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Braid-protected topological band structures with unpaired exceptional points
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We demonstrate the existence of topologically stable unpaired exceptional points (EPs), and construct simple
non-Hermitian (NH) tight-binding models exemplifying such remarkable nodal phases. While fermion doubling,
i.e., the necessity of compensating the topological charge of a stable nodal point by an antidote, rules out a direct
counterpart of our findings in the realm of Hermitian semimetals, here we derive how nonommuting braids of
complex energy levels may stabilize unpaired EPs. Drawing on this insight, we reveal the occurrence of a single,
unpaired EP, manifested as a non-Abelian monopole in the Brillouin zone of a minimal three-band model. This
third-order degeneracy represents a sweet spot within a larger topological phase that cannot be fully gapped
by any local perturbation. Instead, it may only split into simpler (second-order) degeneracies that can only gap
out by pairwise annihilation after having moved around inequivalent large circles of the Brillouin zone. Our
results imply the incompleteness of a topological classification based on winding numbers, due to non-Abelian
representations of the braid group intertwining three or more complex energy levels, and provide insights into
the topological robustness of non-Hermitian systems and their non-Abelian phase transitions.
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Following the experimental discovery of Dirac and Weyl
semimetals in solid state materials [1–5], Bloch bands with
topologically stable nodal points have become a major focus
of research far beyond the field of condensed matter physics
[1–12]. In crystalline systems, Bloch’s theorem requires the
periodicity of the band structure in reciprocal space. As a con-
sequence, nodal points carrying a topological charge must be
compensated for to allow the eigenstates to seamlessly fit to-
gether at the zone boundaries of the first Brillouin zone (BZ).
A prominent example along these lines is provided by stable
Weyl nodes [6,13,14], which are required to occur in pairs
with opposite chirality. Under the name fermion doubling,
such constraints have been discussed for decades [15,16].

In dissipative systems described by effective non-
Hermitian (NH) operators, exceptional points (EPs) [17–22]
represent the generic counterpart of diagonalizable degenera-
cies. Since stable EPs may carry topological charge in the
sense of a relative winding in the complex energy plane,
analogous constraints to the aforementioned fermion dou-
bling have been reported based on Z discriminants [23].
However, as an additional twist, EPs are known to be of
intrinsic non-Abelian nature, as characterized by the braid
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group [24–29]. This entails unique NH topological semimetal
phases that elude elementary winding number descriptions
[30–34]. The fusion of nodal points, a phase transition, is
topologically path dependent [35]. Here, challenging the in-
tuitive notion of fermion doubling, we reveal the possibility
of topologically stable gapless phases in periodic systems that
can host unpaired EPs, i.e., nodal points that are not gapped
out when fusing. We showcase this in a tight-binding model
hosting only two EPs in its BZ whose topological charges
do not cancel. Instead of annihilating, these unpaired EP2s
fuse to a single nontrivial threefold degeneracy (EP3). We
find that these NH topological band structures are enabled by
noncommuting braids of the complex energy levels along non-
contractible loops in the BZ, which remove the need for the
EPs’ topological charges to pair up and cancel (see Fig. 1 for
an illustration). The real part of the spectral gap closes along
so-called Fermi arcs, which conventionally form open lines in
the BZ that terminate in degeneracies. In the phases outlined
here they can instead form closed and even noncontractible
loops in the BZ. The only way to adiabatically gap out the
nodal points is to move them along nontrivial loops in the
BZ before annihilation (see Fig. 3). Transitions between these
NH phases are thus topological, and correspond to braiding of
nodal points in the BZ.

Admissible EPs by the braid group. In the vicinity of EPs,
the eigenvalues are generally not single valued. This is mani-
fest in the braiding of the complex energies when encircling an
EP, and endows these degeneracies with a topological charge
[25,26]. An illustrative example is an EP2 with dispersion
E = ±√

kx+iky, where two eigenvectors and eigenvalues coa-
lesce. The two energy levels are swapped counterclockwise
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FIG. 1. Illustration of key results. (a) The braiding of complex
energy levels as a function of lattice momentum is at the heart of our
analysis. (b) In the two-dimensional Brillouin zone, NH phases are
characterized by two braid elements (a, b) along the noncontractible
loops. For gapped systems, a and b commute (group commutator
aba−1b−1 = [a, b] = 1). (c) Minimal model of a band structure with
a nontrivial such commutator, hosting two unpaired EP2s. (d) While
the unpaired EP2s may merge into a single EP3, the nontrivial braid
topology implies that the system remains gapless. EPs are denoted
by red dots and base points of loops by ∗ in all panels.

along a counterclockwise path around the EP. General N-fold
degeneracies carry braid invariants with N strands. The corre-
sponding braid group BN is generated by elementary braids σ j

(1 � j � N − 1) that swap Ej and Ej+1 counterclockwise in
the complex plane. They satisfy the relations [36]

σ j+1σ jσ j+1 = σ jσ j+1σ j, σiσ j = σ jσi (|i − j| > 1). (1)

In contrast to standard Hermitian degeneracies such as Weyl
points [37], EPs are associated with non-Abelian groups,
similar to topological defects in biaxial nematics [35,38] or
multigap phases [39–43]. This comes from the non-Abelian
fundamental group π1 of the space WN formed by gapped
non-Hermitian Hamiltonians [25,26,44]. The combination or
split of EPs can be described through the standard group
action [35]. As it is non-Abelian, one needs to be careful
in fixing a base point ∗ when doing the group product. We
call an EP trivial when a small loop around it corresponds to
a trivial braid of eigenvalues, and nontrivial otherwise. This
terminology is motivated by the fact that only trivial EPs can
be gapped out by small perturbations.

We denote the homotopy class of each loop γ j around the
EP j with a common base point ∗ as [γ j] ∈ BN . According
to the topology of a torus, the total EPs in the BZ satisfy a
non-Abelian sum rule [45,46] [illustrated in Fig. 2(a)],

[γ1] · [γ2] · · · [γn] = aba−1b−1 ≡ [a, b], (2)

where [a, b] is the group commutator of two elements a, b
in BN . They represent how the energy is braided along the
meridian and the longitude of the torus (see Fig. 1). As a result
of this sum rule, models with a nontrivial commutator [a, b]
must contain degeneracies; they cannot be gapped.

As the group BN is non-Abelian and not free, the sum
rule can sometimes be hard to apply in practice. We can

extract an easier necessary condition for EPs by taking the
Abelianization π1/[π1, π1], which is the first homology group
H1(WN ) [47]. Since all generators σ j are conjugate to each
other, the Abelianization of the braid group is Z [36]. The
Abelianized element [γ ]A can be intuitively understood as the
number of band permutations along a braid (the total number
of σ j’s in a braid). An nth root EP [48–50] has [γ ]A = n − 1.
The right-hand side of Eq. (2) is the zero element 0 in the
homology group. The Abelianized sum rule is

∑
j

[γ j]A = 0, (3)

where the sum represents the usual group product operation
for Abelian groups. Equation (3) asserts that we cannot have
a single EP with nth root dispersion in a BZ. Its Abelianized
charge must be compensated, e.g., by a conjugate EP that has
[γ ]A = −(n − 1).

However, if the net number of elementary braids around a
set of EPs is zero, they satisfy the Abelianized sum rule and
can occur in a BZ. Depending on whether a and b commute,
their topological charges can nevertheless be nontrivial and
need not cancel out. This is a significant difference from
Abelian degeneracies, where periodic boundary conditions
necessitate a trivial bulk. In the following parts, we explicitly
show the existence of nontrivial unpaired EPs. In the Supple-
mental Material we further present tight-binding models that
feature topologically trivial single EPs of arbitrary order in
their BZ [44]. They can be created locally and under perturba-
tion either split into nontrivial paired EPs or get gapped out.

Unpaired EPs. EPs without partners compensating their
braid charge can only exist for models with three or more
bands, since the group B2 for two-band systems is Abelian,
rendering Eqs. (2) and (3) identical. In the case of three bands,
all braids are generated by σ1, σ2 and the relation (1). Those
that can be written as a commutator contain equal numbers
of crossings σi and inverse crossings σ−1

j . A simple nontrivial

such braid is B = σ−1
2 σ1. By relation (1), it can be written as

a commutator,

[σ1, σ2] = σ1σ2σ
−1
1 σ−1

2 = σ−1
2 (σ2σ1σ2)σ−1

1 σ−1
2

= σ−1
2 (σ1σ2σ1)σ−1

1 σ−1
2 = σ−1

2 σ1. (4)

A simple model Hamiltonian carrying these braids is

HB =

⎛
⎜⎝

1 − eikx −i(1 + eikx ) 0
−i(1 + eikx ) eikx − eiky −i(1 + eiky )

0 −i(1 + eiky ) −1 + eiky

⎞
⎟⎠, (5)

for kx, ky periodic, parametrized on [−π, π ]. It represents the
momentum-space Bloch Hamiltonian of a real-space model
with nearest-neighbor hoppings on a two-dimensional square
lattice, where each unit cell contains three orbitals. The spec-
trum along (kx,−π ) corresponds to a = σ1, and to b = σ2

along (π, ky). As shown in Eq. (4), these boundary braids do
not commute. The total BZ boundary braid, along the compo-
sition of the two great circles [Fig. 1(b)], is the nontrivial braid
σ1σ2σ

−1
1 σ−1

2 . We show the spectrum on the BZ boundary in
Fig. 2(b). In the Supplemental Material [44], we extend the
constructive method of Ref. [51] to show that there is always a
way to construct a given braid within a BZ-continuous model.
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FIG. 2. Composition rule for braids. (a) Schematic: Braids around degeneracies must add up to the boundary braid. (b) Boundary braid:
Spectrum of Eq. (5) shown along the BZ boundary, counterclockwise from (−π,−π ). Associating σi to a counterclockwise exchange of
eigenvalues Ei, Ei+1 in the complex plane allows us to read off the boundary braid as σ1σ2σ

−1
1 σ−1

2 . (c) Spectrum of Eq. (5) shown on the entire
BZ. The orange path corresponds to the path traversed in (a) and (b) that gives rise to the boundary braid. The two degeneracies marked in
red carry charges σ−1

2 and σ1, which add up to the boundary charge [see Eq. (4)]. (d) Tuning this model to fuse the two EPs [see Eq. (6)]
cannot annihilate them if the perturbation conserves the boundary charge, which is why we call these degeneracies unpaired. Instead, a single
nontrivial EP3 remains as a non-Abelian monopole that compensates the entire braid charge of the boundary.

The entire spectrum of HB is shown in Fig. 2(c). It hosts
two EP2s (which occur generically in two dimensions) that
carry braid charges σ−1

2 and σ1, compensating the boundary
braid according to the sum rule (2) or (4) explicitly. While
they have opposite Abelianization, their braid charges are not
mutual inverses: These EPs are unpaired.

To illustrate this further, we tune this Hamiltonian to

HEP3
δ = HB + δ 2

√
2 diag(1, 0,−1), 0 � δ � 1, (6)

which leaves the boundary braids unchanged but merges the
EP2s as δ → 1. We show the corresponding spectrum in

Fig. 2(d). As the EP2s are unpaired, they cannot annihilate,
but fuse to a single EP3 at kx = ky = 0.

While fine tuned, this EP3 is significantly distinct
from the simple third-root EPs commonly implemented
in topologically trivial spaces [23,33,49]. First, it can exist
alone under the BZ periodic boundary condition. Second, its
dispersion consists of the roots of a third-order polynomial
which forbids a simple expression. Third, it lies at the
intersection of two Fermi arcs, along which one of the real
gaps Re(Ei − Ej ) closes. These Fermi arcs extend through the
BZ, roughly following (kx, 0), and (0, ky). In particular they
form extended noncontractible loops, unlike the common

FIG. 3. Non-Hermitian phase transition. (a) To gap out the system, any contractible loop (fuchsia) in the BZ must carry a trivial braid.
The only way to change nontrivial braids (dashed) into trivial ones (dotted) continuously is to move an EP across the loop. (b) Schematic
representation of the spectrum of Eq. (6) at δ = 1. The single nontrivial EP3 is marked in red, and the green lines illustrate the real-gap
closings which form nontrivial loops around the BZ. (c) Schematic representation of the spectrum for the interpolation Eq. (7) between the
unpaired model hosting unpaired EPs and a gapped phase. Initially the BZ boundaries (solid black lines) carry braid charges σ1 (σ2) in the kx

(ky) direction. At s = 3/4 the two EPs merge at the boundary, breaking the kx braid charge into a trivial braid; the corresponding boundary is
then marked with dotted lines. For s > 3/4, all braids along ky = const are trivial, while loops along kx = const correspond to braids of type
σ2. The boundary braid in that regime is then σ2σ

−1
2 = 1. (d) Same as (c) for interpolation Eq. (8) between nontrivial and trivial gapped phases

for increasing interpolation parameter t . A single twofold degeneracy is created at t = 2/3 and subsequently splits into two EP2s. These merge
at the boundary for t = 6/7. For t > 6/7 the system is topologically trivial and gapped; all loops in this system correspond to the trivial braid.
Note that the last panel in (c) and the first panel in (d) describe the same system.
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line-segment Fermi arcs which are known to appear in
topologically trivial models.

Topological robustness of the gapless phase. The topo-
logical robustness of the EP phase arises from the nontrivial
braids along contractible loops on the BZ torus, especially
the loop successively traveling as aba−1b−1. We show first
that all contractible loops in a gapped area must carry trivial
braids: We take a deformation retraction γs (0 � s � 1) be-
tween some loop γ0 in the BZ and a constant loop γ1 (a point).
If the Hamiltonian is gapped throughout this deformation re-
traction, then there is a well-defined braid of eigenvalues [γs]
corresponding to each γs, defining a continuous deformation
of braids. Such continuous deformation without intersecting
strands does not affect the braid group element, which means
[γ0] = [γ1]. As the constant loop carries the trivial braid this
concludes the proof. This implies conversely that if any con-
tractible loop in the BZ carries a nontrivial braid, the system
must be gapless.

This argument implies robustness of the gaplessness un-
der perturbation. In the BZ of HB, all contractible loops
enclosing either or both of the EPs carry nontrivial braids.
The only way to break the braid along a loop is to
move EPs across it [Fig. 3(a)]. When perturbing HB, the
braids along loops far away from the EP are unaffected.
They are of the same type as labeled by the great cir-
cles aba−1b−1. So the system remains gapless and contains
multiple EP2s or a single EP3, whose braids combine
to σ−1

2 σ1.
It is instructive to consider how the degeneracies evolve

when we transition from the gapless phase to a gapped phase.
We interpolate between Eq. (5) and a model HB(π, ky) without
kx dependence,

Hs(kx, ky) = (1 − s)HB(kx, ky ) + sHB(π, ky). (7)

Physically this corresponds to decoupling the unit cells in the
x direction. The results are summarized in Fig. 3(c). As s
increases, the two EPs move away from each other through
the BZ towards (0,±π ). Their combined trajectory traces
over the meridian along a large nontrivial loop involving the
boundary. Finally, for s = 3/4 they fuse at (0, π ). Further
increasing s annihilates the two EPs and we obtain a gapped
phase.

We may also understand this process and the robustness of
the phase via the Fermi arcs. The initial model hosts two topo-
logically nontrivial Fermi arcs, one along each great circle.
These arcs can only end in degeneracies, and they change con-
tinuously under continuous deformation of HB. By removing
dependence on kx, we remove the Fermi arc that follows ky,
correspondingly, two degeneracies must follow the meridian
around the torus.

The s = 1 phase, while nondegenerate, is still a topolog-
ically nontrivial phase. One of the three bands is effectively
decoupled from the others, but the other two are braided in
ky direction. They share a corresponding extended Fermi arc
of Re(E2 − E3) closing along (kx, 0). The spectrum along the
BZ boundary corresponds to (a, b) = (1, σ2). These two braid
elements commute and the combined braid along the bound-
ary is trivial, consistent with previous classification [25,26].
We also present how this topologically nontrivial gapped
phase can be switched into a fully topologically trivial phase

H0 = [2 + cos(kx )]diag(1, 0,−1). We choose the following
interpolation,

Ht = (1 − t )HB(π, ky) + tH0. (8)

The evolution of the spectrum is shown in Fig. 3(d). At t =
2/3, a new degeneracy is created at k = (0, 0). It splits into a
pair of EP2s for increasing t , which then separate further in the
kx direction. Their trajectory traces over a complete longitude,
until they merge and annihilate into the trivial gapped phase
at t = 6/7.

The above series of figures showcases how the topology
of EP-annihilation trajectories corresponds to different phase
transitions. In the Hs interpolation (7), the EP2s travel over
the meridian to cross all contractible loops enclosing the
EP3 and break braid a. In the Supplemental Material [44],
we prove that if the two EP2s trace out a simple loop, it
must be in the noncontractible homotopy class, based on the
universal covering map R2 → T 2 and the Jordan-Schoenflies
theorem [52,53]. In the Ht interpolation (8), the newly created
EPs must cross all meridians in order to render the b braid
trivial.

Conclusion. We have constructed non-Hermitian phases
with unpaired exceptional degeneracies and explained their
topological robustness, illustrated in a short-range tight-
binding lattice model.

The non-Abelian nature of three or more complex energy
bands allows for overall nontrivial topological charges
and even non-Abelian monopoles under periodic boundary
conditions in reciprocal space. In nontrivial phases these
charges are unpaired and cannot be annihilated locally by
perturbations. Instead they must travel nontrivially around
the BZ torus in order to be gapped out. This endows the
gapless phases presented here with topological robustness, as
the movement of degeneracies generally is continuous when
deforming a model.

Conversely, topologically inequivalent ways of moving
EPs around the BZ lead to distinct gapped and gapless phases.
The movement of EPs thus encodes the topological infor-
mation of the system. This differs from the situation on a
plane [54], where at least three EPs are required to exhibit
non-Abelian features.

Under some tuning, our model exhibits an isolated
nontrivial higher-order degeneracy with dispersion beyond
the nth root behaviors constructed previously in tight-binding
models. This EP3 is accompanied by extensive Fermi arcs that
form noncontractible loops, instead of open line segments.
These topological Fermi arcs do not have counterparts
in Hermitian Weyl nodes, and are purely a feature of
non-Hermitian systems.

Note added. Recently, we became aware of two experi-
mental works [55,56] that realized non-Hermitian multiband
systems with nontrivial energy braids in acoustic metamate-
rials, which corroborates the direct experimental relevance of
our work.
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