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Summary 
 

In the definition this dissertation adheres to, brain plasticity denotes the brain’s capacity to 

undergo adaptive changes in its structure and function in response to demands posed externally, 

in contexts of learning and skill acquisition. From early on, musicians have been a favored 

group in studying the effects of intensive training on the brain’s structure and function, using 

Magnetic Resonance Imaging (MRI). The yearlong intensive training musicians undergo puts 

great demands not only on sensory and motor systems and their integration, but also on higher-

order cognitive processing systems. Conceptual and methodological enrichment from the field 

of network neuroscience have offered a view of the brain as a complex system of interacting 

elements. According to this view, plastic changes occurring with training and facilitating 

expertise-like behavior can be associated with changes in functional networks’ properties and 

aspects of network organization.  

 In this context, the present dissertation aims at systematically investigating 

manifestations of experience-dependent plasticity in the auditory domain, resulting from 

intensive musical training, utilizing analytical tools from network neuroscience. The 

dissertation is based on data acquired in the course of a longitudinal study investigating 

structural and functional changes in the auditory domain due to music training. A group of 

aspiring professional musicians, attending preparatory courses for entrance exams at 

universities of arts, and a group of amateur musicians, actively practicing in their everyday life, 

completed up to 5 behavioral and neuroimaging assessments in the course of one year. The 

dissertation consists of three studies addressing cross-sectional and longitudinal aspects of 

functional plastic differences and changes, respectively, ranging from a specific auditory 

process over unconstrained music listening to longitudinal changes in functional organization.  

 In the first study, I examined differences in the functional organization of a network of 

brain regions facilitating interval recognition, between the group of aspiring professional 

musicians and amateur ones. Aspiring professionals had overall higher connectivity and global 

efficiency, a graph measure of information transmission efficacy, among the network regions. 

In addition, these metrics correlated with performance in separately assessed tests of interval 

identification. In the second study, I examined whole-brain connectivity configurations during 

listening to two music pieces, examining how these configurations reflect different processing 

demands and how they are expressed in the two groups that differ in expertise. Listening to the 

piece posing higher processing demands was related for all participants with a more integrated 
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and interconnected network configuration, reflecting the brain's adaptation to processing 

demands. In addition, the group of aspiring professional musicians exhibited higher global 

efficiency in the more challenging listening condition and flexibly utilized music-related 

processing brain regions, in response to the demands of each listening condition. In the third 

study, I assessed the effects of music training longitudinally, examining the functional changes 

occurring over time in a core region of auditory processing, the left planum polare. While this 

region was undergoing reductions in grey matter volume, its functional connectivity to other 

musically relevant regions increased. This increase in connectivity was also reflected in 

network metrics of local and global integration. 

Overall, with these three studies, I aimed to uncover effects of musical training and 

expertise in functional organization, using connectivity measures and analytical tools from 

network neuroscience. In addition, I aimed to examine changes in functional organization over 

time taking place in parallel with changes in grey matter morphology. I conclude that the joint 

examination of functional and structural changes in the course of skill acquisition can lead to a 

better and more nuanced understanding of human brain plasticity.  
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Zusammenfassung 
 

Gemäß der in der vorliegenden Dissertation verwandten Definition bezeichnet 

Plastizität des Gehirns die Eigenschaft des Gehirns, seine Struktur und Funktion als Reaktion 

auf externe Anforderungen im Zusammenhang mit dem Erwerb von Fertigkeiten zu verändern. 

Musiker waren schon früh eine bevorzugte Gruppe bei der Untersuchung der Auswirkungen 

des Fertigkeitserwerbs auf die Struktur und Funktion des Gehirns mit Hilfe der 

Magnetresonanztomographie (MRT). Das jahrelange intensive Training, dem sich Musiker 

unterziehen, stellt hohe Anforderungen nicht nur an die sensorischen und motorischen Systeme 

und deren Integration, sondern auch an kognitive Verarbeitungssysteme höherer Ordnung. 

Begriffliche und methodologische Entwicklungen der Netzwerk-Neurowissenschaften haben 

ein besseres Verständnis des Gehirns als komplexes System interagierender Elemente 

ermöglicht. Demnach sind plastische Veränderungen, die durch Training hervorgerufen werden 

und Verhalten auf Expertenniveau ermöglichen, mit Veränderungen in der 

Netzwerkorganisation assoziiert.  

 In Rahmen dieser Überlegungen zielt diese Dissertation darauf ab, Manifestationen 

erfahrungsabhängiger Plastizität im auditorischen Bereich, die sich aus intensivem 

Musiktraining ergeben, mit Hilfe der Nutzung analytischer Werkzeuge der Netzwerk-

Neurowissenschaften systematisch zu untersuchen. Die Dissertation basiert auf Daten, die im 

Rahmen einer Studie gewonnen wurden, in der trainingsbedingte strukturelle und funktionelle 

Veränderungen im auditorischen Bereich untersucht wurden. Eine Gruppe von angehenden 

Berufsmusikern, die an Vorbereitungskursen für Aufnahmeprüfungen an Kunsthochschulen 

teilnahmen, und eine Gruppe von Amateurmusikern, die aktiv in ihrem Alltag übten, 

absolvierten im Laufe eines Jahres bis zu fünf Verhaltens- und MRT-Untersuchungen. Die 

Dissertation besteht aus drei Projekten, die sich mit Querschnitts- und Längsschnittaspekten 

funktioneller plastischer Unterschiede und Veränderungen befassen, ausgehend vom 

experimentell stark kontrollierten Kontext eines spezifischen Hörprozesses über freies 

Musikhören bis hin zu längsschnittlichen Veränderungen in der funktionellen Organisation.  

 Im ersten Projekt untersuchte ich die Unterschiede zwischen einer Gruppe von 

angehenden Berufsmusikern und Amateurmusikern in der funktionellen Organisation eines 

Netzwerks von Hirnregionen, die die Intervallerkennung erleichtern. Die angehenden 

Profimusiker wiesen insgesamt ein höheres Ausmaß an Konnektivität und globaler Effizienz 

auf; letztere gilt als Maß für der Übertragungseffizienz zwischen Netzwerkregionen. Beide 

Maße korrelierten mit der Leistung in separat erfassten Tests der Intervallidentifikation. Im 

zweiten Projekt untersuchte ich die Konnektivitätskonfigurationen weiter Teile des Gehirns 
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während des Hörens von zwei Musikstücken. Ich nahm an, dass die beiden Stücke verschiedene 

Höranforderungen stellen, die mit dem unterschiedlichen Fachwissen der beiden Gruppen 

interagieren sollten. Das Anhören des vermeintlich verarbeitungsintensiveren Stücks war bei 

allen Teilnehmern mit einer stärker integrierten und vernetzten Konnektivitätskonfiguration 

verbunden, die als Anpassung des Gehirns an erhöhte Verarbeitungsanforderungen gedeutet 

werden kann. Darüber hinaus zeigte die Gruppe der angehenden Berufsmusiker in der 

anspruchsvolleren Hörbedingung eine höhere globale Effizienz und nutzte musikbezogene 

Hirnregionen in Abhängigkeit von den Anforderungen der jeweiligen Hörbedingung. Im dritten 

Projekt untersuchte ich längsschnittlich die funktionellen und strukturellen Auswirkungen des 

Musiktrainings auf das linke planum polare, einer Kernregion der Hörverarbeitung. Während 

sich das Volumen der grauen Substanz in dieser Region verringerte, nahm die funktionelle 

Konnektivität zu anderen musikalisch relevanten Regionen zu. Dieser Anstieg der 

Konnektivität spiegelte sich auch in den Netzwerkmetriken der lokalen und globalen 

Integration wider. 

Das forschungsleitende Ziel meiner Dissertation bestand darin, die Auswirkungen von 

musikalischem Training und musikalischer Expertise auf die funktionelle Organisation des 

Gehirns näher zu untersuchen. Hierzu nutzte ich Konnektivitätsmaße und Analysewerkzeuge 

der Netzwerkneurowissenschaften. Darüber hinaus identifizierte ich trainingsinduzierte 

längsschnittliche Veränderungen in der funktionellen Organisation musikrelevanter Teile des 

Gehirns, die gemeinsam mit Veränderungen in der Morphologie der grauen Substanz auftraten. 

Die Ergebnisse meiner Dissertation belegen den wissenschaftlichen Ertrag der gemeinsamen 

Untersuchung funktioneller und struktureller Korrelate des Fertigkeitserwerbs für das 

Verständnis der Plastizität des menschlichen Gehirns. 
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1 Introductory remarks on brain plasticity 
 
 The term brain plasticity vaguely denoting any sort of alterations on the neural level 

associated with behavioral modifications, as a result of development, maturation, learning, or 

compensatory processes, has a long history spanning more than a century1. In the approximately 

150 years of the use of the term with this meaning, it has been linked with numerous scientific 

findings and scientists, witch its content being progressively enriched and specialized. An 

exhaustive historical review is beyond the scope of this section, albeit a brief history of uses of 

the term in description of observations of brain-behavior interplay offers an insightful 

perspective on the formation of the term in its current use and a display of adjacent terms and 

notions associated with it. 

 Presumably one of the first to use the term plasticity to describe a relationship between 

the brain with learning and behavior, was the philosopher and psychologist William James in 

Principles of Psychology (1890). He used the term to refer to the formation of new paths in the 

brain and modification of existing ones, in a process facilitating behavior, while he also 

speculated that formation of functional associations between neural elements arises when they 

are simultaneously active. Soon after, Santiago Ramon y Cajal speculated that learning requires 

formation of new connections between neurons and proposed neuronal activity as a substrate 

of mental activity (Ramón y Cajal, 1893, 1894b, 1895). About the same time, Italian 

neuropsychiatrist Eugenio Tanzi in 1893, 4 years before the term synapse was coined and its 

function as facilitating transmission between neurons was established by C.S Sherrington 

(Sherrington, 1897), hypothesized that a mechanism, analogous to what we now know as 

synaptic transmission, facilitates learning through repetitious activity of neuronal paths during 

practice (Tanzi, 1893). His student, Ernesto Lugaro deepened and enriched his work with an 

insight of the chemical nature of synaptic transmission and emphasized deeper Tanzi’s 

perspective in relating plasticity to synaptic modifiability (Lugaro, 1898, 1906). Clearly, 

already in its early uses the term appears in joint contexts with concepts of change, modifiability 

and functional associations.  

 Following criticism on such a synaptic theory of learning and prevalence of opposing 

scientific perspectives in the next decades, research on plasticity, as defined above, resurfaced, 

with a meaning of neural modifiability underlying learning, in the 1940s. The neurophysiologist 

 
1 Notions of corporeal malleability in relation to environmental factors and behavior are not a product of 
modernity, but can be traced back to the humoralist conception of the body and its relation to its environment, 
including nutrition and climate, as well as its relation to an individual’s temperament and mental activity (for 
a review see Meloni, 2018). 
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Jerzy Konorksi in 1948 highlighted reactivity and plasticity as properties of the central nervous 

system and introduced a morphological concept of plasticity, whereby plasticity is associated 

with the formation and multiplication of synaptic junctions between two neural cells (Konorski, 

1948). A year later (1949), the psychologist Donald O. Hebb suggested that strength and 

effectiveness of a specific synapse might change as a result of neuronal activity, named ever 

since ‘Hebbian synapses’ and ‘Hebbian plasticity’, whereby simultaneously neuronal firing 

leads to functional association (Hebb, 1949). A few decades later, the neurophysiologist Jacque 

Paillard, in 1976, postulated how both functional and structural changes deserve the term 

plasticity only in a context where the system achieves a novel function by transforming its 

connectivity or changing its elements (Paillard, 1976).  

In the course of these decades, invasive animal lesion and deprivation studies examined 

plasticity manifestations within critical periods, time windows during which the brain is more 

susceptible to change as it is undergoing maturational modifications in its structure and function 

(Hensch, 2004; Hubel & Wiesel, 1970; Lorenz, 1935). In a paradigm shifting manner, plasticity 

became a topic of research beyond critical periods, in adulthood, again in experimental 

paradigms of lesion and sensory deprivation studies. Exemplary findings of these studies 

include changes in receptive fields and retinotopic organization following lesions in the visual 

cortex (Gilbert et al., 1990; Gilbert & Wiesel, 1992; J H Kaas et al., 1990), alterations in 

tonotopic representations of the auditory cortex (Robertson and Irvine, 1989) and cortical map 

expansion of the somatosensory cortex (Merzenich et al., 1984). Some of the first studies to 

explore effects of exposure to enriched or isolated environments and training found changes in 

dendritic branching, in the number of synapses per neuron and in dendritic length in the adult 

(Greenough et al., 1979), middle-aged (Black et al., 1990; Green et al., 1983), and aged rats 

(Greenough et al., 1986). Such studies paved the way to new conceptualizations of changes in 

brain circuitry occurring throughout the lifespan and motivated studies of human adult 

plasticity. 

 Coming to the present and the specific framework of the term that this dissertation 

adheres to, brain plasticity is constrained to experience-dependent plasticity, denoting any sort 

of changes in brain structure and function arising as an adaptive response in contexts of 

increased environmental demands (Lövdén, Bäckman, et al., 2010). This kind of plasticity is to 

be distinguished from the type of experience-expectant plasticity, tied closely to the brain’s 

developmental timelines, consisting of critical periods for maturation and fine-tuning of sensory 

and cognitive subsystems. It is also to be distinguished from plasticity describing any sort of 

adjustive and compensatory modifications taking place in the aftermath of brain injury and loss 
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of functionality. Within this framework, plasticity is triggered by a prolonged discrepancy 

between the currently available structural and functional repertoire of the brain and the demands 

posed externally, which cannot be met only by flexible adaptations of the current resources 

(Lövdén et al., 2010)2. In human studies, such environmental demands include skill acquisition 

and learning experiences, in the sense that these experiences probe either modifications of 

existing states and representations or emergence of new states and presentations, coding aspects 

of newly acquired knowledge and skills (Lindenberger & Lövdén, 2019; Lövdén et al., 2020). 

Within the corpus of relevant literature, the term is in discourse with notions of stability and 

flexibility. The former denotes any sort of limitations to perpetual changes that would exhaust 

resources and potentially hinder the stabilization of acquired skills and learning. The latter 

denotes broadly the capacity to use existing functional repertoire in order to respond to the 

demands posed.  

 

 
2 For the sake of precision, there is a difference between plasticity manifestations as actualizations of the 
potential that the brain has to undergo such changes, and brain plasticity, denoting the potential as such (Wenger, 
Brozzoli, et al., 2017). 
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2 Theoretical, empirical and methodological foundations 
 
2.1 Experience-dependent plasticity in humans 
 
 In humans, experience-dependent plasticity has been intensely researched in vivo, 

allowed by advances in magnetic resonance imaging (MRI), with image acquisition parameters 

exploiting the different magnetic properties of brain tissues, and by the development of 

sophisticated analysis tools. Although essential in uncovering plastic changes on the macroscale 

of brain structure and function non-invasively, they offer neither a direct estimation of the 

fundamental changes in molecular and cellular mechanisms underlying the observed changes 

on the macroscale nor information regarding the time-course and duration of their occurrence 

(Tardif et al., 2016; Weiskopf et al., 2021) 3. Evidence for a multitude of different cellular and 

molecular mechanisms that presumably underlie the macro-changes observed in humans with 

MRI, has been accumulated mainly from animal studies (Sampaio-Baptista & Johansen-Berg, 

2017; Schaefer et al., 2017). 

The structural and functional correlates of experience-dependent plasticity in the brain 

have been investigated mainly following two approaches in study designs, which capture 

different aspects of the phenomenon. One approach includes cross-sectional study designs, 

where a group considered highly trained or expert4 in a domain is compared to a control group, 

and long-lasting alterations in brain structure and function presumably resulting from intensive 

training are examined. The second approach includes longitudinal studies, where an 

experimental group undergoes some kind of training, the effects of which on brain structure 

and function are then assessed. Both approaches are restricted by inherent design limitations 

which call for cautious interpretations and inference. Cross-sectional study designs do not 

account for predispositions in brain structure and function, offer correlational evidence and are 

not informative about the trajectories of observed changes (Olszewska et al., 2021). 

Longitudinal studies, bounded inherently by the high costs of their administration, are often 

restricted by their data acquisition frequency scheme. This imposes specific assumptions on the 

time courses of expected plasticity manifestations, which even among investigations of 

 
3 Recently, further advances in MRI, specifically quantitative MRI, where parameters used in image acquisition 
have with particular sensitivity on specific tissue properties or molecule concentration, promise to shed more light 
on the underlying mechanisms (Tardif et al., 2016; Weiskopf et al., 2021), a topic that will be discussed further in 
the overall discussion (section 7.2). 
4 The construction of the notion of the expert is of great interest. Etymologically from the latin word experiri, 
meaning to try; experitus, as in tried, proven, known by experience, and the ancient Greek εκ/εξ + πείρα broadly 
meaning from within + experience is rooted in the development of mastery in a skill through accumulated 
experience. For a brief history of psychological and neuroscientific research on defining characteristics of expertise 
see Skovholt et al., 2016). 
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plasticity within the same domain, allow for contradictory observations, as for example both 

increases and decreases in regional estimates of grey matter volume (Criscuolo et al., 2022; 

Wenger, Brozzoli, et al., 2017). 

Although I do not aim for an exhaustive review of studies in the field, in the next few 

paragraphs I will briefly review studies investigating experience-dependent plasticity in 

different domains. This will serve as a general framework for the emergence of open questions 

and for laying the ground for the projects presented in the following chapters.  

Changes in grey matter 

 Structural MRI, mostly by acquisition of T1-weighted images, is commonly used for 

assessment of grey matter morphology aided by computational anatomy tools like Voxel-

Based-Morphometry (VBM) (Ashburner & Friston, 2005; Wright et al., 1995). This way, 

changes in grey matter volume, density and cortical thickness are estimated. Candidate cellular 

contributors to observed changes in grey matter morphology include changes in the excitatory-

inhibitory balance of local circuits induced for example by neuromodulatory systems and their 

interactions (Carcea & Froemke, 2013; Froemke & Schreiner, 2015), dendritic spines growth, 

changes in dendritic length, branching and number of dendritic spines per neuron, 

morphological modifications of non-neuronal glial cells and capillaries and gliogenesis 

(Galván, 2010; Schaefer et al., 2017; Robert J. Zatorre, Fields, et al., 2012). 

 Studies using cross-sectional designs and examining differences in grey matter between 

professionals or experts in a variety of fields and control individuals, have demonstrated 

alterations in grey matter structures in brain regions related to the domain under examination. 

Such alterations are manifested both as increases in metrics used, for example in grey matter 

volume in London taxi drivers (Maguire et al., 2006), in professional typists (Cannonieri et al., 

2007), and in professional handball players (Hänggi et al., 2015), as well as decreases, like in 

professional chess players and chess masters (Duan et al., 2012; Hänggi et al., 2014; Ouellette 

et al., 2020) and in professional simultaneous interpreters (Elmer et al., 2014), to name a few.  

Longitudinal studies attempting to provide more conclusive proof that observed changes 

can be allocated to a specific training paradigm, have followed specific groups in naturalistic 

conditions undergoing intensive learning in their everyday lives. For example, significant 

increases in grey matter structures were observed for medical students preparing for exams 

(Draganski et al., 2006) and increases in cortical thickness in conscript interpreters following 

three months of intense language learning (Mårtensson et al., 2012). In more controlled 

approaches, a variety of studies have utilized training regimes of various durations and 

intensities to probe plastic changes in the adult brain. Changes in grey matter metrics of volume, 
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thickness, density and cortical surface in training targeted brain regions have been observed 

following acquisition of foreign vocabulary (Bellander et al., 2016), spatial orientation (Lövdén 

et al., 2012; Wenger et al., 2012), video game training (Kühn et al., 2014), learning to juggle 

(Boyke et al., 2008; Draganski et al., 2004; Scholz et al., 2009), mirror-reading (Ilg et al., 2008), 

motor training (Hamzei et al., 2012) and complex whole-body balancing training (Taubert et 

al., 2010). 

Changes in white matter 

Diffusion weighted imaging (DWI), sensitive to self-diffusion of water molecules in tissues, 

has advanced the analysis of white matter anatomical features. By fitting tensor models, 

parameters can be extracted that quantify the directional dependence of water diffusion. Such 

parameters include fractional anisotropy (FA), reflecting the directional dependence of water, 

and mean diffusivity (MD), which estimates the average diffusion across all directions. These 

parameters are modulated by several features of white matter microstructure (Sampaio-Baptista 

& Johansen-Berg, 2017) and usually higher values of FA and lower values of MD are associated 

with higher levels of organization of white matter structures and increased myelin or increased 

packing density of a fiber bundle (Olszewska et al., 2021)5. Furthermore, direction of fiber 

tracts can be estimated, using tractography, tracing the pathways of fiber bundles, based on 

parameters of principal diffusion direction, corresponding to the underlying fiber direction. In 

white matter, candidate cellular mechanisms contributing to observed changes in white matter, 

include changes in axon number, diameter, sprouting, branching and packing density, changes 

in internode length, in myelination, as well as changes in astrocytes’ and oligodendrocytes’ 

morphology or number (Sampaio-Baptista & Johansen-Berg, 2017; Zatorre, Fields, et al., 

2012).  

 In cross-sectional studies, differences in white matter volume, fractional anisotropy, 

axial and mean diffusivity have been reported amongst others, in ballet dancers in areas 

underlying premotor cortex (Hänggi et al., 2010), in the cortico-spinal white matter pathway in 

handball players (Hänggi et al., 2015) and in the superior longitudinal fasciculus in chess 

players (Hänggi et al., 2014), compared with control populations. In longitudinal studies, 

increases in fractional anisotropy and decreases in mean diffusivity in training relevant white 

matter structures have been reported following a 2-months working memory training (H. 

Takeuchi et al., 2010), visual perceptual learning (Yotsumoto et al., 2008), spatial learning 

 
5 Although diffusion tensor models have been extensively used, this approach has received criticism in the last 
years, as parameters extracted are not fiber-specific and thus do not distinguish among individual fibers in voxel-
wise metrics. This is particularly important considering manifestations of complex multi-fibers geometry, like 
crossing-fibers (Raffelt et al., 2017). Newer approaches developed use “fixels” representing specific fiber 
bundles within a voxel (Raffelt et al., 2017). 
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(Hofstetter et al., 2013), learning to juggle (Scholz et al., 2009) and cognitive training in 

domains of episodic and working memory and perceptual speed (Lövdén, Bodammer, et al., 

2010), to name a few. Changes in the opposite direction have also been reported, for example, 

decreases in fractional anisotropy in frontal and parietal regions while training a whole-body 

balancing task (Taubert et al., 2010). 

Changes in function 

Apart from experience-dependent plasticity manifestations in grey and white matter 

structures, effects of expertise, learning and skill acquisition are also evident in functional 

activation and measures of functional connectivity, namely statistical dependences of the time-

courses of neuronal assemblies or brain regions. Functional MRI (fMRI) acquisition protocols 

rely on the blood oxygen level dependent (BOLD) signal, a metabolic measure of neuronal 

activity, during task execution and in resting state, meaning in the absence of any external 

stimulation. 

In cross-sectional studies, enhanced activation and connectivity is often reported, as for 

example in experts in mathematics in frontoparietal and frontostriatal connections (Jeon & 

Friederici, 2017) and in chess masters compared to novices in various cortical and subcortical 

brain regions (Duan et al., 2012; Liang et al., 2022). In longitudinal studies following groups 

undergoing training in their daily lives, increases in activity and connectivity of training 

relevant areas have been reported for doctors under training to perform endoscopy (Karabanov 

et al., 2019) and changes in functional responses in a cohort undergoing training to be 

simultaneous interpreters (Hervais-Adelman et al., 2015).  

Increases in functional activation and connectivity among regions or networks of brain 

regions have been reported based on task-fMRI and resting state fMRI acquisitions, following 

trainings of different durations in various domain, like shape-identification visual training 

(Lewis et al., 2009), bimanual skill learning (Irmen et al., 2020), auditory working memory 

training (Takeuchi et al., 2013) and training balancing tasks (Taubert et al., 2011), to name a 

few. Further, there are interesting findings regarding the time-courses of occurrence of such 

changes in activation and connectivity, as increases in early stages of learning have been 

followed by decreases in subsequent stages while performance remains enhanced. Such 

findings have been reported in relation to visual texture discrimination training (Yotsumoto et 

al., 2008), to sequential finger movement motor training (Ma et al., 2010), memory updating 

training (Kühn et al., 2013) and skillful tool manipulation training (Yoo et al., 2013), among 

others. Observed are also changes in the connectivity profiles of regions and networks, where 

while connectivity with some regions or networks increases, it decreases with others, as it has 
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been reported in studies of visuospatial and auditory working memory (Jolles et al., 2013; 

Takeuchi et al., 2013).  

The studies mentioned in this section, span investigations of sensory, motor and 

cognitive domains and employ a wide variety of experimental designs and conceptual and 

methodological approaches. This brief overview, apart from acting as an initial orientation in 

the field of experience-dependent plasticity, has hopefully also featured crucial open questions 

that emerge when a synthesis of such findings is attempted. 

 

2.2 Auditory plasticity and the particular case of musicians 
 
 The particular focus of this dissertation evolves around the modulatory effects of 

musical training and musical competence on brain structure and function. Already quite early 

in the field, musicians have been intensively recruited for studying experience-dependent 

plasticity (Jäncke, 2009). Learning and performing music in a high level of competence 

assumes a complex set of skills developed sequentially and in parallel over the course of many 

years, often starting at a young age. Such skills include a fine-tuned auditory perceptual system, 

control and execution of fine movements, learning and memorizing auditory and motor 

sequences, sensorimotor synchronization, translating musical notation to action and conveying 

emotions with sound during performance (Reybrouck et al., 2018), to name a few. Musicians 

are further considered highly competent in generating expectations based on previous 

knowledge or from extraction of statistical regularities in musical contexts, detecting violations 

and efficiently updating their expectations (Vuust et al., 2022). On the brain level this entails 

that correlates of musical expertise are not to be expected only in the sensory and motor cortices 

but to extend to higher-order cognitive processing brain regions and regions of cross-modal 

integration (Jancke, 2016). Furthermore, correlates of musical expertise are to be investigated 

in the integration of all those subsystems, in the complex array of communications among them, 

including feedforward and feedback connections (Zatorre et al., 2007).  

In an attempt to outline the breadth of regions and networks involved in music-related 

processing and where neural substrates of expertise can be located, the starting point is 

necessarily the auditory cortex. The primary auditory cortex lies within the Heschl’s gyrus in 

the posterior part of the superior temporal gyrus (STG) and can be further divided into a central 

core region surrounded by a belt and a parabelt region (McDermott & Oxenham, 2008). In the 

primary auditory cortex acoustic features are transformed into percepts, like pitch, and 

secondary cortices receive projections from the primary auditory cortex. The organization of 

the auditory system is considered hierarchical in the sense that as the complexity of processing 
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increases, the further anteriorly or posteriorly from the primary auditory cortex it is located 

(Zatorre et al., 2007). For example, processing of pitch height and chroma take place adjacently 

from the primary auditory cortex, in planum polare and temporale, while processing of 

intervallic relationships and melodic contour extends further to both posterior and anterior areas 

of the supratemporal cortex bilaterally (Liégeois-Chauvel et al., 1998; Patterson et al., 2002; 

Peretz & Zatorre, 2005). Aspects of music-syntactic processing involve regions important also 

for language processes6, like parts of the inferior frontal gyrus bilaterally, the anterior portion 

of the STG and the ventral premotor cortex (Janata, Birk, et al., 2002; Koelsch, 2011; Liégeois-

Chauvel et al., 1998; Peretz & Zatorre, 2005). The auditory system is hypothesized to comprise 

of two streams, the ventral and dorsal, paralleling the two streams of the visual system 

(Criscuolo et al., 2022; Kaas & Hackett, 1999; Vuust et al., 2022; Zatorre et al., 2007). The 

dorsal stream connects the auditory cortex with the parietal lobe projecting to the inferior frontal 

gyrus, using the supramarginal gyrus as a relay station. It is considered to underlie sensory-

motor interactions and to track spectral and spatial aspects of processing. The ventral stream 

connects the auditory cortex with the middle temporal gyrus and temporal pole which connect 

to the pars triangularis of the inferior frontal gyrus. The ventral stream is considered specialized 

in processing auditory object properties and parts of it are shared in language and music 

processing (Vuust et al., 2022; Zatorre et al., 2007). Music processing involves additionally 

frontal areas like the dorsolateral prefrontal cortex near and within the inferior frontal sulcus, 

due to their role in attentional and working memory processes (Criscuolo et al., 2022; Kaas & 

Hackett, 1999; Salimpoor et al., 2013). Further, structures like the basal ganglia and the 

cerebellum are involved alongside cortical motor regions, in rhythmic processing, action 

control, motor timing and movement sequencing (Olszewska et al., 2021; Zatorre et al., 2007). 

Mesolimbic structures, in coordination with temporal and frontal regions, underlie emotional 

arousal, reward and pleasure extraction during experiencing and performing music (Olszewska 

et al., 2021; Salimpoor et al., 2013).  

In a recent and insightful metanalysis, Criscuolo and colleagues summarized existing 

findings regarding the structural and functional correlates of musical expertise along three axes: 

the ear, emphasizing the enhanced frontotemporal auditory system in musicians, the body, for 

the enhanced sensorimotor system in musicians and the heart, corresponding to increased 

recruitment of interoceptive areas in musicians (Criscuolo et al., 2022). In the remainder of this 

 
6 The relationship between language and music is an active topic of research in many fields, spanning from the 
shared neural correlates underlying processes in both modalities to their origins and roles in human evolution 
(Arbib et al., 2013; Leivada, 2021; Patel, 2003). 
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subsection, a brief review of findings from cross-sectional studies regarding the effects of 

musical training and expertise in brain structure and function will follow7.  

Grey matter 

Frequently reported differences in grey matter metrics among musicians, amateur 

musicians and nonmusicians lie in the primary and associative auditory cortex bilaterally, often 

on Heschl’s gyrus and planum temporale and regions along the superior temporal gyrus. These 

differences are observed in metrics of grey matter volume (Bermudez & Zatorre, 2005; Gaser 

& Schlaug, 2003; Groussard et al., 2014; Palomar-García et al., 2017; Schneider et al., 2002, 

2005), thickness (Bermudez et al., 2009), concentration (Elmer et al., 2013), density (James et 

al., 2014) and surface area (Elmer et al., 2013). Musicians are usually reported to exhibit greater 

values in these metrics and amateur musicians intermediate ones, in comparison to 

nonmusicians. Furthermore, these metrics are often positively correlated with expertise status 

and neurophysiological responses recorded in tasks used (Bermudez & Zatorre, 2005; Elmer et 

al., 2013; Gaser & Schlaug, 2003; James et al., 2014; Schneider et al., 2005). In addition, they 

usually correlate with practice intensity and onset of training, as for instance musicians starting 

training at an earlier age exhibit larger volumes in the right auditory cortex (Gaser & Schlaug, 

2003; Palomar-García et al., 2017; Zatorre, 2013) 

Differences extend to perirolandic regions, underlying sensorimotor functions including 

primary motor and somatosensory areas, premotor areas and the supplementary motor areas. In 

these regions both increases and decreases in grey matter volume (Gaser & Schlaug, 2003; 

Groussard et al., 2014) and density (Han et al., 2009; James et al., 2014) have been reported for 

musicians, with decreases in density extending to striatal regions, taken to reflect high 

automation of motor skills (James et al., 2014). Increased grey matter volume and density in 

musicians is also found in regions of visuospatial processing and integration of multimodal 

sensory information like superior parietal regions, the left intraparietal sulcus, the insula, 

posterior cingulate areas, the lingual gyrus and the fusiform gyrus (Gaser & Schlaug, 2003; 

Groussard et al., 2014; James et al., 2014; Sato et al., 2015). Musicians are also reported to 

exhibit greater volume, density and cortical thickness in frontal regions, associated with 

memory and executive functions, like the middle and superior frontal gyri, associated with 

monitoring, maintenance and retrieval of musical information, the right mid-orbital gyrus, 

associated with tonal processing and the inferior frontal gyrus bilaterally, important in syntactic 

processing, (Bermudez et al., 2009; Groussard et al., 2014; James et al., 2014). Further 

 
7 The review of only cross-sectional studies in the following subsections is because longitudinal studies of music 
training recruit individuals without former music training. This offers no parallel to the projects of this dissertation 
as individuals with previous music training were recruited. 
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differences in density have been reported in the hippocampus, crucial to memory-related 

functions (James et al., 2014), and in parts of the cerebellum, associated with representation of 

fingers and executive functions (Gaser & Schlaug, 2003; Han et al., 2009; James et al., 2014)  

White matter 

Differences between musicians, amateur musicians and nonmusicians in white matter 

volume, connectivity and integrity, as indicated by various quantitative parameters, are often 

found in segments of the corpus callosum, a dense bundle of fibers responsible for inter-

hemispheric communication. Musicians in comparison to nonmusicians appear to have 

increased structural connectivity, as indexed by diffusivity parameters, in segments of the 

corpus callosum connecting the left and right planum temporale (Elmer et al., 2016; Leipold et 

al., 2021) and in the genu of the corpus callosum connecting prefrontal cortices (Schmithorst 

& Wilke, 2002). Further, larger white matter volume in the anterior half of the corpus callosum, 

connecting premotor, supplementary motor and motor cortices, has also been reported (G 

Schlaug et al., 1995). Such differences appear influenced by factors of training intensity and 

age of onset, as intensive musical practice in childhood correlated with greater connectivity and 

fractional anisotropy in the posterior midbody/isthmus of the corpus callosum (Bengtsson et 

al., 2005; Steele et al., 2013), while increased fractional anisotropy in the upper splenium of the 

corpus collosum correlated with intensive musical practice in adolescence (Bengtsson et al., 

2005). 

Increased fractional anisotropy for early onset musicians has been reported in the 

corticospinal tract (Imfeld et al., 2009), which originates in frontoparietal cortices and connects 

the primary motor cortex with secondary motor and somatosensory areas, extending to the 

spinal cord and is considered the primary motor pathway (Jang, 2014). Differences are also to 

be found in the microstructure of the internal capsule composed of fiber tracts connecting 

cerebral hemispheres with subcortical structures like the basal ganglia and the thalamus. Greater 

fractional anisotropy in the right posterior and anterior limb of the internal capsule have been 

reported for musicians, which were further correlated with total number of hours of practice 

during childhood (Bengtsson et al., 2005; Han et al., 2009). Larger tract volume and higher 

fractional anisotropy values have been reported for musicians also in the arcuate fasciculus, a 

prominent white-matter tract connecting temporal and inferior parietal cortex with frontal brain 

regions (Halwani et al., 2011). Furthermore, white matter tract consistency in fibers underlying 

the ventral auditory stream has been reported to be modulated by expertise level, with higher 

consistency found in musicians, intermediate in amateur musicians and low in nonmusicians 

(Oechslin et al., 2018). 
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Function 

Functional correlates of musical expertise are usually manifested in dipole and response 

magnitudes using electroencephalogram (EEG) and magnetoencephalography (MEG) and in 

activation strength and measures of functional connectivity using fMRI, both in task execution 

and in resting state acquisitions.  

A series of studies have introduced tasks that tap into core aspects of musical processing, 

like pitch perception and discrimination, tonal and rhythmic processing. Musicians, in 

comparison to amateurs and nonmusicians exhibit greater dipole amplitudes and evoked 

responses during pitch processing (Schneider et al., 2002, 2005) and in detection of structural 

irregularities, localized in the right middle temporal gyrus, anterior cingulate cortex and right 

parahippocampal areas (James et al., 2017). Response magnitudes have additionally been found 

to correlate with volumetric differences in Heschl’s gyrus (Schneider et al., 2002, 2005). 

Superior performance in pitch discrimination is accompanied by increased neural responses to 

complex tones in the right superior temporal gyrus, Heschl's gyrus, insular cortex, inferior 

frontal gyrus, and the inferior colliculus for musicians (Bianchi et al., 2017). Enhanced activity 

in the left middle and superior temporal gyri, the left inferior frontal gyrus, the right 

ventromedial prefrontal cortex and the insula is found to underlie detection of melodic contour 

variations and structural irregularities in the closure of musical excerpts (Habermeyer et al., 

2009; Oechslin et al., 2013). Strength of activation is also reported to correlate with behavioral 

measures of musical aptitude (Habermeyer et al., 2009) and to be modulated by expertise level 

(Oechslin et al., 2013). In tasks of rhythmic processing, musicians appear to rely mainly on 

activity in perisylvian cortices and basal ganglia (Limb et al., 2006) while audiovisual 

perception of music and musical gestures in trained musicians involves widely distributed 

neural representations in auditory, visual and multisensory integration regions (Srinivasan et 

al., 2020). 

In studies examining correlations of musical expertise during unconstrained listening to 

music, musicians are reported to show increased activation strength in regions of the auditory 

cortex (Angulo-Perkins et al., 2014), in dorsolateral and inferior frontal regions in the primary 

and supplementary motor areas (Bangert et al., 2006; Habermeyer et al., 2009), and in parietal 

areas (Oechslin et al., 2013; Seung et al., 2005). In addition, musicians exhibit greater 

integration of motor and somatosensory regions (Oechslin et al., 2013). A study using 

classification analysis indicated that activity in frontotemporal regions, in the caudate nucleus 

and in cingulate gyrus could differentiate between musicians and controls in relation to 

processing of musical features, representing low-level (timbre) and high-level (rhythm and 
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tonality) aspects of music perception (Saari et al., 2018). Further, in a task assessing musical 

familiarity utilizing a wide repertoire of musical pieces, expert musicians had supplementary 

activations in the hippocampus, the medial frontal gyrus and superior temporal areas bilaterally, 

suggesting a constant interaction between episodic and semantic memory in musicians 

(Groussard et al., 2010).  

Apart from localized differences in activation, there is also evidence from studies using 

resting state fMRI to detect differences in functional organization and connectivity among 

relevant regions and networks. Musicians, in comparison to nonmusicians are shown to exhibit 

increased interhemispheric connectivity (Leipold et al., 2021), increased connectivity between 

auditory and motor regions (Palomar-García et al., 2017), as well as among auditory, motor, 

orbitofrontal and parietal regions. These include the bilateral dorsal anterior cingulate cortex, 

the insula and the temporoparietal junction, part of the salience network, associated with high-

level cognitive control and attentional processes (Fauvel et al., 2014; Luo et al., 2014). 

Especially in relation to the insula, facilitating integration of multisensory information, 

increased connectivity is shown to be modulated by years of practice (Zamorano et al., 2017). 

Musical training has been further associated with increased resting state functional connectivity 

within networks of multiple cognitive functions, such as vision, language, auditory encoding, 

working memory, motor control and executive functions (Hou et al., 2015; Hou & Chen, 2021). 

Apart from superior performance in music processing tasks, musicians have also been 

found to outperform nonmusicians or novices in tasks of other domains, including language, 

memory and executive functions. Specifically, in a metanalysis of 62 longitudinal studies 

regarding effects of musical training in linguistic processes, musical training was found to 

benefit speech and prosody processing (Neves et al., 2022). In another meta-analysis of 29 

studies comparing musicians to nonmusicians also in memory tasks, the authors reported that 

musicians were found to perform better in long-term, short-term and working memory tasks 

(Talamini et al., 2017). Furthermore, the level of musicianship and duration of years of practice 

have been shown to correlate with performance in tasks assessing executive functions 

(Criscuolo et al., 2019). Such findings can presumably be attributed to shared commonalities 

between processing in some domains, like language and music, also sharing neural correlates, 

or to aspects of musical training where executive functions, memory and attention are crucial, 

as it is also evidenced in the enhanced recruitment of such brain regions in musicians. 

Having outlined the breadth of differences in brain structure and function characterizing 

musical expertise and being attributed to long and intensive training, it is critical to highlight 

some contributing factors to the above findings, which are not always possible to be accounted 
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for in cross-sectional studies. Onset of training appears as an important factor for the extent of 

plastic changes in brain structure and function, as evidenced in studies relating onset of training 

and years of practice with the magnitude of observed changes in structure and function 

(Bengtsson et al., 2005; Han et al., 2009; Steele et al., 2013; Zatorre, 2013). Musicians recruited 

in the abovementioned studies, are both instrumentalists and singers, and within 

instrumentalists there is substantial variety in the kind of instrument they are engaged with. 

This plays an important role in which subsystems on the brain level are recruited more and 

hence differentiates the spectrum of observed plastic changes (Rüber et al., 2015). Another 

important factor under consideration is individual variability and predispositions in anatomical 

features and functional circuitry, which especially in the auditory cortex have been found to be 

predictive of task performance (Zatorre, 2013). Furthermore, successful engagement in music 

training is influenced by cognitive, personality and socioeconomic factors (Schellenberg, 

2020), as well as by genetic differences (Ullén et al., 2016), since not only musical aptitude is 

found to be correlated with genetic differences but also the amount of music practice has been 

found to be heritable (Mosing et al., 2014).  

 

2.3 A framework for experience-dependent plasticity 
 

Having laid out findings from multiple studies regarding manifestations of plasticity in 

brain structure and function in relationship to musical expertise and expertise in other domains, 

it becomes clear that a synthesis of all the above, even if it would be assumed only within the 

context of musical expertise, is highly challenging. There appears to be no uniform way in 

which plastic changes are expressed. Both increases and decreases in metrics of grey and white 

matter morphology and in measures of functional activation and connectivity are reported for 

the same regions (Criscuolo et al., 2022), while they are also found for different brain regions 

within the same cohorts (James et al., 2014; Vaquero et al., 2016). Both increases and decreases 

observed in various metrics are attributed to the effects of intensive long-lasting training. 

Interpretations of decreases particularly, portray them as indicative of increased processing 

efficacy, leading to automated or habitual processing which does not require a lot of neural 

resources to be allocated. Under closer examination of such findings, it appears that the regions 

reported to exhibit decreased values in measures of brain structure are mainly part of the motor 

cortices and striatal regions (Granert, Peller, Gaser, et al., 2011; Hänggi et al., 2010; Haslinger 

et al., 2004; James et al., 2014; Vaquero et al., 2016), followed by regions in the auditory and 

visual system and the cerebellum, where less decreases have been observed (Baer et al., 2015; 

James et al., 2014; Vaquero et al., 2016). An open question that emerges is whether this pattern 
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suggests that unimodal cortices, like the motor one and parts of the auditory system undergo 

decreases due to increased processing automation, while other parts of the auditory system 

undergo increases in volume and thickness, reflecting expanded representations and storage of 

information. In this view, increases in regions of multimodal associative and higher-order 

cognitive processing could be attributed to enhanced recruitment. 

With additional consideration of findings from longitudinal studies, the complexity 

increases further, as there is wide variability in the timing of occurrence of observed changes 

as well as the time-courses that they follow. Findings from longitudinal studies are further 

constrained by the frequency of data acquisition that they follow and they may not always be 

informative about the permanency of observed changes.   

Regarding the timing of occurrence of observed changes, there is evidence that even 

macroscopic structural changes can occur rather quickly, like for example within minutes in the 

motor cortex following training for the non-dominant hand (Hamzei et al., 2012), in frontal and 

parietal cortices after two sessions of balance training (Taubert et al., 2010)or within five days 

by applying transcranial magnetic stimulation (TMS) in superior temporal cortex (May et al., 

2007). Regarding the trajectories of observed changes, evidence from studies implementing 

neuroimaging acquisition at multiple time points over the course of training, suggests that some 

changes occurring are rather transient. For example, following visual texture discrimination 

training, there was an original increase in activation in the primary visual area (V1) during the 

first weeks which afterwards decreased, while performance remained enhanced (Yotsumoto et 

al., 2008). In another study using a finger movement training paradigm, the authors found 

increases in regional activation in the primary and supplementary motor area during the first 

two weeks, which decreased in the following two, while inter-regional connectivity increased 

in strength (Ma et al., 2010). In a study following the pattern of structural changes with frequent 

MRI acquisition while participants practiced left-hand writing and drawing, grey matter in the 

primary motor cortices expanded during the first 4 weeks and then returned to baseline levels, 

although task proficiency stayed elevated (Wenger, Brozzoli, et al., 2017).  

Similar evidence arises also from a series of animal studies. Analysis of structural MRI 

data of 3 adult macaque monkeys, learning to use a rake for retrieving food, revealed grey 

matter increases in task related brain regions followed by decreases, after performance reached 

asymptote (Quallo et al., 2009). In vivo microscopic imaging of dendritic spines in mice 

revealed new spines after only a few hours of motor training (Xu et al., 2009). These rapid 

changes were followed by selective stabilization of new spines while older spines were partly 

eliminated. This pattern was also observed in the form of learning-related cortical map 
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expansion in rats which occurred rapidly and then renormalized while performance remained 

stable (Molina-Luna et al., 2008; Reed et al., 2011).  

These issues and open questions raised in this subsection are being addressed within a 

conceptual framework rooted in animal models, developmental theories of plasticity and 

concepts from reinforcement learning. The proposed exploration-selection-refinement model 

(Lindenberger & Lövdén, 2019; Lövdén et al., 2020) recognizes stages in experience-dependent 

plasticity in the neural level which co-occur with behavioral modifications during learning and 

skill acquisition. At an initial learning stage, neuronal microcircuit, relevant for the skill under 

training, is widely probed and therefore structurally altered. In this stage, the model predicts 

increased variability at the neural and behavioral level. This stage is followed by a phase of 

selection of the best performing relevant circuitry and a possible reduction in communication 

between primary sensorimotor regions and regions of the frontostriatal system, which support 

feedback, attention and control mechanisms, necessary during the initial learning phase. During 

a later stage, functional stabilization of relevant circuitry takes place alongside elimination of 

surplus circuitry (Lindenberger & Lövdén, 2019; Lövdén et al., 2020; Wenger, Brozzoli, et al., 

2017).  

 Within this framework, findings discussed above like initial increases in macrostructure, 

can be understood as transient effects, reflecting initial effortful stages of leaning when 

expansion of macrostructure is necessary, followed by decreases reflecting automation in 

performance. This can potentially explain findings from cross-sectional studies of reduced grey 

matter volume and thickness, especially for motor and striatal regions, as well as expansion and 

renormalization of structure observed in longitudinal studies. In relation to observed cross-

sectional differences and longitudinal changes in functional activation, an initial increase in 

neural activity is taken to reflect local strengthening of activation, followed by a decrease 

indicating activation only of specific circuitry and reduced needs for further resource allocation. 

Although regarding functional activation such a prediction does not account for enhanced and 

widespread activity observed in the neural responses of musicians, as reviewed above, there are 

a lot of contributing factors to be considered. Such factors include the modality of the brain 

regions concerned, the functions they serve and the level at which activity represents the amount 

of resources allocated or activation of further existing representations, which would be expected 

in groups of highly proficient individuals. These considerations point additionally towards the 

potential of jointly examining effects of experience-dependent plasticity in brain structure and 

function. The relationship among differences or changes in brain structure, in functional 

activation and connectivity may offer an enriched understanding of co-occurring manifestations 
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of plasticity and the different roles they play in supporting superior behavioral performance 

exhibited by musicians and experts in other domains.  

 
2.4 From brain regions to networks 

 
In this subsection, I intend to expand more on some methodological and conceptual 

aspects of particular importance for this dissertation. I refer to them as jointly methodological 

and conceptual because their use entails adopting a specific perspective in examining 

experience-dependent plasticity. These aspects include a primary focus on resting state fMRI 

and using functional connectivity methods and metrics from network neuroscience. This 

approach builds on existing knowledge on the contribution of specific brain regions in aspects 

of musical processing and changes they undergo due to musical training. At the same time, it 

extends the scope to include interregional communication and network organization properties 

as correlates of expertise and as aspects of functional organization undergoing plastic changes. 

Resting state fMRI 

Resting state fMRI captures the intrinsic low-frequency fluctuations of brain activity 

exhibiting distinct temporal and spatial organization, often termed resting state networks (Fox 

et al., 2007; Raichle, 2015). Resting state networks have been related to various aspects of 

cognitive, social and emotional processes as well as to personality traits (Liégeois et al., 2019) 

Even more, they are shown to reflect to a high extend the underlying structural architecture of 

the brain (van den Heuvel & Hulshoff Pol, 2010). Resting state dynamics and organization are 

considered a sort of baseline internal state, in the absence of external stimulation, which can be 

shifted when external demands arise (Biswal, Yetkin, et al., 1995; Deco et al., 2011; Greicius 

et al., 2003). Further, it has been shown that the brain’s functional network architecture during 

task performance is actually predominantly sculptured by the intrinsic network architecture 

present during rest, with task demands further contributing to observed activation patterns 

during task execution (Smith et al.,2009, Cole, Bassett, Power, Braver, & Petersen, 2014; Cole, 

Ito, Bassett, & Schultz, 2016). Furthermore, aspects of functional activity and organization 

during rest have been related to learning and skill acquisition in a variety of domains, including 

attention (Rosenberg et al., 2015), memory (Collins & Dickerson, 2019; Meskaldji et al., 2016), 

visual perception (Baldassarre et al., 2012), social learning of music (Lumaca, Kleber, Brattico, 

Vuust, & Baggio, 2019), learning of foreign sounds (Ventura-Campos et al., 2013) and motor 

skill acquisition (Bassett et al., 2011, 2015). In addition, differences in resting state functional 

connectivity are also evident between groups of different expertise, as reviewed in previous 

sections. Such findings indicate that resting state fMRI can capture lasting effects of alterations 
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in patterns of activity and connectivity induced by learning and skill acquisition, hence being a 

valuable tool in understanding aspects of experience-dependent plasticity. 

Functional connectivity: static & dynamic 

The analytical tool of functional connectivity repeatedly mentioned in studies above, 

has proven highly valuable for experience-dependent plasticity research. It is shifting the focus 

from individual brain regions towards studying the interactions among brain regions, which 

support complex functions and contribute to learning and expertise-like behavior.  

Functional connectivity refers to the statistical dependencies between neuronal time 

series computed usually with measures of correlation, mutual information or coherence 

(Friston, 1994). Brain regions or neuronal assemblies are presumed to be functionally coupled 

or part of the same network if their activity is consistently correlated among each other. In this 

view, behavioral performance can be associated with the strength of interactions among brain 

regions, which is also shown to be differentiated in groups of different expertise and during 

learning (Leipold et al., 2021; Palomar-García et al., 2017). Moreover, functional connectivity 

is constrained by anatomical white matter connections, but is not exclusively defined by it. Co-

activation of anatomically non-connected regions has also been observed, especially as long-

distance synchronization of activity, although with high within and between subject variability 

(Honey et al., 2009). Specifically, highly myelinated sensory areas exhibit strong structure-

function coupling while less myelinated associative regions exhibit weaker structure-function 

connections, and constitute examples of functional coupling occurring without being 

constrained by anatomy (Baum et al., 2020). 

Over the years, functional connectivity measures applied either on task or resting state 

fMRI data have furthered the understanding of interregional interactions and their relation to 

human behavior and neurodegenerative diseases (Bullmore & Sporns, 2009; van den Heuvel & 

Hulshoff Pol, 2010). Furthermore, functional connectivity is shown to fluctuate over time 

(Chang & Glover, 2010), therefore termed dynamic functional connectivity. In this view, 

neuronal interactions at multiple spatiotemporal scales are crucial determinants of perception, 

cognition and behavior (Engel et al., 2021). A variety of analytic approaches has been 

developed capturing different aspects of the temporal dynamics of neural activity (Cohen, 

2018). Of particular interest here is the use of measures quantifying connectivity fluctuations 

and allocating recurring connectivity patterns into configurations or states (Hutchison et al., 

2013; Keilholz et al., 2014; Lurie et al., 2019; Preti, Bolton, & Van De Ville, 2017). Distinct 

‘brain states’ have been associated with resting state (Allen et al., 2014; Calhoun et al., 2014), 

with different aspects of cognition, including working memory (Braun et al., 2015, Shine et al., 

https://www.sciencedirect.com/science/article/pii/S1053811917306535#bib13
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2016, Vatansever et al., 2015), cognitive flexibility (Douw et al., 2016), cognitive control 

(Hutchison and Morton, 2015), selective visuospatial attention (Elton and Gao, 2015), and with 

motor skill acquisition (Bassett et al., 2011, 2015). Such findings suggest that the use of 

dynamic functional connectivity may enrich the current scope regarding manifestations of 

expertise in functional brain organization. For example, skillful musical processing might be 

associated with distinct brain states, or variability and flexibility in recruitment of brain regions 

during performance of specific tasks. 

Network neuroscience 

In the last years, the examination of the functional organization underlying task 

execution and resting state has been further enriched with analytical tools from network 

neuroscience. This field draws from complex systems theory, mathematics, computer science, 

statistical mechanics and systems engineering (Bassett & Sporns, 2017). The brain is viewed 

as a complex system with multiscale temporal and spatial organization (Bassett & Gazzaniga, 

2011) and there exists a multitude of analytic mathematical measures to describe its architecture 

and the interactions of its components.  

With a focus on fMRI specifically, graph theoretical measures offer a framework for 

modeling the brain as a network, consisting of nodes, brain regions or neural assemblies, and 

edges, connecting the nodes. Nodes and edges represent the graph elements and their 

interrelations (Rubinov & Sporns, 2010). In the simplest form, the connections between nodes 

are either binary, indicating in absolute terms the presence or absence of a connection, or 

weighted, where the strength of the connection is a function of the coefficient quantifying the 

connectivity between the nodes. The architecture of a network can then be characterized on the 

local, mesoscale or global level. Aspects of network organization have implications for its 

functionality, as they might promote configurations of segregation or integration of the network 

elements (Bassett & Sporns, 2017; Sporns, 2013).  

 Overall, the brain is found to exhibit small-world-network architecture, promoting a fine 

balance between integration of its elements and segregation and allowing for adaptation based 

on current demands (Sporns et al., 2004). It is further found to be modular, meaning it can be 

decomposed into subnetworks or communities. These communities consist of regions that are 

densely connected to each other and sparsely connected to regions from other communities 

(Sporns & Betzel, 2016). Modularity is considered as well to promote adaptive response to 

external demands (Meunier et al., 2010). On the nodal level, there exist a series of metrics 

characterizing the contribution of individual nodes of the networks they belong to (Bullmore & 

Sporns, 2009; Rubinov & Sporns, 2010; Sporns et al., 2004). Nodes with few connections 

https://www.sciencedirect.com/science/article/pii/S1053811917306535#bib38
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within their community are considered peripheral. Other nodes, highly connected within their 

community, are considered provincial hubs, facilitating within subnetwork communication, 

while other nodes, connector hubs, play an important role in communication between 

communities (Larivière et al., 2019; van den Heuvel & Sporns, 2013). For example, nodes 

within sensory brain areas usually display dense connections within their community, while 

nodes within associative cortices participate in multiple subnetworks, integrating information 

and facilitating communication among different communities (van den Heuvel & Sporns, 

2013). 

Furthermore, graph metrics can characterize network organization dynamically over 

time. In this case, a graph represents a configuration of a specific time window and is part of a 

temporally ordered set of graphs spanning multiple time scales, presenting the evolution of 

element interaction over time (Bassett et al., 2013). In this view, subnetworks are formed and 

reconfigured continually supporting task execution of various demands or processes that occur 

during resting state (Mišić et al., 2016; Shine et al., 2016). For example, whole-brain functional 

network organization was found to change systematically during both a task probing motor 

execution and a task probing working memory. Increased network segregation was found to 

underlie successful motor execution and increased network integration to support working 

memory (Cohen & D’Esposito, 2016). 

The application of network neuroscience tools in studies of experience-dependent 

plasticity can be particularly advantageous. Specifically, regarding musical training and 

expertise, it offers a quantitative framework to study the interactions within and between the 

distributed neural circuits which support experiencing and performing music. Promising results 

of the effects of learning and skill acquisition in brain network organization over time have 

been reported in relation to motor training. With progressive training and improvements in 

behavioral performance, higher modularity was observed reflecting more habitual and 

autonomic processing, and resulting in reduced interactions required among sensorimotor and 

frontal regions (Bassett et al., 2011, 2015; Telesford et al., 2017). Although such an approach 

of dynamic network analysis has not been applied in the context of musical training so far, the 

potential is clear. However, there are studies which have applied graph measures to characterize 

brain networks statically in relation to musical training and expertise. Musicians compared to 

nonmusicians are found to differ in a variety of metrics, which suggest more efficient 

information transmission within and between subnetworks and overall higher integration of 

auditory processing regions (Alluri et al., 2017; Leipold et al., 2021; Loui et al., 2012)  
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3 Summary and research objectives 
 

 In the previous chapter, I reviewed findings on differences in brain structure and 

function among groups of musicians, amateur musicians and controls. To summarize, 

musicians exhibit increases and decreases in measures of grey and white matter morphology 

and microstructure, as well as in activation strength and connectivity in brain regions associated 

with various aspects of music processing. The majority of findings attest that manifestations of 

plasticity are located primarily in core auditory and motor regions, and the pathways that 

connect them, and extend further throughout the brain to regions supporting multisensory 

integration, maintenance of information and executive functions. Variability in the findings can 

be attributed to a multitude of factors, including onset of training, primary instrument, 

anatomical predispositions, genetics and socioeconomic status, which are fairly difficult to 

account for in the context of single studies. Further, I briefly discussed some issues and 

questions that these findings raise and I presented a framework which accounts for some of the 

observed plastic changes. The importance of such a framework lies beyond its’ explanatory 

power over existing findings. It offers a foundation to raise testable hypotheses on mechanisms 

of plasticity across domains regarding both brain structure and function. Finally, I introduced 

in more detail some methodological aspects which are intertwined with the aspirations of this 

dissertation. 

 The three studies which comprise the main corpus of this dissertation evolve around 

functional correlates of musical expertise and training-induced functional plasticity. The 

motivation behind this focus on brain function is twofold. By looking into aspects of functional 

activity during task execution, we gain insights into the neural correlates of behavioral 

performance “in action”, while looking into resting state allows for assessment of lasting effects 

of training on brain’s functional organization. By examining longitudinal changes in functional 

activity and organization, we can better understand how neural circuits are progressively 

‘tuned’ for skillful processing and are adapted to support enhanced performance. In the first 

and the third study, the focus is on resting state fMRI, given that functional activity and network 

organization in resting state can be viewed as the brain’s “baseline” functional repertoire that 

may also shape task activations. In the second study, analyses are based on fMRI data acquired 

during unconstrained listening to music. In all three studies, analyses encompass measures of 

functional connectivity, static and dynamic, and metrics from network neuroscience. This way, 

effects of training on brain function and correlates of expertise-like behavioral performance are 
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examined beyond activity in specific brain regions, but in interregional interactions and 

organization properties of relevant networks. In addition, in the third project longitudinal 

functional changes are co-examined with changes in grey matter, presenting complementary 

aspects of plasticity manifestations. 

All three studies are based on data acquired in the course of a longitudinal study, the 

PITCH study, investigating experience-dependent plasticity in the auditory domain, including 

behavioral assessments, as well as structural and functional MRI measurements. Forty-one 

participants between 18 and 31 years of age were recruited. Twenty-four of these individuals 

were attending preparatory courses for entrance exams in Universities of Arts and music 

conservatories and seventeen individuals were amateur musicians who were actively 

performing music in everyday life. Over the course of about a year, participants took part in up 

to five behavioral and MRI assessments. This study presents a unique opportunity to address 

research questions in an ecological setting, following these individuals during an intensive 

learning period. In a way, this study allows to open the “black box”8 of expertise and peek into 

musical expertise “in the making”. The first and the second study are based on behavioral and 

fMRI data acquired on the first time point when both groups were fully recruited. The third 

study extends the analysis from this time point to the following two. 

 The studies of the dissertation are presented in the next chapters ordered by the scope 

of the process they describe. The objectives of each project unfold as follows: 

 

1. In the first study, I examined whether training induced changes in functional 

organization are retained in resting state, in the absence of task performance and how 

they differ between the two groups of different expertise. Specifically, I examined 

expertise-related differences in functional connectivity and graph-theoretical measures 

in a network of regions facilitating interval recognition, during resting state. The 

network was derived based on activations during an interval recognition fMRI task. I 

hypothesized that the group of aspiring professional musicians would exhibit greater 

connectivity and global efficiency within this network. Further, I hypothesized that 

greater connectivity and global efficiency will correlate with behavioral performance in 

the fMRI task and in a separately acquired behavioral assessment of musical expertise.  

 
8 The notion of the black box used here corresponds to the meaning assigned to it by philosopher, 

anthropologist and sociologist, Bruno Latour. He used the notion of the black box to describe the inaccessibility 
to knowledge regarding the inner functions of products of scientific and technological work, following their 
endorsement (Latour, 1987). In a similar way, looking into musical expertise only cross-sectionally, obscures 
understanding of the gradual changes taking place up to the point of examination.   
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2. In the second study, I examined how processing demands during unconstrained listening 

to music are reflected in whole brain connectivity configurations and how musical 

expertise modulates network organization based on processing demands. This project 

extends the scope beyond a specific component of music processing, to a more 

ecologically valid setting of listening to music. Specifically, participants were presented 

with two musical pieces of different styles and processing demands. I hypothesized that 

higher processing demands will be reflected in brain states of higher overall 

connectivity based on evidence from studies investigating effortful cognitive 

processing. Further I hypothesized that the group of aspiring professional musicians will 

exhibit correlates of more skillful processing, indicated by graph measures of network 

integration during listening to the more demanding piece and by utilization of brain 

regions as network hubs and between subnetworks connectors, tailored by the 

processing demands, estimated by relevant nodal measures. 

 

3. In the third study, I examined longitudinal aspects of functional plasticity resulting from 

intensive musical training. I focused on changes over time on the functional connectivity 

profile of a brain region, which was found to undergo changes in grey matter volume 

during this time, in the group of aspiring professional musicians. I hypothesized that the 

functional connectivity of this region with regions relevant for music processing will 

increase over time, supporting superior behavioral performance for the group of aspiring 

professional musicians. 
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A modified version of the following chapter is currently under review in the journal of Brain 
Structure and Function. 
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4.1 Introduction 
 
 Musicians have been a favored group in studies investigating experience-dependent 

plasticity and the neural correlates of expertise. The years-long intensive training that musicians 

undergo, often beginning at a very young age, puts great demands not only on specific brain 

regions in the auditory and motor cortex but also on multisensory and higher-order cognitive-

processing brain regions (Jäncke, 2009). Such high demands constitute an ideal condition for 

triggering brain plasticity, manifested as alterations in brain structure and function in an effort 

to respond to the challenges posed (Lövdén, Bäckman, et al., 2010). 

 Musicians, when compared to nonmusicians, exhibit larger volumes in primary auditory 

cortex residing on Heschl’s gyrus, corresponding to differences in neurophysiological 

responses and musical aptitude (Schneider et al., 2002, 2005). Further differences in volume 

and cortical thickness in grey matter structures are reported in regions of secondary auditory 

cortex, motor and visuo-spatial processing as well as in frontal regions (Bermudez & Zatorre, 

2005; Gaser & Schlaug, 2003; Palomar-García et al., 2017; Wenger et al., 2021). Differences 

are also found in white matter architecture and in structural connectivity of the white matter 

tracts (Abdul-Kareem et al., 2011; Leipold et al., 2021; Schmithorst & Wilke, 2002). In 

addition, musicians are found to differ in the magnitude of neural responses and functional 

activation patterns, during a variety of music-related tasks (Bangert et al., 2006; Bianchi et al., 

2017; Limb et al., 2006) and during listening to music (Angulo-Perkins et al., 2014).  

 Interestingly, manifestations of brain plasticity have not only been investigated in the 

comparison of musicians versus nonmusicians, but also in relation to different levels of musical 

expertise. In this perspective, musical expertise forms more of a continuum and the contribution 

of important factors such as duration of training, intensity of training and overall intentions in 

music engagement, which relate to changes in brain structure and function can be better 

understood. Differing levels of expertise, that is, professional, amateur, and nonmusicians, 

appear distinct not only in behavioral measures but also in neural substrates. Differences in grey 

matter volume between professional and amateur musicians have been reported in motor, 

auditory and visuospatial regions as a result of practice intensity (Gaser & Schlaug, 2003). In a 

study recruiting a cohort of professional, amateur and nonmusicians, grey matter volume and 

neurophysiological responses from the Heschl’s gyrus were reported to be modulated by the 

level of expertise of each group, with amateur musicians exhibiting intermediate values in 

volume and neurophysiological responses (Schneider et al., 2002,2005). In a series of very 

interesting studies investigating the neural correlates of different level of expertise using tonal 
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sequences containing different degrees of structural irregularities at their ending, gradual 

changes in the response amplitudes using fMRI were observed as a function of expertise level 

(James et al., 2017). Also, a stepwise modulation of brain responses by expertise level in a 

frontoparietal network was visible, related also to working memory and attention processes, 

with overall brain activation of amateurs’ group being intermediate between the other two, and 

partly overlapping with the responses of the professional groups (Oechslin et al., 2013). 

Stepwise increases in grey matter density were also reported in auditory and cognitive regions 

(James et al., 2014), and white matter tract consistency was also differentiated among the three 

groups, with increasing consistency corresponding to higher expertise level (Oechslin et al., 

2018).  

 This multitude of plasticity manifestations in cross-sectional and longitudinal studies 

are complemented by studies examining the factors of predispositions manifested as different 

conditions in brain function and anatomy (Zatorre, 2013) as well as of genetic differences 

predisposing individuals to successfully engage in music training (Ullén et al., 2016). Indeed, 

the amount of music practice has been found to be highly heritable, and associations between 

musical practice and musical aptitude are highly correlated with genetic differences (Mosing et 

al., 2014). However, the causal effects of training on changes in brain function and anatomy 

cannot be refuted, especially under the light of evidence concerning samples of monozygotic 

twins (de Manzano & Ullén, 2018). 

 In the last years, resting state functional magnetic resonance imaging (fMRI), capturing 

the intrinsic low-frequency fluctuations of brain activity exhibiting temporal and spatial 

organization (Raichle, 2015) has established that the brain’s functional network architecture 

during task performance is actually predominantly sculptured by an intrinsic network 

architecture that is also present during rest (Cole et al., 2014, 2016). The intrinsic architecture 

has been related to various aspects of cognitive, social and emotional processes as well as to 

personality traits (Liégeois et al., 2019). It is regularly included in studies aiming at relating 

measures of functional organization and graph-theoretical analysis to learning and performance 

in tasks targeting a variety of domains, including attention (Rosenberg et al., 2015), working 

memory (Hampson et al., 2006), memory consolidation (Collins & Dickerson, 2019; Meskaldji 

et al., 2016), perception (Baldassarre et al., 2012), learning (Lumaca et al., 2019; Ventura-

Campos et al., 2013) and motor skill acquisition (Bassett et al., 2011, 2015).  

Measures of resting state fMRI also have been used in the context of musical learning 

and expertise, complementing and extending findings from task-fMRI studies by capturing 

alterations in intrinsic brain organization. Musical expertise is reflected in interhemispheric and 
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intrahemispheric connectivity patterns of functional networks (Leipold et al., 2021). Often, 

increased resting state functional connectivity in musicians compared to nonmusicians has been 

reported, primarily concerning the connections between regions of bilateral auditory cortices 

with the premotor, supramarginal and orbitofrontal regions (Fauvel et al., 2014; Luo et al., 

2012; Palomar-García et al., 2017). Apart from regions specifically relating to the perception 

and execution of music, studies also suggest that musicianship is characterized by altered 

functional connectivity, both static and dynamic, between brain regions across the entire brain, 

including also multisensory regions and regions of various cognitive functions, such as 

memory, language and attention (Hou et al., 2015; Hou & Chen, 2021; Luo et al., 2012), as 

well as higher order associative regions like the insula, potentially facilitating integration of 

multisensory information (Zamorano et al., 2017). 

With the present study, we set out to investigate whether aspiring professional musicians 

differ in terms of their resting state functional connectivity of an interval recognition auditory 

network in comparison to amateur musicians, even though both groups have comparable years 

of playing an instrument. Interval perception, both as the perception of pitch relations between 

tones of a chord and as the pitch relation of temporally sequential tones, lies in the core of tonal 

processing. This includes the perception of the hierarchical arrangement of pitches and chords 

around the tonal center and their perceived relations, stabilities, attractions and directionalities 

as well as the scales they evoke (Zatorre, 2003). An extensive amount of research has 

established that processing of acoustic information begins early in the auditory pathway, with 

the brainstem as a crucial layover in pitch perception before the primary auditory cortex takes 

over to transform the acoustic features into percepts (Koelsch, 2011). From there on, processing 

in the auditory cortex appears to follow a hierarchical organization, beginning in the primary 

auditory cortex in Heschl’s gyrus, crucial for pitch perception and discrimination, and 

extending both anterolaterally and posteriorly with increasing features’ complexity (Chevillet 

et al., 2011; Peretz & Zatorre, 2005). Next, secondary auditory cortices are consistently reported 

as crucial in perceptual analysis of tonal information, with both anterior and posterior parts of 

the superior temporal gyrus, the superior temporal sulcus, the planum polare and temporale 

being related to processing pitch height differences (Peretz & Zatorre, 2005), in categorical 

pitch perception (Lee et al., 2011), as well as to processing of consonance and dissonance 

(Bidelman & Grall, 2014). Regions in posterior Superior Temporal Gyrus and frontal regions 

are repeatedly reported as supporting tonal processing with working memory and attentional 

mechanisms, with right inferior lateral frontal areas reported as important for maintenance of 

tonal information (Janata, Birk, et al., 2002; King et al., 2018; Nolden et al., 2013). 
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In order to investigate whether resting state functional organization can be an indicator 

of performance and a neural correlate of musical expertise in interval recognition, we utilized 

an fMRI task to localize regions in the auditory cortex and beyond, constituting a network 

specific to listening to and recognizing auditorily presented intervals. We examined the 

architecture of this network in resting state using graph-theoretical measures and related it to 

performance in the intervals task as well as performance in another behavioral measure 

reflecting musical expertise. We expected that the identified network would include parts of the 

auditory network, prominently the primary auditory cortex and adjacent regions of the 

secondary auditory cortex, located bilaterally on the superior temporal gyri. We hypothesized 

that the two groups of the study, aspiring professional musicians and amateur musicians, would 

differ in terms of network strength and global efficiency. In addition, we hypothesized that 

stronger functional connectivity in the identified network, reflected in the graph measure of 

network strength, and more efficient within-network communication, captured by global 

efficiency, would correlate with better performance in the interval recognition task and with 

relevant parts of another behavioral assessment of musical expertise.  

 

4.2 Materials and methods 
 
Participants  

The 41 participants recruited were between 18 and 31 years of age (Mage = 22.35, SD = 3.63, 

15 female). They were recruited through flyers, mailing lists, project presentations in music 

schools, and word-of-mouth recommendation in Berlin, Germany. Twenty-four of these 

individuals were in the process of preparing for the entrance exam for a music conservatory. 

Seventeen individuals were amateur musicians who were actively performing music in 

everyday life. All participants either sang or played at least one primary instrument, and had at 

least five or more years of experience singing or playing the respective instrument. Information 

on the primary instruments reported by participants in both groups can be found in Table 2 of 

supplementary material (subsection 4.6). Years of singing or playing a primary instrument were 

comparable across the two groups, t(38) < 1, p = .68 (amateur musicians: Myears = 12.74, SD = 

5.97; aspiring professional musicians: Myears = 12.04, SD = 4.56; one participant in the aspiring 

professional group did not provide information about his or her primary instrument or years of 

playing). However, participants in the two groups differed in the daily amount of practice 

dedicated to instrument playing (t(39) = 3.7, p = .001, amateur musicians; Mhours = 1.2, SD = 

0.8; aspiring professional musicians Mhours = 2.6, SD = 1.4) and to music theory learning (t(39) 

= 4.91, p = .001, amateur musicians; Mhours = 0.2, SD = 0.3; aspiring professional musicians 
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Mhours = 1.4, SD = 0.6). Therefore, our sample comprises two groups of people who have been 

musically engaged for approximately the same amount of time. A decisive difference lies in the 

intensity of the training given the different intentions in their musical practice, with aspiring 

professional musicians undergoing intensive both practical and theoretical learning with their 

respective musical instruments in order to be accepted to music university programs. It is 

therefore not simply the mere amount of time of engagement with music that is characterizing 

different levels of expertise but rather the intensity of this engagement and the motivation 

behind it. Participants of both groups did not differ with respect to age, t(39) < -1.05, p = .30 

(amateur musicians; Mage = 23.00, SD = 3.50, 8 female; aspiring professional musicians Mage = 

21.92, SD = 3.72, 7 female). Regarding handedness, 33 participants were right-handed, 2 were 

left-handed (one in the group of aspiring professionals and one in the group of amateur 

musicians) and for 5 participants (3 in the group of aspiring professionals and 2 in the group of 

amateur musicians) there was no report on their handedness. All participants had normal 

hearing, did not have any metallic implants, and had not had any psychiatric diagnosis.  

Participants were paid up to 200€ for completion of the whole study (including up to 5 

measurement time points with 1.5 h of MRI and 1.5 h of behavioral testing). The ethical board 

of the DGPs (Ethikkommission der Deutschen Gesellschaft für Psychologie) approved the 

study, and written consent of all participants was obtained prior to investigation. 

Behavioral measure Berlin Gehoerbildung Scale (BGS) 

Participants’ level of music expertise was measured by the Berlin Gehoerbildung Scale 

(BGS, Lin et al., 2021). The BGS was designed by André Werner, a composer and collaborator 

of this study. It is informed by music theory and uses a variety of testing methods in the ear-

training tradition. The BGS consists of four factor-analytically validated scales, namely, 

Intervals and Scales, Dictation, Chords and Cadences, and Complex Listening, which together 

form a second-order factor of general music expertise. For the purpose of this study, we focused 

on the second-order scale of general music expertise, and first-order scale Intervals and Scales, 

which can be assumed to assess the same ability as the fMRI interval recognition task, and 

which comprises of four items: Naming Intervals, Notating Intervals, Naming Scales and 

Naming and Notating Scales (for more information, see Lin et al., 2021).  

fMRI interval recognition task  

During the fMRI task, participants had to recognize and name the musical interval 

characterizing two tones presented. On each trial, after hearing two tones that were either 

presented successively or simultaneously, participants had to choose among four options 

presented on the screen and indicate the correct interval label. The stimuli were recorded piano 
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tones from a simulation program and had a standard duration of 1600 milliseconds. After the 

presentation of the tones, there was a random jitter between 1.5 and 3s, after which the response 

screen appeared. As soon as participants responded via a button press (or after a maximum of 

20s), there was an inter-stimulus interval of 1s and a jitter between 1.5 and 3s, after which the 

next trial started. Within a total task time ranging up to 20 minutes, 140 intervals were 

presented. 

MRI data acquisition 

Magnetic resonance images were collected on a Siemens Tim Trio 3T MR scanner 

(Erlangen, Germany) with a standard 12-channel head coil. For the structural images, a three-

dimensional T1-weighted magnetization prepared gradient-echo sequence (MPRAGE) was 

used (TR = 2500 ms, TE = 4.77 ms, TI = 1100 ms, flip angle = 7°, bandwidth = 140 Hz/pixel, 

acquisition matrix = 256 × 256 × 192 mm3, isometric voxel size = 1 mm3). After that, an 8-

minute resting state acquisition followed while participants had their eyes open and were 

looking at a fixation cross, using a T2*-weighted EPI sequence sensitive to Blood Oxygenation 

Level Dependent (BOLD) contrast (TR = 2000 ms, TE = 30 ms, FOV=216 × 216 × 129 mm3, 

flip angle = 80°, slice thickness 3.0 mm, distance factor = 20%, voxel size = 3 mm3, 36 axial 

slices, using GRAPPA acceleration factor 2). Following an auditory oddball task that is not part 

of the present study, the intervals task was acquired using the same T2*-weighted EPI sequence 

as described above. All slices were acquired in an interleaved fashion, aligned to genu splenium 

of the corpus callosum. 

Behavioral data analysis 

BGS 

We formed unit-weighted z-scores for the first-order scale Intervals and Scales by 

calculating the average of the four z-transformed items belonging to this subscale, and the 

second-order scale of general music expertise by calculating the average of all z-transformed 

subscales. These unit-weighted z-scores were subsequently submitted to independent samples 

t-tests to test for group differences between aspiring professionals and amateur musicians.  

fMRI interval recognition task 

Performance on the fMRI interval recognition task was calculated for each participant as 

the percent of correct responses, that is the task accuracy, using R (R Core Team, 2020). As the 

data was not normally distributed and professional musicians showed a ceiling effect, we 

squared-root transformed the data and used a Mann-Whitney-U test for independent samples to 

analyze group differences in task accuracy between aspiring professional and amateur 

musicians. In addition, we calculated the reaction times for each participant using the median 
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across trials and we computed group differences between aspiring professional and amateur 

musicians in reaction times using a Mann-Whitney-U test for independent samples, as the 

values were not normally distributed. 

fMRI data analysis 

Preprocessing 

Before starting with the analysis, the acquired structural, task and resting state data were 

structured according to the Brain Imaging Data Structure (BIDS) specifications (Gorgolewski 

et al., 2016). Data preprocessing of the task fMRI and rest fMRI data was performed using 

the fMRIPrep toolbox°20.2.0 (Esteban et al., 2019) with the default processing steps utilizing 

the software packages FSL, FreeSurfer, ANTs, and AFNI. For further details on each 

preprocessing step in fMRIprep, please refer to the online documentation under 

https://fmriprep.org/en/stable/. Briefly, a reference volume and its skull-stripped version were 

first generated. The BOLD reference was then co-registered to the T1-weighted anatomical 

reference image. Head-motion parameters with respect to the BOLD reference volume 

(transformation matrices, and six corresponding rotation and translation parameters) were 

estimated before any spatiotemporal filtering. The BOLD runs were then slice-time corrected 

and finally resampled into MNI152NLin2009cAsym standard space with a voxel size of 3mm 

x 3mm x 3mm. 

Several confounding time-series were calculated during preprocessing: framewise 

displacement (FD), Delta VARiation Signal (DVARS) and global signals were extracted for 

cerebrospinal fluid, white matter, and whole-brain masks, which were later used as nuisance 

regressors. In addition, a set of physiological regressors were extracted to allow for component-

based noise correction (CompCor, Behzadi, Restom, Liau, & Liu, 2007). No individuals had to 

be excluded due to motion (no image exceeded 0.3 mm average FD). 

The task fMRI data were then spatially smoothed with a 6 mm full-width half-maximum 

(FWHM) isotropic Gaussian kernel. The resting state fMRI data were further denoised using 

the eXtensible Connectivity Pipeline (XCP-engine) software. A high-parameter stream (36p) 

pipeline was used, combining frame-to-frame motion estimates, mean signals from white matter 

and cerebrospinal fluid and quadratic and derivative expansions of these signals (Power et al., 

2014; Satterthwaite et al., 2013), as they were outputted during fMRIPrep preprocessing. The 

data was also despiked, temporally filtered (0.01-0.08Hz), and spatially smoothed with a 6 mm 

FWHM isotropic Gaussian kernel. 

General Linear Modeling: Group analysis of the interval recognition task   
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 The analysis was performed using SPM12 (Functional Imaging Laboratory, UCL, UK) 

running under Matlab R2020b (The Mathworks, Inc., Natick, MA, USA). For each subject, a 

General Linear Model (GLM) was estimated, contrasting the listening conditions (both 

successive and simultaneous presentation of sound stimuli) versus the response screen. For the 

analysis, the first four volumes were discarded. In addition, confound regressors modelling FD 

per volume (Power et al., 2014), realignment parameters (translation and rotation) and the first 

six anatomical CompCor components were included as regressors of no interest in the 

individual GLMs. Each of the listening events was coded as an event with zero duration and 

convolved with a canonical hemodynamic response function. Finally, a high pass filter of 128s 

was used for the data and first-order autoregression allowed for estimation of temporal 

autocorrelations. We used a contrast of listening versus response to allow for the localization 

of a task-relevant network underlying auditory perception and recognition of intervals. We 

acknowledge that this contrast captures a variety of processes, including pitch perception, 

interval encoding, maintenance and mental manipulation of the perceived intervals aided by 

working memory, comparison of the perceived intervals with pre-existing 

representations/templates of intervallic relationships and labeling/naming the interval. Thus, 

the brain regions identified by this contrast are not considered exhaustive to intervallic 

processing.  At the group level, we used a one-sample t-test to test for significant clusters during 

interval recognition. 

Regions of Interest (ROI) definition  

Based on the group level GLM results, we identified the regions involved in interval 

perception at a threshold of p < .001 with a Family Wise Error (FWE) cluster-wise correction 

of p < .05. Additionally, a cluster size limit of 45 voxels was applied. For each of the identified 

ROIs, following the methodological approach of a variety of studies looking into task-informed 

resting state fMRI activity (Lumaca et al., 2019; Ramot et al., 2019; Tian et al., 2007; Ventura-

Campos et al., 2013; Yuan et al., 2018), a sphere was created using the MarsBaR toolbox for 

SPM (Oréfice et al., 2016). The center of the sphere was set at the peak MNI coordinate of each 

cluster and a 5mm radius was used.  

Resting state time-series extraction 

The Rex toolbox (region-of-interest extraction tool; The Gabrieli Lab, MIT; 

http://www.alfnie.com/software) was used to extract the time-series of the resting state data 

from within the above defined ROIs for each participant. The extraction was done in units of 

percent signal change referenced to the mean value of each ROI (Left Superior Temporal Gyrus, 

Right Superior Temporal Gyrus, Left Putamen, Left Supramarginal Gyrus, ventromedial 
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Prefrontal Cortex). For each participant a 5x5 weighted undirected correlation matrix was 

created using Pearson’s correlation coefficient in R (R Core Team, 2020). 

Graph Theory Analysis  

In order to characterize and compare the auditory network across all subjects, we utilized 

graph-theory measures. To do so, we used BRain analysis using GraPH (BRAPH) theory 

(Mijalkov et al., 2017), a toolbox written in Matlab that uses the Brain Connectivity Toolbox 

codebase (https://sites.google.com/site/bctnet/; Rubinov & Sporns, 2010) to calculate network 

metrics. In this framework, nodes are the spheres created corresponding to peak activations in 

the task-relevant brain regions. The edges represent the correlations between the temporal 

activation of pairs of these brain regions. The correlation matrices of all participants that were 

used in the calculation of two global measures, were weighted undirected matrix, where the 

edges indicate the strength of the connections. This way the information of the strength of the 

connectivity between all nodes is preserved, as the edge weight is a function of the correlation 

coefficient of the timeseries between two nodes. This way, both stronger and weaker 

connections are represented in the graph and contribute accordingly to the computation of the 

graph measures. The absolute values of all correlations were used in the calculation of the 

metrics. 

We computed two global9 network measures, namely average strength and global 

efficiency. Network strength was used to characterize how strongly the nodes are connected. 

The network strength on the nodal level is defined as the sum of the weights of all edges 

connected to a node. The global network strength was calculated as the average of the strengths 

of all five nodes for each participant. Global efficiency is used to characterize information 

transmission between the nodes of the network. Global efficiency at the nodal level defines the 

efficiency of the information transfer from one region to the whole network, and is computed 

as the average inverse shortest path length between one node and all other nodes in the network. 

Global efficiency at the global level, the indicator further used here, is then the average of the 

global efficiency of all nodes in the graph and is inversely related to the characteristic path 

length (Latora & Marchiori, 2001). 

Statistical significance testing was done by extracting the values of the two graph 

measures for each subject using BRAPH, square-root transforming them as they were not 

normally distributed, and then testing for a group difference using a two-sample t-test in JASP 

(JASP Team, 2021, version 0.16). 

 
9 The network measures are characterized as global when they are assessed including all nodes and edges of a 
defined network, in contrast to nodal measures that assess network characteristics for individual nodes. 
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Correlations between graph measures and behavior 

To establish a connection between graph measures and behavioral performance, 

individuals’ network strength and global efficiency were correlated with their performance in 

(a) the general music expertise score of the BGS, (b) the Intervals and Scales score of the BGS, 

(c) the interval recognition fMRI task, and (d) the reaction times of the interval recognition 

fMRI task, using Pearson’s coefficient in the first two cases, and Spearman’s rho in the latter 

two as the fMRI performance data shows ceiling effects and the reaction times are not normally 

distributed. The reported p values are False-Discovery Rate (FDR) corrected for multiple 

comparisons using the online tool (https://www.sdmproject.com/utilities/?show=FDR). 

Additional Analysis  

In order to ensure that any group differences observed in the graph measures would be 

specific to the interval recognition network and that any relation between the graph measures 

and behavior would be ascribed to the relevance of this network for behavioral performance, 

we conducted a control analysis using two other, well established resting state networks, namely 

the default mode network (DMN) and the executive control network (EN), where we also 

checked for group differences in graph measures and correlations between those measures with 

the behavioral ones. Following the publication of De Pisapia and colleagues we chose seven 

regions representative of the DMN and six regions for the EN (De Pisapia, Bacci, Parrott, & 

Melcher, 2016; see Table 3 in supplementary materials subsection, for details). The procedure 

of the analysis is identical with the one described above: spheres of 5mm radius were 

constructed centered on the peak MNI coordinates of the network regions, the time-series of 

the resting state data from these ROIs were extracted for each participant, a weighted undirected 

correlation matrix for each network was created using Pearson’s correlation coefficient, the two 

global measures of average strength and global efficiency were computed and again square-

root transformed. Statistical testing for group differences was estimated using a two-sample t-

test and individuals’ network strength and global efficiency were correlated with their 

performance in (a) the general music expertise score of the BGS, (b) the Intervals and Scales 

score of the BGS, and (c) the interval recognition fMRI task, using Pearson’ s correlation 

coefficient in the first two cases, and Spearman’s rho in the latter as the fMRI performance data 

shows ceiling effects.  

 

4.3 Results 
 
Behavioral results 

Berlin Gehoerbildung Scale (BGS) 
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Behavioral performance scores on the BGS showed a significant group effect: two-

sample t-tests with the unit-weighted z-scores showed significantly higher levels of 

performance for aspiring professional musicians compared to amateur musicians on the overall 

score of music expertise, t(39) = 5.72, p  <  .001, Cohen’s d = 1.8 (amateur musicians M = -0.56, 

SD = 0.46; aspiring professional musicians M = 0.4, SD = 0.65), and also on the more specific 

score of “Intervals and Scales”, t(39)= 6.18, p < .001, Cohen’s d = 1.9 (amateur musicians M = 

-0.74, SD = 0.7; aspiring professional musicians M = 0.52, SD = 0.6), see Figure 1. Of note, 

there were two extreme cases that were two but not three SDs away from the mean; these were 

therefore not considered outliers but were kept in all further analyses. Importantly, though, the 

group difference also stayed significant when they were excluded from the analysis (t(37) = 

5.686, p < .001, Cohen’s d =1.64). 

fMRI Interval recognition task  

As the behavioral performance data of the fMRI interval recognition task was not 

normally distributed but showed a ceiling effect, we first square-root transformed them and 

then used the Mann-Whitney-U test for independent samples to non-parametrically assess 

group differences in task accuracy (i.e., percentage of correct responses) between aspiring 

professionals and amateurs. There was a significant group effect on task accuracy in the fMRI 

interval recognition task (Mann-Whitney =40.5, p < .001, Cohen’s d = 4.5). As expected, 

aspiring professionals (M=83.6, SD= 14.4) exhibited higher accuracy in the task than amateur 

musicians (M=51.9, SD= 20.5); see Figure 1. There was also a significant group difference in 

reaction times with aspiring professionals responding faster than amateur musicians (Mann-

Whitney =292, p = .02, Cohen’s d = 4; aspiring professionals M=3, SD= 1.5, amateur musicians 

M=4.25, SD= 1.8). 

 

 
Amateur musicians Aspiring professionals 
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Figure 1. Behavioral performance scores on the Berlin Gehoerbildung Scale (BGS) and the 
fMRI interval recognition task. In all measures, there was a significant group effect in 
performance, with aspiring professionals (shown in black) showing higher performance than 
amateur musicians (in grey), as expected. Group distributions are shown as unmirrored 
raincloud plots and boxplots with medians and 95% CI with whiskers representing second and 
98th percentiles (Allen et al., 2019). Each dot represents a single subject. Asterisks indicate a 
significant group effect at p < .001.  
 
fMRI task results 

A whole-brain analysis examining the effects of listening versus response across all 

participants indicated higher activation during the listening condition in the following clusters: 

left and right superior temporal gyrus (STG) extending both anteriorly and posteriorly 

bilaterally including parts of the planum polare, the middle temporal gyrus and the right 

temporal pole, ventromedial prefrontal cortex (vmPFC), left putamen and left supramarginal 

gyrus (SMG) (see Table 1 and Figure 2). As can be seen in Figure 2, the cluster in the right 

hemisphere is rather large and extends also into right putamen. However, due to the thresholds 

used and the loci of peak activation within the cluster, right putamen did not constitute a 

separate cluster of activation.  

Table 1. Brain regions showing activation during listening in the fMRI interval recognition 
task, together with cluster sizes and peak MNI coordinates. Significant clusters were identified 
at a threshold of p < .001 with a Family Wise Error (FWE) cluster-wise correction of p < .05 
and cluster size of k > 45 voxels.  

 

Cluster Name  Size  Peak MNI Coordinates 

right superior temporal gyrus (STG), 

posterior division 

1019 voxels x=60, y=-40, z=12 

left superior temporal gyrus (STG), 

posterior division 

292 voxels x=-67, y=-16, z=4 

ventromedial prefrontal cortex (vmPFC) 153 voxels x=-1, y=48, z=-10 

left putamen  112 voxels x=-22, y=12, z=4 

left supramarginal gyrus (SMG) 68 voxels x=-61, y=-46, z=26 
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Figure 2. Significant clusters in left and right superior temporal gyrus, ventromedial prefrontal 
cortex, left putamen and left supramarginal gyrus showing higher activation during listening 
versus response (p < .001, cluster-wise FWE corrected at p < .05, cluster size k > 45 voxels). 
Overlaid on the clusters are the spherical ROIs (in yellow) created around the MNI coordinates 
of peak activation voxels within the clusters. 
 

fMRI resting state graph-theoretical analysis 

Using spheres built around the peak coordinates of the regions showing activation in 

the interval recognition task GLM, we went on to examine activity and connectivity in those 

regions in the resting state data. Firstly, the correlations of the extracted time series between 

each region of the network to the remaining four regions were computed. The average 

correlation matrix, rendered as a network, provides information about the overall connectivity 

of the functional network across all 41 participants (Figure 3). In order to characterize the 

network for each participant in terms of connection strength and efficiency in information 

transmission and to compare the two groups, graph theory was used and the graph measures of 

network strength and global efficiency were calculated. 
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Figure 3. The network of regions facilitating interval recognition as identified based on the 
fMRI task and its average correlation among all regions for all participants. LSTG: Left superior 
temporal gyrus, RSTG: Right superior temporal gyrus, LPutamen: Left putamen, LSMG: Left 
supramarginal gyrus, vmPFC: ventromedial prefrontal cortex). Displayed are also the pairwise 
correlation coefficients between each pair of nodes (uncorrected). The brain network was 
visualized with the BrainNet Viewer (http://www.nitrc.org/projects/bnv/)(Xia et al., 2013). 
 

The average network strength and global efficiency was compared between the two 

groups using two-sample t-tests. Aspiring professional musicians indeed showed significantly 

greater network strength (t(39) = 2.213, p = 0.03, Cohen’s d = 0.7; amateur musicians M = 0.97, 

SD = 0.12; aspiring professional musicians M = 1.07, SD = 1.13) and global efficiency (t(39) = 

2.235,  p = 0.03, Cohen’s d = 0.7; amateur musicians M = 0.51, SD = 0.05; aspiring professional 

musicians M = 0.56, SD = 0.06) than amateur musicians (Figure 4). 
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Figure 4. Group differences in network strength and global efficiency. The group of aspiring 
professionals (in black) showed greater average network strength and global efficiency than 
amateur musicians (in grey). Group distributions are shown as unmirrored raincloud plots and 
boxplots with medians and 95% CI with whiskers representing second and 98th percentiles. 
Each dot represents a single subject. Asterisks indicate a significant group effect at p < .05. 
 
Correlations between graph-theory measures and behavioral performance  

The Spearman’s rho correlation coefficient between each individual’s network strength 

on the one hand and accuracy in the fMRI interval recognition task on the other hand revealed 

a significant positive correlation (rho = .36 pFDR = .02). Likewise, we found a positive 

correlation between network strength and the BGS “Intervals and Scales” scores (r = .35 pFDR 

= .03), but not with the BGS Musical Expertise scores (r = .26, pFDR =.1), see Figure 5. 

Additionally, we found a significant positive correlation between global efficiency and 

accuracy in the fMRI intervals recognition task (rho = .33, pFDR = .03), with the BGS “Intervals 

and Scales” scores (r = .31, pFDR = .04), but not with the BGS Musical Expertise scores (r = 

.25, pFDR = .1; see Figure 5). There were no significant correlations between graph measures 

and reaction times in the fMRI interval recognition task. 

Amateur musicians Aspiring professionals 
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Figure 5. Correlations between graph measures and behavioral performance. Network strength 
(upper row) and global efficiency (lower row) correlated positively with accuracy in the fMRI 
interval recognition task (both across groups and within aspiring professionals only) and the 
BGS “Intervals & Scales” factor, but not with overall BGS “Musical Expertise”. Asterisks 
indicate significant correlations following FDR correction. 
 
Additional Analysis 
 We also compared average network strength and global efficiency between the two 

groups in the typical DMN and EN networks using two-sample t-tests. Professional musicians 

and amateur musicians did not differ in terms of network strength in the DMN (t(39) = 0.413, 

p =.7, Cohen’s d = -0.131) or the EN (t(39) = 0.152, p = .8, Cohen’s d = -0.048), nor in terms 

of global efficiency in the DMN (t(39) = 0.580, p = .6, Cohen’s d = -0.184) or the EN (t(39) = 

0.6, p = .6, Cohen’s d = -0.191). There were no significant correlations between DMN network 

strength and behavioral performance (rho = .12, p = .4 for fMRI Interval Recognition task, r = 

.08, p = .6 for the BGS Musical Expertise and r = .05, p = .7 for BGS Intervals & Scales). There 

were also no significant correlations between global efficiency and behavioral performance 

(rho = .12, p = .4 for fMRI Interval Recognition task, r = .07, p = .6 for the BGS Musical 

Expertise and r = .09, p = .5 for BGS Intervals & Scales). Similarly, there were no significant 

correlations between EN network strength and behavioral performance (rho = .14, p = .3 for 

fMRI Interval Recognition task, r= .07, p = .7 for the BGS Musical Expertise and r = -.03, p = 

.8 for BGS Intervals & Scales), nor between EN global efficiency and behavioral performance 

(rho = .2, p = .2 for fMRI Interval Recognition task, r = .08 p = .5 for the BGS Musical Expertise 

and r = .04, p = .8 for BGS Intervals & Scales). 
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4.4 Discussion 
 
 In this study, we investigated expertise-related differences in resting state functional 

organization of an auditory network facilitating interval recognition as well as its relation with 

behavioral performance. First an fMRI interval recognition task was used to localize a network 

of regions activated during interval recognition, eventually consisting of the left and right 

superior temporal gyrus (STG), the ventromedial prefrontal cortex (vmPFC), the left putamen 

and the left supramarginal gyrus (SMG). We then resting state fMRI data and found that 

network strength and global efficiency differed significantly between the two groups. 

Moreover, network strength as well as global efficiency were significantly associated with 

behavioral performance in the fMRI task as well as with the measure of Intervals and Scales of 

the BGS, but not with the BGS measure of musical expertise. These group differences as well 

as the correlations between graph measures and behavioral measures were specific to the 

intervals network, and did not occur within the typical default mode or executive control 

network. 

The two largest clusters of activation reported from the fMRI task lie on the left and 

right auditory STG, extending in both hemispheres in the posterior and anterior parts including 

also parts of the right Middle Temporal Gyrus (MTG), Planum Polare bilaterally and the right 

Temporal Pole. Peak activations in both clusters are located in posterior STG. Regions within 

these clusters correspond to the primary auditory cortices as well as belt and parabelt regions 

which constitute the secondary associative auditory cortices. Activations in the reported regions 

are in line with the most prevalent findings in studies regarding various aspects of tonal and 

general auditory processing, typically with a rightward hemispheric functional asymmetry, as 

right STG appears more specialized for spectral features processing while the left STG is more 

specialized for temporal features processing (Zatorre & Belin, 2001). Brain regions like the 

Heschl’s gyrus and adjacent surfaces have been functionally related to auditory pitch perception 

while pitch changes have been related to activation in the right STG and additionally in right 

planum temporale and planum polare and anterior parts of the STG (Hyde et al., 2008; Patterson 

et al., 2002; Warren & Griffiths, 2003). The right posterior STG is reported in addition to play 

a role in imagery or rehearsal of tones and melodies (Peretz & Zatorre, 2005), auditory working 

memory (Nolden et al., 2013), and perceptual decision making (King et al., 2018; McDermott 

& Oxenham, 2008). Overall, interval information processing appears to involve areas anterior 

and posterior of the supratemporal plane (Koelsch, 2011), where also our clusters of activation 

extend.  
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Apart from the superior temporal areas, three additional clusters were found in extra-

auditory regions, in the basal ganglia, the medial orbitofrontal cortex and the left supramarginal 

gyrus. The left and right putamen, parts of the dorsal striatum, are related to a wide-range of 

functions from sensorimotor to decision making and reward processing (Groenewegen, 2003). 

In relation to audition, evidence from animal studies has established the role of corticostriatal 

neurons in auditory decisions (Znamenskiy & Zador, 2013) and in integration of multisensory 

information (Zhong et al., 2014). In humans, putamen activation has been detected in a variety 

of auditory processes, including beat perception, sensory-motor predictability, finger tapping, 

music comprehension, tone discrimination, audiomotor coupling, assumed to relate to temporal 

and sequential aspects of processing (i.e., syntax in language), and musical imagery (Geiser et 

al., 2012; Kotz et al., 2009; Pando-Naude et al., 2021). The left SMG, part of the somatosensory 

association cortex, apart from its involvement in phonological and articulatory processes 

(Oberhuber et al., 2016), has been shown to facilitate short-term pitch memory (Schaal, Pollok, 

& Banissy, 2017; Vines, Schnider, & Schlaug, 2006) and maintenance of pitch information in 

studies using transcranial magnetic stimulation (TMS; Schaal et al., 2015). The ventromedial 

prefrontal cortex (vmPFC), a region receiving projections from multiple sensory areas and 

limbic structures, plays a central role in sensory-input integration and in perception-based 

decision-making (Sharma & Bandyopadhyay, 2020). Animal studies have shown orbitofrontal 

activation in response to sound and an association of the orbitofrontal cortex, constituting part 

of the vmPFC, with the primary auditory cortex (Winkowski et al., 2013, 2018). In humans, 

activation of the vmPFC and ventrolateral PFC has been reported during auditory processes, 

involving attending to pitch, rhythm and melodies, determining sound length and auditory 

working memory (Plakke & Romanski, 2014). More importantly, the rostromedial prefrontal 

cortex has been reported to maintain a topographic representation of the tonality surface (Janata, 

Birk, et al., 2002). These findings highlight the role of the medial PFC in maintaining tonal 

contexts and facilitating integration of information necessary for interval perception and 

identification. 

Consequently, all five regions of the reported interval recognition task network have 

already been associated with various aspects of auditory processing pertinent to the current 

study in existing literature. We consider pitch and interval processing to be reflected in 

activation primarily in bilateral STG, short-term maintenance of the auditory information in the 

left SMG, and integration of information as well as preparation for decision and response in the 

putamen and vmPFC. Thus, the activation of extra-auditory regions comes as no surprise as 

these structures mediate different aspects of auditory processing. There exists a rich literature 
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especially regarding the connection between auditory cortex and frontal regions often termed 

the ventral and dorsal dual stream of auditory processing, in which we suspect our findings to 

reflect the ventral stream, originating in the primary auditory cortex and projecting to the ventral 

regions of the frontal cortex (Zulfiqar et al., 2020).  

Although a first view on the spherical ROIs created around the voxels with peak 

activation values gives an impression of general left lateralization of the regions, this does not 

portray entirely the outcome of the fMRI task analysis. Apart from the left SMG, the clusters 

of activation were bilateral, as can be seen in Figure 2. The proximity of activation and the size 

of the smoothing kernel influenced the formation and the extent of the clusters. Under these 

restraints, the right putamen belonged to the larger cluster extending onto the right STG and the 

cluster formed bilaterally on the vmPFC was restricted to the left hemisphere, where the peak 

activation value of the cluster was located. In addition, we did not take into account task-

specific demands and task-difficulty for the purposes of this study, which have been pointed 

out in other studies to impact the lateralization of the observed activity (Angenstein, Scheich, 

& Brechmann, 2012; Brechmann & Angenstein, 2019). We therefore would like to refrain from 

making any inferences regarding lateralization of activity. 

 The group differences in performance in the behavioral task of BGS and in performance 

in the fMRI task, paralleled by group differences in graph measures of network strength and 

global efficiency, adds to the rich literature of functional and structural reorganization of the 

brain in relation to musical training of different intensities and aspirations as well as expertise 

level (Jäncke, 2009; Olszewska et al., 2021; Schlaug, 2008 ; James et al., 2014; James et al., 

2018; Oechslin et al., 2013). Average network strength is computed as the sum of all weights 

of all edges connected to a node, averaged for all nodes (Maudoux et al., 2012). Thus, the 

greater network strength observed in the group of aspiring professionals indicates stronger 

functional connectivity among regions of the interval recognition auditory network, irrespective 

of task execution. Such a finding has already been established using resting state fMRI, relating 

musical expertise to increased functional connectivity not only among auditory regions (Luo et 

al., 2012; Palomar-García et al., 2017; Schlaug, 2008) but also among auditory, multisensory 

and motor regions (Gottfried Schlaug, 2008; Wenger et al., 2021), prefrontal regions (Klein et 

al., 2016), insular cortex and parietal regions (Luo et al., 2014). Global efficiency, computed as 

the average of the inverse shortest path length from a node to all others, averaged for all nodes 

(Latora & Marchiori, 2001), points towards more direct and efficient communication between 

the nodes of a network and functional integration. Therefore, the greater global efficiency 

observed in the group of aspiring professionals suggests a more efficient information flow and 
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communication between the nodes of the network facilitating interval recognition. Hence, 

aspiring professionals –either as a result of their training or because of their self-selection based 

on talent– seem to rely on a more connected and efficient network that underlies their better 

interval discrimination ability, as suggested by the correlations between the graph measures and 

behavioral performance. This is also supported by the specificity of the observed group 

differences in graph measures of the interval recognition network but not the DMN or EN, and 

the correlations between these graph measures and behavior. 

So far, only few studies have applied graph measures to characterize brain networks 

related to musical training and expertise. One study using a paradigm in which participants 

listened to music clips reported increased degree, clustering, and local efficiency, especially for 

the left STG in musicians with absolute pitch compared to musicians without absolute pitch 

(Loui et al., 2012). Another study using a similar paradigm found significantly higher nodal 

degree for musicians in cerebellar regions, the right temporal pole, the parahippocampal gyrus 

and the inferior temporal gyrus (Alluri et al., 2017). In a study where graph measures were 

applied on whole-brain resting state fMRI data, musicians had higher average strength, higher 

clustering coefficient, and, surprisingly, lower global efficiency in comparison to nonmusicians 

(Leipold et al., 2021). In yet another study, however, using resting state 

magnetoencephalography (MEG) data, greater global efficiency was reported for musicians, 

just as we find here (Paraskevopoulos et al., 2017). In a previous study, using the same resting 

state fMRI data as the current one and investigating the functional connectivity and graph 

measures of the left planum polare, which underwent volumetric changes over time, we found 

that the group of aspiring professionals exhibited significant increases over time in global 

efficiency and clustering measures (Wenger et al., 2021). This finding speaks in favor of a 

training-associated, rather than purely talent-based, interpretation of the present results. Still, 

we do not know whether amateur musicians would have been able to show this change had they 

been exposed to the exactly identical training environment. Although further research is 

required to better characterize neural networks underlying auditory processing and musical 

expertise, we consider the current finding of group differences in graph measures that relate to 

behavioral outcomes as an important indicator of the potential such approaches have in 

deepening the understanding of the characteristics of the organization of brain regions 

underlying specific processes, in relation to different levels of expertise. 

The present results also elucidate the relationship between task fMRI and resting state 

fMRI. Regions co-activated or exhibiting heightened functional connectivity while executing a 

specific task are thought to form a task-relevant functional network. During resting state fMRI, 
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such co-activation of brain regions also occurs and appears organized in several large-scale 

resting state networks, reproducible across research institutes and populations (Damoiseaux et 

al., 2006; van den Heuvel & Hulshoff Pol, 2010). One part of these networks is typically also 

an auditory one, encompassing primarily bilateral primary and associative auditory cortices and 

often including other brain regions like insula, prefrontal, sensorimotor, anterior cingulate and 

left occipital cortices (Maudoux et al., 2012). A series of studies and an impressive meta-

analysis of a large number of fMRI studies have shown that task-related activation patterns can 

indeed be mapped onto resting state networks (Calhoun, Kiehl, & Pearlson, 2008; Cole et al., 

2014, 2016; Di, Gohel, Kim, & Biswal, 2013; Simon-Vermot et al., 2018; Smith et al., 2009). 

Such findings suggest that regions intrinsically connected during resting state become 

simultaneously activated during task execution. Additionally, individual variability in resting 

state has been found to be correlated and predictive of individual variability in cognitive and 

motor tasks (Tavor et al., 2016) as well as in processes of emotional regulation and decision 

making (Cole et al., 2014). Such findings have led to a conceptualization of intrinsic network 

architectures, as captured in resting state, that are further shaped and altered during task 

execution by specific task demands (Cole et al., 2014). We consider the results reported in this 

study to add further to this literature by demonstrating that an auditory network extracted during 

execution of the specific process of interval recognition, not only retains its functional 

organization in resting state, but further that graph measures outlining its strength and efficiency 

can characterize musical expertise and predict behavioral performance. 

Finally, we wish to address some limitations of the current study. As the accuracy data 

of the fMRI interval recognition task was not normally distributed, the interpretation of the 

significant correlation between task accuracy with network strength and global efficiency 

should be taken with a grain of salt. Nevertheless, we see a clear tendency of greater network 

strength associated with better performance not only in the fMRI interval recognition task, but 

also the “Intervals and Scales” measure of the BGS. Obviously, the current results do not 

answer the question whether amateur musicians did not recognize some of the different 

intervals or were simply unable to correctly name them. Still, the correlation between network 

strength and global efficiency with behavioral performance suggests a link between the more 

general feature of music expertise (which includes studying of how to correctly name intervals) 

and brain networks. Future research should try to disentangle differences between correct 

perceptual recognition of smaller versus greater intervals, and the ability to correctly name 

them. Furthermore, we would like to highlight that the network of regions reported here, based 

on the loci of peak activation within each significant cluster from the task-fMRI analysis, is a 
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network facilitating interval perception and recognition, but is not exhaustive in the regions it 

includes. The contrast of listening versus response does not allow for a very precise localization 

of tonal processes or for deciphering between simultaneously and sequentially presented 

intervals. In addition, although the significant clusters of activity are rather extensive, especially 

along the STG bilaterally, the spherical ROIs cover only a small part of the clusters, making 

them indicative of the strength of activation in this region but not very fine-grained in their 

precision. Finally, we need to acknowledge the basic limitation that participants were not 

randomly assigned to the different groups, an issue that often arises when comparing groups 

with different levels of expertise. The decisive difference between the groups is the professional 

intention which is also reflected in the intensity of daily training, practical and theoretical, 

which they undertake. This limitation was attenuated, but not overcome, by matching 

participants in both groups on years of playing music. Given the pervasive presence of gene-

environment correlations (Ullén et al., 2016), it is likely that participants in the two groups 

differed in their propensity to profit from extended musical practice. 

 

4.5 Conclusion 
 

In this study, a functional network defined on the basis of fMRI activation during interval 

recognition differed in strength and global efficiency between amateur musicians and aspiring 

professionals. Furthermore, network strength and global efficiency correlated with performance 

on the fMRI interval recognition task as well as with the ability to name and identify intervals 

and scales assessed with the BGS, a psychometrically validated test of musical expertise. 

Together, these findings highlight how task-informed resting state fMRI can capture persisting 

expertise-associated connectivity differences underlying task execution and relate them to 

expertise-associated behavioral performance. Aspiring professionals, presumably as a result of 

their training, seem to rely on a more connected and efficient auditory network that supports 

expert performance levels. The observed group differences in connectivity and global 

efficiency at rest in a task-relevant network may point to trait-like domain-specific differences 

in the intensity and efficiency of neural communication. 
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4.6 Supplementary material 

 

Primary music instrument Aspiring professional 
musicians 

Amateur 
musicians 

String instruments  

struck (piano) 6 3 

bowed (violin,cello) 5 4 

plucked (gitarre) 3 6 

Percussion 3 - 

Wind instruments (trompete, saxophone,flute) 4 4 

Singing 2 - 

 
Table 2 Primary musical instruments reported by participants in both groups and distributed 
according to the type of instrument (string instruments, percussion, wind instruments, voice). 

 

Regions x y z Network 

Medial Prefrontal Cortex -1 49 -5 DMN 

Posterior Cingulate Cortex -6 -52 40 DMN 

Precuneus 0 -56 28 DMN 

Left Precuneus/Posterior Cingulate Cortex -10 -66 24 DMN 

Right Precuneus/Posterior Cingulate Cortex 10 -66 24 DMN 

Left Lateral Parietal -46 -70 36 DMN 

Right Lateral Parietal 46 -70 36 DMN 

Left anterior dorsolateral Prefrontal Cortex -27 63 6 EN 

Right anterior dorsolateral Prefrontal Cortex 27 63 6 EN 
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Left dorsolateral prefrontal cortex -46 38 12 EN 

Right dorsolateral prefrontal cortex 46 38 12 EN 

Left Inferior Frontal Gyrus -40 24 -10 EN 

Right Inferior Frontal Gyrus 40 24 -10 EN 

 
Table 3.  Brain regions of the default mode network (DMN) and the executive control 
network (EN) with coordinates in MNI space (see De Pisapia et al., 2016) used in an 
additional control analysis to test the specificity or generalizability of our current findings. 
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5.1 Introduction 
 

Listening to music is a particularly complex experience. What begins as a sensory act 

of extracting and processing acoustic features alongside the auditory pathway, involving 

cognitive as well as memory processes (Zatorre & Salimpoor, 2013), becomes a complex 

aesthetic experience. It involves a potentially immersive component, it elicits emotional and 

physiological reactions and activates the reward-system of the brain (Reybrouck et al., 2021). 

Although the role of various brain areas in the processing of individual musical features like 

pitch, tonality, timbre and rhythm perception has been extensively studied (Koelsch, 2011; 

Peretz & Zatorre, 2005), fewer studies have undertaken the attempt to study more ecologically 

valid settings in which participants freely listened to music without artificial manipulation of 

the stimuli, in order to determine the neurophysiological correlates of experiencing music. 

Studies investigating patterns of brain activity during unconstrained listening to music 

have provided some evidence for the potential of this approach to locate brain areas and groups 

of regions crucial for processing specific features of musical stimuli like musical syntax 

(Schmithorst, 2005), beat salience (Toiviainen et al., 2020), timbral features, pulse and tonality 

(Alluri et al., 2012). A few studies have focused on the distinct contribution of frequency bands 

in processing specific features like repartitioning of rhythm periodicities and key (Zhu et al., 

2020), while other studies have used classification techniques to show that different brain 

activation patterns bear information about different musical pieces (Hoefle et al., 2018), predict 

timbral and rhythmic features (Alluri et al., 2013; Toiviainen et al., 2014) and identify brain 

regions relevant for self-referential appraisal and aesthetic judgments (Alluri et al., 2013). The 

variety of methodological approaches adopted by these studies, each tailored to the different 

research questions posed, as well as the wide variety of the musical stimuli used, the responses 

they elicit and the overall cultural extra-musical meaning they carry, do not allow for a 

convergent view of how listening to music translates into specific patterns of brain activation. 

Here, we take a different approach in examining the relation of brain activation and 

listening to music, without focusing on specific musical features, but rather examining aspects 

of whole brain organization, utilizing dynamic functional connectivity (fc) and graph measures. 

Dynamic fc uncovers fluctuations of brain activity over time and thus allows for allocating 

recurring connectivity patterns into configurations or states (Hutchison et al., 2013; Lurie et al., 

2019; Preti et al., 2017). These states have been linked to cognition (Gonzalez-Castillo et al., 

2015; Simony et al., 2016), phenotypes (Simony et al., 2016), disease (Hutchison et al., 2013) 

and brain organization during resting state ( Allen et al., 2014; Calhoun et al., 2014). Graph 
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theory, on the other hand, offers a framework for modeling the brain as a network consisting of 

nodes (brain regions, neural assemblies) and edges (connections) that represent system 

elements and their interrelations (Rubinov & Sporns, 2010). Within this framework, a variety 

of metrics are used to characterize local and global features of a network, interactions of its 

elements and aspects of network organization promoting segregation and integration (Bassett 

& Sporns, 2017; Sporns, 2013). We use two graph metrics, modularity and average strength, to 

characterize the states that emerge. Modularity is a measure of network segregation, quantifying 

how a network can be nearly decomposable into sets of subnetworks/communities comprising 

of regions that are densely connected to each other and sparsely connected to regions from other 

modules (Sporns & Betzel, 2016). Average strength is a measure indicative of the overall 

connectivity of the network (Rubinov & Sporns, 2010).  

In addition to characterizing whole brain functional organization during unconstrained 

listening to music, we set out to investigate how different levels of music expertise influence 

functional organization while listening to music. There is ample evidence for the modulatory 

effects of musical training in cortical, sub-cortical and cerebellar structures in measures of grey 

matter volume and thickness (Bermudez & Zatorre, 2005; Gaser & Schlaug, 2003; Palomar-

García et al., 2017; Wenger et al., 2021), in white matter architecture and connectivity (Abdul-

Kareem et al., 2011) and in functional activation and connectivity (Bianchi et al., 2017; 

Olszewska et al., 2021). These findings need to be cautiously interpreted in the presence of 

potential genetic and anatomical predispositions (Ullén et al., 2016; Zatorre, 2013). In relation 

to unconstrained listening to music, many studies have focused on activation strength, showing 

more prevalent activation for musicians in regions of the auditory cortex (Angulo-Perkins et 

al., 2014), the frontal lobe, the primary and supplementary motor areas (Bangert et al., 2006; 

Habermeyer et al., 2009) and parietal areas, associated with syntax processing and selective 

attention (Oechslin et al., 2013; Seung et al., 2005). Furthermore, musicians are reported to 

show increased strength, local and global efficiency in music-processing brain networks 

(Gonzalez et al.,2021) and greater integration of motor and somatosensory regions (Oechslin et 

al., 2013). 

In this study, we presented participants with two musical pieces, one by J.S. Bach and 

one by Anton Webern, and thereby introduced two listening conditions that elicit different 

processing demands. The piece of J.S. Bach, an example of baroque music composition, 

belongs to an enculturated and familiar musical corpus for Western listeners, which has been 

mainly used in music-related neuroscientific research. On the other hand, the piece by A. 

Webern is part of the movement of compositional innovations of the 20th/21st century, an 
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example of the 2nd Viennese School, and poses a challenging and experimental music 

experience, composed without following the tonal, rhythmic and form-wise standards of 

Western music (Mencke et al., 2019). We first conducted a quantitative description of the 

musical pieces in terms of established components of musical analysis to reveal structural 

differences between the two pieces and to get a sense of the different processing demands they 

might require. We then examined how these two listening conditions relate to brain connectivity 

states by using dynamic fc analysis and corresponding state metrics that quantify transitions 

between states and time allocated in each. We hypothesized that (i) during listening to the piece 

by A. Webern all participants will find themselves in states characterized by high integration 

as a result of the demands posed by this condition, specifically its complexity and unfamiliarity, 

than while listening to the piece by J.S Bach. Similarly, in terms of graph measures, we 

hypothesized that (ii) listening to the piece by A. Webern would be related to brain states 

characterized by higher overall connectivity and reduced modularity in comparison to listening 

to the piece by J.S Bach. Our hypotheses are rooted in findings relating cognitive demands to 

whole brain configurations, where greater cognitive effort has been related to the emergence of 

a more integrated, globally efficient and less clustered configuration (Kitzbichler et al., 2011; 

Shine et al., 2016). 

With respect to the effect of expertise on unconstrained listening to music, we applied 

static fc analysis and computed two global graph measures, in order to directly compute group 

differences in network architecture. We expected that (iii) the group of higher expertise will 

exhibit higher strength and global efficiency, a measure of network integration, during listening 

to the piece by A. Webern, indicative of more skillful processing. Additionally, we used two 

nodal graph measures and explored the brain regions playing putative roles for each group in 

the different conditions. We used the centrality graph measure of nodal degree, which provides 

indication on which brain regions act as network hubs, occupying central positions in functional 

organization and information transmission (Power et al., 2013; van den Heuvel & Sporns, 

2013), and the measure of participation coefficient, indicating which regions facilitate 

communication between subnetworks, acting as between-modules connector hubs (van den 

Heuvel & Sporns, 2013). We expected that in these nodal graph measures, (iv) the group of 

higher expertise will exhibit higher nodal degree and participation coefficient, on a variety of 

brain regions, crucial for music processing, throughout the brain, especially in the condition of 

listening to A. Webern, suggesting utilization of the available functional repertoire, presumably 

enhanced by training, to meet the demands posed by the listening condition.  
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5.2 Materials and methods  
 
Participants 

In the current set of analyses, we investigated the differences in listening to a baroque 

musical piece by J.S. Bach and a piece by A. Webern of the 2nd Viennese School of music, in 

two different groups of participants: aspiring professional musicians preparing for entrance 

exams in order to study at any University of Arts and amateur musicians. Information about the 

participants recruited can be found in subsection 4.2 (chapter 4), as all three projects of this 

dissertation are based on data acquired within the same study. 

During the fMRI data acquisition participants experienced two listening conditions. 

During the first one, they listened to a piece by Johann Sebastian Bach, the Harpsichord 

Concerto in E-major, BWV. 1053 Allegro, bars 1-321, a piece of the baroque music genre, for 

a duration of 5 minutes. In the second condition, they listened to a piece by Anton Webern, 

namely Variations Op. 30, bars 1-134, a piece belonging to the Second Viennese School, 

likewise for a duration of 5 minutes. We would like to emphasize that the more general labelling 

of those two specific pieces as “baroque” versus “Second Viennese School” is simply done to 

ease the understanding and is not meant as an indication for broader generalizability. 

fMRI Data Acquisition  
All MR images were acquired on a 3T MRI scanner system (Siemens Tim Trio, 

Erlangen, Germany) with a standard 12-channel head coil. The MR measurement protocol 

included a T1-weighted structural scan and a resting-state acquisition. As structural images, a 

3-dimensional (3D) T1-weighted magnetization prepared gradient-echo sequence (MPRAGE) 

of 9.20 min was used with the following parameters: repetition time (TR) = 2500 ms, echo time 

(TE) = 4.77 ms, inversion time (TI) = 1100 ms, flip angle = 7°, bandwidth = 140 Hz/pixel, 

acquisition matrix = 256×256×192, isometric voxel size = 1 mm3. We used the pre-scan 

normalize option and a 3D distortion correction for nonlinear gradients. Whole brain functional 

images were collected using two T2∗- weighted EPI sequences of 5 min each, sensitive to BOLD 

contrast with the following parameters: TR = 2000 ms, TE = 30 ms, FOV=216×216×129 mm3, 

flip angle = 80°, slice thickness 3.0 mm, distance factor = 20%, voxel size = 3 mm3, 36 axial 

slices, using GRAPPA acceleration factor 2. Slices were acquired in an interleaved fashion, 

aligned to genu splenium of the corpus callosum. 

fMRI preprocessing 

The MATLAB toolbox Data Processing Assistant for Resting-state functional MRI 

(DPABI) was used (Yan & Zang, 2010) which is based on SPM12 

(http://www.fil.ion.ucl.ac.uk/spm) and Resting-State fMRI Data Analysis Toolkit (REST; Song 
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et al., 2011). The resting state data were preprocessed using DPABI V4.3 (Yan, Wang, Zuo, & 

Zang, 2016) with MATLAB 2018a (The MathWorks, Sherborn, MA, USA). The first 10 time 

points of MR recording (20 seconds) were discarded to allow magnetization to approach a 

dynamic equilibrium and to allow participants to adapt to scanning noise. The remaining 

volumes were corrected for different signal acquisition times and then realigned. Individual 

structural images were co-registered to the mean functional image after realignment. The 

transformed structural images were then segmented into grey matter, white matter, and 

cerebrospinal fluid (GM, WM, and CSF; Ashburner & Friston, 2005). To regress out the 

nuisance signals, head motion, respiratory and cardiac effects, we used the Friston 24-parameter 

model (Friston et al., 1996) and signals from WM and CSF. In addition, linear and quadratic 

trends were regressed out to account for low-frequency drifts of the BOLD signal. The images 

were spatially normalized to the Montreal Neurological Institute (MNI) space and resampled 

to 3x3x3 mm3. Finally, spatial smoothing (FWHM kernel: 4 mm) was applied to the functional 

images and temporal filtering (0.01–0.1 Hz) was performed on the time series. 

Musical feature analysis of the two pieces 

 Analysis of the two music pieces was conducted with the MIR toolbox (version 1.8.1) 

(Lartillot et al., 2008; Lartillot & Toiviainen, 2007) running under MATLAB 2019b (The 

Mathworks, Inc., Natick, MA, USA). This toolbox includes an integrated set of functions 

written in MATLAB, dedicated to the extraction of musical features from audio files. The 

features relate to established elements in music analysis such as dynamics, timbre, pitch, 

tonality, rhythm and form. We extracted a subset of features from the categories of tonality, 

rhythm and form for a descriptive overview of the two musical pieces, highlighting the 

differences in their tonal and rhythmic composition and their self-similarity, which translate to 

different listening experiences10. From the tonality features we extracted the chromagram and 

key clarity. The chromagram, or also harmonic piece class profile, shows the distribution of 

energy along pitch classes and is computed in a logarithmic scale using fast Fourier 

transformation (FFT). Key clarity gives an estimation of the presence of each key in the signal 

at any given moment. Key clarity is calculated based on the pitch chromagram and the 

Krumhansl-Kessler algorithm matching pitch class profiles to key profiles (Krumhansl, 2001; 

Toiviainen & Krumhansl, 2003), using a window size of 5s and a hop factor of 33%, following 

Lartillot and Toiviainen (2007). From the rhythmic features we extracted the pulse clarity, 

 
10 Of course, the features extracted are by no means descriptive of what constitutes a whole experience of listening 
to music. They are mere indicators of some points of difference between the two musical pieces, facilitating 
generation of hypotheses regarding differences in the neural correlates of listening to the two musical pieces. The 
differences highlighted by this analysis do not contain or suggest any evaluation or judgment regarding how 
individuals experience music belonging to these musical genres, or the pieces per se. 
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which gives an estimation of rhythmic clarity, indicating the strength of beats. It is computed 

using the maximum correlation value in the autocorrelation curve as heuristic (Lartillot et al., 

2008), using again a window size of 5s and a hop factor of 33.  Finally, we extracted the higher-

level feature of self-similarity, computed based on the frequency spectrum of the music pieces, 

depicting the similarity between all possible pairs of frames of each music piece.  
Assessing neural differences between listening conditions 

Dynamic Functional Connectivity Analysis  
After preprocessing the data, we extracted the time courses of 112 brain regions taken from the 

Harvard Oxford atlas (Desikan et al., 2006) for each participant and during both listening 

conditions, using DPABI V4.3. These were further analyzed with the DynamicBC toolbox 

(Liao et al., 2014) under MATLAB 2019b, computing the dynamic functional connectivity 

using a sliding window approach, with a window length of 60s moving in steps of 1 TR (2s), 

across both musical pieces. Further, the dynamic functional connectivity matrices of all 

subjects underwent k-means clustering analysis, which collapses the temporal dimension of 

dynamic connectivity matrices into several connectivity maps describing the recurring patterns 

of activation during listening to the musical pieces (Allen et al., 2014; Liu & Duyn, 2013) – 

referred to from here on as states. The optimal number of cluster partition was 2 and was based 

on the convergence of four distance measures: Squared Euclidean distance (k=2), Silhouette 

index (k=2), Calinski-Harabasz index (k=2), and Davies-Bouldin index (k=2). 

Graph measures and state metrics on dynamic FC analysis 

We sought to characterize each state in terms of segregation and overall connectivity by 

computing the graph-theoretic measures modularity index and average strength, using the Brain 

Connectivity Toolbox (https://sites.google.com/site/bctnet/, Rubinov & Sporns, 2010). 

Modularity index is a measure of the degree to which a network can be subdivided into 

communities, namely non-overlapping subnetworks, in a way that maximizes the number of 

within-subnetwork edges and minimizes the number of between-subnetwork edges. Its 

computation follows the calculation of community structure using a fast multi-iterative 

generalization of the Louvain community detection algorithm (Blondel et al., 2008; Newman, 

2006; Reichardt & Bornholdt, 2006). The strength is a measure of the magnitude of the 

connectivity between two nodes and the average strength reflects the magnitude of the 

connectivity of the whole network by averaging over all possible pairs of nodes. On the nodal 

level, strength is computed as the sum of weights of all edges connected to a node; on the whole 

network level, the strengths of all nodes are averaged (Rubinov & Sporns, 2010). After setting 

negative correlations to 0 as is common practice in order to compute the modularity index, 
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modularity index and average strength were calculated for each subjects’ connectivity matrices 

of all windows, within each state, and these were then averaged for each subject state-wise. 

Subsequently, two-way analyses of variance (ANOVAs) were conducted to estimate the effects 

of listening condition and state as well as their interaction in terms of modularity and average 

strength, followed by post-hoc Tukey-Kramer tests, because of unequal sample sizes, since 

each participant was included in the statistical tests only for the states they actually found 

themselves in. 

 Further,three commonly used metrics were calculated to characterize participation of 

individuals in the states based on the two listening conditions: (i) transition number (i.e. a 

participant's number of transitions between each pair of states), (ii) dwell time (i.e. average 

number of consecutive time windows a participant spent in a particular state before switching 

to another state), (iii) frequency (i.e. average number of time windows a participant spent in a 

state, expressed as fraction). Differences in state metrics between listening conditions, that is 

between listening to the piece by J.S. Bach or A. Webern, were computed using paired-sample 

t-tests. 

Assessing expertise-related neural differences in listening to music 

Graph theory analysis of static fc  

 We used a static fc analysis for each listening condition separately and examined 

expertise differences in global (that is, whole-brain) and nodal graph measures. In doing so, we 

aimed to zoom in on specific regions that acted as hubs, occupying a central position in network 

organization, and as connector hubs, assisting between modules communication, and 

demonstrate expertise differences therein. 

Network construction for each listening condition separately 

The network construction and graph analyses were carried out using the Brain Connectivity 

Toolbox (https://sites.google.com/site/bctnet/, Rubinov & Sporns, 2010). Time courses were 

extracted for each of the 112 regions of the Harvard Oxford atlas (Desikan et al., 2006) and 

Pearson’s r correlation coefficient was computed on the time-courses for each pair of regions 

(ROIs), resulting in a 112x112 correlation matrix. Following Bassett and Gazzaniga (2011), t-

tests were calculated on the correlation coefficients for each pair of ROIs in the connectivity 

matrix of each participant and FDR-correction was applied to the p-values, such that only those 

correlations were retained that remained significant, resulting in weighted undirected 

connectivity matrices. Negative weights were again converted to zeros, a prerequisite to 

compute graph measures like modularity. 

Network analysis 
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To characterize expertise-related differences on the whole brain graph, we chose 2 global graph 

metrics: average strength and global efficiency. As described above, average strength was 

computed as the sum of the weights of all edges connected to each node and then the average 

of strengths of all nodes was computed (Rubinov & Sporns, 2010). Global efficiency is a 

measure of information transmission between the nodes of the network. At the nodal level, it 

characterizes the efficiency of information transfer from one region to the whole network and 

is computed as the inverse of the average shortest path length between one node and all other 

nodes in the network. Global efficiency at the global level is the average of the global efficiency 

of all nodes in the graph and is inversely related to the characteristic path length (Latora & 

Marchiori, 2001). Expertise differences for both conditions were assessed using two-sample t-

tests. Additionally, for the J.S. Bach listening condition expertise differences were assessed 

using a Mann-Whitney-U test for independent samples, as the values were not normally 

distributed. 

In addition, we computed two nodal metrics for each participant in each condition to 

assess hubs and connector hubs, namely degree and participation coefficient. The degree or 

degree centrality refers to the number of edges connected to a specific node. The weights of the 

connections were ignored by binarizing the connectivity matrix so that only edges with nonzero 

weights were considered connected. Degree is considered a proxy of the centrality of a node, 

indicating either that it is a hub within its community (provincial hub), connecting primarily 

with nodes within its module, or that it plays an important role in whole brain network 

organization (van den Heuvel & Sporns, 2013). Participation coefficient is a measure of the 

degree to which a node displays a diverse connectivity profile, communicating with nodes of 

different modules/communities. Nodes with high participation coefficients are thought of as 

connector nodes, potentially transmitting information between modules (van den Heuvel & 

Sporns, 2013). Participation coefficient measures the uniformity of the distribution of 

connections of a node to nodes from all partitions (Guimera  & Nunes Amaral, 2005) and is 

computed following calculation of community structure (Blondel et al., 2008; Reichardt & 

Bornholdt, 2006). 

For each subject, we computed one sample t-tests on the measures of nodal degree and 

participation coefficient for each node and subsequently corrected for multiple testing using 

FDR-correction. We tested for expertise differences for each listening condition separately 

using two-sample t-tests on the degree and participation coefficient for the nodes surviving 

statistical testing and FDR-correction. Additionally, we also tested for differences between the 
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two listening conditions regarding degree for each expertise group, using paired-sample t-tests, 

to assess how groups of different expertise shift their hub profiles based on condition demands. 

 

5.3 Results 
 

Musical feature analysis of the two pieces 
Analysis of the two musical pieces entailed the extraction of tonality and rhythmic features, 

providing a quantitative description of various aspects of the listeners’ experience. As can be 

seen in Figure 6a, the chromagram clearly showed differences between the two pieces: there 

was more variation in the distribution of energy along pitch classes in the piece by J.S. Bach, 

while in the piece by A. Webern the pitch classes were more equally represented, as expected 

in the composition style which does not follow tonal hierarchies. Key clarity, as an estimation 

of the presence of each key in the signal, differed between the two pieces with the piece by J.S. 

Bach exhibiting higher mean value (M=0.745 SD=0.115) than the piece by A. Webern 

(M=0.546 SD=0.12; Figure 6b). As for rhythmic features, we found that the piece by J.S. Bach 

exhibited a higher mean value of pulse clarity (M=0.264 SD=0.08) than the piece by A. Webern 

(M=0.161 SD=0.07; Figure 6c). Finally, the frequency spectrum similarity matrix for the piece 

by J.S. Bach clearly showed higher self-similarity in comparison to the piece by A. Webern 

(Figure 6d). 

 

 

a 

c b 

Harpsichord concerto 
(J.S.Bach) 

Variations Op.30 
(A.Webern) 



  Study II 

 63 

 
Figure 6. Musical pieces analysis by means of automated extraction. 1a: Chromagram depicting 
the distribution of energy along pitch classes for the piece by J.S. Bach (on the left) and by A. 
Webern (on the right). 1b: Key clarity estimated for both pieces, with overall higher values for 
the piece by J.S. Bach (dark grey color). 1c: Pulse clarity estimated for both pieces, with overall 
higher values for the piece by J.S. Bach (dark grey color). 1d: Similarity matrices for both 
pieces based on the frequency spectrum, with higher self-similarity for the piece by J.S. Bach 
(on the left). 
 
Neural differences between listening conditions 
Dynamic functional connectivity analysis 

The results of the dynamic functional connectivity analysis and the subsequent k-means 

clustering identified two most prominent network configurations during both listening 

conditions. One occurring at a mean frequency of 37,99% and the other at a mean frequency of 

62,01% (Figure 2). 

 
 
 

 
 
Figure 7. Brain states detected with dynamic functional connectivity analysis using sliding 
window approach and subsequent k-means clustering of the connectivity matrices of each 
time window, collapsed for both listening conditions. The matrices represent the 112 ROIs 
from the Harvard Oxford atlas, are uncorrected and displayed for visualization purposes. The 
first state occurred at a total frequency of 37.99% and the second state at a total frequency of 
62.01% of the time. 
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Graph measures and state metrics comparing listening conditions 

In order to characterize each state in terms of segregation and overall connectivity, we 

computed the modularity index and average strength for each subjects’ connectivity matrices 

of all windows and averaged for each subject state-wise. The two states differed significantly 

in terms of modularity index (F(1,1) = 5.98, p = .015) and average strength (F(1,1) = 5.14 p = 

.024; see Figure 8). There was no significant difference between listening conditions or any 

interaction. Post-hoc Tukey-Kramer tests showed that higher modularity values were prevalent 

in state 2 (t=2.446 p = .014; state1 M = 0.12, SD = 0.09; state 2 M = 0.17, SD = 0.15) and 

higher average strength was prevalent in state 1 (t=2.268 p = .023; state1 M = 32.37, SD = 

10.45; state 2 M = 27.51, SD = 14.77). So, across both music conditions, state 1 was 

characterized by higher overall connectivity, and state 2 was characterized by more modularity. 

Increased processing demands such as during listening to A. Webern was related to a more 

integrated and overall connected brain state as participants spent more time in state 1 when 

listening to A. Webern than when listening to J.S. Bach. 
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Figure 8.  Graph measures computed on the brain states from dynamic functional connectivity 
analysis across both listening conditions (upper row) and for each listening condition separately 
(middle & lower row). Across both listening conditions (upper row), the two states differed in 
modularity and average strength, with the second state exhibiting significantly higher 
modularity and the first state significantly higher average strength, indicative of higher overall 
connectivity. Graph measures distributions are shown as raincloud plots (Allen et al., 2019) and 
boxplots with medians and 95% CI with whiskers representing second and 98th percentiles. 
Each dot represents a single subject. Asterisks indicate significant effect at p < .05. Exclusion 
of individual values in the modularity index (upper row) and average strength (upper row) that 
exceeded 2 SDs still resulted in a significant difference at p = .04 for modularity index and p = 
.014 for average strength. 
 

We used paired t-tests to compute differences between the two listening conditions for 

three state metrics, namely transition number, dwell time, and frequency. We found that the 

average number of state transitions differed significantly between the two listening conditions, 

t(39) = 3.134, p = .033, Cohen’s d = 0.55, with more transitions occurring during listening to 

the piece by A. Webern (M = 3.02, SD = 1.8) in comparison to the piece by J.S. Bach (M = 

2.05, SD = 1.67). The mean dwell time each participant spent in each state during the two 

listening conditions differed significantly for the second state, exhibiting higher modularity, 

t(39) = 3.712, p < .001, Cohen’s d = 0.5, where participants seemed to spend more time during 

listening to the piece by J.S. Bach (M = 18.01, SD = 11.4) in comparison to during listening to 

the piece by A. Webern (M = 12.48, SD = 10.09), but it did not differ for the first state, 

exhibiting higher connectivity, (t(39) = 0.6383, p=.52; listening to the piece by J.S. Bach 

M=8.5, SD=6.8; listening to the piece by A. Webern M=7.6, SD=5.9). Finally, the frequency 

with which each participant visited each state differed significantly between the two states, with 

the first state being visited more frequently during listening to the piece by A. Webern (t(39) = 

1.954, p = .05; A. Webern condition: M = 0.42, SD = 0.2; J.S. Bach condition M = 0.33, SD = 

0.22) and the second state being visited more frequently during listening to the piece by J.S. 
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Bach (t(39) = 1.954 p = .05; A. Webern condition: M = 0.57, SD = 0.2; J.S. Bach condition M 

= 0.66 SD = 0.29; see Figure 9). 

 

 
Figure 9. State metrics computed on the dynamic functional connectivity analysis across both 
listening conditions. During listening to the piece by A. Webern, there was a significant higher 
number of state transitions in comparison to listening to the piece by J.S. Bach. Participants 
spent significantly more consecutive time in the second state while listening to the piece by J.S. 
Bach and spend on average more time in state 1 while listening to the piece by A. Webern. 
Whiskers in the state metrics indicate standard deviation. Asterisks indicate significant effect 
at p < .05. 
 
Expertise-related neural differences in listening to music 
Global graph measures on static functional connectivity  

To assess expertise-related differences in music listening, we performed a static 

functional connectivity analysis for each participant in each listening condition, and then 

computed two global graph measures, namely average strength and global efficiency. In the 

condition of listening to the piece by A. Webern, we found significant expertise differences in 

global efficiency (t(38) = 1.9451, p = .05, Cohen’s d = 0.62; aspiring professionals M = 0.52, 

SD = 0.1; amateur musicians M = 0.4, SD = 0.09) but no significant expertise differences in 

average strength (t(38)= 1.9206, p = .06, Cohen’s d=0.62; aspiring professionals M = 50, SD = 

14.9; amateur musicians M = 40, SD = 14.6; see Figure 5), even though the effect size was 

identical. In contrast, in the condition of listening to the piece by J.S. Bach, we found no 

significant group differences in the measures of global efficiency (Mann-Whitney =140, p = 

.15, Cohen’s d = 0.2; aspiring professionals M = 0.51, SD = 0.16; amateur musicians M = 0.46, 

SD = 0.13) and average strength (Mann-Whitney = 149, p = .24, Cohen’s d = 0.2 ; aspiring 

professionals M = 48.46, SD = 22.03; amateur musicians M = 41.82, SD = 18.72). 
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Figure 10. Group comparisons of graph measures network strength and global efficiency for 
the two listening conditions. In the J.S. Bach condition (upper row) there were no group 
differences for average strength and global efficiency. In the A. Webern condition (lower row), 
the group of aspiring professionals (in black) showed significantly greater global efficiency 
than amateur musicians (in grey). Group distributions are shown as raincloud plots (Allen et 
al., 2019) and boxplots with medians and 95% CI with whiskers representing second and 98th 
percentiles. Each dot represents a single subject. Asterisk indicates a significant group 
differences effect at p < .05. 

 
Nodal graph measures on static functional connectivity to assess hubs and connector hubs 

In addition, we computed two nodal measures: nodal degree as in indicator of nodes 

acting as hubs, and participation coefficient as an indicator of nodes facilitating communication 

between communities. In the condition of listening to the piece by A. Webern, we found 

significant expertise-related differences for the measures of degree and participation coefficient 

in an extended collection of regions throughout the brain, namely regions of the temporal lobe 

like the superior temporal gyrus (STG), the inferior (ITG) and middle temporal gyrus (MTG) 

Amateur musicians Aspiring professionals 
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and the planum polare, frontal and parietal regions like the inferior and middle frontal gyrus, 

the frontal pole, the parietal and frontal operculum and the insula, lateral occipital cortex, as 

well as nucleus accumbens (see Table 4). In all these regions, the group of aspiring 

professionals exhibited higher values, and there were no regions in which the group of amateur 

musicians had higher degree. In the condition of listening to the piece by J.S. Bach, there were 

only two regions with expertise-related differences in the measure of degree in the left and right 

caudate, again such that the group of aspiring professional musicians had higher values than 

the amateur musicians, and four regions in which the two groups differed significantly in the 

measure of participation coefficient, again with higher values for the group of aspiring 

professional musicians, namely the bilateral inferior frontal gyrus, the anterior part of the right 

temporal fusiform gyrus and the right temporal occipital fusiform gyrus (see Table 4). Paired t-

tests for within group differences for the measure of degree between the two listening 

conditions detected regions that differed significantly only for the group of aspiring 

professional musicians, with higher degree occurring for the condition of listening to the piece 

by A. Webern (see Table 4). In sum, we found no expertise-related differences in the processing 

of the supposedly less demanding musical piece by J.S Bach, but found higher global efficiency 

in aspiring professional musicians during the more challenging listening condition. In addition, 

the group of higher expertise utilized a wide range of brain regions as hubs and connector hubs 

during the demanding listening condition and switched to a subset of those regions during the 

less demanding listening condition. 

condition- 
group comparison graph measure brain regions 

listening to A. Webern 
aspiring professionals > 

amateur musicians 
degree 

frontal lobe 
 
 
 

temporal lobe 
 

parietal lobe 
 
 

occipital lobe 
 
 
 

insular lobe 
subcortical 
structures 

right middle frontal gyrus, 
right frontal operculum,  
left precentral gyrus,  
right inferior frontal gyrus-pars triangularis, 
left & right posterior inferior temporal gyrus, 
right posterior superior temporal gyrus, 
left parietal opercular cortex, 
right posterior supramarginal gyrus, 
right angular gyrus, 
left lateral superior occipital cortex,  
right paracingulate gyrus,  
left cuneus, 
left supracalcarine gyrus, 
left insula, 
right thalamus,  
right caudate, 
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Table 4. Brain regions significantly different between the two groups (rows 1- 4) for the nodal 
measures of degree and participation coefficient for each listening condition. Aspiring 
professionals had higher degree and participation coefficient values in comparison to the group 
of amateur musicians. Regions reported at a threshold p < .05, following FDR-correction. In 
row 5, brain regions that differ significantly between listening conditions within the group of 
aspiring professionals, for the measure of degree. Higher degree values for these regions 
occurred during listening to the piece by A. Webern. Again, regions reported at a threshold p < 
.05, following FDR-correction. 
 
5.4 Discussion 
 

In this study, we identified and characterized prominent network configurations, 

referred to as brain states, during unconstrained listening to music. To this end, we used one 

piece by J.S. Bach, a piece representative of baroque music, and one piece by A. Webern, part 

of the movement of compositional innovations of the 20th/21st century and belonging to the 

left putamen,  
right accumbens 

listening to A. Webern 
aspiring professionals > 

amateur musicians 

participation 
coefficient 

frontal lobe 
 
 

temporal lobe 
 
 
 

occipital lobe 
 

insular lobe 
subcortical 
structures 

 

left & right frontal pole, 
left middle frontal gyrus,  
left & right inferior frontal gyrus-pars triangularis, 
right posterior superior temporal gyrus,  
left posterior inferior temporal gyrus, 
left planum polare, 
right temporal fusiform cortex-posterior division, 
left superior lateral occipital cortex, 
right inferior lateral occipital cortex, 
left & right insula, 
right paracingulate gyrus, 
right posterior parahippocampal gyrus,  
right caudate 

listening to J.S Bach 
aspiring professionals > 

amateur musicians 
degree subcortical 

structures 
left & right caudate 

listening to J.S Bach 
aspiring professionals > 

amateur musicians 

participation 
coefficient 

frontal lobe 
 

temporal lobe 

right inferior frontal gyrus-pars triangularis,  
right inferior temporal gyrus-anterior division, 
right temporal fusiform cortex-anterior division,  
right temporal occipital fusiform cortex 

listening to A. Webern > 
listening to J.S. Bach 
aspiring professionals 

degree 

frontal lobe 
 

temporal lobe 

right inferior frontal gyrus-pars triangularis, 
right inferior frontal gyrus-pars opercularis, 
left posterior middle temporal gyrus, 
left & right temporooccipital middle temporal 
gyrus, 
left & right posterior inferior temporal gyrus, 
right temporooccipital inferior temporal gyrus,  
right posterior supramarginal gyrus, 
 right temporal fusiform cortex, 
 left temporal occipital fusiform cortex 
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2nd Viennese School. We investigated differences in functional organization between the two 

listening conditions and between expertise groups while listening to the two musical pieces, 

with dynamic functional connectivity analysis and graph theoretical measures. The two musical 

pieces differed in metrics of tonality, rhythm and self-similarity, reflecting the different 

compositional styles of each piece, which translate into listening experiences of different 

perceptual and cognitive demands. We found that during listening to the piece by A. Webern, 

participants spent more time in a state characterized by higher average strength and less 

modularity in comparison to when listening to the piece by J.S. Bach. Further, we sought to 

assess how musical expertise modulates whole brain network organization. We therefore used 

graph-theoretic measures applied to static functional connectivity analysis to compare the two 

groups of participants differing with respect to their training intensity and aspirations: a group 

of aspiring professional musicians and a group of amateur musicians. We found no expertise-

related differences in the processing of the musical piece by J.S. Bach, but found higher global 

efficiency in aspiring professional musicians during the more challenging listening condition 

of the piece by A. Webern. In addition, the group of higher expertise showed a wide range of 

brain regions acting as hubs and connector hubs during the demanding listening condition and 

switched to a subset of those regions during the less demanding listening condition.  

We described the two musical pieces by means of music information retrieval methods 

(MIR), focusing on tonal, rhythmic and self-similarity measures. As expected, the piece by J.S. 

Bach had an unequal distribution of pitches along the chromatic scale in comparison to the 

piece by A. Webern, where the use of chromatic pitches was distributed more uniformly. 

Furthermore, the piece by J.S Bach was characterized by higher key and pulse clarity as well 

as higher self-similarity over time in its frequency spectrum, indicating higher repetition of 

frequency patterns. These findings highlight the differences in the compositional style of the 

two pieces: the piece by J.S. Bach belongs to the “baroque music” genre and displays more 

distinct tonal and rhythmic hierarchies as well as higher self-similarity in the frequency 

spectrum, while in contrast the piece by A. Webern belongs to the “contemporary classical 

music” genre of the 2nd Viennese School of music and displays the compositional innovations 

of this movement on tonal aspects, treating all twelve tones within an octave as equivalent, on 

rhythmic aspects of complex and varied rhythms without a clear metrical structure, and lower 

self-similarity in the frequency spectrum, suggestive of reduced acoustic predictiveness, 

especially for inexperienced listeners. Evidently, these two musical pieces evoke very different 

listening experiences. Music by J.S. Bach is typically more familiar and enculturated for 

Western listeners, following tonal and metrical hierarchies within the Western musical 
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tradition, aspects shown to modulate predictive and expectancy processes as well as to evoke 

emotional states, reward and pleasure sensation in relation to processing of musical stimuli 

(Koelsch et al., 2019; Mencke et al., 2019). On the other hand, music by A. Webern presents a 

challenging musical experience. The lack of tonal and metrical hierarchies and regularities do 

not offer an auditory and cognitive reference point (Rosch, 1975), and hinder grouping 

mechanisms that would facilitate processing and play a central role in formation of predictions 

(Mencke et al., 2019). Music, without tonal center, is also characterized by high entropy and 

low information content (Dean & Pearce, 2016), creating an experience of ‘predictive 

uncertainty’ (Hansen & Pearce, 2014), complexity and ambiguity (Mencke et al., 2019). These 

characteristics have perceptual and cognitive implications reflected in lower performance on 

various measures, as has been shown in studies using stimuli with tonal and atonal features, 

including memory performance during melody recollection, melodic transposition, processing 

speed, detection of pitch deviant and generation of expectations (Mencke et al., 2019, 2021). 

Nevertheless or maybe even more so, contemporary-classical music such as by A. Webern 

stimulates aesthetic experiences modulated by familiarity and exposure to this genre of music 

(Dean & Pearce, 2016; Omigie et al., 2017), as well as by other factors, including “aesthetic 

framing” (Brattico et al., 2013), openness to experience (Nusbaum & Silvia, 2011), cognitive 

mastering (Leder et al., 2004) and processing fluency (Reber et al., 2004), in the case of 

musically expert listeners. Furthermore, it has the potential to evoke pleasure and reward 

sensations resulting from decoding perceptual uncertainties, stimulating curiosity and 

exploration of novel acoustic experiences (Gold et al., 2019; Mencke et al., 2019, 2021). 

In the dynamic functional connectivity analysis, two states emerged capturing whole 

brain organization underlying the processing of the two musical pieces, one with overall 

occurrence of approximately 38% of the time, characterized by higher overall connectivity, and 

one with higher occurrence (68%), characterized by higher segregation, as indicated by the 

modularity index. During listening to the piece by A. Webern, more between-state transitions 

occurred and participants appeared to spend more time in the first state with higher overall 

connectivity. While listening to the piece by J.S. Bach, participants spent more continuous time 

in the second state with higher segregation. These findings can be understood within a research 

framework which views the brain as a dynamic network which continuously reconfigures on 

both spatial and temporal scales, interchanging between states of higher integration and 

segregation, promoting adaptation to changing environmental and neural demands across task 

states and in resting state (Alavash et al., 2016; Allen et al., 2014; Betzel et al., 2016; Cole et 

al., 2013; Sporns, 2013; Tognoli & Kelso, 2014). The differences in overall connectivity and 
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modularity of the states and the differences in state metrics are taken to reflect the different 

processing demands that the two musical pieces pose. The finding that during listening to A. 

Webern participants spend more time in the state characterized by higher overall connectivity, 

is in line with evidence showing that integrated states arise more in situations where greater 

cognitive effort is required in order to achieve effective behavioral performance (Kitzbichler et 

al., 2011). More integrated states are hypothesized to facilitate adaptability and performance on 

cognitive tasks while decreases of brain modularity have been observed in the presence of 

greater task demands (Vatansever et al., 2015). The level of network integration has 

additionally been shown to be modulated by task demands (Shine et al., 2016). The reversed 

pattern of brain configurations with higher modularity is observed in easier tasks, requiring less 

network integration (Cohen & D’Esposito, 2016), or reflecting more automatic/habitual 

processing (Shine & Poldrack, 2018). Changes in the modularity of brain networks has been 

shown to take place, for example, in the course of training in motor tasks (Bassett et al., 2011, 

2015). The higher transition number between states during listening to the piece by A. Webern 

can be understood as indicative of the effortful processing that evokes more state switching, 

which is considered a means to explore different brain states – so to speak the brain’s dynamic 

repertoire (Deco et al., 2011) – in order to facilitate and enhance effortful processing, moving 

from more local and modular configurations of sensory processing to more integrated states 

enabling complex cognition (Sadaghiani et al., 2015). On the other hand,  the higher mean dwell 

time for the more modular state while listening to J.S. Bach can be interpreted to suggest lower 

processing demands, requiring less integration of brain regions throughout the brain (Cohen & 

D’Esposito, 2016) 

Further, we investigated expertise-related differences in whole brain organization using 

graph measures applied to static functional connectivity analysis. In the condition of listening 

to the piece by A. Webern, we found the group of aspiring professionals to exhibit significantly 

higher global efficiency than the group of amateur musicians. This finding emphasizes that 

aspiring professional musicians exhibit overall a more integrated network configuration which 

facilitates processing in the more demanding condition. This finding is in line with other studies 

showing musicians to exhibit higher indices of whole brain degree, density, strength, and global 

efficiency in tonal processing of music (González et al., 2021; Paraskevopoulos et al., 2017), 

as well as clustering coefficient (Leipold et al., 2021). The absence of expertise-related 

differences in graph measures in the condition of listening to the piece by J.S. Bach may not be 

too surprising in light of evidence of higher response similarity in listening to familiar music, 

as assessed by intersubject correlation analysis, regardless of expertise status (Madsen et al., 
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2019), along with evidence of overlapping brain response patterns of professional and amateur 

musicians in a paradigm using tonal sequences containing different degrees of structural 

irregularities, especially in trials of low difficulty (Oechslin et al., 2013). It might indicate that 

in the less effortful processing condition there was no need for utilizing additional functional 

resources to assist processing. 

The analysis of the nodal measures and the investigation of the between-group 

differences in regions acting as hubs and connector hubs follows up on previous findings 

showing that groups with different expertise utilize different regions as hubs during musical 

processing (Alluri et al., 2017; Loui et al., 2012). Here, the group with higher expertise, namely 

aspiring professional musicians exhibited higher degree and participation coefficient in a wide 

range of regions, especially during the challenging musical condition. The group of amateur 

musicians did not have higher degree or participation coefficient in any regions in comparison 

to the group of aspiring professional musicians. We consider this to be indicative of an overall 

higher flexibility in network organization for the group of aspiring professionals, with changes 

in functional connectivity and communication among different subnetworks being adaptive to 

the demands posed by the listening condition. Relevant evidence in the literature suggests that 

flexible hub connectivity patterns facilitate adaptive novel task performance and that changes 

in community interactions are modulated by task demands (Cole et al., 2013). Furthermore, 

higher variability in the connectivity between networks has been associated with higher 

cognitive flexibility (Douw et al., 2016). 

The regions where aspiring professional musicians exhibit higher degree and 

participation coefficients in comparison to amateur musicians during listening to the piece by 

A. Webern are repeatedly reported for their prominent role in auditory processing. Regions of 

the temporal lobe, like the superior temporal gyrus (STG), the inferior (ITG) and middle 

temporal gyrus (MTG) and the planum polare, here as nodes of higher degree and participation 

coefficient, are considered core auditory processing regions in relation to various aspects of 

musical processing (Koelsch, 2011). Higher degree, clustering, and local efficiency, especially 

for the left STG, has been reported in musicians with absolute pitch compared to musicians 

without absolute pitch during listening to musical clips (Loui et al., 2012). Higher nodal degree 

has been found for musicians in cerebellar regions, the right temporal pole, the inferior temporal 

gyrus and the parahippocampal gyrus (Alluri et al., 2017), which we found as a connector hub 

for musicians while listening to music by A. Webern. Activity in the right superior temporal 

gyrus (rSTG) alongside the pars opercularis of the right inferior frontal gyrus and bilaterally 

the anterior cingulate and paracingulate gyrus, regions here reported as hubs and connector 
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hubs, have been shown to best discriminate between musicians and nonmusicians (Saari et al., 

2018).  

Frontal and parietal regions implicated as hubs and connector hubs in aspiring 

professionals while listening to Webern, like the inferior and middle frontal gyrus, the frontal 

pole, the parietal & frontal operculum and the insula, have been associated with cognitive 

aspects of musical processing and integration of multi-sensory information. Activity in frontal 

and posterior parietal regions, including the pre-supplementary motor area, the dorsolateral and 

rostrolateral prefrontal cortex, the intraparietal sulcus and the precuneus, has been found to be 

modulated by exposure to chromatic music, diatonic music and atonal sequences before, in a 

cohort of participants with excellent relative pitch (Li et al., 2021). The frontal operculum, part 

of a network including lateral prefrontal cortices, has been found to facilitate cognitive control 

and drive attentional resources to relevant stimuli and to link auditory, somatosensory, and 

motor cortical areas as a connector hub (Quirmbach & Limanowski, 2022). Musicians, in 

comparison to nonmusicians, have been shown to exhibit increased functional connectivity of 

the parietal operculum with Heschl’s gyrus, planum temporale, the precentral and postcentral 

gyrus (Tanaka & Kirino, 2018). Inferior frontal regions like the pars triangularis and opercularis 

are known for their role in language and musical syntactic processing as well as processing and 

integration of sequential information over time (Tillmann et al., 2006). Activity in the inferior 

frontal gyrus, as mentioned earlier, was also found to discriminate between musicians and 

nonmusicians (Saari et al., 2018). The insula is a hub linking several large scale networks 

(Gogolla, 2017) and serves a wide variety of functions ranging from sensory and affective 

processing, also in relation to music (Koelsch et al., 2021), to high-level cognition and 

interoceptive processes (Uddin et al., 2017; Zamorano et al., 2017). The insula alongside the 

anterior cingulate cortex have been reported to exhibit increasing node degree for decreasing 

onset ages of musical training (Zamorano et al., 2017) and musicians are shown to have 

increased functional connectivity in comparison to nonmusicians in an insula-based network 

including anterior and middle cingulate cortex (Zamorano et al., 2017).  

Regions identified as hubs and connector hubs in both the A. Webern and the J.S. Bach 

condition for aspiring professional musicians, namely the temporal occipital fusiform cortex, 

the anterior fusiform cortex and lateral occipital cortex, are considered centers of multisensory 

integration, and have been associated with musical notation reading and processing aspects of 

musical richness (Satoh et al., 2015). The fusiform gyrus together with the amygdala and 

anterior superior temporal gyrus have additionally been reported as a network for emotion-

related processing during music listening (Pehrs et al., 2014). The nucleus accumbens, 
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exhibiting higher degree for aspiring professionals in the condition of listening to A. Webern, 

is known as a hub of reward and music enjoyment-related activity (Gold et al., 2019), arising 

from the interaction between mesolimbic reward circuitry and cortical networks involved in 

perceptual analysis and valuation (Salimpoor et al., 2013). Activity in the nucleus accumbens 

and its connectivity patterns have also been associated with music-induced pleasantness in 

relation to musical surprises (Shany et al., 2019). The caudate nucleus reported here bilaterally 

as the only regions where aspiring professional musicians exhibited higher degree during 

listening to J.S. Bach, is part of the basal ganglia, involved both in emotion and rhythm 

processing in relation to music perception (Pando-Naude et al., 2021) and is known to be 

recruited in rhythmic entrainment (Kokal et al., 2011; Trost et al., 2014). Caudate is also 

suggested to be part of a thalamocortical system for integration of rhythmic and tonal 

information (Musacchia et al., 2014). 

Altogether, the aspiring professional musicians in comparison to the amateur musicians 

appear to utilize brain regions alongside the dorsal and ventral auditory streams as well as 

higher-order associative regions, for perceptual, cognitive, emotional and reward-related 

musical processes, especially in the challenging auditory condition. In addition, they also 

appear to exhibit more efficient communication between subnetworks dedicated to different 

aspects of these processes. Effects of musical style in functional connectivity were also reported 

in a recent study, where cellists played baroque and contemporary music (González et al., 

2020). Apart from common activation of motor and sensory regions in both conditions, playing 

baroque music was associated with connectivity among Heschl's gyrus and superior frontal 

gyri, planum temporale and caudate nucleus, while playing contemporary music was 

exclusively associated with connectivity in cerebellar-vermis, insular cortex and parietal 

operculum (González et al., 2020). Lastly, it is worth mentioning that many of the regions 

reported here are shown to be essential information and communication hubs, regardless of the 

context of music processing and musical expertise (Deco et al., 2021; GeethaRamani & 

Sivaselvi, 2014; Zhao et al., 2019). 

Finally, we would like to address some of the limitations of the current study. First of 

all, regarding the dynamic functional connectivity analysis, the choice of window length is a 

determining factor for the tradeoff between precision and temporal resolution. Too short time 

windows can induce spurious fluctuations and increased noise sensitivity, while too long 

window sizes can hinder the detection of temporal variations of interest (Preti et al., 2017) and 

a given window size might not capture reconfigurations of brain networks developing on 

different time scales (Lurie et al., 2019). However, empirically, window sizes between 30s and 
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60s appear to yield robust results in dynamic FC analysis (Shine & Poldrack, 2018), which also 

guided our decision for a window size of 60s, also in relation to the experimental paradigm of 

unconstrained listening to music without examining specifically the relation between dynamic 

functional connectivity and specific acoustic features with precise temporal occurrence. 

Furthermore, using pairwise Pearson's correlation is only one of the possible ways to uncover 

relationships between brain regions and does not capture all aspects of functional brain 

organization (Preti et al., 2017). K-means clustering, used here to uncover states based on 

dynamic FC is only one of the existing methods, including hierarchical clustering and hidden 

Markov models and there is no consensus yet on which one is the optimal choice for different 

occasions (Preti et al., 2017). Subjects are allowed to be only in a specific state at a given point 

in time, while multiple states might be present at a given point in time to varying degrees. The 

modularity index, computed here using maximization of the modularity function, partitions a 

network into a set of communities in a nondeterministic way and produces many near-optimal 

partitions of the network (Bassett & Gazzaniga, 2011; Sporns & Betzel, 2016). Hub detection 

can be done using numerous different graph measures, most of which express aspects of node 

centrality, including degree, closeness centrality, eigenvector centrality and betweenness 

centrality, and not one of them is necessary and sufficient for exhaustive hub detection (van 

den Heuvel & Sporns, 2013) while they might yield slightly differentiated results, although 

different metrics are often found to be highly correlated (Zhao et al., 2019). In our case, the 

choice of the measure of degree was to assist and simplify interpretation and is in no way meant 

as an exhaustive description. Additionally, degree was computed on the whole brain network, 

and not within each region’s community in order to compute within group comparisons for the 

group of aspiring professionals between the two listening conditions. Furthermore, within the 

group aspiring professional musicians there was a wide variety of primary instruments of 

practice, which results in inhomogeneity in their expected experience with specific kinds of 

music. Potentially, focusing on specific groups of instrumentalists would be more conclusive 

in order to understand how expertise shapes brain architecture in challenging auditory 

conditions (González et al., 2020). Musical features of difference between the pieces are not 

time-locked to the neural signals captured by the fMRI and thus specific occurrences of such 

features cannot be directly linked to the brain states. Finally, we have no information on 

participants' familiarity, exposure and aesthetic appreciation of the two musical pieces, which 

would facilitate further analysis associating these aspects with dynamic and static functional 

connectivity metrics and would further assist interpretation of results. We might speculate that 

more participants within the group of aspiring professional musicians might have been exposed 
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to contemporary classical music of the 2nd Viennese School, while attending their preparatory 

courses, as part of a more elaborate curriculum in music studies than participants of the amateur 

musicians group. 

 

5.5 Conclusion 
 
In this study, we investigated how processing demands posed by two musical pieces of different 

compositional styles and genres are reflected in whole-brain configurations. We found that 

increased processing demands related to a more integrated and overall connected brain state. 

Further, we looked for expertise-related differences in functional organization during listening 

to the two musical pieces and found the group of aspiring professional musicians to exhibit 

higher global efficiency than the group of amateur musicians in the challenging listening 

condition. In addition, the group of higher expertise utilized a wide range of brain regions as 

hubs and connector hubs during the demanding listening condition and switched to a subset of 

those regions during the less demanding listening condition. These findings highlight that 

whole-brain configurations are modulated by processing demands and indicate the effect of 

expertise on efficient network reconfigurations according to the demands posed.  
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6.1 Introduction 
 

Playing a musical instrument is an intense, multisensory experience. As music itself is 

a highly complex stimulus and musicians typically devote a lot of time to their training, they 

offer an excellent model for studying experience-dependent plastic changes in the brain. Music 

expertise has served as a particularly rich and fruitful domain for investigating plastic changes. 

It involves several sensory systems and the motor system, and it poses high demands on 

cognitive control processes (Herholz & Zatorre, 2012; Jäncke, 2009; Münte et al., 2002; 

Gottfried Schlaug, 2015). Most of the available data on the association between music expertise 

and the brain are cross-sectional rather than longitudinal. Musicians typically show an 

enlargement of brain areas associated with music-related processes in the auditory, motor, and 

visuospatial domain (Bermudez et al., 2009; Gaser & Schlaug, 2003; Hutchinson et al., 2003; 

James et al., 2014; Schneider et al., 2002). Several brain areas, including the auditory cortices, 

the anterior corpus callosum, the primary hand motor area and the cerebellum, differ in their 

structure and size between musicians and control subjects (Münte et al., 2002) and these 

volumetric differences have been shown to be of behavioral relevance (Foster & Zatorre, 2010; 

Hyde et al., 2009; Schneider et al., 2002). Groussard and colleagues (Groussard et al., 2014) 

have identified regions in the brain that increased in volume with the duration of practice, 

namely left hippocampus, right middle and superior frontal regions, right insula and 

supplementary motor area, left superior temporal and posterior cingulate areas. Interestingly, 

while in some regions changes in volume seem to have occurred during early stages of musical 

training, like in left hippocampus and right middle and superior frontal areas, changes in other 

areas, specifically in left posterior cingulate cortex, superior temporal areas and right 

supplementary motor area and insula, were more pronounced or even only occurred after 

several additional years of practice (Groussard et al., 2014). Similarly, James and colleagues 

have sorted music expertise into three levels to investigate its influence on grey matter density 

(James et al., 2014). While they found grey matter increases with expertise in areas implicated 

in working memory and attentional control, that is in fusiform gyrus, mid orbital gyrus, inferior 

frontal gyrus, intraparietal sulcus, cerebellum, and Heschl’s gyrus, they detected grey matter 

decreases with expertise in areas related to sensorimotor function, namely in perirolandic and 

striatal areas. 

Arguably, musicians brains do not only differ structurally from nonmusicians but show 

also functional differences, such as strengthened functional coupling among relevant regions 

while performing musical tasks (Herholz & Zatorre, 2012). Indeed, numerous functional 
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imaging studies have compared musicians and nonmusicians and have observed differences in 

activity across many brain regions when individuals were performing musical tasks involving 

discrimination (Foster & Zatorre, 2010; Koelsch et al., 2005), working memory (Gaab et al., 

2006), or production (Bangert et al., 2006; Kleber et al., 2010). Despite the many differences 

among the tasks used, one area that has been commonly activated in many of these studies was 

the left superior temporal gyrus, a region that has been linked to musical training in terms of 

cumulative practice hours (Ellis et al., 2012). Of interest, fMRI studies of perceptual learning 

with pitch tasks have resulted in both increases (Gaab et al., 2006) and decreases (Jäncke et al., 

2001) of activity in auditory areas. Similarly, training to discriminate between melodies 

constructed of increasingly smaller intervals well below a semitone has been shown to be 

accompanied by general activation decrements in auditory regions, along with activation 

increases in frontal cortices (Zatorre, Delhommeau, et al., 2012). Before training, the data had 

shown the expected dose-response function of more activity with increasing microtonal pitch 

interval size. After training, however, there was a reduction in blood oxygenation in response 

to increasing interval size ( Zatorre et al., 2012), suggesting that learning might decrease the 

number of neuronal units that are needed to perform the task (Makino et al., 2016; Poldrack, 

2000). 

The brain exhibits spontaneous and systematic activity during wakeful rest (Biswal et 

al., 1995; van den Heuvel & Hulshoff Pol, 2010; Zuo & Xing, 2014). Exploiting this 

characteristic, one can compute resting-state functional connectivity which is based on 

spontaneous low-frequency fluctuations (< 0.1 Hz) in the blood oxygen level-dependent signal 

(Biswal et al.,1995), and uncover functional networks that consist of brain regions frequently 

working together. Activity in the resting state may therefore reflect the repeated history of 

coactivation within or between brain regions for efficient task performance (Baldassarre et al., 

2016; Cole et al., 2012, 2014, 2016; Ventura-Campos et al., 2013). Only a few studies have 

investigated differences in functional connectivity as a function of musical training. Pianists 

were found to show greater functional connectivity between left auditory cortex and the 

cerebellum than control participants (Luo et al., 2012). Regions with increases in grey matter 

in musicians compared to nonmusicians located in posterior and middle cingulate gyrus, left 

superior temporal gyrus and inferior orbitofrontal gyrus have been shown to have increased 

connectivity to right prefrontal cortex, left temporal pole, left premotor cortex and 

supramraginal gyri (Fauvel et al., 2014). Palomar-García and colleagues tested for differences 

between musicians and nonmusicians in auditory, motor, and audiomotor connectivity and 

found stronger connectivity between right auditory cortex and right ventral premotor cortex, 
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which correlated with years of practice (Palomar-García et al., 2017). They also found reduced 

connectivity between motor areas that control both hands in those musicians whose instrument 

required bimanual coordination, and increased volume in right auditory cortex. This increased 

grey matter volume correlated negatively with age at which training had begun and was related 

to increased connectivity between auditory and motor systems (Palomar-García et al., 2017). 

As summarized above, most studies on neural correlates of music expertise rely on 

cross-sectional comparisons, rendering conclusions of whether observed group differences 

were pre-existing or the result of learning de facto impossible. It has been impressively shown, 

though, that monozygotic twins, i.e. with identical genes, differing on musical training do 

indeed exhibit neuroanatomical differences, thereby providing strong support for the causal 

effects of training (Manzano & Ullén, 2018). Still, longitudinal studies with observations within 

the same individuals over time provide the most direct evidence for effects of musical training 

on neuroanatomy. We therefore used a variety of methodologies to characterize within-person 

changes over time in aspiring professionals intensely preparing for an entrance exam at a 

University of the Arts and compared these to skilled amateur musicians not preparing for a 

music exam. Specifically, we used anatomical MRI along with resting-state fMRI to investigate 

structural changes in grey matter volume that arise during this intense learning period within 

individuals over time and to analyze the changes in functional interactions that accompany these 

structural changes. We hypothesized that (1) in comparison to amateur musicians, aspiring 

professional musicians will show volumetric changes in regions previously identified to be 

relevant in the context of musical training, especially auditory cortex, (2) the regions of 

structural change will exhibit increased functional connectivity to other regions related to the 

auditory network, specifically, temporal regions, motor regions, and cingulate gyri and (3) these 

changes in structure and functional connectivity will be related to behavioral performance. 

 

6.2 Material and methods 
 
Participants 

Information about the participants recruited can be found in detail in subsection 4.2 (chapter 4), 

as all three projects of this dissertation are based on data acquired from the same longitudinal 

study.  

Experimental Design 

Participants were invited for behavioral testing as well as magnetic resonance imaging 

(MRI) assessment between one to five times, depending on their availability, in the course of 

about a year, with approximately 10-12 weeks distance between appointments (see Figure 11). 
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Participants were put in the MR scanner for about an hour and 15 min, and were then tested on 

the in-house developed “Berlin Gehoerbildung Scale” (Lin et al., 2022), a test to assess music 

aptitude at expert levels.  

 

 
Figure 11. Overview of experimental design with recruitment numbers for aspiring 
professionals and amateur musicians at each timepoint. 

 

Behavioral Measure of Music Expertise 

The Berlin Gehoerbildung Scale (BGS) was designed by André Werner, a composer 

and collaborator in this study. It is a listening and transcription task focused on assessing music 

expertise (for a detailed description see Lin et al., 2022). It is informed by music theory and 

uses a variety of testing methods in the ear-training tradition. Items cover a variety of topics in 

music theory and ear training, including intervals, scales, dictation, rhythm, chords, cadences, 

identifying mistakes in music excerpts, and instrument recognition. Using behavioral data of 

amateur musicians, aspiring professional musicians, as well as 19 music students already 

studying music at a University of Arts, we have established a hierarchical structural equation 

model (SEM) of their behavioral performance the first time they encountered the test (Lin et 

al., 2022). The hierarchical model postulates four first-order factors of musical abilities, namely 

“Interval and Scales,” “Dictation,” “Chords and Cadences,” and “Complex Listening,” which 

together define a second-order factor of general music expertise. These four first-order factors 

load highly onto the second-order factor music expertise. We fixed the factor loadings of this 

established model and then extracted the second-order factor scores for each individual at each 

time point to investigate changes in performance over time. We then entered the factor scores 

into a repeated-measures ANOVA with the factors Time (timepoint B, C, and D, as these 

measurement occasions provide us with the largest sample) and Group (aspiring professionals 

vs. amateurs). 
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MRI Data Acquisition 

MR images were collected on a Siemens Tim Trio 3T MR scanner (Erlangen, Germany) 

with a standard 12-channel head coil. The MR measurement protocol included a T1-weighted 

structural scan and a resting-state acquisition. 

As structural images, we used a three-dimensional T1-weighted magnetization prepared 

gradient-echo sequence (MPRAGE) of 9.20 minutes with the following parameters: TR = 2500 

ms, TE = 4.77 ms, TI = 1100 ms, flip angle = 7°, bandwidth = 140 Hz/pixel, acquisition matrix 

= 256 × 256 x 192, isometric voxel size = 1 mm3. We used the prescan normalize option and a 

3D distortion correction for non-linear gradients. 

Whole brain functional images were collected using a T2*-weighted EPI sequence of 8 

minutes sensitive to BOLD contrast (TR = 2000 ms, TE = 30 ms, FOV =216 × 216 × 129 mm3, 

flip angle = 80°, slice thickness 3.0 mm, distance factor = 20%, voxel size = 3 mm3, 36 axial 

slices, using GRAPPA acceleration factor 2). Slices were acquired in an interleaved fashion, 

aligned to genu-splenium of the corpus callosum. 

Structural Data Analysis 

The structural MPRAGE images were processed by means of the Computational 

Anatomy Toolbox (CAT12; v1247; http://dbm.neuro.uni-jena.de/cat/) for SPM12 (v7219; 

www.fil.ac.uk/spm/) in Matlab 2017a (the Mathworks, Inc., Natick, MA, USA). Using default 

parameters, pre-processing of the data involved intra-subject realignment, bias-field and noise 

removal, skull stripping, segmentation into grey (GM) and white matter (WM) and 

cerebrospinal fluid (CSF), and finally normalization to MNI space using DARTEL to a 1.5 mm 

isotropic adult template provided by the CAT12 toolbox (whereby normalization is estimated 

for the mean image of all time points and then applied to all images). The resulting grey matter 

(GM) maps were smoothed with a standard gaussian kernel of 8 mm full-width at half 

maximum (FWHM). These GM maps represent voxel-wise information on grey matter 

probability which is an estimate of grey matter volume in an arbitrary unit (Ashburner & 

Friston, 2005). 

As for quality assurance, images were first visually inspected for artifacts prior to 

processing. Then, a statistical quality control based on inter-subject homogeneity after 

segmentation was conducted using the “check homogeneity” function in CAT12. After 

preprocessing, all images were visually checked again for artifacts, whereby none were 

detected.  

Statistical analysis of the GM maps was first carried out by means of a two-sample t-

test to test for initial structural differences between aspiring professional and amateur musicians 
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at measurement occasion B (the first timepoint where both groups were fully recruited). This 

analysis included 23 aspiring professionals and 17 amateur musicians. An absolute grey matter 

probability threshold of 0.2 was applied. To control for type-I error, a significant effect was 

reported when the results met a peak-level threshold of p < 0.005 and when the cluster size 

exceeded the expected voxels per cluster threshold (k > 259 in this case) in combination with 

correction for non-isotropic smoothness. The expected voxels per cluster threshold was 

computed automatically by the CAT12 toolbox according to random field theory and 

empirically determines the minimum number of voxels that, in combination with a voxel-level 

threshold, clusters must meet in order to be reported (Hayasaka & Nichols, 2004). In addition, 

correction for non-isotropic smoothness adjusts the minimum cluster size depending on the 

local smoothness of the data. This is a common cluster correction method used for whole-brain 

VBM analyses. 

To further characterize pre-existing structural differences in grey matter volume 

between those two groups of musicians, we additionally performed a region-of-interest (ROI) 

analysis, focusing on left and right superior temporal gyrus, as well as further divisions into 

bilateral planum temporale, Heschl’s gyrus, and planum polare (taken from the HarvardOxford 

atlas https://identifiers.org/neurovault.collection:262) (Desikan et al., 2006). 

The main analysis in this paper focused on differential changes over time in the two 

groups of musicians by means of a whole-brain flexible factorial design with a focus on the 

interaction Time x Group. Since not all participants provided data for all time points, we based 

our statistical analysis on the middle three measurement occasions (B, C, and D) and only 

included those participants that contributed data to those three time points since this provided 

us with the highest possible number of participants for a longitudinal analysis in SPM. This 

resulted in a final sample of 19 aspiring professionals and 15 amateur musicians in this 

statistical comparison in which we tested for brain regions that display a significant increase or 

decrease in aspiring professionals compared to amateur musicians over time.  

Again, an absolute grey matter probability threshold of 0.2 was applied. To control for type-I 

error, here, a significant effect was reported when the results met a peak-level threshold of p < 

0.001 and when the cluster size exceeded the determined expected voxels per cluster threshold 

(k > 47) in combination with correction for non-isotropic smoothness (as explained above).  

To investigate potential relationships between brain volume changes in the clusters 

showing a significant Time x Group interaction with behavioral performance, we extracted the 

data from significant clusters using the REX toolbox (region-of-interest extraction tool; The 

Gabrieli Lab, MIT; http://www.alfnie.com/software), subtracted pretest from posttest values 
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and correlated the difference scores with behavioral performance scores using Pearson’s 

correlation coefficient. 

Functional MRI data analysis 

Data pre-processing of the resting state data was performed using the toolbox DPABI 

(v4.0) (Yan et al., 2016) running under Matlab2014b. The first 10 EPI volumes were discarded 

to allow the magnetization to approach a dynamic equilibrium. All volume slices were corrected 

for different acquisition times and then realigned. Individual structural images were co-

registered to the mean functional image after realignment. The transformed structural images 

were then segmented into GM, white matter (WM), and cerebrospinal fluid (CSF) (Ashburner 

& Friston, 2005). To regress out head motion, respiratory and cardiac effects, we used the 

Friston 24-parameter model (Friston et al., 1996) as well as signals from WM and CSF. In 

addition, linear and quadratic trends were also included as regressors since the BOLD signal 

exhibits low-frequency drifts. The DARTEL tool (Ashburner, 2007) was used to normalize the 

functional data to the Montreal Neurological Institute (MNI) template. We used a spatial filter 

of 4 mm FWHM and finally performed temporal filtering (0.01–0.1 Hz). 

Seed-based functional connectivity analysis 

We then conducted an exploratory analysis by means of DPABI computing functional 

connectivity maps with a seed region consisting of left planum polare in MNI space, taken from 

the Harvard Oxford atlas (Desikan et al., 2006). To do so, the mean time course of all voxels in 

the seed region was used to calculate pairwise linear correlations (Pearson's correlation) with 

other voxels in the brain. Individuals' r values were normalized to z values using Fisher's z 

transformation. 

Statistical analysis of the functional connectivity maps was again carried out by means 

of a whole brain flexible factorial design, focusing on measurement occasions B, C, and D. We 

entered the images containing the z-transformed correlation values (between the seed region 

planum polare and all other voxels in the brain) in the second-level analysis with a focus on a 

time-by-group interaction, using a family-wise error (FWE) correction for multiple 

comparisons at p < .05 (cluster size k = 20 voxels). We used the REX toolbox (region-of-interest 

extraction tool; The Gabrieli Lab, MIT; http://www.alfnie.com/software) to extract the z-

transformed correlation coefficient values from within those clusters showing a significant 

time-by-group interaction. 

Graph Theory Analysis 

To perform connectivity analysis using graph-theory measures, we used BRAPH 

(BRain analysis using GraPH theory) (Mijalkov et al., 2017), a toolbox written in Matlab that 
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uses the Brain Connectivity Toolbox codebase (https://sites.google.com/site/bctnet/) (Rubinov 

& Sporns, 2010) to calculate network matrices. Such correlation matrices based on r correlation 

values were generated for every subject and then utilized in the calculation of both global and 

nodal measures. In this framework, nodes are brain regions based on the parcellation of the 

HarvardOxford atlas (Desikan et al., 2006) and edges represent the correlations between the 

temporal activation of pairs of brain regions. The constructed matrix is a weighted undirected 

matrix, where the edges indicate the strength of the connection. As is common practice, only 

positive values were used in the calculation of nodal and global metrics (negative correlations 

were set to zero). 

We computed five nodal measures for the left planum polare including degree, path 

length, global efficiency, local efficiency, and the clustering coefficient. The degree refers to 

the total number of edges connected to a node. In the calculations, the weights of the 

connections were ignored by binarizing the connectivity matrix so that only edges with nonzero 

weights were considered connected. Path length refers to the average distance from a node to 

all others. The distance between two nodes is defined as the length of the shortest path 

between those nodes. In the case of a weighted undirected graph, the length of an edge is a 

function of its weight. Typically, the edge length is inversely proportional to the edge weight 

(i.e., a high weight implies a shorter connection). The global efficiency at the nodal level 

defines the efficiency of the information transfer from one region to the whole network, which 

assesses the average inverse shortest path length between one node and all other nodes in the 

network. The local efficiency as a nodal measure is calculated as the global efficiency of the 

node on the subgraph level, created by the node’s neighbors. It reflects the efficiency of the 

information transfer from each region to the neighboring regions. The clustering coefficient 

at a nodal level is calculated as the fraction of triangles present around a node and is a measure 

of segregation. It reflects the ability for specialized processing in small groups of nodes and is 

thus regarded a measure of local connectedness within a network. 

In addition, we computed four global measures including all nodes of the whole-brain 

network, namely characteristic path length, global efficiency, local efficiency and clustering 

coefficient. The characteristic path length as a global measure is calculated as the average of 

the path lengths of all nodes. Global efficiency at the global level is the average of the global 

efficiency of all nodes in the graph and is inversely related to the characteristic path length. 

Local efficiency computed on the global level is the average of the local efficiencies of its nodes 

and reflects how well the nodes communicate with adjacent nodes. The clustering coefficient 

as a global metric is the average of the clustering coefficients of all nodes. 
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Statistical significance testing was done by extracting the values of the three 

measurement occasions for local and global measures for each subject from BRAPH and then 

testing for a time-by-group interaction separately for each nodal and global measure using 

SPSS, in the end applying a correction for multiple comparisons using the false discovery rate 

(FDR) algorithm (p-value of .05; https://www.sdmproject.com/utilities/?show=FDR).  

 

6.3 Results 
 
Behavioral results 

Based on BGS results, aspiring professional musicians showed significantly higher 

levels of general music expertise than amateur musicians at measurement occasion B, which 

corresponds to an early phase of assessment, t(32) = 4.57, p < .001, Hedges’ g = 1.58. 

Furthermore, aspiring professionals showed an increase in performance, whereas amateurs’ 

performance remained relatively stable, as reflected by a significant time-by-group interaction, 

F(2,64) = 8.53, p = .001, partial h squared = 0.21. 

 
Figure 12. Behavioral performance scores on Berlin Gehoerbildung Scale (BGS). Error bars 
represent ± 1 standard errors (SE).   

 

Preexisting differences in GM volume between aspiring professionals and amateur musicians 

To characterize differences in grey matter volume between aspiring professionals and 

amateur musicians, we first computed a 2-sample t-test on the segmented whole-brain grey 
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matter maps at measurement occasion B. This cross-sectional comparison yielded four 

significant clusters in superior parietal lobule, left superior temporal gyrus, right hippocampus, 

and right postcentral gyrus (see Table 5 and Figure 13), in which participants of the aspiring 

professional group showed greater grey matter volume than amateur musicians. 

 

Table 5. Brain regions showing a significant group difference in grey matter volume between 
aspiring professionals and amateur musicians at measurement occasion B (p < .005, 
nonstationary smoothness corrected and cluster correction for expected voxels). 

Area Peak coordinates (MNI) T-score Extent 

Right Hippocampus 22 -18 -24 3.54 567 

Right superior parietal lobule 42 -38 52 4.00 415 

Left superior/middle temporal gyrus -52 -26 -9 3.63 348 

Right postcentral gyrus 9 -34 74 3.54 111 

 

 

Figure 13. Regions of preexisting differences in grey matter volume between aspiring 
professionals and amateur musicians at measurement occasion B in hippocampus, superior 
parietal lobule, superior/middle temporal gyrus, and postcentral gyrus emerging in a whole-
brain 2-sample t-test (p < 0.005, nonstationary smoothness corrected and cluster correction for 
expected voxels). Coordinates refer to MNI space. In all cases, volumes were greater in aspiring 
professionals than in amateur musicians. 
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An additional ROI analysis, focusing on primary and secondary auditory cortex further 

confirmed a significant difference in the right anterior portion of superior temporal gyrus (STG) 

(t(38) = 2.40, p = .02, Hedges’ g = 0.7531) and the left posterior portion of STG (t(38) = 2.37, 

p = .02, Hedges’ g = 0.7419) (see Figure 14). Analyses of grey matter volume differences in 

bilateral planum temporale, Heschl’s gyrus, and planum polare showed the same tendency of 

greater grey matter volumes in aspiring professionals than in amateur musicians but failed to 

reach the threshold of statistical significance.  
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Figure 14. Region-of-interest (ROI) analyses showed a significant difference in grey matter 
volume in left posterior superior temporal gyrus (STG) and right anterior STG (p < .05). All 
other ROIs showed the same tendency of greater grey matter volumes in aspiring professionals 
than in amateur musicians but failed to reach the threshold of statistical significance. 

 

Changes in GM volume over time 

Given that the focus of this study was on differences in within-person changes between 

aspiring professionals and amateurs, we computed a whole-brain interaction on the segmented 

whole-brain grey matter maps. We found three significant clusters, namely in left planum 

polare, left posterior insula extending into planum polare, and left inferior frontal orbital gyrus 

extending into anterior insula (see Figure 15 and Table 6 for exact coordinates and F-scores). 

All of these clusters were driven by decreases in grey matter volume in aspiring professional 

musicians relative to amateur musicians (see Figure 15B). 
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Figure 15. (A) Significant clusters in left planum polare, posterior insula and inferior frontal 
orbital gyrus emerging in a whole-brain time-by-group interaction analysis (p < 0.001, k > 47, 
corrected for nonstationary smoothness). Coordinates refer to MNI space. (B) Bargraphs with 
the extracted grey matter volume estimates of the significant clusters in the time-by-group 
interaction. This effect is driven by a decrease of grey matter volume in aspiring professionals 
compared to amateur musicians. Error bars represent ± 1 SE. 

 

Table 6. Brain regions showing a significant interaction effect of Group (aspiring professionals 
vs. amateur musicians) and Time (timepoint B, C and D) in grey matter volume (p < .001, 
nonstationary smoothness corrected and cluster correction for expected voxels). 

 
Area Peak coordinates (MNI) F-score Extent 

Left planum polare -48 -14 0 23.02 292 

Left posterior insula / planum polare -38 -3 -21 18.40 181 
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Left inferior frontal orbital gyrus / 

anterior insula 

-32 24 -6 16.06 181 

 

For the left planum polare and inferior frontal orbital gyrus (IFoG), the observed 

decrements in estimates of grey matter volume in the group of aspiring professionals correlated 

with general music expertise as assessed by the BGS at measurement occasions B, C, and D 

(see Figure 16). A similar result was obtained at trend level for the posterior insula (left planum 

polare: rTime B (19) = -0.581*, p = .009; rTime C (19) = -0.517*, p = .023; rTime D (19) = -0.588*, p 

= .008; left posterior insula: rTime B (19) = -0.387, p = .102; rTime C (19) = -0.525*, p = .021; rTime 

D (19) = -0.433, p = .064; left IFoG: rTime B (19) = -0.558*, p = .013; rTime C (19) = -0.634*, p = 

.004; rTime D (19) = -0.589*, p = .008). This association was also true across the whole sample 

(left planum polare: rTime B (34) = -0.580*, p < .001; rTime C (34) = -0.523*, p = .001; rTime D (34) 

= -0.599*, p < .001; left posterior insula: rTime B (34) = -0.282, p = .106; rTime C (34) = -0.398*, 

p = .020; rTime D (34) = -0.373*, p = .030; left IFoG: rTime B (34) = -0.586*, p < .001; rTime C (34) 

= -0.620*, p < .001; rTime D (34) = -0.620*, p < .001). Importantly, no such associations were 

found within the group of amateur musicians (all ps > .08). 

 

 

Figure 16. Correlations between decrease in gray-matter volume in left planum polare between 
timepoints B and D and behavioral performance in the BGS at measurement occasions B, C, 
and D, respectively. 

 

Correlations in the total sample continued to differ reliably from zero in planum polare 

and inferior frontal gyrus after excluding one very high-performing individual who also 

exhibited the most pronounced structural decrease (but does not qualify as an outlier; left 

planum polare: rTime B (33) = -0.434*, p = .012; rTime C (33) = -0.354*, p = .043; rTime D (33) = -

0.468*, p = .006; left IFoG: rTime B (33) = -0.519*, p = .002; rTime C (33) = -0.559*, p = .001; 

rTime D (33) = -0.561*, p = .001, but not in left posterior insula: rTime B (33) = 0.00, p = .999; rTime 
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C (33) = -0.162, p = .367; rTime D (33) = -0.141, p = .433). This means that those individuals 

showing the highest proficiency in this behavioral test were also the ones that exhibited the 

most pronounced decrease in grey matter volume. In contrast, the decrease in estimates of grey 

matter volumes did not correlate with improvements in music expertise (rplanum polare (19) = -

0.104, p = .671; rposterior insula (19) = -161, p = .483; rIFoG (19) = -0.171, p = .483). 

Changes in functional connectivity 

To understand these changes in grey matter volume, we further investigated training-

dependent changes in the coupling between brain regions. Here, we focused on the largest 

cluster of structural change located in left planum polare, that is, auditory cortex, and its 

correlations with other regions of the brain. We found increasing functional connectivity of the 

left planum polare to left and right auditory cortex, left precentral gyrus and left supplementary 

motor cortex, left posterior cingulate, and left and right postcentral gyrus over time in aspiring 

professionals compared to amateur musicians (FWE-corrected p-value of 0.05; see Figure 17). 
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Figure 17. (A) Significant clusters exhibiting increased functional connectivity over time with 
left planum polare in aspiring professionals compared to amateur musicians (p < .05 FWE 
corrected). (B) Bargraphs with the extracted Fisher’s z-transformed correlation coefficients 
from those significant clusters of the Time-by-Group interaction. Group-by-time interactions 
of the functional connectivity analysis were driven by increasing correlation coefficients in 
aspiring professionals relative to stable correlations among amateur musicians. Error bars 
represent ± 1 SE. 

 

Changes in graph-theoretical measures 

To further characterize changes in functional organization for the left planum polare and 

the whole brain, we conduced graph-theory analyses and compared network characteristics in 

the two groups over time. While there were no significant time-by-group interactions in any of 
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the nodal measures for the left planum polare, there were significant time-by-group interactions 

for all global measures, namely for characteristic path length, global efficiency, local efficiency, 

and clustering (see Table 7 for exact numbers). In all of those measures, the group of amateur 

musicians showed no reliable mean change over time, whereas the group of aspiring 

professionals showed significant increases over time in all global metrics except for path length, 

which, as expected, decreased over time. 

 

Table 7. Nodal and global measures of graph theoretical analyses at measurement occasions B, 
C and D, comparing aspiring professionals to amateur musicians. The nodal measures reported 
refer to the left planum polare. 

 
Nodal 
Measures 

Aspiring 
professionals 

Effect of time Amateur musicians 

 

Effect of time Time-by-Group 
Interaction 

 Time 
B 

Time 
C 

Time 
D F p (FDR-

corr.) 
Time 

B 
Time 

C 
Time 

D F p (FDR-
corr.) F p (FDR-

corr.) 

Degree 98.83 101.1 107.3 8.04 0.011* 99.85 105.2 
104.7

8 2.97 0.24 1.06 0.35 

Path 
length 2.76 2.63 2.21 10.09 0.007* 3.10 2.48 2.53 1.65 0.24 23.06 0.08 

Global 
efficiency 0.42 0.45 0.52 11.3 0.007* 0.37 0.46 0.45 1.51 0.24 3.55 0.08 

Local 
efficiency 

1.97 2.24 2.89 12.62 0.007* 1.54 2.28 2.13 2.88 0.24 4.09 0.08 

Clustering 0.35 0.39 0.47 0.47 0.007* 0.29 0.39 0.37 3.18 0.24 2.88 0.08 

 

 

Global 
Measures 

Aspiring 
professionals 

Effect of time Amateur musicians 

 

Effect of time Time-by-Group 
Interaction 

 
Time 

B 
Time 

C 
Time 

D F 
p 

(FDR-
corr.) 

Time 
B 

Time 
C 

Time 
D F 

p 
(FDR-
corr.) 

F p (FDR-
corr.) 

Characteristic 
path length 2.89 2.78 2.36 11.15 0.004* 3.15 2.69 2.77 5.52 0.069 4.01 0.02* 

Global 
efficiency 0.40 0.42 0.49 12.79 0.004* 0.36 0.43 0.41 4.57 0.069 5.17 0.02* 
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Local 
efficiency 1.84 2.03 2.65 12.39 0.004* 1.47 2.06 1.92 2.62 0.13 7.03 0.01* 

Clustering 0.33 0.36 0.44 13.59 0.004* 0.28 0.36 0.35 5.06 0.069 4.002 0.02* 

 

6.4 Discussion 
 

In the present longitudinal study, we set out to investigate structural brain alterations 

and changes in functional connectivity in musicians intensely preparing for their entrance exam 

at a University of Arts. We found that grey matter volume decreased over time in comparison 

to amateur musicians in three clusters, namely left planum polare, posterior insula extending 

into planum polare, and left inferior frontal orbital gyrus extending into anterior insula. The 

biggest cluster of structural change was observed in left planum polare, which exhibited 

increased functional connectivity with left and right auditory cortex, left precentral gyrus, left 

supplementary motor cortex, left posterior cingulate cortex, and left and right postcentral gyrus. 

All of these regions have been previously identified to play important roles in music expertise 

(e.g., Luo et al. 2012; Groussard et al. 2014). The increase in connectivity for the region 

showing the greatest structural change was also reflected in results based on graph theory. Here, 

we observed changes over time in the global metrics, indicating participation of the planum 

polare in an increasingly complex network in the group of aspiring professionals compared to 

amateur musicians. 

Our results once again speak to the malleability of adult brain structure to environmental 

influences (Kühn & Lindenberger, 2016; Lindenberger et al., 2017; Lövdén et al., 2013). The 

left planum polare as a region within the superior temporal gyrus, adjacent to left Heschl’s 

gyrus, has been reported to show preferential activity to musical stimuli in comparison to other 

types of complex sounds, such as speech and non-linguistic vocalizations, and to integrate 

acoustic characteristics in the context of complex musical sounds, both in trained musicians 

and nonmusicians (Angulo-Perkins et al., 2014). In another study, left planum polare showed 

activity during high-level musical processing (Brown et al., 2004). In a study looking into 

functional networks underlying music processing and processing of vocalizations with a 

passive listening stimulation paradigm that included different vocal sound categories (i.e., song, 

hum and speech), left planum polare together with planum temporale and a group of regions on 

the right hemisphere that included the supplementary motor area, premotor cortex and the 

inferior frontal gyrus, showed stronger activations during music listening (Angulo-Perkins & 

Concha, 2019). Interestingly, left planum polare also showed activity during vocal musical 

listening, with and without lyrics, a finding pointing towards its role in music processing of 
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temporally complex sounds, such as vocal music and speech. Overall, evidence suggests that 

the planum polare might be playing an intermediate role between the primary auditory cortex 

and other associative cortices, possibly extracting information (such as melodic patterns or 

pitch-interval ratios) required for further processing leading to perceptual evaluations (e.g., a 

same-different task), vocal production, and sensory-motor coordination to reproduce melodic 

or rhythmic sounds (Angulo-Perkins & Concha, 2019).  

As an integration hub, the insula serves a plethora of different tasks, including sensory, 

emotional, motivational and cognitive functions (Gogolla, 2017). More specifically within the 

realm of music, the insula has often been discussed to reflect the emotional aspects of music 

processing (Blood & Zatorre, 2001; Koelsch, 2010; Koelsch et al., 2005) and is involved in 

autonomic regulation and sensory representation of emotion percepts (Koelsch, 2014). As 

aspiring professional musicians do not only have to perfect their technical skills but also have 

to hone their emotional sensitivity to music, it is conceivable that insula cortex, both anterior 

and posterior portions, evinces structural change. 

Left inferior frontal gyrus is well known for its role in syntactic processing of language 

and music (Friederici, 2002; Nan & Friederici, 2012; Tillmann et al., 2006), as well as more 

broadly in general cognitive functions, such as top-down attention and working memory 

(Janata, Tillmann, et al., 2002; Schulze et al., 2011). Especially the orbitofrontal part has been 

associated with automatic appraisal and is activated by breaches of expectancy (Koelsch, 2014), 

a function crucial for aspiring professional musicians, as it helps them to discriminate, for 

instance, between expected and unexpected chord progressions. Interestingly, there have been 

findings of projections from the anterior superior temporal plane to the orbitofrontal cortex in 

rhesus monkeys (Petrides & Pandya, 1988), that go along well with a recent finding of 

functional connectivity of the left planum polare with orbitofrontal cortex in an fMRI study 

during music-evoked emotional processing (Koelsch et al., 2018).  

Within all three of these regions, we have found structural decreases in the group of 

aspiring professionals, while volumes in amateur musicians remained stable. Importantly, we 

were comparing a group of individuals aspiring to become professional musicians to a group 

of amateur musicians who actually have a history of comparable years of playing an instrument 

but with different intensity and a different goal in mind. This stands in contrast to many other 

studies that have used nonmusicians as a comparison group. All of our participants look back 

on similar amounts of musical training, but the aspiring professionals presumably have been 

trying, for quite some time, to perfect their general ear-training skills in order to pass a highly 

competitive entrance exam. Accordingly, we found some structural differences between 
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aspiring professionals and amateurs at the beginning of our observation period, with aspiring 

professionals exhibiting more grey matter volume in hippocampus, superior parietal lobule, 

superior/middle temporal gyrus, and postcentral gyrus. However, in the following weeks and 

months, aspiring professionals actually exhibited a decrease of grey matter volume over time 

compared to amateur musicians.  

At first, the observed decrements in grey matter volume among aspiring professionals 

may seem counterintuitive. However, we have argued before that plasticity might in part be 

characterized by volume expansion followed by a selection process leading to a partial 

renormalization of overall volume (Wenger, Brozzoli, et al., 2017). In fact, given the large 

number of skills humans acquire during their lifetime, plasticity cannot be conceived as a 

process of perpetual growth (Changeux & Dehaene, 1989; Lindenberger et al., 2017; Wenger, 

Kühn, et al., 2017). According to the exploration–selection–refinement (ESR) model of human 

brain plasticity (Lindenberger & Lövdén, 2019; Lövdén et al., 2020) neuronal microcircuits 

potentially capable of implementing the computations needed for executing novel skills are, 

early in learning, widely probed, with a concomitant increase in grey matter volume. This phase 

of exploration is followed by phases of experience-dependent selection and refinement of 

reinforced microcircuits and the gradual elimination of novel structures associated with 

unselected circuits. It is tempting to speculate that the aspiring professionals had entered the 

selection and refinement phases of a plastic episode when they were recruited for participation 

in the present study. Clearly, this interpretation needs to remain tentative because we did not 

observe the full cycle of volume expansion followed by renormalization as in our previous 

study on motor training (Wenger, Kühn, et al., 2017) or as Quallo and colleagues did in their 

study on tool-use in monkeys (Quallo et al., 2009). Nevertheless, it offers a tenable explanation 

for the observed structural decreases in left planum polare, posterior insula, and inferior frontal 

orbital gyrus that needs to be corroborated in future work. 

Thus far, data that are consistent with the ESR model have been primarily observed in 

early ontogeny or during motor skill acquisition; for review, see Lindenberger and Lövdén 

2019. Acquiring a complex skill like playing an instrument, in combination with mastering the 

complexities of harmony and ear training is a different story. There are no data available yet 

that chart the sequential progression of plasticity over years of musical training. What is 

documented in the literature are, for the most part, cross-sectional studies showing differences 

in brain structure between musicians and nonmusicians. We can therefore only speculate how 

the alteration of brain structure in response to years of musical training that has evidently 

resulted in lasting volume expansion can be reconciled with an ESR view of plastic change. 
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One possibility is that changes occur as a sequence of several expansion–renormalization cycles 

that always conclude in only partial renormalization. This would in the long run result in a 

building-up of consistently “skill-optimized” grey matter structure. Obviously, we could not 

investigate this hypothesis in the current study. What we have observed is a decrease in 

estimates of grey matter volume in the group of musicians intensely preparing for an entrance 

exam, in comparison to a group of musicians still actively performing music on a daily basis 

but without intensive training. It is noteworthy that others have reported associations between 

smaller volume and higher expertise: In ballet dancers (Hänggi et al., 2010) and also in skilled 

pianists (Granert, Peller, Jabusch, et al., 2011), striatal volume was smaller in individuals with 

greater motor function efficiency. Furthermore, in a study investigating nonmusicians, 

amateurs, and expert musicians, there was a negative correlation between degrees of music 

expertise and grey matter density in right postcentral gyrus, bilateral precuneus/paracentral 

lobule, left inferior occipital gyrus, and bilateral striatal areas (James et al., 2014). 

Following up on our structural results, we also investigated whether we would see 

indications of plasticity at the functional level. If what we observed here is indeed the second 

part of an expansion–renormalization cycle, then the left planum polare, which made up the 

largest patch of grey matter showing volume reduction, would be expected to undergo changes 

in functional connectivity. Hence, we expected that the planum polare would show increased 

connectivity throughout the brain, specifically to regions previously implicated in musical 

processing. Indeed, resting-state functional connectivity analyses revealed that over time, the 

left planum polare was better connected within left auditory cortex itself extending towards the 

superior temporal pole, and also to the right auditory cortex and superior temporal pole, left 

precentral and also supplementary motor area, left posterior cingulate cortex, and left and right 

postcentral gyrus, regions that have been shown before to matter in music expertise (Groussard 

et al., 2014; Luo et al., 2012). 

Left auditory cortex has been shown to be involved in processing of melody (Bengtsson 

& Ullén, 2006) and more specifically also in musical semantic memory (Groussard et al., 2010). 

Left posterior cingulate cortex has been discussed in the context of integrating sensory 

information and emotional content, for example during reading musical notation (Hyde et al., 

2009), in the context of familiarity tasks featuring well-known songs (Satoh et al., 2006), and 

in combination with autobiographical memories associated with musical excerpts (Ford et al., 

2011). The supplementary motor area has been shown before to exhibit greater grey matter 

volume in musicians versus nonmusicians (Gaser & Schlaug, 2003) and has been implicated in 

the processing of sequential temporal structures (Bengtsson et al., 2009), pitch and timing 
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repetition during both listening and performance tasks (Brown et al., 2013), as well as in 

rhythmic and melodic musical improvisation (de Manzano & Ullén, 2012).  

Also, the results of our graph-theoretical analysis go along with our assumption of the 

malleability of adult brain function under the influence of training, leading to enhanced local 

and global communication among brain regions. This is reflected in all global measures of 

graph complexity we investigated, but not on the nodal level for the left planum polare. 

At all measurement occasions, we observed significant correlations between individual 

differences in grey matter volume decrements and music expertise. In other words, the highest 

performing individuals exhibited the most pronounced decreases in grey matter volume in left 

planum polare, left insula, and left inferior frontal gyrus, thus, show the largest plastic change 

on the neural level. However, counter to expectations, we did not observe any significant 

correlations between changes in music expertise and changes in grey matter volume. One 

reason for the absence of such a change-change association is the high degree of stability of 

individual differences in music expertise over time. For instance, in aspiring professionals, we 

observed the following correlations in music expertise between adjacent measurement 

occasions (rAB = .955; rBC = .896; rCD = .950; rDE = .981). 

We can only speculate about the neurobiological mechanisms that may have caused the 

observed reductions in grey matter volume. Synaptic changes including dendritic branching 

and axon sprouting as well as glial changes come to mind and we and others have elaborated 

on the exact potential mechanisms before (Lindenberger & Lövdén, 2019; Wenger, Brozzoli, 

et al., 2017; Zatorre et al., 2012). Future studies need to incorporate additional MR sequences 

specifically tailored to disentangle these processes, as for example T1 maps (Lerch et al., 2017; 

Tardif et al., 2016).  

The present study also has some further limitations that need be mentioned. First, there 

was no random assignment of participants to groups. Obviously, this caveat is inherent in the 

studied topic and is not easy to overcome. We have tried to limit this problem by recruiting two 

groups of participants with comparable years of playing an instrument. Still, there might be pre-

existing differences between people who aspire to become professional musicians and people 

who consider themselves amateur musicians (Ullén et al., 2016). In addition, the stress to which 

aspiring professional musicians are exposed might have influenced the present results, as stress 

has been shown to result in grey matter volume reductions (Kassem et al., 2013). Thus, we 

cannot rule out that the observed decreases in grey matter volume might, to some extent, be 

related to stress, even though our findings of increased functional connectivity and the 

correlation with behavioral performance renders this explanation rather unlikely, and also 
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auditory cortex does not belong to those regions typically affected by stress-related reductions 

(Lupien et al., 2009). Finally, the present samples were not systematically stratified by which 

main instrument the participants played. Hence, we may have missed out on effects that are 

specific to particular focal instruments, such as piano versus strings.  

 

6.5 Conclusion  
 
To conclude, we found that musicians intensely preparing for the entrance exam to a University 

of the Arts show reliable reductions in grey matter volume in regions pertinent to music 

expertise, whereas a group of amateurs not preparing for an exam did not show such changes. 

The planum polare, which was the largest grey matter cluster with volume reductions, showed 

increasing functional connectivity to other musically-relevant regions. This increase in 

connectivity was also reflected in global metrics of network integration and segregation based 

on graph theory. The present results are consistent with the ESR model of plastic change 

(Lindenberger & Lövdén, 2019; Lövdén et al., 2020), which posits an expansion of grey matter 

volume during early phases of skill acquisition, followed by partial renormalization (Wenger, 

Brozzoli, et al., 2017). 
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6.6 Supplementary material 
 

 

Figure 18.  Correlations of grey matter volume changes from measurement occasion B to D in 
left orbital inferior frontal gyrus (IFG) and left posterior insula inferior frontal orbital gyrus 
with behavioral performance at measurement occasions B, C, and D. 
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Figure 19. Line plots of individuals’ time courses of the overall Berlin Gehoerbildung Scale 
(BGS) score representing music expertise, and the four factors representing sub-domains 
(Intervals, Dictation, Chords, and Complex Listening). Selected participants portrayed in 
Figure S2 (participants 1-8, all belonging to the group of aspiring professionals) are displayed 
in dark yellow lines here, to further illustrate their behavioral performance. 
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7  Discussion 
 

This dissertation examined manifestations of functional brain plasticity both cross-

sectionally and longitudinally in a group of individuals aspiring to become professional 

musicians and a group of amateur musicians, actively practicing music in their daily lives. 

Specifically, I sought to explore how the differing intensity of training and aspirations, setting 

apart these two groups, are reflected in functional brain organization, with a focus on functional 

connectivity and graph-theoretical measures. Furthermore, I investigated changes in functional 

organization of an auditory region, undergoing changes in grey matter volume, for the group of 

aspiring professional musicians, in the course of intensive musical training. The presentation of 

the projects follows a progressive widening of the scope of the processes under examination, 

beginning from effects of different levels of musical expertise on the performance of an interval 

recognition task, to a real-life experience of listening to music, and eventually extending to 

observations of changes over time in function, as training continues and intensifies.  

The first project aimed to answer the question of whether functional connectivity among 

regions facilitating interval recognition differs in resting state between the two groups of 

different expertise levels. The rationale was that repetitious activity during practicing a 

particular aspect of musical training, like interval recognition, would be reflected in their 

functional organization in the absence of task performance. The second project addressed two 

questions, first, how different processing demands of two musical pieces are reflected in whole 

brain functional configurations, and second, how the two groups differ in their expression of 

these configurations and in the recruitment of brain regions, according to the demands posed 

by each musical piece. The third project evolved around the question of what kind of functional 

connectivity changes accompany changes in grey matter volume of a specific auditory region, 

found to decrease over time in volume for the group of aspiring professionals. 

In the discussion section, I will first summarize the findings of each project and discuss 

their implications in relation to current literature. Then I will discuss some aspects pertaining 

to all three projects and extending overall to the field of experience-dependent plasticity 

research. Furthermore, I will address some challenges and limitations of the projects presented 

and finally, I will summarize the conclusions of this dissertation and briefly present suggestions 

for further exploration of the topics. 

 



  Discussion 

 108 

7.1.1 Expertise-related differences on resting state functional organization of a network 

facilitating intervals recognition 

Interval perception and recognition is a crucial and foundational part of musical 

education and of everyday practice for musicians. It comes as no surprise that musicians 

outperform nonmusicians and novices in tasks assessing tonal processing, a finding often 

accompanied by enhanced activation in relevant brain regions (Bianchi et al., 2017; James et 

al., 2017; Schneider et al., 2002, 2005). These findings instigated the question of whether 

repetitive recruitment of regions facilitating interval recognition affects their connectivity in 

resting state. Furthermore, the functional organization of such a network of regions might differ 

between the group of aspiring professional musicians, undergoing intensive training, and the 

group of amateur musicians. For this purpose, I utilized an fMRI task where participants 

performed interval recognition, in order to localize brain regions facilitating the process. This 

task-relevant set of regions was further used to compute functional connectivity analysis and 

graph measures of average strength and global efficiency on resting state data acquired 

separately. These metrics were then correlated with behavioral performance in the fMRI task 

and in separately acquired behavioral measures of musical expertise. Aspiring professional 

musicians outperformed amateur musicians in all behavioral measures of interval recognition 

and exhibited greater network strength and global efficiency than amateur musicians. Both 

metrics correlated positively with performance in the fMRI task and the additional measure of 

interval identification ability.  

Although the fMRI-task was not tailored exclusively to perception of intervallic 

relationships, an issue that will be discussed in the limitations’ subsection (7.3), the brain 

regions detected by the localizer task have all been reported to take part in intervallic and tonal 

processing. Especially posterior parts of the STG bilaterally, extending to the planum polare 

and the right temporal pole are often reported in relation to processing of intervallic 

information, pitch processing, perceptual decision making and auditory working memory 

(Hyde et al., 2008; King et al., 2018; Nolden et al., 2013; Peretz & Zatorre, 2005; Zatorre & 

Belin, 2001). The left supramarginal gyrus is reported to facilitate short-term pitch memory and 

maintenance of pitch information (Schaal et al., 2015, 2017), while the putamen, alongside 

participation in many aspects of auditory processing, facilitates temporal and sequential aspects 

of tonal processing (Geiser et al., 2012; Kotz et al., 2009; Pando-Naude et al., 2021). Finally, 

the ventromedial prefrontal cortex is prominent in integrating sensory input and facilitating 

perception-based decision making, auditory working memory and maintenance of tonal 

information (Sharma & Bandyopadhyay, 2020; Plakke & Romanski, 2014; Janata et al., 2002). 
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Crucially, activation in those regions was common in both groups. Further analysis of group 

differences in the fMRI task showed that the group of aspiring professional musicians had 

additional activations in occipital regions, possibly indicating visualization of perceived 

intervals, as a strategy for interval identification.   

 The group differences in the graph metrics, with the aspiring professional musicians 

exhibiting higher average strength and global efficiency in this network of regions, suggest that 

superior performance on the side of aspiring professionals is facilitated by an overall more 

connected network of regions. This is further highlighted by the correlation of graph metrics 

with behavioral performance. However, the group differences in the graph measures cannot be 

directly compared with other findings in the literature. This is due to the fact that few studies 

have utilized graph measures in investigations of musical expertise. Furthermore, among those 

who have, there is wide variability in the choice of nodal or global measures and whether 

computation is based on task or resting state data, on whole brain parcellations or on specific 

subnetworks facilitating a process, like in this case. Nevertheless, findings from studies utilizing 

graph measures for investigating functional network organization in relation to expertise, 

converge on the fact that musicians exhibit increased connections in music-processing brain 

regions throughout the brain, as well as enhanced efficiency for both local and whole-brain 

information transmission (Loui et al., 2012; Alluri et al., 2017; Leippold et al., 2021; 

Paraskevopoulos et al., 2017). In line with these findings, the group differences in the graph 

metrics suggest that musical training affects brain networks organization. 

 A crucial aspect of the reported findings is that network organization of the regions 

facilitating task performance differs between the two groups in the absence of any task 

execution and correlates with behavior. Importantly, this was not the case for two other resting 

state networks that were used in a control analysis, the default mode network and the executive 

control network. This aspect brings in discourse the relationship of task fMRI with resting state 

fMRI and the relationship of resting state fMRI with behavioral performance under the scope 

of experience-dependent plasticity. Many studies have shown that task-related activation 

patterns can indeed be mapped onto resting state activations and resting state networks 

(Calhoun, Kiehl, & Pearlson, 2008; Cole et al., 2014; Cole et al., 2016; Di, Gohel, Kim, & 

Biswal, 2013; Simon-Vermot et al., 2018; Smith et al., 2009). In this perspective, resting state 

is often viewed as a baseline state, on which specific task demands act upon, further shaping 

and contributing to the activation patterns observed during task execution (Deco et al., 2013). 

In this sense, resting state functional connectivity may be considered indicative of the brain’s 

functional repertoire, which explains findings of resting state functional connectivity 
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predicting, or usually correlating with learning accuracy and behavioral performance in various 

domains. For example, resting state functional connectivity has been found to predict 

performance in face and scene recognition tasks (Collins et al., 2019) and in memory tasks 

(Ramot et al., 2019), and learning outcomes in visual perceptual learning (Baldassarre et al., 

2012), in learning of an artificial tone system (Lumaca et al., 2019) and in learning foreign 

sounds (Ventura-Campos et al., 2013).  

 In relation to experience-dependent plasticity, resting state functional connectivity has 

proven valuable in uncovering changes in functional organization. Musicians exhibit 

strengthened connectivity in comparison to nonmusicians among regions of bilateral auditory 

cortices, premotor cortex, supramarginal and orbitofrontal regions (Fauvel et al., 2014; Luo et 

al., 2012; Palomar-García et al., 2017), as well as in thalamocortical networks (Tanaka et al., 

2017). Differences in resting state functional connectivity, with use of both static and dynamic 

measures, have also been reported among brain regions across the entire brain, including also 

multisensory regions and regions of various cognitive functions, such as memory, language and 

attention (Hou et al., 2015; Hou & Chen, 2021; Luo et al., 2012). In these studies, focusing only 

on resting state, the differences are attributed to the effects of long and intensive musical 

training, with connections to specific processes being only speculative. In the case of this 

project, I aimed to narrow down such effects on the specific process of interval recognition. 

Importantly, the acquisition of the resting state data preceded any task execution, which could 

induce short-lasting modifications in resting state activations, as it is shown that resting state 

connectivity exhibits variability affected among others by preceding task activations (Guerra-

Carrillo et al., 2014). Overall, the results suggest that the group of aspiring professional 

musicians spending more time in formal training not only exhibit superior behavioral 

performance, but also systematically recruits these regions together, resulting in strengthened 

connectivity among them in resting state. 

 

7.1.2 Effects of processing demands and musical expertise on functional organization while 

listening to music 

Listening to music is a complex experience and aspects associated with it, like 

enjoyment or appreciation, are shaped by a multitude of factors including familiarity, 

enculturation in specific music genres, or relevant training experience (Mencke et al., 2019). 

Studies examining correlates of musical expertise during unconstrained listening to music have 

shown that musicians, in comparison to nonmusicians, show greater activation in regions of 

auditory processing and higher integration among auditory, somatosensory and motor regions 
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(Angulo-Perkins et al., 2014; Bangert et al., 2006; Habermeyer et al., 2009; Oechslin et al., 

2013). In the second project, I investigated both how processing demands of music pieces 

modulate brain states and whether groups of different musical expertise show differences in 

functional organization during listening to music. Participants were presented with two musical 

pieces, one piece by J.S. Bach, typically referred to as baroque music, and one piece by A. 

Webern, part of the movement of compositional innovations of the 20th/21st century and 

typically referred to as 2nd Viennese School. These two pieces differ in composition style and 

elicit different listening experiences. The piece of J.S. Bach belongs to a corpus of music 

familiar and enculturated for western listeners. This modulates predictive and expectancy 

processes evoking emotional states, reward and pleasure sensations (Koelsch et al., 2019; 

Mencke et al., 2019). Processing music by J.S. Bach probably shows higher similarity within 

the two groups, without excluding of course differences in processes which could arise when 

focusing on specific musical features. Music by A. Webern presents a challenging musical 

experience, for the inexperienced listener. It can be appreciated based on features that are not 

necessarily inherent to acoustic features, like previous exposure, context, expertise and 

personality traits, like openness to experience (Dean & Pearce, 2016; Omigie, Dellacherie, & 

Samson, 2017; Brattico, Brigitte Bogert, & Jacobsen, 2013; Nusbaum & Silvia, 2011; Reber, 

Schwarz, & Winkielman, 2004). This is mainly due to its compositional style; hierarchies and 

regularities, around which western musical tradition is based, are lacking as a reference point 

(Rosch, 1975), resulting in low information content (Dean & Pearce, 2016) and an experience 

of predictive uncertainty (Hansen & Pearce, 2014).  

The different listening experiences elicited by these two musical pieces are indeed 

reflected in the overall brain states configurations. While listening to the piece by A. Webern, 

all participants spend overall more time in a state characterized by higher connectivity and 

lower modularity while this pattern reversed during listening to the piece by J.S. Bach. This 

finding is in line with findings from studies examining how processing demands modulate 

activation, connectivity and network configurations on cognitive tasks. Enhanced interregional 

connectivity and integration is considered an adaptive response in order to meet higher 

processing demands (Kitzbichler et al., 2011;Vatansever et al., 2015; Shine et al., 2016), while 

modularity appears to reflect local processing in tasks which are not particularly challenging or 

can be processed habitually (Cohen & D’Esposito, 2016; Shine & Poldrack, 2018). A tendency 

towards more modular organization has been shown in relation to motor training (Bassett et al., 

2011, 2015) and remains an issue to be further explored in the auditory domain. To my 
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knowledge, this is the first project to apply such a conceptual and methodological framework 

to musical processing demands.  

The second question of this project evolved around whether the difference in musical 

expertise of the two groups affected their overall functional organization in relation to the 

processing demands posed by the musical pieces. Absence of group differences during listening 

to the piece by J.S. Bach in examination of graph theoretical measures based on static functional 

connectivity, is not surprising given the potential familiarity of both groups with this musical 

genre and tradition, in which they are probably highly enculturated. In line with this, familiarity 

with musical pieces is shown to elicit more similar responses among listeners (Madsen et 

al.,2019). Furthermore, musicians and amateur musicians have also been reported to show 

similar activation patterns particularly in musical processing tasks of lower difficulty (Oechslin 

et al., 2013). Of course, this does not exclude potential between-group differences in processing 

particular aspects like timbre, tonality or rhythm, which could be investigated separately by 

isolating such events of interest within the musical piece and looking at the activations they 

elicit, as done in other studies (Alluri et al., 2013; Saari et al., 2018; Toiviainen et al., 2014). 

On the contrary, during listening to the piece by A. Webern, the group of aspiring professional 

musicians showed an overall higher global efficiency, indicative of enhanced whole brain 

integration. Furthermore, the group of aspiring professional musicians exhibited higher degree, 

a measure of node centrality, and participation coefficient, a measure characterizing the 

contribution of regions in between-networks communication, in a multitude of regions, in 

comparison to the group of amateur musicians. A reverse pattern was not observed for any of 

those measures. These metrics offer a characterization of brain regions in terms of their role as 

hubs and their contribution in interregional communication within the whole brain network and 

the communities they belong to (van den Heuvel & Hulshoff Pol, 2010). In the condition of 

listening to the piece by A. Webern, aspiring professional musicians, in comparison to amateur 

musicians, exhibited higher degree in frontotemporal, occipital, parietal and striatal regions, all 

of which have been related to aspects of musical processing and have been shown to undergo 

structural and functional plastic changes in many studies (subsection 2.2). Furthermore, in the 

less demanding condition of listening to the piece by J.S. Bach, aspiring professional musicians 

only exhibited higher degree bilaterally in the caudate and higher participation coefficient in 

frontal and temporo-occipital regions. Within-group differences for the group of aspiring 

professionals while listening to the piece by A. Webern in comparison to listening to the piece 

by J.S. Bach, manifested in higher degree in temporal, frontal, parietal and occipital regions. 

Such within-group differences between the two listening conditions were not observed for 
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amateur musicians. Interpretation of these findings is along the lines of literature suggesting 

that higher variability in between networks connectivity, here manifested in participation 

coefficient differences, is related to increased cognitive flexibility (Douw et al., 2016). 

Furthermore, flexible hub connectivity patterns, here evident particularly in the between 

listening conditions comparison for the aspiring professionals, are shown to facilitate adaptive 

novel task performance and to be modulated by task demands (Cole et al., 2013; Deco et al., 

2011; Sadaghiani et al., 2015). These results suggest that aspiring professionals, due to their 

more extended and intense formal training, have a wider functional repertoire which they can 

utilize more flexibly in order to adapt to the processing demands. 

 

7.1.3 Structural and functional brain plasticity in the course of musical training 

The first two projects presented effects of musical expertise on functional organization 

cross-sectionally, in relation to interval recognition and unconstrained listening to music. In the 

third project, the focus shifted to longitudinal changes in functional connectivity for the group 

of aspiring professional musicians, as they follow intense preparatory courses for their entrance 

exams at Universities of Arts. VBM analysis applied on the structural MRI data of the first time 

point where both groups were fully recruited, identified pre-existing differences in grey matter 

volume between the two groups in the right hippocampus, the right superior parietal lobule, the 

left superior/middle temporal gyrus and the right postcentral gyrus. Structural VBM analysis 

on differential changes over time in the two groups identified the left planum polare, alongside 

the left posterior insula and the left inferior frontal orbital gyrus as regions undergoing 

decreases in grey matter volume over time, for the group of aspiring professionals. Particularly 

decreases in grey matter volume in the left planum polare correlated with improvements in 

performance in behavioral assessments of musical expertise. These findings motivated the 

investigation of changes over time in the connectivity profile of the left planum polare, a core 

region in auditory processing. For the group of aspiring professional musicians, functional 

connectivity of the left planum polare increased over time with parts of the left and right 

superior temporal gyrus, the left precentral gyrus, the left supplementary motor cortex, the left 

posterior cingulate cortex and the left and right postcentral gyrus. The increases in functional 

connectivity were complemented by increases over time in graph measures of local and global 

communication efficacy for the group of aspiring professional musicians. 

 The strengthening of functional connectivity among the left planum polare and the 

above-mentioned regions, parts of auditory and sensorimotor cortices, is in line with existing 

findings. All of the regions have been reported in relation to various aspects of musical 
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processing, and are expected to be recruited together during execution and performance of 

musical activities, including ear training and instrument practicing (Criscuolo et al., 2022). In 

cross-sectional studies, increased functional connectivity among auditory and sensorimotor 

regions unilaterally and bilaterally is often reported (Fauvel et al., 2014; Hou et al., 2015; 

Leipold et al., 2021; Palomar-García et al., 2017; Zatorre et al., 2007) as well as with parts of 

the cingulate cortex, associated with control and attentional processes (Fauvel et al., 2014; Luo 

et al., 2014). Increases in functional connectivity among those regions have also been reported 

in longitudinal studies recruiting individuals without prior musical training. Drum training for 

eight weeks resulted in increased functional connectivity among superior temporal gyrus 

bilaterally (Amad et al., 2017), while keyboard training increased connectivity between 

auditory and motor regions (D’Ausilio et al., 2006; Lahav et al., 2007). In the longest 

longitudinal study of piano training so far, spanning 24 weeks, training was associated with 

increased functional connectivity between the right postcentral and the right precentral gyri, as 

well as between the auditory and the motor networks. Importantly, functional connectivity 

within the sensorimotor network and structural connectivity of the auditory-motor network 

were found to be positively correlated with practice time (Li et al., 2018, 2019). Although in 

the current study there was no collection of diffusion-weighted images, these results allow for 

speculation of potential changes in white matter microstructure of the corticospinal tract or the 

corpus callosum, connecting auditory with motor regions as well as contralateral regions in the 

two hemispheres, as has been reported in other studies (Bengtsson et al., 2005; Elmer et al., 

2016; Imfeld et al., 2009; Leipold et al., 2021). 

 Particularly interesting in this project is that the changes in the connectivity profile of 

the left planum polare happen alongside decreases in its grey matter volume. In addition, 

decreases in grey matter volume are significantly correlated with improvements in performance 

in behavioral assessments of musical expertise. Co-examination of brain structure, function and 

behavior allows for a more comprehensive understanding of plasticity manifestations and 

interpretation of findings, especially those, like decreases in grey matter volume, which might 

at first glance appear counterintuitive. Interpretations of these findings regarding brain 

structure, function and behavior can be bridged within the exploration-selection-refinement 

model (Lindenberger & Lövdén, 2019). In this framework, decreases in grey matter volume are 

considered to capture a later stage of learning when renormalization of volume takes place, 

following previous expansion, facilitating learning at an earlier stage. Especially the left planum 

polare, a core region in a variety of auditory processes, might be highly probed during training, 

leading to expansion of neural circuitry in this area, and with learning progression and 
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development of skillful processing, only a subset of formed relevant neural circuitry is further 

needed and sustained. This interpretation is supported by the improvements in behavioral 

performance and their correlation with the decreases in the volume of the left planum polare. 

Furthermore, the increases in its connectivity with other regions of sensory-motor and auditory 

processing, probably due to their repetitive recruitment during musical training, suggest 

enhanced functionality that facilitates performance of musical activities. Although there is 

evidence from visual and motor training studies that increases in functional connectivity might 

be transient effects that are followed by decreases in progression of training (Ma et al., 2011; 

Yotsumoto et al., 2008), connectivity among the regions reported here is a common finding in 

cross-sectional studies investigating correlates of musical expertise. Finally, it is rather 

intriguing that in cross-sectional studies, regions of the auditory cortex are usually reported to 

exhibit increases in grey matter volume (Bermudez & Zatorre, 2005; Gaser & Schlaug, 2003; 

Groussard et al., 2010; Palomar-García et al., 2017; Schneider et al., 2002, 2005) in contrast to 

the finding of this project. A possible explanation for that, given also the limited time scope of 

this study and the fact that those studies mentioned above recruit musicians who have 

completed their formal training, is that there might be multiple cycles of expansion followed 

by only partial renormalization.  

 

7.2  Overall discussion 
 

The three projects presented and discussed above address questions on plasticity 

manifestations in the brain’s functional organization cross-sectionally and longitudinally. The 

whole study could be characterized as a hybrid of cross-sectional and longitudinal design. 

Participants are matched in their overall years of engaging with music, but already at the first 

time point of data acquisition they differ in their aspirations, commitment to training and hours 

spent on a daily basis for practicing and learning. This explains partly the between-group 

differences in aspects of music processing demonstrated in the first two projects, based on data 

acquired in the beginning of the study, at the first time point where both groups were fully 

recruited. At the same time, the study follows up within-group changes attributed to the 

intensive preparatory training of the aspiring professional musicians and in a sense glimpses 

into the processes that will lead to professional musical expertise for many of the participants 

of this group, as viewed in many studies referenced throughout this dissertation. The effects of 

training are investigated in the third project, where differences over time are reported for the 

aspiring professional musicians in measures of brain structure and function.  
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These projects and the study as a whole enrich discussions about long-lasting 

investigations of the factors contributing to expertise, the relationship of practice and ability 

and how these are depicted macroscopically on the neural level. As in many other neuroimaging 

studies, cited throughout this dissertation, the findings of the three projects here talk in favor of 

musical training effects in neuroanatomy and function of brain circuits. The magnitude of these 

effects is in many cases correlated with onset of training, years of practice and practice intensity 

(Bengtsson et al., 2005; Gaser & Schlaug, 2003; Sampaio-Baptista & Johansen-Berg, 2017; 

Steele et al., 2013), although not unequivocally (Abdul-Kareem et al., 2011; Han et al., 2009; 

Imfeld et al., 2009). Especially in relation to the onset of training, plastic changes evoked by 

early training, taking place alongside developmental and maturational brain changes, are 

considered to contribute to an individual’s brain “metaplasticity”, enabling faster and more 

stable skill acquisition in the future (Altenmüller & Furuya, 2016). However, onset of training, 

amount of practice, or years of training are not exhaustive predictors of expertise and musical 

ability. Genetic variability, heritability and gene-environment interactions are found to 

contribute to musical ability, either in relation to physical characteristics, or propensity to 

engage successfully in musical training (Mosing et al., 2014; Ullén et al., 2016). Furthermore, 

personality traits, general intelligence and motivation, affecting amongst others the quality of 

training, especially in relation to attention and commitment, also play important roles in the 

shaping of musical aptitude and expertise (Furuya, 2018). Crucially, the relation of these factors 

with training and ability is considered bidirectional, as for example training might develop and 

shape further pre-existing differences in general intelligence and working memory capacity 

(Ullén et al., 2016). From these factors, only pre-existing differences in grey matter volume and 

working memory were assessed, the latter with a numbers-updating task, which yielded no 

significant group differences. The other factors mentioned in this section, although not 

controlled for in the current study, are considered very important in interpreting the findings 

reported. Given the different aspirations of the two groups of the study, the differences in their 

motivation and intensity and presumably quality of practice are reasonably hypothesized. 

Speculatively, these factors might have affected training of the aspiring professional musicians 

already much earlier in time, following their decision to study at Universities of Arts.  

A further point of discussion that the projects of this dissertation raise concerns the use 

of network neuroscience tools and specifically graph-theoretical measures in the study of 

experience-dependent plasticity. Extending the scope of functional plasticity manifestations 

beyond measures of activation strength and connectivity, the use of graph-theoretical measures 

allows for assessment of functional plasticity in terms of network organization and the role that 
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brain regions play in efficient interregional interactions and communication. In the context of 

experience-dependent plasticity, measures like modularity and clustering, related to the brain’s 

potential for adaptive responses (Meunier et al., 2010) and indicative of effortless or habitual 

performance of tasks (Cohen & D’Esposito, 2016; Shine & Poldrack, 2018), are indicating 

increasing proficiency in performance as it becomes more automatic and more dependent on 

local processing (Bassett et al., 2011, 2015). Global and local efficiency, as introduced in the 

projects above, are indicative of enhanced integration and local interregional communication 

for the group of aspiring professional musicians. In addition, flexibly switching between states 

of integration and segregation, an aspect shown to characterize superior performance in 

cognitive domains (Cole et al., 2013; Douw et al., 2016), might be suggestive of musical 

expertise in terms of efficiently utilizing the available functional repertoire based on demands, 

an aspect examined in the second project. Along the same lines, musical expertise appears to 

affect the hierarchical organization of regions acting as hubs and between subnetworks 

connectors under different conditions. Furthermore, use of graph-theoretical measures might 

contribute to testing hypotheses of conceptual frameworks, like the ESR model. For example, 

one of the predictions of the ESR model pertaining to reduced activations and interactions 

among training-specific and executive control regions with progression of training 

(Lindenberger & Lövdén, 2019; Lövdén et al., 2020), could be tested and should result in 

increases in modularity of subnetworks and decreases in between-networks communication for 

groups of higher expertise. Especially such metrics of modular organization and between-

modules interactions might assist unravelling plasticity changes in domain-specific systems’ 

organization, like the auditory and the motor system, and their interactions with cognitive 

control systems (Chein & Schneider, 2012). This can be particularly insightful for studies of 

musical training which is known to span multiple sensory, motor and cognitive subsystems. 

 

7.3 Challenges and Limitations 

 

In the following, I will first address limitations of each project separately and will then 

discuss some issues pertaining to all three projects. 

In the first project, a network of regions facilitating interval recognition was examined with 

respect to between-group differences in average strength and global efficiency and with respect 

to its relation with behavioral performance. This network of regions was derived from analysis 

of an fMRI task, contrasting listening to intervals against pressing a button to respond. This 

contrast captures a variety of processes, including pitch perception, processing of the intervallic 
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relationships of the sequentially presented tones, the harmonic processing of the simultaneously 

presented tones (chords), as well as the mental manipulation of the perceived intervals aided by 

working memory and presumably the comparison of the perceived intervals with pre-existing 

representations/templates of intervallic relationships in order to make a decision regarding the 

intervals perceived. Clearly, it is not exclusive to the processing of the intervallic relationships, 

and thus, throughout the dissertation, this network of regions is referred to as a network 

facilitating interval recognition. Further, some of the significant clusters of activation of this 

analysis are rather extensive, especially along the STG bilaterally, while the chosen spherical 

ROIs cover only a small part of these extended clusters, around the voxels where peak activation 

was noted. Thus, the ROIs, especially regarding the STG, are indicative of the locations of peak 

activation and not precise regarding the extent of activation. This chosen analysis approach was 

based on existing literature, with creation of ROIs around the coordinates of peak activation, 

regardless of cluster extent, being a standardized practice (Lumaca et al., 2019; Ramot et al., 

2019; Ventura-Campos et al., 2013). Furthermore, the behavioral accuracy data of the fMRI 

interval recognition task were not normally distributed, which calls for cautious interpretation 

of the significant correlation between task accuracy with network strength and global 

efficiency. There is however a clear tendency of greater network strength associated with better 

performance not only in the fMRI interval recognition task, but also the “Intervals and Scales” 

measure of the Berlin Gehörbildung Scale (BGS), a behavioral measure of musical expertise 

administered outside of the scanner. In addition, given the small size of the network and the 

fact that it is fully connected, there is a lot of information shared between the graph measures, 

which are also highly correlated. Finally, the current results are not conclusive on whether 

amateur musicians fail to recognize some of the different intervals or were simply unable to 

correctly name them. Still, the correlation between network strength and global efficiency with 

behavioral performance suggests a link between the more general feature of music expertise, 

which includes learning to correctly identify intervals, and brain network measures. 

In the second project, a first issue to address is that musical and acoustic features of the 

pieces are not time-locked to the neural signals captured by the fMRI. Descriptive analysis of 

the musical pieces highlights some of the differences in their tonal and rhythmic structures but 

specific occurrences of such features cannot be directly linked to the brain states. Furthermore, 

there is no information on participants' familiarity, exposure and aesthetic appreciation of the 

two musical pieces, aspects which would affect interpretation of the current results or would 

enable addressing further questions, regarding how familiarity, exposure and aesthetic 

appreciation shape participants processing of the pieces. It is shown that music preferences 
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modulate functional connectivity between auditory regions and the hippocampus, as well as 

among regions of the default mode network, important for internally-focused thoughts (Wilkins 

et al., 2014). In relation to the methods applied, dynamic functional connectivity analysis 

requires some parameter choices, like window length or overlap of windows, which are shown 

to result in variable outcomes, as underlying processes of interest develop in different 

timescales (Lurie et al., 2019; Preti et al., 2017; Shine & Poldrack, 2018). Such issues were 

addressed by using parameters suggested in the literature to yield reproducible and robust 

results (Lurie et al., 2019; Preti et al., 2017; Shine & Poldrack, 2018). Furthermore, 

participation only in one state is allowed at a given time window, while multiple states might 

be present at a given point in time at varying degrees. The modularity index, computed here 

using maximization of the modularity function, partitions a network into a set of communities 

in a nondeterministic way and produces many near-optimal partitions of the network (Bassett 

& Gazzaniga, 2011; Sporns & Betzel, 2016). This issue is partly addressed by multiple 

iterations of the algorithm, followed by choosing the most stable partitions. The graph measure 

of degree, used here for hub detection, is only one of the available centrality measures and is 

thus not exhaustive in hub detection (van den Heuvel & Sporns, 2013). However, although use 

of different centrality metrics might yield slightly differentiated outcomes, the various 

centrality metrics are often found to be highly correlated (Zhao et al., 2019). Additionally, 

degree was computed on the whole brain network, and not within each region’ community, as 

it is suggested by some studies (Power et al., 2013; van den Heuvel & Sporns, 2013), in order 

to compute within group comparisons for the group of aspiring professionals between the two 

listening conditions.  

In the third project, a first point of consideration regards the decreases in grey matter 

volume reported. The group of aspiring professionals during this preparation period is possibly 

experiencing stress, a factor shown to be related with decreases in volume of brain regions 

(Kassem et al., 2013). However, the regions that are reported here, are not among those usually 

reported to be affected by stress (Lupien et al., 2009). Regarding the functional connectivity 

analysis, one may criticize that the seed for the functional connectivity analysis of the left 

planum polare was based on the parcellation of the Harvard-Oxford atlas (R.S. Desikan et al., 

2006) and not on the significant cluster from the VBM analysis. This was done in order to 

enhance reproducibility and signal to noise ratio, which has been shown to be the case when 

using atlas-based parcellations (Faria et al., 2012). In addition, the planum polare is a small 

region, which minimizes the potential pitfall of averaging activity within a larger ROI and thus 

reducing sensitivity, a common concern when choosing regions from atlas-based parcellations. 
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Finally, there are some issues worth discussing which pertain to the study as a whole. 

A basic limitation is that participants were not randomly assigned to the different groups, an 

issue always arising in comparisons of groups with different levels of expertise. This limitation 

was attenuated, but not overcome, by matching participants of both groups on years of playing 

music. Participants in both groups already had years-long experience with music. The decisive 

difference between the groups lies in their intentions and professional aspirations regarding 

music. This is reflected in the intensity of daily practical and theoretical training that aspiring 

professionals undertake. Further, predispositions manifested as pre-existing differences in brain 

function and how they affect further learning are not taken into consideration (Zatorre, 2013). 

However, pre-existing differences in grey matter volume between the groups were examined 

and found to exist in the right hippocampus, the right superior parietal lobule, the left 

superior/middle temporal gyrus and the right postcentral gyrus. In the case of this study this 

would have been very challenging to account for, given that participants in both groups already 

have been learning music for years, in comparison to other longitudinal studies recruiting 

individuals without prior experience. In addition, there might be also pre-existing genetic 

differences and aspects of gene-environment interactions affecting individuals propensity to 

engage with musical training and to profit from it (Ullén et al., 2016).  

The findings presented here regarding changes in functional organization in resting state 

could have been further enhanced by acquisition and analysis of diffusion-weighted data. The 

increased functional connectivity observed for the group of aspiring professionals in the first 

and third project, particularly among auditory and motor regions, could be underlined by 

changes in white matter tract connectivity and integrity in the pathways connecting these 

regions. This is a common finding in studies examining white matter microstructure in groups 

of different musical expertise (Bengtsson et al., 2005; Elmer et al., 2016; Imfeld et al., 2009; 

Leipold et al., 2021). Finally, both groups include keyboardists, string players, percussionists, 

wind instrument players and vocalists. There is evidence for differences among instrumentalists 

and singers in metrics of white matter (Halwani et al., 2011; Rüber et al., 2015), grey matter 

(Bangert et al., 2006; Rüber et al., 2015) and functional activations (Gebel et al., 2013), based 

on their primary instrument of practice. However, given the relatively small sample size of the 

study, participants were not stratified based on their instruments of focus and thus any 

instrument-specific effects on brain structure and function might have been missed. 

 

7.4 Conclusions 
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 The overall aim of the dissertation was to systematically investigate aspects of 

functional brain plasticity in relation to musical training and expertise. Crucial was the 

utilization of functional connectivity and tools from network neuroscience, given their potential 

to characterize plastic changes with a focus on interregional interactions and communication 

and changes in the organization of networks. Utilization of network neuroscience tools may be 

particularly insightful in relation to musical training, as it poses demands in multiple sensory, 

motor and higher order cognitive systems as well as in their interactions. In the first two 

projects, investigations of functional plasticity were carried out by cross-sectionally, at the first 

time point when both groups were fully recruited, addressing group differences on a specific 

aspect of music ability, namely interval recognition and on unconstrained listening to two 

musical pieces of different genres and compositional styles. In the third project, longitudinal 

changes in functional organization of a region undergoing changes in structure were 

investigated.  

Resting state functional connectivity has already been shown to exhibit expertise-related 

differences between musicians and nonmusicians. Here, this is shown specifically within the 

context of interval recognition, relating behavioral performance with network connectivity and 

information transmission efficacy in a relevant brain network. In that sense, task-informed 

resting state fMRI is shown to capture persisting expertise-associated connectivity differences 

underlying task execution and relate them to expertise-associated behavioral performance. 

Aspiring professionals, presumably as a result of their training where ear training is of profound 

importance, seem to rely on a more connected and efficient auditory network that supports 

expert performance levels. 

 There is evidence that cognitive demands shape and modulate patterns of brain activity 

and connectivity, with higher demands probing brain configurations of greater interregional 

integration, while performance of trivial tasks or habitual processing is associated with 

configurations of increased modularity. Here, this is shown in relation to listening to music, 

specifically to two musical pieces, which evoke different listening experiences and probe 

different processing demands based on their compositional styles. Furthermore, the group of 

higher musical aptitude is shown to be primarily associated with increased connectivity in a 

multitude of brain regions, known for their relevance in various aspects of music processing, 

and higher global efficiency during processing demanding musical input. In addition, this group 

is shown to flexibly adapt recruitment of necessary neural circuitry based on the processing 

demands of each musical piece. Overall these findings underline the effect of musical expertise 

on network configurations in an ecologically valid setting.  
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 Finally, musical training is shown to induce plastic changes assessed cross-sectionally 

and longitudinally. Here, it is shown that musicians intensely preparing for entrance exams to 

Universities of Arts underwent reduction in grey matter volume, in regions related to musical 

performance and expertise. This was not the case for amateur musicians actively practicing 

music in their daily lives. The left planum polare, which was the largest grey matter cluster of 

volume reduction, showed increasing functional connectivity to other  regions relevant to music 

processing. Further, increased integration of regions in the whole brain was shown with graph 

measures, reporting both increases in global integration as well as in local interregional 

communication. These findings are interpreted within the framework of the ESR model of 

plastic changes (Lindenberger & Lövdén, 2019; Lövdén et al., 2020), which posits an expansion 

of grey matter volume during early phases of skill acquisition and learning, followed by partial 

renormalization (Wenger, Brozzoli, et al., 2017), while behavioral performance asymptotes or 

even further improves. Furthermore, the strengthening of functional connections among regions 

systematically recruited together speaks for the effects of training on shaping efficient neural 

circuity supporting enhanced performance. 

 

7.5 Outlook & future directions 

 

 Considering how the work presented here could be extended and improved, I will first 

present some suggestions and additional research questions for each of the three projects and 

will then briefly present some research questions in relation to experience-dependent plasticity 

studies that I consider particularly interesting.  

 In relation to the first project presented, I would consider important to examine more 

closely the functional connectivity among the specific regions facilitating interval recognition 

during task execution. Specifically, using measures of effective connectivity and 

psychophysiological interactions, I would like to examine the inflow and outflow of 

information among these regions and which of them modulate information flow among the 

others. This way, group differences could also be assessed in relation to task execution, 

addressing the question of what aspects of connectivity within this network of regions facilitates 

superior performance for the aspiring professionals. Further, I would consider interesting to test 

the specificity of the reported network in relation to interval recognition, with a focus on the 

perception of intervals and in an effort to increase the specificity of the processes captured by 

the analysis of the task. For this purpose, I would consider introducing a slightly different fMRI 

task than the one reported here, in which an additional condition would be added where 
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participants would listen to a pair of indeterminate pitch produced by unpitched percussion 

instruments. In this case, the two listening conditions would be contrasted with each other, 

instead of contrasting listening to the intervals with response, as is the case in the project 

presented here, which would increase specificity in relation to brain regions utilized in interval 

perception. An alternative to that would be an additional condition where participants would 

listen to the same intervals and make judgments regarding the timbre, a timbre identification 

task. A further alternative task design would be to introduce a same-different decision task 

where participants would have to decide which of two perceived intervals matches a target 

interval presented at the beginning of the trial. This would tap more on the perceptual side and 

be less relevant to recognition or identification aspects of processing, including labelling 

intervals which might be lacking in the group of amateur musicians. 

 Regarding the second project, a crucial improvement would be to additionally assess 

participants familiarity with the genres of the musical pieces presented and their aesthetic 

evaluation of them. There is evidence showing that the perceptual, cognitive and aesthetic 

experience of music is affected by multiple factors including enculturation, personality traits 

and musical training (Mencke et al., 2019). This way, further questions could be addressed, 

regarding how familiarity, exposure and aesthetic appreciation shape participants processing of 

the pieces. I would further like to extend the analysis targeting specific musical features, 

particularly in relation to violations of expectancies in tonality and rhythm, and look into 

participants functional responses in relation to such “events” within the musical pieces. This 

way, I would seek to address questions of whether participants with higher musical aptitude 

adapt their processing of musical features faster and more efficiently, after exposure with the 

complexity and ambiguity of contemporary music, aided by skillful listening in resolving 

perceived uncertainty. 

 In relation to the third project, I would like to address an additional question of how 

connectivity among whole resting state networks changes over time for the group of aspiring 

professional musicians. Specifically, I would like to investigate whether for the group of 

aspiring professional musicians connectivity among auditory and motor networks decreases 

over time with attentional and control networks, as there is evidence from the motor domain 

(Bassett et al., 2011, 2015), or is strengthened reflecting continuous recruitment of these 

networks together. Especially in relation to the regions found to decrease in volume over time, 

I would use temporal graph analysis to look into their community affiliations with progression 

of training. Given their different functional profiles, with the insula being a region of 

multimodal integration and the left planum polare being mostly implicated in auditory 
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processing, it would be expected that they show differences over time in their participation in 

subnetworks.  

 Expanding on this last point, the functional profile of regions, whether they are 

multimodal and associative or unimodal and more domain specific, is worth investigating in 

relation to the plastic changes such regions exhibit in structure and function. A series of open 

questions call for further exploration. Are brain regions like regions of the sensorimotor system 

that are more connected within their subnetworks, specifically expected to show decreased 

activation and connectivity with other subnetworks, therefore being suggestive of efficient 

modular processing with progression of training? On the contrary, are then regions of 

multimodal associative cortices like the insula, serving multiple functions, expected to show 

enhanced connections with various domain specific systems, as a result of enhanced recruitment 

at some stages of learning? There is evidence that brain regions of sensorimotor cortices show 

more consistent connectivity profiles across individuals, while others show high variability 

(Mueller et al., 2013), especially within the multimodal association cortices, which, 

interestingly, have undergone marked evolutionary expansion (Mueller et al., 2013). 

Furthermore, how does the functional profile of brain regions relate to changes observed in grey 

matter? Are regions of domain specific systems more prone to undergo decreases in metrics of 

grey matter as a result of skill acquisition and more automatic processing relying on a highly 

efficient circuitry? For example, in relation to music training, regions reported to exhibit 

decreased values in metrics of grey matter are mainly part of the motor cortices and striatal 

regions (Granert, Peller, Gaser, et al., 2011; Hänggi et al., 2010; Haslinger et al., 2004; James 

et al., 2014; Vaquero et al., 2016), followed by regions in the auditory and visual system and 

the cerebellum, where less decreases have been observed (Baer et al., 2015; James et al., 2014; 

Vaquero et al., 2016). Is this suggestive of unimodal cortices, like the motor one and parts of 

the auditory system undergoing decreases due to increased processing automation, while other 

parts of the auditory system undergo increases in volume and thickness, reflecting expanded 

representations and storage of information? Given the multitude of underlying cellular 

mechanisms contributing to observed changes on the macroscale level, it is crucial to address 

such questions with advanced MRI techniques in experience-dependent plasticity research. 

These techniques provide quantitative maps of tissues’ magnetic resonance properties which 

contribute to the MRI signal, allowing for more straightforward interpretations of the 

underlying biological mechanisms (Tardif et al., 2016) and the incorporation of such micro-

structural parameters into connectomics (Larivière et al., 2019). The use of such acquisition 
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techniques alongside utilization of tools from network neuroscience could advance 

understanding of experience-dependent plastic changes. 
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Abstract
Playing music relies on several sensory systems and the motor system, and poses strong demands on control processes,
hence, offering an excellent model to study how experience can mold brain structure and function. Although most studies
on neural correlates of music expertise rely on cross-sectional comparisons, here we compared within-person changes over
time in aspiring professionals intensely preparing for an entrance exam at a University of the Arts to skilled amateur
musicians not preparing for a music exam. In the group of aspiring professionals, we observed gray-matter volume
decrements in left planum polare, posterior insula, and left inferior frontal orbital gyrus over a period of about 6 months that
were absent among the amateur musicians. At the same time, the left planum polare, the largest cluster of structural change,
showed increasing functional connectivity with left and right auditory cortex, left precentral gyrus, left supplementary
motor cortex, left and right postcentral gyrus, and left cingulate cortex, all regions previously identified to relate to music
expertise. In line with the expansion–renormalization pattern of brain plasticity (Wenger et al., 2017a. Expansion and
renormalization of human brain structure during skill acquisition. Trends Cogn Sci. 21:930–939.), the aspiring professionals
might have been in the selection and refinement period of plastic change.

Key words: gray matter changes, longitudinal, music expertise, structural brain plasticity, voxel-based morphometry

Introduction
Playing a musical instrument is an intense, multisensory expe-
rience. As music itself is a highly complex stimulus and musi-
cians typically devote a lot of time to their training, they offer

an excellent model for studying experience-dependent plastic
changes in the brain. In our view, brain plasticity is an adaptive
process that is triggered by a prolonged mismatch between the
functional supply the brain structure can momentarily provide
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and the experienced demands the environment poses (Lövdén
et al. 2010). In the last years, evidence for malleability of the adult
brain structure to environmental challenges has been accumu-
lating, mainly using magnetic resonance imaging (MRI; Lövdén
et al. 2013). It has been shown repeatedly that brain volume and
number of cells in animals differ depending on their living con-
ditions, for instance, when comparing enriched versus standard
rearing environments (Freund et al. 2013). In humans, various
challenges such as learning how to juggle (Draganski et al. 2004),
extensive studying (Draganski et al. 2006), becoming a taxidriver
(Woollett and Maguire 2011), playing a video game (Kühn et al.
2014), or practicing tracing and writing with your nondominant
hand (Wenger et al. 2017b) have been shown to elicit changes in
estimates of gray-matter (GM) volume.

Music expertise has served as a particularly rich and fruitful
domain for investigating plastic changes. It involves several sen-
sory systems and the motor system, and it poses high demands
on cognitive control processes (Münte et al. 2002; Jäncke 2009;
Herholz and Zatorre 2012; Schlaug 2015). Most of the available
data on the association between music expertise and the brain
are cross-sectional rather than longitudinal. Musicians typically
show an enlargement of brain areas associated with music-
related processes in the auditory, motor, and visuospatial domain
(Schneider et al. 2002; Gaser and Schlaug 2003; Hutchinson et al.
2003; Bermudez et al. 2009; James et al. 2014). Several brain areas,
including the auditory cortices, the anterior corpus callosum,
the primary hand motor area, and the cerebellum, differ in
their structure and size between musicians and control subjects
(Münte et al. 2002) and these volumetric differences have been
shown to be of behavioral relevance (Schneider et al. 2002; Hyde
et al. 2009; Foster and Zatorre 2010a). Groussard et al. (2014) have
identified regions in the brain that increased in volume with
the duration of practice, namely left hippocampus, right middle
and superior frontal regions, right insula and supplementary
motor area, left superior temporal, and posterior cingulate areas.
Interestingly, while in some regions changes in volume seem
to have occurred during early stages of musical training, like in
left hippocampus and right middle and superior frontal areas,
changes in other areas, specifically in left posterior cingulate
cortex, superior temporal areas, and right supplementary motor
area and insula, were more pronounced or even only occurred
after several additional years of practice (Groussard et al. 2014).
Similarly, James et al. 2014 have sorted music expertise into 3
levels to investigate its influence on GM density. Although they
found GM increases with expertise in areas implicated in work-
ing memory and attentional control, that is in fusiform gyrus,
mid orbital gyrus, inferior frontal gyrus, intraparietal sulcus,
cerebellum, and Heschl’s gyrus, they detected GM decreases with
expertise in areas related to sensorimotor function, namely in
perirolandic and striatal areas.

Arguably, musicians brains do not only differ structurally
from nonmusicians but show also functional differences, such as
strengthened functional coupling among relevant regions while
performing musical tasks (Herholz and Zatorre 2012). Indeed,
numerous functional imaging studies have compared musicians
and nonmusicians and have observed differences in activity
across many brain regions when individuals were performing
musical tasks involving discrimination (Koelsch et al. 2005; Foster
and Zatorre 2010b), working memory (Gaab et al. 2006), or pro-
duction (Bangert et al. 2006; Kleber et al. 2010). Despite the many
differences among the tasks used, one area that has been com-
monly activated in many of these studies was the left superior
temporal gyrus (STG), a region that has been linked to musical
training in terms of cumulative practice hours (Ellis et al. 2012).
Of interest, functional MRI (fMRI) studies of perceptual learning

with pitch tasks have resulted in both increases (Gaab et al.
2006) and decreases (Jäncke et al. 2001) of activity in auditory
areas. Similarly, training to discriminate between melodies con-
structed of increasingly smaller intervals well below a semitone
has been shown to be accompanied by general activation decre-
ments in auditory regions, along with activation increases in
frontal cortices (Zatorre et al. 2012a). Before training, the data
had shown the expected dose–response function of more activity
with increasing microtonal pitch interval size. After training,
however, there was a reduction in blood oxygenation in response
to increasing interval size (Zatorre et al. 2012a), suggesting that
learning might decrease the number of neuronal units that are
needed to perform the task (Poldrack 2000; Makino et al. 2016).

The brain exhibits spontaneous and systematic activity dur-
ing wakeful rest (Biswal et al. 1995; van den Heuvel and Hul-
shoff Pol 2010; Zuo and Xing 2014). Exploiting this characteristic,
one can compute resting-state functional connectivity that is
based on spontaneous low-frequency fluctuations (< 0.1 Hz)
in the blood oxygen level-dependent signal (Biswal et al. 1995),
and uncover functional networks that consist of brain regions
frequently working together. Activity in the resting state may
therefore reflect the repeated history of coactivation within or
between brain regions for efficient task performance (Cole et al.
2012; Ventura-Campos et al. 2013; Baldassarre et al. 2016). Only
a few studies have investigated differences in functional con-
nectivity as a function of musical training. Pianists were found
to show greater functional connectivity between left auditory
cortex and the cerebellum than control participants (Luo et al.
2012). Regions with increases in GM in musicians compared with
nonmusicians located in posterior and middle cingulate gyrus,
left STG and inferior orbitofrontal gyrus have been shown to have
increased connectivity to right prefrontal cortex, left temporal
pole, left premotor cortex and supramraginal gyri (Fauvel et al.
2014). Palomar-García et al. (2017) tested for differences between
musicians and nonmusicians in auditory, motor, and audiomo-
tor connectivity and found stronger connectivity between right
auditory cortex and right ventral premotor cortex, which corre-
lated with years of practice. They also found reduced connec-
tivity between motor areas that control both hands in those
musicians whose instrument required bimanual coordination
and increased volume in right auditory cortex. This increased
GM volume correlated negatively with age at which training
had begun and was related to increased connectivity between
auditory and motor systems (Palomar-García et al. 2017).

As summarized above, most studies on neural correlates of
music expertise rely on cross-sectional comparisons, rendering
conclusions of whether observed group differences were pre-
existing or the result of learning de factor impossible. It has
been impressively shown, though, that monozygotic twins, that
is with identical genes, differing on musical training do indeed
exhibit neuroanatomical differences, thereby providing strong
support for the causal effects of training (de Manzano and Ullén
2018). Still, longitudinal studies with observations within the
same individuals over time provide the most direct evidence
for effects of musical training on neuroanatomy. We therefore
used a variety of methodologies to characterize within-person
changes over time in aspiring professionals intensely preparing
for an entrance exam at a University of the Arts and compared
these with skilled amateur musicians not preparing for a music
exam. Specifically, we used anatomical MRI along with resting-
state fMRI to investigate structural changes in GM volume that
arise during this intense learning period within individuals over
time and to analyze the changes in functional interactions that
accompany these structural changes. We hypothesized that 1)
in comparison to amateur musicians, aspiring professional
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musicians will show volumetric changes in regions previously
identified to be relevant in the context of musical training,
especially auditory cortex, 2) the regions of structural change will
exhibit increased functional connectivity to other regions related
to the auditory network, specifically, temporal regions, motor
regions, and cingulate gyri, and 3) these changes in structure
and functional connectivity will be related to behavioral
performance.

Materials and Methods
Participants

We recruited a total of 24 young adults between 18 and 31 years
[Mage = 21.92, standard deviation {SD}age = 3.72] who were partici-
pating in preparatory courses offered at Berlin music schools to
prepare them for an entrance exam at a University of Arts. These
participants were either aspiring to study to become a conductor,
composer, Tonmeister, or instrumentalist. As a control group,
we recruited 17 amateur musicians between 18 and 27 years
(Mage = 23.12, SDage = 3.43) with at least 5 years of formal music
education who were actively performing music in their daily
lives but had no aspirations to perform music professionally. All
participants had normal hearing, normal or corrected-to-normal
vision, no history of psychological or neurological diseases, and
no contraindication to participate in an MR study, such as metal-
lic implants, tinnitus, or claustrophobia. The groups did not differ
with respect to age (t(39) < −1.05, P = 0.30) or years of playing
a primary instrument (t(38) < 1, P = 0.68 [Missing data for one
participant]; aspiring professionals: Myears = 12.04, SDyears = 4.57;
amateur musicians: Myears = 12.74, SDyears = 5.97).

Participants were paid up to 200e for completion of the whole
study (including up to 5 measurement time points with 1.5 h of
MRI and 1.5 h of behavioral testing). The ethical board of the DGPs
(Ethikkommission der Deutschen Gesellschaft für Psychologie)
approved the study and written consent of all participants was
obtained prior to investigation.

Experimental Design

Participants were invited for behavioral testing as well as MRI
assessment between 1 and 5 times, depending on their availabil-
ity, in the course of about a year, with approximately 10–12 weeks
distance between appointments (see Fig. 1). Participants were put
in the MR scanner for about an hour and 15 min and were then
tested on the in-house developed “Berlin Gehoerbildung Scale”
(BGS; Lin et al. 2021), a test to assess music aptitude at expert
levels.

Behavioral Measure of Music Expertise

The BGS was designed by André Werner, a composer and collabo-
rator in this study. It is a listening and transcription task focused
on assessing music expertise (for a detailed description see Lin
et al. 2021). It is informed by music theory and uses a variety of
testing methods in the ear-training tradition. Items cover a vari-
ety of topics in music theory and ear training, including intervals,
scales, dictation, rhythm, chords, cadences, identifying mistakes
in music excerpts, and instrument recognition. Using behavioral
data of amateur musicians, aspiring professional musicians, as
well as 19 music students already studying music at a University
of Arts, we have established a hierarchical structural equation
model (SEM) of their behavioral performance the first time they
encountered the test (Lin et al. 2021). The hierarchical model

postulates 4 first-order factors of musical abilities, namely
“Interval and Scales,” “Dictation,” “Chords and Cadences,” and
“Complex Listening,” which together define a second-order
factor of general music expertise. These 4 first-order factors load
highly onto the second-order factor music expertise. We fixed
the factor loadings of this established model and then extracted
the second-order factor scores for each individual at each time
point to investigate changes in performance over time. We then
entered the factor scores into a repeated-measures analysis of
variance with the factors Time (time point B, C, and D, as these
measurement occasions provide us with the largest sample) and
Group (aspiring professionals vs. amateurs).

MRI Data Acquisition

MR images were collected on a Siemens Tim Trio 3T MR scanner
(Erlangen, Germany) with a standard 12-channel head coil. The
MR measurement protocol included a T1-weighted structural
scan and a resting-state acquisition.

As structural images, we used a 3-dimensional (3D) T1-
weighted magnetization prepared gradient-echo sequence
(MPRAGE) of 9.20 min with the following parameters: repetition
time (TR) = 2500 ms, echo time (TE) = 4.77 ms, inversion time
(TI) = 1100 ms, flip angle = 7◦, bandwidth = 140 Hz/pixel, acqui-
sition matrix = 256 × 256 × 192, isometric voxel size = 1 mm3. We
used the prescan normalize option and a 3D distortion correction
for nonlinear gradients.

Whole brain functional images were collected using a T2
∗-

weighted EPI sequence of 8 min sensitive to BOLD contrast
(TR = 2000 ms, TE = 30 ms, FOV=216 × 216 × 129 mm3, flip
angle = 80◦, slice thickness 3.0 mm, distance factor = 20%, voxel
size = 3 mm3, 36 axial slices, using GRAPPA acceleration factor 2).
Slices were acquired in an interleaved fashion, aligned to genu
splenium of the corpus callosum.

Structural Data Analysis

The structural MPRAGE images were processed by means of
the Computational Anatomy Toolbox (CAT12; v1247; http://dbm.
neuro.uni-jena.de/cat/) for SPM12 (v7219; www.fil.ac.uk/spm/)
in Matlab 2017a (The Mathworks, Inc., Natick, MA, USA). Using
default parameters, preprocessing of the data for voxel-based
morphometry (VBM) involved intrasubject realignment, bias-
field and noise removal, skull stripping, segmentation into GM
and white matter (WM) and cerebrospinal fluid (CSF), and finally
normalization to Montreal Neurological Institute (MNI) space
using DARTEL to a 1.5 mm isotropic adult template provided by
the CAT12 toolbox (whereby normalization is estimated for the
mean image of all time points and then applied to all images).
The resulting GM maps were smoothed with a standard Gaussian
kernel of 8 mm full-width at half maximum (FWHM). These GM
maps represent voxel-wise information on GM probability, which
is an estimate of GM volume in an arbitrary unit (Ashburner and
Friston 2005).

As for quality assurance, images were first visually inspected
for artifacts prior to processing. Then, a statistical quality con-
trol based on intersubject homogeneity after segmentation was
conducted using the “check homogeneity” function in CAT12.
After preprocessing, all images were visually checked again for
artifacts, whereby none were detected.

Statistical analysis of the GM maps was first carried out by
means of a 2-sample t-test to test for initial structural differences
between aspiring professional and amateur musicians at mea-
surement occasion B (the first time point where both groups were
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Figure 1. Overview of experimental design with recruitment numbers for aspiring professionals and amateur musicians at each time point.

fully recruited). This analysis included 23 aspiring professionals
and 17 amateur musicians. An absolute GM probability threshold
of 0.2 was applied. To control for type-I error, a significant effect
was reported when the results met a peak-level threshold of
P < 0.005 and when the cluster size exceeded the expected voxels
per cluster threshold (k > 259 in this case) in combination with
correction for nonisotropic smoothness. The expected voxels
per cluster threshold was computed automatically by the CAT12
toolbox according to random field theory and empirically deter-
mines the minimum number of voxels that, in combination
with a voxel-level threshold, clusters must meet in order to be
reported (Hayasaka and Nichols 2004). In addition, correction
for nonisotropic smoothness adjusts the minimum cluster size
depending on the local smoothness of the data. This is a common
cluster correction method used for whole-brain VBM analyses.

To further characterize pre-existing structural differences in
GM volume between those two groups of musicians, we addition-
ally performed a region-of-interest (ROI) analysis, focusing on left
and right STG, as well as further divisions into bilateral planum
temporale, Heschl’s gyrus, and planum polare (taken from the
HarvardOxford Atlas https://identifiers.org/neurovault.collectio
n:262) (Desikan et al. 2006).

The main analysis in this paper focused on differential
changes over time in the two groups of musicians by means
of a whole-brain flexible factorial design with a focus on the
interaction Time × Group. Since not all participants provided
data for all time points, we based our statistical analysis on
the middle 3 measurement occasions (B, C, and D) and only
included those participants that contributed data to those 3 time
points since this provided us with the highest possible number
of participants for a longitudinal analysis in SPM. This resulted
in a final sample of 19 aspiring professionals and 15 amateur
musicians in this statistical comparison in which we tested for
brain regions that display a significant increase or decrease
in aspiring professionals compared with amateur musicians
over time.

Again, an absolute GM probability threshold of 0.2 was
applied. To control for type-I error, here, a significant effect
was reported when the results met a peak-level threshold of
P < 0.001 and when the cluster size exceeded the determined
expected voxels per cluster threshold (k > 47) in combination
with correction for nonisotropic smoothness (as explained
above).

To investigate potential relationships between brain volume
changes in the clusters showing a significant Time × Group

interaction with behavioral performance, we extracted the data
from significant clusters using the REX toolbox (ROI extraction
tool; The Gabrieli Lab, MIT; http://www.alfnie.com/software),
subtracted pretest from posttest values and correlated the
difference scores with behavioral performance scores using
Pearson’s correlation coefficient.

Functional Data Analysis

Data preprocessing of the resting state data was performed using
the toolbox DPABI (v4.0) (Yan et al. 2016) running under Matlab
2014b. The first 10 EPI volumes were discarded to allow the
magnetization to approach a dynamic equilibrium. All volume
slices were corrected for different acquisition times and then
realigned. Individual structural images were coregistered to the
mean functional image after realignment. The transformed
structural images were then segmented into GM, WM, and
CSF (Ashburner and Friston 2005). To remove head motion,
respiratory and cardiac effects, we regressed out the Friston 24-
parameter model (Friston et al. 1996) as well as signals from
WM and CSF. In addition, linear and quadratic trends were
also included as regressors since the BOLD signal exhibits low-
frequency drifts. The DARTEL tool (Ashburner 2007) was used
to normalize the functional data to the MNI template. We used
a spatial filter of 4 mm FWHM and finally performed temporal
filtering (0.01–0.1 Hz).

We then conducted an exploratory analysis by means of
DPABI computing “functional connectivity maps with a seed
region” consisting of left planum polare in MNI space, taken
from the Harvard Oxford atlas (Desikan et al. 2006). To do so, the
mean time course of all voxels in the seed region was used to
calculate pairwise linear correlations (Pearson’s correlation) with
other voxels in the brain. Individuals’ r values were normalized
to z values using Fisher’s z transformation.

Statistical analysis of the functional connectivity maps was
again carried out by means of a whole brain flexible factorial
design, again focusing on measurement occasions B, C, and D.
We entered the images containing the z-transformed correlation
values (between the seed region planum polare and all other
voxels in the brain) in the second-level analysis with a focus
on a time-by-group interaction, using a family-wise error (FWE)
correction for multiple comparisons at P < 0.05 (cluster size k = 20
voxels). We used the REX toolbox to extract the z-transformed
correlation coefficient values from within those clusters showing
a significant time-by-group interaction.
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Plasticity of the Auditory System in Aspiring Professional Musicians Wenger et al. 5

Figure 2. Behavioral performance scores on BGS. Error bars represent ±1 standard
errors (SE).

Graph Theory Analysis

To perform connectivity analysis using graph-theory measures,
we used BRain analysis using GraPH (BRAPH) theory (Mijalkov
et al. 2017), a toolbox written in Matlab that uses the Brain Con-
nectivity Toolbox codebase (https://sites.google.com/site/bctne
t/) (Rubinov and Sporns 2010) to calculate network matrices.
Such correlation matrices based on r correlation values were
generated for every subject and then utilized in the calculation
of both global and nodal measures. In this framework, nodes
are brain regions based on the parcellation of the HarvardOxford
Atlas (Desikan et al. 2006) and edges represent the correlations
between the temporal activation of pairs of brain regions. The
constructed matrix is a weighted undirected matrix, where the
edges indicate the strength of the connection. As is common
practice, only positive values were used in the calculation of
nodal and global metrics (negative correlations were set to zero).

We computed 5 “nodal measures” including degree, path
length, global efficiency, local efficiency, and the clustering coef-
ficient. The “degree” refers to the total number of edges con-
nected to a node. In the calculations, the weights of the connec-
tions were ignored by binarizing the connectivity matrix so that
only edges with nonzero weights were considered connected.
“Path length” refers to the average distance from a node to
all others. The distance between two nodes is defined as the
length of the shortest path between those nodes. In the case of
a weighted undirected graph, the length of an edge is a function
of its weight. Typically, the edge length is inversely proportional
to the edge weight (i.e., a high weight implies a shorter con-
nection). The “global efficiency” at the nodal level defines the
efficiency of the information transfer from one region to the
whole network, which assesses the average inverse shortest path
length between one node and all other nodes in the network.
The “local efficiency” as a nodal measure is calculated as the
global efficiency of the node on the subgraph level, created by
the node’s neighbors. It reflects the efficiency of the information
transfer from each region to the neighboring regions. The “clus-
tering” coefficient at a nodal level is calculated as the fraction of
triangles present around a node and is a measure of segregation.

Table 1. Brain regions showing a significant group difference in GM
volume between aspiring professionals and amateur musicians at
measurement occasion B (P < 0.005, nonstationary smoothness cor-
rected and cluster correction for expected voxels)

Area Peak coordinates (MNI) T-score Extent

Right hippocampus 22 −18 −24 3.54 567
Right superior
parietal lobule

42 −38 52 4.00 415

Left superior/middle
temporal gyrus

−52 −26 −9 3.63 348

Right postcentral
gyrus

9 −34 74 3.54 111

It reflects the ability for specialized processing in small groups
of nodes and is thus regarded a measure of local connectedness
within a network.

In addition, we computed 4 “global measures,” namely char-
acteristic path length, global efficiency, local efficiency and clus-
tering coefficient. The “characteristic path length” as a global
measure is calculated as the average of the path lengths of
all nodes. “Global efficiency” at the global level is the aver-
age of the global efficiency of all nodes in the graph and is
inversely related to the characteristic path length. “Local effi-
ciency” computed on the global level is the average of the local
efficiencies of its nodes and reflects how well the nodes com-
municate with adjacent nodes. The “clustering coefficient” as a
global metric is the average of the clustering coefficients of all
nodes.

Statistical significance testing was done by extracting the
values of the 3 measurement occasions for local and global mea-
sures for each subject from BRAPH and then testing for a time-by-
group interaction separately for each nodal and global measure
using SPSS, in the end applying a correction for multiple com-
parisons using the false discovery rate (FDR) algorithm (P value
of 0.05; https://www.sdmproject.com/utilities/?show=FDR).

Results
Behavioral Results

Based on BGS results, aspiring professional musicians showed
significantly higher levels of general music expertise than
amateur musicians at measurement occasion B, which corre-
sponds to an early phase of assessment, t(32) = 4.57, P < 0.001,
Hedges’ g = 1.58. Furthermore, aspiring professionals showed
an increase in performance, whereas amateurs’ performance
remained relatively stable, as reflected by a significant time-by-
group interaction, F(2,64) = 8.53, P = 0.001, partial η squared = 0.21
(see Fig. 2).

Preexisting Differences in GM Volume between Aspiring
Professionals and Amateur Musicians

To characterize differences in GM volume between aspiring pro-
fessionals and amateur musicians, we first computed a 2-sample
t-test on the segmented whole-brain GM maps at measurement
occasion B. This cross-sectional comparison yielded 4 significant
clusters in superior parietal lobule, left STG, right hippocampus,
and right postcentral gyrus (see Table 1 and Fig. 3), in which
participants of the aspiring professional group showed greater
GM volume than amateur musicians.
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6 Cerebral Cortex Communications, 2021, Vol. 2, No. 2

Figure 3. Regions of preexisting differences in GM volume between aspiring professionals and amateur musicians at measurement occasion B in hippocampus, superior
parietal lobule, superior/middle temporal gyrus, and postcentral gyrus emerging in a whole-brain 2-sample t-test (P < 0.005, nonstationary smoothness corrected and
cluster correction for expected voxels). Coordinates refer to MNI space. In all cases, volumes were greater in aspiring professionals than in amateur musicians.

An additional ROI analysis, focusing on primary and
secondary auditory cortex further confirmed a significant
difference in the right anterior portion of STG (t(38) = 2.40,
P = 0.02, Hedges’ g = 0.7531) and the left posterior portion of STG
(t(38) = 2.37, P = 0.02, Hedges’ g = 0.7419) (see Fig. 4). Analyses of
GM volume differences in bilateral planum temporale, Heschl’s
gyrus, and planum polare showed the same tendency of
greater GM volumes in aspiring professionals than in amateur
musicians but failed to reach the threshold of statistical
significance.

Changes in GM Volume over Time

Given that the focus of this study was on differences in within-
person changes between aspiring professionals and amateurs,
we computed a whole-brain interaction on the segmented
whole-brain GM maps. We found 3 significant clusters, namely
in left planum polare, left posterior insula extending into planum
polare, and left inferior frontal orbital gyrus (IFoG) extending into
anterior insula (see Fig. 5 and Table 2 for exact coordinates and
F-scores). All of these clusters were driven by decreases in GM
volume in aspiring professional musicians relative to amateur
musicians (see Fig. 5B).

For the left planum polare and IFoG, the observed decrements
in estimates of GM volume in the group of aspiring professionals
correlated with general music expertise as assessed by the BGS
at measurement occasions B, C, and D (see Fig. 6). A similar result
was obtained at trend level for the posterior insula (left planum
polare: rTime B (19) = −0.581∗, P = 0.009; rTime C (19) = −0.517∗,
P = 0.023; rTime D (19) = −0.588∗, P = 0.008; left posterior insula:
rTime B (19) = −0.387, P = 0.102; rTime C (19) = −0.525∗, P = 0.021; rTime D

(19) = −0.433, P = 0.064; left IFoG: rTime B (19) = −0.558∗, P = 0.013;

Table 2. Brain regions showing a significant interaction effect of
Group (aspiring professionals vs. amateur musicians) and Time (time
point B, C, and D) in GM volume (P < 0.001, nonstationary smoothness
corrected and cluster correction for expected voxels)

Area Peak coordinates (MNI) F-score Extent

Left planum polare −48 −14 0 23.02 292
Left posterior
insula/planum polare

−38 −3 −21 18.40 181

Left IFoG/anterior
insula

−32 24 −6 16.06 181

rTime C (19) = −0.634∗, P = 0.004; rTime D (19) = −0.589∗, P = 0.008). This
association was also true across the whole sample (left planum
polare: rTime B (34) = −0.580∗, P < 0.001; rTime C (34) = −0.523∗,
P = 0.001; rTime D (34) = −0.599∗, P < 0.001; left posterior insula:
rTime B (34) = −0.282, P = 0.106; rTime C (34) = −0.398∗, P = 0.020; rTime D

(34) = −0.373∗, P = 0.030; left IFoG: rTime B (34) = −0.586∗, P < 0.001;
rTime C (34) = −0.620∗, P < 0.001; rTime D (34) = −0.620∗, P < 0.001).
Importantly, no such associations were found within the group
of amateur musicians (all Ps > 0.08).

Correlations in the total sample continued to differ reli-
ably from zero in planum polare and inferior frontal gyrus
after excluding one very high-performing individual who
also exhibited the most pronounced structural decrease (but
does not qualify as an outlier; left planum polare: rTime B

(33) = −0.434∗, P = 0.012; rTime C (33) = −0.354∗, P = 0.043; rTime D

(33) = −0.468∗, P = 0.006; left IFoG: rTime B (33) = −0.519∗, P = 0.002;
rTime C (33) = −0.559∗, P = 0.001; rTime D (33) = −0.561∗, P = 0.001,
but not in left posterior insula: rTime B (33) = 0.00, P = 0.999;
rTime C (33) = −0.162, P = 0.367; rTime D (33) = −0.141, P = 0.433). This

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/c
e

rc
o

rc
o

m
m

s
/a

rtic
le

/2
/2

/tg
a

b
0

0
8

/6
1

3
1

7
4

5
 b

y
 M

P
I H

u
m

a
n

 D
e

v
e

lo
p

m
e

n
t u

s
e

r o
n

 0
6

 M
a

rc
h

 2
0

2
3



Appendix A 

  163 

 

Plasticity of the Auditory System in Aspiring Professional Musicians Wenger et al. 7

Figure 4. ROI analyses showed a significant difference in GM volume in left posterior STG and right anterior STG (P < 0.05). All other ROIs showed the same tendency of
greater GM volumes in aspiring professionals than in amateur musicians but failed to reach the threshold of statistical significance.

means that those individuals showing the highest proficiency
in this behavioral test were also the ones that exhibited the
most pronounced decrease in GM volume. In contrast, the
decrease in estimates of GM volumes did not correlate with
improvements in music expertise (rplanum polare (19) = −0.104,
P = 0.671; rposterior insula (19) = −161, P = 0.483; rIFoG (19) = −0.171,
P = 0.483).

Changes in Functional Connectivity

To understand these changes in GM volume, we further investi-
gated training-dependent changes in the coupling between brain
regions. Here, we focused on the largest cluster of structural
change located in left planum polare, that is, auditory cortex,
and its correlations with other regions of the brain. We found

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/c
e

rc
o

rc
o

m
m

s
/a

rtic
le

/2
/2

/tg
a

b
0

0
8

/6
1

3
1

7
4

5
 b

y
 M

P
I H

u
m

a
n

 D
e

v
e

lo
p

m
e

n
t u

s
e

r o
n

 0
6

 M
a

rc
h

 2
0

2
3



Appendix A 

  164 

 

8 Cerebral Cortex Communications, 2021, Vol. 2, No. 2

Figure 5. (A) Significant clusters in left planum polare, posterior insula, and IFoG emerging in a whole-brain time-by-group interaction analysis (P < 0.001, k > 47, corrected
for nonstationary smoothness). Coordinates refer to MNI space. (B) Bargraphs with the extracted GM volume estimates of the significant clusters in the time-by-group
interaction. This effect is driven by a decrease of GM volume in aspiring professionals compared with amateur musicians. Error bars represent ±1 SE.

Figure 6. Correlations between decrease in GM volume in left planum polare between time points B and D and behavioral performance in the BGS at measurement
occasions B, C, and D, respectively.

increasing functional connectivity of the left planum polare to
left and right auditory cortex, left precentral gyrus and left sup-
plementary motor cortex, left posterior cingulate, and left and

right postcentral gyrus over time in aspiring professionals com-
pared with amateur musicians (FWE-corrected P value of 0.05;
see Fig. 7).
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Plasticity of the Auditory System in Aspiring Professional Musicians Wenger et al. 9

Figure 7. (A) Significant clusters exhibiting increased functional connectivity
over time (shown in yellow) with left planum polare (shown in red) in aspiring
professionals compared with amateur musicians (P < 0.05 FWE corrected). (B)
Bargraphs with the extracted Fisher’s z-transformed correlation coefficients
from those significant clusters of the time-by-group interaction. Group-by-time
interactions of the functional connectivity analysis were driven by increasing
correlation coefficients in aspiring professionals relative to stable correlations
among amateur musicians. Error bars represent ±1 SE.

Changes in Graph-theoretical Measures

To further characterize the network in which left planum polare
participates, we conducted graph-theory analyses and compared
network characteristics in the two groups over time. Although
there were no significant time-by-group interactions in any
of the nodal measures, there were significant time-by-group
interactions for all global measures, namely for characteristic
path length, global efficiency, local efficiency, and clustering (see
Table 3 for exact numbers). In all of those measures, the group of
amateur musicians showed no reliable mean change over time,
whereas the group of aspiring professionals showed significant
increases over time in all global metrics except for path length,
which, as expected, decreased over time.

Discussion
In the present longitudinal study, we set out to investigate struc-
tural brain alterations and changes in functional connectivity
in musicians intensely preparing for their entrance exam at a

University of Arts. We found that GM volume decreased over time
in comparison to amateur musicians in 3 clusters, namely left
planum polare, posterior insula extending into planum polare,
and left IFoG extending into anterior insula. The biggest cluster
of structural change was observed in left planum polare, which
exhibited increased functional connectivity with left and right
auditory cortex, left precentral gyrus, left supplementary motor
cortex, left posterior cingulate cortex, and left and right post-
central gyrus. All of these regions have been previously identi-
fied to play important roles in music expertise (e.g., Luo et al.
2012; Groussard et al. 2014). The increase in connectivity for the
region showing the greatest structural change was also reflected
in results based on graph theory. Here, we observed changes
over time in the global metrics, indicating participation of the
planum polare in an increasingly complex network in the group
of aspiring professionals compared with amateur musicians.

Our results once again speak to the malleability of adult brain
structure to environmental influences (Lövdén et al. 2013; Kühn
and Lindenberger 2016; Lindenberger et al. 2017). The left planum
polare as a region within the STG, adjacent to left Heschl’s
gyrus, has been reported to show preferential activity to musical
stimuli in comparison to other types of complex sounds, such as
speech and nonlinguistic vocalizations, and to integrate acoustic
characteristics in the context of complex musical sounds, both
in trained musicians and nonmusicians (Angulo-Perkins et al.
2014). In another study, left planum polare showed activity during
high-level musical processing (Brown et al. 2004). In a study look-
ing into functional networks underlying music processing and
processing of vocalizations with a passive listening stimulation
paradigm that included different vocal sound categories (i.e.,
song, hum and speech), left planum polare together with planum
temporale and a group of regions on the right hemisphere that
included the supplementary motor area, premotor cortex and
the inferior frontal gyrus showed stronger activations during
music listening (Angulo-Perkins and Concha 2019). Interestingly,
left planum polare also showed activity during vocal musical
listening, with and without lyrics, a finding pointing towards its
role in music processing of temporally complex sounds, such
as vocal music and speech. Overall, evidence suggests that the
planum polare might be playing an intermediate role between
the primary auditory cortex and other associative cortices, pos-
sibly extracting information (such as melodic patterns or pitch-
interval ratios) required for further processing leading to percep-
tual evaluations (e.g., a same-different task), vocal production,
and sensory-motor coordination to reproduce melodic or rhyth-
mic sounds (Angulo-Perkins and Concha 2019).

As an integration hub, the insula serves a plethora of dif-
ferent tasks, including sensory, emotional, motivational, and
cognitive functions (Gogolla 2017). More specifically within the
realm of music, the insula has often been discussed to reflect
the emotional aspects of music processing (Blood and Zatorre
2001; Koelsch et al. 2005; Koelsch 2010) and is involved in auto-
nomic regulation and sensory representation of emotion per-
cepts (Koelsch 2014). As aspiring professional musicians do not
only have to perfect their technical skills but also have to hone
their emotional sensitivity to music, it is conceivable that insula
cortex, both anterior and posterior portions, evinces structural
change.

Left inferior frontal gyrus is well known for its role in syntactic
processing of language and music (Friederici 2002; Tillmann et al.
2006; Nan and Friederici 2012), as well as more broadly in general
cognitive functions, such as top-down attention and working
memory (Janata et al. 2002; Schulze et al. 2011). Especially the
orbitofrontal part has been associated with automatic appraisal
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Table 3. Nodal and global measures of graph theoretical analyses at measurement occasions B, C, and D, comparing aspiring professionals to
amateur musicians. Asterisks (*) indicate a significant effect.

Nodal measures

Aspiring professionals Effect of Time Amateur musicians Effect of Time Time-by-group
interaction

Time B Time C Time D F P (FDR-corr.) Time B Time C Time D F P (FDR-corr.) F P (FDR-corr.)

Degree 98.83 101.16 107.33 8.04 0.011∗ 99.85 105.21 104.78 2.07 0.241 1.06 0.35
Path length 2.76 2.63 2.21 10.09 0.007∗ 3.10 2.48 2.91 1.65 0.241 3.06 0.08
Global
efficiency

0.42 0.45 0.52 11.30 0.007∗ 0.37 0.46 0.41 1.51 0.241 3.55 0.08

Local efficiency 1.97 2.24 2.89 12.62 0.007∗ 1.54 2.28 1.76 2.88 0.241 4.09 0.08
Clustering 0.35 0.39 0.47 11.84 0.007∗ 0.29 0.39 0.33 3.18 0.241 2.88 0.08

Global measures

Aspiring professionals Effect of Time Amateur musicians Effect of Time Time-by-group
interaction

Time B Time C Time D F P (FDR-corr.) Time B Time C Time D F P (FDR-corr.) F P (FDR-corr.)

Characteristic
path length

2.89 2.78 2.36 11.15 0.004∗ 3.15 2.69 2.83 5.52 0.069 4.01 0.02∗

Global
efficiency

0.40 0.42 0.49 12.79 0.004∗ 0.36 0.43 0.40 4.57 0.069 5.17 0.02∗

Local efficiency 1.84 2.03 2.65 12.39 0.004∗ 1.47 2.06 1.71 2.62 0.13 7.03 0.01∗

Clustering 0.33 0.36 0.44 13.59 0.004∗ 0.28 0.36 0.34 5.06 0.069 4.002 0.02∗

and is activated by breaches of expectancy (Koelsch 2014), a func-
tion crucial for aspiring professional musicians, as it helps them
to discriminate, for instance, between expected and unexpected
chord progressions. Interestingly, there have been findings of
projections from the anterior superior temporal plane to the
orbitofrontal cortex in rhesus monkeys (Petrides and Pandya
1988), that go along well with a recent finding of functional
connectivity of the left planum polare with orbitofrontal cortex
in an fMRI study during music-evoked emotional processing
(Koelsch et al. 2018).

Within all 3 of these regions, we have found structural
decreases in the group of aspiring professionals, while volumes
in amateur musicians remained stable. Importantly, we were
comparing a group of individuals aspiring to become profes-
sional musicians to a group of amateur musicians who actually
have a history of comparable years of playing an instrument
but with different intensity and a different goal in mind.
This stands in contrast to many other studies that have used
nonmusicians as a comparison group. All of our participants
look back on similar amounts of musical training, but the
aspiring professionals presumably have been trying, for quite
some time, to perfect their general ear-training skills in order to
pass a highly competitive entrance exam. Accordingly, we found
some structural differences between aspiring professionals
and amateurs at the beginning of our observation period,
with aspiring professionals exhibiting more GM volume in
hippocampus, superior parietal lobule, superior/middle temporal
gyrus, and postcentral gyrus. However, in the following weeks
and months, aspiring professionals actually exhibited a decrease
of GM volume over time compared with amateur musicians.

At first, the observed decrements in GM volume among aspir-
ing professionals may seem counterintuitive. However, we have
argued before that plasticity might in part be characterized by
volume expansion followed by a selection process leading to a
partial renormalization of overall volume (Wenger et al. 2017a). In
fact, given the large number of skills humans acquire during their

lifetime, plasticity cannot be conceived as a process of perpetual
growth (Changeux and Dehaene 1989; Lindenberger et al. 2017;
Wenger et al. 2017b). According to the exploration–selection–
refinement (ESR) model of human brain plasticity (Lindenberger
and Lövdén 2019; Lövdén et al. 2020) neuronal microcircuits
potentially capable of implementing the computations needed
for executing novel skills are, early in learning, widely probed,
with a concomitant increase in GM volume. This phase of explo-
ration is followed by phases of experience-dependent selection
and refinement of reinforced microcircuits and the gradual elim-
ination of novel structures associated with unselected circuits.
It is tempting to speculate that the aspiring professionals had
entered the selection and refinement phases of a plastic episode
when they were recruited for participation in the present study.
Clearly, this interpretation needs to remain tentative because
we did not observe the full cycle of volume expansion followed
by renormalization as in our previous study on motor train-
ing (Wenger et al. 2017b) or as Quallo et al. (2009) did in their
study on tool-use in monkeys. Nevertheless, it offers a tenable
explanation for the observed structural decreases in left planum
polare, posterior insula, and IFoG that needs to be corroborated
in future work.

Thus far, data that are consistent with the ESR model have
been primarily observed in early ontogeny or during motor
skill acquisition; for review, see Lindenberger and Lövdén
(2019). Acquiring a complex skill like playing an instrument, in
combination with mastering the complexities of harmony and
ear training is a different story. There are no data available yet
that chart the sequential progression of plasticity over years of
musical training. What is documented in the literature are, for
the most part, cross-sectional studies showing differences in
brain structure between musicians and nonmusicians. We can
therefore only speculate how the alteration of brain structure in
response to years of musical training that has evidently resulted
in lasting volume expansion can be reconciled with an ESR
view of plastic change. One possibility is that changes occur

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/c
e

rc
o

rc
o

m
m

s
/a

rtic
le

/2
/2

/tg
a

b
0

0
8

/6
1

3
1

7
4

5
 b

y
 M

P
I H

u
m

a
n

 D
e

v
e

lo
p

m
e

n
t u

s
e

r o
n

 0
6

 M
a

rc
h

 2
0

2
3



Appendix A 

  167 

 

Plasticity of the Auditory System in Aspiring Professional Musicians Wenger et al. 11

as a sequence of several expansion–renormalization cycles that
always conclude in only partial renormalization. This would
in the long run result in a building-up of consistently “skill-
optimized” GM structure. Obviously, we could not investigate
this hypothesis in the current study. What we have observed is
a decrease in estimates of GM volume in the group of musicians
intensely preparing for an entrance exam, in comparison to a
group of musicians still actively performing music on a daily
basis but without intensive training. It is noteworthy that others
have reported associations between smaller volume and higher
expertise: In ballet dancers (Hänggi et al. 2010) and also in skilled
pianists (Granert et al. 2011), striatal volume was smaller in
individuals with greater motor function efficiency. Furthermore,
in a study investigating nonmusicians, amateurs, and expert
musicians, there was a negative correlation between degrees
of music expertise and GM density in right postcentral gyrus,
bilateral precuneus/paracentral lobule, left inferior occipital
gyrus, and bilateral striatal areas (James et al. 2014).

Following up on our structural results, we also investigated
whether we would see indications of plasticity at the func-
tional level. If what we observed here is indeed the second part
of an expansion–renormalization cycle, then the left planum
polare, which made up the largest patch of GM showing volume
reduction, would be expected to undergo changes in functional
connectivity. Hence, we expected that the planum polare would
show increased connectivity throughout the brain, specifically
to regions previously implicated in musical processing. Indeed,
resting-state functional connectivity analyses revealed that over
time, the left planum polare was better connected within left
auditory cortex itself extending towards superior temporal pole,
and also to the right auditory cortex and superior temporal pole,
left precentral and also supplementary motor area, left posterior
cingulate cortex, and left and right postcentral gyrus, regions that
have been shown before to matter in music expertise (Luo et al.
2012; Groussard et al. 2014).

Left auditory cortex has been shown to be involved in process-
ing of melody (Bengtsson and Ullén 2006) and more specifically
also in musical semantic memory (Groussard et al. 2010). Left
posterior cingulate cortex has been discussed in the context
of integrating sensory information and emotional content, for
example during reading musical notation (Hyde et al. 2009),
in the context of familiarity tasks featuring well-known songs
(Satoh et al. 2006), and in combination with autobiographical
memories associated with musical excerpts (Ford et al. 2011).
Supplementary motor area has been shown before to exhibit
greater GM volume in musicians versus nonmusicians (Gaser
and Schlaug 2003) and has been implicated in the processing of
sequential temporal structures (Bengtsson et al. 2009), pitch and
timing repetition during both listening and performance tasks
(Brown et al. 2013), as well as in rhythmic and melodic musical
improvisation (de Manzano and Ullén 2012).

Also, the results of our graph theoretical analysis go along
with our assumption that the region of decreased volume
exhibits improved functionality after restructuring and indeed
point to the fact that planum polare is now participating in a
more complex network. This is reflected in all global measures
of graph complexity we investigated, but not on the nodal level.

At all measurement occasions, we observed significant corre-
lations between individual differences in GM volume decrements
and music expertise. In other words, the highest performing indi-
viduals exhibited the most pronounced decreases in GM volume
in left planum polare, left insula, and left inferior frontal gyrus,
thus, show the largest plastic change on the neural level. How-
ever, counter to expectations, we did not observe any significant
correlations between changes in music expertise and changes

in GM volume. One reason for the absence of such a change–
change association is the high degree of stability of individual
differences in music expertise over time. For instance, in aspiring
professionals, we observed the following correlations in music
expertise between adjacent measurement occasions (rAB = 0.955;
rBC = 0.896; rCD = 0.950; rDE = 0.981).

We can only speculate about the neurobiological mecha-
nisms that may have caused the observed reductions in GM
volume. Synaptic changes including dendritic branching and
axon sprouting as well as glial changes come to mind and we
and others have elaborated on the exact potential mechanisms
before (Zatorre et al. 2012b; Wenger et al. 2017a; Lindenberger and
Lövdén 2019). Future studies need to incorporate additional MR
sequences specifically tailored to disentangle these processes, as
for example T1 maps (Tardif et al. 2016; Lerch et al. 2017).

The present study also has some further limitations that
need to be mentioned. First, there was no random assignment
of participants to groups. Obviously, this caveat is inherent in
the studied topic and is not easy to overcome. We have tried to
limit this problem by recruiting two groups of participants with
comparable years of playing an instrument. Still, there might be
pre-existing differences between people who aspire to become
professional musicians and people who consider themselves
amateur musicians (Ullén et al. 2016). In addition, the stress
to which aspiring professional musicians are exposed might
have influenced the present results, as stress has been shown
to result in GM volume reductions (Kassem et al. 2013). Thus,
we cannot rule out that the observed decreases in GM volume
might, to some extent, be related to stress, even though our
findings of increased functional connectivity and the correlation
with behavioral performance renders this explanation rather
unlikely, and also auditory cortex does not belong to those
regions typically affected by stress-related reductions (Lupien
et al. 2009). Finally, the present samples were not systemat-
ically stratified by which main instrument the participants
played. Hence, we may have missed out on effects that are
specific to particular focal instruments, such as piano versus
strings.

To conclude, we found that musicians intensely preparing
for the entrance exam to a University of the Arts show reliable
reductions in GM volume in regions pertinent to music expertise,
whereas a group of amateurs not preparing for an exam did
not show such changes. The planum polare, which was the
largest GM cluster with volume reductions, showed increasing
functional connectivity to other musically relevant regions. This
increase in connectivity was also reflected in global metrics of
network participation based on graph theory. The present results
are consistent with the ESR model of plastic change (Linden-
berger and Lövdén 2019; Lövdén et al. 2020), which posits an
expansion of GM volume during early phases of skill acquisition,
followed by partial renormalization (Wenger et al. 2017a).

Supplementary Material
Supplementary material can be found at Cerebral Cortex Commu-
nications online.
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