
to a designated final state by a unitary operator, |ψ(t)⟩ =
U(t) |ψ(0)⟩. The Hamiltonian that generates such a unitary
time evolution is determined by the well-known relation

H(t) = iU̇(t)U†(t). (7)

It is possible to follow several approaches to inverse
engineer the desired unitary [23, 57, 59, 60], and hence
the corresponding Hamiltonian. In this work, we adopt the
approach taken in Ref. [57] and express U(t) in the following
form

U(t) =
∑

n

eiπλm(t) |m(t)⟩ ⟨m(t)|, (8)

where the set {|m(t)⟩} forms a complete orthonormal basis, and
λ(t) has the initial condition λn(0)= 2l where l ∈ Z to ensure
U(0) = 1. By taking suitable choices for the free parameters
that define the orthonormal basis and local phase information,
we can construct a Hamiltonian that implements the desired
unitary behaviour in such a way that is not dependent on
a particular initial state. In what follows we construct the
IE Hamiltonian such that λ(t) is the driving parameter. The
motivation for choosing IE is to showcase another control
technique. However, it is important to remark that the
IE approach prescribed above and “typical” counterdiabatic
control methods are intrinsically related [61]. Thus, the
results reported for the IE case would be qualitatively similar
if instead CD driving were applied to the computational qubit
directly. What does differ is that with the IE approach we do
not start with a reference Hamiltonian a priori for which the
transitions need to be suppressed. Instead, one can separate
out the adiabatic gauge potential term from the resultant
IE Hamiltonian after transforming basis. Nevertheless, we
remind that, as depicted in Fig. 1, the key difference in our
analysis is embodied by the two distinct settings where either
an auxiliary system is employed to achieve the gate versus
when the computational system is directly driven.

B. Figures of merit

1. Gate Infidelity

To characterise how faithfully a gate has been implemented
we adopt the average infidelity measure [44]

JT = 1 −
3∑

i=1

wi

tr[ρ2
i (0)]

Re
{
tr[Uρi(0)U†ρi(τ)]

}
, (9)

and consider the average of the Hilbert-Schmidt norm of the
ideal evolution of three specific initial states with the obtained
state, weighted by wi with

∑3
i=1 wi = 1. Three initial states

satisfying particular conditions have been shown to be the
minimum amount needed to address all the possible errors and
characterise a general unitary operation for an open system
evolution [44, 62]. For a single qubit, the following set
satisfies the necessary conditions [44]

ρ1(0) =
(
2/3 0
0 1/3

)
, ρ2(0) =

(
1/2 1/2
1/2 1/2

)
, ρ3(0) =

(
1/2 0
0 1/2

)
.

The first state, ρ1, checks errors in the fixed basis states, and
therefore does not signal any possible errors that are diagonal
in this basis. The second state, ρ2, addresses this and indicates
the off-diagonal errors in the fixed basis. The third state, ρ3,
is chosen to ensure that populations are conserved, important
for an open system setting. Depending on the choice of the
weights in Eq. (9), it is possible to highlight the effect of
a source of an error on the infidelity over the others. For
simplicity and without loss of generality, throughout this work
we choose these weights to be equal, i.e. wi=1/3.

2. Cost of Control

The addition of control terms to the Hamiltonian implies
an overall increase in resources needed to evolve the system.
The analysis of this cost has been the focus of several
recent works [63–71], where different quantifiers have been
introduced depending on the physical motivation. In this
work, we adopt the cost measure introduced in [54, 63, 72]

C =
1
τ

∫ τ

0
∥H∥ dt, (10)

where ∥·∥ denotes the norm of the Hamiltonian of interest, and
for simplicity we consider the trace norm. It is important
to emphasize that, following the approach taken in [36],
we take H to be the full Hamiltonian that generates the
driven dynamics implementing the gate operation, not just the
external control term. In fact, notice that it is only for the
case of CD control where an explicit additional Hamiltonian
term is added to the bare Hamiltonian. For both the FE and IE
approaches, control is embedded into the same operators that
appear in the bare Hamiltonian. Therefore, it is necessary to
consider the cost of the full Hamiltonian generating the time
evolution. This measure is well motivated by the functional
form of the physical driving fields [63, 71] and it has been
shown to have connections to a Landauer-type limit for the
change in information encoded computational states [31].

C. Systematic Errors

1. Timekeeping errors

The controlled dynamics require that the drives are
implemented for a specific length of time, which we denote
by τ. Since the control protocols are designed to be effective
regardless of the specific functional form of the drive, this
provides a useful additional degree of freedom for control
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protocols [36, 73]. We consider the following ramp profiles
that satisfy the boundary conditions λ(0)=0 and λ(τ)=1,

λ(t) =
t
τ
, linear

λ(t) =
10t3

τ3 −
15t4

τ4 +
6t5

τ5 , polynomial

λ(t) = sin
(
πt
2τ

)
. sinusoidal

(11)

We look to characterise the impact of timing errors in the
drive, i.e. where the duration of the driving field over- or
under-shoots the intended target time, τ, by assessing the
resulting impact on the gate infidelity, Eq. (9). We note that
these pulses are chosen to capture and compare certain pulse
characteristics. Indeed much work has been done in designing
more complex ramp profiles via optimal control and machine
learning methods [74–76] seeking to optimize to a variety of
relevant cost functionals. Our analysis can therefore provide
useful information for the seed pulses to ensure robustness
to, e.g. time keeping errors, while exploiting more advance
techniques to explore a greater optimization landscape.

2. Environmental Errors

We will be interested in considering how faithfully the
gate operation is implemented when the controlled system is
not completely isolated and therefore prone to environmental
effects. To that end, we model the time evolution of the driven
system with a Markovian master equation

ρ̇ = −i[H, ρ] +D(ρ), (12)

whereD gives rise to a dephasing process

D(ρ) = γ(σλzρσ
λ
z − ρ), (13)

where the superscript λ symbolises our assumption that the
environment only affects the driven part of the system, i.e. for
the CD and FE cases we assume the environment acts only on
the auxiliary qubit, while for IE it is applied directly to the
computational qubit(s).

III. SINGLE QUBIT GATE

We begin assessing the controlled implementation of a
single qubit gate which realises the operation

α |n+⟩ + β |n−⟩ → α |n+⟩ + eiϕβ |n−⟩ , (14)

where |n±⟩ forms a basis in which the desired unitary gate
simply performs a rotation of ϕ. For the case of the auxiliary
evolution outlined in Sec. II A 1, where the computational
qubit is coupled to an auxiliary system that is subject to
the controlled drive, the combined initial state is assumed to
be |Ψi⟩ = (α |n+⟩ + β |n−⟩) ⊗ |0⟩ with |0⟩ and |1⟩ being the
eigenstates of σz. In this setting, Eq. (1) becomes

H(t)= |n+⟩ ⟨n+| ⊗ Hϕ+ (t) + |n−⟩ ⟨n−| ⊗ Hϕ− (t), (15)

where the projectors are given by |n±⟩ ⟨n±| =
(
1 ± n⃗ · σ⃗

)
/2,

with n⃗ being the rotation axis of the unitary and Hϕ± (t) is as
given in Eq. (2). For a single qubit gate, ϕ+ is taken to be zero,
and ϕ− is taken to be the angle of rotation corresponding to the
desired unitary. Adiabatically evolving under the Hamiltonian
above yields the following final state∣∣∣Ψ f

〉
= α |n+⟩ ⊗

∣∣∣∣ϵg
ϕ+

〉
+ β |n−⟩ ⊗

∣∣∣∣ϵg
ϕ−

〉
, (16)

where
∣∣∣∣ϵg
ϕ±

〉
is the ground state of Eq. (2), given by

∣∣∣∣ϵg
ϕ±

〉
= cos

(
θ fλ

2

)
|0⟩ + eiϕ± sin

(
θ fλ

2

)
|1⟩ . (17)

Choosing θ fλ = π as the endpoint of the drive, we
deterministically find that the desired gate has been
implemented on the computational qubit and the auxiliary
system is left in its excited state. Similarly, we explicitly
show in Appendix A that one can define a driving scheme
for the auxiliary system initiated in its excited state, therefore
allowing a sequence of gates to be implemented without
necessitating the auxiliary qubit to be re-initialized.

In what follows, we focus on the Hadamard gate as
the target operation on the computational qubit, which
corresponds to choosing the projectors as |n±⟩⟨n±| = 1

2 (1 ±
1
√

2
(σx + σz)), accompanied by the rotations on the auxiliary

qubit with phases ϕ+=0 and ϕ−=π, respectively, although we
remark that our results are qualitatively consistent for other
choices of single qubit gates.

To drive faster than adiabatic timescales we compute the
CD term, Eq. (3) for Hamiltonian (2) giving

HCD
ϕ±

(t) = λ̇
π

2
[σy cos(ϕ±) − σx sin(ϕ±)]. (18)

where we have taken θ f = π. Note that the CD term is used
in addition to the bare time dependent Hamiltonian in (15).
It is straightforward see that the associated adiabatic gauge
potential, Eq. (4) is identical to Eq. (18), with the variational
coefficient α1=−1/4 determined from minimizing the action,
from which we readily determine the Hamiltonian giving rise
to the Floquet controlled evolution

ĤFE
ϕ±
=

[
1 +

ω

ω0
cos(ωt)

]
Ĥϕ± (λ)+ λ̇ [ω0α1 sin(2ωt)] ∂λĤϕ± (λ),

(19)
where ω0 = 2π/τ is the reference frequency and ω = Nω0
with N ∈ N≫ 1. The Floquet Hamiltonian replaces the time
dependent bare Hamiltonians in (15).

The same gate operation can be captured by the inverse
engineering approach prescribed in Sec. II A 2. We consider
the unitary operator

U1(t) = |m+(t)⟩ ⟨m+(t)| + eiπλ(t) |m−(t)⟩ ⟨m−(t)|, (20)

where the basis states are defined as

|m+(t)⟩ = cos[ϑ(t)/2] |0⟩ + eiφ(t) sin[ϑ(t)/2] |1⟩ ,

|m−(t)⟩ = eiφ(t) cos[ϑ(t)/2] |1⟩ − sin[ϑ(t)/2] |0⟩ .
(21)
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FIG. 2. We show the trajectories of the qubits for both the CD and IE
protocols of the Hadamard gate. We take the initial computational
state to be |+⟩. The yellow line corresponds to the path of the
qubit in the IE case. The green and orange lines correspond to the
computational and auxiliary qubits of the auxiliary evolution cases,
respectively, which begins and ends with a separable global state of
the two qubits while at intermediate times the reduced states of either
qubit are mixed.

with parameters ϑ(t), φ(t), and λ(t) that can be tuned in order
to define the desired gate operation. For a single qubit
gate, the driving Hamiltonian found from Eq. (7) takes the
form [57]

H(t) =
1
2
ω⃗(t) · σ⃗, (22)

where the explicit form of the angular components are given
in Appendix B. The action of this Hamiltonian is to transform
the input state |µ(0)⟩ = a |0⟩ + b |1⟩ to the final state |µ(t)⟩ =
α(t) |0⟩ + β(t) |1⟩ where the populations are

α(t) =
a(eiπλ(t) + 1) − (eiπλ(t) − 1)(a cosϑ(t) + be−iφ(t) sinϑ(t))

2
,

β(t) =
b(eiπλ(t) + 1) + (eiπλ(t) − 1)(b cosϑ(t) − ae−iφ(t) sinϑ(t))

2
.

One choice of parameters that gives the Hadamard gate are
φ(t) = 0, ϑ(t) = π/4, and ramping from λ(0) = 0 to λ(τ) =
1, which in turn gives the populations of the final state as
α(τ)= (a + b)/

√
2, and β(τ)= (a − b)/

√
2. The corresponding

Hamiltonian that drives our qubit is then given as

HIE
Had(t) =

πλ̇(t)

2
√

2
(σx + σz). (23)

Fig. 2 shows the trajectories for the various control
approaches on the Bloch sphere in the absence of any

errors. While the IE qubit (rightmost, yellow) follows a
path on the Bloch sphere and therefore remains pure during
the gate operation, the auxiliary evolutions’ computational
qubit cuts through the Bloch sphere (straight, green line)
connecting the initial state (|+⟩) to the final one (|0⟩). The
latter observation shows that, although the initial and final
states of both the control and register qubits are pure in the
auxiliary evolution approach, during the dynamics they are
mixed, which indicates that they become entangled during
the process. By having a detailed look at the Bloch vectors
of the driven qubits for the auxiliary evolution and IE, it
is possible to see that their x and z-components are equal
to each other at all times, and only y-components differ (in
fact, this component remains identically zero for the auxiliary
evolution’s qubit for this particular gate operation). Thus,
the path that this computational qubit takes is restricted to
the x − z plane and the projection of the path of the IE
qubit to the same plane is identical and therefore, as we
demonstrate explicitly below, the performance in terms of
the implementation (in)fidelity, Eq. (9) are identical for the
different processes despite their dynamics being distinct.

Fig. 3(a) shows the final target state infidelity for a
Hadamard gate operation implemented using the three control
strategies and for comparison we also show the uncontrolled
auxiliary evolution (black, dashed) for a linear ramp λ(t)= t/τ.
As expected, CD and IE both achieve perfect implementations
regardless of the timescale of the drive (bottom-most dotted
lines). The solid red curve corresponds to the FE Hamiltonian,
Eq. (19). We see that despite the approximate nature of the
FE approach, provided that the chosen parameters are within
the relevant regime of applicability [56], this approach is
also highly effective in implementing the controlled evolution,
tracking the same dynamics as the CD approach and
maintaining an improvement of several orders of magnitude
over the uncontrolled implementation.

In Fig. 3(b) we fix τ = 1 and examine the computational
qubit’s approach to the target state during the evolution. This
serves to demonstrate that despite the actual dynamics giving
rise to distinct paths, the effectiveness of all control protocols
in terms of gate infidelity is the same. The inset demonstrates
that the FE drive is a remarkably accurate approximation
to the exact drive, showing small oscillations around the
desired trajectory. While Fig. 3(a) and (b) demonstrate
that, at the level of implementation, all control protocols are
largely equivalent insofar as they can faithfully achieve the
desired unitary, we will see in the following some qualitative
differences emerge when we consider alternative performance
metrics.

We show the total cost of implementing the controlled
gate operation, quantified using Eq. (10), in Fig 3(c) and for
simplicity we consider a linear ramp for all protocols. To
begin with, for very fast driving times, τ → 0, we are in
the opposite limit of adiabatic evolution and the energetic
costs of all control techniques diverge. This observation is in
accordance with previous works [72, 77] which establish that
the energetic resources necessary to drive a system arbitrarily
fast while keeping it in the adiabatic manifold requires to have
access to arbitrarily large energetic resources. Naturally, for
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FIG. 3. (a) Final gate infidelity, Eq (9) as a function of total protocol duration, for the Hadamard gate. The auxiliary evolution with
counterdiabatic (CD) control is shown in the lowermost green, dotted curve. Inverse engineering (IE) performs similarly shown by the
blue, dotted curve. The topmost, black, dot-dashed curve corresponds to an uncontrolled auxiliary evolution where the performance is several
orders of magnitude worse. Floquet engineered (FE) auxiliary control is shown in the red, solid curve and is shown to be highly effective.
(b) Dynamical gate infidelity for the Hadamard gate with τ= 1 using the same styling as panel (a) to identify the different control protocols.
The inset captures the oscillations present in the FE driving around the dynamics of the CD approach. (c) We plot the cost, Eq. (10), of
implementing the Hadamard gate vs. total protocol duration for IE, CD control, FE with ω/ω0 = 200 with the same colouring as before. (d)
Final gate infidelity for the Hadamard gate vs. timekeeping error, ϵ, for over- or under-shooting the intended ramp duration. The total (ideal)
ramp time is τ=1. We show the performance for the linear (orange), the polynomial (cyan), the sinusoidal (purple) ramps. In all panels we fix
ω0=2π/τ, ω=200ω0 for the FE case.

longer quench durations we asymptotically reach the adiabatic
limit of the time evolution and the cost decays proportionally
to 1/τ. Specifically, in the long time limit the CD cost
asymptotically approaches to 2

√
2, which corresponds to an

unavoidable energy cost given by the energy change of bare
Hamiltonian of the driven auxiliary qubit, while for IE the
cost vanishes in the asymptotic limit. On the other hand,
for the FE case, the leading term for the cost in the long
time limit is 2ω/ω0 and proportional to the frequency of
the Floquet driving, i.e. how many times the FE dynamics
intersects with the true adiabatic dynamics. This requirement
for high frequency driving manifests in a higher energetic cost
for achieving the control.

We now turn our attention to timekeeping errors. For
simplicity we focus on the case of IE, but remark the
conclusions are qualitatively similar for both the auxiliary
evolution cases as the dynamical overlap with the target states
for the protocols coincide. In Fig. 3(d) we (arbitrarily) fix τ=1
and consider the performance of the different ramp profiles
given by Eqs (11) where we allow for the ramp to over- or
under-shoot the target time by a factor proportional to 1± ϵ. A
simple linear ramp is the most susceptible to this type of error,
with the infidelity rapidly growing as ϵ increases. Thus, while
the linear ramp has some notable advantages, e.g. resulting
in a time-independent control term for IE [cfr. Eq. (23)],
this comes at the expense of requiring potentially costly
accurate timekeeping [78]. In contrast, due to their smooth
start and end points the polynomial and sinusoidal protocols
allow for more severe timekeeping errors while still faithfully
implementing the gate, with timing errors of up to 20% still
achieving infidelities ≲ 10−4. This can be understood from the
behavior of these functions at their endpoints where the rate
of change of the associated driving field remains sufficiently
small for ϵ < 0.2. As a result, the amplitude of obtaining the
desired final state, which is given by sin2(θ fλ/2) [see Eq. (16)
and (17)] does not significantly deviate from unity. These
results are consistent with complementary studies of different
control problems [79] and demonstrates that the flatness of the

applied ramp around the target is an important feature to have
in terms of the robustness of the protocol.

The physical differences implied by the approaches become
most apparent when considering open system effects on state
evolution. Fig. 4 presents our results on the infidelity between
the final state and the target state as a function of the total
gate implementation time, scaled with the decoherence rate
for a dephasing environment and the explicit trajectories of
the qubits. In Fig. 4(a), we plot the trajectories of each qubit
for the CD and IE Hadamard gate when the driven qubits are
exposed to a dephasing channel. For the CD case, not driving
the computational register directly can allay much of the
spoiling effects of the environment. This can be understood
since the auxiliary evolution approaches necessitate that the
driven system ends in state |1⟩, thus while the dephasing will
leave the system in a mixed state, it nevertheless can have a
large overlap with the intended target state of the auxiliary
qubit which therefore still exhibits a good performance. Since
we assume the computational qubit in the CD case does not
directly feel the spoiling effects of the dephasing channel,
it simply stops along its ideal trajectory when the auxiliary
qubit falls short of its target state. In contrast, since we drive
the computational qubit directly in the IE case while also
exposing it to the dephasing channel, we see that IE qubit
(yellow) starts in the |+⟩ state and is drawn towards the z-axis,
away from its ideal unitary dynamics by the environment.
Fig 4(b) shows the final state infidelity for Hadamard gate
as a function of the dephasing strength. The CD case (blue)
displays better final state infidelity than the IE case (red) for
all values of τγ. For larger gates, we expect that this difference
will further widen in favour of the CD case. Despite the
unfavourable cost scaling and relative complexity of the CD
Hamiltonian compared to IE methods, it represents a potential
attractive approach for robust gate implementation.

It is natural to consider extending the above framework to
the implementation of N-qubit gates. The preceding analysis
can readily be performed for two-qubit entangling gates, such
as the controlled-phase gate [50, 57] (we provide the explicit
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FIG. 4. (a) Qubit trajectories for the Hadamard gate under a
dephasing channel, Eq. (12), where the channel acts on the driven
qubit in each case with τγ = 2. Styling is same as in Fig. 2. As
we dephase in the z-basis, both the state of the qubit in the IE case
(yellow) and that of the auxiliary qubit in the CD case (orange) are
pulled towards the z-axis. The computational qubit of the CD case
(green) is not directly affected by the channel, and does not deviate
from the ideal path, instead stopping along that trajectory once the
auxiliary qubit driving the evolution has decohered. (b) We show
the final gate infidelity, Eq. (9), for the dephasing channel for the
Hadamard gate, with upper, dotted red and lower, dashed blue curves
correspond to the IE and CD cases, respectively.

forms of the CD and IE Hamiltonians to implement such
a gate in Appendix C). A qualitatively similar behavior is
observed: once again the overall performance in terms of
process infidelity is consistent across all control approaches.
Similarly, the effect of time-keeping errors is most significant
for ramps that do not have smooth end points. A notable
difference emerges when considering the energetic cost.
While the auxiliary evolution approaches involve driving only
a single qubit, and therefore the cost is essentially bounded,
they can nevertheless facilitate a gate operation on an arbitrary
sized register. However, this comes at the price of a difficult
to realise Hamiltonian, Eq. (1). This is in contrast to the
IE approach where the register is controlled directly and, as
might be expected, the complexity and energy required to
implement IE control on multiple qubits scales poorly with
the register size.

IV. CONCLUSIONS

We have systematically analyzed the effectiveness CD,
IE, and FE methods in the Hamiltonian implementation of
unitary quantum gates. As the figures of merit for all
considered methods, we have put the gate infidelity, the
energetic cost, susceptibility to imperfect timekeeping, and
robustness against the effects of environmental noise at the
center of our discussion. We have focused on the single
qubit Hadamard gate and observed that all methods can
faithfully achieve the desired gate, however, show some
notable qualitative differences when examining performance
metrics beyond target fidelities. For example, the energetic
overhead of FE is the highest among the considered methods,

due to the high-frequency driving necessary to achieve a
gate operation closer to the ideal. As for the imperfect
timekeeping errors of the desired driving time, we have
observed a subtle dependence on how the Hamiltonian is
driven. Smoother ramping of the Hamiltonian results in
a more successful gate implementation, in case the desired
driving time is over- or under-shot. Finally, we have assumed
that the driven qubit in CD and IE methods is in contact
with a dephasing environment, and seen that the latter control
technique is more adversely affected by such environmental
spoiling effects than the former due to the fact that in this case
computational degrees of freedom are affected by the noise. A
qualitatively similar behavior can also be observed for a finite
temperature dissipative environment. We considered several
commonly employed ramp profiles in order to highlight the
natural robustness that each approach has under the same
conditions and to provide insight into the properties that
robust pulses should contain, e.g. smooth end points. This
information can then be used to further enhance performance
through the tailoring of ramp profiles by, e.g. optimal control
techniques. However, the cost functionals can be optimized
over multiple metrics, such as energetic cost, pulse bandwidth,
and robustness to noise to name a few, and thus this rapidly
becomes a complex problem.

We finally offer some comments on the applicability of
these general Hamiltonians in light of recent experimental
work has been done to implement transitionless (or
superadiabatic) gates on promising candidate architectures,
such as NV centres [80], superconducting qubits [81, 82], and
rare-earth ions [83]. Indeed the possible universal gate sets
generated by the inverse engineering case discussed in this
work presents an attractive prospect for applicability, owing
to the relatively simple forms and interactions present and the
potential to drive them with time-independent control fields.
The counterdiabatic driving case represents a departure from
the typical approach to implementing a gate as it makes use
of an additional auxiliary resource to mediate the driving.
One may view gates in this setting as controlled gates,
the Hadamard gate is perfectly implemented on the register
qubit if the auxiliary qubit is driven to |1⟩ and the identity
is performed on it if the auxiliary is found in |0⟩. This
implementation therefore requires from a platform that can
readily achieve controlled-gates, e.g. trapped-ion systems [8].
That this method involves inducing a phase difference
between states for the computational qubit, and is more
robust to noise than the direct driving approach is reminiscent
of superadiabatic geometric quantum gates [84]. Indeed,
utilising auxiliary evolution to achieve the “superadiabatic”
part of these processes could lend further robustness to these
proposals.
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Appendix A: Excited State Driving

For a single-qubit gate we assume that the auxiliary qubit
is initially in the excited state, which implies that we initialise
the system in the state |Ψi⟩ = (α |n+⟩ + β |n−⟩) ⊗ |1⟩. Evolving
adiabatically with the usual Hamiltonian gives the final state∣∣∣Ψ f

〉
= α |n+⟩ ⊗

∣∣∣ϵe
0

〉
+ β |n−⟩ ⊗

∣∣∣ϵe
ϕ−

〉
, (A1)

where the excited state of the time dependent Hamiltonian is

∣∣∣ϵe
ϕ

〉
= −eiϕ sin

(
θ fλ

2

)
|0⟩ + cos

(
θ fλ

2

)
|1⟩ . (A2)

Though the eigenvector has a natural U(1) symmetry, a local
phase appears on |0⟩ due to our specification of the initial state
of the dynamics at λ = 0. The translation ϕ → −ϕ allows us
to perform our gate with our auxiliary qubit initially in the
excited state, returning it to its ground state at the end of the
process, potentially to be reused.

Appendix B: Explicit form of the single qubit IE Hamiltonian

The driving Hamiltonian can be identified in the following
way [57]

H(t) =
1
2
ω⃗(t) · σ⃗, (B1)

where the vector components are given as

ωx(t) =(cos πλ − 1)φ̇ cosφ cosϑ sinϑ

+ [φ̇ sinϑ sin πλ + (cos πλ − 1)ϑ̇] sinφ

+ (ϑ̇ cosϑ sin πλ + πλ̇ sinϑ) cosφ,
ωy(t) =(cos πλ − 1)φ̇ sinφ sinϑ cosϑ

+ [φ̇ sinϑ sin πλ − (cos πλ − 1)ϑ̇] cosφ

+ (ϑ̇ cosϑ sin πλ + πλ̇ sinϑ) sinφ,

ωz(t) = −ϑ̇ sinϑ sin πλ − (cos πλ − 1)φ̇ sin2 ϑ + πλ̇ cosϑ.
(B2)

Appendix C: Examples of a two-qubit gate

One typical example is the controlled-phase gate where we
have two computational qubits, namely control and target, and

depending on the state of the control qubit we apply a phase
shift operation on the target qubit. Explicitly, if we take the
initial state of the computational qubits as

|ψi⟩ = α |0, n+⟩ + β |0, n−⟩ + γ |1, n+⟩ + δ |1, n−⟩ , (C1)
then performing the controlled-phase gate yields the following
output state

∣∣∣ψ f

〉
= α |0, n+⟩ + β |0, n−⟩ + γ |1, n+⟩ + eiϕδ |1, n−⟩ . (C2)

we focus on the application of the controlled-Z gate for which
we have ϕ = π. Within the auxiliary evolution framework,
the gate operation can again be implemented by performing
a drive on the additional ancilla qubit. This requires a
Hamiltonian that implements the local phase-shift onto the
|1, n−⟩ subspace while keeping the others fixed, which has the
following form [50]

HAE
Cπ (t) = (|0⟩⟨0| ⊗ 1 + |1⟩⟨1| ⊗ |0⟩⟨0|) ⊗ H0(t) (C3)

+ |1⟩⟨1| ⊗ |1⟩⟨1| ⊗ Hπ(t),

where the time-dependent driving Hamiltonians H0(t) and
Hπ(t) applied on the ancilla qubit are given as in Eq. (2). As
before, both CD and Floquet control can be used to ensure
adiabatic dynamics.

Similarly we can define the same gate with IE method

U2(t) =
∑
k=1,2

|mk,+(t)⟩⟨mk,+(t)| + eiπλk(t)|mk,−(t)⟩⟨mk,−(t)|. (C4)

The evolution basis is similarly defined∣∣∣mk,+(t)
〉
= cos[ϑ(t)/2] |k − 1, 0⟩ + eiφk(t) sin[ϑ(t)/2] |k − 1, 1⟩ ,

(C5)∣∣∣mk,−(t)
〉
= eiφk(t) cos[ϑ(t)/2] |k − 1, 1⟩ − sin[ϑ(t)/2] |k − 1, 0⟩ .

(C6)
We now have six parameters, with the restriction that λk(0) =
0. All appear in the final state of the system under the action
of the unitary. Through a suitable choice of the parameters we
can design the Hamiltonian to implement the desired unitary
dynamics. For example, adopting the general formalism
above, we obtain the desired IE Hamiltonian that applies the
controlled-Z operation as follows [57]

HIE
Cπ(t) =

πλ̇(t)
4

(1 ⊗ σz + σz ⊗ 1 − σz ⊗ σz). (C7)

Note that the implementation of the above Hamiltonian
requires a dephasing (Z−Z) type interaction between the target
and control qubits.
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