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Abstract
Reliable probabilistic primality tests are fundamental in public-key cryptography. In adver-
sarial scenarios, a composite with a high probability of passing a specific primality test
could be chosen. In such cases, we need worst-case error estimates of the test. However,
in many scenarios, the numbers are randomly chosen and thus have a significantly smaller
error probability. We are hence interested in average-case error estimates. In this paper we
establish such bounds for the strong Lucas primality test, as there exist only worst-case,
but no average-case error bounds. This allows us to use this test with more confidence. Let
us examine an algorithm that draws odd k-bit integers uniformly and independently, runs t
independent iterations of the strong Lucas test with randomly chosen parameters, and outputs
the first number that passes all t consecutive rounds. We attain numerical upper bounds on
the probability that a composite is returned. Moreover, we examine a slight modification of
this algorithm that only considers integers that are not divisible by small primes, yielding
improved bounds. In addition, we classify the numbers that contribute most to our estimate.

Keywords Strong Lucas test · Secure prime generation · Average case error estimate ·
Lucas–Carmichael numbers

Mathematics Subject Classification 11Y11

1 Introduction

Primegeneration is a basic cryptographic operation asmostmodern public-key cryptosystems
makeuse of large primenumbers, either as secret or public parameters.Away togenerate large
primes is to choose integers of appropriate size at randomand then test them for primality until
a prime is found. This encourages us to find primality testing algorithms that are polynomial
in complexity. Several sophisticated general-purpose algorithms that deterministically test
primality exist, but their efficiency is not sufficient for most applications. In practice, one
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therefore makes use of probabilistic primality tests, which are randomized primality testing
algorithms that have a small probability of letting a composite, pass as prime. Nearly all
known probabilistic primality tests are based on the same principle. From the input number
n, one defines an Abelian group and then tests if the group structure we expect to see if n
were prime is present. If n is composite this structure is not always, but often absent. Such
a test can be strenghtened by running multiple independent rounds of the test. In this paper,
we will refer to both probabilistic and deterministic tests as primality tests.

There are certain scenarios where the public-key parameters, such as in theDiffie-Hellman
key exchange protocol, may have been chosen by an adversary. The integer could be con-
structed in such a way that it has a high probability of falsely being declared prime by a
specific primality test, even though it is actually composite. Hence, in this scenario, the worst
case error probability ([9], [2]) of the primality test should be small. However, for many
other applications where the integer is randomly chosen, such as prime generation, it is more
important to know how the test behaves in the average case, as it seems that most randomly
chosen composites would be accepted with a probability much smaller than the so-called
worst-case numbers. More formally, let us examine an algorithm that repeatedly chooses
random odd k-bit integers and runs t iterations of the primality test on each candidate. If the
candidate passes all t consecutive iterations, the algorithm returns that number, otherwise,
another randomly chosen odd k-bit integer is selected and tested. The algorithm ends when a
number that passes all t consecutive rounds is found. The error probability that this algorithm
returns a composite is called the average-case error probability.

Numerous probabilistic primality tests exist, some of which are better than others. Among
these, a class utilizes so-called Lucas sequences as their foundation. Let D, P and Q be
integers such that D = P2 −4Q is non-zero and P > 0. Let U0(P, Q) = 0, U1(P, Q) = 1,
V0(P, Q) = 2 and V1(P, Q) = P.TheLucas sequences Un(P, Q) and Vn(P, Q) associated
with the parameters P , Q are defined recursively for n ≥ 2 by

Un(P, Q) = PUn−1(P, Q) − QUn−2(P, Q),

Vn(P, Q) = PVn−1(P, Q) − QVn−2(P, Q).

For an integer n, let εD(n) = (D
n

)
denote the Jacobi symbol. In 1980, Baillie andWagstaff

[4] gave a thorough treatment of the use of Lucas sequences in primality testing and examined
various congruences that hold for prime numbers. One of their results, stated in the following
theorem, lays the foundation of this paper.

Theorem 1 (Baillie, Wagstaff [4]) Let P and Q be integers and D = P2 − 4Q. Let p be a
prime number not dividing 2Q D. Write p − εD(p) = 2κq, where q is odd. Then

either p | Uq or p | V2i q for some 0 ≤ i < κ. (1)

From this theorem, we can derive a probabilistic primality test for an integer n with a fixed
D by checking property (1) of Theorem 1 for several bases (P, Q) that are chosen uniformly
at random, where 1 ≤ P, Q ≤ n, gcd(Q, n) = 1 and P = D2 − 4Q. This test is called the
strong Lucas test. If (1) does not hold for some base (P, Q), then n is certainly composite.
We call such (P, Q) a witness for compositeness using the strong Lucas test, which is a short
proof that n is composite. However if (1) is true for several bases, even though this does not
serve as proof, it is very likely that n is a prime.

Arnault [3] demonstrated that the worst-case numbers of the strong Lucas test occur for
twin-prime products, which are products of two primes with a prime gap of 2. In such cases,
half of the bases (P, Q) used in the test declare the integer to be prime. For the remaining odd
integers, at most 4/15th of the bases pass the test. These results serve as the worst-case error
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estimate of the strong Lucas test. Luckily, excluding twin-prime products does not impose
great restrictions, as they can easily be detected by running Newton’s method for square roots
prior to conducting the actual test.

From Arnault’s result, it may be tempting to directly conclude that for non-twin-prime
products, the average-case estimate for t rounds of the strong Lucas test is at most (4/15)t .
This reasoning is wrong, as the following discussion shows. For any k, denote Mk the set of
odd k-bit integers. Let t ≥ 1 be fixed and choose k sufficiently large such that the density
of the primes in Mk is much less than (4/15)t . Assume that for most composites in Mk the
probability that the integer that we test for primality passes a test with randomly chosen
bases is about 4/15. Then, of course, the probability of it passing t independent tests is
about (4/15)t . Suppose that we have an integer n from Mk that passes t tests. Since we are
assuming that primes in Mk are scarce, it will be much more likely that n is composite rather
than prime, so the average-case estimate would be close to 1. Naturally, the average-case
estimate is much smaller than the worst-case, so we need a different argument for obtaining
average-case bounds.

When it comes to choosing dependable primality tests with both average and worst-case
bounds, the Miller-Rabin test stands out as a widely used method in practice. Its widespread
use can be attributed to its well-established theoretical foundations and its straightforward
implementation. Rabin [17] and Monier [15], working independently and almost simultane-
ously, laid the groundwork for the worst-case error bounds associated with the Miller-Rabin
test. Additionally, Damgård, Landrock, and Pomerance [7] established average-case error
bounds, further solidifying trust in this test within the cryptographic community.

For the strong Lucas test, on the contrary, only worst-case upper bounds are known,
and randomly choosing worst-case numbers is rather an unusual occurrence. We are hence
concerned with finding average-error estimates for the strong Lucas test. Such results would
allow us to employ this test with more confidence in practice. For this, we consider an
algorithm that draws odd k-bit odd integers independently from the uniform distribution,
runs t independent iterations of the strong Lucas test with randomly chosen parameters on
each candidate, and outputs the first one that passes all t consecutive rounds. Let qk,t denote
the probability that a number output by this algorithm is composite.

In this paper, we conduct a thorough analysis of this error probability and derive explicit
numerical upper bounds for qk,t . These bounds are obtained by adapting the methods used
in [7] to the strong Lucas case.

Furthermore, we note that integrating trial division by small primes before conducting the
strong Lucas test results in improved error estimates. In practice, the inclusion of trial divi-
sion is not a restrictive assumption but rather a common practice in cryptographic software
to enhance the run-time efficiency of the test. Consequently, we introduce a new error prob-
ability, denoted as qk,l,t . This probability accounts for divisibility by the first l odd primes
before running the strong Lucas test. Any integer found to be divisible by these primes is
discarded, and a new random k-bit integer is selected. Once the integer successfully passes
this initial stage, the algorithm proceeds to execute t rounds of the strong Lucas test, as
previously described. By performing a similar analysis as before, we derive numerical upper
bounds for qk,l,t .

Furthermore, we identify the numbers that contribute most to our probability estimate in
the strong Lucas test and realize that, amongst others, special types of Lucas-Carmichael
numbers belong to this set. We are only able to bound the cardinality of these integers upon
an additional assumption. Under this assumption, we proceed to treat them differently in
our analysis, leading to improved bounds for large values of t . Bounding these numbers
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unconditionally remains an open question.

qk,1 < ln(k)k242.3−
√

k for k ≥ 2,

qk,l,1 < k241.8−
√

kρ
2
√

k−1−2
l for k ≥ 2, l ∈ N,

qk,t < ln(k)t k3/2√
t
42.12+t−√

tk for k ≥ 79, 3 ≤ t ≤ k/9 or k ≥ 88, t = 2,

qk,l,t < 41.72−
√

tkk3/22tρ
2
√

kt+t
l for k ≥ 21, 2 ≤ t ≤ (k − 1)/9, l ∈ N,

qk,l,t ≤2−1.52−4t ρ6t
l

2t − ρt
l

k + ρ3t
l 2−3.55− 4k

9 −2t k15/4 + ρ5t
l 21.74−

k
4−3t k

for k ≥ 122, t ≥ k/9, l ∈ N,

where p̃l is the l-th odd prime and ρl = 1 + 1
p̃l+1

.

2 Preliminaries

2.1 TheMiller–Rabin test

The Miller-Rabin primality test, often referred to as the strong probable prime test, is a
probabilistic primality test. It is one of the most widely used primality tests and exploits the
following theorem:

Theorem 2 (Miller [14], Rabin [18]) Let p be a prime and write p − 1 = 2κ̃ q̃ , with q̃ odd.
Then,

either aq ≡ 1 mod p or a2i q̃ ≡ −1 mod p for 0 ≤ i < κ̃. (2)

The Miller-Rabin test consists of checking property (2) of Theorem 2 for multiple bases a
that are chosen uniformly at random. Finding an a for which (2) does not hold is a direct
proof of the compositeness of n. On the other hand, if the property (2) holds for several bases
a, then n is likely to be prime.

Composite numbers that satisfy condition (2) are called strong pseudoprimes with respect
to the base a. Rabin [17] and Monier [15] showed in 1980 independently the following
theorem, which provides an upper bound for the probability that this test gives an incorrect
answer.

Theorem 3 (The Rabin-Monier Theorem [17], [15]) Let n �= 9 be an odd composite integer.
Let S(n) denote the number of all bases a relatively prime to n such that 0 < a < n makes
n a strong pseudoprime. We have

S(n) ≤ 1

4
ϕ(n),

where ϕ is the Euler function.

With Theorem 3, we can directly conclude that the Miller-Rabin test has a worst-case error
probability of 1/4, as ϕ(n) is upper bounded by n. However, when applied to most composite
numbers, the test tends to exhibit a significantly smaller error probability than indicated by
the worst-case behavior. The first known result that took advantage of this observation was
by Damgård, Landrock, and Pomerance in [7]. They considered an algorithm that repeatedly
chooses random odd k-bit integers, subjects each number to t iterations of the Miller-Rabin
test with randomly chosen bases, and outputs the first number found that passes all t consec-
utive tests. Let pk,t denote the probability that the algorithm falsely outputs a composite. The
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authors obtained numerical upper bounds for pk,t for various choices of k, t and obtained an
upper bound for pk,t for certain infinite classes of k, t . These bounds, which are formulated in
the following theorem, are still the best bounds we have for this primality testing algorithm.

Theorem 4 (Damgård, Landrock, Pomerance [7]) Let k and t be integers with k ≥ 2.

(i) pk,1 < k242−
√

k for k ≥ 2.

(ii) pk,t < k3/2 2t√
t
42−

√
tk for k ≥ 21, 3 ≤ t ≤ k/9 or k ≥ 88, t = 2.

(iii) pk,t < 7
20k2−5t + 1

7k15/42−k/2−2t + 12k2−k/4−3t for k ≥ 21 and t ≥ k/9.
(iv) pk,t < 1

7k15/42−k/2−2t for k ≥ 21 and t ≥ k/4.

For specific large values of k, the paper has even better results, for example, p500,1 < 4−28.
Thus, if a randomly chosen odd 500-bit number passes just one iteration of a randomMiller-
Rabin test, the probability of it being composite is rather small. Therefore, in most practical
applications, such numbers can safely be accepted as “prime”.

2.2 Strong Lucas pseudoprimes

For the remainder of the paper, let D be fixed. The strong Lucas test is based on Theorem
1, which states that for prime numbers property (1) is always fulfilled. Unfortunately, there
exist composites that satisfy property (1) for a specific base (P, Q), while the property might
not hold for another base. This gives rise to the following definition:

Definition 1 Let n be an odd composite number relatively prime to 2Q D. Write n −εD(n) =
2κq , with q odd. Suppose that

either n | Uq or n | V2i q for some 0 ≤ i < κ,

i.e., it satisfies property (1) for the choice of parameters (P, Q). Then n is called a strong
Lucas pseudoprime with respect to P and Q. For short, we write slpsp(P, Q).

Definition 2 Let n be an odd composite integer relatively prime to 2D. We let SL(D, n)

denote the number of pairs (P, Q)with 0 ≤ P, Q < n, gcd(Q, n) = 1, P2−4Q ≡ D mod n
that make n a slpsp(P, Q), as defined in Definition 1.

Arnault [3] proved the explicit formula for SL(D, n) for fixed n and D.

Theorem 5 (Arnault [3]) Let D be an integer and n = pr1
1 ·. . .·prs

s be the prime decomposition
of an integer n ≥ 2 relatively prime to 2D. Put

{
n − εD(n) = 2κq

pi − εD(pi ) = 2ki qi for 1 ≤ i ≤ s
with q, qi odd,

ordering the pi ’s such that k1 ≤ . . . ≤ ks . We have

SL(D, n) =
s∏

i=1

(gcd(q, qi ) − 1) +
k1−1∑

j=0

2 js
s∏

i=1

gcd(q, qi ), (3)

where SL(D, n) is as defined in Definition 2. If n is not relatively prime to 2D, we set
SL(D, n) = 0.
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Let us introduce the following function, which serves as a variant of the Euler function ϕ.

Definition 3 (Arnault [3]) Let D be an integer. The following number-theoretic function is
defined only on integers relatively prime to 2D:

{
ϕD(pr ) = pr−1(p − εD(p)) for any prime p � 2D and r ∈ N,

ϕD(p1 p2) = ϕD(p1)ϕD(p2) if gcd(p1, p2) = 1.

Weobserve that this definition closely resembles the definition ofϕ.Specifically, if εD(p) = 1
for all p, then the two definitionswould coincide. The next theorem could be seen as an analog
to Theorem 3 with ϕD .

Theorem 6 (Arnault [3]) If n is an odd composite integer relatively prime to D, then

SL(D, n) ≤ ϕD(n)

4
.

In the context of the Miller-Rabin test, Theorem 3 directly implies that S(n) < n/4 as
ϕ(n) < n for every n ∈ N. However, in contrast, we will see in Corollary 1 that there are
infinitely many n for which ϕD(n) remains unbounded by n. Consequently, Theorem 6 is
here not of the same interest as Theorem 3. Nonetheless, we have the following useful result:

Theorem 7 (Arnault [3]) Let D be an integer and n �= 9 a composite integer relatively prime
to 2D. For every integer D, we have

SL(D, n) ≤ 4n

15
,

except if n is a product of twin primes of the form n = (2k1q1 − 1)(2k1q1 + 1) with q1 odd
and such that the Jacobi symbols satisfy εD(2k1q1 − 1) = −1, εD(2k1q1 + 1) = 1. In this
case we have SL(D, n) ≤ n/2.

Hence,Theorem7 implies that for every odd composite integern, not a product of twin primes,
at most 4/15 of the bases declare the integer to be prime. The constraint of excluding twin-
prime products does not impose a great restriction, since for εD(n) = −1 with n = p(p+2),
the decomposition n − εD(n) = (p + 1)2 can easily be detected using Newton’s method for
square roots before running the expensive primality test. Similarly, for εD(n) = 1, Newton’s
method can still be applied as in this case n − εD(n) is almost a square.

However, the worst-case upper bound of SL(D, n)/n of 4/15 for n is rather an uncom-
mon occurrence. Therefore, our primary focus will be on determining the average value of
SL(D, n)/n for an odd composite n, rather than concentrating solely on identifying theworst-
case numbers. This approach allows us to gain an insight into the typical error behaviour of
the strong Lucas test when we choose n uniformly at random.

2.3 Some Lemmas

In this section, we establish lemmas that will be used in later proofs. Let us first introduce
some definitions.

Definition 4 For an odd integer n, let

αD(n) = SL(D, n)

ϕD(n)
.
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Thus, by Theorem 6, we have αD(n) ≤ 1/4 for odd composite n.

Definition 5 For an n ∈ N, let ω(n) denote the number of distinct prime factors of n and let
�(n) denote the number of prime factors of n counted with multiplicity.

Thus, ω(n) = s and �(n) = ∑s
i=1 ri .

Now letn−εD(n) = 2κq , withq odd.Also letn = pr1
1 ·. . .·prs

s be the primedecomposition
of an integer relatively prime to 2D, ordering the p′

i s such that k1 ≤ . . . ≤ ks in the
decomposition pi − εD(pi ) = 2ki qi , where qi is odd. This implies that k1 is the largest
integer such that 2k1 | pi − εD(pi ) for all i = 1, 2, . . . , s. We shall always let p denote a
prime number.

Lemma 1 (Suwa [20]) Let n = pr1
1 · . . . · prs

s > 1 be an odd integer. Let κ and ki with
i = 1, . . . , s be as defined above. Then, κ ≥ k1. Furthermore, equality holds if and only if
there is an odd number of prime factors pi of n with odd exponent such that ki = k1.

Lemma 2 Let m, s ∈ N. Then,
(
1 +

m∑

j=0

2 js
)

≤ 2ms+1.

The details of the proofs are omitted since this can be shown by induction on m.

Lemma 3 If n = pr1
1 · . . . · prs

s > 1 is relatively prime to 2D, then,

αD(n) ≤ 21−s
s∏

i=1

p1−ri
i

gcd(pi − εD(pi ), n − εD(n))

pi − εD(pi )

≤ 21−�(n)
s∏

i=1

gcd(pi − εD(pi ), n − εD(n))

pi − εD(pi )
.

Proof We see that the identity
∑s

i=1(ri − 1) = �(n) − s trivially holds. Thus,

2(1−s) = 21−�(n)+∑s
i=1(ri −1) = 21−�(n)

s∏

i=1

2ri −1.

Using the fact that 2
p ≤ 1 for every prime p and ri ≥ 1 for all i , the second inequality follows

by

21−s
s∏

i=1

p1−ri
i = 21−�(n)

s∏

i=1

2ri −1

pri −1
i

≤ 21−�(n)
s∏

i=1

( 2

pi

)ri −1

≤ 21−�(n).

For the first inequality we use Theorem 5, which implies that for n such that gcd(n, 2D) =
1, we have

SL(D, n) ≤
(
1 +

k1−1∑

j=0

2 js
) s∏

i=1

gcd(q, qi ). (4)

Using this upper bound and the definition of ϕD(n), we get

αD(n) = SL(D, n)

ϕD(n)
≤

(
1 +

k1−1∑

j=0

2 js
) s∏

i=1

gcd(qi , q)

pri −1
i (pi − εD(pi ))

=
(
1 +

k1−1∑

j=0

2 js
) s∏

i=1

gcd(pi − εD(pi ), q)

pri −1
i (pi − εD(pi ))

.
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Since in the factorization n − εD(n) = 2κq , the two factors 2κ and q are coprime, we get

s∏

i=1

gcd(pi − εD(pi ), n − εD(n)) =
s∏

i=1

gcd(pi − εD(pi ), q) gcd(2ki , 2κ ).

ByLemma1,weknow that k1 ≤ κ , and by thewaywehave defined the order of k1, k2, . . . , ks ,
we get

s∏

i=1

gcd(pi − εD(pi ), q) gcd(2ki , 2κ ) ≥ 2sk1
s∏

i=1

gcd(pi − εD(pi ), q).

Hence,

s∏

i=1

gcd(pi − εD(pi ), q) ≤ 2−sk1
s∏

i=1

gcd(pi − εD(pi ), n − εD(n)).

Using Lemma 2, we get

αD(n) = SL(D, n)

ϕD(n)
≤

(
1 +

k1−1∑

j=0

2 js
) s∏

i=1

gcd(pi − εD(pi ), q)

pri −1
i (pi − εD(pi ))

≤
(
1 +

k1−1∑

j=0

2 js
)
2−k1s

s∏

i=1

gcd(pi − εD(pi ), n − εD(n))

pri −1
i (pi − εD(pi ))

≤
(
2(k1−1)s+1

)
2−k1s

s∏

i=1

gcd(pi − εD(pi ), n − εD(n))

pri −1
i (pi − εD(pi ))

= 21−s
s∏

i=1

1

pri −1
i

gcd(pi − εD(pi ), n − εD(n))

pi − εD(pi )
,

which proves the assertion.

Lemma 4 If t ∈ R with t ≥ 1, then

∞∑

n=
t�+1

1

n(n − 1)
= 1


t� <
2

t
.

Proof
∞∑

n=
t�+1

1

n(n − 1)
= lim

k→∞

k∑

n=
t�+1

(
1

n − 1
− 1

n

)
= lim

k→∞
1


t� + 1

k
= 1


t� <
2

t
,

where we used the partial fraction decomposition of 1
n(n−1) and the fact that

∑
n

(
1

n−1 − 1
n

)

is a telescopic sum.

The following lemma will also be used frequently.

Lemma 5 (Damgård, Landrock, Pomerance [7]) For all k, t, j ∈ N, we have

2
√

tk −
√

t

k − 1
≤ 2

√
t(k − 1) ≤ j t + k − 1

j
.
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2.4 A simple estimate

Let us define the following two sets of integers that will be important in our analysis:

Definition 6 For m, D ∈ N, let

Cm,D = {n ∈ N : gcd(n, 2D) = 1, n composite and αD(n) > 2−m}
and let Mk denote the set of odd k-bit integers.

By Theorem 6, we already know that αD(n) ≤ 1
4 . Hence, we have C1,D = C2,D = ∅. In

Theorem 15 we will classify C3,D . For k ≥ 2, the cardinality of Mk is |Mk | = 2k−2. We
are interested in determining the proportion of odd integers in Mk that also belong to the set
Cm,D .

Theorem 8 If m, k are positive integers with m + 1 ≤ 2
√

k − 1, then

|Cm,D ∩ Mk |
|Mk | < 8

m∑

j=2

2m− j− k−1
j .

Proof Lemma 3 with n ∈ Cm,D implies �(n) ≤ m. Now let ND(m, k, j) = {n ∈ Cm,D ∩
Mk : �(n) = j}. Thus,

|Cm,D ∩ Mk | =
m∑

j=2

|ND(m, k, j)|.

Suppose n ∈ ND(m, k, j), where 2 ≤ j ≤ m. Let p denote the largest prime factor of n.
Since 2k−1 < n < 2k , we have p > 2(k−1)/ j . Let dD(p, n) = p−εD(p)

gcd(p−εD(p),n−εD(n))
. From

Lemma 3 and the definition of Cm,D , we have

2m >
1

αD(n)
≥ 2�(n)−1dD(p, n) = 2 j−1dD(p, n),

so that dD(p, n) < 2m+1− j .
Given p, d , where p is a prime with the property that p > 2(k−1)/ j and d is such that

d | p−εD(p) andd < 2m+1− j , wewant to get an upper boundonhowmanyn ∈ ND(m, k, j)
exist that have largest prime factor p with dD(p, n) = d . Let

SD,k,d,p = {n ∈ Mk : p | n, dD(p, n) = d, n composite}.
The size of the set SD,k,d,p is at most the number of solutions of the system

n ≡ 0 mod p, n ≡ εD(n) mod p−εD(p)
d , p < n < 2k,

i.e., at most the size of the set

RD,k,d,p = {n ∈ Z : n ≡ 0 mod p, n ≡ εD(n) mod
p − εD(p)

d
, p < n < 2k},

which by the Chinese Remainder Theorem has less than 2k d
p(p−εD(p))

elements.
If SD,k,d,p �= ∅, then there exists an n ∈ SD,k,d,p with gcd(n − εD(n), p − εD(p)) =

(p − εD(p))/d . Now let us look at the parity of (p − εD(p))/d . Since both p and n are odd,
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(p − εD(p))/d = gcd(p − εD(p), n − εD(n)) must be even, thus we only need to consider
those p and d that make (p − εD(p))/d even. We conclude that

|ND(m, k, j)| ≤
∑

p>2(k−1)/ j

∑

d|p−εD(p)

d<2m+1− j
p−εD (p)

d ∈2Z

2kd

p(p − εD(p))

= 2k
∑

d<2m+1− j

∑

p>2(k−1)/ j

d|p−εD(p)
p−εD (p)

d ∈2Z

d

p(p − εD(p))
.

Now, for the inner sum we have

∑

p>2(k−1)/ j

d|p−εD(p)
p−εD (p)

d ∈2Z

d

p(p − εD(p))
<

∑

2ud>2
k−1

j −εD(p)

d

(2ud + εD(p))2ud

= 1

4d

∑

2ud>2
k−1

j −εD(p)

1

(u + εD(p)
2d )u

≤ 1

4d

∑

2ud>2
k−1

j −εD(p)

1

u(u − 1
2d )

≤ 1

4d

∑

u>
2

k−1
j −εD (p)

2d

1

u(u − 1)

<
1

4d

2

2
k−1

j −εD(p)
2d

= 1

2
k−1

j − εD(p)

,

where the last inequality follows from Lemma 4. Using this estimate, we get

|ND(m, k, j)| ≤ 2k
∑

d<2m+1− j

1

2
k−1

j − εD(p)

= 2k 2m+1− j − 1

2
k−1

j − εD(p)

.

Using Lemma 5 with t = 1 and our hypothesis that m + 1 ≤ 2
√

k − 1 yields
m + 1 ≤ j + (k − 1)/ j . Thus,

2m+1− j − 1

2
k−1

j − εD(p)

≤ 2m+1− j − 1

2
k−1

j − 1
≤ 2m+1− j

2
k−1

j

= 2m− j− k−1
j +1

.

Therefore, ND(m, k, j)| ≤ 2k+m− j− k−1
j +1. Combining everything and using the fact that

|Mk | = 2k−2 yields

|Cm,D ∩ Mk |
|Mk | =

∑m
j=2|ND(m, k, j)|

2k−2 ≤ 8
m∑

j=2

2m− j− k−1
j .
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2.5 The average case error probability

To obtain average case error estimates, we adapt techniques similar to those in [7], with
appropriate modifications for the strong Lucas test.

We define X as the event that an integer n declared as probable prime by the strong Lucas
test is composite, and Zt as the event that the uniformly at random chosen integer n ∈ Mk

passes t consecutive rounds of the strong Lucas test with uniformly chosen bases (P, Q).
We also use π(x) to denote the prime counting function up to x and

∑′ to denote the sum
over composite integers. Furthermore, let us define the fraction of number of pairs (P, Q)

for which the strong Lucas test is positive.

Definition 7 For an odd composite n, let

αD(n) = SL(D, n)

n − εD(n) − 1
.

Using the law of conditional probability, we have

qk,t = P[X | Zt ] = P[X ∩ Zt ]
P[Zt ] =

∑′
n∈Mk

αD(n)t

∑
n∈Mk

αD(n)t

≤
∑′

n∈Mk
αD(n)t

∑
p∈Mk

αD(p)t
=

∑′
n∈Mk

αD(n)t

π(2k) − π(2k−1)
, (5)

where p is prime.
To obtain an upper bound for qk,t , it will suffice to find an upper bound for the final sum

in the numerator of inequality (5) and a lower bound for π(2k) − π(2k−1). We bound the
latter quantity using the following result:

Proposition 1 (Damgård, Landrock, Pomerance [7]) For an integer k ≥ 21, we have

π(2k) − π(2k−1) > (0.71867)
2k

k
. (6)

In order to proceed, we would like to upper bound the sum

′∑

n∈Mk

αD(n)t =
∞∑

m=2

∑

n∈Mk∩Cm,D\Cm−1,D

αD(n)t .

However, it is not clear how to bound αD(n) directly. Theorem 8 provides a way to upper
bound |Cm,D ∩ Mk |. If we achieve a method to bound αD(n) using αD(n), we can use
the property that for n ∈ Cm,D \ Cm−1,D , we have 2−m < αD(n) ≤ 2−(m−1). Thus, our
challenge lies in bounding αD(n) using αD(n). We tackle this problem by establishing two
different procedures: for the general case and for a case that involves trial division by small
primes before conducting the more computationally expensive strong Lucas test. The latter
procedure yields improvements over the general procedure, where the results are comparable
to those obtained for the Miller-Rabin test in [7].

Unlike the normal Euler function ϕ(n), the function ϕD(n) is not bounded from above by
n. Let n = ∏s

i=1 pri
i and let us look at the following trivial upper bound.

ϕD(n) =
s∏

i=1

pri −1
i (pi − εD(pi )) ≤

s∏

i=1

(pri
i + pri −1

i ). (7)
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1352 S. Einsele, K. Paterson

The question here is whether or not this is an overestimate, that is, whether integers n =∏n
i=1 pri

i actually exist with εD(pi ) = −1 for all prime factors pi of n. The following
theorem gives the answer to this:

Theorem 9 (Ireland [11]) Let D be a non-square integer. Then there exist infinitely many
primes p for which D is a quadratic non-residue.

Theorem 9 directly implies the following corollary:

Corollary 1 For every non-square integer D, there are infinitely many integers of the form
n = ∏s

i=1 pri
i coprime to 2D with ϕD(n) = ∏s

i=1(pri
i + pri −1

i ).

Hence, by Corollary 1, we can construct infinitely many integers that attain the tight upper
bound given in inequality (7), proving that it can, in general, not be weakened.

3 Explicit bounds for qk,t

In this section, we establish explicit bounds for qk,t .

3.1 A bound for˛D(n)

Corollary 1 demonstrates that in general, ϕD(n) is not necessarily bounded by n. Conse-
quently, we cannot conclude that αD(n) ≤ αD(n). However, in order to continue with our
analysis, we will need to establish a relationship between the two functions.

Theorem 10 (Akbary, Friggstad [1])

n

ϕ(n)
≤ 1.07eγ ln(ln(n)) for n ≥ 278,

where γ is the Euler-Mascheroni constant:

γ = lim
n→∞

( n∑

k=1

1

k
− ln(n)

)
< 0.58.

Using this result, we obtain an explicit upper bound for ϕD .

Lemma 6 For integers k ≥ 78 and n ∈ Mk, we have

ϕD(n) < 2n ln(k).

Proof

ϕD(n) ≤ n
s∏

i=1

(
1 + 1

pi

)
< n

s∏

i=1

(
1 + 1

pi − 1

)
= n

∏s
i=1

(
1 − 1

pi

) . (8)

We realize that
∏s

i=1

(
1 − 1

pi

)
= ϕ(n)

n . Using this in (8), we obtain ϕD(n) ≤ n n
ϕ(n)

. By

Theorem 10, we have for k ≥ 78 and n ∈ Mk that

ϕD(n) ≤ n
n

ϕ(n)
< n1.07eγ ln(ln(n)) < 2n ln(ln(2k)) < 2n ln(k),

as 1.07eγ < 2, which proves the claim.
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Average case error estimates of the strong Lucas test 1353

Therefore, we immediately get the following estimate for αD :

Corollary 2 For k ≥ 78 and n ∈ Mk we have

αD(n) ≤ 2 ln(k)αD(n).

3.2 An intermediate result

Corollary 2 and Theorem 8 allow us to proceed with our analysis.

Proposition 2 For any integers k, M, t with 3 ≤ M ≤ 2
√

k − 1 − 1, t ≥ 1 and k ≥ 78, we
have

∑ ′
n∈Mk αD(n)t ≤ 2k−2+t(1−M) lnt (k) + 2k+1+2t lnt (k)

M∑

j=2

M∑

m= j

2m(1−t)− j− k−1
j .

Proof Note that our hypothesis implies k ≥ 5. We know that C1,D ∩ Mk = ∅. Thus, by
Corollary 2, we have

∑ ′
n∈Mk αD(n)t =

∞∑

m=2

∑

n∈Mk∩Cm,D\Cm−1,D

αD(n)t

≤
∞∑

m=2

∑

n∈Mk∩Cm,D\Cm−1,D

(
2 ln(k)αD(n)

)t
.

Since n ∈ Cm,D \ Cm−1,D , we have that 2−m < αD(n) ≤ 2−(m−1). Hence, we get

∑ ′
n∈Mk αD(n)t< lnt (k)

∞∑

m=2

2t−(m−1)t |Mk ∩ Cm,D \ Cm−1,D|

≤ lnt (k)
( ∞∑

m=M+1

2t(2−m)|Mk \ CM,D| +
M∑

m=2

2(2−m)t |Mk ∩ Cm,D|
)

= lnt (k)
(22t−Mt

2t − 1
|Mk \ CM,D| +

M∑

m=2

2(2−m)t |Mk ∩ Cm,D|
)
.

For t ≥ 1, we have that 2t − 2 ≥ 2t−1, so 22t−Mt

2t −1 ≤ 2t(1−M)+1. Moreover, we use Theorem
8 and get

∑ ′
n∈Mk αD(n)t ≤ lnt (k)

(
2k−1+t(1−M) + 2k+1+2t

M∑

m=2

m∑

j=2

2m(1−t)− j− k−1
j

)

= lnt (k)
(
2k−1+t(1−M) + 2k+1+2t

M∑

j=2

M∑

m= j

2m(1−t)− j− k−1
j

)
.

3.3 An estimate for qk,1

We now derive the first numerical upper bound for qk,t when t = 1.
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Theorem 11 For k ≥ 2, we have qk,1 < ln(k)k242.3−
√

k .

Proof We use Proposition 2 with t = 1 and k ≥ 78 and let M be an integer with 3 ≤ M ≤
2
√

k − 1 − 1 and get

∑ ′
n∈Mk αD(n) ≤ ln(k)

(
2k−M + 2k+3

M∑

j=2

(M + 1 − j)2− j− k−1
j

)

≤ ln(k)
(
2k−M + 2k+3−2

√
k−1

M∑

j=2

(M + 1 − j)
)
, (9)

where we used Lemma 5 to bound 2− j t− k−1
j . We bound the sum

∑M
j=2(M + 1 − j) =

M(M − 1)/2 and let M = 
2√k − 1 − 1�, which yields

∑ ′
n∈Mk αD(n) ≤ ln(k)

(
2k−M + 2k+2−2

√
k−1M(M − 1)

)

< ln(k)
(
2k+2−2

√
k−1(1 + (4(k − 1) − 6

√
k − 1 + 2)

)

< ln(k)k2k+4−2
√

k−1. (10)

We again use Lemma 5 with t = 1 in inequality (10) for k ≥ 100 and get

∑ ′
n∈Mk αD(n) < ln(k)k2

4+ 1√
99

+k−2
√

k
. (11)

As 2
4+ 1√

99

0.71867 < 42.3 we get by Proposition 1 and inequalities (11) and (5) for k ≥ 100 that

qk,1 ≤
∑ ′

n∈Mk αD(n)

π(2k) − π(2k−1)
= ln(k)k2 · 24+ 1√

99
−2

√
k

0.71867
< ln(k)k242.3−

√
k .

But for k ≤ 101 we have that ln(k)k242.3−
√

k > 1, so this upper bound is trivially true for
k ≤ 101.

3.4 An estimate for qk,t

We now consider average case error estimates for an integer that has passed t consecutive
rounds of the strong Lucas test with respect to randomly chosen bases and obtain numerical
bounds for qk,t when t ≥ 2.

Theorem 12 For integers k, t with k ≥ 78, 3 ≤ t ≤ k/9 or k ≥ 88, t = 2 we have

qk,t < lnt (k)
k3/2√

t
42.12+t−√

tk .

Proof Assume k ≥ 78 and t ≥ 2. Let us first estimate
∑M

m= j 2
m(1−t). We have

M∑

m= j

2m(1−t) = 2 j(1−t)+t − 2M(1−t)+1

2t − 2
<

2 j(1−t)+t

2t − 2
= 2 j(1−t)

1 − 21−t
,
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Average case error estimates of the strong Lucas test 1355

as j ≤ M . Using this estimate in Proposition 2, we get that

∑ ′
n∈Mk αD(n)t ≤ 2k−1+t(1−M) lnt (k) + 2k+1+2t

1 − 21−t
lnt (k)

M∑

j=2

2− j t− k−1
j , (12)

for any integer M with 3 ≤ M ≤ 2
√

k − 1 − 1. By Lemma 5, we have that

j t + k − 1

j
≥ 2

√
t(k − 1) ∀ j, k > 0.

Furthermore, we choose M = ⌈
2
√

(k − 1)/t +1
⌉
. In order to use Proposition 2, we need

to make sure that 3 ≤ M ≤ 2
√

k − 1−1. Thus, for 3 ≤ M to hold, we must restrict t ≤ k −1
for k > 1. For k ≥ 25, we have M ≤ 2

√
k − 1 − 1.

Our choice of M implies that M − 1 < 2
√

(k − 1)/t + 1 < 2
√

k/t + 1. Since t ≤ k − 1,
we have 1 ≤ √

k/t , which yields M −1 < 21.6
√

k/t . We also see that M −1 ≥ 2
√

(k − 1)/t .
Using our chosen value for M and the inequalities established above in (12), we get

∑ ′
n∈Mk αD(n)t ≤ 2k−1+t(1−M) lnt (k) + 2k+1+2t

1 − 21−t
lnt (k)(M − 1)2−2

√
t(k−1)

< 2k−1−2
√

t(k−1) lnt (k) + 2k+2.6+2t

1 − 21−t
lnt (k)

√
k

t
2−2

√
t(k−1)

= 2k−1−2
√

t(k−1) lnt (k)

(
1 + 23.6

22t

1 − 21−t

√
k

t

)
.

The function f (k, t) = 22t

1−21−t

√
k
t is a monotonically increasing function for all t ≥ 2 and

for all k ≥ 1. Thus, we get with k ≥ 78 and t ≥ 2

23.6
22t

1 − 21−t

√
k

t
≥ 23.6

24

1 − 2−1

√
78

2
> 2438.

For x > 2423 we have 1 + x = x
( 1

x + 1
)

< x 2424
2423 , which yields

∑ ′
n∈Mk αD(n)t < 2k−1−2

√
t(k−1) lnt (k)

2424

2423
23.6

22t

1 − 21−t

√
k

t
. (13)

With Lemma 5 we upper bound 2−2
√

t(k−1). For t = 2 and k ≥ 88, and using the fact that

2
1+

√
2

k−1 is a monotonically decreasing function for all k ≥ 1, we have

2

√
t

k−1

1 − 21−t
= 2

√
2

k−1

1 − 21−2 = 2
1+

√
2

k−1 < 2.222.

For 3 ≤ t ≤ k/9, we have

2

√
t

k−1

1 − 21−t
≤ 4

3
2

1
3 < 1.7.
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In any case, we have 2
√

t
k−1

1−21−t < 2.222. Putting these estimates in (13), we get

∑ ′
n∈Mk αD(n)t < 2k−2

√
tk+2t lnt (k)

2439

2438
22.6

2

√
t

k−1

1 − 21−t

√
k

t

< 2k−2
√

tk+2t lnt (k)
2424

2423
22.62.222

√
k

t
.

for all 3 ≤ t ≤ k/9, k ≥ 79 and for t = 2, k ≥ 88. Now using Proposition 1 and inequality
(5), we get the desired result.

The bounds obtained in Theorems 11 and 12 already show that for most choices of k and
t , the average-case error estimates for the strong Lucas test are small enough to be used in
practice. Yet there is still room for improvement, as, for example, Theorem 11 would give
us the upper bound qk,1 > 1 for all k ≤ 79. Moreover, even though the bounds in Theorem
12 are always less than 1, especially for small choices of t = 2, 3, 4 and small choices of k,
the bounds are not as good as we would expect them to be. In the next section, we will show
even better bounds by working only with integers that are divisible by small primes.

4 Improved average-case error estimates

The probability of a random integer having a small prime divisor is comparatively large,
hence, it seems obvious to test the candidate for small divisors less than a given precomputed

bound B. The proportion of odd candidates eliminated through trial division is
∏

3≤p≤B

(
1−

1
p

)
. This is, by Merten’s theorem, approximately equal to 1.12

ln(B)
, where p ranges over prime

values. Further details and the proof can be found in [10]. For example, let B = 256, then 80%
of odd candidates are discarded before a more costly primality test is performed. It is worth
noting that the OpenSSL implementation incorporates a similar idea of dividing by small
primes before calling the Miller-Rabin test. This is done to quickly eliminate numbers that
are obviously not prime, reducing the need for the more computationally intensive Miller-
Rabin test and thereby speeding up the process of prime number generation. In practice, this
additional subroutine does not typically introduce significant extra running time.

Remark 1 The function used for primality testing in OpenSSL Version 3.1.21 is BN_is_
prime_fasttest_ex, which is located in the file bn_prime.c. Within this function,
we call the function calc_trial_divisions, which calculates the number of trial
divisions for achieving the best speed in combination with the Miller-Rabin test, based on
the bit-length denoted by k. It is worth noting that in the file, the variable l represents the l-th
prime. However, in the notation used in this paper, l signifies the l-th odd prime. Therefore,
the numbering below differs from that in the file.

static int calc_trial_divisions(int k)
{
if (k <= 512)
return l = 63;
else if (k<=1024)
return l= 127;

1 See https://github.com/openssl/openssl/blob/master/crypto/bn/bn_prime.c
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else if (k<=2048)
return l = 383;
else if (k<= 4096)
return l = 1023;
}

After this, the function that invokes the MR testing with pseudo-random bases is called. The
number of rounds also depends on the size of k.

Two of the authors of [7], Brandt and Damgård, stated in a different paper [5] that it
seems like a difficult problem to analyze the error probability of the Miller-Rabin test that
includes trial division. Yet, it is clear that the error probability will be at most that of the initial
algorithm as trial division can never reject a prime and thus only give us a better chance of
rejecting composites.

For the strong Lucas test, in contrast, we can take advantage of this modified procedure.
This permits us to establish a new bound for αD(n), which eventually results in average-case
error estimates that yield tighter estimates than the ones on qk,t established in Section 3. For
this, let us consider a modified version of the primality testing algorithm. In this approach,
we first perform trial division by the first l odd primes. If the integer is divisible by any of
these primes, another candidate from Mk is randomly selected. Following this preliminary
step, we apply t independent rounds of the strong Lucas test, as described previously.

4.1 An improved bound for˛D(n)

Let us define the following quantities:

Definition 8 Let l, t, k ∈ N. We define p̃l to be the l-th odd prime and

ρl = 1 + 1

p̃l+1
.

Moreover, we define Mk,l to be the set of odd k-bit integers that are not divisible by the first
odd l primes.

Given the introduction of the modified primality testing algorithm, we need to redefine our
error probability.

Definition 9 We let qk,l,t denote the probability that a composite integer chosen uniformly
at random from Mk,l passes t consecutive rounds of the strong Lucas test with randomly
chosen bases (P, Q).

The following two lemmas will be important in our analysis:

Lemma 7 Let n, l ∈ N and let n be relatively prime to 2D and not divisible by all of the first
l odd primes. Let ω(n) be as defined in Definition 5. Then,

ϕD(n) ≤ ρ
ω(n)
l n,

which implies
αD(n) ≤ ρ

ω(n)
l αD(n).

Proof For n1, n2 ∈ N with gcd(n1, n2) = 1, we have the relation

ϕD(n1, n2) = ϕD(n1)ϕD(n2).
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It is thus sufficient to only treat the case n = pr . We have

ϕD(pr )

pr
= pr−1(p − εD(p))

pr
= 1 − εD(p)

p
≤ 1 + 1

p
.

With p ≥ p̃l+1, we have
ϕD(pr )

pr ≤ 1 + 1
p̃l+1

= ρl and the result follows directly.

Lemma 8 Let n ∈ Cm,D. Then,
ω(n) ≤ m.

Proof The result directly follows from Lemma 3, which states

αD(n) ≤ 21−ω(n)

ω(n)∏

i=1

p1−ri
gcd(p − εD(p), n − εD(n))

p − εD(p)
≤ 21−ω(n).

We can now give a bound similar to Proposition 2 for
∑ ′

n∈Mk,l αD(n)t .

Proposition 3 For any integers k, t, M, l with 3 ≤ M ≤ 2
√

k − 1 − 1, we have

∑ ′
n∈Mk,l αD(n)t ≤ 2k−2+t

∞∑

m=M+1

ρmt
l 2−mt + 2k+1+t

M∑

m=2

m∑

j=2

ρmt
l 2m(1−t)− j− k−1

j .

Proof The theorem follows by closely following the proof of Proposition 2 while using
Lemmas 7 and 8:

∑ ′
n∈Mk,l αD(n)t =

∞∑

m=2

∑

n∈Mk∩Cm,D\Cm−1,D

αD(n)t

≤
∞∑

m=2

∑

n∈Mk∩Cm,D\Cm−1,D

ρmt
l 2−(m−1)t

≤
∞∑

m=M+1

ρmt
l 2−(m−1)t | Mk | +

M∑

m=2

ρmt
l 2−(m−1)t | Mk ∩ Cm,D | (14)

≤ 2k−2+t
∞∑

m=M+1

ρmt
l 2−mt + 2k+1+t

M∑

m=2

m∑

j=2

ρmt
l 2m(1−t)− j− k−1

j .

With this new bound for
∑ ′

n∈Mk,l αD(n)t we are able to get rid of the factor ln(k)t

completely, instead, we have some power of ρl . If l is chosen as discussed in Remark 1, ρl

will be very close to 1.
Let us adapt inequality (5) accordingly, which gives us

qk,l,t =
∑ ′

n∈Mk,l αD(n)t

π(2k) − π(2k−1)
. (15)

4.2 An estimate for qk,l,1

In this subsectionwe let t = 1.We need the following proposition to establish a new estimate:
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Proposition 4 For any integers k, l, M with 3 ≤ M ≤ 2
√

k − 1 − 1, we have
∑ ′

n∈Mk,l αD(n) ≤ 2k−1−Mρl
M+1 + 2k−2

√
k−1+1ρM

l M(M − 1).

Proof Evaluating the first part of the sum in Proposition 3with t = 1 yields
∑∞

m=M+1 ρm
l 2−m

= 2−M ρl
M+1

2−ρl
≤ 2−Mρl

M+1.
For the second part of the sum, we use Lemma 5 with t = 1 and the condition m ≤ M ,

and conclude that

2k+2
M∑

m=2

m∑

j=2

ρm
l 2− j− k−1

j ≤ 2k−2
√

k−1ρM
l

M∑

j=2

M∑

m= j

1 = 2k+1−2
√

k−1ρM
l M(M − 1).

Theorem 13 For integers k, l with k ≥ 2, we have

qk,l,1 < k241.8−
√

kρ
2
√

k−1−2
l .

Proof Using inequality (15) and Proposition 4 with M = 
2√k − 1 − 2�, we get

qk,l,1 =
∑ ′

n∈Mk,l αD(n)t

π(2k) − π(2k−1)
≤ k241.73−

√
k−1ρ

2
√

k−1−1
l . (16)

With Lemma 5 we have for k ≥ 53 that

4−√
k−1 < 4

1
4
√
13

−√
k

< 40.07−
√

k .

Therefore, we get

qk,l,1 < k241.8−
√

kρ
2
√

k−1−2
l ,

which proves the theorem for k ≥ 53. The theorem is trivially true for k ≤ 52, as

k241.8−
√

kρ
2
√

k−1−2
l ≥ k241.8−

√
k ≥ 1 for k ≥ 52 and l ≥ 1, since ρl ≥ 1.

Let us examine the bound for qk,l,1 in Theorem 13 in more detail. When the l-th prime is
sufficiently large, ρl is approximately equal to 1. For example, when k = 1024 and l = 127,

we have ρ
2
√

k−1−1
l < 1.09. Thus,

qk,l,1 < k241.8−
√

kρ
2
√

k−1−1
l ≈ k241.87−

√
k .

The following corollary provides an explicit bound for k-bit integers that are not divisible
by the first 127 odd primes and successfully pass a single round of the strong Lucas test. The
first condition, as pointed out in Remark 1, is ensured whenever k > 512 before applying
the Miller-Rabin test.

Corollary 3 Let n be an odd integer that is not divisible by the first 127 odd primes. Then, for
all k ≥ 2, we have qk,127,1 < k241.729−0.998

√
k−1.

Proof By (16) we have that

qk,127,1 ≤ k24−√
k−1+1.73

(728
727

)(2
√

k−1−1)
.

With
( 728
727

)(2
√

k−1−1) ≤ 4(2
√

k−1−1)0.001 we get

qk,127,1 ≤ k241.73−
√

k−1+0.001(2
√

k−1−1) ≤ k241.729−0.998
√

k−1,

which proves the corollary.
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Table 1 Comparing the lower
bound probabilities for
− log2(prob), where
prob = pk,1, qk,1, qk,l,1, and l
was chosen with respect to k as
discussed in Remark 1

k − log2 pk,1 − log2 qk,1 − log2 qk,l,1

100 2 -1 3

200 8 5 9

400 18 15 18

512 23 20 23

1024 40 36 40

2048 64 60 64

4096 100 96 100

In Table 1 we compare the bounds of pk,1 for the Miller-Rabin test, as stated in Theorem 4 in
[7], with the bounds of qk,1 and qk,l,1 for the strong Lucas test as established in Theorem 11
and Theorem 13 respectively. For the bounds of qk,l,1, we select the values of / with respect
to k as defined in the calc_trial_division function as discussed in Remark 1.

4.3 An estimate for qk,l,t

In this section, we establish bounds for qk,l,t for various choices of k, l and t ≥ 2.

Corollary 4 Let ρl = 1 + 1
p̃l+1

. Then

2t − ρt
l ≥ 1

2
ρt

l .

Proof With p̃l+1 ≥ 2, it follows that ρl ≤ 4
3 < 2. This implies that 2t − ρt

l ≥ ρt
l

( 2
ρl

− 1
) ≥

1
2ρ

t
l .

We are now ready to prove the bound for qk,l,t .

Theorem 14 For any integers 2 ≤ t ≤ (k − 1)/9, k ≥ 21, l ∈ N we have

qk,l,t ≤ 41.72−
√

tkk3/22tρ
2
√

kt+t
l .

Proof By Proposition 3, we know that

∑ ′
n∈Mk,l αD(n)t ≤ 2k−2+t

∞∑

m=M+1

ρmt
l 2−mt + 2k+1+t

M∑

j=2

M∑

m= j

ρmt
l 2m(1−t)− j− k−1

j . (17)

for any integer 2 ≤ M ≤ 2
√

k − 1 − 1. Let us first look at the left-hand side of the sum of
(17). Using Corollary 4, we get that

2k−2+t
∞∑

m=M+1

ρmt
l 2−mt = 2k−2+t 2

−Mtρ
t(M−1)
l

2t − ρt
l

≤ 2k−1−t(M−1)ρ
t(M−2)
l . (18)

Now let us look at the right-hand side of the sum of (17). Using
∑M

m= j 2
m(1−t) < 2 j(1−t)+t

2t −2
and m ≤ M , we obtain

2k+1+t
M∑

j=2

M∑

m= j

ρmt
l 2m(1−t)− j− k−1

j ≤ 2k+1+2tρMt
l

2t − 2

M∑

j=2

2− j t− k−1
j . (19)

123



Average case error estimates of the strong Lucas test 1361

Table 2 Lower bounds for
− log2(qk,t ) using Theorem 12

k/ t 2 4 8 16 32 64

100 6 9 10

200 15 24 30 28

400 30 45 60 71 64

512 37 55 74 91 92

1024 62 90 124 162 191 188

2048 97 141 197 264 335 390

4096 149 214 300 410 542 681

Further, we let M =
⌈
2
√

(k − 1)/t
⌉
. To have M ≥ 3, we must restrict t to t ≤ k − 1. Also,

for k ≥ 9, we have M =
⌈
2
√

(k − 1)/t
⌉

≤
⌈
2
√

(k − 1)/2
⌉

≤ 2
√

k − 1 − 1. From (17),

using the inequalities (18) and (19) and Lemma 5, we get

∑ ′
n∈Mk,l αD(n)t ≤ 2k−1−t(M−1)ρ

t(M−2)
l + 2k+1+2t−2

√
t(k−1)

2t − 2
ρMt

l (M − 1)

≤ 2k−1+t−2
√

t(k−1)ρ
2
√

t(k−1)−t
l

+ 2k+2+2t−2
√

t(k−1)

2t − 2

√
k

t
ρ
2
√

t(k−1)+t
l

= 2k−1+t−2
√

t(k−1)ρ
2
√

t(k−1)+t
l

(
ρ−2t

l +
√

k

t

23+t

2t − 2

)

< 2k−1+t−2
√

t(k−1)ρ
2
√

t(k−1)+t
l

(
1 +

√
k

t

23+t

2t − 2

)
. (20)

As 2t√
t(2t −2)

is monotonically decreasing in t ≥ 2, we have for t ≥ 2

23+t

2t − 2

√
k

t
<

25

2

√
k

2
= 41.75

√
k.

For k ≥ 1, we have 1 + 41.75
√

k < 41.812
√

k. For t ≤ (k − 1)/9, we get by Lemma 5 that

2
√

t/(k−1) ≤ 2
√
1/9 = 1.25992 < 1.26.

Thus, we get from (20)
∑ ′

n∈Mk,l αD(n)t ≤ 2k+tρ
2
√

kt+t
l 41.312−

√
tk(1.26)

√
k.

By the same argument as in inequality (5), we get that

qk,l,t ≤
∑′

n∈Mk,l
αD(n)t

π(2k) − π(2k−1)
. (21)

Using the bound we have obtained for
∑ ′

n∈Mk,l αD(n)t and Proposition 1 in (21), we get the
desired result.

Tables 2, 3 and 4 compare the bounds for qk,t (Theorem 12), qk,l,t (Theorem 14) and pk,t

(Theorem 4), where l was chosen with respect to k as discussed in Remark 1.
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Table 3 Lower bounds for
− log2(qk,l,t ) using Theorem 14
with l chosen with respect to k
defined as in Remark 1

k/ t 2 4 8 16 32 64

100 12 22 34

200 22 37 56 81

400 37 59 88 126 176

512 44 69 102 147 205

1024 69 105 154 221 310 428

2048 105 156 227 325 459 639

4096 157 230 332 474 670 938

Table 4 Lower bounds for
− log2(pk,t ) using Theorem 4 4

k/ t 2 4 8 16 32 64

100 12 23 36

200 23 38 58 83

400 38 60 89 129 179

512 45 70 104 149 209

1024 70 106 155 223 313 432

2048 106 157 229 327 462 642

4096 157 231 333 476 672 941

5 The worst-case numbers

The dominant contributors to our probability estimate are the numbers with the largest value
for αD(n), as highlighted in our analysis. According to Definition 6. These are the sets Cm,D

characterized by a small value for m. Notably, the sets C1,D and C2,D are empty due to
Theorem 6, which states that αD(n) ≤ 1/4 for all n ∈ N. In our pursuit of refining estimates
for qk,l,t for larger values of t , we opt to treat the sets C3,D, C4,D , and C5,D separately.

However, this strategy encounters a complication due to the presence of a particular subset
of Lucas–Carmichael numbers within this category. Lucas–Carmichael numbers can be seen
as a generalization of Carmichael numbers. Unfortunately, bounding the number of Lucas-
Carmichael numbers remains an unsolved problem.

Yet, if we assume that this specific subset of composites with three prime factors has the
property that εD(n) = εD(pi ) for i = 1, 2, 3, we can establish an upper bound on the size of
this set. It is important to emphasize that this requirement is needed for this specific group
of composites. Building upon this assumption, we are able to deduce upper bounds for qk,l,t

that exhibit a better performance for larger values of t . It is worth noting that the bounds
we obtain in Subsections 5.3 and 5.4 are exclusively valid under this particular assumption.
We provide reasons for the plausibility of this assumption whenever an integer passes many
rounds of both the (strong) Lucas test and the (strong) probable prime test. For the remaining
subsections we do not need this assumption.

The task of establishing bounds for the size of the set of arbitrary Lucas–Carmichael
numbers with three prime factors remains unsolved. If such bounds could be determined, it
would straightforwardly lead to the derivation of expressions for qk,l,t that are good for large
values of t , independent of the assumption regarding εD(p) for the prime factors p of the
integer.

In this section we always assume that εD(n) = −1.
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5.1 Classifying C3,D

First, we classify the members of C3,D . In this subsection, unless specified otherwise, let n
always denote an integer relatively prime to 2D with prime decomposition n = pr1

1 · . . . · prs
s ,

and write n − εD(n) = 2κq and pi − εD(pi ) = 2ki qi , where q, qi are odd, and the prime
factors pi are ordered such that k1 ≤ . . . ≤ ks .

We will later make use of the following lemmas in our proofs.

Lemma 9 (Arnault [3]) Let n be as described above. Then,

SL(D, n)

ϕD(n)
≤

⎧
⎪⎪⎨

⎪⎪⎩

1
2s−1

∏s
i=1

gcd(q,qi )
qi

,

1
2s−1

∏s
i=1

1

p
ri −1
i

,

1
2s−1+δ2+...+δs , where δi = ki − k1.

(22)

Lemma 10 Let n be as described above. Then,

SL(D, n))

ϕD(n)
≤ 21−s+∑s

i=1(k1−ki )
s∏

i=1

gcd(q, qi )

qi
.

Proof From inequality (4) and Lemma 2 we get that

SL(D, n) ≤ 21+(k1−1)s
s∏

i=1

gcd(q, qi ).

We also have that

ϕD(n) =
s∏

i=1

pri −1
i (pi − εD(pi )) ≥

s∏

i=1

(pi − εD(pi )) =
s∏

i=0

2ki qi .

We combine these expressions and see that

21+(k1−1)s
s∏

i=1

2−ki = 21−s+∑s
i=1(k1−ki ),

to get the desired result.

Lemma 11 Let n be as described above. Then,

2kq = 22k1+δ2q1q2 ± 2k1(q1 ± 2δ2q2).

Proof

2kq =p1 p2 − εD(p1 p2) = (2k1q1 + εD(p1))(2
k1+δ2q2 + εD(p2)) − εD(p1 p2)

=22k1+δ2q1q2 + 2k1q1εD(p2) + 2k1+δ2q2εD(p1) + εD(p1)εD(p2) − εD(p1 p2)

=22k1+δ2q1q2 + 2k1(q1εD(p2) + 2δ2q2εD(p1))

=22k1+δ2q1q2 ± 2k1(q1 ± 2δ2q2).

Lemma 12

SL(D, n)

ϕD(n)
= 1

2k1+k2+···+ks

s∏

i=1

1

pri −1
i

( s∏

i=1

gcd(q, qi ) − 1

qi
+ 2sk1 − 1

2s − 1

s∏

i=1

gcd(q, qi )

qi

)
.
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Proof We have

ϕD(n) =
s∏

i=1

ϕD(pri
i ) =

s∏

i=1

pri −1
i (2ki qi ) = 2k1+k2+···+ks

s∏

i=1

qi

s∏

i=1

pri −1
i .

Together with Theorem 5 and
∑k1−1

j=0 2 js = 2sk1−1
2s−1 we get the desired result.

Lemma 13 (Arnault [3]) Let n = (2k1q1 − 1)(2k1q1 + 1). Then, for all q1, k1 ∈ N with
q1 �= 1 odd, we have SL(D,n)

ϕD(n)
> 1

3 . For q1 = 1, we have SL(D,n)
ϕD(n)

= 1
3 − 1

3·4k1
.

Now we have all the ingredients to prove the main theorem of this section. For integers
m, n, β, we mean by mβ || n that mβ | n and mβ+1

� n.

Theorem 15 Let n = pr1
1 . . . prs

s be the prime decomposition of an integer n relatively prime
to 2D. Let n − εD(n) = 2κq and pi − εD(pi ) = 2ki qi , with q, qi odd, ordering the pi ’s such
that k1 ≤ · · · ≤ ks . C3,D consists of the following numbers:

1. n = 9, 25, 49.

2. n = p1 p2 =

⎧
⎪⎨

⎪⎩

(2k1q1 − 1)(2k1q1 + 1),

(2k1q1 + εD(p1))(3 · 2k1q1 + εD(p2)),

(2k1q1 + εD(p1))(2 · 2k1q1 + εD(p2)) with (q1, k1) �= (1, 1),
where each factor is prime.

3. n = p1 p2 p3 is a product of three distinct prime factors, pi − εD(pi ) | n − εD(n) and
there is some integer k1 such that 2k1 || pi − εD(pi ) for all i ∈ {1, 2, 3}.

Proof 1. Let s = 1, hence n = pr1
1 , where r1 ≥ 2. By the second inequality of Lemma 9

we know that αD(n) ≤ 1

p
ri −1
i

. Thus, if r1 ≥ 3, then αD(n) ≤ 1
9 and n /∈ C3. If r1 = 2,

then αD(n) ≤ 1
11 for pi ≥ 11. Hence, the only possibilities are n = 9, 25, 49. Let us

check if such an n ∈ C3,D .

Let n = 9. If εD(3) = 1, we have by Lemma 12 that αD(9) = 1
6 . If εD(3) = −1

however, we get by Lemma 12 that αD(9) = 1
4 . In both cases 9 ∈ C3,D .

Let n = 25. If εD(5) = 1, we get by Lemma 12 that αD(25) = 3
20 . If εD(5) = −1, we

get by Lemma 12 that αD(25) = 5
30 . In both cases 25 ∈ C3,D .

Let n = 49. If εD(7) = 1, we get by Lemma 12 that αD(49) = 5
42 < 1

8 , so such a
decomposition of 49 would not be in C3,D . If εD(7) = −1 however, we get by Lemma
12 that αD(49) = 1

8 , so in this case 49 ∈ C3,D .

2. Now let s = 2, hence n = pr1
1 pr2

2 . If p1 = 3, then r1 ≤ 2 and r2 ≤ 1, otherwise by the
second inequality of Lemma 9 αD(n) ≤ 1

18 . If p1, p2 ≥ 5 it follows from the second
inequality of Lemma 9 that ri = 1, because otherwise αD(n) ≤ 1

2 · 1
5 = 1

10 . Thus, either
n = p1 p2 with p1, p2 > 3 or n = 32 p2. We shall first treat the case n = p1 p2 with
p1, p2 > 3.
Now let n = p1 p2 with p1 − εD(p1) = 2k1q1 and p2 − εD(p2) = 2k2q2. If k2 ≥ k1 + 2,
we have αD(n) ≤ 1

8 by the third inequality of Lemma 9. Hence, either k2 = k1 or
k2 = k1 + 1.
By the first inequality of Lemma 9 either both gcd(q,q1)

q1
= gcd(q,q2)

q2
= 1 or gcd(q,qi )

qi
= 1

3

for exactly one i and
gcd(q,q j )

q j
= 1 for the other j �= i , as otherwise αD(n) ≤ 1

18 .
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If k2 = k1 + 1, it must hold that gcd(q,q1)
q1

= gcd(q,q2)
q2

= 1, otherwise by Lemma 10

αD(n) ≤ 1
12 .

Thus, we are left to check the following three cases: The first one is k1 = k2 with
gcd(q,q1)

q1
= gcd(q,q2)

q2
= 1, the second one is k1 = k2 with

gcd(q,q1)
q1

= 1 and gcd(q,q2)
q2

= 1
3 ,

and the third one is k2 = k1 + 1 with gcd(q,q1)
q1

= gcd(q,q2)
q2

= 1.

Let us look at the case where k1 = k2 with
gcd(q,q1)

q1
= gcd(q,q2)

q2
= 1. This is equivalent to

saying q1, q2 | q . By Lemma 11 both q1, q2 divide 2κq = 22k1q1q2 ± 2k1(q1 ± q2). This
is only possible if q1 = q2, and thus p1 − εD(p1) = 2k1q1 and p2 − εD(p2) = 2k1q1. In
order for p1 and p2 to be distinct primes, we must have that εD(p1) �= εD(p2). Without
loss of generality we let εD(p1) = 1 and εD(p2) = −1. Therefore,

n = (2k1q1 − 1)(2k1q1 + 1).

Let us check if such an n is indeed in C3,D . By Lemma 13, we know that SL(D,n)
ϕD(n)

> 1
3 for

all odd q1 �= 1, and for q1 = 1 we have SL(D,n)
ϕD(n)

= 1
3 − 1

3·4k1
. Since this is monotonically

increasing in k1, we have αD(n) = 1
3 − 1

3·4k1
≥ 1

4 . Thus, n ∈ C3,D .

Now let us look at the case where k1 = k2 with
gcd(q,q1)

q1
= 1 and gcd(q,q2)

q2
= 1

3 . Thus,

q1 and 1
3q2 both divide q and by Lemma 11 also 2κq = 22k1q1q2 ± 2k1(q1 ± q2). Hence

q1 | q2 and 1
3q2 | q1. This implies that there exists a ∈ N such that q1 · a = q2, and

b ∈ N such that 1
3q2b = q1. Solving the two equations yields a = 3 and b = 1, thus

q2 = 3q2. Therefore, p1 − εD(p1) = 2k1q1 and p2 − εD(p2) = 2k13q1. Thus,

n = (2k1q1 + εD(p1))(2
k13q1 + εD(p2)).

Let us check if an n is indeed C3,D . By Lemma 12, we have αD(n) = 1
4k1

((
q1−1
3q1

)2 +
4k1−1

9

)
. If q1 = 1, we have αD(n) = 4k1−1

9·4k1
< 1

8 , so n /∈ C3. If q1 �= 1, we have

αD(n) = 1
4k1

(
1
3

(
q1−1

q1

)2 + 4k1−1
9

)
≥ 1

3·4k1
· 4k1+1−1

12 > 1
8 . We used the fact that both

q1−1
q1

and 4k1+1−1
4k1

are monotonically increasing functions in q1 and k1 respectively. Thus,
n ∈ C3.

Now let us look at the case k2 = k1 + 1 with gcd(q,q1)
q1

= gcd(q,q2)
q2

= 1. By Lemma

11, both q1, q2 divide 2kq = 22k1+1q1q2 ± 2k1(q1 ± 2q2). Thus, q1 | 2q2 and q2 | q1.
Since q1 is odd, we must have that q1 | q2, which is only possible when q1 = q2. Hence,
p1 − εD(p1) = 2k1q1 and p2 − εD(p2) = 2k1+1q1 = 2(2k1q1) = 2(p1 − εD(p1)).
Therefore,

n = p1 p2 = (2k1q1 + εD(p1))(2 · 2k1q1 + εD(p2)).

Let us check if such an n is in C3. By Lemma 12, we have that αD(n) =
(

q1−1
q1

)2
1

2·4k1
+

4k1−1
6·4k1

. If q1 = 1 we obtain αD(n) = 4k1−1
6·4k1

. This is only greater than 1
8 for k1 > 1. For

k1 = 1, we obtain αD(n) = 1
8 , the only possibility is n = (2 + εD(p1))(4 + εD(p2)) =

3 · 5. If q1 �= 1, using the fact that (q1 − 1)/q1 is monotonically increasing in q1, we
obtain

αD(n)=
(q1 − 1

q1

)2 1

2 · 4k1
+ 4k1 − 1

6 · 4k1
≥ 4

18 · 4k1
+ 4k1 − 1

6 · 4k1
= 4

18 · 4k1
+ 1

8
>

1

8
.
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Now let us treat the case when n = 32 p2. Since 3 − εD(3) = 2k1q1, but εD(3) = ±1,
we have that 3 − εD(3) ∈ {2, 4}, which implies that q1 = 1 and k1 ∈ {1, 2}.
By the third inequality of Lemma 9, we have for k2 ≥ k1 + 2 that n /∈ C3, thus
either k1 = k2 or k2 = k1 + 1. Now let k2 = k1. Again it must hold that either
gcd(q,q1)

q1
= gcd(q,q2)

q2
= 1 or gcd(q,q1)

q1
= 1 and gcd(q,q2)

q2
= 3, since q1 = 1. We have

2κq =n − εD(n) = 32 p2 − εD(32 p2) (23)

=(2k1 + εD(3))2(2k1+δ2q2 + εD(p2)) − εD(p2)

=(22k1 + 2k1+1εD(3) + 1)(2k1+δ2q2 + εD(p2)) − εD(p2)

=q2(2
3k1+δ2 + 2k1+δ2 + εD(3)22k1+1+δ2) + εD(p2)(2

2k1 + εD(3)2k1+1). (24)

Now let us look at the case where gcd(q,q2)
q2

= 1, meaning q2 | q. Inequality (23)

implies that q2 | 22k1 + εD(3)2k1+1. If k1 = 1 we must have that εD(3) = 1, otherwise
2k1 + εD(3) �= 3. Hence q2 | 8. If k1 = 2, we must have that εD(3) = −1, otherwise
2k1 + εD(3) �= 3. Hence, q2 | 8. Since q2 must be odd, the only possibility is q2 = 1.
This analysis holds for both k2 = k1 and k2 = k1 + 1. Therefore, we get

p2 = 2k2q2 + εD(p2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2k1q2 ± 1 = 1, 3, for k2 = k1 = 1, q2 = 1,

2k1q2 ± 1 = 3, 5, for k2 = k1 = 2, q2 = 1,

2k1+1q2 ± 1 = 3, 5 for k2 = k1 + 1, k1 = 1, q2 = 1,

2k1+1q2 ± 1 = 7, 9 for k2 = k1 + 1, k1 = 2, q2 = 1.

Since p2 is a primedifferent from3,wediscard all other cases and are leftwith p2 ∈ {5, 7}.
Now let us look at the case where gcd(q,q2)

q2
= 1

3 , meaning 1
3q2 | q. Here it must hold

that k1 = k2. By the same reasoning as above we have 1
3q2 | 22k1 + εD(3)2k1+1, which

implies q2 | 3(22k1 + εD(3)2k1+1). For k1 = 1 we have εD(3) = 1 and hence q2 | 24.
If k1 = 2 it holds that εD(3) = −1 and hence q2 | 24. Again since q2 must be odd, the
only possibility now is q2 = 3. Thus, we get

p2 = 2k2q2 + εD(p2) =
{
2k1q2 ± 1 = 5, 7, for k1 = 1, q2 = 3,

2k1q2 ± 1 = 11, 13, for k1 = 2, q2 = 3.

Again we discard the cases where p2 is not prime or divisible by 3 and are left with
p2 = 5, 7, 11, 13.
We see that for n = 32 p2 with p2 ≥ 5 prime and n ∈ C3,D the only possibilities are
n = 45, 63, 99, 117. Now let us check if such an n ∈ C3,D .

Let n = 45. By the arguments above, there are only three possible decompositions that
would make 45 ∈ C3,D . The first being εD(5) = 1, εD(3) = −1 with k1 = k2 = 2
and q1 = q2 = 1, q = 11. By Lemma 12, this yields αD(n) = 5

48 < 1
8 . The second

decomposition is εD(5) = εD(3) = 1 with k1 = 1, k2 = 2 and q1 = q2 = 1, q = 11.
Again by Lemma 12, we get αD(n) = 1

24 . The third decomposition is εD(5) = −1,
εD(3) = 1 with k1 = k2 = 1, and q1 = 1, q2 = 3, q = 23. This gives us αD(n) = 1

36 .
In any case 45 /∈ C3,D .

Let n = 63. By the arguments above there are only two possible decompositions that
wouldmake 63 ∈ C3,D . The first one being εD(7) = −1, εD(3) = 1,with k1 = 2, k2 = 3
and q1 = q2 = 1, q = 1. By Lemma 12, this yields αD(63) = 5

96 < 1
8 . The second

decomposition is εD(5) = εD(3) = 1 with k1 = k2 = 1 and q1 = 1, q2 = 3, q = 31.
Again by Lemma 12, we get αD(63) = 1

36 . In any case 63 /∈ C3,D .

123



Average case error estimates of the strong Lucas test 1367

By the above arguments the values for s, k1, k2, q1, q2 and gcd(q, qi ) for i = 1, 2, so
that n = 99 and n = 117 could be in C3,D are the same and by Lemma 12, define αD(n),
we get that both αD(99) = αD(117) = 5

144 , so both 99, 117 /∈ C3,D .

3. Now let s = 3 with n = pr1
1 pr2

2 pr3
3 . By the second inequality of Lemma 9, it must hold

that ri = 1 for all i = 1, 2, 3, otherwise αD(n) ≤ 1
12 . Therefore, n = p1 p2 p3 with

pi �= p j for every i �= j . By the first inequality of Lemma 9, we have that gcd(q,qi )
qi

= 1

for all i = 1, 2, 3, otherwise αD(n) ≤ 1
12 . Thus, qi | q for every i = 1, 2, 3. By the third

inequality of (9), we must have that k1 = k2 = k3, as else αD(n) ≤ 1
8 .

Therefore, we have k1 = k2 = k3 with qi | q for all i ∈ {1, 2, 3} thus also qi | 2κq. Since
ri = 1 is odd for all i and also the number of ki = κ is odd, this implies that 2ki qi | 2κq ,
which is the same as saying that pi − εD(pi ) | n − εD(n).
Let us check if such an n is indeed inC3.Using Lemma 12 and the fact that k1 = k2 = k3,
qi | q and ri = 1 for i = 1, 2, 3 we get

αD(n) = 1

23k1

( 3∏

i=1

qi − 1

qi
+ 23k1 − 1

7

)
= 1

23k1

3∏

i=1

qi − 1

qi
+ 1

7
· 2

3k1 − 1

23k1
.

Since 23k1−1
3k1

is monotonically increasing in k1, we get 23k1−1
23k1

≥ 23−1
23

= 7
8 . Thus

αD(n) = 1

23k1

3∏

i=1

qi − 1

qi
+ 1

7
· 2

3k1 − 1

23k1
≥ 1

23k1

3∏

i=1

qi − 1

qi
+ 1

8
>

1

8
.

With this, we indeed have that such an n ∈ C3.

4. Now let s ≥ 4. By the second inequality of Lemma 9, we immediately have that αD(n) ≤
1
8 , thus, n /∈ C3.

5.2 Twin-prime products

Let π2(x) =| {p ≤ x : �(p + 2) = 1} | denote the twin-prime counting function, which
counts the number of twin-prime tuples up to x . The following theorem bounds the number
of twin-primes for x > e42.

Theorem 16 (Riesel, Vaughan [19]) For x > e42, we have

π2(x) <
16αx

(7.5 + ln(x)) ln(x)
,

where α is called the Twin Prime Constant,

α =
∏

p>2

(
1 − 1

(p − 1)2

)
=

∏

p>2

p(p − 2)

(p − 1)2
≈ 0.6602 . . .

By Theorem 15, we know that n = (2k1q1 − 1)(2k1q1 + 1), where both factors are prime,
belong toC3,D . This is nothing but a subset of the set of products of twin-primes and Theorem
16 gives us a way to upper bound the size of this set for integers in Mk .

Lemma 14 For k ≥ 122 there exists less than 62k/2

k2
k-bit integers that are twin-prime prod-

ucts.
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1368 S. Einsele, K. Paterson

Proof As n = p(p + 2) is a k-bit integer, p must be a k/2-bit integer. Thus, we only have to
consider the number of twin-primes up to 2k/2. With Theorem 16 we obtain

π2(2
k/2) <

16α2k/2

(7.5 + ln(2k/2)) ln(2k/2)
<

16α

4 ln2(2)

2k/2

k2
< 6

2k/2

k2
,

which holds for 2k/2 > e42, so that k ≥ 122.

5.3 Lucas–Carmichael numbers with three prime factors

We will now examine the numbers falling into the third category as outlined in Theorem 15.
It is important to note that these numbers are not arbitrary integers; they have already been
classified. Let us consider another congruence based on the Lucas sequence and applicable
to prime numbers.

Theorem 17 (Baillie, Wagstaff [4]) Let D be a fixed integer. If n is an odd prime, and if
gcd(n, Q) = 1, then

Un−εD(n)(P, Q) ≡ 0 mod n. (25)

In a similar manner, we can formulate a probabilistic primality test using this property,
referred to as the (weak) Lucas test.

If n is composite, but congruence (25) of Theorem 17 still holds, then we call n a Lucas
pseudoprime with parameters P and Q, or lpsp(P, Q).

Unfortunately, there are integers that satisfy this congruence for all suitable bases. This
leads us to the introduction of the following definition.

Definition 10 Let D be a fixed integer. If n is an odd composite integer, such that for all
P, Q ∈ N with gcd(P, Q) = 1, P2 − 4Q = D and gcd(n, Q D) = 1 property (25) still
holds, we call n a Lucas–Carmichael number.

These numbers draw parallels with Carmichael numbers, which are composites satisfying
Fermat’s Little Theorem, also called the probable prime test, the weak version of the Miller-
Rabin test, for all appropriate bases. Specifically, a Carmichael number is an odd composite
integer n that satisfies an−1 ≡ 1 mod n for all a such that gcd(a, n) = 1. Carmichael [6]
demonstrated that if n is a Carmichael number, it can be expressed as the product of k ≥ 3
distinct primes n = ∏k

i=1 pi , with the property that pi − 1 | n − 1 for all i = 1, 2, . . . , k.
If n is a Lucas–Carmichael numberwith respect to either D = 1 or D a perfect square, then

it can be shown that n is a Carmichael number. In this regard, Lucas–Carmichael numbers
extend the concept of Carmichael numbers. In 1977, Williams [21] established the following
theorem, further strengthening the connection between these notions.

Theorem 18 (Williams [21]) Let D be fixed. If n is a Lucas–Carmichael number, then it is a
product of k distinct primes p1, p2, . . . , pk and

pi − εD(pi ) | n − εD(n) for all i = 1, 2, . . . , k.

Thus, as per Theorem 18, it becomes evident that the numbers of the third form in Theorem
15 precisely correspond to Lucas–Carmichael numbers with three prime factors, with the
additional property that there exists a natural number k1 satisfying 2k1 || pi − εD(p) for all
prime factors p of n. Bounding the number of Lucas–Carmichael numbers below a given
integer remains an open question in number theory. Our task, however, is simplified, as we
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only need to constrain a subset of such numbers. Supposing that we have the additional
property εD(p) = −1 for all primes p dividing n, we can demonstrate the following result:

Theorem 19 Let M(x) denote the number of Lucas–Carmichael numbers n up to x with
exactly three prime factors and Jacobi-symbol εD(n) = −1. Furthermore, let us suppose
that εD(p) = −1 for all primes p dividing n. Then, for all x ≥ 1 we have

M(x) ≤ (0.1668)x5/9 ln(x)11/4.

Proof A Lucas–Carmichael number n with exactly three prime factors can be written as
n = pqr with 2 < p < q < r primes and has the property that p −εD(p) | pqr −εD(pqr),
q − εD(q) | pqr − εD(pqr), r − εD(r) | pqr − εD(pqr). Let g = gcd(p − εD(p), q −
εD(q), r − εD(r)) and let a, b, c be such that

p − εD(p) = ga,

q − εD(q) = gb,

r − εD(r) = gc.

Thus, a ≤ b ≤ c. Wewant to show that gcd(a, b, c) = 1. Suppose that gcd(a, b, c) = d > 1.
Then we can write a = a′d , b = b′d and c = c′d with gcd(a′, b′, c′) = 1 for some integers
a′, b′, c′ > 1. Thus, p − εD(p) = a′dg, q − εD(q) = b′dg and r − εD(r) = c′dg. It follows
that that gcd(p − εD(p), q − εD(q), r − εD(r)) = gd > g, which is a contradiction. Thus,
gcd(a, b, c) = 1. Moreover, we know that

n = pqr = (ga + εD(p))(gb + εD(q))(gc + εD(r))

= g3abc + g2acεD(q) + g2abεD(r) + g2bcεD(p) + gaεD(q)εD(r)

+ gbεD(p)εD(r) + gcεD(p)εD(q) + εD(p)εD(q)εD(r).

Thus,

n − εD(n) = g(g2abc + gacεD(q) + gabεD(r) + gbcεD(p)

+ aεD(q)εD(r) + bεD(p)εD(r) + cεD(p)εD(q)).

Since ga = p − εD(p) | n − εD(n), it holds that

a | g2abc + gacεD(q) + gabεD(r) + gbcεD(p) + aεD(q)εD(r) + bεD(p)εD(r)

+ cεD(p)εD(q).

With this it follows that

a | gbcεD(p) + bεD(p)εD(r) + cεD(p)εD(q) = εD(p)(gbc + bεD(r) + cεD(q)).

This directly yields
a | gbc + bεD(r) + cεD(q). (26)

Using a symmetric argument, we have that

b | gac + aεD(r) + cεD(q), (27)

c | gbc + aεD(q) + bεD(r). (28)

Relation (26) implies that gcd(a, b) | c, but we already know that gcd(a, b, c) = 1, thus
it follows that gcd(a, b) = 1. Relations (27) and (28) imply by a similar argument that
gcd(a, c) = gcd(b, c) = 1.
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Therefore, the relations in (26), (27) and (28) imply that if a, b, c are given, then g is deter-
mined mod abc.
By our assumption we have εD(n) = εD(p) = −1 for all primes p | n. Thus,

n = pqr = (ag − 1)(bg − 1)(cg − 1) = g3abc − g2(ab + ac + bc) + g(a + b + c) − 1,

with q = bg − 1 ≥ p + 2 = ag + 1, and r = bg − 1 ≥ p + 2 = ag + 1.
We now count the number M of quadruples a, b, c and g that satisfy both of the above

conditions. We note that M(x) ≤ M . We write M = M1 + M2 + M3, where in M1 we count
the number of quadruples with g > abc, in M2 we count the number of quadruples with
G < g ≤ abc and in M3 we count the number of quadruples with g ≤ G and g ≤ abc. Here
G is a parameter that we will choose later with the goal of optimizing the bounds of M2 and
M3.

Bounding M1: We know that g3abc − g2(ab + ac + bc) ≤ x . Since g > abc, we know
that g

ab > c, g
ac > b and g

bc > a. Thus,

g3abc − g2(
g

c
+ g

a
+ g

b
) = g3(abc − (

1

c
+ 1

a
+ 1

b
)) ≤ g3abc − g2(ab + ac + bc) ≤ x .

But with a ≥ 1, and c > b > a, we get that 1
c + 1

a + 1
b < 1 + 1

2 + 1
3 < 2. Thus,

g3(abc − 2) < g3(abc − (
1

c
+ 1

a
+ 1

b
)) < x .

Since a ≥ 1 and c > b > a, thus b ≥ 2 and c ≥ 3, it holds that 1
2abc ≤ abc − 2 as

1
2 ≤ 1 − 2

abc ≤ 1 − 2
1·2·3 = 2

3 . Thus, it holds that
1
2abc ≤ abc − 2, and with this we have

1

2
g3abc ≤ x .

For a, b, c given, the number of g with 1
2 g3abc ≤ x , g in a specific residue class mod abc,

and g > abc is at most
⌊

(2x/(abc))1/3

abc

⌋
≤ (2x)1/3

(abc)4/3
.

M1 ≤
∑

a<b<c

(2x)1/3

(abc)4/3
<

1

6
(2x)1/3ζ

(4
3

)3
, (29)

where ζ denotes the Riemann zeta function.
Bounding M2: We know that g3abc − g2(ab + bc + ac) ≤ x . Since abc ≥ ab, bc, ac,

we have that

g2abc(g − 3) = g3abc − 3g2abc ≤ g3abc − g2(ab + bc + ac) ≤ x .

Since g ≥ 3, it follows that g2abc ≤ x , and thus abc ≤ x
g2

≤ x
G2 . Furthermore, the area

of 1/x from 1 to n is
∫ n
1

1
x dx = ln(n). Since 1/x is convex, we can lower bound it using

rectangles as follows ln(n) = ∫ n
1

1
x dx >

∑n
k=1

1
k . Moreover, we have that ln(1/a) < a for

a > 0, 37. Thus,
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M2 ≤
∑

1≤a≤
(

x
G2

)1/3

∑

a≤b≤
(

x
aG2

)1/2

∑

b<c≤ x
abG2

1

<
∑

1≤a≤
(

x
G2

)1/3

∑

a≤b≤
(

x
aG2

)1/2

x

abG2

<
x

G2

∑

1≤a≤
(

x
G2

)1/3

1

a

∑

1≤b≤
(

x
aG2

)1/2

1

b

<
x

G2

∑

1≤a≤
(

x
G2

)1/3

1

a
ln

(( x

aG2

)1/2)

= x

2G2

∑

1≤a≤
(

x
G2

)1/3

1

a

(
ln

(1
a

)
+ ln

( x

G2

))

<
x

2G2

(
1 + ln

( x

G2

)) ∑

1≤a≤
(

x
G2

)1/3

1

a

<
x

2G2

(
1 + ln

(( x

G2

)))
ln

( x

G2

)1/3

<
x

6G2 (ln(x))2,

(30)

for G > e1/2.
Bounding M3: From the relations (26), (27), and (28) we have that for given g, a, b, c,

there is an integer h with

c = gab − a − b

h
= (ga − 1)b − a

h
, (31)

so that
h | (ga − 1)b − a.

We also have that hc = (ga − 1)b − a ≤ gab − a, which implies h ≤ ga b−a
c . With

a < b < c, it immediately follows that h ≤ ga. Note that

gac − a − c = (ga − 1)c − a = (ga − 1)2b − (ga − 1)a

h
− a,

so that (27) implies b | (ga − 1)a − ha. Since (a, b) = 1, we have

b | ga − 1 − h. (32)

Also, note that

gac − a − c = (ga − 1)c − b = (ga − 1)
(ga − 1)b − a

h
− b,

so that (26) implies a | (gb − 1)b − hb, and since (a, b) = 1, we have

a | gb − 1 − h. (33)

Let j be such that

b = ga − 1 − h

j
, (34)
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so that a < b and h ≤ ga imply j ≤ 2g. We have

gb − 1 − h = g
ga − 1 − h

j
− 1 − h,

so that (33) implies that a | −g − gh − j − jh, which also means that a | g + gh + j + jh,
that is

(g + j)(1 + h) ≡ 0 mod a. (35)

Suppose we are given g, a, j . Let d = gcd(a, j(g + j)). Note that (34) and (35) imply

1 + h ≡ ga mod j, 1 + h ≡ 0 mod
a

gcd(a, g + j)
.

Thus,

1 + h ≡ ga mod
ja

d
. (36)

The number of positive integers h ≤ ga that satisfy (36) is at most
⌊

ga − 1

ja/d

⌋
≤

⌊
gd

j

⌋
≤ gd

j
, (37)

since j ≤ 2g implies gd/ j ≥ d/2 ≥ 1/2. Further, if g, a, j, h are given, then b, c are
also specified via (31) and (34). Moreover, with q = bg − 1 ≥ p + 2 = ag + 1, and
r = bg − 1 ≥ p + 2 = ag + 1 we get from n = pqr = (ag − 1)(bg − 1)(cg − 1) that
(ag)3 < n = (ag − 1)(bg − 1)(cg − 1) and thus (ag)3 < x . Thus, by (37)

M3 ≤
∑

g≤G

∑

j≤2g

∑

a≤x1/3/g

g gcd(a, j( j + g))

j

≤
∑

g≤G

∑

j≤2g

∑

d| j( j+g)

gd

j

n∑

a≤x1/3/g
d|a

i

≤ x1/3
∑

g≤G

∑

j≤2g

∑

d| j( j+g)

1

j
.

(38)

Next note that
∑

d| j( j+g)

1 = τ( j( j + g)) ≤ τ( j)τ ( j + g),

where τ(m) denotes the number of divisors of m. Thus, (38) yields

M3 ≤ x1/3
∑

g≤G

∑

j≤2g

τ( j)τ ( j + g)

j

= x1/3
∑

j≤2G

τ( j)

j

∑

j/2≤g≤G

τ( j + g)

≤ x1/3
( ∑

j≤2G

τ( j)

j

)( ∑

m≤3G

τ(m)

)
.

(39)
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From Lemma 2.6 in [12] and its proof, we have that

∑

m≤3G

τ(m) ≤ 3G(1 + ln(3G)),
∑

j≤2G

τ( j)

j
≤ 1

2
(2 + ln(2G))2.

With (39), we get

M3 ≤ 3

2
x1/3G(1 + ln(3G))(2 + ln(2G))2. (40)

We let G = x2/9

ln(x)1/4
and assume x > 4 · 1010. We use the fact that ζ( 43 ) < 4 and that

43·21/3
6 < 1

104
x2/9 ln(x)11/4 for x > 4 · 1010, and by (29) we get

M1 <
1

105
x5/9 ln(x)11/4.

With our chosen value for G and (30) we have

M2 <
1

6
x5/9 ln(x)11/4.

Since ∂
∂x

(
1
4 ln(ln(x))

)
< 0 for x > 1, we have that 1

4 ln(ln(x)) is a strictly monotone

increasing function for x > 1 and thus, if x > 4 · 1010, we have 1
4 ln(ln(x)) > 1

4 ln(ln(4 ·
1010)). So for our value of G we get

1 + ln(3G) = 1 + ln(3) + 2

9
ln(x) − 1

4
ln(ln(x)) <

3

10
ln(x), (41)

for x > 4 · 1010. For the second inequality, we get by the same argument for our value of G
that

2 + ln(2G) = 2 + ln(2) + 2

9
ln(x) − 1

4
ln(ln(x)) <

3

10
ln(x), (42)

for x > 4 · 1010. Using inequalities (41) and (42) in (40) we get

M3 ≤ 3

2
(
3

10
)3 ln(x)3−1/4x1/3+2/9 = 1

25000
ln(x)11/4x5/9.

Hence, we get

M(x) ≤ M1 + M2 + M3 < (0.1668)x5/9 ln(x)11/4,

for x > 4·1010.From the table in [8], where all Lucas–Carmichael numberswith p+1 | n+1
for all p | n are given, we see that the theorem is true for all x ≤ 4 · 1010, which concludes
our proof.

To assume that εD(p) = −1 holds true for all primes p dividing n, when εD(n) = −1,
becomes plausible when the Miller-Rabin test is combined with the strong Lucas test, as
shown by the following discussions and lemmas:

Lemma 15 (Williams [21]) Let integers D and n exist such that εD(n) = −1. Suppose that
n simultaneously qualifies a Lucas–Carmichael and Carmichael number. In such a case, n
must have an odd number of prime factors, and further, εD(p) = −1 must hold for all primes
p | n.

Lemma 16 (Muller [16]) A necessary condition for a Carmichael number n to be a
lpsp(P, Q) with P ∈ Z

∗
n and εD(n) = −1 is that n has an odd number of prime factors and

εD(p) = −1 for all primes p | n.
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Lemma 17 (Muller [16]) Let n = ∏r
i=1 pi , pi �= 2, 3, 5. Suppose that for some i there

exists a parameter ai with pi −1
2 | ordpi (ai ) such that an−1

i ≡ 1 mod n for all bases a with
gcd(a, n) = 1. A necessary condition for n to be lpsp(P, Q) for P ∈ Z

∗
n and εD(n) = −1

is that εD(p) = −1 for all primes p | n.

Hence, Lemmas 15 and 16 suggest that when an integer n is simultaneously a Lucas
pseudoprime and a Carmichael number, we must have that εD(p) = εD(n) for all primes
p | n. Lemma 17 suggests that when n is a Lucas pseudoprime and satisfies Fermat’s Little
Theorem for certain specific bases, we must have εD(p) = εD(n) for all primes p | n. Thus,
there are reasons to believe that εD(p) = εD(n) for all primes p | n, whenever n successfully
passed numerous rounds of both the (strong) Lucas test and the (strong) probable prime test.

Moreover, we have the following result:

Lemma 18 (Leng [13]) If n has three distinct prime factors p1, p2 and p3, where pi =
2k1qi + εD(pi ), and if there exists a j1 such that 2 j1 || pi − 1, then εD(n) = εD(pi ) for
i = 1, 2, 3.

The question of whether we can draw the conclusion that εD(pi ) = εD(n) for i = 1, 2, 3,
from the additional requirement that there exists a k1 ∈ N such that 2k1 || pi − εD(pi )

whenever n is a Lucas–Carmichael number with three prime factors remains open.
Furthermore, we leave it open whether a specific condition can be incorporated into the

primality test, such that the relation εD(pi ) = εD(n) for i = 1, 2, 3 holds for all integers of
the third form in C3. The resolution of either of these questions would enable the utilization
of Theorem 19 to establish unconditional bounds for large values of t .

5.4 Bounds for large t

Since we are unable to use Theorem 19 to impose bounds on all Lucas–Carmichael numbers
of the third formwithinC3, we cannot bound |C3,D ∩Mk |, which is pivotal for the progression
of our analysis. Nonetheless, if we can effectively demonstrate the equality εD(pi ) = −1
for i = 1, 2, 3 for these specific numbers, we could proceed to use the results outlined in this
section that hold unconditionally.

Lemma 19 Let k ≥ 122, and assume that whenever n is a Lucas–Carmichael number of
the third form of C3, we have εD(n) = −1 and εD(p) = −1 for the primes p | n. Then,
|C3,D ∩ Mk | ≤ (0.061)25k/9k11/4.

Proof We consider the elements of C3,D listed in Theorem 15 that are also in Mk . If n =
p(p + 2), then by Corollary 14 we get for k ≥ 122 that

π2(2
k/2) ≤ 88

2k/2

k2
≤ 10−1025k/9k11/4.

If n = (m − 1)(2m − 1) ≤ 2k, then 2(m − 1)2 ≤ 2k . Using that m is even, we have at most√
2k/8+ 1/2 such integers n ≤ 2k of the form n = (m − 1)(2m − 1) that are in C3,D ∩ Mk .

If n = (m − 1)(3m − 1) ≤ 2k , then 3(m − 1)2 ≤ 2k , we get at most
√
2k/12 + 1/2 such

integers n ≤ 2k of the form n = (m − 1)(3m − 1) that are in C3,D ∩ Mk . For k ≥ 122, we
get

2k/2

√
8

+ 1/2 ≤ 10−825k/9k11/4,
2k/2

√
12

+ 1/2 ≤ 10−825k/9k11/4.
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Now for the elements of the third form of Theorem 15, we have by Theorem 19 that

M(2k) ≤ (0.1668)25k/9 ln(2k)11/4 < (0.0609)25k/9k11/4.

Bounding the cardinality of C3,D ∩ Mk using the above estimates yields

|C3,D ∩ Mk | <
( − 10−10 + 10−8 + 10−8 + 0.0609

)
25k/9k11/4 < (0.061)25k/9k11/4.

which proves the corollary for k ≥ 122.

We simply bound |Mk ∩ Cm,D| for m = 4, 5 using Theorem 8.

Lemma 20 Let k ≥ 122, then

| Mk ∩ C4,D |amp;≤ (2.39)2k− k
4 ,

| Mk ∩ C5,D |amp;≤ (2.37)2k− k
5 .

Proof Since m ≤ 5, we have that m + 1 ≤ 2
√

k − 1 for k ≥ 10, thus we can use Theorem

8, which says that | Cm,D ∩ Mk |≤ 2k+1 ∑m
j=2 2

m− j− k−1
j . We want to find a cm ∈ R such

that | Mk ∩ Cm,D |≤ cm2k− k
m for each m = 4, 5.

|Mk ∩ C4,D| ≤ 2k+1
4∑

j=2

24− j− k−1
j = 2k+1(22−

k−1
2 + 21−

k−1
3 + 2− k−1

4 ) ≤ c42
k− k

4

⇒ 2
7
2− k

4 + 2
7
3− k

12 + 2
5
4 ≤ c4.

With k ≥ 122 we get 2
7
2− k

4 + 2
7
3− k

12 + 2
5
4 ≤ 2

7
2− 122

4 + 2
7
3− 122

12 + 2
5
4 ≤ c4. Therefore, we

can set c4 = 2.39. The argument for |Mk ∩ C5,D| is identical.
Theorem 20 Let k ≥ 122, and assume that whenever n is a Lucas–Carmichael number of
the third form of C3, we have εD(p) = εD(n) for the primes p | n. Then, we have

qk,l,t ≤ k
(
2−1.52−4t ρ6t

l

2t − ρt
l

+ ρ3t
l 2−3.55− 4k

9 −2t k
11
4 + ρ4t

l 21.74−
k
4−3t + ρ5t

l 21.73−
k
5−4t).

Proof We let M = 5 in inequality (14) and get

∑ ′
n∈Mk,l αD(n)t ≤ 2k−2+t

∞∑

m=6

ρmt
l 2−mt +

5∑

m=3

ρmt
l 2−(m−1)t | Mk ∩ Cm,D | . (43)

Evaluating the first sum yields

2k−2+t
∞∑

m=6

ρmt
l 2−mt = 2k−2−4t ρ6t

l

2t − ρt
l
.

We then use the bounds for | Mk ∩ Cm,D | from Lemmas 19 and 20. Furthermore, we use
inequality (15) with inequality (43) and (1) for the respective bounds, which gives us the
desired result.

The following corollary is useful for t ≥ k/9.
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Table 5 Lower bounds for
− log2(qk,l,�k/9�) and
− log2(pk,�k/9�) where l was
chosen as discussed in Remark 1.
For the probabilities, we use
Corollary 5 for the strong Lucas
test and Theorem 4 for the
Miller-Rabin test

k − log2(qk,l,�k/9�) − log2(pk,�k/9�)

100 33 34

200 71 74

400 146 150

512 188 192

600 223 226

1024 385 389

Corollary 5 Let t ≥ k/9 and k ≥ 122. We have

qk,l,t ≤ k(2−1.52−4t ρ6t
l

2t − ρt
l

+ ρ3t
l 2−3.55− 4k

9 −2t k
11
4 + ρ5t

l 21.74−
k
4−3t ).

Proof We bound the last term in Theorem 20 for t ≥ k/9 and k ≥ 122 by

ρ5t
l 21.73−

k
5−4t ≤ ρ5t

l 2−5.72− k
4−3t .

We then bound the sum of the last two terms in Theorem 20 as follows

ρ4t
l 21.74−

k
4−3t + ρ5t

l 21.73−
k
5−4t < ρ4t

l 21.74−
k
4−3t + ρ5t

l 2−5.72− k
4−3t

< ρ5t
l 21.74−

k
4−3t ,

which concludes our proof.

The lower bounds in Table 5 for qk,l,t for the strong Lucas test were computed from
Corollary 5, where l is chosen as discussed in Remark 1, and the bounds for the Miller-Rabin
test for pk,t from Theorem 4.

6 Conclusion

In this paper, we established the framework needed to find average case error bounds for
the strong Lucas test. No such bounds existed previously. We were able to show that the
strong Lucas test is, in fact, reliable enough for almost all practical purposes. We examined
an algorithm that chooses k-bit integers at random from the uniform distribution, runs t
independent iterations of the strong Lucas test on this integer, and outputs the first number that
passes all t tests. Letqk,t be the probability that this algorithmoutputs a composite integer. The

bounds we obtained are qk,1 ≤ ln(k)k242.3−
√

k for k ≥ 2 and qk,t < lnt (k) k3/2√
t
42.12+t−√

tk

for k ≥ 21 and 3 ≤ t ≥ (k − 1)/9 or k ≥ 88 and t = 2. Since it is computationally
less expensive to rule out candidates that are divisible by small primes by trial division
than by using the strong Lucas test, trial division is often implemented before the actual
primality test. We made use of this property and imposed the additional requirement of
checking for divisibility by the first l odd primes before running the strong Lucas test. This
yielded improved bounds. Let qk,l,t be the probability that this updated algorithm returns a
composite number. Let p̃l denote the l-th odd prime and let ρl = 1 + 1

p̃l+1
. We showed that

qk,l,1 < k241.8−
√

kρ
2
√

k−1−2
l for all l ∈ N and k ≥ 1 and qk,l,t ≤ 41.72−

√
tkk3/22tρ

2
√

kt+t
l

for all k ≥ 21 and 2 ≤ t ≤ (k −1)/9 with l ∈ N. These bounds are comparable to the bounds
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in [7] for the Miller-Rabin test. Furthermore, we classified the numbers that add the most
to our probability estimate and realized that specific Lucas–Carmichael numbers with three
prime factors belong to this set. Unfortunately, we could only bound those numbers under an
extra constraint. We provided bounds for large values of t if this assumption were to hold.

During the scope of this work, we found average case error bounds for the strong Lucas
test. Yet, many open questions that look promising for future projects remain. For example,
future work could be to get such average case estimates where we average over both D
and n. Moreover, one could also find bounds for the error in case we look for a prime by
incremental search from a random starting point. Furthermore, one could analyze if it is
possible to get improved estimates for the Miller-Rabin test using the modified algorithm
that includes division by small primes. The most interesting future work, however, is to get
average case error bounds for the Baillie-PSW test, which is a probabilistic primality test
that combines one round of the Miller-Rabin test with one round of the strong Lucas test.
No one has found counterexamples for composites passing this test; therefore, this primality
test seems very promising.
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