Disk Intersection Graphs:
Models, Data Structures, and
Algorithms

Dissertation zur Erlangung des Doktorgrades
vorgelegt am

Fachbereich Mathematik und Informatik
der Freien Universitat Berlin

von
Paul Seiferth

2016

Erstgutachter: Prof. Dr. Wolfgang Mulzer
Zweitgutachter: Prof. Dr. Christian Knauer

Tag der Disputation: 19.08.2016

iii

Abstract

Let P C R? be a set of n point sites. The unit disk graph UD(P) on P has vertex
set P and an edge between two sites p,q € P if and only if p and q have Euclidean
distance |pq| < 1. If we interpret P as centers of disks with diameter 1, then UD(P) is
the intersection graph of these disks, i.e., two sites p and g form an edge if and only if
their corresponding unit disks intersect. Two natural generalizations of unit disk graphs
appear when we assign to each point p € P an associated radius vp > 0. The first one is
the disk graph D(P), where we put an edge between p and q if and only if [pq| < vp +71q,
meaning that the disks with centers p and q and radii rp and rq intersect. The second
one yields a directed graph on P, called the transmission graph of P. We obtain it by
putting a directed edge from p to q if and only if [pq| < 1, meaning that q lies in the
disk with center p and radius rp. For disk and transmission graphs we define the radius
ratio ¥ to be the ratio of the largest and the smallest radius that is assigned to a site in
P. It turns out that the radius ratio is an important measure of the complexity of the
graphs and some of our results will depend on it.

For these three classes of disk intersection graphs we present data structures and
algorithms that solve four types of graph theoretic problems: dynamic connectivity,
routing, spanner construction, and reachability oracles; see below for details. For disk
and unit disk graphs, we improve upon the currently best known results, while the
problems we consider for transmission graphs abstain non-trivial solutions so far.

Dynamic Connectivity. First, we present a data structure that maintains the connected
components of a unit disk graph UD(P) when P changes dynamically. It takes O(log?n)
amortized time to insert or delete a site in P and O(logn/loglogn) worst-case time
to determine if two sites are in the same connected component. Here, n is the maxi-
mum size of P at any time. A simple variant improves the amortized update time to
O(lognloglogn) at the cost of a slightly increased worst-case query time of O(logn).

Using more advanced data structures, we can extend our approach to disk graphs.
While the worst-case query time remains O(logn/loglogn), an update now requires
O(¥22%(M) 10g'%n) amortized expected time, where V¥ is the radius ratio of the disk
graph and «(n) is the inverse Ackermann function.

Routing. As the second problem, we consider routing in unit disk graphs. A routing
scheme R for UD(P) assigns to each site s € P a label £(s) and a routing table p(s). For
any two sites s,t € P, the scheme R must be able to route a packet from s to t in the
following way: given a current site 1 (initially, r = s), a header h (initially empty), and
the target label £(t), the scheme R may consult the current routing table p(r) to compute

a new site v’ and a new header h’, where r’ is a neighbor of r in UD(P). The packet is
then routed to r’, and the process is repeated until the packet reaches t. The resulting
sequence of sites is called the routing path. The stretch of R is the maximum ratio of the
(Euclidean) length of the routing path produced by R and the shortest path in UD(P),
over all pairs of distinct sites in P.

For any given ¢ > 0, we show how to construct a routing scheme for UD(P) with
stretch 14 ¢ using labels of O(logn) bits and routing tables of O(e~?log?nlog? D) bits,
where D is the (Euclidean) diameter of UD(P). The header size is O(lognlogD) bits.

Spanners. Next, we construct sparse approximations of transmission and disk graphs.
Let G be a transmission graph. A t-spanner for G is a subgraph H C G with vertex set
P so that for any two sites p,q € P, we have dy(p,q) < tdg(p, q), where dyy and dg
denote the shortest path distance in H and G (with Euclidean edge lengths). We show
how to compute a t-spanner for G with O(n) edges in O(n(logn + logV¥)) time, where
VY is the radius ratio of P. Utilizing advanced data structures, we obtain a construction
that runs in O(nlog®n) time, independent of W. This construction can be adapted to
disk graphs and gives a t-spanner for D(P) in expected time O(n2%(™ log!®n), where
a(n) is the inverse Ackermann function.

As an application we show that our t-spanner can be used to find a BFS tree in a
transmission or disk graph for any given start vertex in O(nlogn) additional time.

Reachability Oracles. Finally, we compute reachability oracles for transmission graphs.
These are data structures that answer reachability queries: given two sites p and q, is
there a directed path between them? The quality of an oracle is measured by the space
S(n), the query time Q(n), and the preproccesing time. We present three reachability
oracles whose quality depends on the radius ratio W: the first one works only for ¥ < /3
and achieves Q(n) = O(1) with S(n) = O(n) and preprocessing time O(nlogn); the
second data structure gives Q(n) = O(¥3y/n) and S(n) = O(¥3n?/2); the third data
structure is randomized with Q(n) = O(n?/?(logn +log¥)) and S(n) = O(n®/3(logn +
log¥)) and answers queries correctly with high probability.

As a second application for our spanners, we employ them to achieve a fast prepro-
cessing time for our reachability oracles.

vi

Selbstandigkeitserklarung

Ich erkldre hiermit, dass ich alle Hilfsmittel und Hilfen angegeben habe und versichere,
auf dieser Grundlage die Arbeit selbsténdig verfasst zu haben. Die Arbeit habe ich nicht
in einem frithren Promotionsverfahren eingereicht.

Berlin, den 17. Mai 2016

vii

Acknowledgements

First of all I would like to thank my advisor Wolfgang Mulzer. He literally made my
PhD a long journey and on the way he never got tired in teaching me geometry with
endless passion, at any time and any place. Beyond this, he also gave me the opportunity
to visit numerous exciting places around the world and to experience foreign cultures.
Thanks for the wonderful and unique time we spend together, I really appreciate it and
it won’t be forgotten.

Furthermore, I am very grateful for my second referee Christian Knauer who, without
any hesitation, agreed to review my thesis, even after learning about my tight time
constraints.

I would like to thank all my coauthors, it has been a pleasure to work with so many
brilliant people. Especially, I need thank Liam Roditty and Haim Kaplan. They never
run out of challenging and interesting problems to attack and they encouraged me to
never stop hunting for more simple and more intuitive arguments. Also their hospitality
at our regular visits in Israel was outstanding and it made me feel very welcome. Fur-
thermore, I like to thank Yannik Stein, who was a worthy companion on all the trips
we made together and with whom I had a lot of fun at and after work. He participated
in all our common projects very diligently and I always enjoyed to work with him, no
matter of time and date.

I am much obliged to every single member of the AG Theoretische Informatik. All
of them offered me assistance and guidance in any situation of my PhD-life and my life
in general. They always managed to cheer me up, especially in the more cumbersome
beginning of my studies. I also have to thank them for nurturing my common knowledge
day by day with some of the, sometimes, uttermost strange discussions during the coffee
round.

Finally, and most of all, I like to thank my family and my friends for their support
and for showing interest in what I am doing, even though it is tough to understand what
all this is about. In particular, I thank my cohabitant Nadja Scharf. She was one of
the major discoveries during my PhD and she managed keep me motivated and focused
during the last weeks.

ix

Contents

1 Introduction

1.1
1.2
1.3
1.4

Modeling Sensor Networks L oo
The Problems Considered
Further Problems on Disk Intersection Graphs
Results and Organization of the Thesis

2 Preliminaries

2.1
2.2

2.3

Notation and Planar Grids
Well Separated Pair Decompositions
2.2.1 The WSPD Spanner
2.2.2 WSPDs for General Metric Spaces,
Dynamic Lower Envelopes
2.3.1 The Planar Case
2.3.2 Dynamic Lower Envelopes in 3-space

I Unit Disk Graphs

3 Dynamic Unit Disk Graph Connectivity

3.1
3.2

3.3
3.4
3.5

Our Results
The Data Structure for Unit Disks
3.2.1 The Grid Graph (new @).
3.2.2 Maintaining the Adjacency Lists of G (new @).
3.2.3 Dynamically Maintaining an MBM (new ®).
Improving the Update Time by Using a Planar Graph
Extension to Disk Graphs,
Conclusion e e

4 Routing in Unit Disk Graphs

4.1
4.2
4.3
4.4

The Routing Model and Our Results
The Well-Separated Pair Decomposition for UD(P)
Further Properties of the WSPD for UD(P)
The Routing Scheme o o
4.4.1 Preprocessing L oo e
4.42 Routinga Packeto oo
4.4.3 Analysis of the Routing Scheme

x1

11
11
12
13
14
15
15
16

21

23
24
25
26
26
27
29
32
33

xii | Contents

4.5 Extension to Arbitrary Density oL
4.6 Conclusion e

Il Transmission Graphs

5 Spanners for Transmission and Disk Graphs
5.1 Our Results o
5.2 Spanner Constructions for Transmission Graphs.
5.2.1 Efficient Spanner Construction for Sites with Bounded Spread . .
5.2.2 From Bounded Spread to Bounded Radius Ratio
5.2.3 Spanners for Unbounded Spread and Radius Ratio
5.3 Spanners for Disk Graphs oo
5.3.1 Constructing the Spanner
5.3.2 Efficient Construction
5.4 Applications e e e
5.4.1 From Spanners to BFS Trees
5.4.2 Geometric Reachability Oracles
5.5 Conclusion e

6 Reachability Oracles for Transmission Graphs
6.1 Our Results
6.2 Wislessthan v/3 . . . o o o
6.2.1 Obtaining a Sparse Graph
6.2.2 Making G Planar L o
6.2.3 Putting it Together o L.
6.3 Polynomial Dependenceon V¥V
6.4 Logarithmic Dependenceon W
6.5 Conclusion e e

Parting Thoughts
Bibliography

Zusammenfassung

53

55
56
57
99
68
70
75
76
76
80
80
83
85

87
88
89
89
91
95
96
98
101

103
105

113

Chapter

Introduction

Since the introduction of wireless networking and the development of the first Wi-
Fi devices in the early 1990’s, a rapid growth of the wireless industry took place.
Nowadays, almost every laptop or cell phone has Wi-Fi capabilities and this trend ex-
pands to other devices including printers, television sets, video game consoles, smart-
watches | , , ,] or appliances like personal scales, washing machines,
refrigerators, and home brewing machines for beer | , , , |. This re-
sults in a dramatically increasing number of wireless networking devices that have been
deployed over the last years. By the end of 2013 the number of network devices even ex-
ceeded the number of people on earth |]. To satisfy the high demand, the industry
has developed large-scale manufacturing processes that led to a dramatic decreases in
the price of wireless networking devices. This and other technological advances drove the
development of small-sized computing nodes with Wi-Fi capabilities. Their extremely
low acquisition costs soon inspired researchers to explore their potential outside the
consumer area. Connecting a multitude of these nodes via wireless links forms what
we call a sensor network | ,]. Typical applications of sensor networks occur
in situations when hardly accessible and sensitive environments need to be monitored.
Each computing node is equipped with a sensor that can measure environmental pa-
rameters such as temperature, humidity, sound, chemicals, or the presence of certain
objects [|. The measured data is sent to a central data gathering station that col-
lects and processes the information. This is done either via direct links to the gathering
station, or more often, in a multi-hop fashion using the underlying sensor network. Some
domains where sensor networks are used successfully include military scenarios, environ-
mental applications, and health monitoring [,]. More concrete examples and
further applications can be found in the Handbook of Sensor Networks [].

In order to keep sensor nodes cost-effective, their hardware is usually very limited.
Furthermore sensor nodes are supposed to work as stand-alone units and thus their
power supply is often battery based. As a consequence, sensor networks face several
design challenges, for example

21 Introduction

Unstable Topology It is likely that sensor nodes fail. In the simplest case they run out
of battery, but other reasons like hardware failure or intermittent interference are
also conceivable. On the other hand, sensor nodes are cheap and thus there is no
obstacle to extend the network whenever necessary. Both issues cause frequent
topology changes that need to be handled.

Energy Efficiency Since sensor nodes are battery powered, there is a great need for
energy efficiency. This is achieved by avoiding expensive local computations and
by limiting the transmission range of the wireless adapters.

Limited Computational Power and Memory In most cases, sensor network nodes are
equipped with cheap and energy efficient processors that suffer from a lower per-
formance. For the same reasons, the installed memory is kept as low as possible.

In this thesis, we try to tackle these difficulties by studying sensor networks from
a theoretical point of view. We develop several data structures and algorithms in the
context of sensor networks that meet some of their requirements. Our first data structure
is dynamic and can maintain the topology of a sensor network when nodes are added
or removed. Then, we show how to route a packet between two arbitrary nodes in the
network. Our routing scheme requires a very small amount of storage at each node
and nevertheless each packet will be sent along an approximately shortest path to its
destination. For a node to make a routing decision, only a quite simple and efficient
local computation must be done. Our next result is a way to approximate the whole
topology of a sensor network in a space efficient manner while preserving the distances in
the best possible way. This yields a succinct representation of the network that requires
only little storage compared to storing the whole topology. Our last data structure can
answer for any two sensor nodes if they are connected by a path through the network
or not. It can be used to verify the existence of a path to the destination before sending
the packet. This avoids an expensive and energy consuming usage of the network, just
to send packets that cannot arrive at its destination in the first place.

The data structures and algorithms we describe will be judged by all quality standards
of theoretical computer science: we will prove their correctness and analyze their running
times. In order to do so, we need an abstract, mathematical model that describes a
sensor network accurately. We will always represent the network itself as a geometric
graph, but in what follows we will describe several models that determine which edges
are present in this graph. All of these models will have some geometric flavor and there
will be an focus on three models that are based on intersection patterns of disks. All
our data structures and algorithm will be developed and analyzed for these three disk
based models.

1.1 Modeling Sensor Networks

Even though physical sensor networks operate in three-dimensional environments, we use
two-dimensional models to describe them. As we will see throughout this thesis, already

1.1 Modeling Sensor Networks 13

the two-dimensional cases capture most of the difficulties that arise when studying sensor
networks. Furthermore, in most of the practical applications the sensor nodes are placed
on an (almost) flat surface and thus two-dimensional models are sufficient.

For any concrete model we think of each sensor node as a single point in the Euclidean
plane. We denote by P the set of points corresponding to the sensor nodes and we call
these points sites. Around each site p € P there is an area where p the signal of p can
reach to, i.e., the other sensors p can communicate with must lie in this area. Since radio
signals emitted from isotropic antennas spread radially from the source, we often think
of these areas as disks with a certain radius. It is known that this is a simplification that
might not reflect the behavior of the network accurately enough in some situations.

Next we introduce the three disk-based models that are considered in this thesis and
below we give further models that are intended to overcome the shortcomings of disk-
based models.

Three Models Based on Disk Intersection Graphs

One of the most basic models for sensor networks is the unit disk graph. For this we as-
sume that all sensors are equivalent and that each sensor site p € P has a disk around it
with unit diameter. We draw an edge between two sites if and only if the corresponding
disks intersect. An example of a unit disk graph is shown in Figure 1.1 (left). Equiva-
lently, we can say that there is an edge between two sites if and only if their Euclidean
distance is at most 1, which is the reason why unit disk graphs are also known as unit
distance graphs. Unit disk graphs have been widely studied in the theoretical computer
science community | , , , , , , ,].

In some scenarios, the assumption that all sensor nodes are equivalent can be too
restrictive. For instance, one can consider the following tree-like topology: we have
groups of cheap devices that measure some environmental data. All devices within one
group report their measurements to a central gateway node of the group. The gateway
node is equipped with more expensive hardware that allows it to send data over longer
distances, e.g., to a base station that is far away. To cover such cases, we extend the
model of unit disk graphs and we assign to each site p € P a transmission radius v, > 0.
Instead of a unit diameter disk, the transmission area of a site p is the disk with radius rp
and with center p. Two sites are connected by an edge if and only if their corresponding
disk intersect, see Figure 1.1 (center). This second model is called disk graph and unit-
disk graphs are a special kind of disk graphs where each transmission radius is 1/2.

A huge drawback of disk graphs is that all connections are symmetric while in some
situations an asymmetric connection is more realistic. Consider for instance the leftmost
site in the disk graph in Figure 1.1 (center). Even though its transmission radius is very
small, it can still send data to the distant site with the largest disk. In other words,
with disk graphs a site can transmit its signal over arbitrarily long distances, as long
as the transmission radius of the target site is large enough. To avoid such unrealistic
behavior, we introduce transmission graphs as third model that leads to directed graphs.
To obtain a transmission graph, again each site p has its transmission radius rp. This

41 Introduction

Figure 1.1: The three models of disk intersection graphs: unit disk graphs (left), disk
graphs (center), and transmission graphs (right).

time we have a directed edge from p to another site q if and only if q lies in the disk
around p with radius rp, see Figure 1.1 (right). Note that setting each radius to 1 yields
the same graph as the unit disk graph and thus transmission graphs constitute another
generalization of unit disk graphs.

Further Models

In some real world scenarios disk graphs tend to be too unrealistic. The oversimplification
in the models might not reflect the physical behavior of the network accurately enough
and might not be able to represent more complex topologies. For these reasons, there
are more involved models which turn out to be more realistic in some situations. The
following examples are intended to give an idea of how such models can be defined. A
more exhaustive list can be found in the book of Boukerche | -

Since most of the networking protocols, like TCP /IP, require a bidirectional communi-
cation already to establish a connection, the unidirectional links created by transmission
graphs are of no use when such protocols are used. For such cases there is a version of
transmission graphs called undirected transmission graphs where we keep only the edges
between pairs of sites where both directed edges exist, i.e., we have an undirected edge
between p and ¢ if and only p lies in the disk around q with radius r4 and g lies in the
disk around p with radius 7.

Overcoming long distances with radio signals emitted from isotropic antennas requires
a high power consumption at the sender. To increase the energy efficiency in these
situations, one typically uses dipole antennas that bundle the signal in one direction.
To model dipole antennas we use the directed antenna model: we fix a cone C that will
define the area a site can send signals to. At each site p we attach a translated copy Cp
of C such that the apex of C, is p. Furthermore, each site p has an assigned angle o,
that determines the direction to which C, points. Then we have a directed edge from a
site p to another site q if and only if g lies in C.

The last type of models emphasizes the fact that wireless networks in real world
environments are disturbed by different noises and interference between the senders.
It it based on the signal-to-interference-plus-noise ratio (SINR) that measures for a
receiving site q € P the quality of the signal received by a sending site p € P using the

1.2 The Problems Considered 15

following formula:
Tp

SINR(p, q) = [pql* 7
P-4 2 ter\(p.a) Teqre TN
where o, N > 0 are given constants that represent hardware specific antenna parameters
and the background noise, respectively. The numerator accounts for the fact that quality
of radio signals drops with increasing distance and the sum in the denominator measures
the interference caused by other senders. In the SINR-model we have a directed edge
from a site p to a site q if and only SINR(p, q) > for some fixed threshold > 0. A
more practical version is the k-SINR model where only the k most significant senders
are considered to compute the SINR value of a pair p, q. The adapted formula is

_Tp
[pql~

MaxQcp\(p,q}lQl=k 2-teQ fiq® + N

and we again have a directed edge from p to q if and only if SINRy (p, q) exceeds some
fixed threshold.

1.2 The Problems Considered

In this thesis we consider several classic algorithmic problems on graphs and consider
their applicability to unit disk graphs and transmission graphs. Our hope is that the
geometry of these graphs will reveal a deeper structure that helps to develop efficient
solutions. For the following problems we present data structures and algorithms that will
be faster and often even simpler than the state of the art solutions for general graphs.

Dynamic Connectivity for Unit Disk Graphs. Let P C R? be a set of sites and let
UD(P) be the corresponding unit disk graph. We want a data structure that maintains
the connectivity of UD(P) when the set P changes dynamically. More precisely, our
data structure must support insertions and deletions of sites in P and must be able to
answer connectivity queries: given two sites s,t € P, are s and t in the same connected
component of UD(P)? The quality of such a data structure is measured by the update
and query time and by the required storage.

Routing in Unit Disk Graphs. Next, we want to route a packet through a connected
unit disk graph, using only a small amount of local information at each routing step.
To measure the distance the packet travels during the routing, we weight each edge in
UD(P) by its Euclidean length and we define the length of a path 7t in UD(P) as the
sum of the edge weights along 7.

Our goal is to preprocess UD(P) into a routing scheme R. The scheme assigns to each
site s € P a label £(s) and a routing table p(s). Furthermore, the scheme R must be able
to route a packet from any given start site s € P to any target site t € P in the following
way: given a current site 1 (initially, v = s), a header h (initially empty), and a target

61 Introduction

label £(t), the scheme R can use p(r), h, and £(t) to compute a new site v’ and a new
header h’/, where v’ must be a neighbor of r in UD(P). The packet is then routed to v’
and the process is repeated. The scheme R must guarantee that the packet eventually
arrives at t. The sequence of sites that are visited during the routing process is called
the routing path. The stretch of R is the maximum ratio of the length of the routing path
produced by R and the shortest path in UD(P), over all pairs of sites s,t € P, s # t.
In other words, the stretch describes the length of the maximum detour the packet can
take when using the routing path instead of the shortest path.

The quality of a routing scheme R is measured by the size of the routing tables and
labels produced by R, the maximum header size that is required during the routing, and
the stretch of R.

Spanner Construction. Let P C R? be a set of sites, each site p € P having an assigned
radius and let G be the transmission graph induced by P. The graph G can be quite dense
and in the worst-case it can even be the complete graph. Thus, it is desirable to have
a sparse approximation for G that preserves the distances in G. Such an approximation
is called a spanner. Fix a parameter t > 1. A subgraph H of G is a t-spanner for G if

(i) H is sparse, i.e., has a linear number of edges, and

(ii) for any pair of sites p,q € G the shortest p-g-path in H is a most t times as long
as the shortest p-g-path in G.

To measure the length of the path we weight each edge in G and H by its Euclidean
length. We consider two major questions related to spanners for transmission graphs: is
there always a t-spanner for every transmission graph and every value of t7 And if yes,
how fast can it be computed?

Reachability Oracles. Similar to the dynamic connectivity structure problem for unit
disk graphs, we also want to store the connectivity of a transmission graph in a space
efficient manner. For transmission graphs already the static case turns out to be a
challenging problem.

Let G be the transmission graph of a set of sites P C R%2. We say that a site p € P
can reach a site q € P if there is a directed path from p to q in G. A reachability oracle
for G is a data structure that can decide for any two given query sites p,q € P if p can
reach . The quality of a reachability oracle is determined by the query time, the used
space, and the time required to compute it.

The geometry of transmission graphs allows for a more general type of query where
the target is not necessarily a site in P but it can be an arbitrary point in R?. We say
that a site p € P can reach a point t € R? if there is a site q such that p can reach q and
such that t lies in the disk around q with radius rq (cf. Figure 1.2). A reachability oracle
that can answer this type of queries is called a geometric reachability oracle. Ideally we
would like our oracles to be geometric.

1.3 Further Problems on Disk Intersection Graphs 17

Figure 1.2: The site p can reach the site q by following the directed path. Also p can
reach the black point t since t is in the disk of q.

1.3 Further Problems on Disk Intersection
Graphs

Unit disk graphs have been well-studied in a multitude of different algorithmic contexts.
A recent example is due to Cabello and Jejéi¢, who gave fast algorithms to compute
BFS trees and shortest path trees in unit disk graphs |]. Furthermore, most classic
NP-complete graph problems turned out to be NP-complete for unit disk graphs as
well. This list includes computing the chromatic number, a maximum independent set,
a maximum connected dominating set, finding hamiltonian cycles and paths, and finding
steiner trees. For a more detailed overview, see Clark et al. | | and the references
therein. The dominating set and connected dominating set problems are even W/[1]-hard
for unit disk graphs when parametrized by the size of the dominating set | ,].
A notable exception from this list is the maximum clique problem. Already Clark et al.
gave a simple polynomial time algorithm to compute the maximum clique in unit disk
graphs | |]. More interestingly, for disk graphs it is not known if the maximum
clique problem is NP-hard or if there is a polynomial time algorithm. The best known
result is a 1/2-approximation algorithm by Ambiihl and Wagner |].

All the problems described so far in this and in the previous section have a common
flavor: our input is a unit disk or transmission graph and we want to find or compute
a certain structure. However, there are a lot of problems where it is reversely and we
want to find a graph that fulfills a given set of requirements. One problem of this kind is
realizability of unit disk graphs: given an abstract graph G, is there a set P C R? of sites
such that the unit disk graph UD(P) is isomorphic to G? Breu and Kirckpatrick showed
that this problem is NP-hard but it is still unknown whether it is in NP |]. Kang and
Miiller found (abstract) graphs such that each realization as an unit disk graph requires
exponentially many bits to describe it and thus showing containment in NP would require
some non-trivial insights in the structure of the problem. Recently, a complexity class
called existential theory of the reals (3R for short) received more and more attention in

81 Introduction

the graph drawing community, see the survey paper of Matousek for a comprehensive
overview of the class IR |]. This complexity class is a superclass of NP and a
subclass of PSPACE. It seems that R is well suited to capture hardness of graph drawing
and realizability problems since containment in JR is often almost trivial, as it is the case
for unit disk graphs. Furthermore, using polynomial time reductions, we can show that
unit disk graph realizability is even dR-complete: Matousek showed that stretchability of
pseudoline arrangements is IR-hard |] and Kang and Miiller reduced pseudoline
stretchablity to realizability of unit disk graphs []. The reduction of Kang and
Miiller can seems not to be limited to unit disk and could most likely be extended to
transmission graphs with only a few modifications. Thus, we conjecture that realizability
of transmission graphs is dR-complete as well.

Transmission graphs were also considered in the context of range assignment prob-
lems []. Here, we are given a set of sites P C R? and the goal is to pick a radius rp,
for each p € P such that the resulting transmission graph fulfils certain properties (usu-
ally related to connectivity) while minimizing some function that depends on the radii.
One concrete instance is to minimize the sum of radii ZpeP Tp, while having a transmis-
sion graph that has diameter h, i.e., for any two sites p, q € P there is a directed path
from p to q that uses at most h edges. Clementi et al. | | proved that the problem
is NP-hard for the special case h = n — 1, where n is the size of P. The complexity of
the problem for other values of h is still unknown. Nevertheless, the h = n — 1 case has
been well studied: Kirousis et al. [| gave a polynomial time 2-approximation
algorithm that later was improved to a (1.5—¢)-approximation for a small constant ¢ > 0
by Carmi and Chaitman-Yerushalmi []. The one-dimensional problem, where all
sites in P are collinear, has also been studied and can be solved optimally in polynomial
time | ,] where the best known algorithm runs in time O(n?) |]
When the parameter h is constant, Carni et al. gave a (6 + ¢)-approximation for the
planar case and a 1.5-approximation in 1D |].

Other reasonable objective functions to study are related to the the maximum in-
degree of a site p € P, since the indegree translates to the interference at the sensor
node corresponding to p. Brise et al. | | showed that minimizing the maximum
indegree is NP-complete for the case h = n — 1. For the one-dimensional case they gave
an algorithm with quasipolynomial running time 20(log” n) - Ag with previous range as-
signment problems, the complexity for the planar case for other values of h is not known
and it constitutes an interesting question for further research.

1.4 Results and Organization of the Thesis

We now explain our results and the techniques we use. At the same time, we give an
overview of the thesis and how the different parts are connected.

The next chapter contains important preliminary notations and definitions that are
used throughout the thesis. Furthermore, we review some well-known geometric tools
including well-separated pair decompositions and dynamic data structures for Euclidean
and additively weighted nearest neighbor search, as we are going to use them for some

1.4 Results and Organization of the Thesis 19

of our results. After this preliminaries chapter, the thesis is divided into two parts: the
first part contains our results for unit disk graphs and the second part is devoted to
transmission graphs. We will see that some of our solutions can be extended to disk
graphs.

In Chapter 3 in the first part of the thesis we present a data structure for dynamic
connectivity of unit disk graphs. We obtain this data structure by a delicate combination
of known data structures with several geometric observations. In its most basic form
our structure can insert or delete a disk in O(log?n) amortized time and a connectivity
query can be answered in O(logn/loglogn) worst-case time (Theorem 3.2). Here n is
the maximum number of disk that is stored in the data structure at any time. Then we
use a planarization argument for unit disk graphs (see Lemma 3.8 and Lemma 3.9) that
allows us to work on a planar graph and substitute the data structure responsible for
the O(log?n) bottleneck by its planar counterpart. This yields a dynamic connectivity
structure with amortized update time O(lognloglogn) but with a slightly increased
worst-case query time of O(logn) (Theorem 3.7). Our techniques extend to disk graphs
as long as the radius ratio ¥ is bounded, meaning that all radii are in the interval [1,V].
In this case, we can achieve an amortized expected update time of O(W22%(M)]og!¥n)
with O(logn/loglogn) worst-case query time, where «(n) is the inverse Ackermann
function (Theorem 3.11). The rather high exponent of the logarithm and the 2%(™)
term come from the fact that this extension requires a dynamic additively weighted
nearest neighbor structure as given by Corollary 2.7.

In Chapter 4 we present a routing scheme for unit disk graphs. For any ¢ > 0 we can
preprocess a unit disk graph with n sites into a routing scheme with stretch 1 + ¢. For
this we need labels with O(logn) bits, routing tables with O (e log? nlog? D) bits, and
the maximum header size during the routing process is O(lognlog D) bits, where D is
the diameter of the unit disk graph when edges are weighted by their Euclidean lengths
(Theorem 4.13). The main tool we use is the compact well-separated pair decomposition
for the unit disk metric from Gao and Zhang |]

In the second part of the thesis we consider transmission graphs. In Chapter 5 we

provide an efficient way to construct spanners for transmission graphs. For this, we
define a decomposition of the graph that is heavily inspired by the way well-separated
pair decompositions work (Definition 5.2). From this decomposition we can easily read
off a set of edges that, for any given t > 1, yield a t-spanner for the transmission graph
(Lemma 5.8). Then we show how to find this decomposition and the required edges effi-
ciently in the restricted case that the radius ratio ¥ is bounded. The running time will
be O(n(logn+logV¥)) (Theorem 5.12). In the next step we make this construction inde-
pendent of W. To achieve this we first use the classic well-separated pair decomposition
algorithm to compute our decomposition of the transmission graph. Then we employ a
dynamic Euclidean nearest neighbor structure as given by Corollary 2.5 to find the edges
quickly. The total running time is O(nlog®n). This spanner construction extends to
disk graphs using an additively weighted nearest neighbor structure (as in Corollary 2.7)
instead of the Euclidean one. The time required to construct a t-spanner for a disk
graph is O(n2%(™) Jog!%n). We also give two applications of our spanners: first we use

101 Introduction

the spanner to find a BFS tree from any given start site s in additional time O(nlogn),
once the spanner is computed (Theorem 5.23). Second, we show that with the help of
the spanner, we can transform any reachability oracle for a transmission graph into a
geometric reachability oracle (Theorem 5.25). This allows us in the last chapter to focus
on constructing oracles for reachability queries while ignoring the geometric queries.

In the last chapter we will see three different geometric reachability oracles, each
performing best for a certain radius ratio. The first reachability oracle works only for
Y < /3. In this case, we can use a similar planarization argument as we did for unit disk
graphs, though the proof is much more involved (see Lemma 6.5 and Lemma 6.6). This
yields a planar graph on which we can use known results for planar reachability |]
to obtain a geometric reachability oracle with O(n) space and O(logn) worst-case query
time, or O(1) worst-case query time for non-geometric queries (Theorem 6.2). The
second oracle has polynomial dependence of ¥: it needs O(¥3n3/2) space and has worst-
case query time O(W3,/n) (Theorem 6.8). For this we use a separator theorem for disks
by Alber and Fiala |] that is based on the planar separator theorem []. The
last oracle decreases the dependence on ¥ to be logarithmic while slightly increasing
the dependence on n. It needs O(n%/3log!/3 Wlog?/3n) space and can answer a query
correctly with high probability in time O(n2/3log!/3 Wlog?/® n). The randomized queries
come from random sampling techniques that are used to find a small hitting set for all
long paths in the graph (Lemma 6.12).

Preliminary versions of some of these results were already published as parts in the
following papers:

[] Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Span-
ners and reachability oracles for directed transmission graphs. In Proc. 81st Int.
Sympos. Comput. Geom. (SoCG), pages 156-170, 2015.

[] Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Dy-
namic connectivity for unit disk graphs. In Proc. 32nd FEuropean Workshop on
Comput. Geom. (EWCG), 2016.

[] Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Rout-
ing in unit disk graphs. In Proc. 12th Latin American Theoretical Informatics
Symposium (LATIN), pages 536-548, 2016.

[] Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha
Sharir. Dynamic planar Voronoi diagrams for general distance functions and their
algorithmic applications. arXiv:1604.0365/4 [cs.CG], 2016.

Chapter

Preliminaries

In this chapter we introduce basic notations and concepts that we are going to use
throughout the thesis. In particular, we define planar grids as we frequently use them
in later chapters to approximate and structure the intersection graphs. Furthermore,
we define several kinds of well-separated pair decompositions, as they are required in
Chapters 4 & 5.

Finally, we review data structures for the dynamic maintenance of lower envelopes and
their connection to various versions of the dynamic nearest neighbor problem. These
data structures will play a crucial role in Chapter 3 and Chapter 5.

2.1 Notation and Planar Grids

Unless otherwise stated, we let P C R? denote a planar n-point set, and we assume that
for each point p € P we have an associated radius v, > 0. Furthermore, we usually
assume that the input is scaled so that the smallest radius in P is 1. The elements in P
are called sites or vertices. Given a point p € R? and a radius T, we denote by D(p, 1)
the closed disk with center p and radius r. If p € P, we use D(p) as a shorthand for
D(p,1p). We write C(p,) for the boundary circle of D(p,).

We define three graphs with P as vertex set: the unit disk graph UD(P) has an edge
between p,q € P if and only if they have Euclidean distance [pq| < 1; the disk graph
D(P) has an edge between p, q € P if and only if [pq| <1, +74 (i.e., D(p) N D(q) # 0);
and the transmission graph has a directed edge from p to q if and only if [pq| < vp (i.e.,
q € D(p)). We consider these graphs as geometric graphs embedded in the plane such
that each vertex lies on its corresponding point in P and such that the edges are drawn
as straight line segments. Furthermore, we assign to each edge pq its Euclidean length
Ipq| as weight. For a weighted graph G and two vertices p, q of G we denote by dg(p, q)
the length of a shortest path from p to q in G. If p and gq are not connected in G we
set dg(p,q) = co. Let t > 1 be a parameter. A subgraph H C G is called a t-spanner
for G if for each pair of vertices p,q € G we have dyy(p,q) < t-dg(p,q).

11

121 Preliminaries

The spread ® of P is defined as ® = maxp qep [pql/minp.qep [pql, and the radius
ratio ¥ of P is defined as ¥ = maxp qep Tp/Tq. The next observation shows that for
transmission graphs we can always assume ¥ < 20.

Observation 2.1. Let P C R? be a set of sites with spread ® and let G be the transmission
graph of P. We can assign to each site p € P a new radius such that G does not change
and such that ¥ < 20.

Proof. Let dpin be the smallest and dax be the largest distance between any two sites
in P, ie., ® = dpax/dmin- All sites p € P with v, < dyin cannot have an outgoing edge
in G. Thus we can set these radii to dpin/2.

Let p € P be a site with rp > dpax. Then we have P C D(p), i.e., p has an
outgoing edge to all other sites in P. If we set Tp = dnax we still have P C D(p) and
G remains unchanged. If we do this for all sites with radius larger than dpy.x, we have
Y < 2dmax/dmin = 20. O

Our constructions make extensive use of planar
grids. For i € {0,1,...}, we define G; to be the
grid at level 1. It consists of axis-parallel squares
with diameter 2! that partition the plane in grid-
like fashion (the cells). We write diam(o) for the d(o,t
diameter of a grid cell 0. Each grid §; is aligned djam(o) W
so that the origin lies at the corner of a cell. The o
distance d(o,T) between two grid cells o, T is the
smallest distance between any pair of points in o x
T, see Figure 2.1. We assume that our model of Figure 2.1: The grid (
computation allows us to find in constant time for
any given point the grid cell that contains it.

green) and
two cells o and T.

2.2 Well Separated Pair
Decompositions

Let P C R? be an n-point set and let ¢ > 1 be a parameter. We call two subsets
A, B C P c-well-separated if ¢ max{diam(A), diam(B)} < d(A, B), where diam(-) denotes
the diameter of a set and d(A, B) is the minimum distance between any pair a,b with
a € Aand b € B. If A and B are well-separated, then any pair a, b is an approximation
of the |A| - |B| distances in A x B, see Figure 2.2. A c-well-separated pair decomposition
(c-WSPD) is a set of pairs (A1,B1),...,(Am, Bm) such that for all 1 <1 < m we have
that (i) Ay, By C P, (ii) the pair (Aj, By) is c-well separated, and (iii) the sets Aj x Bj
form a partition of P x P.

WSPDs have been introduced to the computational geometry community by Callahan
and Kosaraju, and since then they have proven to be a useful tool for the design of
efficient geometric algorithms and data structures [|. Callahan and Kosaraju

2.2 Well Separated Pair Decompositions 113

lab| ~ d(A, B)

Figure 2.2: The sets A and B are c-well-separated.

show that for any ¢ > 1 there is always a c-WSPD with m = O(c?n) pairs and that it
can be computed efficiently. Thus, we can consider WSPDs as a succinct approximation
of the (g) distances between sites in P. Note that even though we need only O(c?n)
pairs, the total size (number of elements in the sets) of the WSPD may be quadratic.
Therefore, we need to represent the sets implicitly, as we will see, e.g., in Section 4.2 or
in Section 5.2.3.

Some prominent problems solvable with WSPDs include distance selection |],

dynamic closest pair [|, and computing (high dimensional) approximate Euclidean
minimum spanning trees |] as well as several other geometric structures (see, e.g.,
Loffler and Mulzer [| and the references therein).

For this thesis it is more relevant to note that there are spanner constructions that
rely on WSPDs. In fact, the book on geometric spanners by Narasimhan and Smid ded-
icates more than two chapters to such constructions |]. We now review the WSPD
spanner, the most elementary spanner construction that directly uses the WSPD. It
illustrates some of the ideas that will reappear in the routing scheme in Chapter 4. Fur-
thermore, the general approach serves as the starting point for our c-separated annulus
decomposition (Definition 5.2) which is the cornerstone in all spanner constructions given
in Chapter 5.

2.2.1 The WSPD Spanner

Let P C R? be an n-point set and let t > 1 be a parameter. Our goal is to find a t-spanner
for the complete Euclidean graph G on P. For this, we choose a large enough parameter
¢ = c(t), depending on t, and we compute a c-WSPD = ={(A1,B1),...,(Am,Bm)} for
P with m = O(c?n) pairs. We construct a subgraph H of G with vertex set P and the
following edges. For each pair (Aji,Bi) € =, we take two arbitrary points a € A; and
b € B; and we add the edge ab to H. We have O(c?n) edges in total and we now show
that H is a t-spanner for G.

Lemma 2.2. Let ¢ = (2t 4+ 2)/(t —1). For any two sites p,q € P, we have dy(p,q) <
tdg(p, q) = tlpql.

Proof. We use induction on the rank of the distance [pq| in the sorted list of all distances
in P x P. For [pq| =0, the claim is trivially true.

Now, assume that for all sites x,y € P with |xy| < |pq| we have an x-y-path in H of
length at most tlxy|. Let (A,B) € = be the pair with p € A and q € B. Then there is an

141 Preliminaries

edge ab in H with a € A and b € B and the distance from p to q in H is bounded by
dn(p,) < du(p,a) +labl+ dn(b, q). (2.1)
Since A, B are c-well-separated, p,a € A, b, q € B, and since ¢ > 1, we get
lpql > d(A,B) > cmax{diam(A), diam(B)} > max{|pal, |bql} (2.2)

and thus dy(p,a) < tlpal and dy(b, q) < t/bg| by induction. Plugging these bounds
into (2.1) and using the triangle inequality yields

du(p, q) < tlpal + |abl + tibq]
< tlpal + [pal + [pql + [bg| + tibg|
< (2t + 2) max{diam(A), diam(B)} + |pq|
< (14 (2t +2)/c)lpql = tlpq| (by 2.2),

by our assumption that ¢ = (2t +2)/(t —1). O

2.2.2 WSPDs for General Metric Spaces

Even though WSPDs are usually used for points in R¢ with the Euclidean metric, it is
natural to extend the concept to more general settings. A finite metric space is a pair
(S,8) where S is a finite set and & is a function 6 : S x S — R, called a metric, such that
for any p, q,v € S the following holds:

identity of indiscernibles 5(p,q) =0< p =g

symmetry 5(p, q) = 5(q,p)
triangle inequality d(p,r) < 8(p,q) +08(q,1)

As in the Euclidean case, for two non-empty subsets A,B C S we define diam(A) =
maxp qeA O(p, q) to be the diameter of A and 8(A,B) = minpeca qeB 8(p, q) to be the
distance between A and B. The definition of two sets being c-well-separated then extends
naturally to metric spaces. Unfortunately, unlike in the Euclidean case, not all metric
spaces admit small-sized WSPDs. For example consider a finite set S with the following

distance function:
_J 0, ifp=q

Observe that 6 is a metric for S and that for any ¢ > 1 only singleton sets A,B C S can
be c-well-separated. Thus, since the WSPD pairs in = need to partition S x S, each of
the |S|? tuples (p,q) € S x S need to form a pair ({p},{q}) € =. However, for certain
interesting metrics small WSPDs exist. The first example relevant to this thesis is the
unit disk metric. Let P C R? be a set of n sites in the plane and let G = UD(P). For
P,q € P, we let 6(p,q) be the length of a shortest path between p and q in G, i.e.,
0 = dg. Gao and Zhang showed that if UD(P) is connected, then the metric 6 for

2.3 Dynamic Lower Envelopes 115

UD(P) admits a ¢-WSPD with O(c*nlogn) pairs, and these pairs can be computed in
O(c*nlogn) time |].

The second interesting example are doubling spaces. Let (S,) be a metric space. For
peSandreR,let Blp,7v) ={q € S|3(p,q) < 1} be the ball with radius v around p.
The doubling dimension of (S,) is the smallest positive integer D such that for any p € S
and any r € R, we can find a set of 2P balls of radius r/2 whose union contains B(p,).
Har-Peled and Mendel | | showed that spaces with doubling dimension D admit
always a c-WSPD with ¢©(P)n pairs that can be computed in 2°(PInlogn + cCPln
expected time. Since S is finite, the approach from Section 2.2.1 also leads to a spanner
for the complete graph on S when edges are weighted according to 0 |].

2.3 Dynamic Lower Envelopes

A lot of effort in computational geometry has been invested in the study of lower en-
velopes of (linear) functions in the last decades []. Two reasons for this are the
well-known duality between lower envelopes of hyperplanes and convex hulls of point
sets and the connection between d-dimensional Voronoi diagrams and lower envelopes
of (d + 1)-dimensional hyperplane arrangements | |. In this section we review
several data structures for dynamically maintaining lower envelopes of (pseudo-)line ar-
rangements in the plane and of arrangements of planes and more general functions in
R3. These data structures will find applications in Chapter 3 and Chapter 5.

2.3.1 The Planar Case

Let L be a set of non-vertical lines in the plane. The lower envelope of L is the pointwise
minimum of the functions whose graphs constitute the lines in L. A dynamic data struc-
ture that maintains the lower envelope of L supports the following operations: inserting
a line into L, deleting a line from L, and performing a wvertical ray shooting query. For a
vertical ray shooting query we are given an x-coordinate and we want to determine the
line £ € L whose function attains the minimum at x, i.e., £ is the first line we hit when

shooting an upward vertical ray from (x, —o0).
The first efficient such data structure dates back to 1980 when Overmars and van
Leeuwen solved the problem with O(log?n) worst-case time per operation [,
]. More than 20 years later, Chan improved this to amortized time O(log!™¢n)

for updates and queries |], where ¢ > 0 can be made arbitrarily small. Kaplan
et al. approached the problem in a purely combinatorial way, without insisting on the
geometry of the lines []. They called the resulting data structure parametric heap

and it solves the dynamic lower envelope problem for lines with worst-case query time
O(logn) and amortized update time O(lognloglogn). Independently, Brodal and Jacob
also achieved the same time bound | | before they eventually settled the problem by
achieving the optimal amortized update time of O(logn) with O(logn) worst-case query
time | |. Their solution is fairly involved and it is an interesting task to substantially

161 Preliminaries

simplify it. !

Instead of lines, in Chapter 3 we will need to maintain the lower envelope of pseudo-
lines. A set L of continuous x-monotone curves in the plane is called a set of pseudolines
if any two curves in L properly intersect in exactly one point, and there are no other
intersections. Except for the last result by Brodal and Jacob |], one can verify
easily that all the previous approaches also work with pseudolines. They only depend
on a total ordering of the elements in L along the lower envelope. We state this fact in
the following lemma.

Lemma 2.3. Let L be a dynamic set of pseudolines. We can maintain the lower envelope
of L with O(lognloglogn) amortized update time and O(logn) worst-case query time,
where N is the maximum size of L at any time. The data structure requires O(n) space.

Remark. The applicability of the result by Brodal and Jacob | | is not clear to us,
and poses an interesting challenge for further investigation.

2.3.2 Dynamic Lower Envelopes in 3-space

The problem of dynamically maintaining the lower envelope of lines naturally extends
to higher dimensions, and we now focus on the three dimensional case. For this, let
H be a dynamic set of non-vertical planes in R3. The first major step towards a data
structure with performance guarantees close to the planar case was due to Agarwal and
Matousek []. They gave two variants: for any constant € > 0, either one can have
a data structure with O(n®) amortized update time and a vertical ray shooting query
that takes O(logn) worst-case time, or one can achieve O(log?n) worst-case update
time with O(n®) amortized query time. It took over a decade before Chan managed to
get polylogarithmic bounds for both, the update and query time | , |. His
solution is randomized and has O(log®n) expected amortized insertion time, O(log®n)
expected amortized deletion time, and it can answer vertical ray shooting queries in
worst-case time O(log?n). This data structure underwent several improvements that we
will now briefly review.

The data structure as described by Chan requires O(nlogn) space, but already in the
journal version of the paper it was observed how to reduce the space to O(nloglogn)
using a three-dimensional halfspace range reporting data structure |]. Later, Af-
shani and Chan gave a randomized data structure for halfspace range reporting that only
requires linear space |]. This automatically decreased the space usage for Chan’s
dynamic convex hull structure to be linear as well. The geometric key ingredient in both
data structures are so called shallow-cuttings for planes in three dimensions |].
In particular, the only reason for both data structures to be randomized is the use of
Ramos’s algorithm to construct these shallow cuttings []. In 2015, Chan and
Tsakalidis presented a deterministic algorithm for this task |]. This now implies
that there are deterministic versions of both, the halfspace range reporting structure of

1The current draft of the journal version already has 100 pages. It can be found here: http://pwgrpl.
inf.ethz.ch/Current/DPCH/Journal/topdown. pdf

http://pwgrp1.inf.ethz.ch/Current/DPCH/Journal/topdown.pdf
http://pwgrp1.inf.ethz.ch/Current/DPCH/Journal/topdown.pdf

2.3 Dynamic Lower Envelopes 117

Afshani and Chan and the dynamic lower envelope structure of Chan. Finally, Kaplan et
al. managed to improve the amortized deletion time to O(log®n) by carefully tweaking
the parameters of Chan’s data structure |]. We summarize the properties that
follow from this sequence of papers in the next theorem. A more detailed description is
given by Kaplan et al. |].

Theorem 2.4. There is a dynamic data structure that maintains a set H of planes in R3
such that

(i) we can insert a plane into H in O(log®n) amortized time;
(i) we can delete a plane from H in O(log® n) amortized time; and

(iii) given a query point q € R?, we can perform a vertical ray shooting query with q in
O(log%n) worst-case time,

where 1 is the mazximum size of H at any time. The space requirement is O(n).

In Chapter 5 we need a dynamic data structure for Euclidean nearest neighbor queries
in the plane. This data structure should maintain a set P of point sites such that we can
insert points, delete points, and for every query point q € R? we can find the point in P
that is closest to q according to the Euclidean distance. This can be done easily by using
Theorem 2.4 together with the standard mapping from points in R? to tangent planes of
the three dimensional unit paraboloid | |, i.e, there is a bijective mapping from
a planar point set P to a set of hyperplanes H in R? such that distances between points
P can be represented by vertical distances in H, see Figure 2.3(left). In particular, a
nearest neighbor query for P can be done by performing a vertical ray shooting query
on the upper envelope of the arrangement of the planes in H |]. This gives the
following corollary of Theorem 2.4.

Corollary 2.5. There is a dynamic data structure that maintains a planar point set P
such that

(i) we can insert a point into P in O(log®n) amortized time;
(i) we can delete a point from P in O(log®n) amortized time; and

(#ii) given a query point q, we can find the nearest neighbor of q in P in O(log?n)
worst-case time,

where 1 is the mazximum size of P at any time. The space requirement is O(n).

When generalizing some of our results for unit disk and for transmission graphs to
disk graphs (Section 3.4 and Section 5.3.1), we face the task of maintaining a dynamic
nearest neighbor structure for more general distance functions than the Euclidean metric.
For this, we again use a mapping from two-dimensional point sites to three-dimensional
objects, but this time instead of planes we end up with surfaces. Suppose we have
for each site p € P a continuous distance function dp : R? — R that assigns to each

181 Preliminaries

point q = (qx,qy) in the plane a distance from p to q. Then p defines a bivariate
function f,(qx, qy) = 8(q), q € R?, whose graph is an x-y-monotone surface in three
dimensions. For the case when 8 is the Euclidean distance, the corresponding surface
is the boundary of the cone with apex p, opening angle 7/2, and middle axis that is
parallel to the z-axis, as shown in Figure 2.3 (right). Now, let F = {f, | p € P} be the
set of functions corresponding to sites in P and let x € R? be a point. To find the site
p € P that minimizes 0p(x), i.e., the nearest neighbor of x in P according the distances
dp, it suffices to find the function in P whose surface is the lowest at q. In other words,
we need to do vertical ray shooting on the lower envelope of F.

Figure 2.3: The lifting from points to tangent planes (right) and to cones (left). The
distance |pq| is either /|q”q’| (left) or |qq’| (right).

This fact motivated researchers to study dynamic data structures to maintain the lower
envelope of the surfaces corresponding to the functions in F. The history is quite similar
to the case of planes. First there was a data structure by Agarwal, Efrat, and Sharir
that achieved update time O(n®) and query time O(logn), for any fixed ¢ > 0 |]
and recently Kaplan et al. improved this to get polylogarithmic bounds for the update
and for the query time |]. The second result of Kaplan et al. requires that the
complexity of the lower envelope is linear in the size of F and that each function in F
is reasonably simple. In particular each function in F must have bounded description
complexity which formally means that the graph of each function is a semialgebraic set
that is defined by a constant number of polynomial equalities and inequalities of constant
maximum degree.

The concrete bounds of Kaplan et al. make use of the function Asio(-) which is the
well-known bound on the maximum length of a Davenport-Schinzel sequence |] of
order s + 2. Here, s is a constant that depends on the complexity of the functions in F
as follows: let fq, o, f3,f4 € F be a quadruple of functions. We denote by s(f, fa, f3, f4)
the number of co-vertical points p € f; N fy and q € f3 N f4. Then s is the maximum
value of s(fq, fa, f3, f4) over all quadruples of functions in F. If F has bounded description
complexity, then s will be constant. Now we can state the theorem of Kaplan et al.

Theorem 2.6 (Theorem 8.2 in |). Let F be a family of bivariate functions with
bounded description complexity such that for any finite set F C F the complexity of the
lower envelope of the graphs of the functions in F is O(|F|). Then there is a dynamic
data structure to maintain a finite set F of functions from F such that

2.3 Dynamic Lower Envelopes 119

(i) we can insert a function into F in O(log® nAg o(logn)) expected amortized time;

(ii) we can delete a function from F in O(log” nAs o(logn)) expected amortized time;
and

(iii) given a query point q € R%, we can perform a vertical ray shooting query with q in
O(log? n) worst-case time,

where N is the maximum size of F at any time. The expected space requirement is
O(nlog®n).

We employ Theorem 2.6 to obtain a dynamic data structure for additively weighted
Euclidean nearest neighbor search. Let P C R? be a set of sites such that each p € P has
an assigned radius v, > 0. We define the additively weighted Euclidean distance from a
point x € R? to a site p € P to be dp(x) = [px| —vp. The additively weighted Voronoi
diagram® (AWVD) of P is a subdivision of the plane such that all points in one region have
a common nearest neighbor in P according to the additively weighted Euclidean distance,
see Figure 2.4. Now, consider the set F of bivariate, three-dimensional functions that
is induced by the Euclidean additively weighted distance functions 6, for p € P. The
surfaces of these functions are the same cones as for ordinary Voronoi diagrams for points,
but the apex of a cone corresponding to the point p is shifted by —r, along its middle axis
in z-direction, see Figure 2.4. To apply Theorem 2.6 on F, we need to argue that the lower

Figure 2.4: The additively weighted Voronoi diagram of six weighted sites (left) and the
two-dimensional representation of the corresponding surfaces F (right). The
additively weighted Euclidean distance can be positive (q1) or negative (q2),
depending on whether the query lies inside the disk of its nearest neighbor.

envelope of the surfaces of F has linear complexity. It is well known that the projection
of this lower envelope to the x-y-plane is exactly the AWVD of P |]. Furthermore,
Sharir shows that the AWVD of n sites has complexity O(n) |]. To obtain more
precise bounds, we bound the parameter s in Theorem 2.6 when the surfaces are induced
by additively weighted Euclidean distances. Let p1,p2, 3, ps4 € P be a quadruple of sites
and let f1,fo, f3, f4 the corresponding three-dimensional distance functions. The value
s(fy, fo, f3, f4) now has a more natural two-dimensional interpretation: the xy-projection

2Also known as the Apollonius diagram.

201 Preliminaries

of an intersection curve of two functions, say f; Nfy, is the bisector of the sites p; and ps
according to the additively weighted Euclidean distance. Then s is just the maximum
number of intersections between two such bisectors. As shown by Sharir, the bisectors
in an AWVD are either lines, halflines, or hyperbolas [|, i.e., in any case they can
be described by a polynomial function of maximum degree 2. Thus, two bisectors can
intersect at most twice and we have s = 2.

The best bounds on Ag(n) for s > 4 are due to Nivasch |]. Depending on the
parity of s they are

roc(n)t(140(1))

N _n-2u® if n is even
s(n) = 1 - 2ua(n)tlogle(n))(1+0(1)) if n is odd,

- -

where t = (s — 2)/2 and «(n) is the inverse Ackermann function. For even s this bound
is known to be tight up to lower order terms in the exponent | , |. For the
bound in Theorem 2.4 we are interested in the value of Ay4(logm). In this case t = 1
and since a(logn) = «(n) + O(1), we get As(logn) = O(2%(™) logn). This gives the
following corollary of Theorem 2.4.

Corollary 2.7. There is a dynamic data structure that maintains a set P of point sites in
the plane, each p € P having an assigned radius v, such that

(i) we can insert a point into P in O(2%(M) log®n) expected amortized time;
(i) we can delete a point from P in O(2%™) log'®n) expected amortized time; and

(iii) given a query point q € R2, we can find the additively weighted nearest neighbor of
q in P in O(log?n) worst-case time,

where N is the mazximum size of P at any time and «(n) is the inverse Ackermann
function. The expected space requirement is O(nlogn).

In Chapter 3 and Chapter 5 we will use Corollary 2.7 to solve the following problem:
given a dynamic set of sites P and another site q with an assigned radius rq, find a
neighbor of q in the disk graph D(P U{q}). For this, we maintain P using the data
structure from Corollary 2.7. Then we perform a nearest neighbor query to find the
additively weighted nearest neighbor of q in P. It now suffices to check if the disks of q
and the nearest neighbor intersect. We formalize this observation with the next lemma.

Lemma 2.8. Let P C R? be a set of sites with assigned radii and let q ¢ P be another
site with radius . Let p € P be the site that minimizes dp(q) = [pq| —1p. Then there
is an edge pq in D(PU{q}) if and only if there is an edge between q and some p’ € P in
D(P U{q}).

Proof. Let pq be an edge in D(P U{q}). Since p is a site in P, we can use p’ = p to get
the desired edge p’q.

For the other direction, let p’ € P be a site that forms an edge with q in D(P U {p}).
Then [p'q| < 1pr 4+ 14. Since p minimizes d,(q) = [pq| — rp, we have [pq| — 1, <
Ip’ql — rpr < vq and thus pq is an edge in D(P U{q}). O

|

Unit Disk Graphs

Chapter

Dynamic Unit Disk Graph
Connectivity

Computing the connected components of a graph G is one of the most fundamental
problems in algorithmic graph theory. When G is static, several classic solutions exist,
e.g., breadth first search (BFS) or depth first search (DFS) |]. However, if G
can change dynamically, the problem becomes much more challenging. In this case, we
would like a data structure that can answer connectivity queries: given two vertices s
and t, are s and t in the same connected component of G? Additionally, we would like
to be able to insert and delete edges or singleton vertices. For general graphs several
solutions exist, and the following result due to Holm et al. | | has the currently
fastest amortized update and query time.

Theorem 3.1 (Holm et al., Theorem 3). Let G be a graph with n vertices. There is a
deterministic data structure such that edge insertions or deletions in G take amortized
time O(log?n), and connectivity queries take worst-case time O(logn/loglogn).

Even though Theorem 3.1 assumes n to be fixed, we can use a standard rebuilding
method to support vertex insertion and deletion within the same amortized time bounds,
by rebuilding the data structure whenever the number of vertices changes by a factor of
two [|. For planar graphs, Eppstein et al. achieved O(logn) amortized time for
updates and O(logn) worst-case time for queries |].

However, the model of edge insertions and deletions may be too restrictive. For
example, a natural situation where more powerful operations are needed occurs in unit
disk graphs and, more generally, in disk graphs. Let P C R? be a set of point sites, each
having an associated radius v, > 0. We denote by UD(P) the unit disk graph of P and
by D(P) the disk graph of P. We want to maintain the connected components of UD(P)
and D(P) as the vertex set P changes dynamically. In this case, a single update of P
may change the graph quite dramatically, since one site may have many incident edges.

23

241 Dynamic Unit Disk Graph Connectivity

Nevertheless Chan, Péatragcu, and Roditty managed to tackle this difficulty, even in the
more general case of disk graphs, and gave a data structure with sublinear update and
query time []. To maintain a disk graph with at most n sites, their data structure
needs O*(n2%/21) amortized time for an update and O*(n!/7) worst-case time to answer
a connectivity query, where the O*(n) notation hides polylogarithmic factors in n. In
the same paper Chan et al. | | observed that the special case of unit disk graphs
admits a solution with only polylogarithmic update and query time. The approach is
basically a combination of known results and yields a data structure with update time
O(log”n) and query time O(logn/loglogn). The construction for a unit disk graph
UD(P) works as follows (see Figure 3.1): @ let T be the Euclidean minimum spanning

UD(P) s EMST | 2™ J DBCP |2t of DNN
() 6.updatesl @ @

with E updates: O (log®n)

| Dynamic Conn. Structure S |

updates: O (log?n) queries: O(logn/loglogn)

Figure 3.1: A solution with O(log” n) update time.

tree (EMST) of P. If we remove all edges with length larger than 1 from T, the resulting
forest F is a spanning forest for UD(P). Thus, to maintain the components of UD(P), it
suffices to maintain the components of F. We create the data structure S of Holm et al.
to maintain F. Since the EMST has maximum degree 6 [], inserting or deleting
a site from P changes O(1) edges in T. Suppose we can efficiently find the set E of edges
that change due to an update of P. Then, we can update the components in F through
O(1) edge updates in S, using all edges in E of length at most 1. Each edge update of S
needs O(log?n) amortized time by Theorem 3.1. @ To find E, we need to dynamically
maintain the adjacency lists of the EMST T when P changes. This can be done using a
technique of Agarwal et al. that reduces the problem to several instances of the dynamic
bichromatic closest pair problem (DBCP), with a multiplicative overhead of O(log?n)
in the update time | |. ® Eppstein showed that the DBCP problem can in
turn be solved through a reduction to several instances of the dynamic nearest neighbor
problem (DNN) for points in the plane |]. Again, we incur another O(log®n)
factor as multiplicative overhead in the update time. Using Chan’s dynamic nearest
neighbor structure [| with all the improvements as described in Section 2.3.2, we
get an amortized update time of O(log®n). Thus, the total amortized update time is
O(log” n) to find the edges E plus O(log?n) to perform the updates in S with the O(1)
edges in E. We can use S to answer queries in O(logn/loglogn) time.

3.1 Our Results

First we improve the previous result for unit disk graphs by following a similar approach,
but in every step we use a method more specifically tailored to unit disks. Instead of

3.2 The Data Structure for Unit Disks 1 25

the EMST in ©, we use a much simpler graph on grid cells that also captures the
connectivity of UD(P). Then we can avoid the O(log?n) overhead in ® and ®, and we
can substitute the DNN data structure by a dynamic lower envelope (DLE) structure
for pseudolines in R?. In particular, instead of reducing the problem to dynamically
maintaining hyperplanes in R? (or equivalently to dynamic nearest neighbors in R,
cf. Section 2.3.2), we show that it suffices to dynamically maintain lower envelopes of
pseudolines in one dimension lower. In Section 3.2 we describe these reductions in full
detail and this will give our first main theorem for this chapter:

Theorem 3.2. There is a dynamic connectivity structure for unit disk graphs such that the
insertion or deletion of a site takes amortized time O(log?n) and a connectivity query
takes worst-case time O(logn/loglogn), where n is the maximum number of sites at
any time. The data structure requires O(n) space.

In Section 3.3, we use a grid-based planar graph to represent the connectivity of a
unit disk graph. Then we can replace Theorem 3.1 by the result for planar graphs by
Eppstein et al. | |. Updates now take O(lognloglogn) amortized time, but the
worst-case query time slightly increases to O(logn).

Finally, we extend our data structure and make it work with disk graphs whose radii
are in the interval [1,¥]. This extension requires the additively weighted Euclidean
nearest neighbor structure from Corollary 2.7 and the update time will increase to
O(W22%(M) 16g1%n). It can be found in Section 3.4.

3.2 The Data Structure for Unit Disks

Let P C R? be a set of sites and let UD(P) be the unit disk graph for P. We use the
following approach to obtain a dynamic connectivity structure for UD(P) with amortized
update time O(log?n) and worst-case query time O(logn/loglogn): first we define an
auxiliary graph G that represents the connectivity of UD(P) and that has bounded
degree, see Section 3.2.1. We create a data structure S as in Theorem 3.1 to maintain
G. The graph G will substitute the EMST used in the previous approach (cf. @ in
Figure 3.1 and Figure 3.2). The vertices of G are cells of a grid and to see if two cells
form an edge, we maintain a maximal bichromatic matching (MBM) of the sites in the
grid cells (see Section 3.2.2). This allows us to find the O(1) edges E of G that change
when P is updated. This time, we only have an O(1) multiplicative overhead (@ in
Figure 3.2). Finally, we show that maintaining a bichromatic matching can be done
with the help of two dynamic lower envelope (DLE) data structures for pseudolines (®
in Figure 3.2). This reduction also has an O(1) multiplicative overhead and is described
in Section 3.2.3.

The total amortized update time will be O(lognloglogn) for updating the dynamic
lower envelope structures plus O(log?n) for updating S with the edges in E. Details
follow.

261 Dynamic Unit Disk Graph Connectivity

UD(P)Ls] G |2 JIMBM [°Y _DLE
© ® ®

updates

with E updates: O (lognloglogn)

| Dynamic Conn. Structure S |

updates: O (log?n) queries: O(logn/loglogn)

Figure 3.2: Our improved solution with an update time of O(log?n).

3.2.1 The Grid Graph (new @).

Let G = Gy be the planar grid whose cells have diameter 1. For any grid cell o € G, the
sites oM P induce a clique in UD(P). For P C R?, we define a graph G whose vertices are
the non-empty cells 0 € G, i.e., the cells with 0N P # (). The neighborhood N(0o) of a cell
o0 € Gis the 5 x 5 block of cells in § with ¢ in the center. We call two cells neighboring if
they are in each other’s neighborhood. The endpoints of any edge in UD(P) must lie in
neighboring cells. To obtain the edges of G, we connect every pair of distinct neighboring
grid cells that contain the endpoints of an edge in UD(P). By construction, and since
the sites inside each cell form a clique, the connectivity between two sites s, t in UD(P)
is the same as for the corresponding cells in G.

Lemma 3.3. Let s,t € P be two sites and let 0 and T be the cells in G that contain s and
t, respectively. There is an s-t path in UD(P) if and only if there is a o-T path in G.

Proof. Let s =sy1,82...,8x =P be an s-t-path in UD(P). For 1 <1i <k, let 0y € G be
the cell that contains the site s;. Either 0y = 0y, or there is an edge sisiy1 in UD(P).
In the latter case, by definition of G, 030i41 forms an edge in G. Thus, there is a 01-0y
path in G.

Now let 0,7 € G be the two cells containing p and q. Let 0 = 01,...,0k = T be a
0-T path in G. Then, for 1 < i < k— 1, there is an edge siti;1 in UD(P). Since each
cell o; has diameter 1, also tisi is an edge in UD(P), for 2 < i< k—1 (unless t; = s4).
For the same reasons, UD(P) contains the edges ss; and txt and hence the sequence
s,81,t2,89,...,tk_1,8k_1, tk, t yields an s-t path in UD(P). O

We build the data structure from Theorem 3.1 for G. When a site s is inserted into
or deleted from P, only O(1) edges in G change, since only the neighborhood of the cell
of s is affected. Thus, once the set E of changing edges is determined, we can maintain
the connectivity of G in time O(log?n) per update, by Theorem 3.1.

3.2.2 Maintaining the Adjacency Lists of G (new @).

Our next step is to dynamically maintain the adjacency lists of G, i.e., we want a data
structure for P that, whenever we update P, returns the set of edges E that change in G.
For this, we maintain for each pair of non-empty neighboring cells a maximal bichromatic
matching (MBM) between their sites, similar to Eppstein’s method |]. Let RC P

3.2 The Data Structure for Unit Disks 127

and B C P be two sets of sites. An MBM between R and B is a maximal set of pairwise
vertex-disjoint edges in the bipartite graph on R U B consisting of all edges of UD(P)
with one endpoint in R and one endpoint in B.

For each pair {0, T} of neighboring cells in §, we build an MBM M4 1} for R=0nNP
and B = tNP. By definition, there is an edge between o and T in G if and only if M4 1
is not empty. When inserting or deleting a site p from P, we proceed as follows: let 0 € G
be the cell with p € 0. We go through all cells T € N(o) and update the MBM Mg 1)
(by inserting or deleting p from the relevant set). If My) becomes non-empty during
an insertion or becomes empty during a deletion, we add the edge ot to E and mark it
for insertion or deletion, respectively. Since |[N(o)| = O(1), we have O(1) edges in E and
we can find these edges by updating O(1) MBMs. This construction is summarized in
the following lemma.

Lemma 3.4. Suppose we can maintain an MBM for each pair of non-empty neighboring
cells with update time O(U(n)), where n is the mazimum number of sites. Then we can
dynamically maintain the adjacency lists of G with update time O(U(n)).

3.2.3 Dynamically Maintaining an MBM (new ®).

Let o # T be two neighboring cells of G, and let R = ¢ NP and B = tNP. We show
that an MBM between R and B can be efficiently maintained using two dynamic lower
envelope structures for pseudolines as in Lemma 2.3. We fix a line £ that separates R
and B. Since R and B are in two distinct grid cells, we can take a supporting line of one
of the four boundaries of 0. We now prove the following lemma.

Lemma 3.5. Let R,B C P be two sets with a total of at most n sites, separated by a
line £. There is a dynamic data structure that maintains an MBM for R and B with
O(lognloglogn) amortized update time. The data structure requires O(n) space.

Proof. We rotate and translate everything such that £ is the x-axis and all sites in R have
positive x-coordinate. To simplify some of the arguments, we assume general position,
meaning that any two sites in R have different x-coordinates and that no two sites have
x-coordinates whose difference is 1.

We consider the set Dy of radius 1 disks with centers in R (see Figure 3.3). Then a site
in B forms an edge with some site in R if and only if it is contained in the union of the disks
in Dg. To detect this, we maintain the lower envelope of Dg. More precisely, consider
the following set Lg of curves: for each disk in Dy, take the arc that defines the lower
envelope of the disk and extend both ends straight upward to oo, as shown in Figure 3.3.
By our general position assumption, Ly is a set of pseudolines. We build a data structure
Sk for L according to Lemma 2.3. It has worst-case query time O(logn), amortized
update time O(lognloglogn), and it needs O(n) space. Analogously, we define a set
of pseudolines Lg and a dynamic envelope structure Sg for B. Since the lower envelope
of the pseudolines Ly corresponds to the lower envelope of Dy below £, and since these
lower envelopes are x-monotone, we can for every site b € B detect if b is contained
in the union of the disks in Dg by shooting a ray from —oo at the x-coordinate of b.

28 1 Dynamic Unit Disk Graph Connectivity

o [}
[J
Dr °
0 [J [J —
\/ ()
Dg ®

Figure 3.3: The set Lg induced by R.

This can be done using Sg, see Figure 3.3. Likewise we can detect for every site r € R
whether it is in the union of the disk corresponding to the sites in B.

To maintain the MBM M, we store in Sg the pseudolines of the currently unmatched
sites of R, and in Sg the pseudolines of the unmatched sites of B. By construction,
there cannot be an edge between unmatched sites in R and unmatched sites in B, and
our invariant will maintain this property. When inserting a site r into R, we perform a
vertical ray shooting query in Sg with r to get a pseudoline of Lg. Let b € B be the
site for that pseudoline. If [rb] < 1, we add the edge rb to M, and delete the pseudoline
of b from Sg. Otherwise, r will be an unmatched site and we insert the pseudoline of
T into Sg. Since the lower envelope of Lg is x-monotone inside the halfplane bounded
by £ where 1 lies in, there is an edge between r and an unmatched site in B if and only
if there is an edge between 1 and b. Hence, the insertion procedure correctly maintains
the invariant on the unmatched sites.

Now suppose we want to delete a site r from R. If r is unmatched, we delete the
pseudoline corresponding to v from Sg. This maintains our invariant, since we only
delete a site. Otherwise, we remove the edge rb from M, and we reinsert b as above,
looking for a new unmatched site in R for b. As argued above, inserting sites also
maintains the invariant. Updating B is analogous.

Inserting and deleting a site requires O(1) insertions, deletions, or queries in Sg or
Sg, so the lemma follows. O

To obtain Theorem 3.2 we can combine our previous results as follows (cf. Figure 3.2
in the beginning of this section): we start with the grid graph G that, by Lemma 3.3,
has the same connectivity as UD(P). To maintain the connectivity of G, we build a
dynamic connectivity structure S for G as in Theorem 3.1. Whenever we update P,
we need to find the O(1) edges E that change in G. By Lemma 3.4 we can find E by
maintaining an MBM between any pair of non-empty neighboring gridcells in G. In
Lemma 3.5 we proved that maintaining an MBM can be done with an amortized update
time O(lognloglogn) and with space O(n) by using two dynamic lower envelope (DLE)

3.3 Improving the Update Time by Using a Planar Graph 129

structures for pseudolines. Thus, with an update time of O(lognloglogn), we can find
the edges E. To maintain the connectivity of G, we update S with the O(1) edges in
E. This needs O(log?n) time by Theorem 3.1. We can use S to answer connectivity
queries in worst-case time O(logn/loglogn). By construction, each site of P is in O(1)
dynamic lower envelope structures and thus we need O(n) space in total.

3.3 Improving the Update Time by Using a
Planar Graph

The bottleneck for the update time in Section 3.2 lies in the use of Theorem 3.1: we need
to update the data structure S with the edges in E, which takes O(log?n) amortized
time. We now define a planar graph G, that is similar to the grid graph G. It represents
the connectivity of UD(P) and an update of P changes O(1) vertices and edges in Gp.
These vertices and edges can be found in O(1) time. Since Gy, is planar, we can use the
following data structure of Eppstein et al. | | instead of Theorem 3.1 to maintain
the connectivity of Gy:

Theorem 3.6 (Eppstein et al., Theorem 1). Let G be a planar graph with n vertices.
There is a deterministic data structure such that edge insertions or deletions in G take
amortized time O(logn), insertions or deletions of single vertices take O(logn) amor-
tized time, and connectivity queries take worst-case time O(logmn/loglogn).

This gives the next theorem that we are going to prove in this chapter.

Theorem 3.7. There is a dynamic connectivity structure for unit disk graphs such that
insertion or deletion of a site takes amortized time O(lognloglogn) and a connectivity
query takes worst-case time O(logn), where n is the maximum number of sites at any
time. The data structure requires O(n) space.

The Planar Graph

Let P C R? be a set of sites. For any pair of non-empty grid cells o, T let Mg -} be the
MBM as defined in Section 3.2.2. For any non-empty MBM M, ., we pick an arbitrary
edge b € My, 1} with v € 0 and b € T as the representative edge. Let T C P be the set
of sites incident to a representative edge. We use the unit disk graph UD(T) as basis for
our planar graph Gy. If we contract in each grid cell o the subgraph of UD(T) induced
by TN o to a single vertex, we get the graph G from Section 3.2. Hence, by Lemma 3.3,
UD(T) represents the connectivity of UD(P).

To get Gy, from UD(T), we consider the straight line drawing of UD(T). For a crossing
of two edges ab and uv in UD(T), we add a new site x at the intersection and call x a
crossing site. We remove ab and uv and we add the four new edges ax, xb, ux, and
xv, see Figure 3.4. We repeat this operation until there are no more crossings in UD(T).
This is a standard method for making unit disk graphs planar. The next lemma, due to

301 Dynamic Unit Disk Graph Connectivity

Figure 3.4: A unit disk graph (left) and its planarization (right). Red squares are crossing
sites.

Yan et al. [], shows that it does not add new connections between the four sites
participating in a crossing.

Lemma 3.8. Let ab and uv be edges in UD(T) that cross. Then a, b, u, and v are in
the same connected component of UD({a,b,u,v}).

Proof. Let x be the intersection point of the edges ab and uv. We know that |[ab| < 1 and
luv| < 1. By the triangle inequality, |ax| + [xu| > |au| and [bx| + |[xv| > |bv|. Combining
these inequalities, we get

2 > |ab| + [uwv| = |ax| + |bx| + |xu| + [xv| = |au| + |bv|.

Thus, we have |au| < 1 or [bv| < 1 and UD({a, b, u, v}) contains at least one of the edges
au, bv. Hence, a,b,u,v are in the same connected component of UD({a,b,u,v}). 0O

Using Lemma 3.8 we now show that G, has the same connectivity as UD(T). Thus,
by Lemma 3.3, Gp also represents the connectivity of UD(P).

Lemma 3.9. Let s,t € T be two sites. Then s and t are connected in UD(T) if and only
if they are connected in Gp.

Proof. Since going from UD(T) to Gy, only increases the connectivity, all sites s and t
that are connected in UD(T) are also connected in Gp.

For the other direction, let s = py,...,px = t be a path in G, between s,t € T.
For each pi, we define a set Vi C T as follows: if p; is a site in T, we set Vi = {pi}.
Otherwise, p; is a crossing site, created by a crossing of two edges uv and ab in UD(T).
We set Vi = {a,b,u,v}. By Lemma 3.8, the sites a,b,u,v are in the same connected
component of UD(T). Furthermore, if p; is a crossing site, we have Vi_1 N'V; # (: the
edge pi—1Ppi is a proper subsegment of an edge e in UD(T), and at least one endpoint of
e lies in V;_1. _

We prove by induction that all sites in U{Zl Vi lie in the same connected component
of UD(T), for j =1,...,k. For j = 1, this is clear. Now, consider Vj. If V;_; N'V; # 0,

3.3 Improving the Update Time by Using a Planar Graph 131

then the claim follows by induction, since all sites in Vj are in the same component.
Otherwise, V5 = {p;}, p; is a site in T, and there is an edge in UD(T) between p; and

1;1 Vi, implying the claim. By setting j = k, we now have that s and t are connected
in UD(T). O

Maintaining the Planar Graph G,

We maintain Gy, as a doubly-connected edge list (DCEL) and we build a planar dynamic
connectivity data structure S for G, as in Theorem 3.6. Furthermore, we maintain an
MBM between any two neighboring non-empty grid cells and we pick one representative
edge for each MBM. Let s be a site we want to insert or delete from P. Let o be the grid
cell containing s. We update for all cells T € N(o) the MBM M 1}, and we collect the
sites of all representative edges that need to be inserted or deleted in two sets I and D:
if M{s 1} changes from empty to non-empty, we pick a representative edge for Ms
and put its two endpoints into I. If we delete the representative edge of My 1}, we put
its two endpoints into D, and, if possible, we pick a new representative edge for Ms
and put its endpoints into I. Since [N(o)| = O(1), the sets I and D contain O(1) sites
that need to be added or deleted from G.

Next, we show how to update G, with a site s in I or D. First we insert or delete s
in UD(T) and determine which edges change in UD(T). Each such edge may create or
delete several edges and sites in Gy that need to be handled. The next lemma shows
that s can create or delete O(1) edges and vertices in Gp and that these edges can be
found in O(1) time. Once we know them, we can simply update G, and S accordingly.
This finishes the proof of Theorem 3.7.

Lemma 3.10. Let s be a site in I or D. Updating G, with s changes O(1) edges and
vertices. They can be found in O(1) time.

Proof. Suppose that s € I, i.e., we want to insert s. Let o be the cell containing s. We
add s to T and collect all edges in UD(T) incident to s in a set E as follows: we start
with E = (). First, for each t € TN o we add the edge st to E. Since o has diameter 1,
all these edges are valid edges in UD(T). Next, we go through all cells T € N(o). We
check for all sites t € TN T if |st| < 1. If so, we add the edge st to E.

To update Gy, we find all edges E¢ in Gy, crossed by edges in E. Since all edges in E
and in Gp cross O(1) grid cells, and since each grid cell contains O(1) sites and crossing
sites, this can be done in O(1) time. We add all edges in E. to E and we perform the
planarization procedure as in Lemma 3.8 on E. To update Gy, we delete all edges in E
from G, and we add all edges and vertices in E to Gy,. This gives all edges and vertices
in G, that need to be changed, in O(1) time.

Deleting a site is done in a similar manner. O

321 Dynamic Unit Disk Graph Connectivity

3.4 Extension to Disk Graphs

Next, we describe how to extend our data structure to make it work with disk graphs.
Let P be a dynamic set of sites such that each site has an associated radius rp,. We
assume that all radii in P are in the interval [1,¥] for some ¥ > 1. We will prove the
following theorem.

Theorem 3.11. Let ¥ > 1 and let P be a set of sites with radii in [1,¥]. There is a
dynamic connectivity structure for D(P) such that the insertion or deletion of a site
takes amortized expected time O(W22%(™) log'®n) and a connectivity query takes worst-
case time O(logn/loglogn), where n is the mazimum number of sites at any time and
a(n) is the inverse Ackermann function. The data structure requires O(¥2nlog®n)
expected space.

To maintain the connectivity of D(P), we use the same approach as in Section 3.2: we
consider the grid § = Gy with diameter 1 and we use a grid graph G whose vertices are
the non-empty grid cells. For a grid cell o € § we define the neighborhood N(o) as the
(2[2v2¥]+1) x (2[2v/2¥] +1) block of cells centered at . The increased neighborhood
guarantees that every edge of D(P) must have its endpoints in neighboring grid cells.
The maximum degree in G is now [N(o)| = O(¥?) and thus an update of P changes
O(¥?) edges in G. We build a data structure S according to Theorem 3.1 to maintain
G. To detect the edges that change when P is updated, we maintain an MBM M
between any pair o,T € § of non-empty neighboring grid cells. Then we have an edge
ot in G if and only if My,) is non-empty. When inserting or deleting a site s, we
determine the cell o of s and we update for all T € N(o) the MBM M). For all
MBMs that change from empty to non-empty or vice versa, we update the corresponding
edges in S accordingly. Thus, there are at most O(¥?) updates in S. Since each site
participates in O(W?) MBMs at any time, we can reduce the dynamic maintenance of
D(P) to dynamically maintaining an MBM. We summarize this in the following lemma,
which is the analog to Lemma 3.4.

Lemma 3.12. Suppose we can maintain an MBM for each pair of non-empty neighboring
cells with update time U(n) and space S(n), where n is the mazimum number of sites.
Then we can maintain G with update time O(WV2U(M)) and space O(Y2S(n)).

Maintaining an MBM for Disk Graphs

Let R, B C P be two sets of at most n sites. We show how to maintain a maximal bichro-
matic matching M between R and B with respect to D(RUB). The amortized expected
update time will be O(2%™) log!®n), where a(n) is the inverse Ackermann function and
we will require O(nlog®n) expected space. Using Lemma 3.12, Theorem 3.11 then is
immediate.

To maintain M, we build two additively weighted Euclidean nearest neighbor struc-
tures as in Corollary 2.7, one for R and one for B. The distance from a site p € RUB to
any point x € R? is 8(p,x) = [px| — Tp, i.e., the weight of the site p is its radius.

3.5 Conclusion 133

We denote by Sg the structure for R and by Sp the structure for B. We store in
Sg the currently unmatched sites in R, and in Sg the currently unmatched sites in B.
When inserting a site v into R, we query Sp with r to get an ummatched site b € B
that minimizes [rb| — 1,. By Lemma 2.8, if there is an edge from t to some site in B in
D(R U B), then also rb must be an edge in D(RU B). Thus, if |rb| < v + 1, we add
the edge b to M, and we delete b from Sg. Otherwise, there is no edge between r and
B and we insert r into Sg. By Lemma 2.8, the insertion procedure correctly maintains
an MBM. Now suppose we want to delete a site r from R. If r is unmatched, we simply
delete T from Sg. Otherwise, we remove the edge rb from M, and we reinsert b as
above, looking for a new unmatched site in R for b. The procedures for updating B are
analogous.

Since inserting and deleting sites requires O(1) insert, delete or query operations in
Sk or Sg, and since a nearest neighbor structure with n sites needs O(nlog®n) expected
space, by Corollary 2.7 we get the following lemma.

Lemma 3.13. Let R,B C P be two sets with a total of at most n sites. There exists a
dynamic data structure that maintains an MBM for R and B with respect to D(R U B)
that has expected amortized update time O(2%™ log!® n) and that requires expected space
O(nlog®n).

Theorem 3.11 now follows by combining Lemma 3.12 and Lemma 3.13.

3.5 Conclusion

We gave an improved data structure for dynamic connectivity in unit disk graphs. It has
an amortized update time of O(lognloglogn) and it can answer connectivity queries in
O(logn) worst-case time.

The bottleneck in our query time is the query time of the dynamic connectivity struc-
ture for planar graphs of Eppstein et al. that we use in Section 3.3. It is notable that
the data structure from Theorem 3.1 for general graphs has a better query time of
O(logn/loglogn) (even though the update time is worse). Since the result of Eppstein
et al. is quite old compared to the one by Holm et al., it is likely that a similar improve-
ment is possible for planar graphs (without affecting the update time) by using more
recent data structure techniques. This would immediately improve our query time as
well.

The bottleneck for the update time is the update time of the dynamic lower envelope
structure that we use in Section 3.2.3. In Section 2.3.1 we argued that there are several
dynamic data structures for lines and most of them also work with pseudolines. However,
for the fastest such structure, due to Brodal and Jacob | |, we do not know if it is
applicable to pseudolines. If true, this would imply an amortized update time of O(logn)
for our data structure, and thus understanding and extending the result of Brodal and
Jacob constitutes an interesting and challenging task for future work.

Furthermore, we extended our data structure to disk graphs with radii in the inter-
val [1,¥]. This extension requires quite heavy machinery, namely a dynamic nearest

341 Dynamic Unit Disk Graph Connectivity

neighbor structure for additively weighted Euclidean distances. This has two major
drawbacks: the update and query time increase by several log factors and the complete
data structure is more involved and hence gets harder to implement. Thus, we would
like to know if there is an easier solution for disk graphs of bounded radii, without using
additively weighted nearest neighbors. Furthermore, it is still an open question whether
a data structure with polylogarithmic update time exists for disk graphs with arbitrarily
large radii.

Chapter

Routing in Unit Disk
Graphs

Routing data through graphs constitutes a fundamental problem in distributed graph
algorithms [,]. Given a graph G, we would like to be able to route a packet
from any node in G to any other node. The routing algorithm should be local, meaning
that it uses only information stored with the packet and with the current node, and it
should be efficient, meaning that the packet does not travel much further than necessary.
There is an obvious solution to this problem: with each node s of G, we store the
shortest path tree for s. Then it is easy to route a packet along the shortest path to
its destination. However, this solution is very inefficient: we need to store the complete
topology of G with each node, leading to quadratic space usage. Thus, the goal of a
routing scheme is to store as little information as possible with each node of the graph,
while still guaranteeing a routing path that is not too far from optimal.

For general graphs a plethora of results is available, reflecting the work of almost three
decades (see, e.g., | ,] and the references therein). However, for general graphs,
any efficient routing scheme needs to store Q(n%) bits per node, for some o« > 0 |].
Thus, it is natural to ask whether improved results are possible for specialized graph
classes. For example, for trees it is known how to obtain a routing scheme that follows a
shortest path and requires O(logn) bits of information at each node [, ,].
In planar graphs, for any € > 0 it is possible to store a polylogarithmic number of bits
at each node in order to route a packet along a path of length at most 1 4+ ¢ times the
length of the shortest path [.

A graph class that is of particular interest for routing problems comes from the study
of mobile and wireless networks. Such networks are traditionally modeled as unit disk
graphs, cf. Chapter 1. Even though unit disk graphs may be dense, they share many
properties with planar graphs, in particular with respect to algorithmic problems. There
exists a vast literature on routing in unit disk graphs (cf. |]), but most known

35

361 Routing in Unit Disk Graphs

schemes cannot ensure a short routing path in the worst case. Yan, Xiang, and Dra-
gan | | present a scheme with provable worst case guarantees. They extend a
scheme by Gupta et al. | | for planar graphs to unit disk graphs by using a delicate
planarization argument, to obtain small-sized balanced separators. Their planarzation
technique is comparable to the one we use in Section 3.3. Even though the scheme by
Yan et al. is conceptually simple, it requires a detailed analysis with an extensive case
distinction.

We propose an alternative approach to routing in unit disk graphs. Our scheme is
based on the well-separated pair decomposition for unit disk graphs |]. It stores
a polylogarithmic number of bits with each node of the graph, and it constructs a
routing path that can be made arbitrarily close to a shortest path (see Section 4.1 for a
precise statement of our results). This compares favorably with the scheme by Yan et
al. [| which achieves only a constant factor approximation. Moreover, our scheme
is arguably simpler to analyze. However, unlike the algorithm by Yan et al., our scheme
requires that the packet contain a modifiable header with a polylogarithmic number of
bits. It is an interesting question whether this header can be removed.

4.1 The Routing Model and Our Results

Let P C R? be a set of n sites in the plane. We say that P has density 9 if every unit
disk contains at most & points from P. The density ® of P is bounded if & = O(1).

We consider the unit disk graph UD(P). Recall that we weight each edge st of UD(P)
by its Euclidean length [st|. For the ease of notation we denote by d(-,-) the shortest
path distance in UD(P), i.e., d(-,) is shorthand for dyp(p)(-,).

We would like to obtain a routing scheme for UD(P) with small stretch and compact
routing tables. Formally, this is defined as follows: we can preprocess UD(P) to obtain
for each site s € P a label {(s) € {0,1}* and a routing table p(s) € {0, 1}*. Furthermore,
we need to define a routing function

f:Px{0,1}* x{0,1}* — P x{0,1}* x{0,1}*.

The function f takes as input a current site s, the label £(t) of a target site t, and a
header h € {0, 1}*. The routing function may use its input and the routing table p(s) of
s to compute a new site s’, a modified header h’/, and the label of an intermediate target
£(t’). The new site s’ may be either s or a neighbor of s in UD(P). Even though the
eventual goal of the packet is the target t, we introduce the intermediate target t’ into
the notation, since it allows for a more succinct presentation of the routing algorithm.

The routing scheme is correct if the following holds: let hy be the empty header. For
any two sites s,t € P, consider the sequence of triples given by (s, £y, hg) = (s, £(t), hg)
and (si, %, hi) = f(si_1,%i_1,hi_1) for 1 > 1. Then there exists a k = k(s,t) > 0 such
that s,y =t and s; # t for i < k, i.e., the routing scheme reaches t after k steps. We
call sq,s1,...,sk the routing path between s and t, and we define the routing distance
do(s,t) between s and t as dp(s,t) = Z]le [si_1sil.

The quality of the routing scheme is measured by four parameters:

4.2 The Well-Separated Pair Decomposition for UD(P) 137

o the label size L(n) = maxp g2 |pj—n Maxgep [£(s)],

the table size T(n) = maxpp2 |pj—n Maxscp [P(s)],
o the header size H(n) = maxp g2 |p|—n MaXgLicp MAXi—1 __k(st) Nl
 and the stretch @(n) = maxpcpe |pj—n Maxsiep dp(s,t)/d(s,t).

We show that for any P C R?, |P| = n, and any ¢ > 0 we can construct a rout-
ing scheme with stretch @(n) = 1 + ¢, label size L(n) = O(logn), table size T(n) =
O(e 5log?nlog? D), and header size H(n) = O(lognlogD), where D is the weighted
diameter of UD(P), i.e., the maximum length of a shortest path between two sites in
UD(P).

4.2 The Well-Separated Pair Decomposition
for UD(P)

Our routing scheme uses the well-separated pair decomposition (WSPD) for the unit
disk graph metric given by Gao and Zhang |]. See Section 2.2 for an overview of
WSPDs and their applications in computational geometry.

Since our routing scheme relies crucially on the specific structure of the WSPD de-
scribed by Gao and Zhang, we remind the reader of the main steps of their algorithm
and analysis.

First, Gao and Zhang assume that P has bounded density and that UD(P) is connected.
They construct the Euclidean minimum spanning tree T for P. It is easy to see that T is
a spanning tree for UD(P) with maximum degree 6. Furthermore, T can be constructed
in O(nlogn) time [].

Figure 4.1: An EMST T of UD(P) (left) where the edges are annotated with their level
in the hierarchical decomposition H (right).

381 Routing in Unit Disk Graphs

Since T has maximum degree 6, there exists an edge e in T such that T \ e consists of
two trees with at least [(n—1)/6] vertices each. By applying this observation recursively,
we obtain a hierarchical decomposition H of T. The decomposition H is a binary tree.
Each node v of H represents a subtree T, of T with vertex set P,, C P such that (i) the
root of H corresponds to T; (ii) the leaves of H are in one-to-one correspondence with
the sites in P; and (iii) let v be an inner node of H with children u and w. Then v has an
associated edge e, € T, such that removing e,, from T,, yields the two subtrees T, and T,,,
represented by u and w (see Figure 4.1). Furthermore, we have [Py, [Py | > [(IPy|—1)/6].

It follows that H has height O(logmn). The level §(v) of a node v € H is defined as the
number of edges on the path from v to the root of H. The level of the associated edge
e, of v is the level of v in H. This uniquely defines a level for each edge in T. Now, for
each node v € H, the subtree T, is a connected component in the forest that is induced
in T by the edges of level at least 5(v).

After computing the hierarchical decomposition, the algorithm of Gao and Zhang
essentially uses the greedy algorithm of Callahan and Kosaraju (see Algorithm 5.3 in
Section 5.2.3) to construct a WSPD, with H in place of the quadtree (or the fair split
tree). Let ¢ > 1 be a separation parameter. The algorithm traverses H and produces a
sequence = = (uq,v1), (U2, va),..., (Wm,vm) of pairs of nodes of H, with the following
properties:

1. The sets Py, x Py, Py, X Py,, ..., Py, x Py constitute a partition of P x P. This
means that for each ordered pair of sites (s,t) € P x P, there is exactly one pair
(u,v) € = with (s,t) € Py x P,,. We say that (u,v) represents (s,t).

2. Each pair (u,v) € Z is c-well-separated, i.e.,we have
(¢ + 2) max{|Pu| — 1, [Py| — 1} < |o(u)o(v)], (4.1)
where o(u), o(v) are arbitrary sites in P, and P, chosen by the algorithm.

Since in the unit disk graph metric the diameter diam(P,,) is at most [P,,| — 1 and since
lo(w)o(v)] < d(o(u),o(v)), (4.1) implies that

(c + 2) max{diam(P,), diam(P,)} < d(o(u), o(v)), (4.2)

which is (almost) the traditional well-separation condition as described in Section 2.2.
However, (4.1) is easier to check algorithmically and has additional advantages that we
will exploit in our routing scheme below.

Gao and Zhang show that their algorithm yields a c-WSPD with m = O(dc?nlogn)
pairs, where ¥ is the density of P. More precisely, they prove the following lemma:

Lemma 4.1 (Lemma 4.3 and Corollary 4.6 in |]). For each node uw € H, the WSPD
= has O(c?|Py]) pairs that contain .]

4.3 Further Properties of the WSPD for UD(P) 139

4.3 Further Properties of the WSPD for UD(P)

We begin with two technical lemmas on WSPDs that will be useful later on. The first
lemma shows that the choice of the sites o(u) for the nodes u € H is essentially arbitrary.

Lemma 4.2. Let = be a c-WSPD for P and let s, t be two sites such that the pair (u,v) € =
represents (s,t). Then cdiam(Py) < c(|Pu|—1) < d(s,t).

Proof. By triangle inequality and (4.1) we have

Ist| > |o(uw)o(v)| — 2max{diam(P,,), diam(P,)}
> (¢ 4 2) max{|Py| — 1,|Py| — 1} — 2max{diam (P,), diam (P,)}.

Since |Py| — 1 and |P,| — 1 are upper bounds for diam(Py) and diam(P,), respectively,
and since d(s,t) > |st|, we get

d(s,t) > cmax{|Py| —1,|Py| — 1} > cmax{diam(P,,), diam(P,)},
and the claim follows. O

The next lemma shows that short distances are represented by singletons in the WSPD.

Lemma 4.3. Let = be a c-WSPD for P and let s,t € P be two sites with d(s,t) < c. If
(u,v) € = represents (s, t), then Py, ={s} and P, ={t}.

Proof. If d(s,t) < ¢, by Lemma 4.2 we have c(|Py| —1) < d(s,t) < ¢, and thus [P | < 2.
By symmetry the same holds for |P,,]. O

4.4 The Routing Scheme

Let ¥ be the density of P. First we describe a routing scheme whose parameters depend
on ¥. Then we show how to remove this dependency and extend the scheme to work with
arbitrary density. Our routing scheme uses the WSPD described in Section 4.2, and it
is based on the following idea: let = be the c-WSPD for UD(P) and let T be the EMST
for P used to compute it. We distribute the information about the pairs in = among the
sites in P (in a way to be described later) such that each site stores O(9c?logn) pairs in
its routing table. To route from s to t, we explore T, starting from s, until we find the
site v with the pair (u,v) representing (s, t) stored in p(r). Our scheme will guarantee
that s and r are sites in Py, and therefore it suffices to walk along T,, to find r (see
Figure 4.2). This is called the local routing. With (u,v), we store in p(r) the middle
site m on a shortest path from r to o(v), i.e., a vertex “halfway” between r and o(v).
We recursively route from r to m and when reaching m from m to t. To keep track of
intermediate targets during the recursion, we store a stack in the header. This second
step, the recursive routing through the middle site, we call the global routing.

We now describe our routing scheme in detail. Let 1+ ¢, € > 0, be the desired stretch
factor.

40| Routing in Unit Disk Graphs

Figure 4.2: To route a packet from s to t, we first walk along T, until we find r. Then
we recursively route from r to m and from m to t.

4.4.1 Preprocessing

The preprocessing phase works as follows. We set ¢ = (/¢)logD, where D is the
Euclidean diameter of UD(P) and « is a sufficiently large constant we will fix later.
Then we compute a c-WSPD for UD(P). As explained in Section 4.2, the WSPD con-
sists of a bounded degree spanning tree T of UD(P), a hierarchical balanced decom-
position H of T whose nodes uw € H correspond to subtrees T, of T, and a sequence
= = (ug,v1), (ug,va), ..., (Um,vm) of m = O(dc?nlogn) = O(e 2nlognlog? D) well-
separated pairs that represent a partition of P x P.

First, we determine the labeling { for the sites in P. For this, we perform a postorder
traversal of H. Let 1 be a counter which is initialized to 1. Whenever we encounter a
leaf of H, we set the label £(s) of the corresponding site s € P to 1, and we increment 1
by 1. Whenever we visit an internal node u of H for the last time, we annotate it with
the interval I, of the labels in T,. Thus, a site s € P lies in a subtree T, if and only if
{(s) € I,. Each label has O(logn) bits.

Next, we describe the routing tables. Each routing table consists of two parts, the local
routing table and the global routing table. The local routing table py (s) of a site s stores
the neighbors of s in T, in counterclockwise order, together with the levels in H of the
corresponding edges (cf. Section 4.2). Since T has degree at most 6, each local routing
table consists of O(logn) bits. The global routing table pg(s) of a site s is obtained as
follows: we go through all O(logn) nodes u of H that contain s in their subtree T,,. By
Lemma 4.1, = contains at most O(dc?|Py|) well-separated pairs in which u represents
one of the sets. We assign O(9¢2) = O(9e 2log? D) of these pairs to s, such that each
pair is assigned to exactly one site in Py,. For each pair (u,v) assigned to s, we store the
interval I, corresponding to P,. Furthermore, if o(v) is not a neighbor of s in UD(P),
we store the label £(m) of the middle site m of a shortest path 7t from s to o(v). Here,
m is a site on 7t that minimizes the maximum distance, max{d(s, m), d(m, o(v))}, to the
endpoints of 7. A site s lies in O(logn) different sets Py, at most one for each level of
H. For each such set, we store O(de¢ 2log? D) pairs in pg(s), each of which requires
O(logn) bits. Thus, pg has O(de 2log? nlog? D) bits.

Finally, we argue that the routing scheme can be computed efficiently.

4.4 The Routing Scheme I 41

Lemma 4.4. The preprocessing time for the routing scheme that is described above is
O(n2logn +dn? + e 2nlognlog? D).

Proof. The c-WSPD can be computed in O(dc?nlogn) = O(de 2nlognlog? D) time
using the algorithm by Gao and Zhang |]. Within the same time bound, we can
distribute the WSPD-pairs to the sites in P and compute the labels for P.

It remains to compute the middle sites; we do this for all pairs (s,t) € P x P as follows:
we first compute UD(P) explicitly. Since P has density 9, we have O(dn) edges in UD(P),
and we can compute it naively in time O(n?). For each s € P, we compute the shortest
path tree T with root s. This takes total time O(n?logn +dn?), using n invocations of
Dijkstra’s algorithm.

Hqe=(g:12,d:11,a:7)

Hpy = (b:9)

H, = (c:8)
Hmn=(g:12,d:11,b:9,c:8,a:7,m:6)

d(s,m’) =4

Figure 4.3: m is the middle site for g and d. From b onwards m’ is a better middle site.

For each s € P, we perform a post-order traversal of the shortest path tree T to find
the middle sites for all s-t-paths. First, for each leaf t of T, we create a max-heap that
contains t with d(s,t) as the key. We now describe how to process a site m during the
traversal. First, we merge the heaps of all children of m into a new heap H;, and we
insert m into H,, with d(s, m) as key, see Figure 4.3. During the traversal, we maintain
the invariant that H,,, contains all sites that are descendants of m in J for which we have
not yet found a middle site. Furthermore, since d(s,t) increases monotonically along
every root-leaf path in T, the sites for which m might be the middle site are a prefix of
the decreasingly sorted distances d(s,t) with t € H,,. Thus, to find the sites in H,, for
which m is the middle site, we repeatedly perform an extract-max operation on H;, to
obtain the next candidate t. Then, we compare the value of max{d(s, m), d(m,t)} with
max{d(s,m’), d(m’, t)}, where m’ is the parent of m in T. That is, we check if m’ is a
“better” middle site than m. If not, m must be the middle site for s-t. Otherwise, m
cannot be the middle site for any other site in Hy,, and we proceed with our traversal.
Using, e.g., Fibonacci Heaps, we can merge two heaps in O(1) time and perform an
extract-max operation in O(logn) amortized time |]. Since each element of T is
inserted and extracted at most once, we need O(nlogn) time to find the middle sites
for s. Thus, we can find all middle sites in time O(n?logn) and the total preprocessing
time is O(n2logn 4+ dn2 + de 2nlognlog? D). O

42| Routing in Unit Disk Graphs

4.4.2 Routing a Packet

Suppose we are given two sites s and t, and we would like to route a packet from s to
t. Recall our overall strategy: we first perform a local exploration of UD(P) in order to
discover a site T that stores a pair (u,v) € = representing (s, t) in its global routing table
pg(r). To find r, we consider the subtrees of T that contain s by increasing size, and
we perform an Euler tour in each subtree until we find r. In pg(r) we have stored the
middle site m of a shortest path from r to o(v). We put the label £(t) into the header,
and we recursively route the packet from r to m. Once we reach m, we retrieve the
original target t from the header and recursively route from m to t, see Algorithm 4.1
for pseudo-code.

Local Routing: The Euler-Tour. We start at s, and we would like to find the site r that
stores the pair (u,v) representing (s,t). By construction, both s and r are contained in
Py, and it suffices to perform an Euler tour on T, to discover r. Since we do not know
u in advance, we begin with the leaf in H that contains s, and we explore all nodes on
the path to the root until we find w.

Figure 4.4: To find r we do an Euler Tour on T, the subtree that contains s whose edges
have level at least 7. Since we do not find r, we search the next larger subtree
T./, where u’ is the parent of u in H by decreasing the search level to 6.

We store s as the start site in the header h. Let w € H be the node to be explored,
and let 1 = &(w) be the level of w in H. We store 1 in h. Recall that T, is a connected
component of the forest induced by all edges of level at least . We perform an Euler tour
on T, using the local routing tables as follows: starting at s, we follow the first edge in
pr(s) that has level at least 1. Every time we visit a site r, we check for all WSPD-pairs
(w,v) in pg(r) whether £(t) € I, i.e., whether t € P,,. If so, we clear the local routing
information from h, and we proceed with the global routing. If not, we scan pp(r) for
the next edge in p1 (r) that has level at least 1, going back to the beginning of py (r) if
necessary, and we follow this edge. For this, we must remember in h the edge through
which we last entered r (note that we must store only the last edge of the tour). Once
we reach s for the last time (i.e., through the last edge in py (s) with level at least 1), we

4.4 The Routing Scheme 143

decrease 1 by one and restart the process. Decreasing | corresponds to proceeding with
the parent of w in H.

Global Routing: The WSPD. Suppose we are at a site s such that pg(s) contains the
pair (u,v) with the target t being in P,. If t is not a neighbor of s, then pg(s) also
contains the label of a middle site m for (u,v). We push (the label of) t onto the header
stack, and we use £(m) as the new target. Then we perform a local routing, starting at
s, in order to find a pair (u’,v’) with m € P,.. If t is a neighbor of s, we go directly to t.
Since t may be an intermediate target, we pop the next element from the header stack
and set it as the new target label. If the header stack is empty, t is our final destination.

Input: currentSite s, targetLabel {(t), header h
Output: nextSite, nextTargetLabel, header

1 if £(s) = £(t) then /* intermediate target reached? */
2 if h.stack = () then /* final target? x*/
3 ‘ return (s, 1, 1)

4 else

5 ‘ return (s, h.stack.pop(), h)

6 else if p(s) stores a WSPD-pair (u,v) with t € P,, then /* global routing */
7 h.startSite < ()

8 if s and t are neighbors in UD(P) then

9 ‘ return (t,£(t), h)

10 else

11 nextTargetLabel < label of middle site for (u,v)

12 h.stack.push(£(t))

13 return (s, nextTargetLabel, h)

14 else /* local routing */
15 if h.startSite = () then

16 h.startSite < s

17 h.level < 6(s)

18 T < next clockwise neighbor of s with level of edge sr > h.level

19 if r =1 then /* Euler tour is finished */
20 h.level < h.level — 1

21 return (s,{(t),h)

22 else

23 return (r,£(t),h)

Algorithm 4.1: The routing algorithm.

4.4.3 Analysis of the Routing Scheme

We now show that our routing scheme is correct and has low stretch, i.e., that for any two
sites s, t € P, it yields a routing path s = sg,...,sx =t of length at most (1 + ¢)d(s,t).

441 Routing in Unit Disk Graphs

Correctness. First, we consider only small distances and show that in this case our
routing scheme produces an actual shortest path.

Lemma 4.5. Let s, t be two sites in P with d(s,t) < c. Then, the routing scheme produces
a routing path sg, S1, ..., Sk with the following properties

(i) so =s and s, =t,
(i7) dp(s,t) =d(s,t), and

(iii) the header stack is in the same state at the beginning and at the end of the routing
path.

Proof. We prove that our routing scheme has properties (i)-(iii) by induction on the rank
of d(s,t) in the sorted list of the pairwise distances in UD(P).

For the base case, consider the edges st in UD(P), i.e., d(s,t) = |st| < 1. By
Lemma 4.3, there exists a pair (u,v) with P, = {s} and P,, = {t}. Thus, Algorithm 4.1
correctly routes to t in one step and does not manipulate the header stack. All properties
are fulfilled.

Now, consider an arbitrary pair s,t with 1 < d(s,t) < ¢. By Lemma 4.3, there is a
pair (u,v) with P, = {s} and P, = {t}. By construction, (u,v) is stored in pg(s) and
the routing algorithm directly proceeds to the global routing phase. Since d(s,t) > 1,
the routing table contains a middle site m and since Py, and P,, are singletons, m is a
middle site on a shortest path from s to t. Algorithm 4.1 pushes £(t) onto the stack and
sets m as the new target. By induction, the routing scheme now routes the packet along
a shortest path from s to m (i, ii), and when the packet arrives at m, the target label
€(t) is at the top of the stack (iii). Thus, Algorithm 4.1 executes line 5, and routes the
packet from m to t. Again by induction, the packet now follows a shortest path from
m to t (i, ii), and when the packet arrives at t, the stack is in the same state a before
pushing £(t) (iii). The claim follows. O

Building on Lemma 4.5, we can now prove that our scheme is correct.

Lemma 4.6. Let s, t be two sites in P. Then, the routing scheme produces a routing path
S0, 81, - - - , Sk with the following properties

(i) so =s and sy =t, and

(ii) the header stack is in the same state at the beginning and at the end of the routing
path.

Proof. Again, we use induction on the rank of d(s,t) in the sorted list of pairwise
distances in UD(P). If d(s,t) < c, the claim is immediate by Lemma 4.5.

Now, consider an arbitrary pair s,t € P. By construction, our routing scheme will
eventually find a site v € P whose global routing table stores a WSPD-pair (u,v) that
represents (s, t), together with a middle site m (m exists for d(s,t) > ¢ large enough).
So far, the stack remains unchanged (see Figure 4.5). Algorithm 4.1 pushes {(t) onto

4.4 The Routing Scheme 1 45

the stack and sets m as the new target. By induction, the routing scheme routes the
packet correctly from s to m (i), and when the packet arrives at m, the target label £(t)
is at the top of the stack (ii). Thus, Algorithm 4.1 executes line 5, and routes the packet
from m to t. Again by induction, the packet arrives at t, with the stack in the same
state as before pushing €(t) (i, ii). O

T=10(m)

T=10(1)

10

il ()]~ [ela) ()| ~[ela)

g a) s L—\/\‘ — L—\/\‘ — T:((t)
L\/\‘

Figure 4.5: How the stack (green) and the target label T changes due to the global
routing. The label £(a) is on top of the stack before and after the global
routing.

Stretch Factor. The analysis of the stretch factor requires some more technical work.
We begin with a lemma that justifies the term ”"middle site®

Lemma 4.7. Let s,t be two sites in P with d(s,t) > ¢ > 14 and let (u,v) € = be the
WSPD-pair that represents (s,t). If m is a middle site of a shortest path from s to o(v)
in UD(P), then

(i) d(s,m)+d(m,t) < (1+2/c)d(s,t), and
(i) d(s,m),d(m,t) < (5/8)d(s,t).

Proof. For (i) we use that m is the middle site on a shortest s-o(v)-path and we apply
the triangle inequality twice to get

d(s,m)+d(m,t) <d(s,m)+d(m,o(v)) + d(c(v),t)
d(s,o(v)) +d(o(v),t)
d(s,t) +2d(o(v),t)

(1+2/c)d(s, 1),

triangle inequality)

m is middle site)
triangle inequality)
Lemma 4.2)

(
(
< (
< (

where the last inequality follows from Lemma 4.2 and since d(o(v),t) < diam(P,,).

For (ii) let 7t be a shortest path from s to o(v) that contains m, and let m’ be
the point on 7 with distance d(s,o(v))/2 from s and from o(v) (m’ may lie on an
edge of 7). Since the edges of 7 have length at most 1, there is a site m” on 7 with
d(m’,m”) = m’m”| < 1/2. Furthermore, the triangle inequality and Lemma 4.2 yield
d(s,o(v)) > (1—1/c)d(s,t) > c — 1. Hence,

461 Routing in Unit Disk Graphs

max{d(s,m”),d(m”, o(v)} < d(s,o(v))/2+1/2
< (1/2+1/(2¢ —2))d(s, o(v)) (*)
= (c/(2c —2))d(s, o(v)),

where (*) is due to the fact that the triangle inequality, Lemma 4.2, and d(s,t) > c yield
d(s,o(v)) = (1 —1/c)d(s,t) 2 c—1.

For ¢ > 14, the site m” is distinct from s and o(v), and the distances to and from the
middle site m are at most

max{d(s, m), d(m, o(v))} < max{d(s,m"”), d(m”, o(v))} < (¢/(2c — 2))d(s, o(v)). (4.3)
Using the triangle inequality and Lemma 4.2 again, we get
(1—1/c)d(m,t) < d(m, a(v)) (4.4)

and
d(s,o(v)) < (1+4+1/c)d(s,t). (4.5)

Thus, we can derive

max{d(s, m),d(m,t)} < (1 +1/(c— 1)) max{d(s, m),d(m,c(v))} (by (4.4))
¢/(2¢—2))(1+1/c)(1+1/(c—1))d(s,t) (by (43, 15))
c/(2¢—2))(1+2/(c—1))d(s,t)

c¢? +¢)/(2(c = 1)?)d(s, 1),

<
<

(
(
= (
=(c?

and (ii) follows from ¢ > 14. O
In the next lemma, we bound the distance traveled during the local routing.

Lemma 4.8. Let s,t be two sites in P with d(s,t) > c. Then, the total distance traveled
by the packet during the local routing phase before the WSPD-pair representing (s,t) is
discovered is at most (48/c)d(s,t).

Proof. Let (u,v) be the WSPD-pair representing (s, t), and let ug,uq,...,ux = u be
the path in H from the leaf ug for s to w. Let Ty, T1,..., Tx and Pg,Py,...,Px be
the corresponding subtrees of T and sites of P. The local routing algorithm iteratively
performs an Euler tour of Ty, Ty, ..., Tx (the tour of Ty, may stop early). An Euler tour in
T; takes 2|P;i| — 2 steps, and each edge has length at most 1. As described in Section 4.2,
fori=0....,k—1, the WSPD ensures that

Pil < [Pigal = [(IPisal = 1)/6] < (5/6)[Pisal +1/6 < (11/12)[Pia],

4.4 The Routing Scheme 147

since |Piy1] > 2. It follows that the total distance for the local routing is at most

k

k
D (2Pl —2) < 2Pyl Y (11/12)F < 24/Py .
i=0 i=0

By Lemma 4.2, we have d(s,t) > ¢(|Py| — 1) and since Py = P, the total distance is
bounded by 24|P,| < 24(1 + d(s,t)/c) < (48/c)d(s,t), where the last inequality is true
for d(s,t) > c. O

Finally, we can bound the stretch factor:
Lemma 4.9. For any two sites s and t, we have dy(s,t) < (1 +¢e)d(s,t).
Proof. We show by induction on d,(s,t) that there is an o > 0 with
do(s,t) < (1+ (a/c)logd(s,t))d(s,t).

Since d(s,t) < diam(P) = D, the lemma then follows from our choice of ¢ = (&/¢) log D.

If d(s, t) < ¢, the claim follows by Lemma 4.5. If d(s,t) > ¢, Algorithm 4.1 performs a
local routing to find the site r that has the WSPD-pair (u,v) representing (s, t) stored in
pg(r). Then the packet is routed recursively from r to the middle site m and from m to
t. By Lemma 4.8 the length of the routing path is dy(s,t) < (48/c)d(s,t) + dp(r,m) +
do(m, t), and by induction we get

do(s,t) < (48/c)d(s,t) + (1 + (e/c) log d(r, m))d(r, m)
+ (14 (ee/c) log d(m, t))d(m, t).

Since m is a middle site on a shortest r-o(v)-path in UD(P), Lemma 4.7(i),(ii) and the
fact that log(5/8) < —1/2 imply

do(s,t) < (48/c)d(s,t) + (1 + (a/c) log((5/8)d(r,t))>(d(r, m) + d(m,t))
< (48/c)d(s, 1) + (1 + (a/c) log(d(r, 1)) — oc/2c> (1+2/c)d(r,1).

By triangle inequality and by Lemma 4.2 we have d(r,t) < (1+1/c)d(s, t), which gives
(1+2/c)d(r,t) < (1+2/c)(1+1/c)d(s,t) < (1+4+4/c)d(s,t), for ¢ large enough. Hence,

dp(s,t) < (48/€)d(s,1) + (1 + (/) log((1 + 1/c)d(s, 1)) — /2¢) (1 + 4/c)d(s, 1),
and for o > 192, we can eliminate the first term to get

do(s,t) < (1 + (o/c) log((1 + 1/¢)d(s, 1)) — oc/4c) (1+4/c)d(s, t),
and since now ¢ > 192 and hence log(1 + 1/c) < 1/8, this is

< (1 + (e¢/c) log(d(s,t)) — oc/8€> (14+4/c)d(s,t) = (14 (/c)logd(s,t))d(s,t) + A,

48 | Routing in Unit Disk Graphs

with A = —(a/8¢)(1+4/c)d(s,t)+(4/c)d(s, t) (1+ (x/c)log d(s, t)). It remains to show
that A <0, i.e., that

(4/c)d(s,t) (1 + («/c)logd(s,t)) < («/8¢)(1+4/c)d(s,t).
Now, since we picked ¢ = (/¢)logD and o > 192, we have
14 (et/c)log(d(s, 1)) < 2 < («/32)(1+4/c),
as desired. This finishes the proof. O

Combining Lemma 4.4 and 4.9 we obtain the following theorem.

Theorem 4.10. Let P be a set of n sites in the plane with density 9. For any € > 0,
we can preprocess P into a routing scheme for UD(P) with labels of size O(logn) bits
and routing tables of size O(de~2log? nlog? D), where D is the diameter of UD(P). For
any two sites s,t, the scheme produces a routing path with dy(s,t) < (1+¢)d(s,t) and
during the routing the maximum header size is O(lognlogD). The preprocessing time
is O(n%logn 4+ dn? + de 2nlognlog? D).

4.5 Extension to Arbitrary Density

Let 14¢, € > 0, be the desired stretch factor. To extend the routing scheme to point sets
of unbounded density, we follow a strategy similar to Gao and Zhang | , Section 4.2]:
we first pick an appropriate ¢; > 0, and we compute an ¢;-net R C P, i.e., a subset of
sites such that each site in P has distance at most ¢; to the closest site in R and such
that any two sites in R have distance at least €1, see Figure 4.6.

Figure 4.6: The set R (black) and the bridges (endpoints of black edges) form the set Z.

It is easy to see that R has density O(an) (see Lemma 4.11), and we would like to
represent each site in P by its closest site in R. However, the connectivity in UD(R)
might differ from UD(P). To rectify this, we add additional sites to R. This is done as
follows: two sites s,t € R are called neighbors if [st| > 1, but there are p,q € P such
that s,p, q,t is a path in UD(P) and such that [sp| < ¢; and [qt| < &1 (possibly, s =p
or ¢ = t). In this case, p and q are called a bridge for s,t. Let R’ be a point set that

4.5 Extension to Arbitrary Density 149

contains an arbitrary bridge for each pair of neighbors in R. Set Z =RUR’. A simple
volume argument bounds the density of Z.

Lemma 4.11. The set R has density 0(51_2) and the set Z has density 0(81_3).

Proof. Let D be a unit disk and let D’ be the disk with radius 1 + €1/2 concentric to
D. For each s € RN D, the disk D(s, ¢1/2) with center s and radius €1/2 is contained
in D’. Let s,t € R be two sites. By construction |st| > ¢; and thus the disks D(s, ¢1/2)
and D(t, e1/2) are disjoint. A disk of radius €1/2 has area me3/4 and the area of D’ is
7t(1+¢€1/2)%. Thus we can place O(e; ?) such disks into D’ disjointly. Hence, the density
of R is 0(5;2).

Now, let D" be the disk with radius 1 + ¢; concentric to D. To bound the density of
Z, let p € (Z\R)ND be a site that belongs to a bridge. Suppose that s € R is responsible
for p being a bridge site. Then we have [sp| < €1 and by construction s € D”'. We charge
p to s. The same volume argument as above shows that [RND"| = O(1/£f2). Below we
show that s has O(el_l) neighbors and thus can get O(al_l) charges from bridge sites.
Hence, the number of bridge sites in ZN D, and also the density of Z, is O(£f3).

Consider the annulus A around s with inner radius 1 and outer radius 1 + 2¢;. All
neighbors of s must lie in A. Let A’ the annulus concentric to A with inner radius
1 —€1/2 and outer radius 1+ (5/2)e;. The area of A’ is

(14 (5/2)e1)? — (1 — €1/2)? = 6¢1 + 62,

and thus, since R is an €1-net, we can place O(el_l) sites of R in A. Hence, s has O(sl_l)
neighbors, as claimed. O

Furthermore, Gao and Zhang show the following:

Lemma 4.12 (Lemma 4.8 and Lemma 4.9 in | 1). Computing Z needs O((n/e?)logn)
time, and if d4(-,-) denotes the shortest path distance in UD(Z), then, for any s,t € R,
we have d4(s,t) < (1 + 12¢1)d(s, t) + 12¢;.

Now, our extended routing scheme proceeds as follows: first, we compute R and Z as
described above, and we perform the preprocessing algorithm for Z with ¢1 as stretch
parameter. We assign arbitrary new labels to the sites in P\ Z. Then, we extend the
label £(s) of each site s € P, such that it also contains the label of a site in R closest to
s. The label size remains O(logn).

To route between two sites s,t € P, we first check whether we can go from s to t in
one step (we assume that this can be checked locally in the routing function). If so, we
route the packet directly. Otherwise, we have d(s,t) > 1. Let s’,t’ € R be the closest
sites in R to s and to t. By construction, we can obtain s’ and t’ from £(s) and £(t).
Now, we first go from s to s’. Then, we use the low-density algorithm to route from s’
to t’ in UD(Z), and finally we go from t’ to t in one step. Using the discussion above,
the total routing distance is bounded by

do(s,t) < lss’[+d5(s',t') + [t't],

501 Routing in Unit Disk Graphs

where dg(', -} is the routing distance in UD(Z). By Lemma 4.9 and 4.12, this is

14+ (T+e)d%(s",t)) + &1

<e¢
<21+ (1+&1)((1+12e1)d(s’, t)) + 12¢1),

and by using the triangle inequality twice this is
< 261 + (14 1) ((1+12e1)(d(s, t) + 2e1) + 12¢9).
Rearranging and using d(s,t) > 1 yields

< (1+29¢; + 5063 4+ 24€3)d(s,t) < (14 €)d(s, t),

where the last inequality holds for ¢; < €/103. This establishes our main theorem for
this chapter:

Theorem 4.13. Let P be a set of n sites in the plane. For any ¢ > 0, we can preprocess
P into a routing scheme for UD(P) with labels of O(logn) bits and routing tables of
size O(e 2 log?nlog? D), where D is the diameter of UD(P). For any two sites s,t, the
scheme produces a routing path with dy(s,t) < (1+ ¢)d(s,t) and during the routing the
mazimum header size is O(lognlog D). The preprocessing time is O(n?logn + e 3n? +
e °nlognlog?D).

Proof. The theorem follows from the above discussion and from the fact that the set Z
has density O(e~2), by our choice of ¢;. O

4.6 Conclusion

We have presented an efficient routing scheme for unit disk graphs that produces a
routing path whose length can be made arbitrarily close to optimal. For this, we used
the fact that the unit disk graph metric admits a small WSPD. Our techniques almost
solely rely on properties of well-separated pairs and thus we expect our approach to
generalize to other graph metrics for which WSPDs can be found. One such example
is the hop-distance dn(-,-) in unit disk graphs, in which all edges have length 1. Let P
be a set of sites and let diamy, (P) denote the diameter of P in terms of dy(-,-). Since
diamp (P) < |P| — 1 and |st] < dn(s,t) for every two sites s,t € P, the well-separation
condition (4.1) implies a separation with respect to the hop-distance. Thus, we can also
find a routing scheme that approximates the number of hops used in the routing path
instead of its Euclidean length.

Various open questions remain. First of all, it would be interesting to improve the
size of the routing tables. One way to achieve this might be to decrease the dependency
on ¢. The e °-factor seems to be rather high. It is mostly owed to the e 3-factor
we introduced in Section 4.5 when going from bounded to unbounded density. Further
improvements might be on the side of the WSPD: traditional WSPDs have only O(c?n)

4.6 Conclusion 151

pairs, while the WSPD of Gao and Zhang has an additional logarithmic factor. Whether
this factor can be avoided is still an open question and any improvement in the number
of pairs would immediately decrease the size of our routing tables by the same amount.

Furthermore, our routing scheme makes extensive use of a modifiable header. While
this is consistent with the usual model for routing schemes, the scheme of Yan et al. man-
aged to avoid the need of a header completely. In order to be completely comparable to
their result, we would need to have a routing scheme that only requires a small routing
table to produce a routing path with stretch 1 + €.

11

Transmission Graphs

Chapter

Spanners for Transmission
and Disk Graphs

From now on, we consider transmission graphs, a generalization of unit disk graphs.
Like almost all geometric intersection graphs, transmission graphs may be very dense
and may contain @(n?) edges. Thus, standard graph algorithms, like breadth first search
(BFS), run slowly when applied to a dense transmission graph |], since an explicit
representation of all edges of the graph is required. This is particularly unsatisfying since
transmission graphs admit a linear size implicit representation: we store the coordinates
of each site together with its associated radius.

For some applications a sparse approximation of a transmission graph G that pre-
serves distances suffices, i.e., we would like to have a spanner for G (cf. Section 2.1).
Furthermore, we want to construct the spanner efficiently without generating an explicit
representation of G. More precisely, our input is a set of sites P C R?, each having an
associated radius v, > 0, and a parameter t > 1. Our goal is to construct a sparse
subgraph H C G such that for any two sites p,q € P we have dy(p,q) < tdg(p,q),
where dyy and dg are the shortest path distances in H and G, respectively, when edges
are weighted by their Euclidean length. The graph H is called a t-spanner for G and we
want to construct it in time almost linear in the size of P.

One might wonder if we can always find a t-spanner for G at all. For unit- and
general disk graphs Fiirer and Kasivisawnathan show that this is possible |]. Their
construction is based on the Yao graph |] and leads to an efficient algorithm. Peleg
and Roditty [| give a spanner construction for transmission graphs in any metric
space with bounded doubling dimension. However, their algorithm has two drawbacks,
making it not applicable for our purposes: it needs an explicit representation of the
graph and the size of the spanner depends logarithmically on the radius ratio . For the
latter, they even show that there are metric spaces with bounded doubling dimension
where this dependency cannot be avoided.

v
()

56 | Spanners for Transmission and Disk Graphs

We continue these studies by giving an algorithm that constructs a t-spanner for a
transmission graph of a planar set of point sites (P C R?) with respect to the Euclidean
metric. The algorithm has almost linear running time and constructs a spanner with a
linear number of edges (for any constant t), independent of the radius ratio V.

Our construction is also based on the Yao P
graph |]. The basic Yao graph is a t-
spanner for the complete graph defined by n sites
in the plane (with Euclidean distances as the
weights of the edges). To determine the sites ad- °
jacent to a particular site q, we divide the plane q
by equally spaced rays emanating from q and
connect ¢ to its closest site in each wedge (the
number of wedges increases as t gets smaller). See °
Figure 5.1. Adapting this construction to trans-
mission graphs poses a severe computational dif- Figure 5.1: The Yao edges for .
ficulty, as we want to consider in each wedge only
the sites p with q € D(p) (i.e., that form an incoming edge for q) and to pick the closest
site to q only among those. Since finding the exact closest site turns out to be difficult,
we need to relax this requirement in a subtle way, without hurting the approximation
too much. This makes it possible to construct the spanner efficiently.

Even with a good t-spanner at hand, we sometimes wish to obtain exact solutions
for certain problems on disk graphs. Working in this direction, Cabello and Jejéi¢ gave
an O(nlogn) time algorithm for computing a BFS tree in a unit-disk graph, rooted
at any given site | |. For this, they exploited the special structure of the Delaunay
triangulation of the disk centers. We show that our spanner admits similar properties for
transmission graphs. As a first application of our spanner, we get an efficient algorithm
to compute a BFS tree in a transmission graph rooted at any given site.

For other applications, we consider the reachability oracles we construct in Chapter 6.
Recall that a reachability oracle is a data structure that can answer reachability queries:
given two vertices s and t, determine whether there is a directed path from s to t (cf.
Chapter 1). The quality of a reachability oracle is measured by its query time, its space
requirement, and its preprocessing time. For transmission graphs, we can ask for a more
general geometric reachability query: given a vertex s and any point q € R?, determine
whether there is a vertex t such that there is a directed path from s to t in G, and q
lies in the disk of t. We show how to extend any given reachability oracle to answer
geometric queries with a small additive increase in space and query time. Furthermore,
we will make extensive use of our spanner in Chapter 6 to decrease the preprocessing
time of our reachability oracles.

5.1 Our Results

In Section 5.2, we show how to compute, for every fixed t > 1, a t-spanner H of G. Our
construction is quite generic and can be adapted to several situations. In the simplest

5.2 Spanner Constructions for Transmission Graphs 157

case, if the spread ® of P is bounded, we can obtain a t-spanner in time O(n(logn +
log @)) (Section 5.2.1). With slightly more work, we can weaken the assumption to
a bounded radius ratio ¥ (recall that W is the ratio between the largest and smallest
radius in P), giving a running time of O(n(logn + log¥)) (Section 5.2.2). Recall that a
bound on @ implies a bound on ¥, by Observation 2.1. Using even more advanced data
structures, we can compute a t-spanner in time O(nlog®n), without any dependence
on @ or ¥ (Section 5.2.3). Finally, in Section 5.3.1 we modify the last construction
and make it work also for disk graphs. It will produce a spanner for D(P) in expected
time O(n2%(M) 1og!®n) and thus it gives the first non-trivial spanner construction for
disk graphs that is independent of the radius ratio, improving the currently best known
result of Fiirer and Kasivisawnathan []-

In Section 5.4.1 we show how to adapt a result by Cabello and Jejcié | | to compute
a BFS-tree in a transmission graph, from any given vertex p € P, in O(nlogn) time,
once we have the spanner ready.

In Section 5.4.2 we show how to use a spanner to extend a reachability oracle to answer
geometric reachability queries. Specifically, we show that any reachability oracle for a
transmission graph with radius ratio ¥ that requires S(n) space and answers a query
in Q(n) time, can be extended in O(nlognlogW¥) time to an oracle that can answer
geometric reachability queries. The new oracle requires S(n) + O(nlogV¥) space and
answers a query in Q(n) 4+ O(lognlogV¥) time.

5.2 Spanner Constructions for Transmission
Graphs

First, we give a spanner construction for the transmission graph whose running time
depends on the spread. Later, in Section 5.2.2, we will tune this construction so that
the running time depends on the radius ratio. The main result which we prove in this
section is as follows.

Theorem 5.1. Let G be the transmission graph for a set P of n points in the plane with
spread ®. For any fized t > 1, we can compute a t-spanner for G in O(nlog @) time.
The construction needs O(nlog @) space.

Let p be a ray originating from the origin and let 0 < o < 27. A cone with opening
angle & and middle azis p is the closed region containing p and bounded by the two rays
obtained by rotating p clockwise and counterclockwise by o/2.

Given a cone C and a point q € R?, we write Cq for the copy of C obtained by
translating the origin to q. We call q the apex of Cq4. Ideally, our spanner should look
as follows. Let C be a set of k cones with opening angles 27t/k that partition the plane.
For each site ¢ € P and each cone C € C, we pick the site p € PN Cq with q € D(p)
that is closest to q (see Figure 5.2). We add the edge pq to H. The resulting graph
has O(kn) edges. Using standard techniques, one can show that H is a t-spanner, if k is

58 1 Spanners for Transmission and Disk Graphs

large enough as a function of t. This construction has been reported before and seems
to be folklore |) l.

Unfortunately, the standard algorithms for
computing the Yao graph do not seem to
adapt easily to our setting without a penalty
in their running times [|. The problem
is that for each site q and each cone Cq, we
need to search for a nearest neighbor of q only

/p N\ among those sites p € Cq such that q € D(p).
\ r.N This seems to be hard to do with the stan-
< dard approaches. Thus, we modify the con-

struction to search only for an approximate
nearest neighbor of q and argue that picking

Figure 5.2: A cone Cq (orange) at a site a1 approximately shortest edge in each cone

q. Since q ¢ D(r), we pick suffices to obtain a spanner.
the edge pq. We partition each cone Cq into “inter-

vals” obtained by intersecting Cq with annuli

around whose inner and outer radii grow
exponentially; see Figure 5.3. There can be only O(log ®) non-empty intervals. We
cover each such interval by O(1) grid cells whose diameter is “small” compared to the
width of the interval. This gives two useful properties. (i) We only need to consider
edges from the interval closest to q that contains sites with outgoing edges to ¢; all other
edges to q will be longer. (ii) If there are multiple edges from the same grid cell, their
endpoints are close together, and it suffices to consider only one of them.

(%2}

PRl
*—— q
T

Figure 5.3: A cone Cq covered by discretized intervals. We only need one of the edges
pq, rq for H.

To make this approach more concrete, we define a decomposition of P into pairs of
subsets of P contained in certain grid cells. These pairs will be well-separated and rep-
resent a discretized version of the intervals (see Definition 5.2 below). This is motivated
by the spanner construction based on the well-separated pair decomposition (WSPD),
as described in Section 2.2.1.

Let ¢ > 1 be a parameter and let = = {(A1,B1),..., (Am,Bm)} be a ¢-WSPD for P.
To obtain the WSPD spanner for P, we put in the spanner for each pair (Ai, Bi) in the
WSPD an edge ab, where a is an arbitrary site in A; and b is an arbitrary site in Bj

5.2 Spanner Constructions for Transmission Graphs 159

(cf. Section 2.2.1). It turns out that a similar approach works for transmission graphs.
However, since they are directed, we need to find for each site in B; an incoming edge
from a site in Ay, if such an edge exists, and vice versa. This causes two difficulties: we
cannot afford to check all possible edges in A; x By, since this would lead to a quadratic
running time, and we cannot control the indegree of a site p since it may belong to
many sets A and B;. We address the second problem by taking only O(1) edges into
a particular site q, within each of the k cones of the Yao construction described above.
For the first problem, we identify in each A; a special subset that “covers” all edges from
a site in Aj to a site in By, such that each the total size of these subsets is linear in the
size of P.

The concrete implementation of this idea is captured by Definition 5.2. A pair (A, By)
corresponds to sets P M o and P N T for two grid cells o, T that have the same diameter
and that are well separated (Property (i)). For a grid cell T, we define a particular subset
Rt € PNt to be the set of sites assigned to T. Property (ii) in Definition 5.2 guarantees
that each edge pq of G with q € o and p € T is “covered” by Ry in the sense that there
is some site in Ry that has an outgoing edge to q (see Figure 5.4).

Definition 5.2. Let ¢ > 2 and let G be the transmission graph of a planar point set P.
A c-separated annulus decomposition for G consists of a finite set § C |Ji~, Gi of grid
cells, a symmetric neighborhood relation N C G x G between these cells, and a subset of
assigned sites Ry C PNt for each grid cell T € §. A c-separated annulus decomposition
for G has the following properties:

(i) For every (o,T) € N we have diam(o) = diam(t) and d(o,T) = ydiam(o), for
somey € [c —2,2c).

(ii) for every edge pq of G, there is a pair (0,7T) € N with q € 0, p € T, and with a
site v € Ry such that q € D(r).

The following fact is a direct consequence of Definition 5.2. For each cell o € G, we
define its neighborhood as N(o) ={t| (0,T) € N}

Lemma 5.3. For each cell o € G, we have [N(0)| = O(c?), and for each cell T € G the
number of cells o € G such that T € N(o) is O(c?).

Proof. This follows from Definition 5.2(i) via a standard volume argument as given, e.g.,
in the proof of Lemma 4.11. O

Given this decomposition, we first present a simple (and rather inefficient) rule for
picking incoming edges such that the resulting graph is a t-spanner. Then we explain
how to compute the decomposition using a quadtree. Finally, we exploit the quadtree to
make the spanner construction efficient.

5.2.1 Efficient Spanner Construction for Sites with Bounded Spread

Let t > 1 be the desired stretch factor. We pick a suitable separation parameter ¢ and a
number of cones k that depend on t, as specified later. Let (G, N, R;) be a c-separated

601 Spanners for Transmission and Disk Graphs

(i) The neighborhood N(o) of a cell o cov- (ii) Since q € D(r), the edge pq is covered by
ers an annulus. if we put 1 into R..

Figure 5.4: Illustration of Property (i) and (ii) in Definition 5.2.

annulus decomposition for G. For a cone C € € and an integer £ € N, we define C! as
the cone with the same middle axis as C but with an opening angle { times as large as
the opening angle of C. For a grid cell 0 € G, let Cs be the copy of C with the center
of o as the apex.

To obtain a t-spanner H C G, we pick the incoming edges for each site q € P and each
cone C € € as follows (see Algorithm 5.1). We consider the cells §9 C G containing q in
increasing order of diameter. Let o be one such cell containing q that we process. We
traverse all neighboring cells T of o, that are contained in C2. For each such neighboring
cell T, we check if there exists a site 1 € R that has an outgoing edge to q. If such a site
exists, we add to H an edge to q from a single, arbitrary, such site r. After considering
all neighbors T of o we terminate the processing of q and C if we added at least one
edge incoming to q. If we have not added any edge into q while processing all neighbors
T of 0, we continue to the next largest cell in §9 containing q. We use here the extended
and translated cones C2 (instead of the cone C q) to gain certain flexibility that will be
useful for later extensions of Algorithm 5.1.

1 §9 < cells of G that contain q

2 Sort the cells in §9 in increasing order by diameter
3 Make q active

4 while q is active do

5 0 <+ next largest cell in G4

6 foreach cell T € N(o) that is contained in C2 do

7 if there is a site r € Ry with q € D(r) then

8 ‘ Take an arbitrary such r, add the edge rq to H, and set q to inactive

Algorithm 5.1: Selecting the incoming edges for q and the cone C.

For each cone C € € and each site q € P there is only one cell 0 € §9 that produces
incoming edges for q. We have k cones and |N(c)| = O(c?) by Lemma 5.3, so q has

5.2 Spanner Constructions for Transmission Graphs 161

O(c?k) incoming edges. It follows that the size of H is O(n) since ¢ and k are constants.

Next we show that H is a t-spanner. For this, we show that every edge pq of G is
represented in H by a path of length approximately [pq|. We prove this by induction on
the ranks of the edge lengths. This is done in a similar manner as for the standard Yao
graphs, but with a few twists that require three additional technical lemmas. Lemma 5.4
deals with the imprecision introduced by taking the cone CZ instead of C q- It follows
from this lemma that if pq is contained in the cone C4 then Algorithm 5.1 picks at least
one edge rq with r € C‘é. Lemma 5.5 and Lemma 5.6 encapsulate geometric facts that
are used to bound the distance between the endpoints r and p depending on whether
Irq| is larger or smaller than [pq|. Lemma 5.6 is due to Bose et al. |] and for
completeness we include their proof.

Lemma 5.4. Let c > 3+ W and let € € {1,...,|k/2]}. Consider a cell o € G; and

a cone C € C. Fiz two points q,s € 0. Every cell T € G; with d(o,T) > (c — 2)2' that
intersects the cone Cg is contained in the cone Ci": In particular, any point p € Cg
with [pql > (¢ — 2)2% lies in a cell that is fully contained in C2¢.

Proof. Let x be a point in TN Cg. By assumption, |[xq| > (c —2)2'. Let D = D(x,2})
be the disk with center x and radius 2. Then, T C D. We show that C2¢ contains D
and thus T. Since o has diameter 2, and Cg contains x, the translated copy CE must
intersect D. If D C Cg, we are done. Otherwise, there is a boundary ray p of Cg that
intersects the boundary of D. Let y be the first intersection of p with the boundary of
D. See Figure 5.5.

Since s € oand x € T, the triangle inequality gives that [ys| > |xs|—|xy| > (c—3)2'. Let
p’ be the boundary ray of C2¢ corresponding to p and let y’ be the orthogonal projection
of y onto p’. Since |ys| > (c —3)2' and since the angle between p and p’ is 7t/k, we get
that [yy’| > (¢ — 3)2tsin(nl/k). It follows that yy’| > 22! for ¢ > 3 + W This
holds for any £ € {1,..., |k/2|}ifc >3 + W Thus, T € D ¢ C2. O

® S
oq

Figure 5.5: The boundary ray p of Cﬁ intersects the boundary of D in y.

Let p be a site in Cq4 such that pq is an edge of G, and p € T € N(o) where 0 is a cell
containing q. Then by Lemma 5.4, T is contained in C%. It follows that Algorithm 5.1
either finds an edge rq before processing o, or finds an edge rq with r € T while processing
o. By applying Lemma 5.4 again we get that r € C‘é. This fact is described in greater
detail and is being used in the proof of Lemma 5.7 below.

621 Spanners for Transmission and Disk Graphs

Lemma 5 5. Let C € @, and let q € R?. Suppose there are two points p,T € C‘é with
(c —2)2' < Ipql < Irql < (c+ 1)2%. Then [pr| < ((87/k)(c + 1) + 3)2%.

Proof. The points p and 1 lie in an annulus around q with inner radius (c — 2)2' and
outer radius (¢ + 1)2%. Since p,r € C‘é, when going from 1 to p, we must travel at most
(87/k)(c + 1)2% units along the circle around q with v on the boundary, then at most
3 - 2% units radially towards p. Thus, |pr| < (87/k)(c +1)2t + 3 - 21 O

(87/k)(c + 1)2

(i) Lemma 5.5. Two sites in an annulus are close (ii) Lemma 5.6. If o is small and |rq| < |pql,
to each other then [pr| < |pql.

Lemma 5.6 (Lemma 10 in |]). Let k > 25 be large enough such that

1+ /2 —2cos(8m/k)

2cos(8m/k) — 1 =1+00/k <t

for our desired stretch factor t. For any three distinct sites p,q,v € R? such that
Irq| < Ipql and o« = Zpqr is between 0 and 8m/k, we have |pr| < [pq|l—|rq|/t.

Proof. By the law of cosines and since 0 < « < 8m/k we have that
lprl® = Ipql* + Irql* — 2Ipq| - Irq| cos & < [pql* + [rql* — 2lpq] - [rq| cos(87/k)

Introducing t by adding and subtracting the same terms, this is

2 1 1 2(tcos(8m/k) — 1

= tpaP — 2 pal -Iral + yiral? + o Hrg? - 2 Tl g g

- lrq\2 t2—1, o 2(tcos(8m/k)—1)

—(Ipq _T) + g ral - " lpql - Irql.

St~
Mhﬂﬂ lrq] < 0. We have that

t2—1 2(t cos(8m/k) —
g — A =Dy gy = 9 (21— o costsmi —)2

< |t2|< 21— 2(t cos(87/k) — 1)),

5.2 Spanner Constructions for Transmission Graphs 163

where the last inequality follows since [pq| > |rq| and

_ 1+ V/2 — 2 cos(8m/k) N 1 N 1
2cos(8m/k) —1 7 2cos(8m/k) —1 7 cos(8m/k) ’

so tcos(8m/k) > 1. Now we have that
t2 —1—2(t% cos(8m/k) — t) = (1 — 2 cos(8m/k))t? +2t —1 < 0

if cos(8m/k) > 1/2 and

1+ /2 —2cos(8m/k)
2cos(8m/k) — 1 h

The latter inequality holds by assumption and cos(87/k) > 1/2 for k > 25. O

We are now ready to bound the stretch of the spanner H. This is done in two steps.
In the first step (Lemma 5.7) we prove that for any edge pq of G which is not in H,
there exists a shorter edge rq in H, such that r is “close” to p. This fact allows us to
prove in the second step, via a fairly standard inductive argument, that H is indeed a

t-spanner for G.

Lemma 5.7. Let ¢ and k be such that ¢ > 3 + m as required by Lemma 5.4, k

satisfies the conditions of Lemma 5.0 and, in addition, ¢ > 2 + % and k > 1&—“{‘. Let

pq be an edge of G. Then either pq is in H or there is an edge vq in H such that
iprl < lpql —Irgl/t.

Proof. Let N be the neighborhood relation of the c-separated annulus decomposition
used by Algorithm 5.1. Let (0,T) € N be a pair of neighboring cells satisfying require-
ment (ii) of Definition 5.2 with respect to pq. In particular we have that q € o and
p € t. If there is more than one such pair (o, T) € N, we consider the pair with minimum
diameter. Let diam(o) = 2!, that is, o, T € ;.

Let C € € be the cone such that p € Cq. Since p € CqNT and since d(o,T) > (c—2)2%,
Lemma 5.4 implies that T C CZ. Hence, T is considered for incoming edges for q (line 6
in Algorithm 5.1). We split the rest of the proof into two cases.

T

(i) Case 1: p and r are in the same cell 0. (ii) Case 2: p and 1 are in different cells with
different levels but in the same cone C‘é.

Case 1: ¢ remains active until (o, T) is considered. Requirement (ii) of Definition 5.2
guarantees that Algorithm 5.1 finds an incoming edge rq for q with r € t. If r = p, we

641 Spanners for Transmission and Disk Graphs

are done, so suppose that v # p. Since diam(c) = 2% and |rq| > d(o,T) > (c —2)2" we
have

2" = Ipql — (Ipql —2) < Ipql — (Irq| —2-2Y)

[pal — (Irql —2Irql/(c — 2)) < Ipgl —[rql(1 —2/(c — 2)) < lpql — Irql/t,

Iprl

NN

forc>2+ 3%1

Case 2: g becomes inactive before (o, T) is considered. Then Algorithm 5.1 has selected
an edge Tq while considering a pair (5,7) € N with q € &, T € T and diam(5) < 2V1.
We now distinguish two subcases.

Subcase 2a: [rq| > |pq|. From Property (i) of Definition 5.2, it follows that d(o,T) >
(c — 2)2' and therefore [pq| > (¢ — 2)2%. It also follows from the same property that
d(o,7) < 2c2'71 so [rq < 2c2V 1+ 22171 = (¢ + 1)2'. Combining these inequalities
we obtain that (c —2)2' < [pq| < |rq| < (c + 1)2% and therefore [pg| > |rq| — 3 - 2%
Lemma 5.5 implies that [pr| < ((87/k)(c + 1) + 3)21, and thus we have

< ((8m/k)(c+1) +3)21
< Ipal —Ipgl+ ((8m/k)(c + 1) + 3)2°
< Ipgl— (Irql =3 2" — ((87/K)(c + 1) +3)2")

[pl

< tpal — (frq — BT IO
< Ipql—qul(l—W)

< Ipql—qu|<1—w%) .

The third inequality follows since [pq| > [rq| — 3 - 2! as we argued above, and the fifth
inequality follows since 2' < [rq|/(c — 2). The last inequality holds for ¢ > 5 (which
167tt

follows from our assumptions). Now for k > > we clearly have that

167
pal — Iral(1- =) < pal —[ral/t

Subcase 2b: [rq| < |[pq|. By assumption, we have p € Cq C C‘é. Furthermore, by
applying Lemma 5.4 with the midpoint of ¢ as q, r as p, and q as s, in the statement
of the lemma, we get that r € C‘é. Since p,r € C‘é and since the opening angle of C‘é is
8m/k, it follows from Lemma 5.6 that [pr| < |pq| —|rql/t. O

Lemma 5.8. For any t > 1, there are constants ¢ and k such that H is a t-spanner for
the transmission graph G.

Proof. We pick the constants ¢ and k so that Lemma 5.7 holds. We prove by induction
on the indices of edges when ordered by their lengths, that for each edge pq of G, there is
a path from p to q in H of length at most t|pq|. For the base case, consider the shortest
edge pq in G. By Lemma 5.7, if pq is not in H then there is an edge rq in H such that

5.2 Spanner Constructions for Transmission Graphs |1 65

Iprl < Ipql —[rql/t. Since pq is an edge of G, it follows that r,, > |pq| and therefore pr
must also be an edge of G, and it is shorter than pq. This gives a contradiction and
therefore pq must be in H.

For the induction step, consider an edge pq of G. If pq is in H we are done. Otherwise
by Lemma 5.7 there is an edge rq in H such that [pr| < [pq| —[rq|/t. As argued above,
pr is an edge of G shorter than [pq| so by the induction hypothesis, there is a path from
p to T in H of length no larger than tpr|. It follows that

du(p, q) < dulp,r) + Irql < tipr| + [rql < tllpgl —[rql/t) + [rql < tlpql,

as required.]

Finding the Decomposition. We use a quadtree to define the cells of the decomposi-
tion | |. We recall that a quadiree is a rooted tree T in which each internal node
has degree four. Each node v of T is associated with a cell o, of some grid G;, i > 0,
and if v is an internal node, the cells associated with its children partition o, into four
congruent squares, each with diameter diam(o,)/2. If o, is from G; then we say that v
is of level 1. Note that all nodes of T at the same distance from the root are of the same
level.

Let ¢ be the required parameter for the annulus decomposition. We scale P such that
the closest pair in P has distance c. (We use P to denote also the scaled point set). Let
L be the smallest integer such that we can translate P so that it fits in a single cell o of
Gr. Since c is constant and P has spread @, the diameter of P (after scaling) is c® and
therefore L = O(log ®@). We translate P so that it fits in o and we associate the root 1 of
our quadtree T with this cell o, i.e. 0 = 0. By the definition of a level, r is of level L.

We continue constructing T top down as follows. We construct level i — 1 of T, given
level 1, by splitting the cell oy, of each node v, whose cell o, is not empty, into four
congruent squares, and associate each of these squares with a child of v. We stop the
construction of T after generating the cells of level 0. The scaling which we did to P
ensures that each cell of a leaf node at level 0 contains at most one site.

We now set § = {0, | v € T}. We define N as the set of all pairs (oy,0n) € G X G
such that v and w are at the same level in T and d(o,, 0y) € [c — 2,2c) diam(o,)." Tt
remains to define the assigned sets R for each T € §. Let pq be an edge in G and let
(t,0) € N be two grid cells with p € T and q € 0. For a site r € TN P to “cover” pq
according to Property (ii) in Definition 5.2, we must have q € D(r) and thus the radius
of r needs to be at least v > d(o,7T) > (¢—2) diam(t). If we include all sites with radius
larger than (¢ — 2) diam(t) into Rt, we cannot control the size of Rr. However, any disk
of a site T N P whose radius is larger than 2(c + 1) diam(t) will contain o completely.
These sites with large radius can be handled by including only the site with the largest
radius into R. More precisely, for T € G, we define R to be the set of all sites p € TN P
with vp € [c —2,2(c + 1)) diam(o,) and we let m. be the site in TN P with the largest
radius. We set Ry = RL U {m}.

'We denote the interval [a diam(o,), bdiam(o,)) by [a,b) diam(o,).

66 1 Spanners for Transmission and Disk Graphs

Lemma 5.9. (G, N,R) is a c-separated annulus decomposition for G.

Proof. Property (i) of Definition 5.2 follows by construction. To prove that Property
(ii) holds consider an edge pq of G. Let i be the integer such that [pq| € [c,2c)2t. Let
0, T be the cells of §; with p € T and q € 0. By construction, ¢ and T are assigned to
nodes of the quadtree and thus contained in G. Since diam(o) = diam(t) = 2!, we have

(c —2)2' < |pq| — 2diam(0) < d(0,7) < [pq| < 2",

and therefore (0,T) € N by our definition of N. Since pq is an edge of G, it follows
that rp > |pq| > c2t. If Ty < (c+ 1)2t+1) then p € R. and we are done. Otherwise,
Tm, = Tp = (c+1)2""! and q € 0 C D(my). O

Computing the Edges of H. We find edges for each cone C € € separately as follows.
For each pair of neighboring cells o and T € N(o) such that T is contained in C2 we find
all incoming edges to sites in o from sites in T simultaneously. To do this efficiently, we
need to sort the sites in o along the x and y directions. Therefore, we process the cells
bottom-up along T in order of increasing levels. In this way we can obtain a sorted list
of the sites in each cell o by merging the sorted lists of its children. See Algorithm 5.2.

Make all sites in P active

fori=0,...,L do

foreach v € T of level i do

Q < active sites in o, NP

// preproccesing

Sort Q in x and y-direction by merging the sorted lists of the v’s children
6 foreach T € N(o,,) contained in C?IV do

// edge selection

7 For each site q € Q, find an r € Ry with q € D(r), if it exists; add the
edge rq to H

8 Set all q € Q for which at least one incoming edge was found to inactive

W N

ot

Algorithm 5.2: Selecting the edges for H for a fixed cone C.

Note that the edges selected by Algorithm 5.2 have the same properties as the edges
selected by Algorithm 5.1. Thus, by Lemma 5.8, the resulting graph is a t-spanner. Let
Q be the set of active sites in o, when processing v. Let T € N(o,) such that T is
contained in C%v and let R = R¢. Assume |Q| =n and [R| = m. To find the edges from
sites in R to sites in Q efficiently, we use the fact that these sets of sites are separated
by a line { parallel to either the x- or the y-axis.

Assume without loss of generality that { is the x-axis, the sites of R are above { and
the sites of Q are below {, and assume that Q is sorted along (. For each site p € R we
take the part of D(p) which lies below £ and compute the union of these “caps” This
union is bounded from above by { and from below by the lower envelope of the arcs of

5.2 Spanner Constructions for Transmission Graphs 167

the boundaries of the caps. The complexity of the boundary of this union is O(m) and
it can be computed in O(mlogm) time | |. See Figure 5.8.

Once we have computed this union we check for each q € Q whether q lies inside it.
This can be done by checking whether the intersection, z, of a vertical line through q
with the union is above or below q. If q is above z then we add the edge rq to H where v
is the site such that z € 9D(r). We perform this computation for all sites in Q together
by a simple sweep in x-direction while simultaneously traversing the lower envelope of
the caps and the sites of Q. This clearly takes O(mlogm + n) time, since we still need
to find the lower envelope of the disk corresponding to R. We thus proved the following

R T
Q.. .. .:\ o...s.. .{./

Figure 5.8: The lower envelope (orange), the sites Q (red) and R (blue), and the sweepline
(green).

Lemma 5.10. Let Q, R, and € be as above with |Q| =n and |R| = m. Suppose that Q is
sorted along £ and that { separates Q and R. We can compute in O(mlogm +n) time
for each q € Q one disk from R that contains it, provided that such a disk exists.

Analysis. We prove that Algorithm 5.2 runs in O(nlog @) time and uses O(nlog @)
space. The running time is dominated by the edge selection step that is described in
Lemma 5.10. We argue that each site participates in O(1) edge selection steps as a
disk center (in R) and in O(log @) edge selection steps as a site looking for incoming
edges. From these observations (and the fact that ® = Q(n!/?)) the stated time bound
essentially follows.

Lemma 5.11. We construct the spanner H of the transmission graph G in O(nlog @)
time and space.

Proof. The quadtree T can be computed in O(nlog @) time and space [|, and
within this time bound we can also compute N(oy), Rg,, and mg, for each node v e T.

Merging the sorted lists of the sites in oy, for each child w of v to obtain the sorted
list of the sites in oy (line 5 in Algorithm 5.2) takes time linear in the number of sites
in 0,. Summing up over all nodes v in a single level of T we get that the total merging
time per level is O(n), and O(nlog @) for all levels.

To analyze the time taken by the edge selection steps (line 7 in Algorithm 5.2), consider
a particular pair (0,7) € N for which the algorithm runs the edge selection step. By
Lemma 5.10, if we charge m, by O(1), each disk center in RL by O(logn) and each
active site in o0 N P by O(1) then the total charges cover the cost of the edge selection

68 1 Spanners for Transmission and Disk Graphs

step for (0,T). There are O(nlog ®) nodes in T and therefore O(nlog @) cells T in G.
By Lemma 5.3 each such cell T participates in an edge selection step of O(c?) = O(1)
pairs. So the total charges to the site m. over all cells T, is O(nlog ®@).

By construction, each p € P is assigned to O(1) sets RL and by Lemma 5.3 each T
participates in an edge selection step of O(c?) = O(1) pairs. It follows that the total
charges to a site p from edge selection steps of pairs (o, T) such that p € RL is O(logn).

Finally, each site is active for O(c?) = O(1) pairs in N at each of O(log @) levels. So
the total charges to a site p from edge selection steps of pairs (o, T) such that p is active
in cNP is O(log ®). We conclude that the total running time of all edge selection steps
is O(mlogn +nlog®) = O(nlog @), since log ® = Q(logn). O

Theorem 5.1 follows by combining Lemmas 5.8 and 5.11.

5.2.2 From Bounded Spread to Bounded Radius Ratio

Let P C R? be a set of sites with radius ratio ¥. We extend our spanner construction
from Section 5.2.1 such that the running time depends on W, the ratio between the
largest to smallest radius, rather than on the spread ®. This is a more general result as
we may assume that ¥ < 20 by Observation 2.1. We prove the following theorem.

Theorem 5.12. Let G be the transmission graph for a set P of n sites in the plane with
radius ratio Y. For any fized t > 1, we can compute a t-spanner for G in O(n(logn +
log¥)) time and O(nlogV¥) space.

The main observation which we use is that sites that are close together form a clique in
G and can be handled using classic spanner constructions, while sites that are far away
from each other belong to distinct components of G and can be dealt with independently.

Given t, we pick sufficiently large constants k = k(t) and ¢ = c(t) as specified in
Section 5.2.1. We scale the input such that the smallest radius is c. Let M = c¥ be the
largest radius after we did the scaling. First, we partition P into sets that are far apart
and can be handled separately.

Lemma 5.13. We can partition P into sets P1,...,Pq, such that each set Py has diameter
O(MmVY¥) and for any i # j, no site of Py can reach a site of P; in G. Computing the
partition takes O(nlogn) time and O(n) space.

Proof. We assign to each site p € P an axis-parallel square S, that is centered at p and
has side-length 2M. We define the intersection graph Gg that has a vertex for each site
in P, and an edge between two vertices p and q if and only if S, N Sq # 0. (Gs is
undirected.)

If follows that if there is no (undirected) path from p to q in Gs, then there is no
(directed) path from p to q in G. We can compute the connected components of Ggs in
O(nlogn) time by sweeping the plane using a binary search tree |]. Let Py,...,Pg
be the vertex sets of these connected components. By construction, each set of sites P;
has diameter O(nM) and for any i # j, no site in P; can reach a site in P; in G.]

5.2 Spanner Constructions for Transmission Graphs 169

By Lemma 5.13, we may assume that the diameter of our input set P is O(n¥). We
compute a hierarchical decomposition T for P as in Section 5.2.1, with a little twist as
follows. We translate P so that it fits in a single grid cell o of diameter O(nV¥). Starting
from o, we recursively subdivide each non-empty cell into four congruent cells of half
the diameter. We do not subdivide cells of level 0 whose diameter is 1. We partition all
cells of a particular level in O(n) time and O(n) space.

We construct a quadforest T such that the roots of its trees correspond to the non-
empty cells of level L = [log¥| in our decomposition. Each internal node of T corre-
sponds to a non-empty cell obtained when subdividing the cell of its parent. It suffices
to store only the lowest L levels, since larger cells cannot contribute any edges to the
spanner (as we will argue below). The forest T requires O(nlogV¥) space and we compute
it in O(n(logn + logV¥)) time.

We cannot derive from the quadforest T a c-separated annulus decomposition for G,
as we did in Section 5.2.1. In particular a cell corresponding to a leaf of T may now
contain many sites that are adjacent in G. For edges induced by such pairs of sites we
cannot satisfy Property (ii) of Definition 5.2.

We can (and do) derive from T a partial c-separated annulus decomposition (G, N, R¢)
exactly as described in Section 5.2.1 before Lemma 5.9: we set § = {0y, | v € T},
define N as all pairs (oy,0n) € § x § with diam(o,) = diam(oy,,) and d(oy,0w) €
[c —2,2c)diam(0y), and set Ry = R, U{m.} where R, ={p e TNP |1, € [c—2,2(c+
1)) diam(t)}. This decomposition satisfies Property (ii) of Definition 5.2 for all edges pq
with d(o,T) > (¢ —2), where o and T are the cells of level 0 in T that contain q and p,
respectively. The proof that Property (ii) of Definition 5.2 holds for these edges is the
same as the proof of Lemma 5.9. In particular, in the proof of Lemma 5.9, the argument
shows that pairs of cells at level i guarantee Property (ii) of Definition 5.2 for all edges
with length in [c —2,2c)2. Since the edges of G are of length at most M = ¢V, the cells
up to level L = [log¥] suffice to guarantee Property (ii) of Definition 5.2 for all edges
pq with d(o,T) > (c —2).

We mark all sites of P as active, and we run Algorithm 5.2 of Section 5.2.1 using T and
the partial c-separated annulus decomposition that we derived from it. The resulting
graph H is not yet a t-spanner since the decomposition was only partial.

To make H a spanner we add more edges that “take care” of the edges not “covered”
by the c-separated annulus decomposition. We consider each pair of level 0 cells o and
T with d(o,T) < ¢ — 2. The set of sites Q = (PN o) U (PNT) form a clique, since the
distance between each pair of sites in Q is not larger than c. We compute a Euclidean
t-spanner for Q of size O(|Q]) in O(|Qllog|Ql) time [| (e.g., the WSPD spanner
described in Section 2.2.1) and for each (undirected) edge pq of this spanner we add pq
and qp to H. As each site p € P participates in O(c?) such spanners, we generate O(mn)
edges in total in O(nlogn) time.

We now prove that H is indeed a t-spanner. The proof is analogous to the proof of
Lemma 5.8.

Lemma 5.14. For any t > 1, there are constants ¢ = c(t) and k = k(t) such that H is a
t-spanner for the transmission graph G.

701 Spanners for Transmission and Disk Graphs

Proof. By construction, H is a subgraph of G. Let pq be an edge of G, and let o and
T be the cells of level 0 with q € 0 and p € 1. If d(o,T) < ¢ — 2, then the Euclidean
t-spanner for o and T contains a path from p to q of length at most tlpq|.

For the remaining edges, the lemma is proved by induction on the rank of the edges
when we sort them by length, as in Lemma 5.8. The proof is almost verbatim as before;
we only comment on the base case. Let pq be the shortest edge in G. If the endpoints
p and q lie in level O cells whose distance is less than ¢ — 2, we have already argued
that H contains an approximate path from p to q. Otherwise, the same argument as in
Lemma 5.8 applies, and the algorithm includes pq in H. O

Using Lemma 5.14, Theorem 5.12 follows just as Theorem 5.1 in Section 5.2.1. The
analysis of the space and time required by our construction is exactly as in Lemma 5.11,
but now T has O(logV¥) levels.

5.2.3 Spanners for Unbounded Spread and Radius Ratio

We eliminate the dependency of our bounds on the radius ratio at the expense of a more
involved data structure and an additional polylogarithmic factor in the running time.
Given P C R? and the desired stretch factor t > 1, we choose appropriate parameters
¢ = c(t) and k(t) as in Section 5.2.1 and rescale P such that the distance between the
closest pair of points in P is ¢ + 2.

To get the spanner for G, we compute a compressed quadtree T for P | . A
compressed quadtree is a rooted tree in which each internal node has degree 1 or 4. Each
node v is associated with a cell oy, of a grid G;. If v has degree 4, then the cells associated
with its children partition o, into 4 congruent squares of half the diameter, and at least
two of them must be non-empty. If v has degree 1, then the cell associated with the only
child w of v has diameter at most diam(v)/4 and (o, \ oy,) NP = (). Each internal node
of T contains at least two sites in its cell and each leaf at most one site. For technical
reasons we assume that the cell associated with a leaf v has diameter 1. Since v contains
a single point p we can artificially guarantee this by shrinking the cell associated with v
to the cell of diameter 1 containing p.

Note that, in contrast with (uncompressed) quadtrees, the diameter of o, may be
smaller than 251 where 1 is the distance of v to the root and 2 is the diameter of
the root. A compressed quadtree for P with O(n) nodes can be computed in O(nlogn)
time [].

To simplify the notation in the rest of this section, we write diam(v) instead of
diam(o,,), and for two nodes v, w, we write d(v,w) for d(oy, ow).

Our approach is to use the algorithm from Section 5.2.1 on the compressed quadtree
T. One problem with this approach is that the depth of T may be linear, so considering
all sites for incoming edges at each level, as in Algorithm 5.2, would be too expensive.
We tackle this difficulty by using the version of Chan’s dynamic nearest neighbor data
structure as given in Corollary 2.5 in Section 2.3.2 to speed up this stage.

Another problem arises when we try to use the approach from Section 5.2.1 on the
compressed quadtree T. We need to define an appropriate neighborhood relation. The

5.2 Spanner Constructions for Transmission Graphs 171

neighborhood relation from Section 5.2.1 relied on the fact that in a quadtree each point
appears for every i in the appropriate range in exactly one cell whose diameter is 2.
This is no longer the case in a compressed quadtree.

As in Section 5.2.1, the neighborhood relation N which we define here would consist
of pairs (0y, 0w) such that diam(v) = diam(w) and d(v,w) € [c — 2,2c) diam(v). The
set R consists of all sites in o, NP whose radius is in [c —2,2(c + 1)) diam(v), and
we set Ry = RL U {m} where m. is the site in T with the largest radius. To make sure
that N and Ry fulfill Property (ii) of Definition 5.2, we insert O(n) additional nodes into
T so that G contains the appropriate cells. To find these nodes, we adapt the WSPD
algorithm of Callahan and Kosaraju | | (see Algorithm 5.3).

call wspdl1(r) on the root of T

wspdl1(v) :

if v is a leaf then

‘ return ()

else
Return the union of wspdl(w) and wspd2(wq,ws) for all children w and
pairs of distinct children wy, ws of v

1 wspd2(v,w) :

2 if d(v,w) > cmax{diam(v), diam(w)} then

3 ‘ return {v, w}

4 else if diam(v) < diam(w) then

5

6

7

[U U

‘ return the union of wspd2(v,u) for all children u of w.

else
‘ return the union of wspd2(u, w) for all children u of v

Algorithm 5.3: Computing a well-separated pair decomposition from a com-
pressed quadtree T. We scale the input such that the distance between the closest
pair of points is ¢ + 2. This guarantees that when v and w are both leaves,
wspd2(v, w) returns {v, w}.

Lemma 5.15. Given a constant ¢ > 5, we can in O(nlogn) time insert O(n) nodes into
T so that G = {0y | v € T} with N and Ry defined as above is a c-separated annulus
decomposition for G. In the same time, we can compute N and all sets Re.

Proof. First, we run the usual algorithm for finding a c-well-separated pair decomposi-
tion on T |]; see Algorithm 5.3 for pseudocode. It is well known | | that the
algorithm runs in O(n) time and returns a set = of O(n) pairs {v, w}* of nodes in T with
the following properties:

(a) for each two distinct sites p, q, there is exactly one {v,w} € = with q € oy, p € Ow;

2Note that here the pairs of the WSPD are sets instead in tuples as defined in Section 2.2. We use this
slightly different version since it is consistent with the Calahan-Kosaraju algorithm.

721 Spanners for Transmission and Disk Graphs

(b) for each {v,w} € =, we have c - max{diam(v), diam(w)} < d(v, w);

(c) for every call wspd2(v, w), we have max{diam(v), diam(w)} < min{diam(Vv), diam(w)},
where v, W are the parents of v and w in T;

Note that (a) and (b) are the requirements for = being a c-WSPD and that since we
scaled P such that the closest pair has distance ¢ + 2, (b) is satisfied by any pair of
(non-empty) cells of Gp.

For each pair {v,w} € =, we insert two nodes v/ and w’ into T such that diam(v’) =
diam(w’) and such that d(v’,w’) is approximately c - diam(v’). Suppose that {v,w}
was generated through a call wspd2(v,w) in Algorithm 5.3 (the case that {v,w} was
generated through the call wspd2(v, w) is similar). Let v’ = min{d(v,w)/c, diam(w)}
and let T be equal to r’ rounded down to the next power of 2.

Observe that
T < diam(w) < diam(V), (5.1)

because 1 < diam (W) by definition, and diam(w) < diam(v) by (c) and our assumption
that wspd2(v, w) was called.
Furthermore, we have

max{diam(v), diam(w)} < r. (5.2)

This follows from (c) if v’ = diam(w) and from (b) if v’ = d(v,w)/c (recall that diam(v)
and diam(w) are powers of two).

It follows from (5.1) and (5.2) that we can insert nodes v/ and w’ into T between v
and vV and between w and W, respectively, such that diam(v’) = diam(w’) = r and such
that o, C 0,/ C oy and oy, C 0y C Ow.

We insert all these new nodes into T efficiently by partitioning them according to the
parent-child pair in T that they should be inserted between. We sort all the new nodes
x that should be inserted between each particular parent-child pair v,v by decreasing
diameter and remove “duplicate nodes”, i.e., in each group of nodes of the same diameter
we leave only one. Finally, we insert into T a path consisting of the remaining nodes in
order, making the first node on the path a child of ¥ and the last node on the path a
parent of v. It takes O(nlogn) time to insert all the O(n) new nodes.

To find the sets Ry = RLU{m}, we consider each site p € P and we identify the nodes
v in T such that p € Ry, in O(logn) time as follows. Since ¢ > 5 there are at most two
integers i such that v, € [c —2,2(c + 1))2t. For each such i, we identify (in O(1) time)
the cell o0 € G; containing p and then determine whether o is associated with a node
v in T. The latter step requires O(logn) time with an appropriate data structure. If
indeed there is such a node v, we insert p into Ry . Thus, the total time we spend to
find all sets RZ is O(nlogn). Within the same time we can find the sites m, and thus
we can compute the sets Rt = RL U{m+} in total time O(nlogn). The pairs in N can
be computed similarly also in O(nlogn) time.

We now argue that this construction yields a c-separated annulus decomposition for
P. Property (i) of Definition 5.2 holds by construction. To prove that Property (ii) of
Definition 5.2 holds consider some edge pq in G.

5.2 Spanner Constructions for Transmission Graphs 173

Since = is a ¢-WSPD, by (a) there is a pair {v,w} € = with q € o, and p € oy.
Suppose that {v,w} was generated through the call wspd2(v,w). Thus, we must have
inserted nodes v/ and w’ into T with o, C o0, C oy, ow C 0, C 03w, and with
diam(v’) = diam(w’) = r. Hence, q € 0, and p € 0y,.

We claim that (o, 0,,/) € N. To prove this claim observe that since r < d(v,w)/c it
follows that

dv,w’') > d(v,w) —2r > cr —2r = (c — 2) diam(v’), (5.3)
Furthermore, if ' = d(v,w)/c, then d(v,w)/2c < r < d(v,w)/c and therefore
d(v,w’) < d(v,w) < 2cr. (5.4)

Since the pair {v, w} was generated through a call wspd2(v, w) we know that d(v,w) <
cdiam(w). So if v’ = diam(w) (so r = r/ = diam (w’) = diam(v’)) then we have

dv',w’) < d(v,w) +diam(v’) < (c + 1)1 < 2cr. (5.5)

By (5.3),(5.4) and (5.5), we get (oy/,0,/) € N. Finally, since pq is an edge of
G, we have 1, > d(v/,w’) > (c — 2)diam(w’), by (5.3). If rp, < (c + 1)diam(w’),
then p € R, ,. Otherwise let m be the site in oy, NP with the largest radius. Then,
Tm = Tp > ((V:v+ 1) diam(w’), so D(m) contains o, and thus q. This establishes Property
(ii) of Definition 5.2. O

Computing the Edges of H. As already mentioned, to construct the spanner H C G
for a stretch factor t > 1, we choose appropriate constants k = k(t) and ¢ = c(t), scale
P such that the closest pair has distance c 4+ 2, and compute a compressed quadtree T
for P. To obtain a c-separated annulus decomposition (G, N,Ry) for G, we augment T
with O(n) nodes as described in the proof of Lemma 5.15.

We select the spanner edges for each cone C € € separately, as follows. For each leaf
v of T, we create a dynamic nearest neighbor (NN) data structure S,, as in Theorem 2.5
that contains initially the single point p € o, N P. We call a site p active if p € S, for
some node v in T. So initially, all sites of P are active. Then we process the nodes of T
in order of increasing diameter similarly to Algorithm 5.2 of Section 5.2.1.

Let w be the child of v such that |S,, |, the number of sites in S, is largest. We generate
Sy from S,, by inserting into S,, all the active sites of the children of v other than w
(we call this the preproccesing step at v). Then we use S,, to do the edge selection for all
T € N(oy,) contained in C%V; see Algorithm 5.4. We take a site v € Ry and repeatedly
query S, for the site closest to . Let q be the result. If rq is an edge in G, we add rq
to H, delete q from S,,, and do another query with r. Otherwise, we continue with the
next site of R, until all of R is processed. (This step is called the edge selection step at
v.)

The edges selected by Algorithm 5.4 have the same properties as the edges selected
by Algorithm 5.1. Thus, by Lemma 5.8 we obtain a t-spanner H. Next, we analyze the
running time.

741 Spanners for Transmission and Disk Graphs

// preproccesing
1 Let w be the child of v whose S, contains the most sites
2 Insert all active sites of each child w’ # w of v into S,
3 Set Sy + Sy
4 foreach T € N(o,,) contained in C%v do
5 foreach r € R; do

// edge selection

6 q < NN(v,r) // query S, with r
7 while g € D(r) and q # () do
8 ‘ add the edge rq to H; delete g from S,; q < NN(v, 1)
9 reinsert all deleted sites into S,
10 delete all q from S,, for which at least one edge rq was found

Algorithm 5.4: Selecting incoming edges for the sites of a node v and a cone C.

Lemma 5.16. Algorithm 5./ has a total running time of O(nlog®n) and it requires O(n)
space.

Proof. Tt takes O(nlogn) time to compute the compressed quadtree and to find the
neighboring pairs as in Lemma 5.15. Initializing the nearest neighbor structures S, at
the leaves v takes O(n) time.

Consider now the preprocessing phases at internal nodes v. That is, the construction
of S, from S,,, where w is a child of v, by inserting into it the active sites from structures
S,y from the children w’ # w of v. Since S, is the largest structure among the structures
of the children of v, each time a site is inserted, the size of the nearest neighbor structure
that contains it increases by a factor of at least two. Thus, each site is inserted O(logn)
times. By Theorem 2.5 each such insertion takes O(log®n) time. So the total time it
takes to perform all these insertions is O(nlog*n).

For the edge selection, consider two nodes v and w in T whose cells are neighbors.
For each site r in Ry, = R, UMy, we perform one nearest neighbor query at line 6 of
Algorithm 5.4 (the initial query with r). We now evaluate what is the total time spent
performing these initial queries.

By Lemma 5.3 each cell has O(c?) neighbors, so each site m,, generates O(c?) queries.
The total number of sites mg,, is equal to the number of nodes in T, which is O(n).
Therefore the total number of initial nearest neighbor queries generated by sites mg,, is
O(n). Each site is assigned to ng for at most two nodes w and may generate O(c?)
nearest neighbor queries when we process the neighboring cells of each such cell oy, .
Therefore, the total number of initial nearest neighbor queries generated by sites in sets
R(’TW is also O(n). By Theorem 2.5 the time it takes to perform a query is O(log?n) so
the total time spent by initial queries is O(nlog?n).

For each edge that we create in the while-loop of line 7, we perform at most two
deletions, one insertion and one additional nearest neighbor query. Since H has O(n)
edges, the total time required to perform these operations is O(nlog® n) by Theorem 2.5.

5.3 Spanners for Disk Graphs 175

The total size of the compressed quadtree and of the associated data structures is
O(n). Furthermore, a dynamic nearest neighbor structure with m elements requires
O(m) space by Corollary 2.5. Thus, since at any time each site lies in at most one
dynamic nearest neighbor structure, the total space requirement is O(n). O

We conclude this section with the following theorem that follows from Lemma 5.16
and the discussion preceding it.

Theorem 5.17. Let G be the transmission graph for an n-point set P C R%. For any
t > 1, we can compute a t-spanner for G in O(nlog®n) time and O(n) space.

5.3 Spanners for Disk Graphs

In this section we slightly tweak Algorithm 5.4 from Section 5.2.3 to make it work with
disk graphs. Let P C R? be a set of n sites with radius ratio ¥. Given t > 1, the
algorithm by Fiirer and Kasivisawnathan can compute a t-spanner for the disk graph
D(P) in time O(n*/3+¢1og?/3 W), where ¢ > 0 can be made arbitrarily small [].
Their approach is also based on the Yao graph and quite similar to the one we used in
Section 5.2. We think of D(P) as a directed graph by directing each edge from the larger
to the smaller disk. We pick an appropriate parameter k = k(t) and a set € of k cones
that partition the plane, as described in Section 5.2.1. For each site q € P and each
cone C € C we pick the closest site p € C N P that has an “outgoing” edge to q. More
precisely, we pick the site p € C N P such that

(i) pq is an edge in D(P),
(ii) rp = 7q, and
(iii) among all sites in C NP with properties (i) and (ii), p minimizes the distance to q.

Using standard arguments from, e.g., the Yao Graph algorithm, one can prove that
this construction yields a t-spanner for D(P), but as with transmission graphs, we do
not know how to implement it efficiently. However, as we will see below, applying
Algorithm 5.4 on the directed version of D(P) will quickly give an approximately shortest
edge inside each cone. The same analysis as in Section 5.2.1 will reveal that this is still
sufficient to obtain a t-spanner for D(P). This gives the first spanner construction for
disk graphs in near-linear time that is independent of the radius ratio W. In particular
we prove the following theorem.

Theorem 5.18. Let D(P) be the disk graph for a set P of 1 points in the plane. For any
t > 1, we can compute a t-spanner for D(P) in O(n2%(M™) log!®n) expected time, where
a(n) is the inverse Ackermann function. The expected storage is O(nlog3n).

76 | Spanners for Transmission and Disk Graphs

5.3.1 Constructing the Spanner

We pick suitable constants k = k(t) and ¢ = c(t), depending on our desired stretch
factor t > 1. Let G be the directed graph on P obtained from D(P) by directing each
edge from the larger to the smaller disk. If two disks have the same radius, we include
directed edges in both directions. Suppose we have a c-separated annulus decomposition
(§,N,R;) for G, as given in Definition 5.2. Note that Definition 5.2 is not restricted to
transmission graphs, but it can be used with any directed geometric graph.?

We run Algorithm 5.1 with G and (G, N, R¢). The result is a directed graph ﬁ C G.
Let H be the graph obtained by substituting each directed edge in ﬁ by an undirected
edge. Consider an edge pq in G. By Lemma 5.7 there is an edge rq in ﬁ such that
Iprl < Ipql —[rql/t, and the same holds for the corresponding undirected edges in D(P)
and in H. This allows us to show that H is a t-spanner for D(P).

Lemma 5.19. For any t > 1, there are constants ¢ = c(t) and k = k(t) such that H is a
t-spanner for the disk graph D(P).

Proof. The proof goes exactly as the proof of Lemma 5.8, i.e., by induction on the rank
of the edge lengths in D(P). The only difference is in the inductive step. Let pq be an
edge in D(P). Suppose Tp > 14, such that pq is a directed edge in G. As argued above,

by Lemma 5.7, H contains an edge rq with [pr| < [pq| —[rq|/t, and rq is an undirected
edge in H. We argue that pr is an edge of D(P), the rest then follows by induction.
Since rq is an edge in H, we have 1. > r4. Hence, |pr| < Ipql < 1p +7q < 71p + 71 and
pr is an edge in D(P). Now the inductive argument is exactly the same as in the proof
of Lemma 5.8. O

Remark: It is not necessarily true that ﬁ is a t-spanner for G. In the proof of
Lemma 5.19, we argue that pr is an edge in D(P). However, in G we might only have a
directed edge from r to p (and not from p to 7). This would not give a short p-q-path
in H.

5.3.2 Efficient Construction

We now give an efficient implementation of the spanner construction from the previous
section. We follow closely the approach from Section 5.2.3: we compute a compressed
quadtree T, augment it with WSPD pairs as in Lemma 5.15, and traverse T in level-
order using a dynamic nearest neighbor data structure to efficiently detect spanner edges
between neighboring grid cells. However, since the edges of G are defined by the inter-
section of disks and not by sites contained in disks, this approach faces three problems
that need to be addressed:

P1) To “cover” each edge pq of G according to Property (ii) in Definition 5.2, we need
to adjust the interval that defines the sites RY.

3And with slight changes, Definition 5.2 also works with undirected geometric graphs.

5.3 Spanners for Disk Graphs 177

P2) When selecting spanner edges from a site T (edge selection in Algorithm 5.4), the
Euclidean nearest neighbor is not sufficient to decide if r has outgoing edges (and
to find them). We use the dynamic additively weighted nearest neighbor structure
from Corollary 2.7 instead.

P3) Third, when selecting edges for r, we only want to consider sites with radius at
most Ty, i.e., we only want to consider edges in G, not all edges in D(P).

We now describe the detailed implementation of the algorithm, focusing on how to
solve the three problems. As in Section 5.2.3, we scale our input such that the closest
pair in P has distance ¢ — 2. We compute a compressed quadtree T, and we augment it
with O(n) cells from the c-WSPD, exactly as in Lemma 5.15. This gives a c-separated
annulus decomposition as follows. The cells G are all cells assigned to nodes of T, i.e.,
G ={ov | v € T}. The neighborhood relation N consists of all pairs (o, 0w,) € G x G with
diam(v) = diam(w) and with d(v,w) € [¢c — 2, 2c) diam(v). It remains to define the sets
Rg, for each node v € T. For this, let pq be a directed edge in G and let o,T € G; be
the two cells with p € T and q € 0. Since any edge rq in G has T > 14, the minimum
radius for sites in TN P that could “cover” the edge pq as required by Property (ii) in
Definition 5.2 is d(0,7)/2. Thus, for v € T we use for Ry all sites in o, N P whose
radius is in [c/2 —1,2(c+ 1)) diam(v), i.e., the lower bound is exactly half the minimum
distance between neighboring grid cells. We set Ry, = R} U{mg,}, where mg, is the
site in oy, N P with the largest radius. We can now prove that this gives a c-separated
annulus decomposition and thus problem P1 is solved.

Lemma 5.20. (G, N,R) as defined above is a c-separated annulus decomposition for G.
It can be computed in time O(nlogn) using O(n) space.

Proof. First, we show that (G,N,R) is a c-separated annulus decomposition. Prop-
erty (i) of Definition 5.2 holds by construction. For Property (ii), consider an edge pq
of G. The proof of Lemma 5.15 shows that there is a pair (o,7) € N with p € T and
q € 0. Since pq is an edge of G and by the definition of N, we have

rp = Ipal/2 > d(o,1)/2 > (c — 2) diam(7)/2.

If 1, < 2(c+1)diam(t) we have p € Ry by definition. Otherwise, the largest site m in
TN P has radius greater than 2(c+ 1) diam(t). Thus, the disk D(m) contains the whole
cell o0 and hence m<q is an edge in G. This establishes Property (ii) of Definition 5.2.
The time and space bounds follow by the analysis done in the proof of Lemma 5.15
and the fact that for each site p there are now at most three integers i such that
Ty € [c/2—1,2(c+1))2% O

To construct ﬁ efficiently, we run Algorithm 5.5, a modified version of Algorithm 5.4,
for each cone C € C. We perform a level-order traversal of T, starting from the lowest
level, and for each node v € T, we perform the edge selection step, see Algorithm 5.5.
Let T € N(oy,) and let v € R¢ be a site for which we search outgoing edges to active sites

78 1 Spanners for Transmission and Disk Graphs

(sites for which we have not found incoming edges yet) in oy, N P. To find these edges,
it is not sufficient anymore to maintain a Euclidean dynamic nearest neighbor structure
Sy for the active sites in o, N P, as done in Algorithm 5.4: the nearest neighbor of r
might have a small radius and might not form an edge with r, while another active site
could do so, c.f. Figure 5.9. Thus, instead of the Euclidean metric we use a dynamic
additively weighted Fuclidean nearest neighbor structure as given by Corollary 2.7. We
weight each site in P by its radius, and the distance from a point x € R? to a site q € P
is defined as 84(x) = |qx| — 4. Then 7q is an edge in D(P) if and only if 64(r) < 7+. In
particular, by Lemma 2.8, if r € R has a neighbor in D(P) that lies in o, NP, then also
the additively weighted nearest neighbor of rin o, NP is a neighbor of r in D(P).

Figure 5.9: The Euclidean nearest neighbor q’ of r does not form an edge, but the nearest
neighbor according to & does.

The last problem P3 occurs when querying a nearest neighbor structure S, with a
site v € Ry (while-loop at line 8). Since we work with the directed graph G, we want
to consider only active sites q with radius smaller than the radius of r. To address this
issue, we maintain the active sites of a node v, sorted by increasing radius, in a list
L,. We use L, to insert into our nearest neighbor structure only the active sites q with
Tq < Ty when processing . In the beginning, we build for each leaf w € T a list L,,
containing the single point in o,,. Furthermore, we create an empty nearest neighbor
structure S, according to Corollary 2.7. When processing an inner node v € T, we
obtain L, and S, by merging the structures of the children of v, see line 1 and line 2 in
Algorithm 5.5.

We maintain the following invariant on S,,: when querying S,, with a site r € Ry, all
sites € S, have radius rq < . In the leaf nodes, the invariant holds by construction.
To maintain it during the algorithm, we process the sites in R{ by increasing radius.
Before we perform the edge selection with a site r € R, we insert into S, all active
sites with radius at most r, using L, (line 6 in Algorithm 5.5). Furthermore, after we
finished processing the neighbor T of oy, we remove from S,, all sites with radius larger
than (¢/2 — 1) diam(v) (line 10 in Algorithm 5.5). This ensures that S, never contains
sites whose radius is too large.

The edges in the graph ﬁ as computed by Algorithm 5.5 have the same properties as
described in Section 5.3.1. Thus, if we substitute each edge pq in H by an undirected

5.3 Spanners for Disk Graphs 179

// preproccesing

1 let w be the child of v with the most active sites in L,,; for each child w’ # w,
insert all actives sites of L,, into L,

2 let w be the child of v with the most sites in S,,; for each child w’ # w, insert all
sites of S,/ into Sy,

3set L, =L, and S, =S,

4 foreach T € N(o,) contained in C%v do

5 foreach r € R by increasing radius do

6 insert into Sy, all sites q € L, with rq < 7 not in S, yet
// edge selection

7 q < NN(v,7) // query S, with r

8 while [rq| <rvq + 7 and q # 0 do

9 ‘ add the edge rq to ﬁ; delete q from S,; q < NN(v, 1)

10 delete from S, all sites q with rq > (c/2 — 1) diam(v)

11 delete from S, and L,, all sites q for which at least one edge rq was found

Algorithm 5.5: Selecting incoming edges for the sites of a node v and a cone C.

edge between p and ¢, the resulting graph H is a t-spanner for D(P) by Lemma 5.19.
We now analyze the running time.

Lemma 5.21. Algorithm 5.5 has a total expected running time of O(m2%™ log!®n) and
it requires O(nlog®n) expected space.

Proof. Tt takes O(nlogn) time to compute the compressed quadtree and to find the
neighboring pairs as in Lemma 5.15. Initializing the lists L,, and the nearest neighbor
structures S,,, at the leaves w of the quadtree T takes O(n) time.

Let v be an internal node of T. At the preproccesing phase of v, we construct S,, from
Sw where w is a child of v having the most sites in its nearest neighbor structure S,,,.
In the same way, we construct the list L,. As argued in the proof of Lemma 5.16, each
site is inserted O(logn) times into a nearest neighbor structure or into a sorted list.
By Corollary 2.7, an insertion into a nearest neighbor structure takes O(2%(™) log®n)
expected amortized time. Using, e.g., binary search trees, an insertion into a sorted list
takes O(logn) worst-case time. Thus, the total expected time for all preprocessing steps
is O(m2%(™) log"n).

Now, consider the edge selection step (lines 7-9). Recall that for a node v of T we
denote by R{ the set of sites in 0, NP with radius in [c/2—1,2(c+1)) diam(v) and that
we have Ry, = R; Umg,. As in the proof of Lemma 5.16, we charge the initial nearest
neighbor queries (line 7) to the nodes of T and to sites in the sets Ry, . The queries and

deletions done in line 9 are charged to the edges of ﬁ we create. Since T has O(n) nodes,

and since each site is assigned to Rgv for at most three nodes v of T, and since ﬁ has O(n)
edges, we perform O(n) queries and deletions. By Corollary 2.7, a query needs O(log?n)
worst-case time and a deletion needs O(2%™) log!®n) expected amortized time. Thus,

801 Spanners for Transmission and Disk Graphs

the total expected time needed for the edge selection is O(n2%(M) logl®n).

It remains to count the insertions and deletions that are required to maintain the
invariant on S, (line 6 and line 10). Since at the end of the algorithm every site is
contained in at most one nearest neighbor structure, the number of these insertions
and deletions differ by at most n. Thus, it suffices to count only the deletions done in
line 10. Let q be a site that is deleted from S, while processing o, for some node v of
T. We claim that q € R} and hence we can charge the deletions to the sites in R{ .
Since q was deleted, Tq > (c¢/2 — 1) diam(v). Furthermore, q was inserted by a site
r € Ry =R, U{m}. If r € RZ, then

Tq <7r < 2(c+1)diam(T) < 2(c + 1) diam(v),

and thus q € R . Otherwise, v = m, and m ¢ Ry, ie., T, > 2(c+ 1) diam(v). Then,
since d(T, 0y) < 2cdiam(v), the disk D(m<) contains o,. Hence, m,q is an edge in G
and Algorithm 5.5 finds an incoming edge for q in the edge selection step. In particular,
g will be deleted from S, in line 9, contradicting the assumption that q is deleted at
line 10. Hence, the number of insertions and deletions needed to maintain the invariant
on S, is proportional to R . As argued above, the total size of the sets R is O(n).
Thus, by Corollary 2.7 we need O(n2%™) 1og'®n) expected time for this step in total.
The total size of the compressed quadtree and of the associated sorted lists is O(n).
Furthermore, a dynamic nearest neighbor structure with m elements needs O(mlog® m)
expected space by Corollary 2.7. Thus, since at any time each site lies in at most one
dynamic nearest neighbor structure, the expected space requirement is O(nlog®n). O

5.4 Applications

We present two applications of our spanner construction. We show how to use it to
compute a breadth first search (BFS) tree from a particular vertex, and we show how
to use it to extend a given reachability data structure for additional queries specific to
transmission graphs. Both applications rely on the power diagram, which is a weighted
version of the Voronoi Diagram that represents the union of a set of disks (in our case
these are the disks D(p) for p € P) as a planar subdivision. More specifically, the power
distance between a point ¢, and a disk with center p and radius v, is (d(p, q))% — r2.
The power diagram partitions the plane into n regions, such that all points in a specific
region have the same closest disk in power distance. The power diagram of a set of n
disks is of size O(n) and can be constructed in O(nlogn) time. If augmented with a
point location structure then we can locate the disk D that minimizes the power distance
from a query point ¢ in O(logn) time. In particular we can determine in O(logn) time
if q is in the union of the disks by checking if q € D | ,]

5.4.1 From Spanners to BFS Trees

We show how to compute the BFS tree in a transmission graph G from a given root
s € P using the spanner constructions from the previous section. We adapt a technique

5.4 Applications | 81

that Cabello and Jejéi¢ developed for unit-disk graphs [|. Denote by dn(s,p) the
BFS distance (also known as hop distance) from s to p in G. Let W; C P be the sites
p € P with dp(s,p) = i. Cabello and Jejéi¢ used the Delaunay triangulation (DT) to
efficiently identify Wi, given Wy, ..., W;j. We use our t-spanner in a similar manner
for transmission graphs.

Lemma 5.22. Let t be small enough, and let H be the t-spanner for a transmission graph
G as in Theorem 5.1, 5.12 or 5.17. Letv € Wiy, for somei > 1. Then, there is a site
ue W and a path u=qq,...,q1 =V in H with dn(s,q;) =i+1 forj=1,...,L

Proof. We focus on the spanner from Theorem 5.12, since it has the most complicated
structure. The proof for the other constructions is similar and simpler.

Since v € Wi 1, there is a site w € W; with v € D(w). If H contains the edge wv,
the claim follows by setting u = q2 = w and q; = v. Otherwise, we construct the path
backwards from v (see Figure 5.10). Suppose we have already constructed a sequence
V = (1,42, .., qk of sites in P such that (i) for j =1,...,k —1, gj4+1q; is an edge of H;
(i) for j =1,...k, we have q; € D(w) and dn(s,q;) =i+1; and (iii) forj =1,...,k—1,
wgji1| < Iwgjl. We begin with the sequence q; = v satisfying the invariant.

Figure 5.10: The partial path constructed backwards from v. Setting q4 = u will com-
plete it.

Let ¢ be the constant from the spanner construction of Section 5.2.2. We scale every-
thing such that the smallest radius in P is c. Suppose that we have (1, ..., qx and that
wqy is not an edge of H (otherwise we could finish by setting uw =w). Let o,T € Gp be
the cells such that w € T and qx € 0. We distinguish two cases, depending on d(o,),
and we either show how to find u to complete the path from u to v or how to choose
qQre+1-

Case 1: d(o,T) <c—2. Let Q = (Pno)U(PNT). We have that w,qx € Q. The
algorithm of Section 5.2.2 constructs a Euclidean spanner for Q and adds its edges to
H. In particular, there is a directed path 7t from w to qx that uses only sites of Q. By
construction, the pairwise distances between the sites of Q are all at most c. Thus, for

821 Spanners for Transmission and Disk Graphs

each p € Q we have p € D(w) and qx € D(p), and therefore 1 < dn(s,p) < i+ 1.
We set u to be the last site of 7t with d,(s,u) = 1i. To obtain the desired path from u
to v we take the subpath of 7t starting at u and concatenate it to the the partial path
Jdk,---,q1 = V.

Case 2: d(o0,T) > ¢ — 2. Since wqy is not an edge of H, by Lemma 5.7 there exists
an edge rqx in H with [wr| < jwqy|. We set qxy+1 = 7. Since qx € D(w), we have
qr+1 € D(w) and 1 < dn(s,qry1) < i+ 1. If dn(s,qx) = 1, we set u = qi1 and are
done. Otherwise, g1 satisfies properties (i)—(iii) and we continue to extend the path.

Since the distance to w decreases in each step and since P is finite, this process
eventually stops and the lemma follows. O

1 Wy < {s}; dist[s] =0; mt[s] =s;1 =0

2 for p € P\ {s}, dist[p] = co and n[p] = NIL

3 while W; # () do

4 compute power diagram with point location structure PD; of W;

5 queue Q + Wi ; Wi 0

6 while Q # () do

7 p < dequeue(Q)

8 foreach edge pq of H do

9 u <+ PDji(q) // query PD; with q, D(u) minimizes the power
distance from ¢

10 if g € D(u) and dist[q] = co then

11 ‘ enqueue(Q, q); distlq] =1+ 1; mlq] = u; add q to Wi

12 1—1i+4+1

Algorithm 5.6: Computing the BFS tree for G with root s using the spanner H.

The BFS tree for s is computed iteratively; see Algorithm 5.6 for pseudocode. Initially,
we set Wy = {s}. Now assume we have computed Wy, ..., W;. By Lemma 5.22, all sites
in Wi, can be reached from Wj in the subgraph of H induced by W; UW;, 1. Thus, we
can compute Wi by running a BFS search in H from the points of W; using a queue
Q. Every time we encounter a new vertex ¢, we check if it lies in a disk around a site of
Wi, and is not yet in the BFS tree for s. If so, we add q to Wi,1 and to Q. Otherwise,
we discard . To test whether q lies in a disk of Wi, we compute a power diagram for
W; in time O(|Wjllog |Wji|) and query it with q.

A site p at level 1 is traversed by at most two BFS searches in H. In the first search
we discover that p is in Wj, and in the second search p is a starting point — this is
the search to discover Wjiyi. It follows that an edge pq of H is considered twice by
Algorithm 5.6. Each time we consider the edge pq we spend O(logn) time for querying
a power diagram with q. Since H is sparse, the total time required is O(nlogn). This
establishes the following theorem.

5.4 Applications | 83

Theorem 5.23. Let G be the transmission graph of a set P C R? of n points. Given a
spanner H for G as in Theorem 5.1, Theorem 5.12, or Theorem 5.17, we can compute
in O(nlogn) additional time a BFS tree rooted at any given site s € P.

Unfortunately, we cannot derive a similar result for disk graphs in the same way. In
the proof of Lemma 5.22 in Case 2, we used the fact that if wqy is not an edge in H,
then there is an edge rqy with [wr| < |[wqy|. For disk graphs, our spanner construction
can guarantee such an r only when 1, > 74, , but not in the other case. The reason for

this is quite similar to the reason why the graph ﬁ from the previous Section Section is
not a spanner for the directed version of a disk graph D(P) (cf. Section 5.3.1).

However, using the dynamic additively weighted Euclidean nearest neighbor structure
from Corollary 2.7, there is a more direct way to compute a BFS trees for a disk graph
D(P). This strategy was already an observation of Roditty and Segal in the context of
unit disk graphs | |. Let aroot site s € P be given. We initialize a dynamic additively
weighted nearest neighbor structure, where the weights correspond to the radii of the
sites. We insert all sites from P\ {s}. At each point of the BFS-algorithm, the dynamic
nearest neighbor data structure contains all sites that are not yet part of the BFS-tree.
To find all new neighbors of a site p of the partial BFS-tree T, we repeatedly find and
delete a nearest neighbor of p in P\ T, until the next nearest neighbor is not adjacent
to p in D(P). By Lemma 2.8, this will give us all new neighbors of p in T. A successful
query and deletion yields a new edge of the BFS-tree. Thus, these queries and deletions
can be charged to the edges of T. The last unsuccessful query can be charged to p itself.
Hence, the total number of insertions, deletions, and queries is O(n). By Corollary 2.7,
we get the following theorem.

Theorem 5.24. Let D(P) be the disk graph of a set P C R? of n points. We can compute
in O(n2%(M) loglon) expected time a BFS tree rooted at any given site s € P, where a(n)
is the inverse Ackermann function.

5.4.2 Geometric Reachability Oracles

Let G be a directed graph. If there is a directed path from a vertex s to a vertex
t in G, we say s can reach t (in G). A reachability oracle for a graph G is a data
structure that can answer efficiently for any given pair s, t of vertices of G whether s can
reach t. Reachability oracles have been studied extensively over the last decades (see,
e.g., [, | and the references therein) and we will do so in Chapter 6.

When G is a transmission graph we are interested in a more general type of reachability
query where the target t is not necessarily a vertex of G, but an arbitrary point in the
plane. We say that a site s can reach a point t € R? if there is a site q in G such
that t € D(q) and such that s can reach q in G. A data structure that supports
this type of queries is called a geometric reachability oracle. We can use our spanner
construction from Theorem 5.12 to extend any reachability oracle for a transmission
graph to a geometric reachability oracle with a small overhead in space and query time.
More precisely, we prove the following theorem.

841 Spanners for Transmission and Disk Graphs

Theorem 5.25. Let G be the transmission graph for a set P of n points in the plane with
radius ratio W. Given a reachability oracle for G that requires S(n) space and has query
time Q(n), we can obtain in O(nlognlogV¥) time a geometric reachability oracle that
requires S(n) + O(nlogV¥) space and can answer a query in O(Q(n) +lognlogV¥) time.

Given a query s,t with a target t € R?, our strategy is to find a small subset Q C P
such that for each q € Q, t € D(q), and such that Q “covers the space around t” in
the following sense. For any disk D(p) such that t € D(p) there is a site q € Q with
g € D(p). In particular the edge pq is in G.

Such a set Q satisfies that s can reach t if and only if s can reach some site g € Q. Once
we have computed Q we decide whether s can reach t by querying the given reachability
oracle with s, q for all ¢ € Q. The answer is positive if and only if it is positive for at
least one site q € Q.

In what follows, we construct a data structure of size O(nlogV¥) that allows to find
such a set Q of size O(1) in O(lognlogV¥) time. Theorem 5.25 is then immediate.

The Data Structure. We compute a 2-spanner H for G as in Theorem 5.12. Let k (the
number of cones) and c (the separation parameter) be the two constants used by the
construction of H, and recall that we scaled P such that the smallest radius of a site in P
is c. Let T be the quadforest used by the construction of H. The trees in T have depth
O(logV¥) and each node v € T corresponds to a grid cell o, from some grid G;, i > 0.
Our data structure is obtained by augmenting each node v € T by a power diagram
PDy, for the sites in o, NP, together with a point location data structure. This requires
O(loy N P|) space and O(|oy, N P|log|oy, N P|) time for each node v | ,]. Since
any site of P is in O(log¥) cells of T, we need O(nlogV¥) space and O(nlognlogV¥) time
in total.

1 L« depth of T

2 fori=0,...,L do

3 o< cellof G withte o

4 foreach T € N(0) contained in C2 do

5 q < PD+(t) // query PD. with t
6 if t e D(q), add q to Q

7 Stop if at least one q was added to Q

Algorithm 5.7: Query Algorithm for a cone C and a point t.

Performing a Query. Let a query point t € R? be given. Let o be the cell in Gy that
contains t. To find Q, we first traverse all non-empty cells T € §¢ with d(o, 1) < c—2.
From each such cell 7, if there exists a site ¢ € TN P such that t € D(q) then we add
one, arbitrary, such site to Q. To determine if such a site exists, and to find one if
it exists, we query PD, with t. Second, we go through all cones C € €, and we run
Algorithm 5.7 with C and t to find the remaining sites for Q. Algorithm 5.7 is similar

5.5 Conclusion 1 85

to Algorithms 5.1 and 5.2, and computes the incoming edges of t if it would have been
inserted into the spanner. We go through the grids at all levels of T. For each level we
consider the cell o that contains t and for each cell T € N(o) that is contained in C% we
select a site with an edge to t if there is one. Lemma 5.7 holds for the incoming edges of
t and using this fact, we can prove that our data structure has the desired properties.

Lemma 5.26. Let P be a set of n points in the plane with radius ratio V. We can construct
in O(nlognlogV¥) time a data structure that finds for any given query point t € R? a
set Q C P such that |Q] = O(1) and for any site p € P, if t € D(p) we have that
D(p)NQ # (. The query time is O(lognlogV¥) and the space requirement is O(nlogV¥).

Proof. The construction time and the space requirement are immediate. For the query
time recall that T has depth O(log¥) and by Lemma 5.3, at each level we make O(c?)
queries to power diagrams. It follows that it takes O(lognlogV¥) time to compute Q.
By construction, Q has size O(1). Indeed, at the first step, we add at most one site
for every cell of distance at most ¢ — 2 from o, and there are O(c?) such cells. In the
second step, for each cone, we only add sites from O(c?) cells at exactly one level of T.
Now let p € P be a site with t € D(p). It remains to show that D(p) N Q # 0. If
p € Q, we are done. If not, we let 0,7 € Go be the cells with t € c and p € 7. If
d(o,T) < ¢ — 2 then there must be a site ¢ € TN Q. Since diam(t) =1 and 1, > ¢, we
have q € D(p). If d(o,T) > ¢ — 2 then pt is an edge in the transmission graph of P U{t}
that is not selected by Algorithm 5.7. Applying Lemma 5.7 to pt guarantees that there
is an edge qt with q € Q and |pq| < [pt|. Since t € D(p), we also have q € D(p). This
finishes the proof. O

5.5 Conclusion

We have described the first construction of spanners for transmission graphs that runs
in near-linear time. Our techniques are quite general, and they allowed us to extend
our results to disk graphs. This significantly improves the bounds of Firer and Ka-
siviswanathan [].

To demonstrate the usefulness of the spanner construction, we described two applica-
tions. One of them will be of great benefit in Chapter 6 when we consider reachability
oracles for transmission graphs. Then, we describe several constructions for reachabil-
ity oracles, that will provide many opportunities to apply Theorem 5.25. Also, in this
context our spanner construction plays a crucial role in obtaining fast preprocessing
algorithms.

Chapter

Reachability Oracles for
Transmission Graphs

Representing the connectivity of a graph in a space efficient, succinct manner, while
supporting fast queries, is one of the most fundamental data structuring questions on
graphs. For an undirected graph, it suffices to compute the connected components (cf.
Chapter 3) and to store with each vertex a label for its respective component. This
leads to a linear-space data structure that can decide in constant time if any two given
vertices are connected. For undirected graphs, however, connectivity is not a symmetric
relation any more, and the problem turns out to be much more challenging. Thus, if
G is a directed graph, we say that a vertex s can reach a vertex t if there is a directed
path in G from s to t. Our goal is to construct a reachability oracle, a space efficient
data structure that answers reachability queries, i.e., that determines for any pair of
query vertices s and t whether s can reach t. The quality of a reachability oracle for a
graph with n vertices is measured by three parameters: the space S(n), the query time
Q(n) and the preprocessing time. The simplest solution stores for each pair of vertices
whether they can reach each other, leading to a reachability oracle with ®(n?) space
and constant query time. For sparse graphs with O(n) edges, storing just the graph
and performing a breadth first search for a query yields an O(n) space oracle with O(n)
query time. Interestingly, other than that, we are not aware of any better solutions for
general directed graphs, even sparse ones. Thus, any result that simultaneously achieves
subquadratic space and sublinear query time would be of great interest. A lower bound
by Patragcu [] shows that we cannot hope for o(logn) query time with linear
space, but it does not rule out constant time queries with slightly superlinear space. In
the absence of progress towards non-trivial reachability oracles or better lower bounds,
solutions for special cases become important. For directed planar graphs, after a long
line of research | , , , , |, Holm, Rotenberg and Thorup
presented a reachability with optimal parameters []. This result, as well as most

87

881 Reachability Oracles for Transmission Graphs

other previous results, is actually not merely a reachability oracle but it can also return
the approximate shortest path distance between the query vertices.

Naturally, one would like to discover further graph classes, besides planer graphs,
for which efficient reachability oracles exist. A good candidate for such a class are
transmission graphs. Even though they are in general highly non-planar, they share
many geometric properties with planar graphs. These properties allow us to translate
several approaches known from planar graphs to the case of transmission graphs. Recall
that in the geometric context of transmission graphs, it is natural to consider a more
general type of query where the target point is an arbitrary point in the plane rather
than a vertex of the graph. In this case, a vertex s € P can reach a point q € R? if there
is a vertex t € P such that s reaches t and such that [tq| < r¢. We call such queries
geometric reachability queries and oracles for them geometric reachability oracles. To
avoid ambiguities, we sometimes use the term standard reachability query/oracle when
referring to the case where the query consists of two vertices.

6.1 Our Results

It turns out that the radius ratio ¥, the ratio of the largest and the smallest transmission
radius in P, is an important parameter for our constructions. We present three different
reachability oracles, each of them will perform best for a certain range of W. If W is less
than v/3, we can turn the transmission graph into a planar graph in O(nlogn) time,
while preserving the reachability structure and keeping the number of vertices linear in
n. As mentioned above, for planar graphs there is a linear time construction of a reacha-
bility oracle with linear space and constant query time |]. This construction yields
a standard reachability oracle. However, as argued in Section 5.4.2, any standard reach-
ability oracle can be transformed into a geometric one by paying an additive overhead of
O(lognlogV¥) in the query time and of O(nlogV¥) in the space (see Theorem 5.25). Our
final construction needs O(n) space and has query time O(logn) for geometric queries
and O(1) for standard queries. It can be found in Section 6.2.

When ¥ > /3, we do not know how to find a planar graph representing the reachabil-
ity of G. Fortunately, we can use a theorem by Alber and Fiala that allows us to find a
small and balanced separator with respect to the area of the union of the disks []
This leads to a standard reachability oracle with query time O(¥3y/n) and space and pre-
processing time O(W3n?3/2), see Section 6.3. When ¥ is even larger, we can use random
sampling combined with a quadtree of logarithmic depth to obtain a standard reachabil-
ity oracle with query time O(n?/31log!/3 Wlog?/3 n), space O(n®/3log!/? Wlog?/®n), and
preprocessing time O(n%/3(log ¥ +logn)log'/3 W1og?/? n). Refer to Section 6.4. Again,
we can transform both oracles into geometric reachability oracles using Theorem 5.25
from Section 5.4.2. Since the overhead is additive, this time the transformation does not
affect the performance bounds.

6.2 V is less than /3 1 89

6.2 VY is less than /3

Let P C R? be a set of sites such that each site in P has a radius in the interval [1, \/3),
i.e., the radius ratio of P is W < 3. We show that in this restricted case we can make the
transmission graph of P planar by first removing unnecessary edges and then resolving
edge crossings by adding O(n) additional vertices. This will not change the reachability
between the original vertices. The existence of efficient reachability oracles then follows
from known results for directed planar graphs. The main goal is to prove the following
lemma.

Lemma 6.1. Let G be the transmission graph for a planar n-point set P with ¥ < V3.
In O(nlogn) time, we can find a plane graph H = (V,E) such that

(i) IVl = O(n) and [E| = O(n);

(ii) P CV; and

(iii) for any p,q € P, p can reach q in G if and only if p can reach q in H.
Given Lemma 6.1, we can obtain our reachability oracle from known results.

Theorem 6.2. Let G be the transmission graph for a two-dimensional set P of 1 points,
and suppose the radius ratio V¥ is less than /3. Then, we can construct in O(nlogn)
time a standard reachability oracle for G with S(n) = O(n) and Q(n) = O(1) or a
geometric reachability oracle for G with S(n) = O(n) and Q(n) = O(logn).

Proof. We apply Lemma 6.1 and construct the distance oracle of Holm, Rotenberg, and

Thorup for the resulting graph []. This distance oracle can be constructed in
linear time, it needs linear space, and it has constant query time. The result for the
geometric reachability oracle follows from Theorem 5.25. O

We prove Lemma 6.1 in three steps. First, we show in Section 6.2.1 how to make G
sparse without changing its reachability. Then, we show in Section 6.2.2 how to turn G
into a planar graph. Finally, we argue in Section 6.2.3 that we can combine these two
operations to get the desired graph H from Lemma 6.1 that is sparse and planar.

6.2.1 Obtaining a Sparse Graph

We construct a subgraph H C G with the same reachability as G but with O(n) edges
and O(n) edge crossings. The bound on the number of crossings will allow us to obtain
a planar graph with only a linear number of edges later on. Consider the grid § = Gg
whose cells have diameter 1, and let 0 € G be a grid cell. We say that an edge of G lies
in o if both endpoints are contained in 0. The neighborhood N(o) of o consists of the
7 x 7 block of cells in Gg with o at the center. Two grid cells are neighboring if they lie in
each other’s neighborhood. Since a cell in G has side length v/2/2 and since every edge
in G has length less than v/3, the endpoints of every edge in G must lie in neighboring
grid cells.

90 1 Reachability Oracles for Transmission Graphs

Figure 6.1: The vertices and edges of two neighboring cells of G (left) and of H (right)

We now construct the subgraph H C G. It has vertex set P, and we pick the edges as
follows (see also Figure 6.1): for each non-empty cell o € G, we set P = PN o, and we
compute the Euclidean minimum spanning tree (EMST) T, of Ps. For each edge pq of
Ts, we add the directed edges pq and qp to H. Then, for every cell T € N(o), we check
if there are any edges from o to T in G. If so, we add an arbitrary such edge to H. The
following lemma states properties of H.

Lemma 6.3. The graph H
(i) has the same reachability as G;
(i) has O(n) edges;
(iii) can be constructed in O(nlogn) time; and

(iv) the straight line embedding of H in the plane with vertex set P has O(n) edge
CTr0o8sings.

Proof. (i): All edges of H are also edges of G: inside a non-empty cell o, P induces a
clique in G, and the edges of H between different cells are edges in G by construction.
It follows that H does not increase the reachability. Now let pq be an edge in G. We
show that there is a path from p to q in H: if pq lies in a cell o of Gy, we take the path
along the EMST Ts. If pq goes from a cell o to another cell T, then there is an edge uv
from o to T in H, and we take the path in T; from p to u, then the edge uv, and finally
the path in T¢ from v to q.

(ii): For a nonempty cell o, we create |Ps| — 1 edges inside 0. Furthermore, since
IN(0)| is constant, there are at most O(1) edges between ¢ and other cells. Thus, H has
O(n) edges.

(iii): Since we assumed that our model of computation supports finding the cell for a
vertex p € P in constant time, we can easily compute the sets P5, 0 € § nonempty, in
time O(nlogn). Computing the EMST T, for a cell 0 needs time O(|Py|log|Psl), for
a total of O(nlogn). To find the edges between neighboring cells, we build a Voronoi
diagram together with a point location structure for each set Ps. Again, this takes

6.2 V is less than /3 191

O(nlogn) total time []. Let 0 and T be two neighboring cells. For each vertex
in P, we locate the nearest neighbor in P using the Voronoi diagram. If there is a
vertex p € Ps whose nearest neighbor q € Py lies in the disk D(p), we add the edge
pq to H, and we proceed to the next pair of neighboring cells. Since [N(0)| is constant,
a vertex participates in O(1) point locations, of O(logn) time each. The total running
time is O(nlogn).

(iv): We distinguish two kinds of crossings. First, if at least one edge of a crossing lies
inside a grid cell o, then the other edge must go between different cells of N(o), because
To is crossing-free. There are O(1) such edges, so there are O(n) crossings of the first
kind, since H has O(n) edges.

In the second kind of crossing, both edges go between different grid cells. As WV is
constant, each edge of H can participate in at most O(1) such crossings. Since there are
O(n) edges in H, the total number of crossings is O(n). O

6.2.2 Making G Planar

We now describe how to turn G into a planar graph. The general strategy is similar to
the planarization argument for unit disk graphs from Chapter 3. Suppose an edge pq
and an edge uv of G cross at a point x. To eliminate the crossing, we add x as a new
vertex to the graph, and we replace pq and uv by the four new edges px, xq, ux and
xv. Furthermore, if qp is an edge of G, we replace it by the two edges gx, xp, and if vu
is an edge of G, we replace it by the two edges vx, xu. See Figure 6.2. We say that this
resolves the crossing between p, q,u and v. Let G be the graph obtained by iteratively
resolving all crossings in G.

Y% A%

Figure 6.2: Resolving a crossing. Since the edge vu exists, we also add vx and xu as
edges.

First, we want to show that resolving crossings keeps the local reachability between the
four vertices of the crossing edges. Intuitively speaking, the restriction ¥ < 3 forces the
vertices to be close together. This guarantees the existence of additional edges between
P, q,u,vin G, and these edges cover the new paths introduced by resolving the crossing.

To formally prove this, we first need a geometric observation. Recall that for a vertex
p € P, we denote by D(p,r) and by C(p,r) the disk and the circle with center p and
with radius .

Lemma 6.4. Let p, q be two points in R? with |pq| = /3.

(i) Let a € C(p,1)NC(q,1). Then, for anyr € [1,4/3), ifb € C(p,v)NC(q,1) lies on
the other side of the line through p and q from a, then |abl > r.

(ii) Let {a,b} = C(p,v/3) N C(q,1). Then, lab| > v/3.

921 Reachability Oracles for Transmission Graphs

Proof. (i): Let x be the intersection point of the line segments pq and ab. Then |ab| =
lax| + [xb|. Using that [pa] = 1 and [px| = v/3/2, the Pythagorean Theorem gives
[xa|] = 1/2. Similarly, we can compute [xb| as a function of r: with [pb| = r we get

[xb| = /12 — 3/4. We want to show that
r < labl = 1/2 + /72 — 3/4

12 < 1/44+ /12 —3/4+12—3/4
2

&1/2< /12 -3/4

&1 < r2,
which holds since T € [1,/3).
(ii): Use the Pythagorean Theorem with the right angles marked in Figure 6.3(ii). [

i) (<4

(i) (i)
Figure 6.3: The cases (i) and (ii) of Lemma 6.4.

Lemma 6.5. Suppose that pq and uv are edges in G that cross. Let G’ C G be the
transmission graph induced by p,q,w and v. If ¥ < /3, then p reaches v in G’ and u
reaches q in G'.

Proof. We may assume that v, > 1. Furthermore, we set rq = 7, = 1. This does not
add any new edges and thus reachability in the new graph implies reachability in G’.
We show that if either u does not reach q (case 1) or p does not reach v (case 2), then
[uv| > 1. Hence uv cannot be an edge of G’ despite our assumption.

Case 1: u does not reach q. Then we have p ¢ D(u), q ¢ D(u), p € D(v) and q ¢
D(v). Equivalently this gives u ¢ D(p,) UD(q,m) and v ¢ D(p,1) UD(q, 1). Thus,
the positions of u and v that minimize [uv| are the intersections u € C(p,ry) N C(q,Ty)
and v € C(p,1) N C(q,1) on different sides of the line through p and q. To further
minimize [uv|, observe that [uv| depends on the distance of p and q and that [uv| strictly
decreases as [pq| grows, i.e., as [pq| approaches v/3. For the limit case |[pq| = v/3, we are

6.2 V is less than /3 193

in the situation of Lemma 6.4(i) with a = u and b = v and thus we would get [uv| > ry,
But since ¥ < /3, we must have |pq| < v/3 and by strict monotonicity, it follows that
[uwv| > 1y, as desired.

Case 2: p does not reach v. Then we have u ¢ D(p), v ¢ D(p), u ¢ D(q) and
v ¢ D(q). We scale everything, such that rp = V3, and we reduce 1y, Tq once again
to 1. Now, the positions of u and v minimizing |uv| are {u,v} = C(p,v3) N C(q,1). As
above, further minimizing [uv| gives |pq| = v/3. By Lemma 6.4(ii), we have juv| > /3
and thus uv cannot be an edge of G’ (note that even after scaling we have 1, < v/3). O

We iteratively resolve crossings in G. Call the resulting graph G. Let P,q € P be two
vertices such that p can reach ¢ in G. Since resolving crossings cannot destroy any path
in G, p can also reach q in G. Next, we show the reverse: for any p,q € P, if p can
reach q in G, then p can also reach q in G. This seems to be a bit more difficult than
one might expect, because when resolving the crossings, we introduce new vertices and
edges to which Lemma 6.5 is not directly applicable. To simply the arguments, we make
the following general position assumptions: no three vertices in P are collinear and no
three edges in G have a common intersection point. These assumptions can be omitted
by making a finer case distinction.

Lemma 6.6. For any two vertices p and q in P, if p can reach q in G then P can reach
q in G.

Proof. Each edge e of G lies on an edge of G with the same direction. We call it the
supporting edge of e. A pair p, q € P such that p can reach g in G, but not in G is called
a bad pair. Among all bad pairs, we pick p, g such that there is a path 7w in G from p to
g with the minimum number of support switches, where 7t changes from one supporting
edge to another (see Figure 6.4). Let p1qu, ..., pxqk be the sequence of supporting edges
as they are visited along 7 (p1 =p, qx = q).

PS (e]) ‘q5 'S o4~

Figure 6.4: A path (green) with k = 7 supporting edges that is in G but not in G.

Claim 6.7. The following holds in G:
(P1) p1 reaches qa, ..., qx—1

(P2) pa,...,px reach qx

94| Reachability Oracles for Transmission Graphs

(P3) p1 does not reach pa, ..., px

(P4) there is no edge qipi fori> 2.

(P5) fori=1,...,k—1 the line segments piqi and pi+1qi+1 have a common intersec-
tion point xi in their interior

(P6) fori=1,... k—1 the intersection point xi41 lies in the interior of the line segment
Proof. (P1) and (P2) follow from the minimality of 7t, and (P3) follows from (P2). For
(P4), assume that G contains an edge qipi, for i > 2. By (P1), p1 reaches q; in G and
thus p; reaches pi, despite (P3). For (P5), since piqi and pit1qi4+1 are consecutive
along 71, they must intersect in a point x;. By our general position assumption, x; is
in their interior, or otherwise we would have three collinear vertices in P. Finally, we
can show (P6): by (P4) all supporting edges exist only in one direction. Since resolving
a crossing preserves the direction of the edges, xi11 must come after x; along the edge
Pit+19i+1, i-e., Xi+1 lies on the line segment x;qi4+1. By our general position assumption
it must lie in the interior. O

By Lemma 6.5, we have k > 3 supporting edges along 7. We now argue that the path
7t cannot exist and thus there cannot be any bad pair. Since p1q; and paqa cross, the
proof of Lemma 6.5 shows that G contains one of the following edges: p1p2, q1p2, P1q2, or
qi1qz. By (P3), neither p1p2 nor qp2 exist. There are two cases, depending on whether
G contains p1qe, or q1qz2 (see Figure 6.5). Each case will lead to a contradiction to the
minimality of 7.

Figure 6.5: Either p1q2 or p1q2 locks all edges in the corresponding triangle.

Case 1. G contains p;qe. Consider the triangle A = pix1qs. Since qg2,x1 € D(p1),
we have A C D(p1). Thus, by (P3), none of po, ..., px may lie inside A. By (P6), p3qs
intersects the boundary of A in the interior of the line segment x;qs. First, suppose
that k = 3. In this case, we have p3,qs ¢ A (otherwise p; could reach qz). Thus,
P3qs intersects the boundary of A twice, so psqs either intersects p1q; or p1qz. In both
cases, Lemma 6.5 shows that p; reaches q3. Thus, we must have k > 4.

We now claim that the intersection x3 of psqs and p4qq lies in A: if psqs intersects A
once, then q3 € A\, as we already observed that p3 & A. (P6) then gives x3 € A. Now

6.2 V is less than /3 1 95

suppose p3qs intersects the boundary of A twice, and let y be the second intersection
point. We claim that y comes after xo along psqs: otherwise, since x3 comes after xo on
P3qs by (P6), we can construct a path with fewer support switches than 7 if y € p1xq,
we omit paqz; if y € p1q2, we omit paqe and substitute p;q; with p1q2. By the same
argument, xs cannot come after y on p3qs. Thus, x3 lies on the line segment X3y C A.
This establishes x3 € A for both subcases. Now, consider the segment pyx3. Since we
observed ps € A, we have that pgxs intersects A, and we can again reroute 7 to have
fewer support switches.

Figure 6.6: In Case 2) the triangle x1q1q2 is contained in the union of the disk D(q1)
and D(xq1).

Case 2. G contains qiq2. Consider the triangle A = x;1q1q2. We claim that A C
D(p1)UD(q1). Then the remaining argument is analogous to Case 1. Let D(x1) C D(p1)
be the disk with center x; and q; on its boundary. Let C(x1) be the boundary of D(x1).
We show that A C D(x;) UD(q1). If x; € D(q1), then A C D(q;) and we are done.
Otherwise, since the two rays from x; through C(x;) N C(qp) intersect D(q;) inside
D(x;) (see red parts in Figure 6.6), all line segments from x; to a point on C(q;) lie in
D(x1) UD(q1). The claim follows. O

6.2.3 Putting it Together

To prove Lemma 6.1, we first construct the sparse subgraph H of G as in Lemma 6.3 in
time O(nlogn). Then we iteratively resolve the crossings in H to obtain a planar graph
H. Since H has O(n) crossings that can be found in O(n) time, this takes O(n) time.

Let p,q € P. We must argue that p can reach q in G if and only if p can reach q in
H. Let G be the graph obtained by resolving the crossings in G, as in Lemma 6.6. We
know that the reachability between p and q is the same in G, H, and G. Furthermore, if
p can reach g in H, then also in H since resolving the crossing cannot destroy any paths
that are in H. Finally, if p can reach g in H, then also in G, because (a subdivision of)
every edge of H is present in G. Thus, H and G have the same reachability properties.
See also Figure 6.7 for a schematic overview of the arguments.

96 | Reachability Oracles for Transmission Graphs

G
{every edge in H exists

Lemma 6.6
G +—>
Lemma 6.3 (as a subdivison) in G

H H

every path in H is also in H

Figure 6.7: The black arrows indicate the reachability between sites in P in the graphs
G, G, H, and H.

6.3 Polynomial Dependence on V¥

We now present a standard reachability oracle whose performance parameters depend
polynomially on the radius ratio W. Together with Theorem 5.25 we will obtain the
following result:

Theorem 6.8. Let G be the transmission graph for a set P C R? of n points. We can
construct a geometric reachability oracle for G with S(n) = O(¥3n3/2) and Q(n) =
O(¥3y/mn) in time O(WY3n3/2).

Our approach is based on a geometric separator theorem for planar disks. Let P be a
set of n points, each having an assigned radius. We may assume that the smallest radius
in P is 1. Let D be the set of disks induced by P. We write [JD = Jpcp D and we let
w(D) be the area occupied by | JD. Alber and Fiala show how to find a separator for D
with respect to p(-) |].

Theorem 6.9 (Theorem 4.12 in | |). There exist positive constants o < 1 and 3 such
that the following holds: let D be a set of 1 disks and V¥ the ratio of the largest and the
smallest radius in D. Then we can find in time O(WY?n) a partition AU B US of D

satisfying (i) JANUB =0, (i) w(8) < BY2\/u(D) and (iii) u(A), u(B) < apu(D).

Let G be the transmission graph of P. Since any directed path in G lies completely
in |J D, any path from a vertex of a disk in A to a vertex of a disk in B needs to use at
least one vertex of a disk in §, see Figure 6.8. Since w(8) is small, we can approximate
U8 with few grid cells. We choose the diameter of the cells small enough such that all
vertices in one cell form a clique and are equivalent in terms of reachability. We can thus
pick one vertex per cell and store the reachability information for it. Applying this idea
recursively gives a separator tree of logarithmic depth that lets us answer reachability
queries. Details follow.

Preprocessing Algorithm and Space Requirement

For the preprocessing phase, consider the grid § = Gy whose cells have diameter 1. All
vertices in a single cell form a clique in G, so it suffices to determine the reachability for

6.3 Polynomial Dependence on ¥ 197

Figure 6.8: Any path from A to B needs to use at least one vertex of 8. Since u(8) is
small, we can approximate |J8 with few grid cells.

one such vertex. For each non-empty cell o € G, we pick an arbitrary vertex ps € PN o
as the representative of o.

Starting with D, we recursively create a separator tree T that contains all the required
reachability information: we create a root node v of the separator tree and we set
D, = D. Let P, C P be the sites corresponding to disks in D,. We compute A, B,
and 8, = 8 for D, according to Theorem 6.9. Let Q, be all cells in G that intersect
USy. Let Ry be the representatives of Q.. For each r € R,, we store at v all sites in
P, that r can reach and all the sites in P,, that can reach r in the transmission graph
induced by P,,. To obtain the reachability information, we compute a 2-spanner H,, for
the transmission graph induced by P,,, as in Theorem 5.12. Since we are only interested
in the reachability properties of the spanner, a 2-spanner (or any spanner with constant
stretch) suffices. For each representative r € R,,, we compute a BFS tree in H,, with root
r. Next, we reverse all edges in H,,, and we again compute BFS-trees for all v € R,, in the
transposed graph. This gives the required reachability information for v. If u(D) = O(1)
we store at v all sites of P, and we stop. Otherwise, we recursively compute separator
trees for A and B, and we connect them to v.

As T has O(log(¥n)) levels by Theorem 6.9 and since p(D) = O(¥?n), the total
running time for computing the 2-spanners is O(n(logn + log¥)?) by Theorem 5.12.
Since the spanners are sparse, computing one BF'S tree requires linear time. Furthermore,
every time we compute BFS tree for a representative v € R,,, we store the reachability
information for the complete tree at v. Thus, the total time for computing the BFS-
trees is proportional to the total storage we need. Below, we will show that this is at
most O(W¥31n3/2). Then, the total preprocessing time is O(n(logn + log ¥)% +¥3n3/2) =
O(W3n3/2).

To bound the space requirement, we show that a set D of disks has O(u(D)) repre-
sentatives.

Lemma 6.10. Let D be a set of n disks with radius at least 1. Then the number of cells
in G that intersect | JD is O(u(D)).

Proof. Suppose that a cell 0 € G intersects a disk D € D. Then D contains a disk of
radius 1 that intersects the boundary of 0. Thus, the intersection of | J D and the region
consisting of o and its eight surrounding cells has area at least 1. Since there can be
only O(u(D)) different regions of this kind, the claim follows. O

98 | Reachability Oracles for Transmission Graphs

Theorem 6.9(ii) and Lemma 6.10 imply that [R,| = O(¥2,/u(D,)) and so the size of
the reachability table at a node v is O(W2/u(D,)|Py|). Thus, we obtain the following

recursion with respect to u(-) for the space requirement S(u(D),n) for a set D of n
disks:

S(i(D),n) = S(u(A),n1) + S(u(B),n W2\/u(D)n), (6.1)
where n; = |A|, = |B| and S(O(1),n) = O(n). Since n; + ny < n and since
Theorem 6 9 glves max{u(L, uw(B)} < (1 — oc)u(), the recursion in (6.1) solves to
S((D),n) = O(W2,/u(D)n). As u(D) = O(n¥?), the total space is O(Y3n3/2).
Query Algorithm

Let p,q € P be given. We let v be the node in T with p € R,,, or, if no such node exists,
we let v be the leaf node of T where p € P, is stored. In the same way we pick the node
w for q. Let u be the least common ancestor of v and w. It can be found in O(¥logn)
time by walking up the tree T. Let L be the path from u to the root of T. We check for
each representative v € | J,o; Rx whether p can reach r and whether r can reach q. If so,
we return YES. If there is no such r, we return NO. Since |[Ry| increases geometrically
along L, the running time is dominated by the time for processing the root, which is
O(¥2,/u(D)). Bounding u(D) by O(¥?n), the total query time is O(W3/n).

It remains to argue that our query algorithm is correct. By construction, it follows
that we return YES only if there is a path from p to q. Now, suppose there is a path 7 in
G from p to q. Let v,w be the (leaf) nodes in T for p and q as defined above. Let u be
their least common ancestor, and let L be the path from u to the root. By construction,
Uxer Sx contains a disk for a vertex r in 7t. We pick r such that the corresponding node
x € T is closest to the root. Let r/ be the representative for the cell o containing r. Since
the vertices in o constitute a clique, p can reach v’ and r’ can reach ¢ in the subgraph
of G induced by Py. Thus, when walking along L, the algorithm will discover r’ and the
path from p to q. Theorem 6.8 now follows.

6.4 Logarithmic Dependence on V¥

Finally, we improve the dependence on ¥ to be logarithmic, at the cost of a slight increase
of the exponent for n. We can show the following theorem by constructing a standard
reachability oracle and then using Theorem 5.25.

Theorem 6.11. Let G be the transmission graph for a set P of n points in the plane. We
can construct a geometric reachability oracle for G with S(n) = O(n%/3log?/? W1og?/3n)
and Q(n) = O(n?/3 log'/?Wlog?/3n). All queries are answered correctly with high prob-
ability. The preprocessing time is O(n®/3(log ¥ + logn) log"/? Wlog?/3 n).

We scale everything such that the smallest radius in P is 1. Our approach is as follows:
let p, q € P. If there is a p-g-path with “many” vertices, we detect this by taking a large
enough random sample S C P and by storing the reachability information for every

6.4 Logarithmic Dependence on ¥ 199

vertex in S. If there is a path from p to q with “few” vertices, then p must be “close” to
g, where “closeness” is defined relative to the largest radius along the path. The radii
from P can lie in O(logV¥) different scales, and for each scale we store local information
to find such a short path.

Long Paths

Let 0 < x < 1 be a parameter to be determined later. First, we show that a random
sample can be used to detect paths with many vertices.

Lemma 6.12. We can sample a set S C P of size O(n*logn) such that the following
holds with high probability at least 1 —1/n: for any p,q € P, if there is a path 7 from p
to q in G with at least n'~% vertices, then NS # ().

Proof. Let m = 4n%Inn. We construct S by including each p € P independently with
probability m/n. Using Chernoff bounds | |, we get

PrlS| > 8n%lnn] < e ™M < |
n

Thus, S has size O(n*logn) with probability at least 1 —1/2n . Now fix p and q and
let 7t be a path from p to q with k > n!=% vertices. The probability that S contains no
vertex from 7 is at most (1 —m/n)* < e ™*/™ < 1/n*, by our choice of m. Since there
are n(n — 1) ordered vertex pairs, the union bound shows that the probability that S
fails to detect a pair of vertices connected by a long path is at most n(n—1)/n* < 1/2n,
for all n > 1. The lemma follows by a union bound. O

We compute a sample S as in Lemma 6.12, and for each s € S, we store two Boolean
arrays that indicate for each p € P whether p can reach s and whether s can reach p.
This needs space O(n!**logn). It remains to deal with vertices that are connected by
a path with less than n'~* vertices.

Short Paths

Let L = [log¥]. We consider the L grids Gp,...,S9r (recall that the cells in G; have
diameter 2'). For each cell o € Gy, let Ry C P be the vertices p € PN o with Ty €
[21,2+1) The set Ry forms a clique in G, and for each p € Ry, the disk D(p) contains
the cell 0. The neighborhood N(o) of o is defined as the set of all cells in §; that have
distance at most 2*!=* from o. We have |[N(c)| = O(n?~2%). Let Py C P be the
vertices that lie in cells of N(o). For every 1 =0, ..., L and for every o € G; with Ry # 0,
we fix an arbitrary representative point rs € Ry. For every vertex p € P, we store for
every i € {0,..., L} two sorted lists of cells 0 € G; with p € Py: the first list contains all
corresponding representatives T4 that can be reached from p; the second list contains
all corresponding representatives r that can reach p. A vertex p appears in at most
O(n?~2%]og W) point sets Py, so the total space is O(n3 2% logV¥).

1001 Reachability Oracles for Transmission Graphs

Query Algorithm

Let p,q € P be given. To decide whether p can reach q, we first check the Boolean
tables for all O(n%*logn) points in S. If there is an s € S such that p reaches s and s
reaches ¢, we return YES. If not, for i € {0, ..., L}, we consider the list of representatives
that are reachable from p in the neighborhood at level i and the list of representatives
that can reach q in the neighborhood at level i. We check whether these lists contain a
common element. Since the lists are sorted, this can be done in time linear in their size.
If we find a common representative at for some i, we return YES. Otherwise, we return
NO.

We now prove the correctness of the query algorithm. First note that we return YES,
only if there is a path from p to q. Now suppose that there is a path 7 from p to q. If
7 has at least n'~% vertices, then by Lemma 6.12, the sample S hits 7t with probability
at least 1 — 1/n, and the algorithm returns YES. If 7t has less than n'=% vertices, let
T be the vertex of 7t with the largest radius, and let i be such that the radius of r lies
in 28,21, Let o be the cell of G; that contains . Since 7t has at most n'~% vertices,
and since each edge of 7 has length at most 2171, the path 7 lies entirely in the cells
of N(0). In particular, both p and q are contained in cells of N(o). Since r € Ry and
since Ry forms a clique in G, the representative point r4 of o can be reached from p and
can reach q. By the symmetry of the neighborhood relation, v is contained in the list
of reachable representatives from p and in the lists of representatives that can reach q.
This is detected when checking the corresponding lists for p and q at level 1.

Time and Space Requirements

For querying long paths we need O(n*logn) time: for every s € S we test in O(1) time
whether p can reach s and whether s can reach . For querying short paths there are
O(log¥) levels, and at each level we step through two lists of size O(n?~2%). Thus, the
tradeoff-point is achieved for

n%logn = n?"2*log¥ < n* = n?3(log¥/logn)"/3.
This yields Q(n) = O(n%/3 log1/3‘1’10g2/3 n). This choice of « gives a space bound of
O(n5/3log'/ 3 Wlog?/ 3 n).

For the preprocessing algorithm, we first compute the reachability arrays for each s €
S. To do so, we build a 2-spanner H for G as in Theorem 5.12 in time O(n(log n+logV¥)).
Then, for each s € S we perform a BFS search in H and its transposed graph. This gives
all vertices that s can reach and that can be reached by s in O(n®/3 logl/g‘i’logz/3 n)
total time. For the short paths, the preprocessing algorithm goes as follows: For
each 1 = 0,...,L and for each cell 0 € §; that has a representative vy, we com-
pute a 2-spanner Hg as in Theorem 5.12 for P;. For each representative v, we do
a BFS search in Hg and the transposed graph, each starting from rs. This gives
all p € Ps that can reach rs and that are reachable from 4. The running time is
dominated by the time for constructing the spanners. Since each point p € P is con-
tained in O(n2 2% 1log¥) = O(n?/3log?/? Wlog?/? n) different P, and since constructing

6.5 Conclusion 1 101

Ho takes O(|Ps|(log¥ + log |Ps|)) time, it follows that the total preprocessing time is
O(n?3(log¥ + logn) log!/? Wlog?/3 n).

6.5 Conclusion

Transmission graphs constitute a natural class of directed graphs for which non-trivial
reachability oracles can be constructed. As mentioned at the beginning of the chapter,
it seems to be very difficult to obtain similar results for general directed graphs. We
believe that our results only scratch the surface of the possibilities offered by transmission
graphs, and several interesting open problems remain.

All our results depend on the radius ratio ¥ and the major question is whether this
dependency can be avoided. Our most efficient reachability oracle is for ¥ < /3. In
this case the reachability of a transmission graph with n vertices can be represented
by a planar graph with O(n) vertices. However, it is not clear to us that the bound
of v/3 is tight. Can we obtain a similar result for, say, ¥ = 100? Or is there even a
way to represent any transmission graph, regardless of W, by a planar graph with o(n?)
vertices? This would immediately imply a non-trivial reachability oracles for all ranges
of V.

Conversely, it would be interesting to see if we can represent the reachability of arbi-
trary directed graphs using transmission graphs. If this is possible, the relevant questions
are how many vertices the transmission must have, what the required radius ratio is, and
how fast it can be computed. A representation that achieves both few vertices and low
radius ratio would lead to efficient reachability oracles for general directed graphs.

Parting Thoughts

In this thesis we considered three types of disk intersection graphs, namely unit disk
graphs, disk graphs, and transmission graphs, and we explored their algorithmic capa-
bilities. We gave efficient data structures and algorithms for several problems related to
connectivity and (approximately) shortest paths in these graphs.

In the first part of this thesis, we studied unit disk graphs, and we gave a data structure
that solves the dynamic connectivity problem for them (see Chapter 3). Our solution
yields a significant improvement in the update time, compared to the previous best
result by Chan et al. | |. However, there is no reason to believe that our bounds,
especially for the update time, are optimal. Thus, we would like to know if there are
solutions with improved update and/or query time. Also, we would like to derive some
lower bounds for the problem.

In Chapter 4 we presented the first efficient routing scheme with stretch 1 + ¢ for
unit disk graphs. This improves a previous routing scheme by Yan et al. []
that has stretch slightly larger than 3. The main geometric tool we used was the well-
separated pair decomposition for the unit disk graph metric by Gao and Zhang [].
Already Yan et al. | | asked whether this well-separated pair decomposition can be
helpful to obtain a routing scheme with 1+ ¢ stretch. Now, we can answer this question
affirmatively. The main drawback of our routing scheme is the need of a modifiable
header at the packet. In future work, we will try to find a headerless routing scheme for
unit disk graphs that also has stretch 1+ ¢.

The second part of the thesis contains our results for transmission graphs. We saw
several spanner constructions in Chapter 5. The most general one can construct a
spanner in time O(nlog®n), where n is the number of sites. However, the usual spanner
constructions for the complete Euclidean graph (e.g., Yao graphs, ©-graphs, WSPD
spanners) require only O(nlogn) time []. The major open question from Chapter 5
is: can we construct spanners for transmission graphs also in time O(nlogn)? Or have
transmission graphs any structural barriers that rule out such an algorithm?

In Chapter 6 we presented three different reachability oracles for transmission graphs.
All of them had a dependence on the radius ratio ¥, and performed best for a certain
range of ¥. However, once W gets large enough, all of our oracles fail to beat the trivial
solutions. The existence of non-trivial reachability oracles that are independent of W is
the most compelling open question that remains from Chapter 6.

We managed to extend our dynamic connectivity structure and the spanner construc-
tion to disk graphs. These extensions required a dynamic data structure for additively
weighted Euclidean nearest neighbors. For this, we used a more general data structure
that is capable of solving the dynamic nearest neighbor problem for a wide range of

103

1041 Parting Thoughts

distance functions (see Section 2.3.2 and Theorem 2.6). This data structure has a rather
high update time and this directly reflects to our solutions. It is likely that for the special
case of additively weighted Euclidean distance functions we can find a better solution.
This is particularly reasonable since Euclidean and additively weighted Euclidean dis-
tance functions induce very similar surfaces in three dimensions (cones versus shifted
cones, cf. Section 2.3.2), and for Euclidean distances there already is a more efficient
dynamic nearest neighbors structure available (see Corollary 2.5).

In conclusion, disk intersection graphs constitute an interesting class of graphs to
investigate and we managed to solve several natural problems for these graphs, but still
there is further work to be done. Unit disk graphs have already been studied for the last
decades, but even for them we still can find compelling open problems that are worth
to study. For transmission graphs, the picture looks quite different: even though they
are a very natural generalization of unit disk graphs, they received not much attention
by the research community, yet. Except for the range assignment problems mentioned
in the introduction (see Section 1.3), we are not aware of any another work where
transmission graphs are studied. Certainly, our results just scratched the surface and
there are much more algorithmic problems in the context of transmission graphs that
want to be discovered and solved. We hope that some of our results will encourage
further people to study these fascinating graphs, and that this will be the forerunner of
a longer line of research in the near future.

Bibliography

[ACO9]

[ACC+96]

[AES99]

[AESWO1]

[AF04]

[Afs14]

[AKL13]

[AMO5]

[AMS94]

[AW05]

Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting
in three dimensions. In Proc. 20th Annu. ACM-SIAM Sympos. Discrete
Algorithms (SODA), pages 180186, 2009.

Srinivasa Arikati, Danny Z. Chen, L. Paul Chew, Gautam Das, Michiel
H. M. Smid, and Christos D. Zaroliagis. Planar spanners and approximate

shortest path queries among obstacles in the plane. In Proc. 4th Annu.
European Sympos. Algorithms (ESA), pages 514-528, 1996.

Pankaj K. Agarwal, Alon Efrat, and Micha Sharir. Vertical decomposition
of shallow levels in 3-dimensional arrangements and its applications. SIAM
J. Comput., 29(3):912-953, 1999.

Pankaj K. Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo
Welzl. Euclidean minimum spanning trees and bichromatic closest pairs.
Discrete Comput. Geom., 6(5):407-422, 1991.

Jochen Alber and Jiri Fiala. Geometric separation and exact solutions for
the parameterized independent set problem on disk graphs. J. Algorithms,
52(2):134-151, 2004.

Vala Afshar. 50 incredible WiFi tech statistics that businesses must know
[slide deck], 2014. http://www.huffingtonpost.com/vala-afshar/50-
incredible-wifi-tech-s_b_4775837.html Accessed: 2016-05-16.

Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi Diagrams and
Delaunay Triangulations. World Scientific Publishing, 2013.

Pankaj K. Agarwal and Jiri Matousek. Dynamic half-space range reporting
and its applications. Algorithmica, 13(4):325-345, 1995.

Sunil Arya, David M. Mount, and Michiel H. M. Smid. Randomized and
deterministic algorithms for geometric spanners of small diameter. In Proc.
35th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages 703-712,
1994.

Christoph Ambiihl and Uli Wagner. The clique problem in intersection
graphs of ellipses and triangles. Theory Comput. Syst., 38(3):279-292, 2005.

105

 http://www.huffingtonpost.com/vala-afshar/50-incredible-wifi-tech-s_b_4775837.ht ml
 http://www.huffingtonpost.com/vala-afshar/50-incredible-wifi-tech-s_b_4775837.ht ml

106 1

Bibliography

[BBET14]

[BDD*12]

[BBK16]

[BCVKO08]

[BJOO]

[BJ02]

[BK98]

[Bou08]

[Car16]

[CC15]

[CCII0]

[CCT15)

Yves Brise, Kevin Buchin, Dustin Eversmann, Michael Hoffmann, and Wolf-
gang Mulzer. Interference minimization in asymmetric sensor networks. In
Proc. 10th Int. Symp. on Algorithms and Experiments for Sensor Systems,
Wireless Networks and Distributed Robotics (ALGOSENSORS), pages 136—
151, 2014.

Prosenjit Bose, Mirela Damian, Karim Douieb, Joseph O’Rourke, Ben Sea-
mone, Michiel H. M. Smid, and Stefanie Wuhrer. 7/2-angle Yao graphs are
spanners. Internat. J. Comput. Geom. Appl., 22(1):61-82, 2012.

Mark de Berg, Hans Bodlaender, and Sandor Kisfaludi-Bak. Connected
dominating set in unit-disk graphs is W[l]-hard. In Proc. 32nd European
Workshop on Comput. Geom. (EWCG), 2016.

Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars.
Computational Geometry: Algorithms and Applications. Springer-Verlag,
3rd edition, 2008.

Gerth Stglting Brodal and Riko Jacob. Dynamic planar convex hull with
optimal query time and O(logn -loglogn) update time. In Proc. 7th Scan-
dinavian Workshop on Algorithm Theory (SWAT), pages 5770, 2000.

Gerth Stelting Brodal and Riko Jacob. Dynamic planar convex hull. In
Proc. 48rd Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages 617—
626, 2002.

Heinz Breu and David G. Kirkpatrick. Unit disk graph recognition is NP-
hard. Comput. Geom., 9(1-2):3-24, 1998.

Azzedine Boukerche. Algorithms and Protocols for Wireless Sensor Net-
works. Wiley Series on Parallel and Distributed Computing). John Wiley
& Sons, 1st edition, 2008.

Paz Carmi. Excercise sheet for Geometric Spanners class, 2016.
http://www.cs.bgu.ac.il/~gs161/wiki.files/GeoSpann2106Assl.pdf
Accessed: 2016-03-09.

Paz Carmi and Lilach Chaitman-Yerushalmi. On the minimum cost range
assignment problem. In Proc. 26th Annu. Internat. Sympos. Algorithms
Comput. (ISAAC), pages 95-105, 2015.

Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk
graphs. Discrete Math., 86(1-3):165-177, 1990.

Paz Carmi, Lilach Chaitman-Yerushalmi, and Ohad Trabelsi. On the
bounded-hop range assignment problem. In Proc. 14th Algorithms and Data
Structures Symposium (WADS), pages 140-151, 2015.

http://www.cs.bgu.ac.il/~gs161/wiki.files/GeoSpann2106Ass1.pdf

Bibliography 1 107

[Cha01]

[Cha06]

[Chal0]

[Chel3]

[CHT0]

[CJ15]

[CK93]

[CK95a]

[CK95b)]

[CLRS09]

[CPR11]

[CPS04]

[CT15]

Timothy M. Chan. Dynamic planar convex hull operations in near-
logarithmic amortized time. J. ACM, 48(1):1-12, 2001.

Timothy M. Chan. A dynamic data structure for 3-D convex hulls and
2-D nearest neighbor queries. In Proc. 17th Annu. ACM-SIAM Sympos.
Discrete Algorithms (SODA), pages 1196-1202, 2006.

Timothy M. Chan. A dynamic data structure for 3-D convex hulls and 2-D
nearest neighbor queries. J. ACM, 57(3):Art. 16, 15, 2010.

Shiri Chechik. Compact routing schemes with improved stretch. In Proc.
32nd ACM Symp. on Principles of Distributed Computing (PODC), pages
33-41, 2013.

M. S. Chang, N. F. Huang, and C. Y. Tang. An optimal algorithm for con-
structing oriented Voronoi diagrams and geographic neighborhood graphs.
Inform. Process. Lett., 35(5):255-260, 1990.

Sergio Cabello and Miha Jej¢i¢. Shortest paths in intersection graphs of
unit disks. Comput. Geom., 48(4):360-367, 2015.

Paul B. Callahan and S. Rao Kosaraju. Faster algorithms for some geomet-
ric graph problems in higher dimensions. In Proc. 4th Annu. ACM-SIAM
Sympos. Discrete Algorithms (SODA), pages 291-300, 1993.

Paul B. Callahan and S. Rao Kosaraju. A decomposition of multidimen-
sional point sets with applications to k-nearest-neighbors and n-body po-
tential fields. J. ACM, 42(1):67-90, 1995.

Paul B. Callahan and S. Rao Kosaraju. Algorithms for dynamic closest
pair and n-body potential fields. In Proc. 6th Annu. ACM-SIAM Sympos.
Discrete Algorithms (SODA), pages 263-272, 1995.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, 3rd edition, 2009.

Timothy M. Chan, Mihai Patragcu, and Liam Roditty. Dynamic connectiv-
ity: connecting to networks and geometry. SIAM Journal on Computing,
40(2):333-349, 2011.

Andrea E. F. Clementi, Paolo Penna, and Riccardo Silvestri. On the power
assignment problem in radio networks. Mobile Networks and Applications
(MONET), 9(2):125-140, 2004.

Timothy M. Chan and Konstantinos A. Tsakalidis. Optimal deterministic
algorithms for 2-d and 3-d shallow cuttings. In Proc.81st Int. Sympos.
Comput. Geom. (SoCG), pages 719732, 2015.

1081

Bibliography

[CX00]

[DGNO7]

[Dji96]

[EIT+92]

[Epp95]

[Fed87]

[FGO1]

[FK12]

[FWZ04]

[GKR04]

[GS04]

[GZ05]

[HALTO1]

Danny Z. Chen and Jinhui Xu. Shortest path queries in planar graphs.
In F. Frances Yao and Eugene M. Luks, editors, Proc. 32nd Annu. ACM
Sympos. Theory Comput. (STOC), pages 469-478, 2000.

Gautam K. Das, Sasthi C. Ghosh, and Subhas C. Nandy. Improved algo-
rithm for minimum cost range assignment problem for linear radio networks.
Int. J. Found. Comput. Sci., 18(3):619-635, 2007.

Hristo N. Djidjev. Efficient algorithms for shortest path queries in pla-
nar digraphs. In Proc. 22nd International Workshop on Graph-Theoretic
Concepts in Computer Science (WG), pages 151-165, 1996.

David Eppstein, Giuseppe F. Italiano, Roberto Tamassia, Robert E. Tarjan,
Jeffery Westbrook, and Moti Yung. Maintenance of a minimum spanning
forest in a dynamic plane graph. J. Algorithms, 13(1):33-54, 1992.

David Eppstein. Dynamic Euclidean minimum spanning trees and extrema
of binary functions. Discrete Comput. Geom., 13:111-122, 1995.

Greg N. Federickson. Fast algorithms for shortest paths in planar graphs,
with applications. STAM Journal on Computing, 16(6):1004-1022, 1987.

Pierre Fraigniaud and Cyril Gavoille. Routing in trees. In Proc. 28th In-
ternat. Collog. Automata Lang. Program. (ICALP), pages 757772, 2001.

Martin Fiirer and Shiva Prasad Kasiviswanathan. Spanners for geometric
intersection graphs with applications. J. Comput. Geom., 3(1):31-64, 2012.

Martin Fussen, Roger Wattenhofer, and Aaron Zollinger. On interference
reduction in sensor networks. Technical Report Technical Report 453, ETH
Zurich, Department of Computer Science, 2004.

Anupam Gupta, Amit Kumar, and Rajeev Rastogi. Traveling with a Pez
dispenser (or, routing issues in MPLS). SIAM Journal on Computing,
34(2):453-474, 2004.

Silvia Giordano and Ivan Stojmenovic. Position based routing algorithms for
ad hoc networks: A taxonomy. In Ad Hoc Wireless Networking, volume 14
of Network Theory and Applications, pages 103—136. Springer-Verlag, 2004.

Jie Gao and Li Zhang. Well-separated pair decomposition for the unit-disk
graph metric and its applications. SIAM J. Comput., 35(1):151-169, 2005.

Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic
deterministic fully-dynamic algorithms for connectivity, minimum spanning
tree, 2-edge, and biconnectivity. J. ACM, 48(4):723-760, 2001.

Bibliography 1109

[HMO6]

[HP11]

[HR16]

[HRT14]

[HS95]

[TIIM85]

[Inc16]

[Jurl5]

[Kan15]

[Kir83]

[KKKP0O]

[KM12]

[KMR*16]

Sariel Har-Peled and Manor Mendel. Fast construction of nets in low-
dimensional metrics and their applications. SIAM J. Comput., 35(5):1148—
1184, 2006.

Sariel Har-Peled. Geometric Approximation Algorithms. American Mathe-
matical Society, 2011.

Tony Hoffmann and Laarn Almendrala Ragaza. The 10 best wireless print-
ers of 2016, 2016. http://www.pcmag.com/article2/0,2817,2379649,
00.asp Accessed: 2016-05-16.

Jacob Holm, Eva Rotenberg, and Mikkel Thorup. Planar reachability in
linear space and constant time. CoRR, arXiv:1411.5867, 2014.

M. L. Huson and A. Sen. Broadcast scheduling algorithms for radio net-
works. In IEEE Military Communications Conference (MILCOM), vol-
ume 2, pages 647-651, 1995.

Hiroshi Imai, Masao Iri, and Kazuo Murota. Voronoi diagram in the La-
guerre geometry and its applications. SIAM J. Comput., 14(1):93-105,
1985.

Brewie Inc. Brewie product description, 2016. http://www.brewie.org/
machine/ Accessed: 2016-05-16.

Nico Jurran. Android wear mit wlan-unterstiitzung und "handge-
lenkgesten", 2015. http://www.heise.de/newsticker/meldung/
Android-Wear-mit-WLAN-Unterstuetzung-und-Handgelenkgesten-
2614327 .html Accessed: 2016-05-16.

Axel Kannenberg. Ifa 2015: Vernetzte waschmaschine schlagt
waschmittelbestellung vor, 2015. http://www.heise.de/
newsticker/meldung/IFA-2015-Vernetzte-Waschmaschine-schlaegt-
Waschmittelbestellung-vor-2804947 .html Accessed: 2016-05-16.

D. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput.,
12(1):28-35, 1983.

Lefteris M. Kirousis, Evangelos Kranakis, Danny Krizanc, and Andrzej Pelc.
Power consumption in packet radio networks. Theoret. Comput. Sci., 243(1-
2):289-305, 2000.

Ross J. Kang and Tobias Miiller. Sphere and dot product representations
of graphs. Discrete Comput. Geom., 47(3):548-568, 2012.

Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha
Sharir. Dynamic planar Voronoi diagrams for general distance functions and
their algorithmic applications. Manuscript submitted to FOCS’16, 2016.

http://www.pcmag.com/article2/0,2817,2379649,00.asp
http://www.pcmag.com/article2/0,2817,2379649,00.asp
http://www.brewie.org/machine/
http://www.brewie.org/machine/
 http://www.heise.de/newsticker/meldung/Android-Wear-mit-WLAN-Unterstuetzung-und- Handgelenkgesten-2614327.html
 http://www.heise.de/newsticker/meldung/Android-Wear-mit-WLAN-Unterstuetzung-und- Handgelenkgesten-2614327.html
 http://www.heise.de/newsticker/meldung/Android-Wear-mit-WLAN-Unterstuetzung-und- Handgelenkgesten-2614327.html
 http://www.heise.de/newsticker/meldung/IFA-2015-Vernetzte-Waschmaschine-schlaegt -Waschmittelbestellung-vor-2804947.html
 http://www.heise.de/newsticker/meldung/IFA-2015-Vernetzte-Waschmaschine-schlaegt -Waschmittelbestellung-vor-2804947.html
 http://www.heise.de/newsticker/meldung/IFA-2015-Vernetzte-Waschmaschine-schlaegt -Waschmittelbestellung-vor-2804947.html

1101

Bibliography

[KMRS15]

[KMRS16a]

[KMRS16b]

[KTTO1]

[LM12]

[LT80]

[Mar06]

[Mat92]

[Mat14]

[Mehs4]

[Mul15]

[Niv10]

[NS07]

Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Spanners
and reachability oracles for directed transmission graphs. In Proc. 81st Int.
Sympos. Comput. Geom. (SoCG), pages 156170, 2015.

Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Dynamic
connectivity for unit disk graphs. In Proc. 32nd European Workshop on
Comput. Geom. (EWCG), 2016.

Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Routing
in unit disk graphs. In Proc. 12th Latin American Theoretical Informatics
Symposium (LATIN), pages 536-548, 2016.

Haim Kaplan, Robert E. Tarjan, and Kostas Tsioutsiouliklis. Faster kinetic
heaps and their use in broadcast scheduling (extended abstract). In Proc.
12th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pages 836—
844, 2001.

Maarten Loffler and Wolfgang Mulzer. Triangulating the square and squar-
ing the triangle: quadtrees and Delaunay triangulations are equivalent.
SIAM Journal on Computing, 41(4):941-974, 2012.

Richard J. Lipton and Robert Endre Tarjan. Applications of a planar sep-
arator theorem. SIAM J. Comput., 9(3):615-627, 1980.

Daéniel Marx. Parameterized complexity of independence and domination
on geometric graphs. In Proc. 2nd Int. Workshop on Parameterized and
Ezact Computation (IWPEC), pages 154-165, 2006.

Jiri Matousek. Reporting points in halfspaces. Comput. Geom., 2:169-186,
1992.

Jiri Matousek. Intersection graphs of segments and dR. CoRR,
abs/1406.2636, 2014.

Kurt Mehlhorn. Data Structures and Algorithms 8: Multi-dimensional
Searching and Computational Geometry, volume 3 of FATCS Monographs
on Theoretical Computer Science. Springer-Verlag, 1984.

Wolfgang Mulzer. Lecture notes on Chernoff-bounds, 2015. http://page.
mi.fu-berlin.de/mulzer/notes/misc/chernoff.pdf Accessed: 2016-05-
10.

Gabriel Nivasch. Improved bounds and new techniques for Davenport—
Schinzel sequences and their generalizations. J. ACM, 57(3), 2010.

Giri Narasimhan and Michiel H. M. Smid. Geometric spanner networks.
Cambridge University Press, 2007.

http://page.mi.fu-berlin.de/mulzer/notes/misc/chernoff.pdf
http://page.mi.fu-berlin.de/mulzer/notes/misc/chernoff.pdf

Bibliography 1111

[OVLS0]

[OvLS81]

[Pat11]

[Phil6]

[PR10]

[PS85)

[PUSY

[Ram99]

[RS11]

[RT15]

[SA96]

[Sch13]

[Shas5]

[SKS5]

Mark H. Overmars and Jan van Leeuwen. Dynamically maintaining config-
urations in the plane (detailed abstract). In Proc. 12th Annu. ACM Sympos.
Theory Comput. (STOC), pages 135-145, 1980.

Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in
the plane. J. Comput. System Sci., 23(2):166-204, 1981.

Mihai Patragcu. Unifying the landscape of cell-probe lower bounds. SIAM
Journal on Computing, 40(3):827-847, 2011.

Phillips. P6000 series Smart Ultra HDTV product description,
2016. http://www.usa.philips.com/c-p/55PFL6900_F7/6000-series-
smart-ultra-hdtv/specifications Accessed: 2016-05-16.

David Peleg and Liam Roditty. Localized spanner construction for ad hoc
networks with variable transmission range. ACM Transactions on Sensor
Networks (TOSN), 7(3), 2010.

Franco P. Preparata and Michael lan Shamos. Computational geometry. An
introduction. Springer-Verlag, 1985.

David Peleg and Eli Upfal. A trade-off between space and efficiency for
routing tables. J. ACM, 36(3):510-530, 1989.

Edgar A. Ramos. On range reporting, ray shooting and k-level construction.
In Proc. 15th Annu. Sympos. Comput. Geom. (SoCG), pages 390-399, 1999.

Liam Roditty and Michael Segal. On bounded leg shortest paths problems.
Algorithmica, 59(4):583-600, 2011.

Liam Roditty and Roei Tov. New routing techniques and their applications.
In Proc. 34th ACM Symp. on Principles of Distributed Computing (PODC),
pages 23-32, 2015.

Micha Sharir and Pankaj K. Agarwal. Davenport-Schinzel sequences and
their geometric applications. Cambridge University Press, 1996.

Ben Schwan. Multifunktionswaage mit wlan-anschluss, 2013.
http://www.heise.de/tr/artikel/Multifunktionswaage-mit-WLAN-
Anschluss-1952262.html Accessed: 2016-05-16.

Micha Sharir. Intersection and closest-pair problems for a set of planar
discs. SIAM J. Comput., 14(2):448-468, 1985.

Nicola Santoro and Ramez Khatib. Labelling and implicit routing in net-
works. Comput. J., 28(1):5-8, 1985.

 http://www.usa.philips.com/c-p/55PFL6900_F7/6000-series-smart-ultra-hdtv/specifi cations
 http://www.usa.philips.com/c-p/55PFL6900_F7/6000-series-smart-ultra-hdtv/specifi cations
 http://www.heise.de/tr/artikel/Multifunktionswaage-mit-WLAN-Anschluss-1952262.ht ml
 http://www.heise.de/tr/artikel/Multifunktionswaage-mit-WLAN-Anschluss-1952262.ht ml

1121 Bibliography

[Son15] Sony. Playstation 4 product description, 2015. http://www.sony.de/
electronics/playstation-systeme/playstation-4/specifications
Accessed: 2016-05-16.

[Sto05] Ivan Stojmenovic. Handbook of sensor networks: Algorithms and architec-
tures, volume 49. John Wiley & Sons, 2005.

[Tho04] Mikkel Thorup. Compact oracles for reachability and approximate distances
in planar digraphs. J. ACM, 51(6):993-1024, 2004.

[TZ01] Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proc. 13th
ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages 1-10,
2001.

[Wil16] Andreas Wilkens. Ces 2016: Samsung macht kAijhlschrank zum digitalen
schwarzen brett, 2016. http://www.heise.de/newsticker/meldung/CES-
2016-Samsung-macht-Kuehlschrank-zum-digitalen-Schwarzen-
Brett-3063778.html Accessed: 2016-05-16.

[Yao82] Andrew Chi-Chih Yao. On constructing minimum spanning trees in k-
dimensional spaces and related problems. STAM J. Comput., 11(4):721-736,
1982.

[YXD12] Chenyu Yan, Yang Xiang, and Feodor F. Dragan. Compact and low delay

routing labeling scheme for unit disk graphs. Comput. Geom., 45(7):305—
325, 2012.

 http://www.sony.de/electronics/playstation-systeme/playstation-4/specifications
 http://www.sony.de/electronics/playstation-systeme/playstation-4/specifications
 http://www.heise.de/newsticker/meldung/CES-2016-Samsung-macht-Kuehlschrank-zum-d igitalen-Schwarzen-Brett-3063778.html
 http://www.heise.de/newsticker/meldung/CES-2016-Samsung-macht-Kuehlschrank-zum-d igitalen-Schwarzen-Brett-3063778.html
 http://www.heise.de/newsticker/meldung/CES-2016-Samsung-macht-Kuehlschrank-zum-d igitalen-Schwarzen-Brett-3063778.html

Zusammenfassung

Sei P C R? eine Menge von n Punkten. Der Unit Disk Graph von P, UD(P), hat P als
Knotenmenge. Zwei Knoten p, q bilden eine Kante in UD(P) genau dann, wenn p und q
euklidischen Abstand [pq| < 1 haben. Eine Verallgemeinerung von Unit Disk Graphen
sind Transmissionsgraphen. Jeder Punkt p € P hat einen Radius 1y, und wir betrachten
einen gerichteten Graphen G mit Knotenmenge P. Es existiert eine gerichtete Kante pq
in G genau dann, wenn [pq| < 1p, also wenn ¢ im Kreis um p mit Radius rp liegt. Wir
studieren die folgenden Probleme fiir Unit Disk und Transmissionsgraphen.

Dynamischer Zusammenhang. Wir beschreiben eine Datenstruktur zum Verwalten der
Zusammenhangskomponenten eines Unit Disk Graphen UD(P) wenn Punkte in P einge-
fligt oder geldscht werden kénnen. Die Datenstruktur kann zu jedem Zeitpunkt Zusam-
menhangsanfragen beantworten: Gegeben zwei Anfragepunkte p,q € P, existiert ein
Pfad von p zu q in UD(P)? Alle Operationen benotigen O(polylog(n)) Zeit.

Routing. Wir zeigen, dass es moglich ist, Datenpakete durch einen Unit Disk Graphen zu
routen, indem in jedem Schritt der aktuelle Knoten lokal bestimmt, zu welchem seiner
Nachbarn er das Paket weiter sendet. Das Routingschema besitzt dazu eine Menge
von lokalen Informationen an jedem Knoten (Routingtabellen), ein Bezeichner an jedem
Knoten, und einen verdnderlichen Vorspann im Datenpaket. Die bendétigte Grofle ist
jeweils O(polylog(n)). Wir zeigen, dass ein Datenpaket zwischen beliebigen Knoten p
und g in UD(P) geroutet werden kann und es dabei einem approximativ kiirzesten Pfad
von p nach q folgt.

Spanngraphen. Transmissionsgraphen kénnen eine quadratische Anzahl an Kanten be-
sitzen. Wir zeigen, dass wir zu jedem Transmissionsgraphen G einen aufspannenden
Teilgraphen H C G finden kénnen, der nur eine lineare Anzahl von Kanten besitzt und
gleichzeitig die kiirzesten Pfade zwischen allen Paaren von Knoten in G approximiert.
Der Teilgraph H wird als Spanngraph bezeichnet. Unser Algorithmus berechnet einen
Spanngraph in Zeit O(n polylog(n)), wenn G als Punktmenge mit Radien gegeben ist.

Erreichbarkeitsorakel. Wir beschreiben drei Datenstrukturen, die Erreichbarkeitsanfra-
gen in einem Transmissionsgraphen G beantworten konnen: gegeben zwei Anfragepunkte
P, q € P, existiert ein gerichteter Pfad von p zu q in G? Wir bezeichnen solche Daten-
strukturen als Erreichbarkeitsorakel. Unsere Orakel hingen von dem Verhéltnis ¥ des
groBten und des kleinsten Radius von Punkten in P ab. Wenn W < /3 ist, dann kon-
nen wir ein Orakel mit O(1) Anfragezeit und O(n) Platz konstruieren. Fiir groflere
Y présentieren wir ein Orakel mit Anfragezeit O(W3,/n) und Platzbedarf O(W3n3/2).
Unser letztes Orakel hat nur noch logarithmische Abhédngigkeit von W. Die Anfragezeit
ist O(n%/31og!/? W1og?/3 n) und der Platzbedarf O(n®/3(log¥+logn)log!/? Wlog?/3 n).

113

	Introduction
	Modeling Sensor Networks
	The Problems Considered
	Further Problems on Disk Intersection Graphs
	Results and Organization of the Thesis

	Preliminaries
	Notation and Planar Grids
	Well Separated Pair Decompositions
	The WSPD Spanner
	WSPDs for General Metric Spaces

	Dynamic Lower Envelopes
	The Planar Case
	Dynamic Lower Envelopes in 3-space

	Unit Disk Graphs
	Dynamic Unit Disk Graph Connectivity
	Our Results
	The Data Structure for Unit Disks
	The Grid Graph (new .).
	Maintaining the Adjacency Lists of ((new .).
	Dynamically Maintaining an MBM (new .).

	Improving the Update Time by Using a Planar Graph
	Extension to Disk Graphs
	Conclusion

	Routing in Unit Disk Graphs
	The Routing Model and Our Results
	The Well-Separated Pair Decomposition for
	Further Properties of the WSPD for .
	The Routing Scheme
	Preprocessing
	Routing a Packet
	Analysis of the Routing Scheme

	Extension to Arbitrary Density
	Conclusion

	Transmission Graphs
	Spanners for Transmission and Disk Graphs
	Our Results
	Spanner Constructions for Transmission Graphs
	Efficient Spanner Construction for Sites with Bounded Spread
	From Bounded Spread to Bounded Radius Ratio
	Spanners for Unbounded Spread and Radius Ratio

	Spanners for Disk Graphs
	Constructing the Spanner
	Efficient Construction

	Applications
	From Spanners to BFS Trees
	Geometric Reachability Oracles

	Conclusion

	Reachability Oracles for Transmission Graphs
	Our Results
	 is less than
	Obtaining a Sparse Graph
	Making Planar
	Putting it Together

	Polynomial Dependence on
	Logarithmic Dependence on
	Conclusion

	Parting Thoughts
	Bibliography
	Zusammenfassung

