European Chemical Societies Publishing

Chemistry

Hot Paper

Trifluoromethyl Fluorosulfonate (CF₃OSO₂F) and Trifluoromethoxy Sulfur Pentafluoride (CF₃OSF₅) – Two Gaseous Sulfur(VI) Compounds with Insulating Properties

Paul Golz,^[a] Gesa H. Dreyhsig,^[a] Holger Pernice,^[a] Thomas Drews,^[a] Jan H. Nissen,^[a] Helmut Beckers,^[a] Simon Steinhauer,^[a] Anja Wiesner,^[a] and Sebastian Riedel^{*[a]}

In this work, we analyzed trifluoromethyl fluorosulfonate (CF₃OSO₂F) and trifluoromethoxy sulfur pentafluoride (CF₃OSF₅) regarding their potential use as dielectrics by investigating some of their intrinsic and extrinsic properties. Both compounds show a higher breakdown voltage than SF₆ with averaged relative breakdown voltages of 1.3 ± 0.2 for CF₃OSO₂F and 1.4 ± 0.2 for CF₃OSF₅ compared to SF₆ with 1.0. Like the dielectric

Introduction

Sulfur hexafluoride (SF_6) is one of the most potent greenhouse gases due to its extreme stability in the atmosphere. Most of its emission is human-made and mostly related to its usage as a dielectric.^[1,2] In applications like sound insulating glazing, car tires or in sport shoes, SF₆ has been replaced, by air, nitrogen or argon, but it is still used in various industrial processes due to its distinct properties.^[3,4] The European Parliament and the Council of the European Union (EU) have ordered the reduction of artificially produced fluorinated gases, particularly SF₆, in an EU regulation. An update in 2022 called for an increased phase out of SF₆ in all new electricity transmission equipment by 2031.^[5] However, this phase out proved challenging, as the industrially favored properties of SF₆ are also the reason for its exceptionally long atmospheric lifetime of about 3200 years and the resulting global warming potential (GWP) of around 23900 over a 100 year period.^[6-8] The high GWP value is based on the lifetime in the environment and on the ability to absorb IR irradiation. The absorption cross section for fluorinated molecules is often relatively high. Therefore, short lifetimes and low GWP values are becoming important properties in the search for gaseous dielectric media. SF₆ is a colorless, odorless,

 [a] P. Golz, G. H. Dreyhsig, H. Pernice, T. Drews, Dr. J. H. Nissen, Dr. H. Beckers, Dr. S. Steinhauer, Dr. A. Wiesner, Prof. Dr. S. Riedel Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie – Anorganische Chemie Freie Universität Berlin Fabeckstr. 34/36, 14195 Berlin (Germany) E-mail: s.riedel@fu-berlin.de

- Supporting information for this article is available on the WWW under https://doi.org/10.1002/chem.202400258
- © © 2024 The Authors. Chemistry A European Journal published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

 $(CF_3)_2$ CFCN, both compounds decompose during the breakdown process. The decomposition products were analyzed by IR spectroscopy and GCIR methods. Furthermore, the molecular structures of both gaseous compounds CF_3OSO_2F and CF_3OSF_5 have been determined by in situ crystallization, and their physical properties were determined as well.

and non-toxic gas at room temperature, with a high density, a high thermal conductivity, and a low viscosity. These properties enable an effective heat transfer through different media.^[3,8,9] Additionally, SF₆ is very temperature stable and shows a remarkably low reactivity towards other chemical compounds and is thus considered to be chemically inert.^[10,11]

A valuable approach to replace SF₆ in low (LV) and middle (MV) voltage applications is the use of nitrogen or dry air. Due to their low dielectric strengths, these replacements do not work for high voltage (HV) applications like gas-insulated switchgears (GISs) or gas-insulated transmission lines (GILs). The effective ability of SF₆ to suppress and extinguish electric arcs is based on its high dielectric strength and breakdown voltage, which are directly related to the electronegativity of its elements.^[12-14]

Fluorine, the element with the highest electronegativity, forms very stable compounds, and its gaseous compounds often show a high electrical resistance^[15] and high breakdown voltage.^[12] Consequently, various compounds which are nowadays studied as SF₆-substitutes mostly contain fluorine atoms e.g. CF₃I, C₂F₆, heptafluoroisobutyronitrile ((CF₃)₂CFCN, Novec heptafluoroisopropyl trifluoromethyl 4710), ketone ((CF₃)₂CFC(O)CF₃, Novec 5110) and heptafluoroisopropyl pentafluoroethyl ketone ((CF₃)₂CFC(O)CF₂CF₃, Novec 1230).^[3,6] Although these gases provide very high dielectric strengths, some of their properties, such as high boiling points, their decomposition products and possible toxicity, limit their usage on an industrial scale.^[16] Furthermore, such PFAS (per- and polyfluorinated alkyl substances) are environmentally problematic due to their unique properties. Therefore, the EU is considering a ban of PFAS with use-specific exemptions and some exclusions where $-CF_3$ or $-CF_2$ - groups are bound to specific heteroatoms.[17]

Accordingly, it is necessary for future dielectrics to be environmentally friendly by enabling a degradation of the compound in the atmosphere into harmless compounds.^[3,18] In

addition, they must be safe to use, harmless to the used infrastructure and facilitate a well-known industrial handling.^[2,19] Furthermore, specific intrinsic and extrinsic properties are required, including basic chemical and physical properties like high dielectric strength (DS), low boiling point and suitable reactivity, including the formation of harmless by-products.^[2,13,20] The required high dielectric strength depends on the ability to absorb free electrons and to form anions and thus on the compound-related electron affinity.^[12,21,22]

At the outset of this work, we were looking for gaseous compounds with insulating properties that would extend the range of dielectrics and could be considered as substituents for SF₆. Trifluoromethoxy sulfur pentafluoride (CF₃OSF₅) and trifluoromethyl fluorosulfonate (CF₃OSO₂F) are promising candidates as both compounds have high predicted DS values and high adiabatic electron affinities based on quantum chemical evaluations. Furthermore, these compounds show interesting properties such as boiling points of $-10 \,^{\circ}C^{[23]}$ (CF₃OSO₂F) and $-4.2 \,^{\circ}C^{[24]}$ (CF₃OSO₂F) and are accessible from starting materials such as CF₃OF and SF₄^[23] or CF₃OF and SO₂,^[24] respectively.

Results and Discussion

Synthesis

 CF_3OSF_5 and CF_3OSO_2F were prepared by modified literature procedures^[23,24] starting from CF_3OF and SF_4 or CF_3OF and SO_2 in a stainless steel autoclave (Scheme 1, a). Reactive species were quenched with soda lime. The gases were obtained in good yields (72% and 69%, respectively) by isothermal distillation. IR spectra recorded in the gas phase of both compounds are consistent with those in the literature.^[23,24]

Scheme 1. a) Synthesis of CF₃OSF₅ and CF₃OSO₂F starting from CF₃OF and SF₄ or SO₂, respectively, b) Arc plasma decomposition reactions of CF₃OSO₂F and CF₃OSF₅.

Solid State Structure

Both substances have low melting points (-156.5°C for CF₃OSO₂F and -161.6°C for CF₃OSF₅, Table 1). Crystals suitable for X-ray analysis were obtained by in situ crystallization. Their recorded molecular structures are in accordance with DFTcalculations. In CF₃OSO₂F (Figure 1, top), both the sulfur and the carbon atoms show a slightly distorted tetrahedral coordination environment with a geometry index of $\tau_4 = 0.96$ for carbon and $\tau_4 = 0.89$ for sulfur.^[25] Both moieties are connected via O1 with a C1–O1–S1 bond angle of 122.0(2)° and C1–O1 and O1–S1 bond distances of 141.7(4) and 157.3(2) pm. The distortion of the sulfur-based tetrahedron might be caused by the repulsion of the lone pairs of F1 with those of O2 and O3. This assumption is corroborated by the slightly longer S1-O2, S1-O3 and S1-F1 bond distances of 139.9(3), 139.0(3), and 152.7(2) pm, respectively, compared to the molecular structure of solid sulfuryl fluoride (SO_2F_2) with 138.6(2) for the S–O bonds and 151.4(2) pm for the S-F bonds.^[26] In the structurally related molecule CF₃OSO₂CF₃, the two terminal S–O bonds and the bridging S–O bond are with distances of 141.1(3), 141.4(4) and 160.7(3) pm, respectively, longer than in CF₃OSO₂F. On the other hand, the C1–O1 bond of CF₃OSO₂F is with 141.7(4) pm longer than the C-O bond in CF₃OSO₂CF₃ with 139.9(5) pm. Additionally, the bond angle O2-S1-O3 of 124.2(2)° shows similar values to the corresponding angles in SO₂F₂ and CF₃OSO₂CF₃ with 124.6(1)°

Figure 1. Molecular structures in the solid state of CF_3OSO_2F (top) and CF_3OSF_5 (bottom). Thermal ellipsoids are set at 50% probability. Selected bond lengths [pm] and angles [°] of CF_3OSO_2F : 141.7(4) (C1–O1), 157.3(2) (O1–S1), 139.9(3) (S1–O2), 139.0(3) (S1–O3); 152.7(2) (S1–F1), 121.9(2) (C1–O1–S1), 124.2(2) (O2–S1–O3), 106.8(2) (O2–S1–F1). Selected bond lengths [pm] and angles [°] of CF_3OSF_5 : 137.2(3) (C1–O1), 163.8(2) (O1–S1), 125.1(2) (C1–O1–S1).

and 123.5(2)°, respectively. This is also the case for the O2–S1–F1 bond angle of 106.8(2)° when compared to this angle in SO₂F₂ with 107.6(1)°^[26] and for the C1–O1–S1 bond angle of 121.9(2)° compared to CF₃OSO₂CF₃ with a value of 122.0(3)°.^[27]

The molecular structure of CF₃OSF₅ (Figure 1, bottom) shows a carbon-based tetrahedron (τ_4 = 0.95) and a sulfur-based octahedron, both connected by O1. The C1–O1–S1 bond angle of 125.1(2)° is widened, the O1–S1 bond distance of 163.8(2) pm longer and the C1–O1 bond of 137.2(3) pm shorter than that in CF₃OSO₂F. However, the C–F bonds of the CF₃ group and the S–F bonds show almost the same lengths in both compounds. Additionally, these S–F bond distances are similar to those in SF₆.^[28]

Gas Phase Data

The vapor pressures of CF₃OSO₂F and CF₃OSF₅ were measured in two temperature ranges by using different setups. The Antoine-parameters A, B and C (see Table S7) were determined using a multiple linear regression of the measured vapor pressure curves. The parameters are valid for the Antoineequation using p [bara] and T [K].^[29] The first range was chosen in a temperature window around the boiling points known from the literature, $-4.2 \degree C^{[24]}$ (CF₃OSO₂F) and $-10 \degree C^{[23]}$ (CF₃OSF₅). The measurements carried out led to a re-evaluation of the boiling points at $-5.5\,^\circ\text{C}$ (CF_3OSO_2F) and $-10.5\,^\circ\text{C}$ (CF₃OSF₅). In comparison, SF₆ has a sublimation point of $-63.8\,^\circ C^{[10]}$ and is therefore used as dielectric even at low temperatures. CF₃OSO₂F and CF₃OSF₅, like the Novec compounds, are more limited to higher temperatures. Using a setup for the determination of critical parameters (see SI, Figure S11), we measured the vapor pressures in a larger temperature range from low temperatures to temperatures above the critical points of the substances.

We were able to determine the critical points due to the visible change from the two-phase system (gas and liquid phase) into a supercritical fluid. The critical points were reached at $T_{\rm crit}$ = 110.7 ± 0.7 °C, and $p_{\rm crit}$ = 28.7 ± 0.1 bara for CF₃OSO₂F and at $T_{\rm crit}$ = 123.5 ± 0.8 °C, and $p_{\rm crit}$ = 32.2 ± 0.1 bara for CF₃OSF₅ (Table 1). Knowing the critical point of a substance, its *van der Waals*-constants a and b were estimated (see Table S4) using the *van der Waals*-equation.^[29]

The gas densities $\rho_{\rm gas}$ were determined to be 7.1 \pm 0.1 kg m^{-3} (CF_3OSO_2F) and 8.9 \pm 0.1 kg m^{-3} (CF_3OSF_5) at 26.0 °C

Table 1. Melting point ($T_{m,p}$), boiling point ($T_{b,p}$), gas phase density at 26 °C (ρ_{gas}) and critical parameters (T_{crit} and p_{crit}) of CF ₃ OSO ₂ F and CF ₃ OSF ₅				
	CF ₃ OSO ₂ F	CF ₃ OSF ₅		
<i>Τ</i> _{m.p.} [°C]	-116.4 ± 2.0	-142.0 ± 2.0		
<i>Т</i> _{ь.р.} [°С]	-5.5 ± 0.5	-10.5 ± 0.5		
$ ho_{ m gas}$ (26.0 °C) [kg m ⁻³]	7.1 ± 0.1	8.9±0.1		
T _{crit} [°C]	110.7 ± 0.7	123.5 ± 0.8		
p _{crit} [bara]	28.7±0.1	32.2±0.1		

and a pressure of 1013 mbar (Table 1). These gas phase densities are higher than those of SF₆ (6.0 \pm 0.1 kg m⁻³).

Quantum Chemistry

Quantum chemical calculations were performed to support the experimental data. Geometry optimizations of the structures on the B3LYP-D3/def2-TZVP level of theory provided consistent structures to those obtained by X-ray analysis and enabled the assignments of the gas-phase IR bands (see Table S1). Both optimized structures were used for a NBO analysis. Furthermore, evaluations at the BP86-D3/def2-QZVPP level of theory were used to predict DS values by the method of Rabie et al.[30] Obtained by DFT calculations of anionic, neutral, and cationic species, values for the electric dipole moment (μ) , the average static electronic polarizability (a), the adiabatic ionization energy (ε_i) and the number of electrons (N_e), showing high relative DS of 1.7 and 2.1 for CF₃OSO₂F and CF₃OSF₅, respectively, compared to SF₆ (1.0). In addition, higher adiabatic electron affinity values (ε_a) of -2.9 eV (CF₃OSF₅) and -2.4 eV (CF_3OSO_2F) compared to SF_6 (-2.1 eV) were also obtained.

Dielectric Strength and Decomposition Behavior

Based on calculated predictions, high DS values are expected for both compounds. One method to analyze the DS of a compound, is the determination of its breakdown voltage U_{BD} . Therefore, we developed a simplified method to determine the $U_{\rm BD}$ of different gases. The setup was realized by using a 250 mL flask with a Young valve and two electrodes with an adjustable distance facing each other. After filling the flask with a certain pressure of the gas, a voltage (AC, 230 V-10.5 kV, 50 Hz) was applied and increased, until an arc became visible between the electrodes (Figure 2). Measurements of the breakdown voltages $U_{\rm BD}$ as a function of the electrode spacing (Figure 3) were carried out with the gaseous dielectrics at an initial pressure of 0.1 bara and electrode distances between 0.2 and 1.0 cm. The U_{BD} of CF₃OSF₅ and CF₃OSO₂F showed better results compared to SF₆, demonstrating higher electrical resistances and thus higher dielectric strengths. The averaged relative insulation

Figure 2. Experimental setup for the determination of dielectric properties during an arc event.

Chem. Eur. J. 2024, 30, e202400258 (3 of 7)

© 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

Research Article doi.org/10.1002/chem.202400258

Figure 3. Breakdown voltages U_{BD} [kV] as a function of the distance between the electrodes $d_{\text{eldist.}}$ [cm] used for CF₃OSO₂F (\blacktriangle), CF₃OSF₅ (\bigcirc) and SF₆ (\bigtriangledown) at an initial pressure of p_i =0.1 bara.

strength of CF₃OSF₅ (1.4±0.2) and CF₃OSO₂F (1.3±0.2) are lower than the predicted ones. Nevertheless, the values are higher than for SF₆, which is set to 1 by definition. The higher DS values are in accordance with the higher gas densities compared to SF₆, as the electrical resistance of a gas is roughly proportional to its density.^[31] Potential SF₆ substitutes with higher insulation characteristics than SF₆, such as (CF₃)₂CFCN (2.2) and (CF₃)₂CFC(O)CF₃ (2.0), already exist.^[3] However, potential SF₆ substitutes must also provide adequate decomposition characteristics.

As already mentioned, electric arcs can appear during switching operations of high voltages. These are high energy events where the dielectric medium gets ionized and temperatures around 10,000 K are possible.^[16] Under these extreme conditions, SF₆ splits into several sulfur fluoride species like $[SF_5]^{\bullet}$ or SF_4 and mainly F^{\bullet} radicals inside the arc plasma. Extinguishing this arc will lead to a rapid, thermodynamically favored recombination of these molecules to SF₆. To a lesser extent, $[SF_5]^{\bullet}$ radicals can recombine to the highly toxic S_2F_{10} , and in the presence of H_2O or $O_{2\prime}$ other toxic compounds like $\mathsf{SF}_{4\prime}\ \mathsf{SO}_2\mathsf{F}_{2\prime}$ or HF can be formed. Due to the favored recombination to SF₆, the overall decomposition is rather low.^[3,16] For other dielectrics such as (CF₃)₂CFCN, the decomposition is much more favored. A mixture of (CF₃)₂CFCN (53%) in air (47%) shows a degradation of the nitrile of 61.7% after 200 breakdown processes with a duration of ~10 ms each, while only a small amount (1.6%) of SF₆ is decomposed under the same conditions.^[32] This can be explained by a lower recombination rate of the more complex nitrile and the thermodynamically favored formation of other reaction products. Some of the decomposition products like CF_4 , C_2F_6 , or C_2N_2 have a high GWP, while several are also highly toxic like CF₃CN, C₄F₈, and HF. This leads to a drastically increased acute toxicity with a lethal concentration (LC₅₀) of the nitrile mixture that is around 1100 times lower than that of pure SF_6 after 200 breakdown processes.^[32]

Chemistry Europe

European Chemical Societies Publishing

To analyze the decomposition behavior of CF₃OSO₂F and CF₃OSF₅, experiments were conducted at their breakdown voltages. The gas was exposed to a stable arc over a period of 10 s at an initial pressure of p_i =0.1 bara, which corresponds to 1000 breakdown processes with a duration of 10 ms each. IR spectra of the gas phase after the arc revealed the partial decomposition of CF₃OSF₅ and CF₃OSO₂F. The undecomposed portion φ of the dielectric determined after discharge depends on the electrode distance (Figure 4). At larger distances between the electrodes, φ decreases in breakdown processes, which corresponds to *Paschen*'s law.^[21,33] While the decomposition of CF₃OSF₅ with φ =19% is already well advanced at electrode distances of \geq 0.8 cm, the decomposition of CF₃OSO₂F is less favored, as the undecomposed portion was φ =42% at the largest electrode spacing of 1.0 cm used (Figure 4).

IR spectra of the gas mixture after the electrical breakdown in gaseous CF₃OSF₅ revealed CF₂O and SF₆ as main decomposition products (Scheme 1, b). The formation of SF₆ during the decomposition process significantly limits the suitability of this compound as an SF₆ substitute. CF₃OSO₂F shows similar properties in terms of boiling point and a good DS value as CF₃OSF₅, but the tendency to form SF₆ during arcing events should be lower due to the lower fluorine but higher oxygen content. IR spectra of the gas mixture formed after the electrical breakdown revealed CF₂O and SO₂F₂ as the main decomposition products (Scheme 1, b). Both compounds are toxic while SO₂F₂ is also a greenhouse gas. However, as rather reactive species, these products can be hydrolyzed, especially with basic media like soda lime. CF₃OSO₂F itself is quite stable towards hydrolysis and was only partially hydrolyzed after contact to 5 M NaOH at 100 °C for 39 h, as reported by Wayne et al.^[24] This gives CF₃OSO₂F a clear advantage over other SF₆ substitutes currently

Figure 4. Undecomposed amount of dielectric φ [%] after arc-exposition as a function of the electrode distance $d_{\text{el.dist.}}$ [cm] for CF₃OSO₂F (\blacktriangle) and CF₃OSF₅ (\bigcirc).

Chem. Eur. J. 2024, 30, e202400258 (4 of 7)

 $\ensuremath{\mathbb{C}}$ 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

in use, whose decomposition products can mostly not be hydrolyzed.

Decomposition Pathways

CF₃OSF₅ and CF₃OSO₂F decompose in a similar way during arcing events into two main species each (cf. Scheme 1, b). For CF₃OSO₂F, this can mainly be explained by a labile S–O bond. NBO analysis shows that the lowest unoccupied molecular orbital can be regarded as the σ^* -bond orbital between the sulfur atom and the bridging oxygen atom (Figure 5, left). The formation of [CF₃O][•] and [SO₂F][•] radicals seems to be feasible. These can either recombine, or the [CF₃O][•] radical eliminates an F[•] radical which then reacts with the [SO₂F][•] radical under formation of SO₂F₂ (Scheme 2, a). Transferring this tentative mechanism to CF₃OSF₅ would also explain the decomposition products SF₆ and CF₂O. However, NBO analysis of CF₃OSF₅ reveals a LUMO mainly localized at the σ^* -bond orbital between the sulfur atom and the apical fluorine atom (Figure 5, right). This suggests a mechanism in which the dissociation into F[•] and [CF₃OSF₄][•] radicals is favored. [CF₃OSF₄][•] could then decay into [CF₃O][•] radicals and SF₄. The reaction between these two species could lead to the formation of SF₆ and CF₂O (Scheme 2, b).

Figure 5. Quantum chemical calculations of the lowest unoccupied natural bond orbitals (NBO) at B3LYP–D3/def2-TZVP level of theory of CF_3OSO_2F (left) and CF_3OSF_5 (right).

a) CF ₃ OSO ₂ F	<i>U</i> [kV]	[CF ₃ O]●	+	[SO ₂ F]•
[CF ₃ O]●		CF ₂ O	+	[F]•
[F] • + [SO ₂ F]•	>	SO_2F_2		
b) CF ₃ OSF ₅	<i>U</i> [kV]	[CF ₃ OSF ₄]	•+	[F]•
[CF ₃ OSF ₄] [●]		[CF ₃ O]●	+	SF ₄
[CF ₃ O] [●]		CF ₂ O	+	[F]•
2 [F] [•] + SF ₄	>	SF_6		

Scheme 2. Tentative decomposition reaction pathways of a) $\mathsf{CF}_3\mathsf{OSO}_2\mathsf{F}$ and b) $\mathsf{CF}_3\mathsf{OSF}_5.$

Quantum chemical calculations at the B3LYP–D3/def2-TZVP level of theory provide reaction enthalpies of $-10.0 \text{ kJ mol}^{-1}$ and $-28.2 \text{ kJ mol}^{-1}$ for these decomposition pathways of CF₃OSO₂F and CF₃OSF₅, respectively (cf. Scheme 1). Although both reaction sequences are slightly exothermic, the activation barrier for their decomposition appears to be high. However, it can be overcome in an arc with high energy.

Conclusions

Trifluoromethyl fluorosulfonate (CF₃OSO₂F) and trifluoromethoxy sulfur pentafluoride (CF₃OSF₅) were (re-)evaluated with regard to their intrinsic and extrinsic properties in the solid, liquid and gas phase. We were able to determine the molecular structures in the solid state for both CF_3OSO_2F (b.p.: $-5.5^{\circ}C$) and CF_3OSF_5 (b.p.: -10.5 °C). Measurements of the liquid and the gas phase led to the determination of their critical parameters (T_{crit} and p_{crit}), their van der Waals-constants a and b, and their Antoine-parameters A, B, and C. With averaged relative breakdown voltages of 1.3 (CF₃OSO₂F) and 1.4 (CF₃OSF₅), both substances show better insulation properties than SF₆ and are comparable to (CF₃)₂CFCN.^[16] All three substances (CF₃OSO₂F, $\mathsf{CF}_3\mathsf{OSF}_5\text{,}$ and $(\mathsf{CF}_3)_2\mathsf{CFCN}\text{)}$ show higher decomposition rates than SF₆ during arcing events. CF₃OSF₅ decomposes into SF₆ which affects its potential use as an SF₆ replacement. In contrast, CF₃OSO₂F is more stable and decomposes into the hydrolysable compounds CF₂O and SO₂F₂ during arcing events. Due to the short perfluorinated chains, CF₃OSO₂F and CF₃OSF₅ can be considered as degradable materials and are exempt from the planned PFAS ban. For their potential use as dielectrics, further studies will be conducted to evaluate their toxicity, GWP, or their compatibility with materials.

Experimental Section

Reagents and Analytical Techniques

All gases were handled using standard Schlenk techniques and oil pump vacuum up to $10^{-3}\,mbar.$ Commercially available SO₂ (Linde), SF₄ (abcr), SF₆ (Linde) and R134a (Linde) were used without further purification. CF₃OF was prepared according to a literature procedure. $^{[34]}$

X-ray diffraction measurements were performed on a Bruker D8 Venture diffractometer with a CMOS area detector using $CuK\alpha$ radiation. Single crystals were obtained using in situ crystallization and selectively melting of the substances in capillaries installed on the diffractometer in a cooled nitrogen stream at $-148\,^\circ\text{C}$. The structures were solved using the ShelXT structure solution program using intrinsic phasing and refined with the ShelXL refining package using least-squares minimization by using OLEX2. For graphical representations, the programs Diamond 4 and POV-Ray 3.7 were used. IR spectra were recorded with eight scans and a resolution of 4 cm⁻¹ using a Bruker Vector 22 FTIR spectrometer or a Thermo Fisher Scientific Nicolet™ iS50 FTIR spectrometer in combination with a Thermo Fisher Scientific TRACE[™] 1310 GC-Analyzer gas chromatograph. The programs OPUS 7.5 and OMNIC 48 were used for the evaluation of the recorded spectra, and Origin 2022 for the graphical representation. NMR spectra were recorded

using a JEOL 400 MHz ECZR or ECS spectrometer and all chemical shifts are referenced using the Ξ values given in the *IUPAC* recommendations of 2008 and the ²H signal of the deuterated solvent as internal reference.^[35] For external locking, acetone-d₆ was flame sealed in a glass capillary and the lock oscillator frequency was adjusted to give $\delta({}^{1}\text{H}) = 7.26$ ppm for a CHCl₃ sample locked on the capillary. For strongly coupled spin systems all chemical shifts and coupling constants are reported as simulated in gNMR.^[36] MestReNova 14.2 was used for processing the spectra and for their graphical representation. Quantum chemical calculations were conducted using program Orca 5.0.3^[37] on the HPC system provided by the ZEDAT (Freie Universität Berlin, Curta).^[38] The B3LYP^[39] or BP86^[40] functionals (with D3BJ^[41]) were used with the basis sets def2-TZVP or def2-QZVPP.^[42] For the NBO analysis the software extension NBO 7.0.4^[43] was used.

General Synthesis: Reactions were carried out in a 500 mL stainless steel autoclave (Model IV, Carl Roth) of 740 mL (gas) capacity equipped with a 100 bar bursting disk. The autoclave was tempered by a silicon oil bath and an electric magnetic stirrer (*IKA® RCT standard safety control*, IKA-Werke, Staufen im Breisgau, Germany) for stirring and heating. After the reaction the autoclave was cooled to room temperature and the gaseous material was released through an U-shaped stainless-steel tube filled with soda lime into a dry ice cooling trap. To prevent the product from decomposition the temperature of the soda lime was kept below 60 °C. The raw material was then condensed into a liquid nitrogen cooled trap by applying a vacuum (1×10⁻³ mbar). The products were obtained by fractional isothermal distillation and stored in stainless steel vessels.

CF_3OSF_5

54 g (0.5 mol, 1 eq.) SF₄ and 53 g (0.51 mol, 1.02 eq.) CF₃OF were condensed into the autoclave and after warming to room temperature it was heated to 85 °C for 48 h. The product (76.1 g, 0.36 mmol, 72%) was obtained as colorless gas via distillation. *T*_{b,p}. –10.5 °C. ¹⁹F NMR (377 MHz, neat, external [D₆]acetone, 21 °C): δ (ppm) = 66.1 (m, 4F₈, ²J(¹⁹F₈, ¹⁹F₄) = 153.1 Hz, ⁴J(¹⁹F₈, ¹⁹F_{CF}) = 10.0 Hz), 58.9 (m, 1F_A, ²J(¹⁹F_A, ¹⁹F_B) = 153.1 Hz, ⁴J(¹⁹F₆, ¹⁹F_{CF}) = 1.4 Hz), -59.5 (dquint, 3F, OCF₃, ⁴J(¹⁹F_A, ¹⁹F_{CF}) = 1.4 Hz, ⁴J(¹⁹F₈, ¹⁹F_{CF}) = 10.0 Hz, ¹J(¹⁹F_{CF}, ¹³C) = 266 Hz). ¹³C NMR (101 MHz, neat, external [D₆]acetone, 21 °C): δ (ppm) = 119.6 (qquint, ¹J(¹³C, ¹⁹F_{CF}) = 266 Hz, ³J(¹³C, ¹⁹F) = 2.1 Hz). ¹⁷O NMR (54 MHz, neat, external [D₆]acetone, 21 °C): δ (ppm) = 212 (s). ³³S NMR (31 MHz, neat, external [D₆]acetone, 21 °C): δ (ppm) = -182 (sext, ¹J(³³S, ¹⁹F) = 250 Hz).

CF_3OSO_2F

4.6 g (72 mmol, 1 eq.) SF₄ and 13.8 g (133 mmol, 1.85 eq.) CF₃OF were condensed into the autoclave and after warming to room temperature it was heated to 190 °C for 48 h. The product (8.4 g, 50 mmol, 69%) was obtained as a colorless gas via distillation. $T_{\text{b.p.}}$ – 5.5 °C ¹⁹F NMR (377 MHz, neat, external [D₆]acetone, 21 °C): δ (ppm) = 45.0 (q, 1F₅, ⁴J(¹⁹F, ¹⁹F) = 6.7 Hz), -58.4 (d, 3F_c, ⁴J(¹⁹F, ¹⁹F) = 6.7 Hz, ¹J(¹⁹F, ¹³C) = 273 Hz). ¹³C NMR (101 MHz, neat, external [D₆]acetone, 21 °C): δ (ppm) = 118.8 (q, ¹J(¹³C, ¹⁹F) = 273 Hz). ¹⁷O NMR (54 MHz, neat, external [D₆]acetone, 21 °C): δ (ppm) = 191 (s, OCF₃), 164 (d, 20, SO₂F²J(¹⁷O, ¹⁹F) = 35 Hz).

Determination of Intrinsic Properties

Densities were analyzed by weighing the mass of the gas in a defined volume depending on its pressure and temperature. Critical points were determined optically by observing an opalescence between the coexisting phases of the substance using a pressure-

resistant fused quartz tube inside a temperature-adjustable autoclave with quartz windows. The same setup was used for measurements of vapor pressure curves above 1 bara while measurements at lower pressures were performed using a classical Schlenk tube. Melting points were determined by placing the sample, in a sealed glass ampoule, in a beaker containing liquid nitrogen and liquified propane which was slowly heated so that the substance liquified evenly.

Determination of Extrinsic Properties

Electrical discharge properties were determined by measuring the breakdown voltages of the substance of interest at an initial pressure of p_i =0.1 bara and at different distances between two electrodes. Insulation strengths of the investigated gases relative to SF₆ were calculated as a function of the electrode distance. Decomposition products of CF₃OSO₂F and CF₃OSF₅ were analyzed by IR spectroscopy after exposure to an electrical arc for a defined period of ten seconds. In addition to measuring IR spectra of the product mixtures immediately after the electrical discharge, these mixtures were also analyzed with a GCIR system by separating them into their individual components and characterizing them using IR spectroscopy.

Deposition Numbers 2308232 (for CF_3OSO_2F) and 2308230 (for CF_3OSF_5) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.

Supporting Information

The authors have cited additional references within the Supporting Information.^[44]

Acknowledgements

The authors would like to thank the HPC Service of ZEDAT, Freie Universität Berlin, for computing time and gratefully acknowledge the assistance of the Core Facility BioSupraMol supported by the DFG. P.G. and G.D. thank Nils Wehowsky for help designing the TOC graphic. Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interests

This work was carried out partly in cooperation with Solvay Fluor GmbH, Hannover. At the time this work was carried out, H. Pernice was employed by Solvay Fluor GmbH. This collaboration resulted in a patent,^[45] in which the Solvay Fluor GmbH, FU-Berlin, as well as the authors S. Riedel, H. Beckers, S. Steinhauer, and H. Pernice hold shares. All other authors declare no conflict of interest.

Chem. Eur. J. 2024, 30, e202400258 (6 of 7)

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords: trifluoromethoxylated sulfur(VI) fluorides \cdot SF₆ substitutes \cdot dielectric properties \cdot decomposition pathways \cdot solid state structures

- a) L. Stuart, J. Luterbacher, L. Paterson, R. Devillier, S. Castonguay, United in Science 2022. A multi-organization high-level compilation of the most recent science related to climate change, impacts and responses, 2022;
 b) L. K. Gohar, K. P. Shine, Weather 2007, 62, 307; c) P. Widger, A. Haddad, Energies 2018, 11, 2037.
- [2] L. G. Christophorou, J. K. Olthoff, R. J. van Brunt, IEEE Electr. Insul. Mag. 1997, 13, 20.
- [3] S. Tian, X. Zhang, Y. Cressault, J. Hu, B. Wang, S. Xiao, Y. Li, N. Kabbaj, *AIP Adv.* 2020, 10, 050702.
- [4] a) J. Harnisch, W. Schwarz, Costs and the impact on emissions of potential regulatory framework for reducing emissions of hydrofluorocarbons, perfluorocarbons and sulphur hexafluoride, 2003; b) P. G. Simmonds, M. Rigby, A. J. Manning, S. Park, K. M. Stanley, A. McCulloch, S. Henne, F. Graziosi, M. Maione, J. Arduini, S. Reimann, M. K. Vollmer, J. Mühle, S. O'Doherty, D. Young, P. B. Krummel, P. J. Fraser, R. F. Weiss, P. K. Salameh, C. M. Harth, M.-K. Park, H. Park, T. Arnold, C. S. Rennick, L. P. Steele, B. Mitrevski, R. H. J. Wang, R. G. Prinn, Atmos. Chem. Phys. 2020, 20, 7271.
- [5] a) European Commission Press release Green Deal: Phasing down fluorinated greenhouse gases and ozone depleting substances, Brussels, 2022; b) Regulation (EU) No 517/2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006, Off. J. Eur. Communities: Legis. 2014, L150, 195.
- [6] J. Owens, A. Xiao, J. Bonk, M. DeLorme, A. Zhang, *Energies* 2021, 14, 5051.
- [7] M. Melinda, M. Manning, D. Qin, S. Solomon, K. Averyt, M. Tignor, H. L. Miller, Jr., Z. Chen, *IPCC*, 2007: Climate Change 2007. The Physical Science Basis, Cambridge (UK) and New York (USA), 2007.
- [8] T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley, *IPCC, 2013: Climate Change 2013. The Physical Science Basis*, Cambridge (UK) and New York (USA), 2013.
- [9] A. A. Lindley, A. McCulloch, J. Fluorine Chem. 2005, 126, 1457.
- [10] A. F. Holleman, N. Wiberg, Lehrbuch der Anorganischen Chemie, de Gruyter, Berlin, 2007.
- [11] a) E. Riedel, C. Janiak, Anorganische Chemie, de Gruyter, Berlin, Boston, 2015; b) P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, F. A. Armstrong, Shriver & Atkins' inorganic chemistry, Oxford Univ. Press, Oxford, 2010.
- [12] W. M. Leeds, T. E. Browne, A. P. Strom, Trans. Am. Inst. Electr. Eng. Part 3 1957, 76, 906.
- [13] L. G. Christophorou, *Electron-Molecule Interactions and Their Applications*. *Volume 2*, Elsevier Science, Burlington, **1984**.
- [14] E. E. Kunhardt, L. H. Luessen (Eds.) NATO Advanced Science Institutes Series, 89a, Springer, Boston, MA, 1983.
- [15] a) A. Haupt (Ed.) Organic and Inorganic Fluorine Chemistry, de Gruyter, Berlin, Boston, 2021; b) P. R. Howard, Proc. Inst. Electr. Eng., Part A UK 1957, 104, 139.

- [16] X. Li, H. Zhao, A. B. Murphy, J. Phys. D 2018, 51, 153001.
- [17] BAUA (DE), RIVM (NL) KEM (SE), NEA (NO), DEPA (DK), Annex XV Restriction Report Per- and Polyfluoroalkyl Substances (PFAS), Helsinki, 2023.
- [18] M. Rabie, C. M. Franck, Environ. Sci. Technol. 2018, 52, 369.
- [19] C. M. Franck, J. Engelbrecht, M. Muratović, P. Pietrzak, P. Simka, B&H Electrical Engineering 2021, 15, 19.
- [20] R. C. Tolman, Phys. Rev. 1917, 9, 237.
- [21] M. S. Naidu, V. Kamaraju, *High voltage engineering*, McGraw-Hill, New York, **1996**.
- [22] A. Chachereau, A. Hösl, C. M. Franck, J. Phys. D 2018, 51, 495201.
- [23] G. Pass, H. L. Roberts, Inorg. Chem. 1963, 2, 1016.
- [24] W. P. van Meter, G. H. Cady, J. Am. Chem. Soc. 1960, 82, 6005.
- [25] L. Yang, D. R. Powell, R. P. Houser, Dalton Trans. 2007, 955.
- [26] D. Mootz, A. Merschenz-Quack, Acta Crystallogr. Sect. C 1988, 44, 924.
- [27] T. Knuplez, L. N. Schneider, T. Preitschopf, Y. K. J. Bejaoui, L. Zapf, N. Schopper, K. A. M. Maibom, J. A. P. Sprenger, F. Gehrke, S. Lorenzen, R. Graf, R. Bertermann, I. Fischer, N. V. Ignat'ev, M. Finze, *Chem. Eur. J.* 2023, *29*, e202302701.
- [28] L. S. Bartell, S. K. Doun, J. Mol. Struct. 1978, 43, 245.
- [29] P. W. Atkins, J. de Paula, Atkins' Physical chemistry, Oxford University Press, Oxford, New York, 2006.
- [30] M. Rabie, D. A. Dahl, S. M. A. Donald, M. Reiher, C. M. Franck, *IEEE Trans. Dielectr. Electr. Insul.* 2013, 20, 856.
- [31] L. G. Christophorou, J. K. Olthoff, Gaseous Dielectrics VIII, Springer, Boston, MA, 1998.
- [32] F. Ye, X. Zhang, Y. Li, Q. Wan, J.-M. Bauchire, D. Hong, S. Xiao, J. Tang, *High Volt.* 2022, 7, 856.
- [33] L. Ledernez, F. Olcaytug, G. Urban, Contrib. Plasma Phys. 2012, 52, 276.
- [34] R. C. Kennedy, G. H. Cady, J. Fluorine Chem. 1973, 3, 41.
- [35] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, P. Granger, R. E. Hoffman, K. W. Zilm, Pure Appl. Chem. 2008, 80, 59.
- [36] Adept Scientific, gNMR V 5.0, 2005.
- [37] F. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73.
- [38] L. Bennett, B. Melchers, B. Proppe, Curta: A General-purpose High-Performance Computer at ZEDAT, Freie Universität Berlin, 2020, Freie Universität Berlin, DOI:10.17169/refurbium-26754.
- [39] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- [40] A. D. Becke, Phys. Rev. A 1988, 38, 3098.
- [41] a) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456;
 b) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- [42] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
- [43] E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, F. Weinhold, *NBO* 7.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2018.
- [44] a) D. Atack, W. G. Schneider, J. Phys. Chem. 1951, 55, 532; b) A. Diefenbacher, M. Türk, Fluid Phase Equilib. 2001, 182, 121; c) K. Morofuji, K. Fujii, M. Uematsu, K. Watanabe, Int. J. Thermophys. 1986, 7, 17.
- [45] J. Fabre, F. Hardinghaus, H. Pernice, S. Hasenstab-Riedel, H. Beckers, S. Steinhauer, T. Schlöder PCT Int. Appl. (2017), WO 2017093510 A1.

Manuscript received: January 20, 2024 Accepted manuscript online: February 8, 2024 Version of record online: February 27, 2024