INHALTSVERZEICHNIS

1	Ein	Einleitung					
2	Elastische Lichtstreuung: Mie-Theorie						
	2.1	Proble	emstellung und Lösungsansatz	15			
		2.1.1	Die Streukoeffizienten	16			
		2.1.2	Effizienzen der Extinktion und der Streuung	19			
		2.1.3	Die Streuwelle	20			
		2.1.4	Die Polarisation des Streulichtes	21			
	2.2 Winkelverteilung des Streulichtes		22				
	2.3	Die Intensitätsverteilung im Partikelinneren		23			
	2.4 Resonanzen der Mie-Streuung (MDRs)		anzen der Mie-Streuung (MDRs)	25			
		2.4.1	Charakteristika der MDRs	26			
		2.4.2	Physikalische Bedeutung der MDR-Indizes n und l	28			
		2.4.3	MDRs im Streulicht	30			
		2.4.4	MDRs im Partikelinnern	31			
		2.4.5	Vergleich der Intensitäten im Innern und im Streulicht bei MDRs	33			
		2.4.6	Weitere physikalische Eigenschaften der MDRs	34			
		2.4.7	Sprunghafter Temperaturanstieg durch MDRs	37			
		2.4.8	Numerische Bestimmung der Ordnungsnummer <i>l</i> und der Moden-				
			nummer n	40			
	2.5	Größe	nbestimmung mittels Mie-Streuung	42			
		2.5.1	Größenbestimmung aus dem winkelaufgelösten Streulicht	42			
		2.5.2	Alternativmethode: "Streifenzählen"	46			
		2.5.3	Relative Größenbestimmung aus den MDRs	48			
	2.6	Detek	tion von Phasenübergängen mittels Mie-Streuung	50			
3	Ine	astisch	ne Lichtstreuung: Der Raman-Effekt	53			
	3.1	Klassi	sche Theorie des Raman-Effektes	53			
	3.2	Ravleigh- und Raman-Streuung im Energie-Diagramm					
	3.3	Depolarisationsgrad von Raman-Linien					
	3.4	Quantenmechanische Berechnung der Raman-Intensität					
4	We	Wechselwirkungen von Mie- und Raman-Streuung 59					
	4.1	Input- und Output-MDRs im Experiment					
	4.2	Bestimmung des Durchmessers aus Doppel-MDRs					
	4.3	3 Raman-Streuung aus sphärischen Partikeln: Beschreibungsansätze .					
		4.3.1	Klassische Dipol-Verteilung	65			
		4.3.2	Integrierte interne Mie-Intensität und Raman-Spektrum makro-				
			skopischer Proben	66			

		4.3.3	Mie-Feld als Quellstärke der Raman-Streuung und geometrische Optik	67	
	4.4	Simula	tion gemessener Raman-Spektren	71	
	4.5	Forsch	ungsüberblick: Raman-Spektroskopie an sphärischen Einzelpartikeln	1 75	
5	Die	Appar	atur	77	
	5.1	Die ele	ektrodynamische Ringfalle	79	
		5.1.1	Vorüberlegungen	79	
		5.1.2	Kraftwirkung eines harmonischen Wechselfeldes	79	
		5.1.3	Die Elektrodenform	80	
		5.1.4	Die klassische Partikelfalle nach W. Paul	80	
		5.1.5	Die verwendete Doppelringfalle	82	
	5.2	Die Fa	llenkammer	84	
		5.2.1	Elektronik zum Betrieb der Falle	86	
	5.3	Die Ise	oliervakuumkammer	86	
		5.3.1	Deckel der Isolierkammer mit Prismenschieber	88	
	5.4	Die Ki	ihlung der Fallenkammer	90	
	5.5	Produ	ktion und Einfang elektrisch geladener Tröpfchen	92	
		5.5.1	Der Tröpfcheninjektor	92	
		5.5.2	Kontrolle der Injektorfunktion	94	
		5.5.3	Elektrische Aufladung der Tröpfchen	94	
		5.5.4	Das Einfangen einzelner Tröpfchen	95	
	5.6	Der A	nregungslaser	95	
	5.7	Optik		96	
		5.7.1	Anregung	96	
		5.7.2	Detektion und Beobachtung	97	
		5.7.3	Spektrale Filter	101	
	5.8 Das Ramanspektrometer		amanspektrometer	102	
		5.8.1	Die Optik des Spektrometers	102	
		5.8.2	Der OMA-Detektor	103	
		5.8.3	Kalibrierung der Wellenzahlskala	104	
		5.8.4	Synchronisation der Ramanspektren mit den übrigen Meßdaten	105	
	5.9	Comp	utersteuerung und Meßprogramm	107	
		5.9.1	Erfaßte Daten	107	
		5.9.2	Das Meßprogramm	109	
6	Eige	enschat	ften wässriger Lösungen der Schwefelsäure	111	
	6.1	Das P	has endiagramm des Systems H_2SO_4 - H_2O und die Hydrate der		
		Schwei	felsäure	111	
		6.1.1	Das Auftreten des Oktahydrats SAO	115	
	6.2	Die M	ischphasengebiete	115	
		6.2.1	Ein Gedanken experiment: Abkühlung von 20 wt $\%$ H ₂ SO ₄	116	
	6.3	Damp	fdruck, Luftfeuchtigkeit und Gleichgewichtskonzentration	119	
		6.3.1	"Wege durchs Phasendiagramm" in Experimenten mit Tempera-		
			turzyklen	123	
	6.4	4 Viskosität und Diffusion			
	6.5	Überga	ang zum amorphen Glas	128	

	6.6	Unterl	xühlung, Nukleation, Phasenübergänge	129		
		6.6.1	Raten der homogenen Nukleation	131		
		6.6.2	Phasenübergänge: Überblick über den aktuellen Forschungsstand	135		
	6.7	Brechu	Ingsindex und Dichte	137		
	6.8	Dissoz	iation	139		
7	Das	Rama	an-Spektrum der Sulfatgruppe	143		
	7.1	Strukt	ur und Raman-Banden des Sulfations SO_4^{2-}	143		
	7.2	Rama	n-Banden des Hydrogensulfations HSO_4^-	144		
	7.3	Zuordi	nung gemessener Raman-Linien	145		
	7.4	.4 Auswahl des Spektralbereichs des OMA-Detektors				
	7.5	.5 Küvettenspektren wässriger Schwefelsäurelösungen				
		7.5.1	pH-abhängige Intensitätsverhältnisse	147		
		7.5.2	Linienbreite, Linienform und Lebensdauerverbreiterung $\ . \ . \ .$	149		
		7.5.3	Konzentrationsabhängige Linienpositionen	153		
		7.5.4	Temperaturabhängige Effekte am Beispiel 30 wt $\%$ H ₂ SO ₄	155		
		7.5.5	Raman- und IR-Spektren der Hydrate der Schwefelsäure	155		
		7.5.6	Weitere Eigenschaften der Raman-Spektren von H_2SO_4 -Lösungen			
			höherer Konzentrationen und in anderen Spektralbereichen	156		
		7.5.7	Raman-Spektren amorpher Schwefelsäurelösungen	158		
8	\mathbf{Exp}	Experimentelle Rahmenbedingungen 16				
	8.1	Therm	nodynamisches Gleichgewicht zwischen Tröpfchen und Umgebung	161		
		8.1.1	Konzentrationsbestimmung nahe der Raumtemperatur durch Mes-	169		
		819	Konzontrationshostimmung in der gekühlten Fallenkammer durch	102		
		0.1.2	Phasenübergänge	164		
		813	Variation der Luftfeuchtigkeit bei Temperaturzyklen	165		
	82	Ramai	n-Spektroskopie an levitierten Lösungströpfchen	168		
	0.2	821	Unerwünschte Fluoreszenz durch Verunreinigungen	169		
		822	Justage-Abhängigkeiten der MDRs	171		
		8.2.3	Kosmische Strahlung	173		
9	Exp	erime	nte. Phasenühergänge in einzeln levitierten Tröpfchen	177		
0	91	Auswa	ahl und Nomenklatur der Experimente	177		
	9.2	Darste	ellung des Experiments A1	178		
	9.3	Experiment A1: Durchführung und Temperaturverlauf				
	0.0	9.3.1	Eine Bemerkung zu den Temperaturangaben	180		
	94	Experi	iment A1: "Weg durch das Phasendiagramm"	180		
	0.1	9.4.1	Abschnitt 1: Leichte Erwärmung	182		
		9.4.2	Abschnitt 2: Abkühlung und Konzentrationsabnahme	182		
		9.4.3	Abschnitt 3: Weitere Abkühlung bei konstanter Konzentration .	183		
		9.4.4	Abschnitt 4: Kristallisation und Aufwärmen bis zum Schmelzpunk	t183		
		9.4.5	Abschnitt 5: Schmelzen und weitere Erwärmung	184		
	9.5	Experi	iment A1: Auswertung der Raman-Spektren	185		
		9.5.1	Peakflächenverhältnisse: Temperaturabhängiger Dissoziationsgrad	186		

		9.5.2	Linienpositionen im flüssigen Tröpfchen: Geringe Temperaturab-	100
		052	hängigkeit	188
		9.0.0	hängigkeit der Sulfatlinie	189
		9.5.4	Beeinflußte der Laserstrahl die Partikeltemperatur?	193
	9.6	Experi	ment A1: Keimbildung und Phasenübergänge im Bild der Mie-	
		Streuu	ng	195
		9.6.1	Spuren der Keimbildung im Mie-Streubild	195
		9.6.2	Phasenübergang flüssig \mapsto fest: Auswirkungen auf das Mie- Streubild	198
	9.7	Experi	ment A1: Phasenübergänge im Bild der Raman-Spektren	201
		9.7.1	Spuren des festen Partikels im Raman-Spektrum	201
		9.7.2	Phasenübergang flüssig \longmapsto fest im Raman-Spektrum	202
		9.7.3	Erste interne Umwandlung bei -73 °C \ldots	206
		9.7.4	Zweite interne Umwandlung bei $-62 ^{\circ}C$	208
		9.7.5	Der Schmelzvorgang im Raman-Spektrum	210
	9.8	Experi	ment A1: Detailauswertung der Raman-Spektren des Festpartikels	213
		9.8.1	Anpassung einer einfachen Gauß-Kurve	214
		9.8.2	Anpassung einer Doppellinie aus einer Lorentz- und einer Gauß-	010
	0.0	Variala	Lime	210
	9.9	vergiei	ch der Experimente A1 und A2	219
10	Inte	rpreta	tion des Experiments A1	223
	10.1	Zusam	menfassung der Daten	223
	10.2	Aussch	luß der Bildung der reinen Hydrate SAH und SAO	225
	10.3	Verglei	che mit thermodynamischen Berechnungen	228
	10.4	Aussch	luß eines permanenten thermodynamischen Gleichgewichts \ldots	230
	10.5	Möglic	her Verlauf der Partikelzusammensetzung	231
		10.5.1	Abschnitt 1: Erster Übergang bis erste Umwandlung	231
		10.5.2	Abschnitt 2: Zwischen den internen Umwandlungen	232
		10.5.3	Abschnitt 3: Zweite interne Umwandlung bis Schmelzbeginn	233
	10.0	10.5.4	Abschnitt 4: Der Schmelzprozeß	235
	10.6	Zusam	menfassing der Interpretation	236
	10.7	Beurte	lung der Interpretation	237
	10.8	Möglic	he Implikationen für die Atmosphäre	237
11	Zusa	ammer	nfassung und Ausblick	239
12	Lite	raturv	erzeichnis	241
13	Kur	zfassu	ng der Arbeit	253
14	List	e der I	Publikationen	255
15	.5 Lebenslauf			
16	6 Danksagung			
