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Fully automated quantification 
of in vivo viscoelasticity of prostate 
zones using magnetic resonance 
elastography with Dense U‑net 
segmentation
Nader Aldoj1, Federico Biavati1, Marc Dewey1,2,3, Anja Hennemuth4, Patrick Asbach1 & 
Ingolf Sack1*

Magnetic resonance elastography (MRE) for measuring viscoelasticity heavily depends on proper 
tissue segmentation, especially in heterogeneous organs such as the prostate. Using trained network‑
based image segmentation, we investigated if MRE data suffice to extract anatomical and viscoelastic 
information for automatic tabulation of zonal mechanical properties of the prostate. Overall, 40 
patients with benign prostatic hyperplasia (BPH) or prostate cancer (PCa) were examined with three 
magnetic resonance imaging (MRI) sequences: T2‑weighted MRI (T2w), diffusion‑weighted imaging 
(DWI), and MRE‑based tomoelastography, yielding six independent sets of imaging data per patient 
(T2w, DWI, apparent diffusion coefficient, MRE magnitude, shear wave speed, and loss angle maps). 
Combinations of these data were used to train Dense U‑nets with manually segmented masks of the 
entire prostate gland (PG), central zone (CZ), and peripheral zone (PZ) in 30 patients and to validate 
them in 10 patients. Dice score (DS), sensitivity, specificity, and Hausdorff distance were determined. 
We found that segmentation based on MRE magnitude maps alone (DS, PG: 0.93 ± 0.04, CZ: 0.95 
± 0.03, PZ: 0.77 ± 0.05) was more accurate than magnitude maps combined with T2w and DWI_b 
(DS, PG: 0.91 ± 0.04, CZ: 0.91 ± 0.06, PZ: 0.63 ± 0.16) or T2w alone (DS, PG: 0.92 ± 0.03, CZ: 0.91 ± 
0.04, PZ: 0.65 ± 0.08). Automatically tabulated MRE values were not different from ground‑truth 
values (P>0.05). In conclusion, MRE combined with Dense U‑net segmentation allows tabulation of 
quantitative imaging markers without manual analysis and independent of other MRI sequences and 
can thus contribute to PCa detection and classification.

Prostate cancer (PCa) has the highest incidence of all types of cancer in men and is the second leading cause 
of cancer deaths in  men1,2. Radiological imaging modalities such as magnetic resonance imaging (MRI) play 
a central role in the diagnosis of PCa and therapy planning. In particular, multiparametric MRI as defined in 
the Prostate Imaging Reporting and Data System (PI-RADS) has contributed to the standardization of prostate 
MRI  worldwide3. However, inter- and intrareader agreement is still  moderate4. This is mainly due to the use of 
subjective imaging criteria in the assessment of lesion shape and signal intensity as well as manual segmenta-
tion procedures of prostate regions, resulting in high variability of reference values. It is noteworthy that even 
quantitative imaging parameters can vary widely with the size and site of the regions selected for their  analysis5. 
Therefore, accurate segmentation of the prostate gland and its zones is critical for the detection and management 
of  PCa6–9. Automated prostate segmentation using multiparametric MRI (mpMRI) is often performed based on 
morphologic images such as T2-weighted MRI and transferred to other images which depict microstructural 
information such as the apparent diffusion coefficient (ADC) measured by diffusion-weighted imaging (DWI). 
Complementary to DWI, magnetic resonance elastography (MRE)10 has been recently introduced for the clini-
cal assessment of  PCa11–22. MRE provides maps of stiffness and viscosity, which are quantitatively linked with 
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mechanical microstructures in biological soft tissues and their changes due to  disease23,24. Unlike DWI, where 
ADC is reconstructed from variations in signal magnitude, MRE values are reconstructed from phase images, 
while magnitude images have been largely unused except for recent approaches to water diffusion  analysis25,26. 
Our hypothesis was that MRE magnitude images provide anatomical information that can be used for auto-
mated segmentation of prostate zones. Full exploitation of anatomic and viscoelastic information contained 
in a single set of MRE data would greatly facilitate quantitative parameter extraction without co-registration 
artifacts. However, for several reasons, automated prostate segmentation is a challenging  task27. For example, 
the prostate is a highly heterogeneous organ with complex 3D geometry giving rise to well-known ambiguities 
of tissue boundaries in MRI. Furthermore, prostate morphology greatly varies among individuals, especially 
when benign prostatic hyperplasia (BPH) or advanced PCa is present. Figure 1 illustrates these challenges in a 
representative case of BPH. Numerous studies have tackled the problem of automatic segmentation of MR images 
of the prostate using various approaches such as atlas  segmentation28, deformable and statistical  modeling29 or 
machine  learning30,31. For a few years, deep convolutional neural networks (CNNs) have been extensively used 
for segmentation tasks in various radiological applications, thanks to their suitability for  generalization32. In the 
prostate, CNNs were used for prostate gland segmentation using either slice-wise33 or full 3D  approaches34,35 
However, only a few approaches were actually able to segment the prostate gland (PG) and its zones such as the 
central zone (CZ) and the peripheral zone (PZ)36,37. CNNs, such  as38,39, are mathematical models that can learn a 
number of complex features such as intensities, texture or morphology presented in the input images and, thus, 
are suitable to classify different tissue types to accomplish fully automated segmentation tasks.

In this study, we used CNNs for fully automated segmentation of the prostate zones based on T2-weighted 
(T2w) MRI, DWI, and, the so far unused, MR Elastography  images40. DWI provides intensity images (based on 
a specific b-value, DWI_b) and quantitative ADC maps. MRE provides magnitude images (mag), shear wave 
speed maps of stiffness (SWS, in m/s), and maps of loss angle ( ϕ in radians, indicating friction or a material’s 
fluidity)41. We explored CNNs for prostate segmentation using 14 possible input combinations of MRE maps 
as input training data. First, we trained and tested individual networks (models), henceforth termed individual 
models (IMs), using each of the aforementioned sets with their corresponding manually segmented masks of 
CZ, PZ, and PG as ground truths. Second, the dataset was rearranged so that it contains all 14 possible input 
combinations at once to be used as input training data for a single model, henceforth termed unified model 
(UM). The purpose of this study was to test whether MRE-based tomoelastography data are sufficient to extract 
anatomic and viscoelastic information for automatic tabulation of zonal mechanical properties of the prostate 
and to compare MRE-based image segmentation with information extracted by CNNs from other MRI pulse 
sequences typically acquired in clinical practice.

Figure 1.  Images illustrating the appearance of the prostate in mpMRI in a volunteer with benign prostate 
hyperplasia (BPH). (a) T2-weighted MRI, (b) DWI image with a b-value of 1400 s/mm2, (c) ADC map, (d) 
MRE magnitude signal, (e) SWS map as a surrogate marker of tissue stiffness, and (f) ϕ map, which signifies 
friction or tissue fluidity.
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Methods
Subjects. The imaging data used in this study were used retrospectively and were acquired in a previously 
reported population of BPH and PCa patients who underwent PI-RADS-compatible mpMRI and  MRE12. Our 
local ethical review board approved this study, and all patients gave written in-formed consent. Forty patients 
were included, 26 with a PI-RADS score of 2 consistent with BPH. The remaining fourteen men received biopsy 
with subsequent Gleason scoring. The decision to perform a biopsy was made by the referring urologist based 
on the clinical assessment and the PIRADS score. Those fourteen men had a suspicious focal lesion (PI-RADS 
4: n = 2, maximum tumor diameters of 10 and 11 mm; PI-RADS 5: n = 12, maximum tumor diameters ranging 
from 16 to 66 mm). In these 14 men, prostate biopsy revealed PCa Gleason scores of 3 + 3 (ISUP class 1, n = 1), 3 
+ 4 (ISUP class 2, n = 2), 4 + 3 (ISUP class 3, n = 2), 4 + 4 (ISUP class 4, n = 4), and ≥ 4 + 5 (ISUP class 5, n = 5).

From the 40 volume datasets of these patients, 30 were randomly selected for training. Each volume dataset 
included 25 slices, yielding a total of 25 (slices) × 30 (volumes) × 1 (input combination) = 750 training images 
for each of the 14 input combinations of IMs, and 25 (slices) × 30 (volumes) × 14 (all input combinations) = 
10,500 images for UM. In the latter case, all 14 input combinations were included in a single large training set. 
The remaining 10 datasets with a total of 25 (slices) × 10 (volumes) = 250 slices were used for testing.

MR Imaging. The imaging data were acquired on a 3-Tesla MRI scanner (Magnetom Skyra; Siemens 
Healthi-neers, Erlangen, Germany) using both the 18-channel phased-array surface coil and a spine array coil. 
All patients underwent a clinically indicated mpMRI examination of the prostate in accord-ance with PI-RADS 
version 2 (2015)42 which included T2-weighted sequences (T2w) in the axial and coronal planes and DWI. Here 
we used b-values of 0, 50, 500, 1000, and 1400 s/mm2 (b = 1400 s/mm2 was used as diffusion weighted image, 
henceforth referred to as DWI_b). ADC maps were automatically generated by the MRI scanner via monoex-
ponential fitting of all b-values. After the clinical MRI examination, patients underwent multifrequency MRE-
based tomo-elastography using a single-shot spin-echo sequence with three excitation frequencies of 60, 70, 80 
 Hz12. MRE magnitude images (mag) display signal intensities which are T2-weighted with a strong T2* effect. 
All imaging parameters are summarized in Table 1.

MRE data processing was based on multifrequency wavefield inversion for generating frequency-compounded 
SWS and ϕ maps. SWS was reconstructed by single-derivative finite-difference operators (k-MDEV)43 while ϕ 
was obtained by second-order, Laplacian-based, direct inversion (MDEV)44. Although k-MDEV is noise-resistant 
and well-suited for SWS visualization, it is limited regarding the quantification of viscosity-related parameters 
such as ϕ43. Hence, MDEV was used for ϕ recovery. Both k-MDEV and MDEV pipelines are publicly available 
at bioqic-apps.charite.de45. Two experienced radiologists (PA with more than 10 years and FB with 2 years of 
experience in PIRADS-based PCa detection and classification) segmented and revised the prostate and its zones 
based on T2w-MRI, DWI, and MRE. The resulting masks of CZ (which includes the transition zone), PZ, and 
PG were used as ground truth (GT) for training and validation of CNNs. Overall, six independent imaging data 
were further used for segmentation analysis: T2w, DWI_b, ADC, mag, SWS, and ϕ.

Image preparation and augmentation. Since T2w, DWI, and MRE images had different resolutions, 
all images were resampled to a common resolution of 0.5 mm isotropic edge length. Images of the same size 
and resolution were obtained by positioning a cropping window with a size of 256 × 256 pixels at the center of 
each 3D imaging volume. For image augmentation, 9 random elastic deformations were applied to the original 
images to increase the number of training sets. As described  in46, elastic deformation can be driven by two main 
parameters: σ , which represents the elasticity coefficient, and α , which represents a scaling factor that controls 
the amplitude of the deformation. The two parameters were set to α = 21 and σ = 512. Examples of augmented 
images are provided in Fig. 2.

Dense U‑net. A previously developed Dense U-net40 based on state-of-the-art U-net convolutional network 
 architecture38 was used. The network comprised two main parts—an encoder and a decoder—between which 
skip connections connected feature maps with similar resolutions. Normal stacks of convolutional layers at each 
stage were substituted with two densely connected blocks. Each dense block consisted of four convolutional 
layers with 3x3 kernel size followed by a transitional layer. The structure of the network is illustrated in Fig. 3.

Network training. Stochastic gradient descent with a learning rate of 10-3, a momentum of 0.9, and a decay 
of 10-6 was used in this study to train and test all proposed models. We used cross-entropy (CE) loss as the main 
loss function, and performed pixel-wise comparison of ground-truth images and the resulting masks.

Table 1.  Imaging parameters of MRE and MRI.

Map
Axial slices  
(number)

Slice thickness 
(mm)

Field of view   
(mm2) Matrix size (pixels) Voxel size (mm3)

Repetition time 
(TR)  (ms)

Echo time (TE)  
(ms)

Parallel imaging 
factor (GRAPPA-
algorithm)

MRE 25 2 256× 256 128× 128 2× 2× 2 3240 69 2

T2w 25 3 180× 180 384× 384 0.47× 0.47× 3 4000 116 2

DWI 25 3 230× 230 160× 160 1.44× 1.44× 3 4000 56 2
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Two main approaches were tested: (1) Individual models (IMs), where we trained and tested a separate model 
for each combination of sequences/maps or individual sequence/map input. (2) Unified model (UM) without 
MRE-MRI co-registration (i.e., a single model for T2w, DWI_b, ADC, mag, SWS, and ϕ images, trained on 
masks that were manually and separately segmented from T2w and mag images), yielding a re-arranged dataset, 
where all image combinations were taken into account during training, validation and testing. Fourteen input 
combinations were used for training and testing IMs and the UM, more specifically mag+SWS+ϕ , SWS+mag, 
SWS+ϕ , mag+ϕ , mag, ϕ , SWS, T2w+ADC+DWI_b, T2w+ADC, T2w+ADC, ADC+DWI_b, T2w, ADC and 
DWI_b. While each of these input combinations was used to train an individual model in IMs, in UM, each input 
combination represented a subset and was combined with all other subsets to generate a single, large dataset of 
all 14 input combinations for training and testing the UM. Figure 4 shows how imaging data were used as inputs 
for IMs and the UM.

Figure 2.  Image augmentation using elastic deformation. First column shows the reference non-augmented 
T2w images in the first row and MRE magnitude maps (mag) in the second row. Augmented images are shown 
in the remaining columns: first row: T2w, ADC, and DWI_b. Second row: mag, SWS and ϕ.

Figure 3.  Dense U-net architecture. Numbers in the figure indicate the number of feature maps at each stage.
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Evaluation. We evaluated all resulting segmentations against manually delineated ground-truth masks 
using standard evaluation statistics such as mean dice score (DS) ± standard deviation (SD), sensitivity (Sen), 
specificity (Spc), and Hausdorff distance (HD) as a contour consistency measure, and a t-test with p<0.05 indi-
cating a statistically significant difference.

The dice score is a similarity measure that quantifies the overlap between predicted masks and ground-truth 
labels, allowing straightforward comparison of segmentation  performance47.

The Hausdorff distance is the maximum distance between two edge points from two different sets (predicted 
mask and ground truth). It is expressed in millimeters (mm) and was defined as follows:

where d(i,j) is the Euclidean distance between two points from different sets A and B.

Implementation details. All models were trained on individual or combinations of MRI/MRE images in a 
slice-wise fashion, where all images had a size of 256x256 and an in-plane resolution of 0.5x0.5 mm. We used the 
SimpleITK library for image  preprocessing48,49, and Keras library (version 2.4.3) with Tensorflow library (version 
2.3.1 Google Inc.) back-end50 as the main library for model implementation, training, and testing.

All models were trained on a TitanXP GPU with 2 GB video memory (CUDA version of 10.1) and a batch 
size of 25 images. Training time of the Dense U-net was around 8.5 hours. The computation time during testing 
for a single 3D volume (of around 25 slices) was approximately 1.5 s.

Ethical approval. All the procedures and experimental protocols were confirmed and approved by Ethics 
Committee of Charité – Universitätsmedizin. All methods were carried out in accordance with relevant guide-
lines and regulations.

Results
This section presents the performance results of our Dense U-net that was used on MRI and MRE images. Dense 
U-net was applied in two forms: UM and IMs evaluated using DS, HD and MRE values of the automatically 
segmented prostate zones.

Figures 5 and 6 illustrate segmentation results for each of the two training approaches. The boundary of 
automatically segmented regions closely follows the boundary of manual segmentations.

Our experimental results for IMs trained on different combinations of maps showed that the proposed 
method was capable of efficiently segmenting PG, CZ, and PZ from the input MRI/MRE images. DS ranged 
from 0.87 ± 0.04 (ADC) to 0.93 ± 0.04 (mag), from 0.85 ± 0.09 (DWI_b) to 0.95 ± 0.03 (mag), and from 0.53 
± 0.10 (ADC+DWI_b) to 0.77 ± 0.05 (mag), for PG, CZ, and PZ, respectively. Also, HD was minimized (i.e., 
best contour consistency) based on mag with 0.86, 0.76, 0.98 mm (Fig. 5 and Table 2). However, performance 
differences between MRE (mag, SWS, ϕ ) and MRI maps (T2w, DWI_b, ADC) were statistically not significant 
except for CZ, where MRE (mag, SWS, ϕ ) had a significantly higher DS than MRI (T2w, DWI_b, ADC, p<0.05).

Unlike IMs, the UM can process any map or combination of maps, which facilitates clinical applications. 
Compared with IMs, the UM had higher DS in PG and CZ and lower DS in PZ. Assessed for different prostate 

HD(A,B) = max{maxi∈Aminj∈Bd(i, j),maxi∈Bminj∈Ad(i, j)}

Figure 4.  Diagrams of the two approaches investigated in this study. (a) individual models (IMs), and (b) 
unified model (UM). The figure shows all 14 input combinations used individually as separate datasets in IMs 
and combined into a single large dataset for training of the UM. The gray box with the ‘Model’ refers to the 
Dense U-net used in this study, as detailed in Fig. 3.
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zones, DS of the UM ranged from 0.77 ± 0.11 (DWI_b) to 0.92 ± 0.04 (mag, SWS, ϕ ), from 0.65 ± 0.08 (DWI_b) 
to 0.86 ± 0.06 (mag, SWS, ϕ ), and from 0.28 ± 0.10 (DWI_b) to 0.57 ± 0.05 (mag), for PG, CZ, and PZ, respec-
tively. The smallest HD of 1.15, 1.45, and 1.81 for PG, CZ, and PZ, respectively, was found for mag. Images are 
presented in Fig. 6, and the results are summarized in Table 3.

Unlike IMs, the UM showed a significantly higher DS when using MRE data in comparison with MRI data 
(p < 0.001, 0.05, and 0.05 for PG, CZ, and PZ, respectively). Overall, IMs had significantly more accurate results 
compared with the UM in terms of both DS and HD with p-values < 0.01 for PG, CZ, and PZ. This is shown in 
Fig. 7, illustrating that DS was higher and HD lower for IMs than for the UM. Figure 8 shows a case where model 
segmentations were inaccurate compared with the ground-truth masks. Quantitative analysis, for both IMs and 
the UM, of pixel values in PG, CZ, and PZ showed no significant difference (p>0.05) between ground-truth and 
automated prostate segmentation. Group mean values are presented in Tables 4 and 5.

Discussion
Our study shows that Dense U-net segmentation of prostate zones based on MRE data allows automated tabula-
tion of quantitative imaging markers for the total prostate and for the central and peripheral zones.

Our results show that IMs performed excellent across all maps and sequences with high values for DS and 
low values for HD. In our experiments, segmentation was most reliable when we used T2w and MRE magnitude 
images, which provide sufficiently rich anatomical details for automated prostate segmentation while quantita-
tive parameter maps such as SWS, ϕ and ADC lack those details. Figure 9 depicts a variety of maps in a patient 
demonstrating that anatomy of prostate boundaries is well preserved on T2w and MRE magnitude images while 
it is less clearly visible on ADC, DWI_b, SWS and ϕ maps.

For IMs, we found no significant difference between DS of MRE and DS of MRI in PG and PZ while, in CZ, 
DS of MRE was higher than that of MRI. This may be explained in part by blurring due to larger slice thickness in 
MRI (3 mm) than MRE (2 mm). Furthermore, MRI slice volumes covered the entire prostate gland, the seminal 
vesicles and the periprostatic tissues while MRE volumes were solely focused on the prostate gland given the 
smaller slice thickness.

Figure 5.  Examples of segmentation results achieved with IMs: first column (a) shows the original image, 
second (b), third (c) and forth column (d) show masks of prostate, central and peripheral zones, respectively.
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Figure 6.  Examples of segmentation results achieved with the UM: first column (a) shows the original image, 
second (b), third (c) and forth column (d) show masks of prostate, central and peripheral zones, respectively.

Table 2.  Statistical analysis of the segmentation results of IMs. Bold indicates the highest values, while Italic 
indicates the lowest values. ↑ ( ↓ ): the higher (the lower) the better.

Model

Prostate gland Central zone Peripheral zone

Dice ↑ Std ↓ Median ↑ Sen ↑ Spc ↑ HD ↓ Dice ↑ Std ↓ Median ↑ Sen ↑ Spc ↑ HD ↓ Dice ↑ Std ↓ Median ↑ Sen ↑ Spc ↑ HD ↓

All MRE 0.92 0.04 0.91 0.92 0.99 1.04 0.94 0.03 0.93 0.93 0.99 1.08 0.73 0.05 0.74 0.72 1.00 1.35

SWS+mag 0.91 0.04 0.90 0.90 0.99 1.22 0.93 0.04 0.92 0.91 0.99 1.41 0.69 0.04 0.69 0.65 1.00 1.72

SWS+ϕ 0.91 0.05 0.90 0.89 0.99 1.12 0.92 0.05 0.93 0.92 0.99 1.10 0.64 0.10 0.62 0.68 1.00 1.43

Mag+ϕ 0.91 0.04 0.91 0.94 0.99 1.95 0.93 0.04 0.93 0.95 0.99 1.92 0.69 0.06 0.68 0.68 1.00 1.97

Mag 0.93 0.04 0.93 0.93 0.99 0.86 0.95 0.03 0.95 0.96 0.99 0.76 0.77 0.05 0.79 0.79 1.00 0.98

ϕ 0.90 0.05 0.88 0.87 0.99 1.18 0.91 0.05 0.92 0.89 0.99 1.19 0.52 0.11 0.54 0.57 1.00 1.66

SWS 0.82 0.08 0.80 0.78 0.99 2.41 0.88 0.06 0.87 0.84 0.99 2.56 0.55 0.07 0.53 0.59 1.00 2.64

All MRI 0.90 0.02 0.88 0.83 1.00 1.06 0.88 0.05 0.86 0.82 1.00 1.16 0.66 0.11 0.67 0.61 1.00 1.81

T2w+ADC 0.90 0.04 0.89 0.88 0.99 1.30 0.87 0.06 0.88 0.84 1.00 1.35 0.62 0.13 0.66 0.65 0.99 2.82

T2w+DWI_b 0.91 0.04 0.90 0.90 1.00 0.98 0.91 0.06 0.90 0.86 1.00 1.00 0.63 0.16 0.66 0.68 0.99 2.11

ADC+DWI_b 0.88 0.05 0.87 0.84 0.99 1.44 0.87 0.06 0.86 0.83 0.99 1.46 0.53 0.10 0.55 0.52 0.99 2.84

T2w 0.92 0.03 0.92 0.93 0.99 1.05 0.91 0.04 0.91 0.89 1.00 0.87 0.65 0.08 0.65 0.72 0.99 2.90

ADC 0.87 0.04 0.86 0.86 0.99 1.41 0.86 0.06 0.84 0.84 0.99 1.41 0.55 0.08 0.57 0.55 0.99 2.38

DWI_b 0.88 0.06 0.86 0.87 0.99 1.38 0.85 0.09 0.83 0.82 1.00 1.48 0.54 0.17 0.51 0.61 0.99 2.07

All MRE ave. 0.91 0.04 0.90 0.91 0.99 1.23 0.93 0.04 0.93 0.93 0.99 1.24 0.67 0.07 0.67 0.68 1.01 1.52

All MRI ave. 0.89 0.04 0.88 0.87 0.99 1.23 0.88 0.06 0.87 0.84 1.00 1.25 0.60 0.12 0.61 0.62 0.99 2.42
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Table 3.  Statistical analysis of the segmentation results of the UM. Bold indicates the highest values, while 
italic indicates the lowest values. ↑ ( ↓ ): the higher (the lower) the better.

Model

Prostate gland Central zone Peripheral zone

Dice ↑ Std ↓ Median ↑ Sen ↑ Spc ↑ HD ↓ Dice ↑ Std ↓ Median ↑ Sen ↑ Spc ↑ HD ↓ Dice ↑ Std ↓ Median ↑ Sen ↑ Spc ↑ HD ↓

All MRE 0.92 0.04 0.92 0.87 1.00 1.17 0.86 0.06 0.82 0.80 0.99 1.61 0.56 0.05 0.56 0.54 0.99 2.00

SWS+mag 0.91 0.04 0.91 0.87 1.00 1.19 0.85 0.06 0.81 0.78 0.99 1.64 0.55 0.05 0.56 0.54 0.99 2.01

SWS+ϕ 0.90 0.04 0.89 0.87 0.99 1.41 0.85 0.05 0.83 0.79 0.99 1.93 0.49 0.06 0.52 0.53 0.99 2.16

Mag+ϕ 0.91 0.04 0.91 0.88 0.99 1.23 0.87 0.05 0.85 0.84 0.99 1.66 0.57 0.03 0.57 0.55 0.99 1.86

Mag 0.91 0.05 0.91 0.87 0.99 1.15 0.87 0.05 0.84 0.84 0.99 1.45 0.57 0.05 0.57 0.52 0.99 1.81

ϕ 0.88 0.04 0.88 0.85 0.99 1.54 0.83 0.04 0.82 0.76 0.99 2.03 0.44 0.07 0.47 0.49 0.98 2.43

SWS 0.89 0.05 0.89 0.87 0.99 1.63 0.82 0.08 0.80 0.76 0.99 2.18 0.46 0.06 0.47 0.48 0.99 2.19

All MRI 0.80 0.09 0.78 0.91 0.98 2.37 0.73 0.06 0.71 0.56 1.00 2.80 0.51 0.09 0.53 0.56 0.99 3.42

T2w+ADC 0.80 0.09 0.78 0.91 0.98 2.34 0.72 0.05 0.70 0.55 1.00 2.86 0.49 0.09 0.52 0.55 0.99 3.56

T2w+DWI_b 0.81 0.09 0.80 0.90 0.98 2.04 0.74 0.06 0.72 0.58 1.00 2.63 0.40 0.08 0.41 0.41 0.99 3.82

ADC+DWI_b 0.80 0.09 0.75 0.88 0.98 2.25 0.670 .07 0.64 0.48 1.00 3.45 0.45 0.11 0.44 0.53 0.99 4.10

T2w 0.78 0.09 0.78 0.87 0.98 2.43 0.75 0.07 0.72 0.60 1.00 2.35 0.42 0.12 0.43 0.38 0.99 4.12

ADC 0.80 0.08 0.76 0.88 0.98 2.21 0.65 0.07 0.62 0.46 1.00 3.54 0.43 0.11 0.43 0.52 0.98 4.19

DWI_b 0.77 0.11 0.76 0.88 0.98 2.42 0.65 0.08 0.64 0.49 1.00 3.38 0.28 0.10 0.30 0.33 0.98 5.29

All MRE ave. 0.89 0.05 0.89 0.87 0.99 1.46 0.83 0.06 0.81 0.77 0.99 1.91 0.52 0.06 0.53 0.53 0.99 2.23

All MRI ave. 0.79 0.09 0.77 0.89 0.98 2.29 0.70 0.07 0.68 0.53 1.00 3.00 0.43 0.10 0.44 0.47 0.99 4.07

Figure 7.  Comparison of the performance of the two approaches: IMs with orange and UM with blue color. 
The left and right figures show the values of dice score and Hausdorff distance, respectively.
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In contrast to IMs, the UM could process any input combination of MRI/MRE maps without a need for 
retraining or fine-tuning the network. Similar to IMs, the UM also favored input combinations with rich anatomi-
cal detail, such as T2w and magnitude images. In all experiments, HD of the UM ranged from 1.15 to 5.29 mm, 
which is significantly inferior to IMs. Moreover, by showing the changes in DS and HD due to all possible input 
combinations for IMs and UM, Fig. 7 illustrates that both IMs and the UM had decent performance while IMs 
were slightly better. Nevertheless, given the robustness of the UM combined with decently good segmentation 

Figure 8.  Illustration of inaccurate segmentations: left column is the ground truth; middle is predicted masks 
and right is the overlap between ground truth and predicted masks. Rows from top to bottom, images of PG, PZ 
and CZ respectively.

Table 4.  Values obtained in PG, CZ and PZ regions of interest using ground truth and predicted masks. 
“mask” and “predicted” in the column headers refer to the ground truth and model output, respectively. T-test 
results between ground truth and predicted masks for PG, CZ, and PZ are reported in the right part of the 
table (based on segmentation results for the IMs using magnitude images as input).

Map

Pixel values (average ± standard deviation) T-test (significance at P<0.05)

PG mask
PG 
predicted CZ mask

CZ 
predicted PZ mask

PZ 
predicted PG P-value CZ P-value PZ P-value

SWS 1.28 ± 0.39 1.35 ± 0.4 1.25 ± 0.32 1.36 ± 0.33 1.39 ± 0.22 1.28 ± 0.22 0.87 0.81 0.83

mag 33.1 ± 10.46 36.56 ± 11.05 29.6 ± 7.85 34.03 ± 8.31 43.21 ± 7.2 39.7 ± 7.29 0.83 0.78 0.85

ϕ 0.61 ± 0.19 0.63 ± 0.19 0.64 ± 0.17 0.66 ± 0.17 0.58 ± 0.09 0.56 ± 0.09 0.91 0.88 0.87
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Table 5.  Values obtained in PG, CZ and PZ regions of interest using ground truth original and predicted 
masks. “mask” and “predicted” in the column headers refer to the ground truth and model output, respectively. 
T-test results between ground truth and predicted masks for PG, CZ and PZ are also reported in the right part 
of the table (based on segmentation results from UM and input images of mag).

Map

Pixel values (average ± standard deviation) T-test (significance at  P<0.05)

PG mask
PG 
predicted CZ mask

CZ 
predicted PZ mask

PZ 
predicted PG P-value CZ P-value PZ P-value

SWS 1.28 ± 0.39 1.29 ± 0.39 1.25 ± 0.32 1.32 ± 0.3 1.39 ± 0.22 1.27 ± 0.24 0.9 0.89 0.81

mag 33.1 ± 10.46 34.1 ± 10.6 29.6 ± 7.85 30.54 ± 7.0 43.21 ± 7.2 39.6 ± 8.05 0.95 0.95 0.85

ϕ 0.61 ± 0.19 .62 ± 0.19 0.64 ± 0.17 0.66 ± 0.16 0.58 ± 0.09 0.57 ± 0.11 0.99 0.92 0.95

Figure 9.  Different maps of the same patient. Second and forth rows show zoomed-in images of the first 
and third rows, respectively. Dotted red and blue lines highlight part of the segmentation for prostate and PZ, 
respectively and the rest of the delineation was omitted to show the actual pixel intensities.
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results, it is recommended to primarily apply IMs and to use the UM as a second opinion for automated prostate 
segmentation.

Exploiting MRE magnitude images for automatic segmentation instead of high-resolution in-plane 
T2-weighted MRI had the benefit of not requiring image registration and making full use of the anatomic and 
viscoelastic information contained in a single MRE dataset. This potentially stabilizes quantitative parameter 
extraction as any co-registration artifacts are avoided. As the ultimate proof of valid segmentations, viscoelasticity 
values averaged within volumes of PG, CZ, and PZ obtained from CNNs were not different from those obtained 
with manually segmented masks (see supplemental information). Thus, we here for the first time used the infor-
mation of the magnitude signal in prostate MRE, showing that is was fully sufficient for accurate segmentation, 
which may greatly enhance MRE of the prostate in the future.

Figure 8 shows a case where the model failed to achieve accurate segmentation. Inaccuracies appear to be 
attributable to under-segmentation and discontinuity. Under-segmentation is visible in both the entire prostate 
gland (first row) and the CZ (last row), where the model did not properly locate and delineate boundaries. Dis-
continuity can be seen in the PZ (middle row), where the model resulted in a mask with several unconnected 
neighboring areas. Many factors can contribute to inaccurate segmentation, including boundary ambiguity, 
partial volume effects, and tissue heterogeneity. Therefore, radiologists typically use 3D information, which is 
subjectively interpolated by eye to the ambiguous image slice. However, even including adjacent slices for train-
ing in a 2.5-D  approach51 or use of full 3D models does not necessarily lead to better segmentation performance 
due to partial volume  effects52 .

We will implement the proposed CNN-based segmentation on a server, which is currently used for MRE 
data processing (https:// bioqic- apps. chari te. de), in order to make it available to the research community. Our 
ultimate aim is to accomplish fully automated tabulation of prostate SWS and ϕ values based on multifrequency 
MRE data. Once installed, the Dense U-net will be trained using other sets of MRE data acquired with other 
scanners and MRE sequences in order to generalize its applicability for prostate segmentation. In a next step, 
we aim at automated segmentation of other organs including the liver, kidneys, and pancreas based on MRE 
magnitude images.

Although MRE of the prostate is not yet part of standard care imaging, the proposed segmentation tool may 
help to further integrate this innovative imaging marker into routine clinical practice. We are confident that MRE 
will add diagnostic value to the PIRADS system in the future as shown  in53. In addition, when enhanced with 
the segmentation option presented here, MRE may provide quantitative values on the mechanical consistency 
of prostate subzones as a reference for fully automated tumor classification.

Our study has limitations, including the small number of patients, which is attributable to fact that we per-
formed a proof-of-concept exploration of CNNs for MRE-based prostate segmentation. For further improvement 
of segmentation quality and generalization to other domains, future studies should use multicenter MRI/MRE 
data acquired with different imaging protocols. Finally, we assembled all data for training in a way that avoids 
image alignment and registration procedures. While this approach ensured robust results based on single sets 
of data, we cannot rule out that combinations of MRI and MRE images (e.g., magnitude and T2w) would have 
resulted in slightly better DS and HD scores.

In summary, Magnitude images of prostate MRE were used for automated segmentation of prostate subzones 
based on trained CNNs. As such, MRE data provide all information needed for extraction of viscoelasticity 
parameters and for delineation of the prostate regions for which those values are of interest for tabulation and 
automated classification of suspicious prostate lesions. Dense U-net achieved excellent segmentation results 
using both IMs and the UM and yielded MRE parameters that were not different from ground truth. Compared 
with standard image segmentation based on T2w images, MRE magnitude images proved to suffice, as demon-
strated by excellent Dice scores and Hausdorff dimension results. Quantitative maps of multiparametric MRI 
including those of DWI and viscoelasticity did not provide adequate anatomic information for learning-based 
prostate segmentation. Prostate MRE combined with Dense U-nets allows tabulating quantitative imaging mark-
ers without manual analysis and independent of other MRI sequences and thus has the potential to contribute 
to imaging-based PCa detection and classification.

Data availability
All images in this study were used retrospectively and were acquired in a previously reported population of 
BPH and PCa patients who underwent PI-RADS-compatible mpMRI and MRE. Our local ethical review board 
approved this study (IRB approved study), and all patients gave written in-formed consent. The segmented 
masks were done in house.
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