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Abstract

Whole shotgun metagenomics sequencing allows researchers to retrieve information

about all organisms in a complex sample. This method enables microbiologists to detect

pathogens in clinical samples, study the microbial diversity in various environments,

and detect abundance differences of certain microbes under different living conditions.

The emergence of nanopore sequencing has offered many new possibilities for clinical

and environmental microbiologists. In particular, the portability of the small nanopore

sequencing devices and the ability to selectively sequence only DNA from interesting

organisms are expected to make a significant contribution to the field. However, both

options require memory-efficient methods that perform real-time data analysis on com-

modity hardware like usual laptops.

In this thesis, I present new methods for real-time analysis of nanopore sequencing

data in a metagenomic context. These methods are based on optimized algorithmic

approaches querying the sequenced data against large sets of reference sequences. The

main goal of those contributions is to improve the sequencing and analysis of under-

represented organisms in complex metagenomic samples and enable this analysis in

low-resource settings in the field.

First, I introduce ReadBouncer as a new tool for nanopore adaptive sampling, which

can reject uninteresting DNA molecules during the sequencing process. ReadBouncer

improves read classification compared to other adaptive sampling tools and has fewer

memory requirements. These improvements enable a higher enrichment of underrep-

resented sequences while performing adaptive sampling in the field. I further show

that, besides host sequence removal and enrichment of low-abundant microbes, adaptive

sampling can enrich underrepresented plasmid sequences in bacterial samples. These

plasmids play a crucial role in the dissemination of antibiotic resistance genes. However,

their characterization requires expensive and time-consuming lab protocols. I describe

how adaptive sampling can be used as a cheap method for the enrichment of plasmids,

which can make a significant contribution to the point-of-care sequencing of bacterial

pathogens. Finally, I introduce a novel memory- and space-efficient algorithm for real-

time taxonomic profiling of nanopore reads that was implemented in Taxor. It improves

the taxonomic classification of nanopore reads compared to other taxonomic profiling

tools and tremendously reduces the memory footprint. The resulting database index

for thousands of microbial species is small enough to fit into the memory of a small

laptop, enabling real-time metagenomics analysis of nanopore sequencing data with

large reference databases in the field.
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1 Introduction

Researchers in all domains of life sciences struggle with the ever-increasing amount of

data generated from new technologies. This is also true for biology and biotechnology,

where, for instance, decreasing costs in deoxyribonucleic acid (DNA) sequencing re-

sulted in tons of new data being produced every year. Analyzing these large data sets

requires fast and space-efficient computer programs, particularly if results should be

provided in real-time. Presenting advanced methods for solving this issue for microbial

identification and metagenomics is the primary goal of this thesis. However, before

describing the methods, I will introduce some biological background on microorganisms

and how we can use the latest DNA sequencing methods to identify microbial organisms.

Finally, in this chapter, I will briefly introduce current state-of-the-art algorithms and

data structures used to analyze microbial DNA sequencing data.

1.1 Biological background on microorganisms

Microbes and viruses are everywhere. They inhabit diverse environments like soil (Her-

mans et al., 2017), oceans (Sogin et al., 2006), and other organisms (Douglas, 2019),

and they can survive even under the most extreme conditions, e.g., in hot springs (Ward

et al., 1998), on volcanic rock (Staudigel et al., 2008), or in extremely salty water (Oren,

2008). Microbes are defined as small, microscopic organisms, such as bacteria, but

there are also other organisms that fall under the characterization of “microbe”, like

archaea, protozoa, and some fungi (Sanz, 2011). For most scientists, viruses do not

count as microbes because viruses are often classified as non-living (Villarreal, 2004).

Microbes and viruses have been around for approximately 3.5 billion years, and they are

so numerous that they are considered the secret rulers of the Earth (Knoll, 2015).

Microbes, also known as microorganisms, play an integral role in almost every nat-

ural process. They break down organic matter from plants and animals (Kirchman,

2018), releasing chemicals like carbon (Gougoulias et al., 2014), nitrogen (Aislabie

et al., 2013), and phosphorus (Pingale & Virkar, 2013) that can be used to build new

plants and animals. Microorganisms help generate oxygen (Hess, 2004) and carbon

dioxide (Smith et al., 2019) and fix atmospheric nitrogen into usable forms for multiple
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1. Introduction

organisms (Gupta et al., 2017). Both animals and plants are closely associated with

microbial communities that make nutrients more available, provide disease protection,

make essential vitamins, or combine both (Stark, 2010). For example, some microbes

in the human gut produce essential micronutrients like vitamin K, allowing humans to

digest and absorb them (Fijan, 2014). Moreover, microbes also play an essential role

in the food industry. Many food products, including bread, yogurt, cheese, preserves,

preserved meats, and alcoholic beverages, take advantage of microbes and their chemical

reactions (Kalsoom et al., 2020).

Although more than 99% of all microbes are harmless or even useful (Ladizinski et al.,

2014), numerous diseases in humans, plants, and animals are caused by microorganisms

(Gerba & Smith, 2005; Malmstrom et al., 2022; Mir, 2022). Pathogenic microbes and

their causing diseases have accompanied humans since the beginning of history, with

Leprosis, which is caused by the bacterium Mycobacterium leprae, considered one of

the oldest infectious diseases in human history (Robbins et al., 2009). The most fatal

pandemic - the "black death" - which was caused by the bacterium Yersinia pestis killed

more than 25 million people in fourteenth-century Europe (Glatter & Finkelman, 2021).

Nowadays, pathogenic microbes like the bacterium Mycobacterium tuberculosis and

viruses like SARS-CoV-2 kill millions of people yearly, posing a major burden on public

health systems worldwide (Chakaya et al., 2021). With the ongoing climate changes

and further destruction of natural habitats of wild-living animals, scientists expect an

increasing number of zoonotic transmissions for the next decades (Daszak et al., 2001;

Estrada-Peña et al., 2014; Naicker, 2011), which increases the need for tools that reliably

detect and identify microbes in different kinds of samples. One method that has become

very popular for this purpose is high-throughput sequencing, which will be described in

more detail in section 1.2.

The development of antimicrobial drugs has revolutionized the treatment of infectious

diseases and saved millions of lives since the discovery of penicillin by Alexander

Fleming in 1929 (Coates et al., 2002; Fleming, 1941). In particular, antibiotics have

proven to be an effective weapon against pathogenic bacteria (Nicolaou & Rigol, 2018).

However, adaption processes in the bacteria and the overuse of antibiotics, particularly

in farmed animals, have led to the dissemination of drug-resistant bacteria (Ventola,

2015). For example, one widespread antibiotic mechanism found in bacteria is efflux

pumps, which can transport antibiotics from the inside to the outside of bacterial cells

(Nishino et al., 2021). These acquired resistances are coded as antimicrobial resistance

genes (ARGs) in the bacterial genome and can be transmitted from one bacterial species

to another (Manaia, 2017; Martínez et al., 2015). An important consideration for human

health and the evolution of antibiotic-resistant pathogens is ARGs moving by horizontal
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1.1 Biological background on microorganisms

gene transfer (HGT) from nonpathogens to pathogens (Ellabaan et al., 2021; Groussin

et al., 2021). One of the main drivers of HGT are plasmids, which are circular epichro-

mosomal DNA elements unique to bacteria. These mobile genetic elements (MGEs)

can be transferred within and between bacterial species via a process called conjugation

(Norman et al., 2009). The contribution of plasmids to the dissemination of ARG makes

their identification and characterization an important aspect of clinical metagenomics

(Brolund & Sandegren, 2016). High-throughput sequencing has already helped us to

understand the distribution of ARGs and their hosts in specific habitats (Danko et al.,

2021; Hendriksen et al., 2019). However, with the ongoing antibiotics crisis, advanced

methods are needed that help to cut the costs of plasmid sequencing and improve the

characterization of ARG-harboring plasmids.

In addition to symbiotic and pathogenic microorganisms, the human body is also associ-

ated with opportunistic pathogens that do not cause diseases under normal circumstances

(Brown et al., 2012). These commensals only infect the human host if the host’s

immunity is impaired, for example, with infection by another pathogen. Here, the com-

munity of beneficial microbes serves as a barrier and protects against the colonization

of opportunistic and non-opportunistic pathogens (Frost et al., 2020; Plesniarski et al.,

2021). However, recent studies have found that changes in the composition of microbial

communities (microbiome) in the human body can lead to dysbiosis and affect human

health tremendously (Kumamoto et al., 2020; Yu, 2018). Furthermore, investigations

of the relationship between the environmental and human microbiome showed effects

on immunoregulatory pathways, influencing, for example, the risk of asthma in infants

(Kelly et al., 2022; Lowry et al., 2016; Riiser, 2015). These findings reinforce the need

for further research in the field of metagenomics to broaden our understanding of the

interaction between microbes and microbial communities.

In contrast to studying the genome content of a single culturable organism, metagenomics

enables the study of genomes of all microorganisms present in a specific environment

at the same time (Hugenholtz & Tyson, 2008; Wooley et al., 2010). This approach

comprises DNA extraction and sequencing without prior cultivation of clonal cultures in

the laboratory, which allows for an unbiased characterization of the microbial community

in that sample (Li, 2015; Yang et al., 2011). Recent studies have proven metagenomics

valuable for many applications in clinical microbiology, like pathogen detection (Gu

et al., 2019), outbreak investigation (Buytaers et al., 2021; Loman et al., 2013), molecular

surveillance (Ko et al., 2022), and ecology studies (Coutinho et al., 2018; J. Gilbert

et al., 2011), among others. With the emergence of nanopore-based DNA sequencing

and the development of the small hand-held MinION sequencing device by Oxford

Nanopore Technologies (ONT), it is now also possible to perform metagenomics se-
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1. Introduction

quencing and data analysis directly at the place where the sample was taken (Gardy

& Loman, 2017; Johnson et al., 2017). Although this method offers faster library

preparation than Illumina sequencing (Greninger et al., 2015), the data analysis and

computational requirements in the field are still challenging and need further bioinfor-

matics expertise (Boykin Okalebo et al., 2019). In particular, if the metagenomic sample

is taken from a human host, the amount of sequenced host DNA can account for up

to 99.9%, making microbial identification difficult, if not impossible (Andrusch et al.,

2018; Greninger et al., 2015). In this thesis, I will focus on developing and applying

computational methods that facilitate real-time analysis of metagenomics sequencing

data and help overcome issues with overrepresented sequences in the underlying sample.

I will also stress the importance of fast and space-efficient data structures needed for the

microbial identification and metagenomics analysis of samples directly in the field when

high-performance computing hardware is not accessible.

1.2 Microbial identification using high-throughput
sequencing

1.2.1 From First to Third Generation DNA Sequencing: a brief
overview

All genetic information of a cellular organism is encoded in a polymer that consists of

only four types of nucleotides: adenine, cytosine, guanine and thymine. This molecule,

known as deoxyribonucleic acid (DNA), is composed of two bonded strains of chained

nucleotides that coil around each other and form a double-helix structure (Watson &

Crick, 1953). This double helix is connected at each position by forming hydrogen bonds

of two complementary nucleotides, i.e., A with T and C with G, called base pairs (bp).

In contrast to living organisms, many viruses encode their genomic information using

ribonucleic acid (RNA) (Holmes, 2009), which is a different type of nucleic acid that

contains the nucleic base uracil instead of thymine. While DNA in nature only forms a

double-stranded structure, RNA can also occur in a single-stranded form (W. Gilbert,

1986). In cellular organisms, the different types of RNA play an essential role in pro-

cesses like protein synthesis (Mattick, 2011).

The genome consists of genes, which are the blueprint for proteins, and non-coding

regions that are not translated into proteins but can have regulatory functionality (Clamp

et al., 2007; Rogozin et al., 2002). This information is encoded just by the order of the

four different nucleotides. The genetic information is inheritable, implying that closely

related organisms have very similar genomes. This assumption is used in many applica-
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1.2 Microbial identification using high-throughput sequencing

tions that are based on genetic analysis, for example, genealogy analysis (Rosenberg &

Nordborg, 2002), taxonomic classification of microorganisms (Hugenholtz et al., 2016),

and reconstruction of pathogen transmission networks (de Bernardi Schneider et al.,

2017).

Nowadays, deciphering the order of nucleotides of a DNA molecule is fundamental

to many applications in genomics. This method, which is known as DNA sequencing,

was first described by two independent groups in the 1970s. The chemical sequencing

approach of Maxam and Gilbert was prevalent in the early days of DNA sequencing but

lost its relevance because of the extensive use of hazardous chemicals and difficulties in

automating the process (Maxam & Gilbert, 1977). In contrast, the dideoxy sequencing

method proposed by Sanger et al. has evolved by exchanging radioactive labeling of

DNA fragments with fluorescent dyes (Sanger et al., 1978). The success in automation

of Sanger sequencing also made the first sequencing of the human genome possible,

which was finally published in 2001 (Lander et al., 2001; Venter et al., 2001). Today, the

method is known as First Generation Sequencing and is mainly used in low-throughput

targeted re-sequencing projects. Compared to recent sequencing technologies, Sanger

sequencing is costly for large genome projects (Patel et al., 2016), but it serves as a

gold standard for confirming the results of the new technologies (Totomoch-Serra et al.,

2017).

After the first draft of the human genome was published, companies started to develop

more sophisticated sequencing instruments. The beginning of the new wave of sequenc-

ing technologies marked the introduction of a paralleled version of pyrosequencing,

which reduced sequencing costs dramatically compared to automated Sanger sequencing

(Egholm et al., 2005). The Roche 454 pyrosequencing device was the first commercially

successful second-generation sequencing instrument, which produced higher amounts of

sequencing data in a shorter time frame with Sanger-like read lengths of up to 1,000 bp

(Goodwin et al., 2016). The second new technology that came to the market was Solexa’s

sequencing-by-synthesis method, which was based on reversible dye terminators and

engineered polymerases (Bentley et al., 2008). Later acquired by Illumina, this sequenc-

ing platform can produce hundreds of millions of highly accurate reads in less than two

days. Illumina currently offers the most cost-efficient and scalable sequencing machines,

thus dominating the sequencing market with about 80% market share (Cimino, 2022).

Although other second-generation technologies, like the ABI SOLiD system (Valouev

et al., 2008) or Ion Torrent Ion semiconductor system (Rothberg et al., 2011), have

been developed over the years, none could compete with Illumina’s technology. With

the expiration of some critical patents, new platforms like MGI’s nanoball sequencing

(Drmanac et al., 2010) and Element Bioscience’s sequencing-by-binding technology
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1. Introduction

(Arslan et al., 2023) are expected to have a bigger impact on the sequencing market

within the next few years. The low error rates have helped Illumina sequencing become

a widely adopted platform for metagenomics sequencing and microbial identification

(Diao et al., 2022; Patro et al., 2016). However, the short read lengths of up to 300

bp are the major disadvantage of second-generation sequencing and have pushed the

development of long-read third-generation sequencing technologies (Pearman et al.,

2020).

Sequencing a complex metagenomics sample or a repetitive genome, like that of a human,

can be challenging using second-generation sequencing technologies. In many cases,

it is unclear from which part of a genome or from which organism a short read of just

300 bp length originates, which can lead to biased data analysis and false conclusions of

an experiment (Breitwieser et al., 2019; Portik et al., 2022). Inspired by this problem,

a new generation of sequencing technologies has been developed, which can provide

read lengths up to millions of base pairs. The first commercial product was released

by Pacific Biosciences (PacBio) in 2011, using a technique called single-molecule real-

time sequencing (Eid et al., 2009; Levene et al., 2003). Like Illumina sequencing, this

technology follows a sequencing-by-synthesis approach but can produce read lengths of

10-25 kilobase pairs (kbp). While initial error rates of the technology ranged between

11-15%, the recently developed multiple pass circular consensus sequencing of long

individual molecules produces long sequencing reads with 99.9% accuracy (Wenger

et al., 2019). Using this technology, even the highly repetitive telomeres and centromeres

of the human chromosomes could be sequenced, resulting in the first gapless human

reference genome (Nurk et al., 2022; Rhie et al., 2023).

In 2015, a new sequencing technology came to the market, completely different from the

sequencing-by-synthesis approaches of second-generation sequencing and Pacific Bio-

sciences (PacBio). With its nanopore sequencing devices, ONT offers single-molecule

long-read sequencing based on moving a single-stranded DNA molecule through a

tiny membrane protein called nanopore (Clarke et al., 2009; Kasianowicz et al., 1996;

Olasagasti et al., 2010; Stoddart et al., 2009). Besides producing read lengths of up

to 2.3 million bp (Payne et al., 2019), ONT also provides the possibility to sequence a

sample directly at its origin by offering the small MinION sequencer, which is not much

larger than a USB stick (Mikheyev & Tin, 2014). This has already been demonstrated

for molecular surveillance during the Ebola outbreak in 2015 (Quick et al., 2016), for

metagenomics analyses of clinical and environmental samples (Gowers et al., 2019;

Greninger et al., 2015; Urban et al., 2021), and even for sequencing runs onboard the

International Space Station (Castro-Wallace et al., 2017). Although these features are

clear advantages, the lower throughput compared to other sequencing technologies and
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1.2 Microbial identification using high-throughput sequencing

high error rates of 5-15% impeded wider adoption of the technology until recently (Dela-

haye & Nicolas, 2021; Rang et al., 2018). However, in this work, I will mainly focus on

nanopore sequencing because the long read lengths combined with the portability of the

platform and the supported real-time analysis of single molecules during the sequencing

runs make it an ideal tool for microbial identification and metagenomics profiling.

1.2.2 Nanopore DNA Sequencing

Starting in 1996, a radically different sequencing approach was initiated with the dis-

covery that single strands of nucleic acids can be electrophoretically driven through a

nanoscale channel in a lipid bilayer (Kasianowicz et al., 1996). In the first experiments,

this lipid bilayer separated two chambers (cis and trans) filled with a potassium chloride

solution, and a voltage of 120-180 millivolts (mV) was applied across the membrane

by electrodes placed in each chamber’s solution (Akeson et al., 1999). Because of the

presence of the nanopore in the lipid bilayer, the positively charged potassium ions are

drawn to the negatively charged electrode, and the negatively charged chloride ions are

drawn to the positively charged electrode, which results in a measurable ion current,

also referred to as open channel current. Since a nucleic acid is negatively charged, its

addition to the cis chamber will electrophorese it through the nanopore to the positively

charged electrode. The traversing nucleic acid reduces the number of potassium and

chloride ions that can simultaneously traverse through the nanopore and thus reduces the

measured current by 80-90% (Muthukumar, 2016). Since the diameter of a nanopore

is barely greater than the diameter of a single-stranded DNA, the hydrogen bonds of

the double-stranded DNA molecule placed in the cis-chamber will break apart when

it comes into contact with the aperture of the nanopore. Thus, only a single-stranded

DNA moves through the nanopore, and the small variations of ionic current reflect the

sequence of nucleotides traversing through the pore.

With the described setup, only two major obstacles remained to be overcome. First, the

rate of nucleotide traversal through the nanopore needed to be controlled to measure

and correctly distinguish the small variations in ionic current. Since the DNA moves

through the nanopore at a rate of 1,000,000 bases per second, a braking device was

needed to slow the translocation (Branton & Deamer, 2019). Introducing polymerases

and helicases as motor proteins bound to the single-stranded DNA solved this issue

(Byrd et al., 2012). After getting in touch with the aperture of the nanopore, the motor

protein steps along the DNA in a direction away from the nanopore, which leads the

DNA to move through the pore in a rachet-like motion and slows down the rate to

approximately 420-450 bases per second (Cherf et al., 2012; Stoddart et al., 2009). The
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second obstacle is that several nucleobases, and not only one, produce the current level

changes observed as the DNA moves through the pore. The number of nucleotides that

simultaneously affect the measured current depends on the length of the narrowest part

of the nanopore, also known as the sensing region (Meller et al., 2001). Currently used

nanopores have sensing regions that reflect approximately 3-4 nucleotides (Shi et al.,

2016). With this knowledge, base-calling algorithms could be developed that use the

ionic current of known sequences and assign them to nucleotide motifs of length three or

four. Recent advancements in base-calling algorithms using deep-learning techniques

showed tremendous improvements in base-calling accuracy, reaching up to 99% per read

accuracy (Boza et al., 2021; Delahaye & Nicolas, 2021).

When the first MinION sequencers became available to the research community in 2014,

the portability of the small device and the long reads it produces got the most attention.

However, the technology supports another exciting feature, which makes it attractive for

many applications in microbiology. The MinION flowcell has 512 sequencing channels,

which results in sequencing a maximum of 512 DNA molecules simultaneously (Branton

& Deamer, 2019). The device also has the ability to unblock any of the channels that are

clogged with tangled DNA or some contaminants. By reversing the potential, the DNA

or contaminants can be pulled out of the pore on a per-channel basis, which resets the

channel to an "open pore" state and allows sequencing of the subsequent DNA molecule.

This ability also offers to program the MinION to respond to partially sequenced DNA

molecules, choosing to either completely sequence the captured DNA or reject it by

pulling the DNA molecule back into the cis chamber. This feature, unique to nanopore

sequencing, enables the sequencing of only those DNA molecules that are of a predeter-

mined interest and also saves sequencing time for these higher-priority fragments. In

practice, the first few hundred bases of a DNA molecule are sequenced and analyzed in

real time while the DNA strand passes the nanopore. If the fragment is found to be of

interest, the sequencing continues. Otherwise, the strand can be rejected from the pore,

freeing that pore to sequence the next DNA molecule.

The described "Read Until" feature, also known as adaptive sampling, is provided by

ONT via an API and was first mentioned in the literature by Loose et al. (2016). Their

idea was to use a dynamic time-warping algorithm to align the first few hundred bases

of each sequenced fragment against the reference sequence of the lambda phage. They

enriched two small 5-kbp long genome regions by rejecting all reads that did not align to

these regions. Other approaches have been developed during the last years that work on

the raw electrical signals (Bao et al., 2021; Kovaka et al., 2021) or use a base-calling

and mapping approach (Payne et al., 2021). In this thesis, I will describe an advanced

method for nanopore adaptive sampling that relies on real-time base-calling but uses
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data structures for approximate membership queries instead of read-mapping algorithms.

We further applied this method to the in-silico enrichment of bacterial plasmids, showing

its potential for clinical metagenomics applications.

1.2.3 Taxonomic classification and profiling

In microbial sequencing, the main goal is to study the sequenced genetic material of an

environmental or clinical sample. The first step in this workflow is usually the taxonomic

classification of all identified organisms in a sequenced sample. This can either be done

by sequencing single or multiple loci of genomic regions that are conserved across the

microbial kingdom under investigation or by sequencing the entire genetic content of

the studied sample (Marchesi & Ravel, 2015). Typical examples of the first approach

are community profiling based on the highly conserved 16S ribosomal RNA gene for

bacteria (Huse et al., 2008; Lane et al., 1985) and fungi’s internal transcribed spacer

(ITS) regions (O’Brien et al., 2005). Although these methods can provide fast and

cost-effective identification of bacteria and eukaryotes, they only cover the content of

specific genomic regions, suffer from amplification bias (Campanaro et al., 2018; Fouhy

et al., 2016), and can not be applied to viruses. In contrast, whole shotgun metagenomics

sequencing avoids the amplification bias by directly sequencing the complete genome

content of the underlying sample. It also achieves a higher resolution and coverage of the

studied community and is not limited to certain kingdoms of life (Durazzi et al., 2021;

Roux et al., 2019).

The advent of second-generation sequencing technologies has made whole shotgun

metagenomics sequencing a cheap alternative to amplicon-based methods. In particular,

Illumina’s short-read technology is widely used, which generates millions to billions of

reads in less than 48 hours of sequencing (Goodwin et al., 2016). Those small fragments

of sequences obtained by high-throughput sequencing machines are the primary source

of input for many computational methods that try to assign them to a specific taxonomic

rank, like species, genus, or family (McIntyre et al., 2017). For this taxonomic classi-

fication, state-of-the-art computational methods rely on reference sequence databases

of previously cataloged organisms (Sczyrba et al., 2017). Because of the much lower

error rates, most taxonomic classification tools were explicitly designed for Illumina’s

short reads, and only a few have been developed for long-read technologies (Portik et al.,

2022).

Some computational tools extend the taxonomic classification by providing the relative

abundances of a list of organisms or taxonomic groups for the studied microbial sample.

During the last few years, three different approaches to taxonomic profiling have become
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popular. First, marker gene-based methods like MetaPhlAn4 (Blanco-Míguez et al.,

2023) profile communities based on databases of clade-specific or single-copy genes.

They enable fast profiling but potentially miss important low-abundant species when

their genome sequences are not completely covered (Breitwieser et al., 2019). Secondly,

whole genome methods like Kraken2 (Wood et al., 2019) map the reads to the whole

genome references of an underlying database. These methods suffer from reads with

matches to multiple reference genomes, which can decrease the specificity of the method

on lower taxonomic ranks (Simon et al., 2019). Especially the short read lengths result

in a high risk that reads are classified among several similar sequences. Here, using

long-read technologies can improve the results of taxonomic profiling despite their higher

error rates (Portik et al., 2022). The third set of methods consists of DNA-to-protein

tools, like Kaiju (Menzel et al., 2016), that classify sequencing reads by mapping them

to a database of protein sequences. These tools have higher computational requirements

than the other two approaches because they need to analyze all six frames of potential

DNA to amino acid translation. However, they can be more sensitive to novel and highly

variable sequences due to the lower mutation rates of amino acid sequences compared

to nucleotide sequences (Altschul et al., 1990). The most relevant drawback of these

methods is their limitation to target only coding sequences of the genomes, which results

in large amounts of unclassified non-coding reads (Simon et al., 2019).

Taxonomic profiling and relative abundance estimations should always be interpreted

with caution. Many challenges have been reported in the literature when benchmarking

different taxonomic profilers. First, abundance estimations are only based on the under-

lying reference databases, which are far from complete and can yield overestimates for

the abundances of known and more studied species (Nasko et al., 2018). Secondly, the

organisms in a community have different genome sizes, resulting in more sequenced

reads (and bases) from organisms with larger genome sizes. This can result in two

different abundance estimation values: sequence abundance, which counts the number

of sequenced bases for each organism, and taxonomic abundance, which normalizes

the number of sequenced bases of each organism by its genome length (Z. Sun et al.,

2021). Third, some biases can arise from organisms with different susceptibilities to

DNA fragmentation or the microbiome within sequencing kits, which is one of the

main reasons negative controls should always be the norm in metagenomics sequencing

studies (Nearing et al., 2021; Paniagua Voirol et al., 2021).

Regardless of the sequencing technology used, all whole-genome-based methods s from

the ever-increasing size of reference genome databases. These large databases lead

to high computational requirements when building an indexed database or querying

the index. In particular, if the reference databases need to contain as many known
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references as possible to optimize the sensitivity of the taxonomic classification, the

memory requirements of the tools can only be satisfied by high-performance computing

(HPC) clusters (Meyer et al., 2022). This makes real-time taxonomic profiling in the

field impossible when researchers are usually only equipped with a small laptop. To

overcome this issue, new space-efficient data structures are needed that provide fast

querying of millions of reads for real-time pathogen detection and profiling of microbial

communities for portable labs.

1.3 Pseudo-Mapping and Data Structures for
Approximate Membership Queries

1.3.1 K-mers, minimizers and syncmers

With the emergence of DNA sequencing technologies, a new research field was estab-

lished, focusing on the computational analysis of nucleic acid sequencing data. First,

algorithmic approaches adopted methods from computer linguistics, like the edit distance

(Levenshtein et al., 1966), to perform pairwise comparisons of DNA sequences (Needle-

man & Wunsch, 1970; Sellers, 1974). Further advancements of this sequence alignment

approach resulted in the first biological sequence database search tool, BLAST, which is

probably the most used bioinformatics tool in history (Altschul et al., 1990). However,

the appearance of second-generation sequencing technologies led to an exponential

growth of sequence databases and massive sequencing datasets, which made the applica-

tion of sequence alignment algorithms computationally infeasible. Heuristic approaches

like the seed-and-extend methods that use fixed-length seeds (Kent, 2002), maximal

exact matches (MEMs) (Liu & Schmidt, 2012), or maximal unique matches (MUMs)

(Delcher et al., 1999; Marçais et al., 2018) between pairs of sequences were developed to

cope with the millions to billions of short reads produced by the new sequencing devices.

The simplest fixed-length seed is the exact k-mer match, while MEMs are exact matches

that cannot be extended in either direction without allowing a mismatch. Maximal unique

matches are inherently MEMs but require uniqueness in addition. Many alignment or

mapping tools have been developed based on the seed-and-extend approach, including

BWA (Li & Durbin, 2010), Bowtie2 (Langmead & Salzberg, 2012), and minimap2

(Li, 2018). These seed-based heuristic methods have been used in many pipelines for

microbial identification (Hong et al., 2014; Piro et al., 2016), but also became popular in

other applications for biological sequence comparison. In particular, for the challenging

task of short-read de novo genome assembly, a method for constructing whole genomes

from a large number of short DNA fragments, De Bruijn graphs became the method of
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choice (Compeau et al., 2011). This approach finds all unique substrings of size k, known

as k-mers, in the set of short reads and connects k-mers that share k − 1 nucleotides.

After building the graph, the genome is reconstructed by finding an Eulerian path, or in

other words, by finding a path through the graph that traverses each edge exactly once.

During the last 15 years, many k-mer-based approaches have been developed with ap-

plications to DNA sequence comparison. In metagenomics, for example, it is often

sufficient to know whether a sequenced read belongs to a particular reference genome

in a given database, regardless of the correct position in that genome. This so-called

pseudo-mapping was initially used in RNA-seq quantification (Bray et al., 2016) because

it is computationally cheaper than regular alignment. Later, it was realized that the same

method also applies to metagenomic read assignments (Reppell & Novembre, 2018;

Schaeffer et al., 2017). Pseudo-mapping-based approaches often use k-mers to represent

a reference genome or sequencing read. By determining the cardinalities of these k-mer

sets (e.g., the size of the intersection of the k-mer sets of two sequences), metrics like the

Jaccard index (Jaccard, 1912; Tanimoto, 1958) or containment score (A. Z. Broder, 1997;

Koslicki & Zabeti, 2019) can be applied to determine the similarity between two DNA

sequences. However, the number of k-mers in a set is often very large, which motivated

the development of methods for selecting subsets of k-mers in order to optimize the

time and space requirements. The canonical example of a method designed to select a

common subset of k-mers from similar sequences is minimizers (Roberts et al., 2004).

Here, for two strings that share long enough exact substrings, the minimizer selects

the same k-mers in the identical substrings, making it suitable to quickly estimate the

similarity of two strings. The minimizer scheme is defined by three parameters: the

k-mer length k, the window size w, and a total order of all k-mers ϕ. For each window

of w consecutive k-mers, the smallest k-mer with respect to the ordering ϕ is selected

as a minimizer, where the set of minimizers for a sequence is constructed by taking the

union of minimizers over all windows. Kraken (Wood & Salzberg, 2014) was the first

software tool utilizing minimizers for metagenomic classification and profiling, which

was almost 1,000 times faster in classifying short reads than the fastest alignment-based

approach. In the following years, different minimizer-based tools have been developed

for read mapping (Li, 2018), taxonomic classification (Wood et al., 2019), and other

sequence analysis tasks (Sommer et al., 2007; Ye et al., 2012), all trying to reduce the

computational requirements by applying advanced underlying data structures.

Although k-mer-based approaches are superior to alignment-based approaches regarding

the computational requirements, they tend to have more issues with sequencing errors

(Marchet et al., 2021). Detecting sequence similarity using k-mers requires that all

letters of a k-length substring are exactly conserved between the sequences. If one of
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the letters is mutated (through biological mutation or sequencing errors), the k-mer is

removed from the set of matching k-mers. This is also true for minimizers because they

are a selected subset of k-mers. Beyond that, a minimizer can also be removed from

the set of matching minimizers if one of the positions inside the window but outside

the selected k-mer is mutated. In this case, some other k-mer in the window can be the

smallest one with respect to the ordering ϕ. For this reason, minimizers are classified as

a context-dependent k-mer selection scheme (Shaw & Yu, 2022).

When working with short-read data sets, which have relatively small sequencing error

rates, context-dependent k-mer selection schemes offer sufficient conservation. Here,

conservation is defined as the fraction of bases in a sequence that can be ‘recovered’

by k-mer matching after the sequence undergoes a random mutation process. For ap-

plications using long-read sequencing methods, the conservation of context-dependent

k-mer selection schemes is decreased due to higher error rates. For this reason, many

context-free k-mer selection schemes have been proposed in recent years, with syncmers

shown to improve conservation and compression factor compared to minimizers (Dutta

et al., 2022; Edgar, 2021). In the syncmer scheme, k-mers are selected based on the

position of the smallest-valued substring of length s < k within the k-mer. A closed

syncmer is only selected if its smallest s-mer is at the start or end of the k-mer, while

an open syncmer is selected if the smallest s-mer is the first s-mer within the k-mer.

For open syncmers, an offset parameter t can be defined such that the syncmer is only

selected if the smallest s-mer starts at position t of the k-mer. Edgar (2021) has shown

that syncmers are more robust against mutations and sequencing errors than minimizers,

which predestines them for applications utilizing k-mer selection schemes.

1.3.2 Filter-based data structures

The question of determining the membership of a key in a database commonly shows

up in many bioinformatics applications. Regarding pseudo-mapping, we are frequently

concerned with answering questions of the form “Is k-mer x present in the set of k-mers

S built from genome G”? Querying a database for the presence of a key (or k-mer)

may be expensive in terms of the database size or query time. Therefore, we sometimes

use probabilistic filters that quickly indicate whether a given key is present in a set

while using less memory than the set itself (Singh et al., 2020). However, the small size

and high speed come at the cost of reporting false positives. That means, with a small

probability, a key is reported as being present in the set while, in fact, it is not. On the

other hand, if a key is present in the set, probabilistic filters never fail to correctly report

that the key belongs to the set. There are two variants of probabilistic filters: the static
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variant, where the size of the set S is specified ahead of time, and the dynamic variant,

where the elements of the set are specified one by one in an online fashion.

The Bloom filter (Bloom, 1970) is the classical probabilistic filter-based data structure for

approximate membership queries. As a dynamic filter structure, it allows for progressive

construction without requiring that all keys are known at construction time. A Bloom

filter consists of a bit array and a collection of m hash functions h1, h2, ..., hm that map

keys (or k-mers) to indexes in the bit array. During the construction of the Bloom filter,

keys are added by computing m hash values that point to m positions in the bit array and

setting the bits of the corresponding positions to 1. When testing for the membership of

a key, we calculate m hash values using the same hash functions as for the construction

and check whether all bits at the corresponding positions are set to 1. The standard

Bloom filter does not allow removing keys but supports adding keys irrespective of

the bit array size or the number of hash functions, which increases the false positive

probability as more entries are added, and thus, more bits are set to 1. It is also possible

to control the false positive probability if the maximum number of keys to be stored is

known. This can be done by choosing an appropriate size of the bit array and finding an

optimal number of hash functions (A. Broder & Mitzenmacher, 2004). Many variations

of the standard Bloom filter have been proposed, including blocked Bloom filters (Putze

et al., 2010), counting Bloom filters (L. Fan et al., 2000), compressed Bloom filters

(Mitzenmacher, 2001), and many others (Almeida et al., 2007; Calderoni et al., 2015).

For nucleic acid sequence comparisons, different versions of Bloom-filter-based data

structures were developed for counting the number of k-mers of a given sequence in

a given database. One such example is the sequence Bloom tree (SBT) (Solomon &

Kingsford, 2016), which was designed for collections with high k-mer redundancy, such

as human RNA-seq sequencing data. However, for metagenomics applications with large

collections of heterogenous k-mer sets, this approach is not suitable, which led to the

development of Bloom filter matrix-based methods, including the BItsliced Genomic

Signature Index (BIGSI) (Bradley et al., 2019) and the Compact Bit-Sliced Signature

Index (COBS) (Bingmann et al., 2019). One special case of the latter approach is the

Interleaved Bloom Filter (IBF), where the k-mer set of each reference sequence in a

given database is stored in a single Bloom filter, and the single bits of the many Bloom

filters are combined in an interleaved fashion (Dadi et al., 2018). This enables fast

querying of all single Bloom filters simultaneously, making it a perfect data structure for

real-time metagenomics applications (Piro et al., 2020).

There are also many alternatives to the Bloom filter approach, all relying on the concept

of a fingerprint. These methods store for each key the result of a dedicated hash function

as a fingerprint, which is typically a word of a fixed number of bits. For a given set of
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keys, the data structure is built such that the retrieved key of the data structure maps the

fingerprint. When querying a key, we consider it present in the initial set of keys if the

stored fingerprint equals the fingerprint retrieved from the data structure. Unlike Bloom

filters, which can have a lower false positive probability if fewer keys are stored than

the maximum set capacity, fingerprint approaches have a fixed false positive probability,

which depends on the fingerprint size. Several fingerprint-based probabilistic filters have

been proposed recently, including Golomb-compressed sequences (Putze et al., 2010),

Cuckoo filters (B. Fan et al., 2014), Quotient filters (Pandey et al., 2017), and Morton

filters (Breslow & Jayasena, 2018), among others (Chazelle et al., 2004; Graf & Lemire,

2022).

The recently proposed XOR filter is a particular case of a fingerprint-based probabilistic

filter data structure (Graf & Lemire, 2020). It consists of a collection of m hash functions

and an array of L-bit words. When querying a key, the hash values give us the positions

in the array, and we retrieve the fingerprint of the data structure for that key by computing

a bitwise XOR of the corresponding L-bit words. If this retrieved L-bit value equals

the stored fingerprint value, we consider the key present in the set of keys for which we

have built the XOR filter. Building the XOR filter requires that all keys are known a

priori because the order in which keys are added to the filter has to be determined before

the construction. Although XOR filters use L-bit valued arrays instead of single-bit

arrays, they are significantly smaller than Bloom filters. Graf and Lemire (2020) have

shown that XOR filter arrays need much fewer entries than Bloom filter arrays, which

results in about 15% space savings when both approaches have the same false positive

probability. Furthermore, XOR filters show faster query times than Bloom filters. These

features generally show that XOR filters are an excellent alternative data structure to

Bloom filters for applications based on pseudo-mapping. Since the exponential growth

of reference sequence databases poses a challenge to real-time metagenomics analysis,

I will dedicate one chapter of this thesis to a new data structure that is based on the

concept of XOR filters and Interleaved Bloom Filters (IBFs). I will further show how this

data structure improves the computational requirements of taxonomic classification and

profiling, enabling real-time long-read metagenomics analysis on commodity hardware

in the field.

1.4 Thesis outline

The overall topic of this work is the development and application of pseudo-mapping

and probabilistic filters in the context of real-time metagenomics analysis of nanopore

sequencing data. The final goal is to apply existing AMQ data structures to nanopore
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adaptive sampling for removing unwanted DNA sequences from metagenomics data and

improve these data structures to enable real-time taxonomic classification with large

reference databases. Thereby, the enhancements in performance and scalability are

achieved by algorithmic developments and technical optimizations. In the following

chapters, I describe three parts of the project, each corresponding to a specific task in

real-time analysis of nanopore sequencing data. While chapters 2 and 3 focus on the

application of Interleaved Bloom Filters (IBFs) to nanopore adaptive sampling, chapter

4 presents a more efficient probabilistic filter for pseudo-mapping as a basis for real-time

metagenomics analysis.

Chapter 2 introduces ReadBouncer, a new tool for nanopore adaptive sampling. It

demonstrates superior read classification performance for adaptive sampling compared

to other state-of-the-art tools. This is achieved by combining k-mer matching statistics

with Interleaved Bloom Filters for improved pseudo-mapping and reduced memory

usage. ReadBouncer is available as a command-line tool that directly interacts with

ONT sequencing devices and comes with easy-to-install binary files for Linux and

Windows operating systems. It supports both graphics processing unit (GPU) and central

processing unit (CPU) base-calling, enabling adaptive sampling even on commodity

hardware. I conceptualized the project with Bernhard Renard, who also offered super-

vision and support at all stages of the project. I implemented ReadBouncer and the

supplementary scripts for data analysis with some support from Ahmad Lutfi, who wrote

automated tests and developed a Graphical User Interface (GUI) for ReadBouncer.

Finally, I collected the data and performed all experiments presented in the paper, with

assistance from Kilian Rutzen, who prepared samples and performed the sequencing in

the laboratory, and I wrote the manuscript with feedback from all authors. The chapter is

based on the following article:

Ulrich, J.-U., Lutfi, A., Rutzen, K., & Renard, B. Y. (2022). ReadBouncer:

precise and scalable adaptive sampling for nanopore sequencing. Bioin-

formatics, 38(Supplement_1), i153–i160. https : / / doi . org / 10 . 1093 /

bioinformatics/btac223

This is an Open Access article distributed under the terms of the Creative

Commons Attribution License (https://creativecommons.org/licenses/by/4.0/)

I also presented the results in a proceedings talk at the conference for Intelligent Systems

in Molecular Biology (ISMB) 2022.

Chapter 3 presents an application of nanopore adaptive sampling in general and

ReadBouncer in particular. Instead of removing unwanted DNA sequences of a
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specific organism in a metagenomics sample, we remove overrepresented chromoso-

mal sequencing reads from bacterial isolate samples. We show that utilizing adaptive

sampling to remove those chromosomal sequences enriches the low-abundant plasmid

DNA in silico without applying any laboratory enrichment method. This also results in

significantly improved quality of de novo assemblies of plasmids and reduced sequenc-

ing time needed to achieve this quality. We discovered that enrichment could also be

achieved with expired flow cells, which, combined with adaptive sampling, shows the

potential for cost savings in clinical and laboratory sequencing of bacterial pathogens.

The study was jointly conceptualized by Lennard Epping, Torsten Semmler, Bernhard

Renard and me. The sequencing experiments were performed at the sequencing core

facility of the Robert Koch Institute (RKI) with support from Lennard Epping and Tanja

Pilz, who performed the wet lab work. The sequenced bacterial samples were provided

by Birgit Walther and Kathrin Stingl. I wrote all supplementary Python and R scripts

and performed data analysis and interpretation, supported by Lennard Epping. Finally,

I wrote the manuscript with feedback from all authors. Bernhard Renard supervised

and supported the project with helpful comments and advice at all times. The chapter is

based on the following article:

Ulrich, J.-U., Epping, L., Pilz, T., Walther, B., Stingl, K., Semmler, T., &

Renard, B. Y. (2023). Nanopore adaptive sampling effectively enriches

bacterial plasmids. bioRxiv. https://doi.org/10.1101/2022.10.03.510741

Manuscript submitted for peer review

I presented the preliminary results of this work as a poster at the Oxford Nanopore

Community Meeting 2023.

Finally, Chapter 4 introduces the hierarchical interleaved XOR filter (HIXF) as a new

data structure for approximate membership queries. I implemented a pseudo-mapping

approach based on this new data structure and open canonical syncmers in a tool for real-

time taxonomic classification and profiling of long reads. For the taxonomic profiling

step, I implemented a standard expectation maximization (EM) algorithm that utilizes

taxonomic abundance estimations to refine the classification results. The presented

software Taxor is evaluated on simulated and real mock community data sets of

ONT and PacBio long reads. I also show results of a read classification benchmarking

comparing Taxor to state-of-the-art metagenomic profiling tools. Finally, all tools

are compared with regard to their computational requirements, showing the superiority

of the HIXF approach in terms of memory and disk space usage. Besides designing

the HIXF data structure and implementing the pseudo-mapping approach and the EM

algorithm in Taxor, I also conceptualized the study and wrote the data analysis scripts
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for the evaluation and benchmarking of Taxor’s results. Finally, I collected the data,

performed all experiments presented in the paper and wrote the manuscript with feedback

from Bernhard Renard, who also offered supervision and support at all stages of the

project. The chapter is based on the following article:

Ulrich, J.-U., & Renard, B. Y. (2023). Taxor: Fast and space-efficient

taxonomic classification of long reads with hierarchical interleaved xor

filters. bioRxiv, 2023–07. https://doi.org/10.1101/2023.07.20.549822

Submission in preparation.

I presented the preliminary results in a conference talk with an accompanying poster at

Intelligent Systems in Molecular Biology (ISMB) 2023.

Chapter 5 summarizes the thesis and provides an outlook for potential future develop-

ments in the field of real-time analysis of nanopore sequencing data.
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2 Precise and scalable nanopore
adaptive sampling with Interleaved
Bloom Filters

Summary

Nanopore sequencers allow targeted sequencing of interesting nucleotide sequences by

rejecting other sequences from individual pores. This feature facilitates the enrichment

of low-abundant sequences by depleting overrepresented ones in-silico. Existing tools

for adaptive sampling either apply signal alignment, which cannot handle human-sized

reference sequences, or apply read mapping in sequence space relying on fast GPU

base callers for real-time read rejection. Using nanopore long-read mapping tools is

also not optimal when mapping shorter reads as usually analyzed in adaptive sampling

applications. We present a new approach for nanopore adaptive sampling that combines

fast CPU and GPU base calling with read classification based on Interleaved Bloom

Filters (IBFs). ReadBouncer improves the potential enrichment of low abundance se-

quences by its high read classification sensitivity and specificity, outperforming existing

tools in the field. It robustly removes even reads belonging to large reference sequences

while running on commodity hardware without GPUs, making adaptive sampling acces-

sible for in-field researchers. ReadBouncer also provides a user-friendly interface and

installer files for end-users without a bioinformatics background.

This chapter is based on Ulrich et al. (2022), which is a joint work with Ahmad

Lutfi, Kilian Rutzen and Bernhard Y. Renard. A detailed description of the authors’

contributions can be found in section Thesis outline.

2.1 Background

During the last decade, the invention of nanopore sequencing instruments has democ-

ratized DNA sequencing in various aspects (Leggett & Clark, 2017; Mikheyev & Tin,

2014). For example, the small MinION devices of ONT provide the possibility to
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sequence a sample at the place of its origin without the need to ship the sample to a labo-

ratory (Runtuwene et al., 2019; Sim & Chapman, 2019). This point-of-care sequencing

ability makes nanopore sequencing attractive for applications such as pathogen detection

in a clinical setting and in the field (Mongan et al., 2020; Quick et al., 2016). It also can

shorten the time to detect pathogens or ARGs when using it for point-of-care testing.

While the size of the device and the easier and faster sample preparation are clear ad-

vantages, nanopore sequencing still lacks the base quality of sequencing-by-synthesis

instruments. However, recent improvements in base-calling algorithms showed per

read accuracy exceeding 90% (Rang et al., 2018; Wick et al., 2019). ONT even

claims to boost per-read accuracy up to 99% with their latest R10.4 pore version

(https://nanoporetech.com/accuracy). Another exciting feature of ONT’s instruments

is sequencing DNA molecules in a targeted fashion. ONT provides an Application

Programming Interface (API) that enables receiving electrical currents, measured while

the molecule transverses the pore (Loose et al., 2016). These signals can be translated

into sequence space and analyzed in real time. An uninteresting DNA molecule located

in a pore can be ejected by sending an unblock message back to the control software.

This message leads the sequencer to reverse the voltage across the pore, causing the

molecule to exit the pore in the reverse direction. The primary requirement for such a

live depletion system is that the software making ejection decisions can keep up with the

sequencing speed for up to 512 nanopores that concurrently sequence DNA molecules

on a MinION sequencer.

Two recent publications describe the implementation of such systems for specific set-

tings. Payne et al. combined ONT’s Guppy base caller (Wick et al., 2019) with the

minimap2 read aligner (Li, 2018) in their Readfish workflow to make ejection

decisions after mapping the reads to a reference genome in real-time. Kovaka et al.

skipped the base-calling step and performed ejection decisions directly on nanopore

current signals. While the latter is designed to run on a general-purpose CPU, it cannot

handle large human-size reference genomes. In contrast, Readfish can handle larger

references but needs additional software like DeepNano-blitz (Boža et al., 2020) or

ONT’s Guppy GPU basecaller for real-time base-calling.

Furthermore, using minimap2 (Li, 2018) for read classification is not optimal. In their

study, Payne et al. showed that only 83% of target reads were correctly classified for

rejection after 0.8 seconds of sequencing. Marquet et al. observed the same issue when

they tried to deplete all human host reads from vaginal samples with ONT’s adaptive

sampling option. Using the depletion method supported by MinKNOW, 25% of human

reads could not accurately be rejected by the software, wasting many resources on

sequencing uninteresting reads. Further, missed mappings to repetitive regions of the
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reference genome can lead to delayed classifications when longer parts of the DNA

molecule must be sequenced to make a rejection decision. Both lower sensitivity and

classification delay will cause decreased enrichment of clinically relevant sequences of

undetected pathogens or antibiotic resistance markers.

This study introduces ReadBouncer as a new tool for nanopore adaptive sampling

that combines state-of-the-art base-calling software with the DREAM index (Dadi et al.,

2018; Piro et al., 2020). ReadBouncer facilitates both GPU base-calling with ONT’s

Guppy as well as CPU base-calling with DeepNano-blitz (Boža et al., 2020). Its

Interleaved Bloom Filter data structure allows for fast querying of hashed k-mers on

large sequence datasets resulting in an improved read classification strategy. Within an

integrated workflow, ReadBouncer uses IBFs to classify base-called DNA fragments

for ejection and finally communicates the decision to the sequencing control software.

We first investigate our read classification approach by comparing it to other software

tools used for read classification in a nanopore adaptive sampling context. ReadBouncer

shows the best accuracy, recall, F1-Score, and Matthews correlation coefficient (MCC)

among all tools on a simulated and a real-world dataset, while having almost the same

precision and specificity as the best competitor. Furthermore, our tool also has the

smallest reference sequence index size and peak memory usage.

We also compare ReadBouncer with Readfish and ONT’s MinKNOW software us-

ing a playback run of a whole human genome sequencing experiment to evaluate its adap-

tive sampling performance. In this comparison, we demonstrate that ReadBouncer

outperforms the other tools in a targeted sequencing experiment. ReadBouncer’s

results consistently show more sequenced base pairss for target references and signifi-

cantly shorter mean read length of off-target or rejected nanopore reads. These results

indicate that ReadBouncer can make faster and more reliable rejection decisions

than Readfish and MinKNOW. ReadBouncer’s source code and installer files for

Windows and Linux are freely available as a Git repository (https://bit.ly/3j8GKPx)

under GNU General Public License 3 (GPL-3.0).

2.2 Methods

2.2.1 Read Classification

With the current nanopore sequencing speed of 450 bp per second, an adaptive sampling

approach ideally makes ejection decisions within 2 seconds after sequencing of a DNA

molecule has started. This requires fast base calling and rapid and reliable classification

of read fragments smaller than 500 base pairs. Readfish (Payne et al., 2021) uses
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the long-read alignment tool minimap2 (Li, 2018) for this purpose. Although being

fast and accurate for long error-prone nanopore reads, the alignment approach poses

some challenges when working with short error-prone fragments of less than 500 base

pairss. For optimal enrichment of low-abundance genomic regions, we need to make

reliable rejection decisions as fast as possible. Payne et al. (2021) showed in their

study that it takes about 360 bp for minimap2 to align 90% of those reads correctly.

That means if we want to get higher enrichment, we need to improve the classification

sensitivity for the same read length. Mappings are also hard to use when there is no good

quality reference sequence available for an organism that is the depletion target, such as

non-model organisms. In such scenarios, one would try to use the reference sequence

of a closely related species for read classification. Mapping reads to the reference of a

closely related species would fail to find numerous reads one would aim to eject from

the pore.

All these findings motivated us to seek a different, fast classification strategy. To

our knowledge, the fastest current sequence comparison algorithms use k-mer-based

approaches, where a DNA sequence is divided into small overlapping substrings of size k.

One approach, known as MinHash (A. Z. Broder, 1997; Ondov et al., 2016), computes

a hash value for every k-mer of a sequence and stores the smallest hash values within a

data structure called a sketch. The same procedure is applied to the second sequence,

and the number of hash values present in both sketches gives an accurate approximation

of the identity between the two sequences. Although this works well for sequences of

similar size, it fails for sequence containment tests, where one sequence is much smaller

than the other one, which is the case when we want to check if a nanopore read is part of

a reference genome.

A better approach for testing if the set of k-mers of a reference genome contains the

k-mers of a read is using Bloom Filters (Bloom, 1970; Koslicki & Zabeti, 2019). A

Bloom Filter simply is a bitvector of size n and a set of h independent hash functions. To

insert a k-mer into a Bloom Filter, the bit positions that correspond to the h hash values

of the k-mer are set to 1, and a k-mer is considered present in the Bloom Filter if all h
positions return a 1 during the lookup phase. In our case, we would insert all k-mers of a

reference genome into the Bloom Filter and lookup for the k-mers of a nanopore read in

that Bloom Filter.

The biggest problem of k-mer-based approaches is choosing the correct parameter value

for k, which is always a tradeoff between sensitivity and specificity in the presence of

sequencing errors. Larger values for k will result in more specific read classification

results but will also fail to find many reads from the reference genome when the number

of sequencing errors is high. When trying to classify nanopore reads with error rates of

24



2.2 Methods

about 10%, the value for k will hardly become bigger than 13. The number of different

k-mers of size 13 is combinatorially defined by 413 = 67, 108, 864, which is much too

small when working with human-sized genomes that compose about 3 billion k-mers

of size 13. To overcome this issue, we divide the reference genome into overlapping

fragments of size m and construct a separate Bloom Filter for each fragment. However,

querying one read against each of the Bloom Filters separately reduces the performance

of the Bloom Filter approach. Thus, we decided to use Interleaved Bloom Filters as

proposed by Dadi et al. (2018) to index the reference genomes.

Reference Sequence
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Figure 2.1: Example of an Interleaved Bloom Filter (IBF) construction. In the first step, we
subdivide the reference sequence into three overlapping fragments. Then, for each
k-mer of the differently colored fragments, all three hash values have to be calculated.
The resulting hash values determine the subvector SVj in which the corresponding
bit is set to 1. For example, the second hash function for k-mer CAGGATT from
fragment F3 returns k. Hence, we set the third bit of subvector SVk to 1. In this
way, the three Bloom Filters for the three fragments are combined in an interleaved
fashion. Since we have three fragments in our example, the length of every subvector
is three, and the length of the IBF is 3x, where x is the defined length for every
Bloom Filter of the three fragments.
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An Interleaved Bloom Filter (IBF) combines several Bloom Filters (bins) in one single

bitvector. The IBF can be divided into several subvectors, each having the size of the

number of bins. Since one bin in the IBF corresponds to one fragment of the reference

sequence, the size of each subvector corresponds to the number of fragments. In Figure

2.1, for example, we divided the reference sequence into three overlapping fragments,

each corresponding to one bin of the IBF. Thus, each subvector in the IBF consists of

3 bits. The i-th bit of every subvector belongs to the Bloom Filter bin of fragment Fi.

When inserting a k-mer from fragment Fi into the IBF, we compute all h hash values,
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Figure 2.2: Finding the correct fragment for a given read p. For each k-mer of read p,
we calculate the three hash values using the same hash functions as for the IBF
construction. We use the resulting hash values to find the corresponding subvectors
of the IBF. The sub bitvectors are combined with a bitwise AND to a binning bitvector.
For all set bits in the binning vectors of the k-mers, we increment the counter of the
corresponding bin in a counting vector. Bins whose counter is greater than or equal
to a given threshold t are considered to contain the read p. In this example, we show
the calculation of the binning bitvector for the 7-mer CAGGATT. Using the same
three hash functions as for the IBF construction in Figure 2.1, we get the subvectors
SV2, SVk, and SVx. We combine these three subvectors via logical AND to get the
binning bitvector. The same procedure is applied to the other three 7-mers, and
with the resulting four binning bitvectors, we can calculate the number of matching
7-mers of read p with each fragment. If at least three 7-mers match against one
fragment, we accept the read as a match with the reference sequence.
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which point us to the corresponding subvectors SVj and then simply set the i-th bit of

this subvector to 1.

When querying a read p against the IBF in order to check if it maps to any of the

fragments, every k-mer of that read is matched against the IBF. That means we first

retrieve the h subvectors SVj and apply a logical AND to them, resulting in the required

binning bitvector indicating the membership of the k-mers in the bins. The example in

Figure 2.2 visualizes this process. Here, the read consists of four 7-mers, for which we

have to calculate the three hash values that point us to the corresponding subvectors SVj,

as can be seen in particular for the 7-mer CAGGATT. A logical AND of these three

subvectors gives us the binning bitvector for that 7-mer. In our example, the binning

vector 010 for CAGGATT tells us that this 7-mer only matches fragment F2. Applying

this procedure to every 7-mer of the read gives us four binning bit vectors. Finally, we

only need to sum up the 1-bits in the binning vectors for every fragment, which gives

us the number of matching 7-mers of the read for every fragment. Thus, instead of

computing h hash values for every Bloom Filter separately, we only need to compute the

h hash values once, which poses a significant reduction in computing time to investigate

the membership of a k-mer in every Bloom Filter. This method lets us quickly count the

number of matching k-mers between the reference genome and a specific nanopore read.

The challenge is to define a threshold value for the number of matching k-mers required

to accept a certain nanopore read as a match against a fragment and, thus, as a match

with the reference genome. In our example in Figure 2.2, we consider the read matching

fragment F2 because three of the four 7-mers match that fragment. Generally, the best

threshold value depends on the length of the nanopore read and the expected sequencing

error rate. We will describe our method for determining this value in the next section.

2.2.2 Optimal Bitvector Size

In the first step, ReadBouncer produces overlapping fragments of the given reference

sequences, e.g., 100,000 bp long fragments with an overlap of 500 base pairs (bp). Each

of those fragments represents a single bin in the Interleaved Bloom Filter (IBF). The

constituting k-mers of each fragment are hashed using three different hash functions,

and the bits of the corresponding index positions in the Interleaved Bloom Filter (IBF)

are set to one (Figure 2.1). Then, ReadBouncer automatically calculates the optimal

IBF size in bits (BitsIBF) based on the following equations.

BitsIBF = n f rag × BitsSBF (2.1)
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where n f rag is defined as the number of fragments with maximum size F and BitsSBF as

a single Bloom filter size for a single fragment. Let maxkmer be the maximum number

of k-mers for a fragment of size F, and k-mer size k be defined as

maxkmer = F − k + 1 (2.2)

To calculate the optimal size for the IBF, we use the formula for finding the false positive

rate in an IBF as proposed by Dadi et al.

p =

(
1 −

(
1 − 1

BitsSBF

)h×maxkmer
)h

(2.3)

Then the optimal size of a single Bloom filter can be calculated by resolving the formula

for BitsSBF:

BitsSBF =

⌈
−1

(1 − r)
1

h×maxkmer − 1

⌉
(2.4)

where r = p
1
h , h is the number of used hash functions and p a predefined false positive

rate. ReadBouncer implicitly uses three hash functions and a maximum false positive

rate of 0.01 to minimize the number of false matches between the query sequence and a

single bin of the Interleaved Bloom Filter (IBF).

2.2.3 Minimum number of k-mer matches

During the read classification step, the k-mers of every read are hashed with the same

three hash functions, and the number of matching k-mers for every bin is calculated as

visualized in Figure 2.2. We accept a read as part of the reference sequence if the number

of matching k-mers is greater than or equal to a given threshold t for at least one bin.

We calculate the threshold using the expected sequencing error rate e and the definition

of a (1 − α) confidence interval of the number of erroneous k-mers as recently provided

by Blanca et al. (2022). They first defined the expected number of erroneous k-mers as

follows:

E[Nerr] = L × q (2.5)

For a given read r with length len(r) and k-mer length k, we denote the number of

k-mers of read r as L = len(r)− k + 1, and q is defined by (1 − (1 − e)k). In the

second step, they show that the variance for the number of erroneous k-mers can be
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calculated by:

Var(Nerr) = L(1 − q)
(

q
(

2k +
2
e
− 1

)
− 2k

)
+ k(k − 1)(1 − q)2

+
2(1 − q)

e2 ((1 + (k − 1)(1 − q))e − q)

(2.6)

Finally, they define the (1 − α) confidence interval by:

E[Nerr]± zα

√
Var(Nerr) (2.7)

With zα = ϕ−1(1 − α
2 ), where we denote ϕ−1 as the inverse of the cumulative distri-

bution function of the standard Gaussian distribution. Based on the calculation of the

confidence interval for the number of erroneous k-mers, we define our threshold for the

minimum number of matching k-mers for read r as:

min[Nmatch] = L − (E[Nerr] + zα

√
Var(Nerr)) (2.8)

We classify a read as a match if the number of matching k-mers is greater or equal to

min[Nmatch] for at least one bin in the IBF. ReadBouncer, per default, calculates this

threshold for a 95%-confidence-interval, an expected sequencing error rate of 10%, and

k-mer length 13. However, these values as well as the fragment size, are adjustable via

configuration parameters of the command line or Graphical User Interface (GUI).

2.2.4 Workflow

The workflow of our tool consists of two consecutive parts. First, we build one or

more indexes of the given reference sequence data set, which can be used as target or

depletion filters. These indexes can be used directly in the second part of the workflow

or stored on the computer’s hard disk for later usage. The construction of this index,

for which we apply Interleaved Bloom Filters (IBFs), is explained in further detail in

section 2.2.1. The second part of our tool is the live-depletion or target-enrichment

task (Figure 2.3). Here, ReadBouncer initially loads the indexes and waits for the

nanopore device to start sequencing. Immediately after sequencing has begun, the

sequencer streams raw electrical currents for every single molecule from every single

sequencing pore of the flow cell to our integrated Read-Until client. ONT provides this

functionality via an Application Programming Interface (API) of its MinKNOW control
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software (https://github.com/nanoporetech/minknow_api), which allows our Read-Until

client to receive the raw data while the molecule traverses through the pore. The client is

implemented in C++ and communicates with the MinKNOW control software via Google

Remote Procedure Call (gRPC) (https://github.com/grpc/grpc).

Received raw signal data get pushed onto a base-calling queue, and a separate thread

takes raw signals of each read from the queue and sends it to the chosen base-calling

algorithm, which translates the electrical currents into a nucleotide string. The user

can choose GPU base-calling with ONT’s Guppy basecaller for which we integrated

a Guppy client that communicates with a Guppy basecall server. Additionally, we

integrated DeepNano-blitz (Boža et al., 2020) for the base-calling step, which is

fast enough to perform the base-calling in real-time, even on CPUs.

Base-called reads get pushed to the classification queue if the read length is greater than

or equal to 200 base pairs (bp), and another thread takes each read from that queue

and passes it to the classification framework. Otherwise, the thread marks this read as

"pending" and waits for the following data chunk to be base called and concatenates the

base-called sequences of the read until the minimum read length has been reached. The

minimum read length of 200 bp ensures higher confidence in the classification of the

reads. In practice, this read length requirement will lead to most reads having about 360

bp length, which corresponds to two data chunks sent by the MinKNOW software. The

read classification thread then queries the read sequence against the loaded Interleaved

Bloom Filter (IBF) indexes as described in more detail in section 2.2.1. Based on the

classification, reads can either be marked for a rejection or continue further sequencing.

If a read was not classified for rejection on a first try, we mark it as once_seen and wait

for further sequencing data to try further classification attempts of that read. After the

read has reached a maximum read length of 1,500 bp, we stop trying to make ejection

decisions and mark the read for continued sequencing as usual. Reads that have been

classified for rejection or continued sequencing are finally pushed to the response queue,

and no further data chunks of that read are sent by the control software.

The last thread takes the classified reads from the response queue, and our Read-Until

client sends response messages back to the MinKNOW control software for each read.

The client sends an unblock message for reads that could be matched to the Interleaved

Bloom Filter (IBF), telling the sequencer to eject the corresponding DNA molecule. A

stop_further_data message is sent to the control software for reads that were not classified

for rejection. This message tells MinKNOW to continue sequencing the corresponding

DNA molecule and send no additional chunks of data for that read.
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Figure 2.3: Flow diagram of ReadBouncer’s adaptive sampling workflow. An Inter-
leaved Bloom Filter (IBF) of reference sequences is loaded from an index file first.
ReadBouncer then waits until the MinKNOW starts the sequencing run. When se-
quencing has begun, the MinION device sends raw signals for every DNA molecule
currently traversing a nanopore to ReadBouncer, pushing the signals onto a base-
calling queue. The base-calling thread takes signals from the queue and performs
base calling via Guppy or DeepNano-blitz. The base-called sequences get
pushed onto the classification queue if the length is equal to or longer than 250
bp or pushed back to the base-calling queue otherwise. The classification thread
takes sequences from the classification queue and queries the sequences against the
depletion and/or target IBFs. If a sequence is found in the depletion IBF but not in
the target IBF, the corresponding read is marked for unblocking and pushed onto the
response queue. If the sequence is not found in the depletion IBF or is found in the
target IBF and the sequence length is shorter than 1,500 bp, the corresponding read
is pushed back to the classification queue. ReadBouncer repeats the classification
procedure using consecutive chunks of data until the sequence length exceeds 1,500
bp. Reads that were not classified to reject are marked for sequencing as usual.
A stop_further_data message for those reads is pushed onto the response queue.
Finally, the response thread sends back action messages of reads from the response
queue to the MinKNOW software and MinION device, respectively.

2.3 Results

In this study, we show how adaptive sampling benefits from our improved read classifica-

tion approach. Therefore, we designed experiments that specifically focus on evaluating

this approach when applied to both adaptive sampling strategies, depletion and targeted

sequencing. In the first step, we compare ReadBouncer to minimap2 (Li, 2018),

31



2. Precise and scalable nanopore adaptive sampling with Interleaved Bloom Filters

which is used for classification by Readfish, and the pan-genomics matching tool

SPUMONI (Ahmed et al., 2021), which is proposed as an alternative to minimap2 in

targeted nanopore sequencing pipelines. Here, we assess all three tools on simulated and

real reads from a recently published microbial mock community (Nicholls et al., 2019).

In a second experiment, we compare ReadBouncer with Readfish in an adaptive

sampling setting using the playback feature offered by ONT’s MinKNOW software to

replay an already completed sequencing run. We assess both tools by targeting chromo-

somes 21 and 22 in a human whole genome sequencing run, looking at their ability to

correctly filter out all other human nanopore reads. Here, we do not compare against

SPUMONI because there exists no adaptive sampling pipeline integrating SPUMONI for

read classification.

We perform all experiments for classification performance assessment on a laptop with

a 2.8 GigaHertz (GHz) Intel Core i7-7700HQ CPU and 16 GigaByte (GB) of memory

with an Ubuntu 20.04 OS installed. For the classification evaluation, we run each tool

with a single thread for runtime comparisons and record the wall clock time and peak

resident set size (RSS) reported by the individual tools or GNU time 1.7.

2.3.1 Evaluating Read Classification

Experimental Setup

During a nanopore adaptive sampling experiment with ONT’s ReadUntil functionality,

the sequencing device transmits electrical current data via the MinKNOW control software

to ReadBouncer. This data is received as chunks, representing a maximum of 0.4 or

0.8 seconds of sequencing, depending on the MinKNOW configuration. Since a DNA

molecule translocates through the pore at a speed of about 450 bp per second, 0.4

seconds of sequencing represent about 180 bp of data. In the following experiments, we

mimic the situation where a chunk represents 0.4 seconds of sequencing data received

and base called immediately by an adaptive sampling tool. Since we aim to make

rejection decisions as early as possible while still being able to classify most of the

reads correctly, we want to assess the classification accuracy of the three tools after

two chunks of data, which correspond to 360 bp or 0.8 seconds of sequencing. In this

section, we assume that base-calling has already been performed. For a fair comparison,

we set up all experiments in such a way that all three tools, minimap2, SPUMONI,

and ReadBouncer, attempt to classify reads based on the 360 bp long read prefix. In

practice, all reads, both simulated and real reads, were cut to only the first 360 base

pairs (bp). ReadBouncer then hashes all k-mers of these 360 bp and compares the

hash values to a prebuilt Interleaved Bloom Filter (IBF) of the depletion target references
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to make classification decisions.

We use the software’s default settings for the SPUMONI approach, which means splitting

the prefix into substrings of 90 bp each for further read classification. SPUMONI also

needs a prebuild index of the references but has to include the reverse complement of

the depletion target references. SPUMONI matches the substrings against this positive

index and a null index, consisting of the reverse sequences of the positive index. Finally,

classification decisions are made by using a Kolmogorov-Smirnov test.

For the minimap2-based approach, we evaluate two different parameter settings. First,

we mimic the read classification of Readfish by using the mappy Python interface

(https://pypi.org/project/mappy/) for minimap2. Here, we align the read prefixes with

the map-ont settings, which are the same settings used by Readfish and correspond

to a k-mer size of 15. Since the choice of the k-mer size impacts the classification

performance, we also aligned the read prefixes using a k-mer size of 13 in a second

experiment to ensure a fair comparison with ReadBouncer.

To evaluate the three tools, reads correctly classified as belonging to the depletion target

are considered true positives (TP), while reads falsely classified for depletion are called

false positives (FP). Consistently, reads that are correctly not classified as depletion

targets are considered true negatives (TN), and reads belonging to the depletion target but

not classified for depletion are called false negatives (FN). We calculate the classification

accuracy, precision, recall, specificity, and F1-score for all three approaches based on

those considerations. The recall (or sensitivity) is the relative number of correctly

classified reads from the depletion target defined by TP
TP+FN . Specificity is defined as

the relative number of reads correctly classified as not belonging to the depletion target
TN

TN+FP . Further, the accuracy is the relative number of all correct classifications, defined

as TN+TP
TN+TP+FN+FP . The F1-score is the balanced harmonic mean of precision TP

TP+FP

and recall, calculated by 2 × recall∗precision
recall+precision . Since we assume an imbalanced number of

sequenced reads between depletion and enrichment targets, we also report the Matthews

correlation coefficient (MCC) in every experiment.

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2.9)

Simulated Mock Community

In the first dataset, we consider simulated ONT-like reads derived from the identical

genomes of the ZymoBIOMICS High Molecular Weight DNA Mock Microbial commu-

nity (ZymoMC) (Nicholls et al., 2019). This mock community consists of seven bacterial

species - Enterococcus faecalis, Listeria monocytogenes, Bacillus subtilis, Salmonella
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enterica, Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa – as

well as Saccharomyces cerevisiae. We use PBSIM2 (Ono et al., 2021) to simulate

ONT-like reads (R9.4 pores) from Zymo Mock Community references at varying levels

of mean read accuracy: 80%, 85%, 90%, 95%, and 98%. Furthermore, we simulated

proportions of reads from each genome in such a way to mimic a scenario where only

2.16% of reads originate from Saccharomyces cerevisiae (Figure A.1). The goal here is

to enrich Saccharomyces cerevisiae sequences by correctly classifying bacterial reads,

which we would aim to eject from the pores in a real nanopore sequencing run. This can

be considered a depletion-only experiment, where a priori only the depletion references

are known, but not the enrichment targets. Therefore, we build an index of the seven

bacterial reference genomes and query all bacterial and yeast reads against the index.

Consistent with our definition in section 2.3.1, we consider correctly classified bacterial

reads true positives (TP), while yeast reads found in the index are considered false

positives (FP). In addition, we define bacterial reads that are missed to be found by a

tool in the index as false negatives (FN), and yeast reads that are not found in the index

are considered true negatives (TN).

On all read accuracy levels, ReadBouncer consistently demonstrates the best accu-

racy, recall, precision, F1-scores, and MCC (Table A.1). Figure 2.4 visualizes recall

and specificity for the three tools across various read accuracies. It can be observed

that recall improves with increasing read accuracy for all three tools while specificity

stays almost unchanged. On all read accuracy levels, ReadBouncer demonstrates

slightly but consistently better recall (sensitivity) than SPUMONI, while both tools

outperform minimap2. Minimap2 is the only tool that shows 100% specificity, but

ReadBouncer comes close to 100% as well. SPUMONI lags a bit behind the specificity

scores of the other two tools. It can be seen that ReadBouncer is the best-performing

tool for this read classification task. It combines high recall (sensitivity) with high

specificity. The other two tools either have high recall but lower specificity or high

specificity but lower recall scores.

Real Mock Community

Next, we applied our method to real nanopore reads from a Zymo Mock Community

(NCBI BioProject PRJNA742838). After sample preparation, we sequenced the mock

sample on a MinION flowcell (FLO-MIN106) with v.R9.4.1 pores (section A.1). Ob-

tained Fast5 files were base called with DeepNano-blitz using a recurrent neural

network size of 48. For better comparison with minimap2, we first build a separately

obtained minimap2 mapping as a gold standard. Therefore, we filter out all reads

34



2.3 Results

60

70

80

90

100

80 85 90 95

Simulated Read Accuracy (%)

R
e
ca

ll

a

90.0

92.5

95.0

97.5

100.0

80 85 90 95

Simulated Read Accuracy (%)

S
p
e

ci
fic

ity

b

minimap2 (k=13) minimap2 (k=15) ReadBouncer SPUMONI

Figure 2.4: Visualization of (a) Recall and (b) Specificity with varying simulated read
accuracies for ReadBouncer, minimap2, and SPUMONI.

shorter than 2,000 base pairs (bp) and trim the first 360 bp from each read since we

use these bases for later classification. Then, we mapped the trimmed reads with stan-

dard ONT settings to the ZymoMC reference genomes and only reads with a mapping

quality score greater or equal to 30 are considered confidently mapped. From these

mapped reads, the trimmed 360 bp long prefixes are used for the read classification

by the three tools again. Proportions of reads from each genome are similar to the

simulated experiment with 2.27% of reads from Saccharomyces cerevisiae (Figure A.2).

In this experiment, we also measure the peak resident set size (RSS) and index size in

GigaByte (GB) and the throughput for each tool in reads classified per second.

Results in Table 2.1 show that ReadBouncer achieves better accuracy, recall, and

F1-score than SPUMONI and minimap2, which both have similar results for those three

measures. Minimap2 has slightly better precision and specificity than ReadBouncer.

While SPUMONI has almost the same precision as ReadBouncer and minimap2, it

shows significantly less specificity. These results are consistent with those for the sim-

ulated data sets in section Simulated Mock Community and show that ReadBouncer

outperforms the other tools on read classification for short nanopore reads.

Another important aspect is the amount of main memory a tool needs to hold the refer-

ence index needed for read classification. Using the seven bacterial reference genomes

of the Zymo Mock Community as depletion target (reference index), ReadBouncer

shows the smallest maximum memory consumption measured as peak resident set

size (RSS). It only needs 0.099 GB of main memory, in contrast to 0.251 GB consumed

by minimap2 with k-mer size 13. Furthermore, ReadBouncer has the smallest
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Table 2.1: Comparing ReadBouncer, SPUMONI, and minimap2 across various metrics
on a real Zymo Mock Community data set consisting of seven bacterial species and Saccha-
romyces cerevisiae. Reads from a nanopore sequencing run are mapped to the eight organisms
to generate ground truth. We use only the first 360 bp for classification from those confidently
mapped reads to mimic unblock decision-making after 0.8 seconds of sequencing the individual
read. All reads are mapped against the seven bacterial reference sequences to filter out only the
bacterial reads. At the same time, we want to keep as much Saccharomyces cerevisiae reads,
which corresponds to an enrichment of that organism in an enrichment/depletion experiment.
Consistent with the simulated data, ReadBouncer can classify a higher percentage of bacterial
reads with slightly less precision and specificity than minimap2. Our approach also is the
computationally most effective one, with the lowest memory footprint and highest classification
throughput.

Tool ReadBouncer
(k=13)

SPUMONI minimap2
(k=15)

minimap2
(k=13)

Accuracy 94.50 90.96 89.33 92.33
Precision 99.99 99.89 100.00 99.99
Recall 94.38 90.85 89.08 92.15
Specificity 99.73 95.87 99.95 99.95
F1-Score 97.10 95.16 94.23 95.91
MCC 0.52 0.41 0.39 0.45
Peak RSS (GB) 0.099 0.163 0.272 0.251
Index Size (GB) 0.047 0.153 0.097 0.090
Throughput
(reads per sec)

5967 1102 5632 5306

index file size (0.047 GB) of all three tools. In addition to the smallest memory foot-

print, ReadBouncer also achieves the highest classification throughput. We can

classify 5967 reads per second with our approach compared to 5632 reads per second by

minimap2 (k-mer size 15) and 1102 reads per second achieved by SPUMONI. These re-

sults show that ReadBouncer can correctly classify more reads and is computationally

more efficient than other state-of-the-art tools used for nanopore adaptive sampling.

2.3.2 Adaptive Sampling Evaluation

In our live experiment, we assess our read classification based on Interleaved Bloom Filter

in a targeted adaptive sampling setup. For this purpose, we downloaded a bulk Fast5

file of a human whole-genome sequencing experiment provided via the GitHub page

of Readfish (https://github.com/LooseLab/readfish). Such a bulk Fast5 file (Payne

et al., 2019) allows the playback of the whole sequencing run for testing if the ReadUntil

functionality is working correctly. Oxford Nanopore Technologies’ MinKNOW software
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simulates an already finished sequencing run without requiring a physical sequencing

device when performing a playback run. Compared to the original sequencing run, read

signals are reported at the same time point after starting the run. Unblocking a read

does not cause MinKNOW to finish sending signals for that read during a playback run.

It just breaks the read when receiving an unblock message for the read and creates a

new read identifier but continues to send signals of the same original read. Here, we

compare ReadBouncer and Readfish using both real-time GPU base-calling with

ONT’s Guppy basecaller and real-time CPU base-calling with DeepNano-blitz.

While ReadBouncer integrates DeepNano, we had to use a special git branch of

Readfish (https://github.com/LooseLab/readfish/tree/caller_refactor) to facilitate CPU

base-calling. In all experiments, ReadBouncer and Readfishwere run on a separate

Ubuntu 18.04 Laptop with 16GB random access memory (RAM) and Intel Core i7 while

GPU live base-calling and the playback were performed on an NVIDIA Jetson AGX

Xavier (512-core NVIDIA Volta GPU, 32GB LPDDR4X Memory). Additionally, we

compared the results with two MinKNOW adaptive sampling experiments, one using

MinKNOW’s target and the other using MinKNOW’s deplete method. Both experiments

were performed on the NVIDIA Jetson AGX Xavier, too.

In our experiments, we do a playback of a complete human genome sequencing run

with the goal of enriching chromosomes 21 and 22 of the human genome and depleting

all other human reads from that run. This setup not only mimics a targeted sequencing

approach but also corresponds to the application of sequencing a clinical human blood

sample where up to 99% of the reads are human reads that we would want to deplete in

order to enrich the number of reads from a pathogenic microbe. We perform playback

runs for 60 minutes on ONT’s MinKNOW control software (version 4.3.3). To ensure that

the vast majority of the sequenced reads are of human origin, we first perform a playback

run without adaptive sampling. Reads were base called with Guppy (version 5.0.14)

and mapped with minimap2 to the human Telomere-to-Telomere Consortium ("T2T")

CHM13 v1.1 reference assembly (Nurk et al., 2022). From the resulting reads passing the

in-built quality filtering of MinKNOW, 99.66% could be mapped to the human reference

genome. To compare the tools in an adaptive sampling setting, we first adjust the

break_reads_after_seconds parameter within MinKNOW to 0.4 seconds as recommended

by the Payne et al. (2021). Since MinKNOW sends data as chunks, this parameter sets the

size of one chunk to a maximum of 180 base pairss. Both tools, ReadBouncer and

Readfish, can concatenate the data chunks and perform classification after receiving

every chunk. For integrated CPU base calling with DeepNano-blitz we used a

neural network size of 48 for both tools. For real-time GPU base-calling on the NVIDIA

Jetson AGX Xavier, we used the fast base-calling mode of Guppy (version 5.0.14) for
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Table 2.2: Comparison of ReadBouncer, Readfish and MinKNOW in a targeted se-
quencing experiment. Four 60-minute playback runs of a whole human genome sequencing
experiment were performed using either ReadBouncer or Readfish in combination with
either DeepNano CPU base-calling or Guppy GPU base-calling. The same experiment was
repeated with MinKNOW’s adaptive sampling functionality in target and deplete mode. The goal
of all experiments was to target chromosomes 21 and 22 while rejecting all other human reads.
For chromosomes 21 and 22, the highest mean and median read lengths across all experiments
are highlighted. For rejected reads, the lowest mean and median read lengths across all experi-
ments are highlighted. ReadBouncer and Readfish consistently show better results when
using GPU base-calling, with ReadBouncer having shorter mean and median read lengths
for non-target reads regardless of the used basecaller. ReadBouncer outperforms MinKNOW
target by having longer read lengths for on-target reads and shorter read lengths for off-target
reads caused by a better read classification. MinKNOW deplete has the worst results of all tools
indicated by high numbers of on-target reads with short read lengths caused by lots of false
unblock decisions for on-target reads.

Tool Basecaller contig Reads Bases Mean Median

ReadBouncer

DeepNano
chr21 73 2,208,211 30,249 9,025
chr22 92 1,179,449 12,820 6,262
others 122,745 136,441,510 1,112 503

Guppy
chr21 77 2,189,976 28,441 9,442
chr22 83 1,210,472 14,584 7,663
others 154,684 140,636,076 907 479

Readfish

DeepNano
chr21 73 2,118,199 29,016 9,285
chr22 91 1,177,699 12,942 5,449
others 92,527 140,303,151 1,516 1310

Guppy
chr21 71 2,126,553 29,951 9,262
chr22 88 1,178,629 13,394 6,602
others 140,267 133,484,295 952 877

MinKNOW target
chr21 77 2,099,268 27,263 9,170
chr22 105 1,061,911 10,113 3,368
others 38,656 140,284,944 3,629 520

MinKNOW deplete
chr21 1425 2,285,420 1,604 845
chr22 468 1,219,518 2,606 883
others 177,549 132,949,878 749 769

ReadBouncer and Readfish.

To evaluate both tools, we repeat the same playback run for 60 minutes. In the

experiment with CPU base-calling, we ran ReadBouncer with default parameters

( f ragment_size = 100, 000 and kmer_size = 13) using three base-calling threads

and three read classification threads, respectively. The same setting was applied to

Readfish with three CPU base-calling threads and minimap2 using three threads
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per default. Since Guppy ensures a higher raw read accuracy, we ran ReadBouncer

with f ragment_size = 200, 000, kmer_size = 15, and error_rate = 0.05 in the GPU

base-calling experiment. In all experiments, we used chromosomes 21 and 22 as the

target filter and all other chromosomes as the depletion filter in ReadBouncer. Our

settings within the Readfish configuration file correspond to the example TOML file

in the GitHub repository (https://github.com/LooseLab/readfish/blob/master/examples

/human_chr_selection.toml) and aim to target chromosomes 21 and 22 as well while

unblocking all reads that do not map to the targets. For MinKNOW target, we used

chromosomes 21 and 22 as a reference, and for MinKNOW deplete, all other chromosomes

as the reference sequence. Before starting the adaptive sampling experiments, we had

to build index files for all three tools. For Readfish and MinKNOW, we created

minimap2 index files, which took 103 seconds on an Intel Core i7 with one thread and

peak RSS of 11.68 GB. Building ReadBouncer index files took 478 seconds on the

same system but needed only 8.62 GB peak RSS. After finishing the playback run, the

resulting Fast5 files were basecalled in high accuracy mode with Guppy (version 5.0.14).

All reads in the resulting fastq files were mapped to the human genome reference and

mapping statistics were calculated with Readfish’s summary script. Using a playback

run allows a fair comparison of the different approaches since the same sequencing

data come from MinKNOW during the same amount of time. Thus, we expect a similar

number of on-target reads and on-target bases across all experiments. On the other hand,

we expect different numbers of rejected reads while retaining a similar number of bases

for those reads due to the different lengths of rejected reads caused by different unblock

time points. The reason is that MinKNOW just splits a sequenced read into two segments

when receiving an unblock message for that read. Thus, the earlier we reject an off-target

read, the shorter the read length, and the more off-target reads are seen.

The results of all six experiments can be seen in Table 2.2. Our first observation is that

the results for our target chromosomes 21 and 22 are similar for all experiments but

the MinKNOW deplete experiment. Here, the number of on-target reads is much higher

while showing the smallest mean and median read lengths caused by a high number of

false rejection decisions. These results suggest that MinKNOW deplete is not suitable for

targeting single chromosomes of the human genome in an adaptive sampling experiment.

On the other hand, MinKNOW target shows similar results for chromosomes 21 and 22

when compared to ReadBouncer and Readfish. However, the mean read length of

3,629 bp measured for unblocked reads is much higher than those in the ReadBouncer

and Readfish experiments, which shows that MinKNOW target spends too much

time sequencing off-target reads. These experiments show that ReadBouncer and

Readfish outperform the two MinKNOW adaptive sampling strategies.
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Comparing ReadBouncer with Readfish, when both tools use the same basecaller,

ReadBouncer shows better results regarding median read lengths and the number of

bases sequenced. We also see that the choice of the base-calling tool has a significant

impact on the outcome of the adaptive sampling experiment. Using Guppy GPU base-

calling for both tools, ReadBouncer and Readfish result in much shorter read

lengths for non-target (unblocked) reads. Interestingly, we observe that unblocked reads

from the ReadBouncer playback runs have shorter mean and median read lengths than

those from the Readfish playback runs. This is also shown in the length distribution

plots of unblocked reads for playback runs with Guppy base calling presented in Figure

2.5.
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Figure 2.5: Read length distributions of unblocked reads when using a) ReadBouncer
or b) Readfish on a 60 minutes playback run of a whole human sequencing
experiment with real-time Guppy GPU base-calling. ReadBouncer makes
faster rejection decisions than Readfish, which can be observed by shorter read
lengths of unblocked nanopore reads.
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2.4 Discussion

The idea of adaptive sampling is to selectively sequence individual DNA molecules on

nanopore sequencing devices using in-silico methods. This study presents a new tool for

adaptive sampling that improves read classification by combining Interleaved Bloom

Filters with k-mer matching statistics. ReadBouncer shows a higher read classifi-

cation sensitivity than other state-of-the-art classification tools for adaptive sampling

while retaining a high specificity. Our tool also improves classification performance and

memory usage compared to the other tools. We could observe shorter read lengths of

non-target reads in different playback experiments when using ReadBouncer instead

of Readfish. In a real experiment, this could mean that ReadBouncer investigates

more DNA molecules in the same amount of sequencing time. We developed our tool as

an easy-to-install software application with a Graphical User Interface on Linux and Win-

dows operating systems. Additionally, ReadBouncer supports fast CPU base-calling,

providing even small sequencing facilities or in-field researchers that typically only have

access to low-cost hardware the possibility to use the adaptive sampling feature of the

MinION sequencer.

The key benefit of our new tool is the improved read classification. We neither use

signal nor sequence space mapping algorithms for read classification compared to other

adaptive sampling tools. Instead, our Interleaved Bloom Filter (IBF) approach uses

k-mer counting in Bloom Filters for sequence containment testing, resulting in smaller

index files and fewer memory requirements. However, the improved sensitivity comes at

the cost of decreased classification speed with increasing reference database size due

to our approach of fragmenting the reference genome sequences and using one bin of

the Interleaved Bloom Filter per fragment. The fragmentation approach ensures a high

classification specificity for nanopore reads with high error rates of approximately 10-

15% as observed by the CPU basecaller DeepNano-blitz (Boža et al., 2020). This

error rate forces us to use small k-mer sizes such as 13, which requires smaller fragment

sizes down to 100,000 bp to avoid too many false positive matches. Using real-time

GPU base-calling with single raw read accuracies of about 94% allows increasing the

k-mer size to 15 and fragment size to 200,000 bp, reducing the number of bins in the

Interleaved Bloom Filter by 50%. In the future, we expect to use even fewer fragments

per genome and consequentially improve the classification speed for larger genomes as

Oxford Nanopore Technologies steadily improves its per-read accuracy. This could also

enable using our IBF approach for real-time metagenomics classification of nanopore

reads or the construction of pan-genomics indexes that store all different haplotypes of

a pathogen in one IBF, with one haplotype per bin. To further increase performance,
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combining ReadBouncer and minimap2 could be worthwhile, as the integration of

different methods in related fields has demonstrated (Piro et al., 2017).

A second key feature of ReadBouncer is its support for fast and accurate real-time

GPU base-calling with ONT’s Guppy and real-time CPU base-calling with DeepNano-

blitz. This study showed that both approaches show reliable results for a whole hu-

man sequencing playback run with the application to target specific chromosomes while

rejecting reads belonging to all other chromosomes. Since there are some performance

drawbacks of MinKNOW when using a playback run, the measured read lengths of re-

jected reads can deviate from a real experiment. Other users reported much shorter

unblocked read lengths on real experiments performed on NVIDIA Jetson AGX Xavier

(https://github.com/sirselim/jetson_nanopore_sequencing). To ensure reproducibility

and fair comparison between tools and to reduce the influence of potential artifacts, we

evaluated our tool here on a playback of a well-performed experimental run rather than

during run-time of the sequencer. Since a playback run is data from a real sequencing

experiment, we do not expect any bias from this comparison but can guarantee a fair com-

parison between tools. We also do not expect any negative impact on ReadBouncer’s

classification approach’s improved sensitivity by using a playback run.

We expect that ReadBouncer can also contribute to the field of pathogen detection

in non-model organisms. Metagenomics sequencing of such samples easily consists

of up to 99% host reads that can be depleted with adaptive sampling resulting in an

in-silico enrichment of pathogenic reads as shown by other research groups (Marquet

et al., 2022; Martin et al., 2022). Here, our CPU-based approach also makes access

to adaptive sampling much easier for researchers studying wild living animals in the

field. With nanopores being successfully applied to peptide sequencing (Brinkerhoff

et al., 2021), we also see possible modifications of the approach to be useful for targeted

protein sequencing.

Another potential use case for adaptive sampling is the real-time detection of antibiotic

resistance and virulence genes. In their recently published study, Zhou et al. (2021)

showed that direct nanopore metagenomics sequencing of human blood samples could

detect pathogens in real-time but failed to detect antimicrobial resistance gene (ARG).

They compared the direct metagenomic sequencing approach to the MinION sequencing

of blood culture samples. Using blood cultures, they could deplete human reads to

about 65% of all sequenced reads in the corresponding sample, which was sufficient

to identify more than 80% of resistance genes after 2 hours of sequencing. We expect

that the number of sequenced human host reads can be depleted at a similar rate by

using adaptive sampling, which was already shown by Marquet et al. (2022). This could

reduce costs and decrease the time to detect pathogens in human blood samples. In the
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future, a point-of-care test for ARGs in human patient samples that also avoids shipping

the samples to a nearby laboratory could decrease antibiotic drug usage and help restrict

the development of antibiotic resistance, which is a burden to many healthcare systems

all over the world. Besides further sample preparation and sequencing technology im-

provements, we encourage scientists to set up proof-of-principle studies investigating

the potential application of adaptive sampling for real-time ARG detection.
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3 Nanopore adaptive sampling
effectively enriches bacterial
plasmids

Summary

Bacterial plasmids are key drivers in the spread of antimicrobial resistance. They are

usually underrepresented in clinical samples and need to be enriched in the laboratory,

which is expensive and prone to bias. Here, we introduce nanopore adaptive sampling

as a bias-free in-silico method for enriching low-abundant plasmids in known bacterial

isolates. We show that a significant enrichment can be achieved even on expired flow

cells. Adaptive sampling improves the quality of de novo plasmid assemblies while

reducing the sequencing time. Our experiments also highlight issues with adaptive

sampling if target and non-target sequences span similar regions.

This chapter is based on Ulrich et al. (2023), which is a joint work with Lennard

Epping, Tanja Pilz, Birgit Walther, Kerstin Stingl, Torsten Semmler and Bernhard Y.

Renard. A detailed description of the authors’ contributions can be found in section

Thesis outline.

3.1 Background

Infectious diseases caused by bacterial pathogens have lost their threat to people living

in high-income countries due to the discovery of antibiotic drugs within the last 70

years. However, adaptation processes within bacteria cause these drugs to lose their

effectiveness in treating infectious diseases. The emergence of such antimicrobial resis-

tance (AMR) already poses a significant threat to public health, with an estimated 4.95

million deaths associated with bacterial AMR in 2019 (Murray et al., 2022), and will

even worsen, with around 10 million expected deaths per year by 2050 (O’Neil, 2014;

O’Neill, 2016).

Besides vertically passing antimicrobial resistance genes (ARGs) to their offspring, bac-
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teria can also transfer ARGs across the bacterial population by horizontal gene transfer.

This process is mediated via mobile genetic element (MGE), such as plasmids, which

are epichromosomal DNA elements unique to bacteria (Gonçalves et al., 2021; Partridge

et al., 2018). Plasmids are a major driver in the spread of ARGs in bacterial populations

(Carattoli, 2013) and have recently been found to accelerate bacterial evolution by en-

hancing the adaptation of the bacterial chromosome (Rodríguez-Beltrán et al., 2021).

Classifying plasmid types is crucial to understanding antibiotic resistance transmission

between bacteria. Several recent studies have shown the benefit of whole genome

sequencing for classifying plasmid types (Hidalgo et al., 2019; Orlek et al., 2017). In par-

ticular, the emergence of long-read sequencing by Oxford Nanopore Technologies (ONT)

promises improvements for outbreak investigations due to its lower capital investment

and shorter turnaround times (Stohr et al., 2020; Taylor et al., 2019). However, these

methods suffer from the small proportion of plasmid DNA within the sequenced samples,

primarily if bacteria can not be cultivated in the lab (Kav et al., 2013). Therefore, a

large proportion of the plasmids in such samples are probably missed, or the sequenc-

ing depth is insufficient to assemble them correctly (Lynch & Neufeld, 2015). Thus,

additional sample preparation steps are required to isolate or enrich plasmids before

DNA sequencing, but they are too expensive and laborious for applications in clinical

diagnostic settings.

While nanopore sequencing has been shown to reconstruct plasmids accurately (Wick

et al., 2021), the technology offers a feature called adaptive sampling (AS) that has

the potential to improve plasmid classification. First described in 2016 by Loose et

al. (2016), nanopore adaptive sampling has been increasingly used for in-silico target

enrichment within the last two years. Here, DNA molecules can be rejected from individ-

ual nanopores if the corresponding sequence is not interesting for downstream analysis.

Pulling out unwanted DNA frees the nanopore for the following molecule to be sequenced

and reduces the time spent sequencing uninteresting DNA fragments. Different tools im-

plement adaptive sampling (Kovaka et al., 2021; Payne et al., 2021; Ulrich et al., 2022),

using dynamic time warping (UNCALLED), read mapping (Readfish, MinKNOW) or

k-mer-based (ReadBouncer) strategies, all performing rejection decisions by analyz-

ing the first 160 to 450 base pairs (bp) of each read. Recently, deep-learning-based tools

like SquiggleNet and DeepSelectNet have also been developed, addressing host

depletion in human microbiome samples (Bao et al., 2021; Senanayake et al., 2023).

The potential enrichment reached by using adaptive sampling was already shown, and

even mathematical models that predict the enrichment factor were described in previous

studies (Martin et al., 2022; Payne et al., 2021; Viehweger et al., 2023). In one study,

Marquet et al. (2022) could enrich the microbiome in human vaginal samples by deplet-
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ing host DNA. Further, Kipp et al. (2023) used adaptive sampling to enrich bacterial

pathogens in tick samples, while Viehweger et al. (2023) even enriched single ARGs in

human microbiome samples. However, no study has shown the potential enrichment of

plasmid sequences in bacterial isolates by depleting their chromosomal DNA sequences.

In the present study, we investigate the efficiency of adaptive sampling to enrich plasmid

sequences in five different bacterial isolates. For this purpose, we used two adaptive

sampling tools, which were shown to have high read classification performance, namely

MinKNOW and ReadBouncer (Bao et al., 2021; Ulrich et al., 2022). Both tools use

a combination of base-calling with ONT’s Guppy and read classification on sequence

level. While MinKNOW’s adaptive sampling feature is based on the Readfish (Payne

et al., 2021) scripts and uses minimap2 (Li, 2018) to map read prefixes against a

given reference sequence set, ReadBouncer utilizes pseudo-mapping based on k-mers

and interleaved Bloom Filters for making rejection decisions. We refrained from using

UNCALLED because Bao et al. (2021) showed that the combination of base-calling and

mapping has a higher read classification accuracy than UNCALLED. In order to increase

sustainability and reduce sequencing costs, we also investigate whether enrichment of

plasmids can be achieved with adaptive sampling on expired flow cells with reduced

active pores. Finally, we evaluate the effective plasmid enrichment by comparing it to

the predicted enrichment calculated by the mathematical model proposed by Martin et al.

(2022) and demonstrate the usefulness of adaptive sampling for plasmid assemblies.

3.2 Methods

3.2.1 Culture and DNA extraction

Campylobacter strains were streaked on Columbia Blood agar (Oxoid, Thermofisher

Scientific, USA) and incubated at 42 °C under a microaerobic atmosphere.

Enterobacter, Salmonella and Klebsiella strains used in this study were streaked out

on Luria Bertani (LB) plate and incubated over night at 37 °C. DNA extraction for

Campylobacter jejuni (GCF_008386335.1) was done using the MagAttract HMW

Genomic Extraction Kit (Qiagen). For Salmonella enterica (GCA_025839605.1),

Campylobacter coli (GCF_025908295.1) (Tegtmeyer et al., 2022), Klebsiella pneumoniae

(GCF_025837075.1) and Enterobacter hormaechei (GCF_001729785.1 ) DNA was ex-

tracted using the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) according to the

manufacturer’s instruction. The total amount of DNA was quantified using a Qubit

fluorometer (Thermo Fisher Scientific) and frozen at -80ºC until further analysis.
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3. Nanopore adaptive sampling effectively enriches bacterial plasmids

3.2.2 Library preparation and sequencing

Sample preparation was performed according to the manufacturer’s instructions without

any optional pre-enrichment steps or size selection using the Rapid Barcoding Kit SQK-

RBK004. Different barcodes were used for each of the bacterial isolate samples to

correctly assign sequenced reads in the data analysis. Since we used expired flow cells

with less expected overall sequencing yield, we decided to only sequence two or three

bacterial isolates on one flow cell. Finally, the barcoded samples were sequenced on an

Oxford Nanopore MinION (Oxford, UK) using FLO-MIN106D(R9.4.1) flow cells. All

sequencing experiments were started via ONT’s MinKNOW control software (version

4.5.0).

3.2.3 In-silico enrichment via adaptive sampling

We performed four sequencing runs using MinKNOW software v4.5.0 on an Nvidia

Jetson AGX Xavier (512-core NVIDIA Volta GPU, 32GB LPDDR4X Memory) for 24

hours. In all experiments, we compared adaptive sampling with standard sequencing

by dividing the flow cells into two parts: Adaptive sampling was performed on the

first 256 channels, and standard sequencing was performed on channels 257 to 512.

We used a new flow cell with 1,153 active pores for the first run (ReadBouncer1) and

sequenced two Campylobacter isolates using barcodes RBK01 and RBK02. For the

second run (ReadBouncer2), we used an expired flow cell with only 636 active pores for

sequencing the three barcoded bacterial isolates (Enterobacter, Salmonella, Klebsiella)

using barcodes RBK03, RBK04 and RBK05. The third run (MinKNOW1) used the

same Campylobacter samples as the first, but we performed sequencing on an expired

flow cell with only 557 active pores. For the fourth run (MinKNOW2), we used the

identical three bacterial isolates as for the second run and performed sequencing on an

expired flow cell with only 718 active pores after the initial flow cell check.

On the first two flow cells, we performed adaptive sampling with ReadBouncer (Ulrich

et al., 2022) using the chromosomal references of the bacterial isolates as depletion

targets. Here, a k-mer size of 15, a chunk length of 250 bp, a fragment size of 200,000

bp, and an expected error rate of 5% were used as parameters for the read classification.

ReadBouncer’s k-mer size parameter was chosen accordingly to the default k-mer size

used for mapping with minimap2 (Li, 2018), which is used by MinKNOW’s adaptive

sampling feature. The expected error rate reflects the current average per-read accuracy

by ONT’s Guppy basecaller. The other two parameters are default parameters. For flow

cells three and four, MinKNOW’s adaptive sampling feature was used, which is based

on the Readfish (Payne et al., 2021) scripts and uses minimap2 (Li, 2018) to map
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read prefixes against a given reference sequence set for read classification. We built

a minimap2 index file (parameter -x map-ont) for these experiments, including

the chromosomal reference sequences, which we used as depletion targets for adaptive

sampling. Read prefixes classified as "chromosomal" were rejected from the pore, and

decisions were written to log files by both tools, ReadBouncer and MinKNOW. In all

experiments, ReadBouncer and MinKNOW used Guppy GPU basecaller (fast model,

v6.0.6. Oxford Nanopore Technologies (ONT)) for real-time base-calling of the raw

signal data received from the device after at most 0.4 seconds of sequencing.

3.2.4 Data Analysis

All data analysis scripts were written in Python and R, and are freely available in the

GitHub repository https://github.com/JensUweUlrich/PlasmidEnrichmentScripts. All

plots were created in R using ggplot2.

After the sequencing runs were finished, we basecalled and demultiplexed all raw data

with Guppy GPU basecaller (super accuracy model, v6.0.6. Oxford Nanopore Tech-

nologies (ONT)). Guppy trimmed barcodes and adapter sequences from the resulting

nanopore reads during that process. Afterward, we computed read length metrics (see

Table 3.1 and Figure 3.1) and created contour plots (see Figures 3.4 & 3.3) using the

sequencing_summary files provided with the MinKNOW and Guppy output directories.

Next, we mapped all demultiplexed and base-called reads against the reference genomes

(including plasmid sequences) of the five bacterial strains using minimap2 v2.19

(Li, 2018) with parameter -x map-ont. Based on the mapping results, we could

assign each mapped read to either the bacterial chromosome or plasmid(s) of one of the

bacterial isolates to create Figure 3.2. We also used the mapping results to calculate the

percentage of sequenced plasmid and chromosome base pairs after 24 hours for each

bacterial sample, resulting in Figure 3.6. We further used the sequencing summary file

to separate the reads by their species of origin and partitioned them to comprise the

cumulative data from the beginning of each experiment up to 24 hours, separated by 30

minutes of sequencing, which resulted in 48 individual timepoint data sets. With this

information, we calculated for each experiment time point t the plasmid enrichment by

yield for each bacterial strain,

Enrichmentyield(t) =
yieldAS(plasmid, t)

yieldCTRL(plasmid, t)
(3.1)

where yieldAS(plasmid, t) is the number of sequenced plasmid bases of a strain from

the adaptive sampling region at time point t and yieldCTRL(plasmid, t) is the number of
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sequenced plasmid bases of a strain from the control region (without adaptive sampling)

at time point t.
Similarly, we calculated the enrichment by the number of reads,

Enrichmentreads(t) =
readsAS(plasmid, t)

readsCTRL(plasmid, t)
(3.2)

and the enrichment by the mean depth of coverage of the plasmid reference sequences.

Enrichmentdepth(t) =
depthAS(plasmid, t)

depthCTRL(plasmid, t)
(3.3)

According to the definitions above, readsAS(plasmid, t) and readsCTRL(plasmid, t)
represent the number of reads from the adaptive sampling (AS) or control region

(CTRL) that map to a plasmid of a given bacterial strain at experiment time point

t. Further, depthAS(plasmid, t) denotes the mean sequencing depth of plasmids from

a strain using mapping data from the adaptive sampling region at time point t and

depthCTRL(plasmid, t) is the mean sequencing depth of plasmids on the control region

at time point t. Here, we used samtools coverage (Li et al., 2009) to calculate the

mean depth of coverage of every species’ plasmid reference at each time point for the

control and adaptive sampling regions. The different enrichment factor values calculated

for each bacterial sample at any of the 48 time points were plotted and shown in Figure

3.9.

For the plots of active channels over time (Figure 3.5), a channel was defined as active

from the beginning of the experiment up until the time it sequenced its final molecule

(as long as it sequenced at least one molecule). The enrichment by composition shown

in Figure 3.8 (a) and (b) was calculated by dividing the relative plasmid abundance

from adaptive sampling regions by the relative plasmid abundance from control regions,

both shown in Figure 3.6. We compared observed enrichment by composition and yield

against predicted enrichment values using the mathematical model from Martin et al.

(2022). To calculate predicted enrichment values, we used the recommended sequencing

speed of 420 bp per second, capture time of 0.5 seconds, decision time of 1 second,

and mean read lengths for each bacterial sample as provided in Table 3.1, and plasmid

abundances of control regions for each sample as shown in Figure 3.6.

Since we expect plasmid sequences in our use case scenario to be usually unknown,

we also did a de novo assembly of the demultiplexed fastq files, containing all reads

sequenced after one and two hours of sequencing. This helps us to estimate the time

required to obtain high-quality plasmid assemblies. Therefore, we assembled all de-

multiplexed nanopore reads from control and adaptive sampling regions separately

using Flye/metaFlye assembler (v2.9.2, parameter "–meta") (Kolmogorov et al.,
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Figure 3.1: Evaluation of control regions from the first four sequencing runs. (a) Violin
plots (log scale) of read length distributions. Box plots for read lengths are included
within the violin plots. (b) Active pore count measured at the start of each sequencing
run. ReadBouncer1 has the highest number of active pores because it was the only
flow cell that was not expired. (c) Read length distributions for each species from
control regions of the four sequencing runs.

2020; Kolmogorov et al., 2019). Then, we polished the obtained metaFlye assem-

blies with one round of Medaka consensus (v.1.8.0, default parameters, model

r941_min_sup_g507, Oxford Nanopore Technologies (ONT)) using the same nanopore

read set. We assessed the quality of the final assemblies with Quast (v5.2.0) (Gurevich

et al., 2013) and combined reported metrics like mean depth of coverage for both time

points.
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3. Nanopore adaptive sampling effectively enriches bacterial plasmids

3.3 Results

3.3.1 Reduced sequencing yield but same data quality with expired
flow cells

In this study, we present the application of nanopore adaptive sampling on the in-

silico enrichment of plasmids by depleting chromosomal reads during the sequenc-

ing of bacterial isolates. For this purpose, we separately sequenced five bacterial

strains - Campylobacter jejuni, Campylobacter coli, Salmonella enterica, Enterobacter

hormaechei and Klebsiella pneumoniae - on four different flow cells, each divided into

an adaptive sampling and a control region. We refer to the flow cells according to the

adaptive sampling tool used. This section provides an overview of the general sequencing

run and sample metrics of the control regions to assess the quality of the four sequencing

runs.

First, we investigated the number of active pores on each flow cell (Figure 3.1 c) and

the sequencing yield from the control regions in terms of the number of base pairs and

the number of reads (Figure 3.2 (a,c)). We observe that flow cell ReadBouncer1 has

the highest number of active sequencing pores (1,153) at the start of the run, while the

other three flow cells have between 557 and 718 active pores. The fewer active pores can

be explained using expired flow cells for these three sequencing runs. Consistent with

the number of active pores, flow cell ReadBouncer1 has the highest overall sequencing

Table 3.1: Overview of read length metrics of the five bacterial isolates. The metrics were
computed from reads sequenced on the control side of the flow cells where no adaptive sampling
was applied.

Reference Flow cell ID Mean Median Std.
Length Length Deviation

Campylobacter jejuni
ReadBouncer1 16,525.65 10,950 17,083.76
MinKNOW1 13,360.65 8,192 15,072.50

Campylobacter coli
ReadBouncer1 4,375.37 1,580 6,952.86
MinKNOW1 5,536.69 2,736 6,894.11

Salmonella enterica
ReadBouncer2 9,304.79 6,455 9,131.90
MinKNOW2 8,679.22 5,952 8,629.98

Enterobacter hormaechei
ReadBouncer2 8,909.21 6,239 8,845.49
MinKNOW2 8,309.64 8,861 8,192.69

Klebsiella pneumoniae
ReadBouncer2 9,379.93 6,512 9,180.22
MinKNOW2 8,842.23 5,963 8,928.63
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Figure 3.2: Comparison of flow cell yield in terms of sequenced base pairs and reads after
24 hours. (a) Yield in Megabases for each flow cell divided by control and adaptive
sampling region (Depletion). (b) Yield in Megabases for each flow cell region
divided by plasmid and chromosome. (c) Number of sequenced reads for each flow
cell divided by control and adaptive sampling region (Depletion). (d) Number of
sequenced reads for each flow cell region divided by plasmid and chromosome.

yield (about 4.5 Gigabases). Surprisingly, flow cell MinKNOW2 results in significantly

less yield than ReadBouncer2 (2 Gigabases vs. 3 Gigabases), although having a higher

number of active pores (718 vs. 636) at the start of the sequencing run. This shows that

the number of active pores does not necessarily correlate with flow cell yield for expired
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3. Nanopore adaptive sampling effectively enriches bacterial plasmids

flow cells. The yield on control regions is much higher for all flow cells than on adaptive

sampling regions. This observation is consistent with previous studies (Martin et al.,

2022; Payne et al., 2021) and can be explained by more overall time spent capturing a

new molecule after rejecting one from a pore. In this context, we observe on all four flow

cells a higher number of reads sequenced on the adaptive sampling regions than on the

control regions (Figure 3.2 (c)). Thus, many reads are classified as chromosomal by the

adaptive sampling tools and rejected from the pores, leading to more reads sequenced

on the adaptive sampling regions. Here, the flow cell run ReadBouncer2 has a higher

number of reads on the adaptive sampling region than ReadBouncer1. This results from a

larger number of chromosomal reads that were rejected on the adaptive sampling region

of flow cell ReadBouncer2 (approx. 370,000) than on the adaptive sampling region of

ReadBouncer1 (approx. 350,000). To further assess and compare the quality of the

four sequencing runs, we look at the read length and quality from the control regions of

the sequencing runs. The contour plots in Figure 3.3 show that for all four sequencing

runs, a large proportion of reads have a mean Phred quality between 12 and 15. Only

0

5

10

15

20

102 103 104 105

Read length (log10)

M
ea

n 
re

ad
 q

ua
lit

y

ReadBouncer1

0

5

10

15

20

102 103 104 105

Read length (log10)

M
ea

n 
re

ad
 q

ua
lit

y

ReadBouncer2

0

5

10

15

20

102 103 104 105

Read length (log10)

M
ea

n 
re

ad
 q

ua
lit

y

MinKNOW1

0

5

10

15

20

102 103 104 105

Read length (log10)

M
ea

n 
re

ad
 q

ua
lit

y

MinKNOW2

Figure 3.3: Contour plots of read lengths (log scale) against mean read quality for control
regions of the four sequencing runs. Darker regions indicate a higher proportion
of reads that fall into that slice. For example, ReadBouncer1 and MinKNOW1 have
a higher proportion of reads with lengths above 10,000 bp than for ReadBouncer2
and MinKNOW2.
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for runs ReadBouncer1 and MinKNOW2, we observe a significant proportion of reads

with low mean phred quality between 5 and 7. This suggests no drop in per-read quality

when using expired flow cells for normal sequencing. We can also not observe any read

length-related quality drop for the expired flow cells. Regarding read lengths, we can

only compare ReadBouncer1 with MinKNOW1 and ReadBouncer2 with MinKNOW2.

For ReadBouncer1 and MinKNOW1, both having the same Campylobacter samples

sequenced, we see a larger proportion of longer reads above 10,000 bp for ReadBouncer1.

In order to investigate that difference, we looked into per-sample read length metrics,

which are provided in Table 3.1.

First, the sequencing data after base calling from the control regions show a large

difference in mean and median read lengths and the standard deviation for the two

Campylobacter samples. Here, the application of the MagAttract HMW Genomic Ex-

traction Kit (Qiagen) results in larger read lengths for the C.jejuni samples. We also

see a difference between the read lengths of the same sample from the two Campy-

lobacter sequencing runs (ReadBouncer1 and MinKNOW1), particularly for C. coli.

However, there is no trend that read lengths on expired flow cells are generally shorter

because the read lengths for C. coli are longer on the expired flow cell MinKNOW1

when compared to ReadBouncer1. This suggests that sample handling and preparation,

as well as the used barcodes, could have more influence on the read length than flow cell

expiration. For the other two flow cells, we observe that the mean read quality is better

for ReadBouncer2, and the read lengths are longer for each sample when compared to

MinKNOW2. Although both flow cells were expired, we cannot say whether the flow

cells’ quality could have influenced both metrics. However, the number of active pores

for MinKNOW2 at the sequencing start was higher than that for ReadBouncer2, which

suggests that this number is not a reliable indicator of the quality of the sequenced data.

3.3.2 Adaptive sampling reduces the number of active channels
and sequencing yield, but not read quality

One of the major aspects of our study is the investigation of the impact adaptive sampling

has on expired nanopore flow cells. In Figure 3.2, we see that for all four flow cells, the

sequencing yield on adaptive sampling regions is significantly reduced in comparison to

control regions. This observation aligns with previous studies (Martin et al., 2022; Payne

et al., 2021) and originates from a reduced overall time spent for sequencing the DNA

and more overall time needed to capture the DNA molecules when adaptive sampling is

applied. However, we do not see a higher relative yield reduction for adaptive sampling

regions on expired flow cells ReadBouncer1, MinKNOW1, and MinKNOW2.
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Figure 3.4: Contour plots of read lengths (log scale) against mean read quality for adaptive
sampling regions of the four sequencing runs. Darker regions indicate a higher
proportion of reads that fall into that slice. For example, most reads from sequencing
runs MinKNOW1 and MinKNOW2 have read lengths of about 650 bp and a phred
quality value of around 12.

In order to check if adaptive sampling leads to faster pore exhaustion on expired flow cells,

we further investigated the effect of adaptive sampling on the number of active sequencing

channels and yield in sequenced Mbases per hour (see Figure 3.5). Comparing the four

experiments, we consistently observe fewer active sequencing channels on flow cell

regions with adaptive sampling than in control regions across all experiments. In

summary, we find between 1.4 to 2.6 times more active channels in control regions

than in adaptive sampling regions. However, we could not detect bigger systematic

differences in active sequencing channels on expired flow cells when compared to the

fresh flow cell ReadBouncer1. Finally, we also compared the average read quality scores

from reads sequenced on control regions (Figure 3.3) with those sequenced on adaptive

sampling regions (Figure 3.4). This comparison shows no significant loss in read quality

when applying adaptive sampling to expired flow cells.

56



3.3 Results

3.3.3 Rejecting chromosomal reads increases the relative plasmid
abundance

In our four experiments, we investigate the potential enrichment of plasmid sequences in

bacterial samples by rejecting the chromosomal reads using adaptive sampling. First, we

calculated the percentage of sequenced chromosomal and plasmid base pairs for each

sample from the adaptive sampling and control regions. We refer to the percentage of

plasmid base pairs as the relative plasmid abundance in a sample. In Figure 3.6, we

see that after 24 hours of sequencing, adaptive sampling increases the relative abun-

dance of plasmid base pairs (bp) for all samples on the four flow cells. For instance,

we could increase the abundance of Campylobacter coli plasmid bases from 3.68% to

24.75% when rejecting chromosomal reads with MinKNOW. We further observe that

plasmid abundances are much higher when using MinKNOW instead of ReadBouncer

for adaptive sampling. Since ReadBouncer has shown a higher read classification
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Figure 3.5: Comparison of active channels and yield between control and adaptive sampling
(depletion) regions in all four experiments. (a) Plots showing how the number of
active channels varies with time in adaptive sampling (depletion) and control regions.
There are more active sequencing channels in control regions on all four flow cells
(b) Hourly yields from depleted channels vs control channels. Usage of adaptive
sampling results in lower overall sequencing yield compared to normal sequencing.
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accuracy in a previous study, we suggest that ReadBouncer needed more time than

MinKNOW to reject unwanted chromosomal DNA molecules. Thus, we investigated the

lengths of rejected reads in the final output of the experiments by using information from

the sequencing summary files (end_reason = data_service_unblock_mux_change)

produced by the MinION control software. The read length histogram in Figure 3.7 com-

pares the lengths of reads rejected by MinKNOW with those rejected by ReadBouncer.

In the histogram, we see that reads rejected by ReadBouncer are much longer than

those rejected by MinKNOW, with an average length of 848 bp compared to 520 bp. This

confirmed our assumption that ReadBouncer rejects reads later during the adaptive

sampling process resulting in a higher abundance of unwanted chromosomal base pairs

in the final output. To avoid confusion, we have to note that the lengths of rejected

reads in the final output are not the same as the read prefix (or chunk) length used by

adaptive sampling tools for making rejection decisions. Lengths of rejected reads in the
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Figure 3.6: Comparison of plasmid abundances in five bacterial samples. Adaptive sam-
pling with MinKNOW was used on flowcells MinKNOW1 and MinKNOW2 and
ReadBouncer was used as adaptive sampling tool on flowcells ReadBouncer1
and ReadBouncer2. For all experiments, plasmid abundances for each sample were
measured after 24 hours of sequencing for control regions and adaptive sampling
regions (Depletion). Plasmid abundances are highest when using MinKNOW for
depletion of chromosomal nanopore reads.
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final output represent the time needed for the whole decision process, including time for

communication with the API and mapping of reads against index data structures.

We further examined whether the plasmid enrichment by composition and yield we

observe in our experiments corresponds to the predicted enrichment by the mathematical

model proposed by Martin et al. (2022). We calculated the enrichment by composition by

dividing the relative plasmid abundance from adaptive sampling regions by the relative

plasmid abundance from control regions. Accordingly, we calculated the enrichment

by yield using the number of sequenced plasmid base pairs from adaptive sampling

and control regions. As predicted by the model, the enrichment factor was higher for

samples with less abundant plasmids (Figure 3.8 (a)). The highest levels of enrichment

by composition were obtained using MinKNOW, which can be explained by faster rejec-

tion decisions. The predictions from the mathematical model by Martin et al. (2022)

correlated moderately with our observations (Pearson’s r = 0.55) as shown in Figure

3.8 (b). In contrast, the original plasmid abundance has no impact on the enrichment by

yield (Figure 3.8), with enrichment by yield being significantly less than enrichment by
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Figure 3.7: Read length histogram of rejected reads by MinKNOW and ReadBouncer.
Adaptive sampling with MinKNOW leads to rejected read lengths of about 450 to
500 bp while lots of rejected reads are even longer than 1,000 bp when using
ReadBouncer
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3. Nanopore adaptive sampling effectively enriches bacterial plasmids

composition. We also noticed that the predicted enrichment values by the model do not

correlate with the observed enrichment values by yield (Pearson’s r = −0.07, Figure

3.8 (d)).

3.3.4 Effective enrichment of plasmids by yield, read number and
mean depth of coverage

We examine the effective plasmid enrichment at different time points of sequencing for

each experiment by calculating the plasmid enrichment for the five bacterial species in

30-minute intervals. According to equation 3.1, the enrichment by yield is the ratio of
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Figure 3.8: Scatterplots for plasmid enrichment by composition and yield. (a) Enrichment
factor by composition against relative abundance. Each point represents a bacterial
sample, with the position on the x-axis indicating the original relative abundance
of plasmids in the sample and the position on the y-axis indicating the enrichment
factor obtained. (b) Correlation between observed enrichment values by composition
and predicted enrichment values by the mathematical model (Pearson’s r of 0.55).
(c) Enrichment factor by yield against relative abundance. Each point represents
a bacterial sample, with the position on the x-axis indicating the original relative
abundance of plasmids in the sample and the position on the y-axis indicating the
enrichment factor obtained. (d) Correlation between observed enrichment values by
yield and predicted enrichment values by the mathematical model (Pearson’s r of
-0.07).
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Figure 3.9: Comparison of enrichment in five bacterial samples. (a) Enrichment by number
of sequenced plasmid bases for all five bacterial strains across the four sequencing
runs. (b) Enrichment by number of plasmid reads for the five bacterial strains across
all four sequencing runs. (c) Enrichment by mean depth of coverage of plasmid
references for the five bacterial strains across the four sequencing runs. All strains
but the Klebsiella pneumoniae sample, where MinKNOW was used for adaptive
sampling, show a slight enrichment.
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3. Nanopore adaptive sampling effectively enriches bacterial plasmids

cumulative plasmid bases from the adaptive sampling region and the control region at

time point t. We calculate the enrichment by the number of plasmid reads and mean

depth of coverage in the same manner as proposed by equations 3.2 and 3.3. Figure

3.9 (b) illustrates that we obtain an enrichment of plasmid reads for all samples in all

experiments at any given time point. This observation confirms that the number of

sequenced plasmid reads can be increased by using adaptive sampling. We can see the

same effect for the enrichment by yield (Figure 3.9 (a)) for all but one sample. For the

Klebsiella pneumoniae sample of flow cell MinKNOW2, we observe that the number of

plasmid bases from adaptive sampling is less than that from the control channels. Thus,

we failed to obtain an enrichment of Klebsiella pneumoniae plasmids in that experiment

where we used MinKNOW to deplete chromosomal reads. For all other samples, we

observe an enrichment of 1.1x to 1.8x after 24 hours, corresponding to 10 − 80% more

plasmid data when using adaptive sampling, even when using expired flow cells with

reduced active pores.

We further investigated the difference in enrichment between the same samples from

experiments ReadBouncer2 and MinKNOW2. First, flow cell MinNKOW2 has fewer

active sequencing channels and produces less sequencing yield than the flow cell from

experiment ReadBouncer2 (see Figure 3.5). Figure 3.4 also illustrates that the average

read quality in the adaptive sampling region of flow cell MinKNOW2 is smaller than

for flow cell ReadBouncer2. Both observations suggest a decreased pore quality of

flow cell MinKNOW2. Although this might explain the reduced enrichment by yield

in this experiment, it does not explain why there is an effective depletion of plasmid

bases for Klebsiella pneumoniae in experiment MinKNOW2. Thus, we identified all

reads from the final output that mapped against the Klebsiella pneumoniae plasmids

but were rejected by MinKNOW. We extracted these falsely rejected plasmid reads of

Klebsiella pneumoniae and mapped them to the corresponding bacterial chromosome

reference sequences with minimap2 (Li, 2018). Using samtools depth (Li et

al., 2009), we could identify four regions (between 829 and 2,101 bp long) on the

Klebsiella pneumoniae chromosome with read depth ≥ 10. These findings reveal

regions of high identity between Klebsiella pneumoniae plasmid targets and non-target

chromosome sequences. Such similar regions between target and non-target sequences

pose a challenge for the application of nanopore adaptive sampling and potentially lead to

an increased number of falsely rejected target reads. Here, it seems that ReadBouncer

can avoid a high number of false rejections by using longer read prefixes (see Figures

3.7 and 3.4) for making rejection decisions. Our observations suggest that using more

sequence information by increasing the chunk size for adaptive sampling with MinKNOW

could circumvent such issues.
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3.3.5 Adaptive sampling helps improving plasmid assemblies

Table 3.2: Plasmid Assembly statistics of adaptive sampling and control region after one
and two hours of sequencing for two different bacterial isolates from sequencing runs
ReadBouncer2 and MinKNOW2. All reads from the adaptive sampling and control regions
were separately assembled for Salmonella enterica and Enterobacter hormaechei using Flye
assembler. Assembly statistics provided by Quast show better results for plasmid assemblies
from adaptive sampling than control regions.

Salmonella enterica Enterobacter hormaechei
ReadBouncer MinKNOW ReadBouncer MinKNOW

Adaptive Sampling (channels 1-256)
Time (hours) 1 2 1 2 1 2 1 2
Ref. plasmids 1 1 1 1 4 4 4 4
Assembled plasmid contigs 1 1 2 1 4 4 6 5
Plasmid reads 108 277 80 194 1,383 3,656 1,469 3,831
Ref. avg. coverage depth 11 29 5 19 14 43 13 37
Ref. coverage ≥ 5x(%) 100 100 84.67 100 98.41 99.84 91.99 99.84
Ref. coverage ≥ 10x(%) 70.81 100 2.8 100 54.28 99.84 53.12 97.68
Mismatches per 100kb 136 126 358 132 55 26 94 38
Indels per 100kb 653 652 895 656 89 25 136 40

Control (channels 257-512)
Time (hours) 1 2 1 2 1 2 1 2
Ref. plasmids 1 1 1 1 4 4 4 4
Assembled plasmid contigs 1 1 1 1 6 4 6 5
Plasmid reads 79 160 59 128 945 2,136 971 2,186
Ref. avg. coverage depth 7 15 7 13 11 25 10 24
Ref. coverage ≥ 5x(%) 98.41 100 88.38 100 82.66 99.34 73.8 99.84
Ref. coverage ≥ 10x(%) 31.21 96.98 21.07 87.24 25.46 89.4 23.06 90.7
Mismatches per 100kb 219 133 397 144 193 31 306 93
Indels per 100kb 744 654 764 652 238 43 488 137

Our experiments demonstrated an effective enrichment of plasmids after 2-5 hours

by using adaptive sampling. Since plasmid assemblies are possible after 3-4 hours of

sequencing without adaptive sampling (Taylor et al., 2019), we wanted to see if adaptive

sampling enables faster plasmid assemblies. In order to evaluate the effect of adaptive

sampling on the assembly of low-abundant plasmids, we took the reads available after

one hour and two hours of sequencing from the adaptive sampling and control regions

two of the bacterial isolates, Salmonella enterica and Enterobacter hormaechei. We did

not include the Campylobacter strains in this analysis because the coverage of plasmids

from sequencing only two isolates on a fresh flow cell (sequencing run ReadBouncer1)

was extraordinarily high and assembly statistics would not be comparable between the

sequencing runs ReadBouncer1 and MinKNOW1. We also did not include Klebsiella

pneumoniae because of the findings mentioned in the last subsection that could bias our
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3. Nanopore adaptive sampling effectively enriches bacterial plasmids

analysis.

We separately assembled all reads for the control and adaptive sampling regions using

metaFlye assembler (Kolmogorov et al., 2020). After one round of polishing with

Medaka consensus, we measured quality metrics for the final assemblies using

Quast (Gurevich et al., 2013). Table 3.2 shows results after one and two hours of

sequencing the two bacterial isolates from sequencing runs ReadBouncer2 and Min-

KNOW2. In all cases, plasmid assemblies were improved by using adaptive sampling,

with reduced numbers of mismatches and indels for plasmid assemblies from the adap-

tive sampling regions. This can be explained by an increased sequencing depth and

reference coverage due to the plasmid enrichment by adaptive sampling. However, we

recognize some gaps in Enterobacter hormaechei plasmids assembled using reads from

the adaptive sampling region of run MinKNOW2. This can be caused by similar regions

between target and non-target sequences, as we have observed for Klebsiella pneumoniae.

In general, adaptive sampling can improve plasmid assemblies and enables assemblies

even after 2 hours of sequencing on flow cells with fewer active pores.

3.4 Discussion

Recent studies have demonstrated the utility of adaptive sampling for the enrichment

of underrepresented sequences in various applications, such as host depletion in human

vaginal samples or antibiotic resistance gene enrichment in metagenomics samples. In

this study, we examine the potential of adaptive sampling for the enrichment of low-

abundant plasmid sequences by rejecting chromosomal sequences in bacterial isolate

samples. We demonstrate the possibility of using even older or expired flow cells

with fewer active sequencing pores for the in-silico enrichment via adaptive sampling.

Since we wanted to know if enrichment is independent of the adaptive sampling tool,

we evaluated plasmid enrichment for two tools, namely ReadBouncer and ONT’s

MinKNOW sequencing control software. Although we observed different levels of

plasmid enrichment, the tools consistently enriched for low-abundant plasmid sequences.

Our study was by no means designed to benchmark different adaptive sampling tools,

which would require the inclusion of more tools and a setup that ensures that all tools

use the same amount of sequence information for making rejection decisions.

The enrichment by yield, the most critical value for researchers, lies for all but one

sample in our experiments between 1.1x and 1.8x after 24 hours of sequencing on an

ONT MinION sequencing device. We also demonstrated that the difference between

enrichment by yield, number of reads, and mean depth of coverage is negligible in all

our samples. High-quality assemblies of plasmids are possible within two hours of
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sequencing with adaptive sampling and show even better results than plasmid assemblies

without adaptive sampling. These results reflect the benefit of adaptive sampling in

assembling low-abundant plasmid sequences. Since we sequenced three bacterial isolates

on only half a reused flow cell, we reason that up to 20 bacterial isolates can be sequenced

on a flow cell with adaptive sampling for plasmid enrichment.

Our experiments showed that expired flow cells with decreased number of active pores

could be used in combination with adaptive sampling. Previous studies demonstrated that

the number of active sequencing pores decreases faster when using adaptive sampling.

Although we show the same trend in our study, we do not see a negative impact on the

enrichment of target sequences and the average quality of sequenced reads. Thus, we

encourage researchers to use flow cells with reduced active pores in adaptive sampling

experiments for more sustainable lab experiments and cost savings in core facilities and

larger research institutions.

Our results show that rejecting chromosomal sequences with adaptive sampling increases

the abundance of plasmid sequences in the final output. Dependent on the plasmid

abundance in the original sample, the values for plasmid enrichment by composition are

between 2.5x and 8x. These observations moderately correlate with the predictions from

the mathematical model proposed by Martin et al. (2022). Furthermore, a consistent

enrichment of plasmid sequences with regard to the number of base pairs, number of

reads, and depth of coverage was shown by using adaptive sampling. Independent of

the size of the sequencing libraries, we could increase the amount of sequenced plasmid

base pairs by 10-80% after 24 hours of sequencing. However, in one experiment, we

recognized the depletion of plasmid sequences of Klebsiella pneumoniae after 24 hours

when ONT’s MinKNOW was used as an adaptive sampling tool. Our investigations reveal

that regions with high sequence identity located both on the chromosome and the plasmid

lead to false read rejections, which result in a depletion of the targeted plasmid sequences.

This highlights potential issues with the usage of nanopore adaptive sampling and sounds

a note of caution if target and non-target sequences are similar. We hypothesize from our

findings that using larger read chunks for making rejection decisions could circumvent

this issue. However, such an examination is beyond the scope of this study and needs

systematic investigations to find the optimal read chunk length that minimizes false

rejections decisions while still rejecting unwanted reads fast enough to obtain sufficient

enrichment.

Both adaptive sampling tools used in this study need known reference sequences to reject

the chromosomal reads. If the bacterial species in the given sample are unknown, a more

extensive reference database of all potential bacterial chromosome references must be

used to enrich plasmids successfully. Alternatively, researchers could also do a targeted
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enrichment of the plasmids by using plasmid databases such as PLSDB (Schmartz et al.,

2022) and reject all reads that do not match the database. However, this approach risks

missing unknown plasmids not covered by the database. Using specific plasmid markers,

like the origin of replication, for correctly classifying unknown plasmids is also tricky in

an adaptive sampling experiment. Here, the specific markers would need to be located on

the first 1,000 bp of the read to prevent false rejection of plasmid reads. These limitations

reinforce the need for improved classification algorithms that can even classify reads

from unknown plasmids based on the raw nanopore signals.

We envisage several applications for the in-silico enrichment of plasmids in the near

future. One possibility is the surveillance of plasmid outbreaks in hospital settings.

Here, clinicians are interested in studying the transmission of specific antimicrobial

resistance genes (ARGs) harboring plasmids from one bacterial species to another. Such

community transmissions can indicate the selection pressure on bacteria caused by

antibiotic pharmaceuticals and help decide on the corresponding drugs’ future usage.

Another possible application of adaptive sampling is the improvement of known bacterial

assemblies. In this study, we demonstrated the improved time-to-assembly of plasmids

by depleting the known bacterial chromosomes. We plan to develop a pipeline for the

real-time de novo assembly of bacterial isolates in the future. Using adaptive sampling,

we could reject reads that cover assembled regions with a minimum depth of coverage,

enriching for unseen or assembled regions with low sequencing depth. In such a way, we

could complement the dynamic re-sequencing framework BOSS-RUNS (Weilguny et al.,

2023) with a dynamic de novo adaptive sampling framework. We believe this could

improve both the quality of bacterial and plasmid assemblies as well as metagenomics

assemblies of unknown bacterial species.
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4 Fast and space-efficient taxonomic
classification of long reads with
hierarchical interleaved XOR filters

Summary

Metagenomic long-read sequencing is gaining popularity for various applications, in-

cluding pathogen detection and microbiome studies. To analyze the large data created in

those studies, software tools need to taxonomically classify the sequenced molecules

and estimate the relative abundances of organisms in the sequenced sample. Due to the

exponential growth of reference genome databases, the current taxonomic classification

methods have large computational requirements. This issue motivated us to develop a

new data structure for fast and memory-efficient querying of long reads. Here, we present

Taxor as a new tool for long-read metagenomic classification using a hierarchical in-

terleaved XOR filter (HIXF) data structure for indexing and querying large reference

genome sets. Taxor implements several k-mer-based approaches, such as syncmers for

pseudo-alignment to classify reads and an expectation maximization (EM) algorithm for

metagenomic profiling. Our results show that Taxor outperforms competing short- and

long-read tools regarding precision while having a similar recall. Most notably, Taxor

reduces the memory requirements and index size by more than 50% and is among the

fastest tools regarding query times. This enables real-time metagenomics analysis with

large reference databases on a small laptop in the field.

This chapter is based on (Ulrich & Renard, 2023), which is a joint work with Bernhard

Y. Renard. A detailed description of the authors’ contributions can be found in section

Thesis outline.

4.1 Background

Identifying organisms in an environmental or clinical sample is a fundamental task in

many metagenomic sequencing projects. This includes the detection of pathogens in
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samples with a large host background (Andrusch et al., 2018), as well as studying the

composition of microbial communities composed of bacteria, archaea, viruses, and fungi

(Doytchinov & Dimov, 2022). Over the last years, many tools have been developed

that classify short and long sequencing reads by comparing their nucleotide sequences

with a predefined set of references (Dilthey et al., 2019; Kim et al., 2016; Wood et al.,

2019). While each tool uses a different classification strategy, they all try to resolve the

species present in the sample and determine their relative abundances (Fischer et al.,

2017; Lindner & Renard, 2013).

Among the different read classification strategies, alignment-based approaches were the

first used for taxonomic profiling. Tools like SLIMM (Dadi et al., 2017), DUDes (Piro et

al., 2016) or PathoScope (Hong et al., 2014) use the results of common read mappers

like Bowtie2 (Langmead & Salzberg, 2012) and bin the sequencing reads across the

different reference genomes. Although these methods have high accuracy, their compu-

tational performance decreases tremendously when using entire public databases such

as NCBI RefSeq or GTDB as reference datasets. Thus, high-performance computing

clusters are needed to run these tools in a reasonable amount of time and fulfill their

memory requirements. In contrast, marker-based approaches such as MetaPhlAn2

(Truong et al., 2015) and mOTUs2 (Milanese et al., 2019) identify bacterial and archaeal

species by their 18S or 16S rRNA genes. However, this approach is infeasible for viruses

since they have no universally conserved genes. More recent taxonomic classification

strategies rely on machine-learning approaches. Tools such as DeepMicrobes (Liang

et al., 2020) and BERTax (Mock et al., 2022) show promising results for classifying

reads on higher taxonomic levels but perform poorly at genus and species levels. Most

state-of-the-art taxonomic profilers, like Kraken2 (Wood et al., 2019), Ganon (Piro et

al., 2020) and KMCP (Shen et al., 2023), use k-mer-based methods for read classification.

In the first step, these methods count the exact matches of substrings of length k among

the different reference sequences in the database and use further statistical analysis to

assign reads to references. These profiling tools mainly differ in the indexing of the

reference set and/or the k-mer selection method used to calculate the similarity between

read and reference sequences.

What all taxonomic classifiers have in common is that they struggle with the ever-

increasing amount of reference genomes. Databases such as NCBI RefSeq (O’Leary

et al., 2016) and GTDB (Parks et al., 2022) already comprise hundreds of thousands of

microbial reference assemblies belonging to 62,000 bacterial species (GTDB Release

207) and 12,000 viral species (RefSeq Release 211) and are constantly increasing. This

poses a major computational challenge to the profilers in terms of memory usage, index

construction, and query time.
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Several approaches for efficient indexing and querying of large collections of reference

sequence sets have been developed over the last few years to overcome these issues.

The popular Kraken2 (Wood et al., 2019) classifier uses minimizers and introduces a

probabilistic, compact hash table to reduce the size of the index. On the other hand, color-

aggregative methods like Bifrost (Holley & Melsted, 2020) or Mantis (Pandey et

al., 2018) use compacted de Bruijn graphs or counting quotient filters for indexing and

querying k-mers. Those methods have the disadvantage that they index each reference

separately using data structures for approximate membership queries, e.g. Bloom filters

(Bloom, 1970). In contrast, Sequence Bloom Tree (SBT) (Harris & Medvedev, 2020;

Solomon & Kingsford, 2018; C. Sun et al., 2018) approaches exploit the k-mer redun-

dancy of homogeneous datasets such as those from RNA-Seq experiments to compare

large sequence datasets. However, these approaches are unsuitable for heterogeneous

k-mer sets, such as microbial genomes. Tools like BIGSI (BItsliced Genomic Signature

Index) (Bradley et al., 2019), COBS (Compact Bit-Sliced Signature Index) (Bingmann

et al., 2019) and KMCP (Shen et al., 2023), which are based on Bloom filter matrices,

are promising much better results for taxonomic profiling of large sequencing data sets.

Interleaved Bloom Filters (IBFs), which belong to the latter approaches, improve the

indexing data structures by combining several Bloom filters (one per reference) in an

interleaved fashion while allowing to query all Bloom filters at once (Dadi et al., 2018).

The IBF data structure has been used by the taxonomic classifier Ganon (Piro et al.,

2020) and was recently enhanced by introducing the hierarchical interleaved Bloom

filter (HIBF) in a tool called Raptor (Mehringer et al., 2023).

Many k-mer-based classifiers use Bloom filters for approximate membership queries

of k-mers in large reference data sets. Their popularity is based on their flexibility, low

memory requirements, and fast query times. However, there is a small probability that

a k-mer is incorrectly reported as being present in a reference sequence, called a false

positive. Some tools let the user define the false positive rate and adapt the Bloom filter

size and/or the number of hash functions to that value. Although Bloom filters have a

low memory footprint, they use 44% more memory than the theoretical lower bound,

even when applied in an optimal manner (Graf & Lemire, 2020). Therefore, several

advanced probabilistic filters like cuckoo filters (B. Fan et al., 2014; Mitzenmacher et al.,

2020) have been developed over the last few years. In particular, XOR filters have been

proposed as an alternative to Bloom Filters, using only 23% more memory than the

theoretical lower bound (Graf & Lemire, 2022).

Based on the work of Graf and Lemire (2020) and Dadi et al. (2018), we first developed

an Interleaved XOR Filter (IXF), which can be used in the same manner as the IBF,

and implemented it as part of the Seqan C++ library (Reinert et al., 2017). We then
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extended our new data structure to a hierarchical interleaved XOR filter (HIXF) to avoid

using more space than necessary when references in the database are highly divergent

in size. The HIXF data structure is implemented as part of the taxonomic classification

tool Taxor, which allows the user to choose different k-mer-based strategies, such

as k-mers and minimizers. Since our new tool is specifically designed for long-read

metagenomics experiments, we also implemented open canonical syncmers (OCS) as

a k-mer selection approach, which has been shown to be superior to minimizers for

error-prone long reads (Dutta et al., 2022; Edgar, 2021). In the final step, taxonomic

profiling of the query results is performed by utilizing an expectation maximization (EM)

algorithm for abundance estimation and re-assignment of classified reads. We compare

Taxor to five state-of-the-art short- and long-read taxonomic classification tools on

simulated and real mock communities. Our results show that Taxor can tremendously

reduce the index size and memory requirements for queries while still being on par with

the evaluated tools regarding precision and recall.

4.2 Methods

We have designed and implemented our novel taxonomic profiling tool, Taxor, as

a modular workflow that consists of three mandatory steps. First, Taxor computes

the k-mer content of the input reference genomes and creates an index for each set

of reference genomes. The index is a hierarchical interleaved XOR filter (HIXF), a

novel space-efficient data structure for approximate membership query (AMQ) that we

will describe in the following subsections. In the second step, sequencing reads are

queried against one or several HIXF index files, resulting in one intermediate file for

each index. These intermediate files contain all matches of the reads against the different

reference genomes and must be merged before the final profiling step. Three-step

filtering of spurious matches is performed before an EM algorithm computes taxonomic

abundances and reassigns reads based on the taxonomic profile. We finally provide

three output files containing information about the sequence abundances (based solely

on nucleotide abundance), taxonomic binning (read to reference assignments), and

taxonomic abundances (normalized by genome size).

4.2.1 Interleaved XOR Filter

Many tools for taxonomic classification of sequencing reads facilitate approximate

membership queries of k-mers of reads against k-mer sets of the reference sequences.

A common approach to implement approximate membership query (AMQ) is using

70



4.2 Methods

Reference 
genome set A

Reference 
genome set B

Reference 
genome set N…

HIXF
index A

HIXF
index B

HIXF
index N…

taxor build taxor build taxor build

Query read
set

taxor search taxor search taxor search

Search 
result A

Search 
result B

Search 
result N

merge
Search 
result taxor profile

Taxonomic
Binning

Taxonomic
Profile

Taxonomic
Abundance

Input

Command

Intermediate file

Database

Output

…

Figure 4.1: Workflow for taxonomic profiling with Taxor. A typical workflow for using
Taxor starts with creating a HIXF index for each reference genome set. Next, a
set of sequencing reads is queried against each of the different HIXF index files
using the taxor search subcommand, which results in an intermediate search
result file for each index file. The search result files must be merged before the
subcommand taxor profile calculates the taxonomic profiling result files.

Bloom filters (Bloom, 1970). Dadi et al. (2018) improved this approach by developing

an Interleaved Bloom Filter (IBF) that stores several Bloom filters in one single-bit

array that allows querying all Bloom filters simultaneously. Inspired by their approach,

we developed an Interleaved XOR Filter (IXF) that combines several XOR filters into

one data structure, enabling simultaneous querying of all XOR filters. As described

by Graf and Lemire (2020), and similar to Bloom filters, the XOR filter uses three

independent hash functions that return a corresponding position in the filter for each key

(or k-mer). In a Bloom filter, each bit is considered its own array slot, and bits at the

positions to which the hash functions point are set to one. In contrast, in an XOR filter,

the bits are grouped together into L-bit sequences, as shown in Figure 4.2. These L-bit

sequences in the XOR filter are set in such a way that a bitwise XOR of the three L-bit

sequences, corresponding to positions returned by the hash functions, equals the result of

the fingerprint hash function. While building an XOR filter is almost always successful

for larger sets of more than |S| = 107 elements (Botelho et al., 2007), it can fail for

smaller sets, which requires rebuilding with other hash functions. Graf and Lemire

(2020) have experimentally shown that the estimated probability for the successful
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Figure 4.2: Creating an XOR Filter for a given reference sequence. For each k-mer of the
reference sequence an L-bit fingerprint and three hash values are calculated. The
hash values point to positions in an array consisting of L-bit sequences. The L-bit
sequences are set such that a bit-wise XOR of the three L-bit sequences equals the
result of the fingerprint function for that k-mer. For example, the fingerprint for
the 13-mer CAGGATTACGTCC equals 01010000, and thus a bitwise XOR of the
three 8-bit sequences at positions given by the results of the three hash functions H1
to H3 will also result in the 8-bit sequence 01010000

building is always greater than 0.8 if the XOR filter size is set to ⌊1.23 × |S|⌋+ 32,

which makes this size constraint an optimal compromise between space requirement and

build time.

Our IXF implementation combines several XOR Filters (bins) in one single bitvector,

using 8-bit sequences for each XOR filter. Therefore, we first need to initially calculate

the size of each XOR filter by ⌊1.23 × |S|⌋+ 32, where S is the set of reference k-mers.

As for the IBF, the largest XOR filter (or largest reference sequence) determines the size

of all bins and, thus, also the size of the entire IXF. If R is the set of reference sequences

to be stored in the IXF and Sr the set of k-mers computed for reference r, the size of the

IXF can be calculated as follows:

BitsIXF = |R| × max
r∈R

⌊1.23 × |Sr|⌋+ 32 (4.1)

The IXF can be divided into several subvectors, each having the size of the number of

bins. Since one bin in the IXF corresponds to exactly one reference sequence, the size of
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Figure 4.3: Creating an Interleaved XOR Filter for three reference sequences. For each
k-mer of the three differently colored reference sequences, an L-bit fingerprint and
three hash values are calculated. The hash values determine the three subvectors SVj
in which the L-bit sequence of the corresponding position of the reference sequence
is set. L-bit sequences at those positions are set such that a bit-wise XOR of the
three L-bit sequences and the fingerprint equal to an L − bit sequence of zeros. For
example, the fingerprint for the 7-mer TCAGTCC from Seq1 equals 01110110, and
the three hash functions point to the subvectors SV1, SVh and SVn. Now we set the
8-bit sequences at the first position in each subvector such that a bit-wise XOR of
the 8-bit sequences and the fingerprint equals 00000000.

each subvector corresponds to the number of references. When building the IXF for a

set of reference sequences, we compute the k-mer sets for each reference sequence and

construct the single XOR filters for each reference according to the algorithm proposed

by Graf and Lemire (2020). We used the same hash and fingerprint functions for each

XOR filter and combined them in an interleaved fashion, as shown in Figure 4.3.

When querying a read against the references stored in the IXF, every k-mer of that

read is matched against each XOR filter simultaneously. For each k-mer, we first retrieve

the three subvectors SVj by calculating the three hash values for that k-mer. Next, the

resulting L-bit sequence calculated by the fingerprint function is concatenated with

itself to the length of the subvectors. Applying a logical bitwise XOR to the three

subvectors and the fingerprint vector results in a final L-bit sequence for each reference.

If this sequence equals zero, a bit in a binning bitvector is set to one, indicating the

presence of the k-mer in the corresponding reference. Combining the binning bit-vectors
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Figure 4.4: Querying an Interleaved XOR Filter consisting of three reference sequences.
The read sequence CAGGATTC is divided into two overlapping 7-mers, CAGGATT
and AGGATTC. For both k-mers, we separately calculate three hash values by
applying the same hash functions used for building the IXF. For example, the hash
values of k-mer CAGGATT point us to the subvectors SV2, SVk, and SVx. We
further calculate the fingerprint for CAGGATT and concatenate the resulting 8-bit
sequence three times because the IXF stores three reference sequences, which results
in each subvector having three bins. Applying a bitwise XOR to the three subvectors
and the fingerprint vector results in an 8-bit sequence for each reference. For k-mer
CAGGATT, the second and the third bins are equal to 00000000, which indicates
that the k-mer is present in the second and third reference. This information is
stored in a binning bitvector, e.g., 011 for k-mer CAGGATT. Finally, the binning
bit-vectors of both k-mers are combined into a counting vector that stores the number
of k-mer matches between the read and each reference sequence. Here, the vector
021 indicates that both k-mers are present in the second reference, and thus, the read
could match that reference.

of the k-mers to a counting vector finally results in the number of matching k-mers

between the read and each reference in the IXF. The example in Figure 4.4 visualizes this

process. Here, the read consists of two 7-mers, for which we have to calculate the three

hash values that point us to the corresponding subvectors SVj, e.g., SV2, SVk and SVx

for k-mer CAGGATT. A logical bitwise XOR of the three subvectors and the k-mer’s

fingerprint vector results in an 8-bit sequence for each bin. In Figure 4.4, the resulting

8-bit sequences of references two (orange) and three (green) equal zero, which yields in

setting the bit in the binning bitvector for the references to one. Finally, the counters of

the corresponding references are incremented in the counting vector of the read. The
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resulting counting vector stores the number of matching k-mers between the read and

each reference sequence stored in the IXF. Thus, instead of computing three hash values

for every XOR Filter separately, we only need to calculate the three hash values once,

which poses a significant reduction in computing time to investigate the membership of

a k-mer in every XOR Filter. This method lets us quickly count the matching k-mers

between the reference genome and a specific sequencing read.

4.2.2 Hierarchical Interleaved XOR Filter

The interleaved nature of the IXF has two important limitations. First, the largest XOR

filter determines the overall size of the IXF because all single bins (XOR filters) of the

IXF must have the same size. This means that the largest reference sequence dictates

the size of the XOR filters storing the k-mer contents of the other reference sequences.

Consequently, we would waste a substantial amount of space for smaller references if

the reference sequences in the IXF have highly divergent sizes. Second, the query speed

slows down with an increasing number of XOR filters stored in the IXF. This is, in

practice, not a problem for a few hundred to a few thousand references, but it becomes

inefficient when storing many thousands of reference genomes.

To overcome this issue, we adapted the approach by Mehringer et al. (2023) to create

a hierarchically structured interleaved XOR filter (HIXF). Here, the idea is to split

the k-mer content of larger reference sequences into several smaller k-mer sets while

merging the k-mer sets of very small reference sequences into one big set of k-mers.

The resulting k-mer sets are stored in a high-level IXF, and for each merged k-mer set,

a low-level IXF is stored, holding the k-mer sets of the smaller reference sequences

in individual bins (XOR filters). While splitting the k-mer content of large reference

sequences and merging the k-mer content of smaller references avoids wasting space,

recursively adding an IXF for each merged k-mer set enables querying the individual

k-mer sets of the small reference sequences. Depending on the number and size of the

reference sequences and the maximum number of bins allowed for each IXF, we can

have many levels of the hierarchical interleaved XOR filter (HIXF).

To compute the layout of the HIXF, we utilize the dynamic programming (DP) approach

from Mehringer et al. (2023) that finds the optimal balance between space consumption

and query speed. Here, we first calculate HyperLogLog sketches (Flajolet et al., 2007)

to determine the Jaccard distance between each pair of reference sequences (Baker

& Langmead, 2019). Based on this information, the list of reference sequences is

rearranged to specify which reference k-mer sets are more similar and, thus, ideal targets

for merging on higher levels of the HIXF. Then, the dynamic programming algorithm
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Reference ID A B C D E F G H I J K L M

# of k-mers 300.000 140.000 100.000 50.000 20.000 5.000 1.000 15.000 10.000 4.000 30.000 6.000 25.000

A A B C-D E-M

C C D E-G H-J K L-M

E E E E F-G H I-J L M M M M

F F F F G I I J

split bin

single bin

merged bin

𝑏𝑚𝑎𝑥 = 5

Input reference sequence set

Level 1

Level 2

Level 3

Level 4

HIXF index

Figure 4.5: Building an HIXF index structure from 13 reference sequences. Exemplary
building of a hierarchical interleaved XOR filter from thirteen differently sized
reference genomes. Depending on the size of the input sequence’s k-mer sets, the
HIXF layout is computed. Here, the maximum number of bins per IXF bmax = 5,
which results in 4 levels consisting of 8 interleaved XOR filters. The first level is
always a single IXF with exactly Bmax bins. In the figure, Level 1 consists of two
split bins for reference A, one single bin for reference B, one merged bin that stores
all k-mers from references C and D, and one that contains the k-mer content of
references E to M. On the second level, there is one additional IXF for each merged
bin on the first level, resulting in two IXFs in the example above, where the first IXF
consists of two split bins for reference C and one single bin for reference D. The
second IXF on Level 2 consists of one merged bin containing all k-mers of references
E, F and G, one additional merged bin with the k-mer content of references H, I and
J, one single bin for reference K and another merged bin with the combined k-mer
content of references L and M. Merged bins on each level of the HIXF result in an
associated IXF on the next lower level forming a tree-like layout, where the leaves
only have split and single bins.

uses a scoring function accounting for the space consumption of each IXF and the

number of levels in the HIXF, which finds the optimal splitting and merging operations

for the given set of references. Finally, a score is calculated for different values of the

maximum number of XOR filters bmax in the IXFs, accounting for the expected query

time and memory consumption. In general, bmax is a multiple of 64, and we calculate

the score until the product of query time and space requirement increases. The minimum

score determines the maximum number of XOR filters in each IXF, and the backtracing

in the corresponding DP matrix returns the layout of the HIXF.
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Figure 4.6: Querying a HIXF index structure of 13 reference sequences. When finding
matching reference sequences for a given sequencing read, the k-mer content of the
read is calculated first. Based on the expected sequencing error rate, a threshold
for the minimum number of found k-mers is determined to consider a reference
sequence as a hit. Then, the number of matching k-mers with each bin is computed
for the first level IXF, considering summed match counts of split bins and match
counts of single bins that exceed the threshold as a hit. If the match count for a
merged bin exceeds the threshold, we query the associated IXF on the second level.
All levels of the HIXF are queried recursively until all reference sequences with
k-mer match counts exceeding the threshold have been found. In this example, only
the match count for the merged E-M bin exceeds the threshold on the first HIXF
level, and we continue querying the associated IXF on the second level. Here, only
the merged H-J bin has a k-mer match count above the threshold, which requires
querying the associated IXF on the third level, where we find the single bin of
reference sequence H to exceed the match count threshold only. Thus, we report
reference H as a hit with the queried sequencing read.

When querying the HIXF, we first calculate the k-mer content of the given query

read and determine the minimum number of matching k-mers with each reference

sequence to be considered a hit. We calculate this threshold based on the k-mer selection

scheme described in the following subsection. Then, for each k-mer of the read, the

membership in all filters of the top-level IXF is determined, and we further count the

total number of k-mers that match each bin in the top-level IXF. If the counter for a bin

exceeds the calculated threshold, the read is considered a match with the corresponding

reference sequences. For the split bins, the k-mer counts have to be accumulated before

thresholding, while we can directly answer the query for single bins that are neither
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merged nor split. For merged bins that exceed the threshold, we apply the same procedure

recursively on the associated child IXF on the next lower level. This approach allows us

to skip querying all lower-level IXFs whose upper-level merged bins do not exceed the

given threshold. As a final result, we obtain a list of all reference sequences that exceed

the minimum number of matching k-mers with the read under investigation.

4.2.3 K-mer selection & thresholding

In the previous subsections, we introduced our new HIXF data structure describing the

usage of membership queries for all k-mers of a given read against all k-mers of a given

reference sequence set. We consider a read a hit with a reference sequence if the number

of matching k-mers is greater than or equal to a given threshold t. For this k-mer model,

we calculate the threshold as described in the Appendix A.3.

Since using all k-mers of the reference sequences can result in huge index sizes, k-mer

selection approaches gained much attraction during the last decade, with minimizers

being the most popular down-sampling approach for metagenomic classification of short

reads (Piro et al., 2020; Wood et al., 2019). However, Edgar (2021) recently showed

that syncmers are more sensitive for selecting conserved k-mers in biological sequences,

and Dutta et al. (2022) could also improve long-read mapping by using open canonical

syncmers instead of minimizers. Therefore, we implemented open canonical syncmers

as a down-sampling strategy for large sets of k-mers to decrease the size of the HIXF

index. In our implementation, open syncmers are sampled based on three parameters

(k, s, t) where k, s, and t are positive integers and s ≤ k. The method then compares

the k − s + 1 consecutive s-mers within a k-mer and selects the k-mer as a syncmer if

the smallest s-mer occurs at position t ∈ [0, k − s + 1] within the k-mer. The smallest

s-mer is defined by the hash value computed for each s-mer. We use the canonical

representation of syncmers, meaning that the lexicographically smallest syncmer out of

its forward and reverse-complement sequence is always selected.

Analogous to the k-mer-based approach, we need to determine a threshold for a read’s

minimum number of matching syncmers to consider it a hit with a reference sequence. In

contrast to k-mers, there is no theoretical derivation for a (1 − α) confidence interval of

the number of erroneous syncmers. Thus, we decided to derive the threshold empirically

by simulating error-prone nanopore reads from a random sample of 1,000 bacterial

reference genomes from the GTDB (Parks et al., 2022). We used the Rust implementation

of the read simulator Badread (Wick, 2019) to simulate nanopore reads with five

different read lengths between 1,000 and 5,000 bp and repeated the simulations for

20 different read accuracy rates (80%, 81%, 82%, ..., 99%). Next, we build separate
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HIXF index files of the 1,000 genomes, one for each even k-mer value between 16

and 30. We only allow for even-numbered values for the k-mer size because we use

canonical syncmers, with 16 being the practically smallest value to distinguish k-mers

from different reference sequences and 30 the maximum value that allows finding k-mer

matches between error-prone reads and a reference sequence. Finally, we separately

queried the simulated reads of different read accuracies against the created HIXF index

files and calculated the minimum fraction of found syncmers for each read and every

combination of read accuracy and k-mer size. This minimum matching ratio for the

different read accuracy and k-mer size combinations is used by Taxor to calculate the

threshold for the minimum number of syncmer matches between a given read and the

reference sequences stored in the HIXF index.

4.2.4 Taxonomic profiling

The existence of homologous regions of genome sequences across multiple microbial

species can lead to high false positive rates if taxonomic profiling methods exclusively

rely on sequence similarity information. However, setting a low sequence similarity

threshold is essential for detecting all species in a sample if the sequencing accuracy

hardly reaches values of 98%. Therefore, we apply a three-step filtering approach of

potential hits between reads and reference sequences before refining the results using an

expectation maximization (EM) algorithm that re-assigns reads to references based on

the number of k-mer matches and taxonomic abundances of matched references.

Before the filtering, reads are assigned to matched reference genomes if the number

of matching k-mers exceeds a certain threshold. Thus, a read can be assigned to many

reference genomes in the index. We perform the first filter step on the single read level,

determining the best matching reference genome based on the maximum number of

k-mer matches (maxkmatch) with the given read. All reference assignments to that read

where the number of matching k-mers is smaller than 0.8 × maxkmatch are considered

spurious matches and removed from the results. The second filtering step creates a list of

all reference genomes with at least one uniquely mapped read (a read assigned to exactly

one reference genome). Consequently, we remove all read-to-reference assignments in

the results where the reference genome has no uniquely mapped read. Finally, we apply

the two-stage taxonomy assignment algorithm used in MegaPath (Leung et al., 2020)

to reduce suspicious matched references. In short, the algorithm identifies reference

genomes with less than 5% of their matches being uniquely matched reads. If such a

reference genome S also shares a certain amount (e.g., 95%) of matches with another

reference genome T, all matches of reads to S are re-assigned to T.
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After filtering, we estimate the relative abundances of all matched references and re-

assign reads using a standard EM algorithm. This approach iteratively maximizes the

likelihood that a given read r comes from a reference genome g, which also maximizes

the likelihood of the relative taxonomic abundances in the whole read set. Let G be the

set of genomes in the database and let πg be the probability that a sequencing read in the

sample emanates from database genome g ∈ G. We define the likelihood of the mapped

read set R as

L(R, π, G) = ∏
r∈R

∑
g∈G

πg × P(r|g) (4.2)

where P(r|g) is the probability of read r coming from reference genome g. We use

mc(r, g), the number of k-mer (or syncmer) matches between read r ∈ R and genome

g ∈ G, and define P(r|g) as

P(r|g) =
mc(r,g)
|mers(r)|

∑j∈G
mc(r,j)
|mers(r)|

(4.3)

with |mers(r)| being defined as the number of k-mers (or syncmers) computed from

r. After initialization of the taxonomic compositions with π = 1
|G| for all g ∈ G, we

calculate in each iteration step an updated read assignment for each r ∈ R by

hit(r, g) = arg max
g∈G

(πg × P(r|g)). (4.4)

Based on the reassignment of reads, we update the taxonomic compositions π in each

iteration step by accumulating the read lengths of all reads mapping to a certain genome

and normalizing this value by the genome length.

πg =

∑hit(r,g) len(r)
len(g)

∑g∈G

(
∑hit(r,g) len(r)

len(g)

) (4.5)

The nominator in Equation 4.5 can be interpreted as the depth of coverage on genome g
in the sample under investigation. We divide the coverage of g by the sum of all genome

coverages to get the relative taxonomic abundance of g in the sample. The single steps

of the EM algorithm are repeated until convergence of the likelihood L(R, π, G) or after

a predefined number of iteration steps (default 10).
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4.3 Results

We compare Taxor to five state-of-the-art taxonomic profiling tools, Centrifuge (Kim

et al., 2016), MetaMaps (Dilthey et al., 2019), Kraken2 (Wood et al., 2019), KMCP

(Shen et al., 2023) and Ganon (Piro et al., 2020). Centrifuge is the tool underlying

ONT’s “What’s in my pot” (WIMP) application for real-time species identification

(Juul et al., 2015). While Centrifuge was initially developed to analyze short-

read metagenomic samples, MetaMaps specifically addresses the task of strain-level

metagenomic assignment of long reads. We decided to use both tools and Kraken2

with default parameter configurations because this results in the best recall and precision

in our experiments on simulated data.

Finally, we evaluated KMCP and Ganon, both utilizing different Bloom Filter approaches

to store sets of selected k-mers from reference genomes for short-read classification. For

Ganon’s classify module, we have to set parameters "–rel-cutoff 0.12" and "-rel-filter

0.9" to account for the higher error rates in nanopore reads. For the same reason, we also

set parameters "–min-query-cov 0.12", "–min-hic-ureads-qcov 0.2" and "–min-chunks-

fraction 0.2" when running KMCP’s search and profile subcommands. For the evaluation

of Taxor, we only set the parameter "–error-rate 0.15", trying to assign all nanopore

reads with error rates lower than or equal to 15%. The specific commands to run the six

tools are provided in Appendix A.3.

4.3.1 Reference databases

Most taxonomic profilers offer prebuilt reference databases but also allow building

custom reference databases. Since the choice of the reference database directly affects

the outcome of taxonomic profiling, a fair comparison between tools also requires using

the same database. This ensures that observed differences in the single-read assignments

are attributed solely to the profiling methods. Thus, we downloaded all complete genome

sequences and chromosomes of archaea, bacteria, viruses, and fungi from the NCBI Ref-

Seq database (Release 217) (O’Leary et al., 2016) using genome_updater 0.5.2

(https://github.com/pirovc/genome_updater). We used only one reference genome per

species, resulting in 21,003 genomes used to build custom databases for each tool. This

custom database comprises 11,579 viral genomes, 8,938 bacterial genomes, 403 archaea

genomes, and 83 fungi genomes.

We build customized index data structures based on the described reference database for

all tools included in our evaluation. For Centrifuge, we created the reference index

using the default parameters, providing only the taxonomic information from the NCBI
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taxonomy and reference sequences in fasta format. For MetaMaps, we first created a

custom database from our downloaded taxonomy using the provided scripts and follow-

ing the instructions on https://github.com/DiltheyLab/MetaMaps. Then we created the

MetaMaps index from the custom database using default parameters. Since the other

tools all use pseudo-alignment utilizing k-mer-based approaches, we build indexes using

a k-mer size of 22, which is a good compromise between high specificity on species-level

identification and high sensitivity for error-prone nanopore read classification. For all

four approaches, we decided to use k-mer selection schemes that downsample the used

k-mer sets to roughly 10% of all reference k-mers to reduce memory usage and index

size significantly. Specifically, we used ungapped k-mers of size 22 and a window size

of 32 for minimizer-based indexes in Kraken2 and Ganon. For KMCP and Taxor, we

used a k-mer size of 22 and a syncmer size of 12. We further set the false positive rate

for the Bloom Filter-based approaches, namely Ganon and KMCP, to 0.3% to reflect

the same inherent false positive rate of Taxor’s XOR filter approach. The specific

commands and instructions to build the reference indexes of all tools are listed in the

Appendix A.3.

4.3.2 Evaluation datasets

We carried out four experiments to evaluate Taxor, covering multiple metagenome

composition scenarios from simulated and real data as well as sample contamination

with eukaryotic DNA. The simulated dataset consists of 100 randomly chosen reference

genomes included in the reference database and comprises 1,124,128 reads. For read

simulation, we used pbsim2 (Ono et al., 2021) with parameters "–accuracy-mean 0.95",

"–length-min 1000" and "–hmm_model R103.model". We chose a mean accuracy of

95% because the latest basecallers for ONT data have shown to reach such accuracies

(Ferguson et al., 2022). We further decided to simulate reads with a minimum read

length of 1,000 bp because shorter nanopore reads are commonly misclassified, and thus,

MetaMaps and Taxor do not classify those reads.

For evaluation on real data, we obtained two ONT datasets for the ZymoBIOMICS D6300

microbial community standard (Nicholls et al., 2019) and one PacBio HiFi dataset for

the ZymoBIOMICS Gut Microbiome Standard D6331. The Zymo D6300 standard

consists of ten evenly abundant species, including 8 bacteria at 12% sequence abundance

and two yeasts at 2% sequence abundance. The first ONT dataset comes from a con-

tinually updated online resource (https://lomanlab.github.io/mockcommunity/r10.html).

We downloaded the R10.3 chemistry data release (February 2020), which was pro-

duced from two flowcells on an ONT GridION, resulting in 1.16 million reads (4.64
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Giga base pairs (Gbp) data). The second ONT dataset was obtained from the Eu-

ropean Nucleotide Archive (PRJEB43406: ERR5396170, released March 2021) and

represents the ‘Q20 chemistry’ release for the Zymo D6300 standard (described at

github.com/Kirk3gaard/2020-05-20_ZymoMock_Q20EA). It was generated using a

PromethION, resulting in 5.4 million reads (17.95 Gbp data).

The PacBio HiFi dataset for the ZymoBIOMICS Gut Microbiome Standard D6331

(PRJNA680590: SRX9569057, released November 2020) contains 17 species (including

14 bacteria, one archaeon, and two yeasts) in staggered abundances. Five species occur

at 14% sequence abundance, four at 6%, four at 1.5%, and one per 0.1%, 0.01%, 0.001%,

and 0.0001% abundance level. There are five strains of E. coli in this community (each

at 2.8% sequence abundance), which we treat here as one species at 14% sequence

abundance. The PacBio Zymo D6331 dataset was generated using the Sequel II System

and contains 1.9 million HiFi reads with a median length of 8.1 kbp, for a total of 17.99

Gbp of data.

To generate a read-level truth set, we use minimap2 (Li, 2018) to map the reads against

the reference genomes provided by ZymoBiomics. All reads that cannot be mapped

with minimap2 are excluded, and the primary alignment for each read determines the

assumed true placement. This results in two ONT Zymo D6330 evaluation datasets

referred as "ZymoR10.3" and "ZymoQ20", and one PacBio HiFi Zymo D6331 evaluation

dataset referred as "HiFi_D6331".

As a negative control, we use pbsim2with the same parameters described above to simu-

late long-read sequencing data from two eukaryotic genomes not present in the reference

database. Specifically, we simulate 685,303 reads from the Aedes aegypti (yellow fever

mosquito) genome (GCF_002204515.2) and 142,677 reads from the Toxoplasma gondii

ME49 genome (GCF_000006565.2). The two read sets are analyzed independently with

Taxor and the other tools.

4.3.3 Evaluation metrics

We evaluated the performance of all six tools using several criteria. We assessed read

utilization and classification metrics at the species, genus, and family levels and relative

abundance estimates at the species level. First, we evaluated read utilization for each

profiling method by calculating the total percent of reads assigned to specific taxonomic

levels. We performed this for the following ranks: class, order, family, genus, and

species. Here, we expected methods like Kraken2 and Ganon that use an assignment

to the lowest common ancestor to display read assignments across multiple taxonomic

levels, while methods like Taxor only report the species level.
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We calculated several metrics to evaluate read classification performance based on the

number of true positives, false positives, and false negatives. In this context, we define

a true positive as a correct taxon assignment of a read. We define a false positive as

an incorrect taxon assignment on the read level. We further define a false negative as

the failure to detect a taxon for a specific read. The formulas for precision, recall, and

F-scores are as follows:

PrecisionPrecisionPrecision =
true positives

(true positives + false positives)

RecallRecallRecall =
true positives

(true positives + false negatives)

F1F1F1 =
(2 × precision × recall)
(precision + recall)

F0.5F0.5F0.5 =
((1 + 0.52)× precision × recall)
((0.52 × precision) + recall)

The values for the above metrics each range from 0 to 1. For precision, a score of 1

indicates that all reads with a taxon assignment have been assigned to the correct taxon,

whereas lower scores indicate a higher number of wrong taxon assignments. For recall,

a score of 1 indicates that all reads were assigned to the correct taxon, whereas a lower

score indicates that no taxon could be assigned for some reads. The F-scores provide a

useful way to summarize the information from precision and recall. The F1 score is the

harmonic mean of precision and recall (both measures are weighted equally), whereas

the F0.5 score gives more weight to precision (placing more importance on minimizing

false positives). A value of 1 for either F-score indicates perfect precision and recall.

For accurate measurement of the read classification metrics for the real mock datasets,

we had to control for species synonymies in the taxonomy of the used reference database.

To avoid a negative impact on the metrics, we used the sum of cumulative counts for

the species and all synonyms as the read count for the taxon. In particular, this in-

cluded five species in Zymo D6300 (Limosilactobacillus fermentum = Lactobacillus

fermentum; Bacillus subtilis = Bacillus spizizenii; Escherichia coli = Escherichia sp.

TC-EC600-tetX4; Listeria monocytogenes = Listeria sp. LM90SB2; Staphylococcus

aureus = Staphylococcus sp. T93) and two species in Zymo D6331 (Limosilactobacillus

fermentum = Lactobacillus fermentum; Escherichia coli = Escherichia sp. TM-G17TGC),

where we treated the 5 strains of E. coli contained in this community as one species.

We calculated detection metrics for each dataset. To understand the performance of each

method across all datasets, we took an average of precision, recall, F1, and F0.5 at the
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species level for the simulated and real datasets.

Finally, we attempted to obtain relative abundances for each method, acknowledging dif-

ferences in reporting abundances as described by Z. Sun et al. (2021). In particular, there

are clear differences in intended outputs among methods. For example, profiling methods

(Ganon & KMCP) provide taxonomic abundances, whereas classifiers (Centrifuge,

Kraken2 & MetaMaps) provide sequence abundances. Since Taxor reports both

abundance measurements, we did not transform the reported values of the tools but com-

pared Taxor’s output directly to the reported abundance types of the respective tools.

We calculated an L1 distance between observed and theoretical abundances for each

method as described by Portik et al. (2022). The theoretical abundances were obtained

from the manufacturer’s specifications based on genomic DNA (sequence abundance)

and genome copy (taxonomic abundance). We calculated the L1 distance by summing

the absolute error between the theoretical and empirical estimate per species across the

three communities. In this calculation, we included the false positives lumped in the

“Other” category and compared them against a theoretical abundance of zero for this

category.

4.3.4 Read utilization performance

Across the four metagenomic evaluation datasets, Taxor shows a high total read assign-

ment between 89% (ZymoR103) and 97% (Hifi_D6331). Since we did not implement a

lowest common ancestor algorithm in our new tool, all reads have been directly assigned

to the species level. Compared to the other five tools in our benchmarking (see Fig-

ure 4.7), Taxor generally classifies fewer reads than Centrifuge, Kraken2, and

MetaMaps but more than KMCP and Ganon. However, for the real datasets, Taxor

assigns more reads than Kraken2 and Centrifuge at the species level. Both tools as-

sign a considerable amount of reads to the genus level, particularly for the ONT datasets.

KMCP shows by far the lowest total read assignments of all tools on the ONT datasets.

For the PacBio HiFi_D6331 dataset, all tools show a comparable high percentage of

read assignments on the species level (between 92% for Kraken2 and 97% for Taxor

and Ganon), except for KMCP, which assigns 67% to species level, 12% to genus level

and 16% to family level. In general, we observe that the read utilization of some tools is

highly dependent on the dataset and especially the underlying sequencing technology,

with ONT data having significantly higher error rates than PacBio data.
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Figure 4.7: Read utilization of simulated and real metagenomic datasets. The stacked bar
plots show the total percent of reads that were assigned to different taxonomic ranks,
highlighted in different. Taxor generally classifies fewer reads than Centrifuge,
Kraken2, and MetaMaps but more than KMCP and Ganon. For the real datasets,
Taxor assigns more reads than Kraken2 and Centrifuge at the species level.

4.3.5 Classification performance on simulated data

We first evaluate the read classification performance of Taxor in a simulation experi-

ment, which represents a medium-complexity metagenomic analysis scenario with 100

randomly chosen species from the used reference database. We report the resulting

performance metrics on the species level for all six evaluated tools in Table 4.1. On

this dataset, Taxor read assignments achieve a recall of 0.96, a precision of 0.99, and

F-scores of 0.98 and 0.99. Taxor outperforms KMCP and Ganon in terms of recall by 3-

9% while having slightly lower recall than Centrifuge, MetaMaps, and Kraken2

(2-3%). All tools show a high read classification precision in this experiment, ranging

from 0.98 to 0.99, which means the tools report very few false read assignments. Four

of the six tools can also correctly classify more than 95% of the simulated reads. Only

Ganon and KMCP show a lower recall, failing to classify 7-13% of the simulated reads

at the species level.

86



4.3 Results

In a second simulation experiment, we assess the effect of contamination with eukary-

otic host DNA from larger genomes on read classification. Therefore, we simulated

reads from two eukaryotic genomes (Aedes aegypti and Toxoplasma gondii), neither

of which is present in the reference database. Taxor has a low false-positive rate for

both read sets and correctly leaves the large majority of reads unclassified (≥ 99.99%)

on all taxonomic levels. We also note low false positive rates for KMCP (0% for both

datasets) and Ganon (0.24% for Aedes aegypti and 0.05% for Toxoplasma gondii).

The three tools slightly outperform MetaMaps, having misclassification rates between

1.71% (Aedes) and 2.87% (Toxoplasma). In contrast, Kraken2 and Centrifuge

show high false-positive rates, with Kraken2 reporting only 5.67% (Aedes) and 8.84%
(Toxoplasma) of reads as unclassified, and Centrifuge reporting 22.90% (Aedes) and

26.74% (Toxoplasma) of reads as unclassified. Detailed results for these experiments

are provided in Appendix A.3.

Tool Precision Recall F1-Score F0.5-Score

Centrifuge 0.99 0.98 0.98 0.99
MetaMaps 0.99 0.99 0.99 0.99
Kraken2 0.98 0.98 0.98 0.98
KMCP 0.99 0.87 0.93 0.97
Ganon 0.99 0.93 0.96 0.98
Taxor 0.99 0.96 0.98 0.99

Table 4.1: Species-level read classification performance on simulated data. Precision, recall,
and F-scores for the species-level analysis of simulated Data. All compared tools show high
precision and recall above 0.95, except for Ganon and KMCP, which have a lower recall of 0.93
and 0.87, respectively.

4.3.6 Classification performance on real data

Since the simulated dataset represents only a medium-complex metagenomic sample,

we further evaluate Taxor on real data using three sets of metagenomic sequencing

data, two ONT datasets for the ZymoBIOMICS D6300 community standard, and one

PacBio HiFi dataset for the ZymoBIOMICS Gut Microbiome Standard D6331. The read

classification performance evaluation results are shown in Figure 4.8 and Appendix A.3.

Consistent with observations on simulated data, Taxor shows a high precision on the

species level of 0.97 and 0.94 on the ZymoR10.3 and HiFi_D6331 data sets. For both

datasets, The precision increases to 0.98 on the genus level and 0.99 on the family level.
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Figure 4.8: Read classification on species, genus, and family level for all three real datasets.
Precision, recall, F1-Score, and F0.5-Score are shown for all six compared tools
on three taxonomic levels. Taxor and KMCP show the highest precisions across
all three datasets and all levels. Taxor’s recall is comparable to MetaMaps and
Ganon on the species level, whereas KMCP consistently has the lowest recall of
all tools. Centrifuge and Kraken2 have low species-level recall for the two
ONT datasets while performing well on the HiFi dataset. Taxor and MetaMaps,
in general, have the highest F-scores, with Taxor outperforming MetaMaps on
the F0.5-Score.

For the second ONT dataset (ZymoQ20), Taxor’s species-level precision is slightly

lower at 0.91 and increases to 0.92 (genus) and 0.93 (family) on higher taxonomic levels.

Taxor further shows a high recall between 0.95 and 0.97 on all taxonomic levels for the

ZymoQ20 and HiFi_D6331 datasets. Only for the ZymoR10.3 data set, Taxor’s recall

has a value of 0.89 on all taxonomic levels. Our new tool has a F1-Score between 0.93

and 0.96 and a F0.5-Score between 0.92 and 0.95 on the species level across all three

datasets.

Consistent patterns emerge when comparing Taxor to the other metagenomics read

classification tools. Across all taxonomic levels and all three datasets, Taxor and

KMCP show the highest precision. On the species level, Taxor shows the highest preci-

sion on both ONT data sets (0.97 on ZymoR10.3 and 0.91 ZymoQ20), outperforming
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Figure 4.9: Average precision and recall on species level across the three real datasets.
Showing average precision and recall of the six compared tools on the species level
for the two ONT and the HiFi mock community datasets. MetaMaps, Taxor, and
Ganon have the highest average recall, while Taxor and KMCP outperform the
other tools in terms of precision. KMCP is the only tool with an average recall below
0.5 across the three datasets.

MetaMaps and KMCP by 1-3% and Ganon by 3-8%. On the HiFi_D6331 dataset,

KMCP outperforms Taxor by 4% precision on the species level. However, KMCP shows

the worst recall on all datasets across all taxonomic levels, while Taxor, on average,

has the second-best recall on the species level (see Figure 4.9). We further recognize that

Centrifuge and Kraken2 have a low recall between 0.66 and 0.8 on the species

level for both ONT datasets, which increases to 0.99 on the genus level. Since Taxor

does not use a lowest-common-ancestor algorithm, its recall stays relatively constant

across all taxonomic levels, which explains why Centrifuge and Kraken2 outper-

form Taxor in terms of recall on higher taxonomic levels. The long-read classification

method MetaMaps has the highest average recall on the species level across the three

datasets.

When looking at F-scores, we see that Taxor consistently outperforms the other tools on

the species level, except for the F1-Score on the "ZymoR10.3" dataset, where MetaMaps

performs best because of its high recall. On average, Taxor and MetaMaps have
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the same species-level F1-Score across all three datasets, but Taxor outperforms

MetaMaps concerning the average F0.5-Score when precision is prioritized over re-

call (Figure 4.10). On the genus and family level, all six tools are comparable except for

KMCP, which suffers from low recall.

In summary, the two long-read methods, Taxor and MetaMaps, perform best on the

species level across the three real datasets, making them the best choice for long-read

metagenomics classification.
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Figure 4.10: Average F-Scores on species level across the three real datasets. (A) Average
species-level F1-Score of the six tools across the three real mock communities.
Taxor and MetaMaps show the highest scores, while KMCP has the lowest
average F1-Score. (B) Average species-level F0.5-Score of the six tools across the
three real mock communities. Our new tool Taxor outperforms the other methods
when precision is prioritized over recall.

4.3.7 Relative abundance estimation on real data

All six evaluated tools report relative species abundance estimations after read classifi-

cation and metagenomic profiling. In Figure 4.11, we compare the theoretical relative

abundances of species in the mock communities against the relative species abundances
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reported by the different tools. Taxor is the only tool that reports both types of abun-

dance, sequence abundance and taxonomic abundance. When comparing the taxonomic

abundance estimates of Taxor to those of Ganon and KMCP, we see that none of the

three tools can accurately predict taxonomic abundances for all species in the three mock

communities. However, Taxor has the lowest L1 distance of the three tools across all

real datasets, demonstrating better relative species abundance estimates than Ganon and

KMCP.

Since MetaMaps, Kraken2 and Centrifuge report relative sequence abundances

of species instead of relative taxonomic abundances, we compare their profiling results

to the theoretical sequence abundances of the mock communities. Consistent with the

taxonomic abundance evaluation results, none of the investigated tools can accurately

predict sequence abundance for the species comprising the three mock communities. As

for the taxonomic abundance, Taxor outperforms the other tools by having the smallest

L1 distance between theoretical and predicted species abundances across all datasets.

4.3.8 Computational requirements comparison

With the ever-increasing number of genomes in public databases comes the need for

faster and more space-efficient methods to facilitate metagenomic read classification and

profiling. Thus, we assessed the computational requirements of Taxor for indexing

the reference database used in this study. Then, we also measured the required peak

memory usage and runtime for querying the "ZymoR10.3" dataset against the built

database index. We further compare Taxor’s computational requirements against the

other five tools used in this study. For all tools, we used the same reference database

and built database indexes using the commands provided in the Appendix A.3. Specific

commands for querying the built indexes are also provided in the Appendix A.3. We

performed computational benchmarking on an AMD EPYC 7742 high-performance

computing cluster (HPC) node using 30 threads. All times and peak memory usage were

measured using the Linux "time" command with the parameter "-v".

Results of the computational benchmarking are provided in Table 4.2. KMCP is the

fastest tool when building the index and has the lowest peak memory usage (5.84 GB).

Ganon is the second fastest tool but has a high memory usage (53 GB) and a large

index size on disk (36 GB). Taxor and Kraken2 both need approx. 80 minutes to

build an index, but need only 50% (Kraken2) and 25% (Taxor) of Ganon’s memory

requirements. Although Taxor needs 2.5 times more memory than KMCP, the final

HIXF index is 40% smaller than KMCP’s index and 65% smaller than the Kraken2

index. Centrifuge’s index is comparable to KMCP’s index size, but Centrifuge
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Figure 4.11: Comparison of theoretical abundances and predicted abundances. For each
species in the three real mock communities, predicted abundances by the compared
tools are plotted against the theoretical abundances. Crosses on the dashed line
represent a perfect match between predicted and theoretical abundance. (A) Com-
parison of tools reporting taxonomic abundance. (B) Comparison of tools reporting
sequence abundance. Taxor reports both abundance types and outperforms its
competitors, having the smallest L1 distance between predicted and theoretical
abundance.

needs 344 minutes and 385 GB RAM to build its index. MetaMaps is the second

resource-hungry tool in our benchmarking, needing three times as much time and 25

times as much memory as Taxor to build its index. MetaMaps further has the largest

index size of all tools, needing more than seven times the disk space as Ganon and 25

times as much as Taxor.

When querying the 426,213 ONT reads of the "ZymoR10.3" dataset against the respective

database indexes, Kraken2 performs fastest, needing less than 3 minutes to report read

classification results. Taxor and Ganon are almost as fast as Kraken2, needing only

22 seconds (Ganon) and 45 seconds (Taxor) more query time than Kraken2. These

three tools outperform the others, with a six (Centrifuge) to 12 (KMCP) times faster

query time. MetaMaps is the most resource-hungry tool, needing 335 GB memory

and more than 5 hours to query all reads against its index. Finally, we note that Taxor
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Build Query
Method Time RAM Index Size Time RAM

(mm:ss) (GiB) (GiB) (mm:ss) (GiB)

Centrifuge 344:50 385.30 18.4 20:14 18.4
MetaMaps 287:17 331.55 254.5 315:04 334.9
Kraken2 83:06 27.42 26.6 2:50 28.6
KMCP 7:01 5.84 16.1 36:49 17.2
Ganon 29:13 53.34 36.3 3:12 39.1
Taxor 81:39 13.38 9.8 3:35 9.8

Table 4.2: Results of Computational requirement benchmark. Reference indexes of a
database consisting of 21,003 bacterial, viral, archaeal, and fungi genomes were built for all tools.
We measured the elapsed time, peak memory usage, and index size for constructing the index.
For the query benchmark, we measured the elapsed time and peak memory usage for classifying
426,213 ONT reads. Build and query times were measured using 30 threads on an HPC node.

outperforms all evaluated tools in terms of peak memory requirements when querying

the index. Because of its small index size, Taxor can reduce the peak memory usage by

approx. 50% compared to Centrifuge and KMCP, which both have much higher query

times. Compared to Kraken2 and Ganon, which have similar query times, Taxor can

reduce the memory footprint by a factor of three (Kraken2) to four (Ganon). These

results highlight the combination of fast and space-efficient read classification of Taxor,

whereas other tools only provide fast querying or lower memory requirements.

4.4 Discussion

The increasing size of public reference genome databases such as NCBI RefSeq makes

metagenomic profiling and read classification a computationally challenging task. In

particular, reducing memory usage has become an objective of many studies during the

last few years. However, state-of-the-art short- and long-read metagenomic classifiers

still consume large amounts of memory, which can only be reduced by accepting a higher

risk of false classifications. For Bloom Filter approaches like Ganon and KMCP, one

can, for example, reduce the index size by accepting a higher false positive rate for the

approximate membership queries of k-mers. However, higher false positive rates can

lead to false classifications of viral reads, as proposed by Shen et al. (2023)

This issue motivated us to develop a new data structure that combines low memory

requirements, a low false positive rate, and fast membership queries to facilitate pre-

cise metagenomic classification of long reads on large reference sequence databases.
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Based on the work of Graf and Lemire (2020) and Mehringer et al. (2023), we created

a hierarchical interleaved XOR filter (HIXF) data structure, which is implemented in

the metagenomic classification tool called Taxor. Instead of relying solely on k-mers,

Taxor can utilize syncmers as a k-mer selection scheme. Finally, our new tool comes

with a profiling step, applying several filter strategies and an EM algorithm that refines

the results of the initial read classification.

In this study, we present our work on Taxor and show benchmarking results of a

comparison with five commonly used metagenomic profiling tools. Taxor’s read classi-

fication results are on par with state-of-the-art methods regarding recall while improving

precision rates in almost every experiment on real data. Our new tool consistently shows

the highest F1- and F0.5-scores on the species level for the three mock communities, indi-

cating the robustness of the findings. We attribute this improvement to using syncmers

instead of minimizers, applying several iterative filter steps, and our EM algorithm for

read classification refinement. This assumption is based on the observation that Taxor

and KMCP perform best regarding precision. Both use syncmers, similar filter steps,

and a final EM algorithm for the profiling. They mainly differ in the underlying data

structure for approximate membership querying and their implementation of the EM

algorithm.

Contamination and environmental DNA are important aspects in many metagenomic

studies, particularly if their genomes are not in the databases used by the metagenomic

profilers. We have shown that Taxor is robust against these out-of-database genomes,

minimizing the risk of false classifications of reads in such scenarios. Here, Taxor

outperforms the mapping-based method MetaMaps and is on par with the Bloom Filter

approaches of Ganon and KMCP. The false positive rate of 0.3%, which we used in this

study for the Bloom Filter approaches, and our HIXF data structure seems to protect the

three tools from falsely classifying reads from out-of-database genomes. Our observa-

tions suggest that removing host reads may not be necessary for these tools before the

metagenomic classification of long reads in microbiome studies.

Correctly estimating the composition of microbial genomes in metagenomic samples

is a main task in many microbiome studies, investigating the differential abundances

of species between several gut or environmental samples. These differences can be

attributed to environmental changes like global warming or anthropogenic pollution.

Our benchmarking results show that none of the evaluated tools accurately estimates the

abundance of all species in the real mock communities used for evaluation. Although

Taxor also has problems estimating the species abundances correctly, its calculated

sequence and taxonomic abundances are more consistent with the theoretical abundances

of species in the communities. However, these results should be taken with a pinch of
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salt as various factors, including different DNA extraction methods, can affect the final

composition of DNA sequenced for metagenomic samples and potentially bias relative

abundance estimates of the tools (Sui et al., 2020).

The small MinION sequencing devices invented by Oxford Nanopore Technologies

(ONT) provide the possibility to sequence a sample at the place of its origin without

the need to ship the sample to a laboratory. In such a point-of-care sequencing scenario,

computing resources for metagenomic analysis are usually limited. Without a reliable

internet connection to perform analysis in the cloud, the tools applied for metagenomic

profiling must be as fast and memory efficient as possible while retaining high read

classification accuracy. In this context, Taxor represents a significant improvement

over state-of-the-art tools, requiring only 50% of the memory and disk space as the best

competitor in our benchmarking. Taxor was also among the fastest tools regarding

the query time while showing the highest average precision across the three real evalua-

tion datasets. We expect Taxor to be a valuable tool for usage in real-time long-read

metagenomic analysis pipelines like minoTour (R. Munro et al., 2022) or WIMP (Juul

et al., 2015), both using Centrifuge for read classification.

Our new HIXF data structure significantly improves the interleaved Bloom filter con-

cerning memory consumption and query time. It also reduces the memory requirements

compared to the recently published hierarchical interleaved Bloom filter (Mehringer

et al., 2023) when both use the same false positive rate. However, this comes at the cost

of less flexibility and more time needed to build the index. The biggest drawback of

the XOR filter is the ability to only index static sets of keys. That means all input data

need to be known a priori, and the index cannot be updated after it has been built once.

Since the XOR filter is the underlying data structure of our HIXF, this also applies to it.

However, we argue that build times for the HIXF are still acceptable and that the lower

memory footprint for querying reads compensates for that issue. We even envisage that

tools currently relying on Bloom filters or interleaved Bloom filters can benefit from

utilizing the HIXF as their index data structure, particularly in time-critical applications

like nanopore adaptive sampling (Ulrich et al., 2022).

There are two important directions for the future development of Taxor. First, reducing

the computational requirements by enhancing the underlying data structure is worth

the effort because the number of genomes in public databases is constantly growing.

One possibility would be using Binary Fuse or Ribbon filters instead of the XOR Filter

in the hierarchical interleave data structure. Recent studies have shown that both filter

types are practically smaller than XOR filters (Dillinger & Walzer, 2021; Graf & Lemire,

2022). Secondly, estimating the species abundances in the investigated metagenomic

samples needs to be improved to reliably use our tool in microbiome studies relying on

95



4. Taxonomic classification of long reads with hierarchical interleaved XOR filters

differential abundance calculations. Here, enhancing the profiling would require further

filtering and an improvement of our EM algorithm, which remains an open task for

further research studies.
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5.1 Summary

Long-read nanopore sequencing has changed the DNA sequencing landscape in many

ways. On the one hand, nanopore sequencing produces the longest sequenced fragments

across all available sequencing technologies on the market. These ultra-long reads are

crucial for assembling complex repeat structures in the human genome, including long

palindromes, tandem repeats, and segmental duplications (Jain et al., 2018; Miga et al.,

2014; Skaletsky et al., 2003; Vollger et al., 2022). The long reads are also essential

for identifying structural variations, which have been implicated in a wide range of

genetic disorders (Cretu Stancu et al., 2017; Stankiewicz & Lupski, 2010). Compared

to short-read sequencing, long nanopore reads also improve the read classification

accuracy in metagenomics samples (Dilthey et al., 2019; Pearman et al., 2020) and allow

the generation of near-finished bacterial genomes from pure cultures and metagenomes

(Sereika et al., 2022). On the other hand, ONT’s small MinION sequencer requires almost

no capital investment, making DNA sequencing affordable for research groups from low-

and middle-income countries (Pallerla et al., 2022; Pullen et al., 2019). The small device

is not much bigger than a chocolate bar, which enables direct sequencing of samples at

the place of their origin without shipping them to a sequencing facility (Runtuwene et al.,

2019). In contrast to short-read sequencing technologies, where the complete sequence

of a fragment is only known after the sequencing run has finished, nanopore sequencing

offers the possibility for real-time analysis of the first sequenced fragments after some

minutes of sequencing (Greninger et al., 2015). Although considerable efforts have been

made to enable real-time analysis of intermediate short-read data during the sequencing

run (Loka et al., 2019; Tausch et al., 2022; Tausch et al., 2018), nanopore sequencing

outperforms current short-read technologies regarding the time to answer a biological

or clinically relevant question (Euskirchen et al., 2017; Greninger et al., 2015; Quick

et al., 2015). However, the exponential growth of reference sequence databases and the

higher sequencing error rates make the real-time analysis of nanopore sequencing data

challenging. In this thesis, I presented new methods for real-time metagenomic analysis

of nanopore sequencing data with a specific application to targeted sequencing.
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To this end, I first introduced ReadBouncer as a new tool for nanopore adaptive

sampling in Chapter 2. Adaptive sampling is a method unique to nanopore sequenc-

ing, which enables selective sequencing of individual DNA molecules by rejecting

uninteresting sequences from single nanopores. Therefore, real-time analysis of the

sequence prefixes is critical to making fast rejection decisions. To accomplish this task,

ReadBouncer implements a base-calling-and-mapping approach that pulls the raw

signals from the sequencing device first. After live-base-calling of the signals, the read

prefixes are classified with a pseudo-mapping approach based on Interleaved Bloom

Filters (IBFs), and the classification decision is sent back to the nanopore sequencing

device. In case a read was classified for rejection, the corresponding molecule is pulled

out of the nanopore, releasing it for the following DNA molecule to be sequenced. We

have shown that ReadBouncer improves read classification by combining IBFs with

k-mer matching statistics. In particular, ReadBouncer shows a higher read classifi-

cation sensitivity than other state-of-the-art classification tools for adaptive sampling

while retaining a high specificity. Our tool also improves classification performance

and memory usage compared to the other tools, which means that ReadBouncer can

investigate more DNA molecules in the same amount of sequencing time. We developed

our tool as an easy-to-install software application with a Graphical User Interface on

Linux and Windows operating systems. Additionally, ReadBouncer supports fast

CPU base-calling, providing even small sequencing facilities or in-field researchers

that typically only have access to low-cost hardware the possibility to use the adaptive

sampling feature of the MinION sequencer.

The application of nanopore adaptive sampling can reduce the time to answer a specific

biological or clinical question. Additionally, it has been shown that adaptive sampling

can enrich certain amplicons (Loose et al., 2016), human genes (Kovaka et al., 2021;

Payne et al., 2021), and low-abundant species in metagenomic samples (Martin et al.,

2022). These findings inspired us to investigate whether we could enrich low-abundant

plasmids in bacterial isolate samples. Plasmids are mobile genetic elements (MGEs)

that play an essential role in horizontal gene transfer and the spread of antimicrobial

resistances (AMRs). Thus, they are an important subject for sequencing in clinical micro-

biology studies and outbreak investigations. However, they are often underrepresented in

clinical samples and need to be enriched in the laboratory, which is expensive and time-

consuming. In Chapter 3, I presented the results of a proof-of-concept study that showed

the potential of adaptive sampling for the enrichment of low-abundant plasmid sequences

by rejecting chromosomal sequences in bacterial isolate samples. Therefore, I used

two adaptive sampling tools, namely ReadBouncer and ONT’s MinKNOW sequencing

control software, to investigate whether an enrichment can be reached independent
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of the adaptive sampling tool used. Although different levels of plasmid enrichment

were observed, the tools consistently enriched for low-abundant plasmid sequences. I

demonstrated that the enrichment by yield, the most critical value for researchers, can

reach up to 1.8x after 24 hours of sequencing on an ONT MinION sequencing device. In

this context, I could also show that the difference between enrichment by yield, number

of reads, and mean depth of coverage is negligible in all sequenced samples. Further

investigations indicate that high-quality assemblies of plasmids are possible within two

hours of sequencing with adaptive sampling and show even better results than plasmid

assemblies without adaptive sampling. However, the study also highlights a potential

issue with nanopore adaptive sampling if regions with high sequence identity are located

on the chromosome and the plasmid. This can lead to false read rejections, which

result in a depletion of the targeted plasmid sequences. In summary, the results reflect

the benefit of adaptive sampling for the in-silico enrichment of low-abundant plasmids

in bacterial isolate samples but also sound a note of caution if target and non-target

sequences are similar.

In order to examine further cost-savings, I also inspected the possibility of using expired

flow cells with fewer active sequencing pores for the in-silico enrichment via adaptive

sampling in this study. Although the number of active sequencing pores decreases

faster when using adaptive sampling, there was no negative impact on the enrichment of

target sequences and the average quality of sequenced reads. This shows that flow cells

with reduced active pores can be used in adaptive sampling experiments to increase the

sustainability and cost-savings of research laboratories.

With the adaptive sampling tool presented in Chapter 2, it is possible to reject uninterest-

ing sequences directly from an ongoing experiment. Although this method can remove

host background reads from microbiome sequencing experiments, it acts like a binary

classifier and does not perform real-time analysis of the target sequences. Existing taxo-

nomic profilers struggle with the ever-increasing amount of reference genomes and need

high-performance computing clusters to perform real-time analysis of metagenomics

samples. To overcome this issue, I introduced Taxor as a fast and space-efficient

taxonomic profiler for long reads in Chapter 4. Here, I described the hierarchical inter-

leaved XOR filter (HIXF), a new data structure for approximate membership queries

that I developed and implemented in Taxor. It combines low memory requirements, a

low false positive rate, and fast membership queries to facilitate precise metagenomic

classification of long reads on large reference sequence databases. Instead of relying

solely on k-mers for the pseudo-mapping, Taxor utilizes open canonical syncmers

as a k-mer selection scheme. For the final profiling step, I implemented several filter

strategies and an EM algorithm to refine the initial read classification results.
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To evaluate Taxor, Chapter 4 also includes benchmarking results of a comparison with

five commonly used metagenomic profiling tools. Here, Taxor’s read classification re-

sults are on par with state-of-the-art methods regarding recall while improving precision

rates in almost every experiment on real data. Taxor consistently shows the highest

F1- and F0.5-scores on the species level for the three mock communities, indicating the

robustness of the findings. Finally, this new tool represents a significant improvement

over state-of-the-art tools, requiring only 50% of the memory and disk space as the best

competitor in the benchmarking. It was also among the fastest tools regarding query time

while showing the highest average precision across the three real evaluation datasets.

In summary, the presented tools and methods provide real-time analysis solutions

for nanopore metagenomics sequencing applications. These approaches range from

host background removal over the enrichment of low-abundant sequences to real-time

taxonomic profiling of microbiome samples and pathogen detection. Most notably, all

described methods in this thesis rely on pseudo-mapping approaches using approximate

filter data structures. They have been shown to provide high precision while providing

fast and memory-efficient results, which makes pseudo-mapping approaches an excellent

choice for the real-time classification of reads in metagenomics sequencing experiments.

5.2 Outlook

The research field of nanopore sequencing has seen rapid changes during the last five

years. Although this thesis describes current advanced methods for real-time analysis of

nanopore sequencing data, many new ideas have emerged during the work on these ap-

proaches. In particular, improvements in nanopore adaptive sampling methods are needed

to convince more scientists to adopt this method for the in-silico enrichment of interesting

biological sequences. One possibility is circumventing the computationally expensive

base-calling step by directly classifying the nanopore signals. Recently, Firtina et al.

(2023) developed a method to compute hash values for stretches of nanopore raw signals

and compare these hash values to translated hash values of given reference sequences

using ONT’s k-mer models. Although their current method shows weaknesses when

classifying human nanopore reads, improving and coupling their hashing method for

raw nanopore signals with hierarchical filter structures could benefit ReadBouncer’s

adaptive sampling process. This would speed up the classification process and reduce

the complexity of adaptive sampling tools by avoiding the need for fast GPU base callers,

making adaptive sampling more attractive for applications in low-resource settings.

For ReadBouncer, I foresee many different future applications. Most obviously,

I envision combining ReadBouncer and Taxor into an interactive application for
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metagenomics sequencing. This tool would sequence a given sample for the first 15 to 30

minutes and list all organisms identified by Taxor in a Graphical User Interface (GUI).

Then, the sequencing run would pause for some minutes while the user can decide which

organisms should be depleted or enriched by just clicking a checkbox in the GUI. Finally,

ReadBouncer would take the reference sequences of the chosen organisms and start

the adaptive sampling process in the background after the sequencing run continues. This

workflow could easily remove host background reads, but more importantly, it benefits

the removal of known contaminants when combined with tools like GRIMER (Piro &

Renard, 2023). Furthermore, this tool could also be used for the real-time identification

of new pathogens by using DeePaC (Bartoszewicz et al., 2020) to screen all reads that

were unclassified by Taxor for their pathogenic potential. When combined with Oxford

Nanopore Technologies (ONT)’s MinION sequencer, this software suite could offer a

real-time point-of-care test for known and novel pathogens in clinical applications, but

also in farmed animals and plants as well as in wildlife research.

As another road for improvement of ReadBouncer, I also envision reference-free host

removal with adaptive sampling in cases where the reference sequence of the host is

incomplete or unknown. A typical use case is the sequencing of avian malaria parasites,

which are numerous and common in wildlife but challenging to sequence because typi-

cally less than 2% of the bird’s red blood cells are infected by the parasite (Bensch et al.,

2016). Since bird erythrocytes are nucleated, the parasite proportion of total DNA in

such a sequenced sample is less than 0.1%. However, the avian hosts and the malaria

parasites significantly differ in GC content (Videvall, 2018). Using the GC content

distribution of simulated reads from known parasite and avian genomes, it would be

possible to create a statistical test that decides whether a sequenced read is more likely

to originate from a parasite or a bird. Rejecting the avian reads with adaptive sampling

could enrich the parasite reads and improve the de novo assembly of unknown malaria

parasites. The approach can also be extended to using different k-mer profiles observed

for hosts and their pathogens (Bohlin et al., 2008; Zielezinski et al., 2017).

Besides DNA sequencing, nanopore sequencing can also be used for direct RNA sequenc-

ing. This technique benefits whole transcriptome sequencing studies by avoiding the

otherwise mandatory Polymerase Chain Reaction (PCR) amplification step with reverse

transcriptase to translate RNA into cDNA. Many RNA-Seq samples suffer from high-

abundant, uninteresting RNAs that occupy valuable sequencing capacity (Naarmann-de

Vries, Eschenbach, et al., 2022). Although it has been shown that adaptive sampling can

help identify formerly unknown low-abundant transcripts by depleting the high-abundant

uninteresting RNAs, it can take too much time to determine the identity of the RNA and

to decide whether to continue the sequencing of the given transcript (Naarmann-de Vries,
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Gjerga, et al., 2022; Wan et al., 2023). Here, ReadBouncer could fasten the decision-

making process with its precise pseudo-alignment approach. When combined with a

classification based on the raw signals, one could also use methylations to distinguish

between interesting and uninteresting RNA molecules. Additionally, deep-learning

approaches like RISER (Sneddon et al., 2022) could improve adaptive sampling for

nanopore direct RNA sequencing.

Future applications of adaptive sampling are also foreseeable for nanopore single-

molecule protein sequencing. Brinkerhoff et al. (2021) showed in a proof-of-concept

study how DNA-peptide conjugates can be measured with existing nanopore sequencing

devices. This new technology is expected to revolutionize the proteomics research field

(Alfaro et al., 2021). ReadBouncer’s pseudo-alignment approach is easily adaptable

to work with amino acid sequences and could help to enrich low-abundant peptides

by depleting the overrepresented peptide sequences in a given sample. This can be

particularly beneficial for developing clinical tests based on sequencing blood serum

proteins. The less abundant proteins are primarily tissue-derived and show pathology-

specific abundance differences, and they likely represent biomarker candidates for the

early detection of diseases. However, the main challenge is that 90% of the protein

content of serum consists of only ten proteins, with albumin comprising up to 50%

of the whole protein content (Tirumalai et al., 2003). Although wet lab methods for

depleting these high-abundant plasma proteins have been developed, a large fraction of

them remains in the sample, occupying sequencing capacity that could better be used for

the low-abundant biomarkers (Viode et al., 2023). In-silico depletion of these proteins

with adaptive sampling will be a cost-efficient method to eliminate these uninteresting

protein sequences. Similarly to nanopore DNA and RNA sequencing, epigenetic modifi-

cations of peptides can be measured with this direct protein sequencing approach. The

post-translational modifications could then also be used to decide whether a currently

sequenced peptide should be rejected from the pore or sequenced as usual.

One of the lessons learned during the development of ReadBouncer is the importance

of having good simulation software to test developed tools. Only two possibilities

existed to test adaptive sampling without performing a real sequencing run in the lab-

oratory when ReadBouncer was implemented. The ReadUntil simulator provided

with UNCALLED (Kovaka et al., 2021) needs two real runs: one control run and one

UNCALLED run. However, this will only simulate the results of an adaptive sampling

run but not an interactive behavior needed for testing the real-time communication

between the sequencer and the adaptive sampling tool. The second option is to use

ONT’s MinKNOW, which can be configured to playback a prerecorded sequencing run.

This simulator requires a bulk fast5 file of the recorded sequencing run, which is rarely
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available. Another limitation of this approach is that rejected reads are not actually

removed from a pore, but the original read is fragmented at the point the read would

have been unblocked. Both approaches cannot mimic the interactive, adaptive sampling

behavior of a real nanopore sequencer for different data sets. The recently published

tool Icarust (R. J. Munro et al., 2023) addresses these challenges by simulating raw

nanopore signals directly from given reference sequences. However, this approach is

impractical for benchmarking adaptive sampling tools because it will not create the same

reads for two different simulations of the same input. For such a simulator, it would

be more intuitive to provide raw fast5 files of sequenced reads and use the raw signals

stored with them.

Real-time whole metagenomic sequencing is a method with a high potential in clinical

applications but also for molecular surveillance. Nanopore sequencing has successfully

been used for outbreak surveillance of viral pathogens like Ebola (Quick et al., 2016),

Zika (Quick et al., 2017) and Lassa (Kafetzopoulou et al., 2019). However, during the

last few years, researchers have also started using portable nanopore sequencing for

microbial surveillance of wastewater (Andersen et al., 2017; Fuhrmeister et al., 2021)

and freshwater quality monitoring (Acharya et al., 2020; Urban et al., 2021). These

approaches have shown to be an early warning system for outbreak detection of pathogens

(Abdeldayem et al., 2022). Since Taxor is a resource-efficient taxonomic profiling

tool, I expect it to benefit the metagenomic analysis of wastewater and freshwater

samples when combined with a portable laboratory. Taxor will significantly contribute

to molecular surveillance systems when integrated into pipelines for fast pathogen

detection or microbiome analysis. When coupled with ARG databases like CARD

(Alcock et al., 2023), Taxor will also improve the real-time detection and outbreak

surveillance of antibiotic-resistant bacteria.

Nanopore sequencing has not only been used to detect antibiotic-resistant bacteria but

also to characterize the resistome in wastewater treatment plants (Wu et al., 2022). One of

the main drivers for the dissemination of ARGs are mobile genetic elements like plasmids.

In Chapter 3 of this thesis, I described how adaptive sampling could improve the

characterization of bacterial plasmids by enriching the low-abundant plasmids. However,

the current approach has two main disadvantages: either the bacterial chromosomes

or the plasmid sequences need to be known upfront, and in a metagenomics sample,

it is unclear from which bacterial species the plasmid originates. We can overcome

the first issue by using Taxor to initially identify the bacterial species in the sample

and then select their chromosomal sequences for depletion. However, this requires

spending a lot of sequencing capacity for sequencing bacterial chromosomes to correctly
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identify the species, which will consequently reduce the potential enrichment of the

target plasmids. A better solution would be to develop a deep-learning-based plasmid

classifier that directly uses the raw nanopore signals. This approach could provide a

fast classification by skipping the otherwise mandatory base-calling step and would not

require prior knowledge about the bacterial species that comprise the sequenced sample.

To resolve the second issue, it is also inevitable to sequence a certain amount of the

bacterial chromosomes to identify the bacterial species in the sample using Taxor. After

they have been identified, one could analyze the methylation profiles of the different

species and deplete the chromosomal sequences that will not add more information.

Finally, the methylation profiles of the sequenced plasmids can be used to associate

them with their bacterial host genomes as proposed by Beaulaurier et al. (2018). This

is crucial in clinical diagnostics of antibiotic-resistant pathogens because detecting an

ARG on a bacterial plasmid in a clinical sample does not necessarily mean a pathogen in

that sample is resistant to antibiotic treatment. Only the association between a plasmid

harboring the ARG and a pathogenic host will provide enough evidence for this pathogen

to be resistant.

In Chapter 4, I describe how the utilization of XOR filters as an alternative to the

widely adopted Bloom filter can reduce the memory and disk space requirements of

indexed databases for metagenomic classification. Besides XOR filters, Graf and Lemire

(2022) also developed binary fuse filters, which are even smaller and more compact than

XOR filters. However, building these binary fuse filters often fails, and many different

hash functions must be tested before the build process succeeds. This makes them

inappropriate for interleaved filter structures where the same hash functions have to be

used for each of the individual filters. However, they are a promising route for further

improvements of pseudo-alignment tools used for metagenomics profiling.

Because of the increasing number of new bioinformatic software tools, benchmarking

methods developed for the same application has become an important topic of many

studies (Mangul et al., 2019). Often, these benchmarks are performed by the developers

of a new tool to demonstrate performance improvements. However, this results in the

authors reporting their method to perform best in an unreasonable number of cases (Norel

et al., 2011). To reduce this bias, neutral benchmarking studies performed by independent

groups or community challenges are precious for the research community (Weber et al.,

2019). There has been a great effort by the metagenomics community to perform such

neutral benchmarking studies (Marić et al., 2021; Portik et al., 2022; Simon et al., 2019)

and community challenges as CAMI (Meyer et al., 2022; Sczyrba et al., 2017). However,

these studies often do not include the latest tools and are rarely up-to-date. Thus, the

metagenomics and microbiome research community needs a tool or repository where
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developers can register their new tool, and automatic benchmarking against all other

methods is performed using gold-standard data sets for different sequencing technologies.

The authors of a new method can include the results of this independent benchmarking

in their studies, which would also circumvent the self-reporting bias.
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A Appendix

A.1 Precise and scalable nanopore adaptive sampling
with ReadBouncer

DNA Sequencing

ZymoBIOMICS HMW DNA Standard was purchased from Zymo Research, from which

400 nanogram (ng) were transferred into a 1.5 milliliter (mL) DNA LoBind tube, and

the volume was adjusted to 7.5 microliter (µL) with Nuclease-free water. The sample

was mixed by flicking the tube, spun down briefly, and then transferred into a 0.2 mL

PCR tube. 2.5 µL Fragmentation Mix was added, and the tube was mixed by flicking the

tube and spun down. After incubating for 1 min at 30 °C and subsequently for 1 min at

80 °C, the tube was briefly put on ice. 1 µL RAP was added to the barcoded DNA.

After mixing by flicking the tube and spinning down, the sample was incubated for 5

min at room temperature. In a new DNA LoBind tube, 34 µL Sequencing Buffer (SQB),

25.5 µL Loading Beads (LB), 4.5 µL Nuclease-free water, and 11 µL DNA library were

added. Meanwhile, for the priming of the flow cell FLO-MIN106 (R9.4 SpotON), 30

µL Flush Tether (FLT) was added directly to a tube of Flush Buffer (FB) and mixed by

vortexing. 800 µL priming mix were loaded into the flow cell via priming port without

introducing any air bubbles. After incubating for 5 min, the SpotON sample port was

opened, and 200 µL priming mix were loaded into the flow cell via priming port. Finally,

the prepared DNA library was mixed by pipetting up and down, and 75 µL of the sample

volume was loaded into the flow cell via the SpotON sample port in a dropwise fashion.

After closing the SpotON sample port and priming port and replacing the MinION lid,

the sequencing experiment was started via MinKNOW software.
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Distribution of reads across species in simulated mock community dataset

Figure A.1: Proportion of reads from each species in the simulated mock community
dataset. Less than 2.5% of reads were simulated from Saccharomyces cerevisiae.
We would aim to deplete bacterial reads in order to enrich for Saccharomyces cere-
visiae.
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Distribution of reads across species in real mock community dataset

Figure A.2: Proportion of reads from each species in the real mock community dataset.
Only 2.5% of reads sequenced from a real mock community originate from Saccha-
romyces cerevisiae. We would aim to deplete bacterial reads in order to enrich for
Saccharomyces cerevisiae.
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Table A.1: Comparing ReadBouncer, SPUMONI, and minimap2 across various metrics
on a simulated Zymo Mock Community consisting of seven bacterial species and Saccha-
romyces cerevisiae. We simulated 360 nucleotide long reads of varying levels of sequence
accuracy for all eight organisms. All reads were mapped against the seven bacterial reference
sequences to filter out only the bacterial reads. At the same time, we want to keep as much
Saccharomyces cerevisiae reads, which corresponds to an enrichment of that organism in a
real-world experiment.

Read Accuracy(%) 80
Tool ReadBouncer SPUMONI minimap2

(k=15)
minimap2
(k=13)

Accuracy 69.16 68.23 62.03 70.52
Precision 100.00 99.88 100.00 100.00
Recall 68.48 67.61 61.19 69.87
Specificity 99.98 96.32 100.00 100.00
F1-Score 82.29 80.64 75.92 82.26
MCC 0.21 0.20 0.18 0.21

Read Accuracy(%) 85
Accuracy 89.83 89.15 86.19 89.24
Precision 100.00 99.90 100.00 100.00
Recall 89.61 89.00 85.89 89.00
Specificity 99.95 95.99 100.00 100.00
F1-Score 94.51 94.13 92.41 94.18
MCC 0.40 0.37 0.34 0.38

Read Accuracy(%) 90
Accuracy 96.74 96.43 94.48 95.45
Precision 100.00 99.91 100.00 100.00
Recall 96.67 96.44 94.36 95.35
Specificity 99.94 96.01 100.00 100.00
F1-Score 98.31 98.14 97.10 97.62
MCC 0.62 0.59 0.52 0.55

Read Accuracy(%) 95
Accuracy 99.00 98.84 97.19 97.53
Precision 100.00 99.91 100.00 100.00
Recall 98.98 98.90 97.13 97.47
Specificity 99.93 95.90 100.00 100.00
F1-Score 99.49 99.40 98.54 98.72
MCC 0.82 0.79 0.65 0.67

Read Accuracy(%) 98
Accuracy 99.28 99.13 97.52 97.74
Precision 100.00 99.91 100.00 100.00
Recall 99.27 99.20 97.47 97.69
Specificity 99.88 95.98 100.00 100.00
F1-Score 99.63 99.56 98.72 98.83
MCC 0.86 0.83 0.67 0.69

109



A. Appendix

A.2 Nanopore adaptive sampling effectively enriches
bacterial plasmids
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Figure A.3: Species abundances for each of the four MinION runs. Similar species abun-
dances can be observed between ReadBouncer1 and MinKNOW1 with Campylobac-
ter jejuni dominating in both runs. Abundances are also similar for ReadBouncer2
and MinKNOW2 except that Enterobacter hormaechei is most abundant species in
MinKNOW2 and Klebsiella pneumoniae is most abundant in ReadBouncer2.
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A.3 Fast and space-efficient taxonomic classification of
long reads with hierarchical interleaved XOR filters

Threshold calculation for the k-mer based model

For our new HIXF data structure, we use membership queries for all k-mers of a given

read against all k-mers of a given reference sequence set. We consider a read a hit

with a reference sequence if the number of matching k-mers is greater than or equal

to a given threshold t. For the k-mer model, we calculate the threshold using the

expected sequencing error rate e and the definition of a (1 − α) confidence interval of

the number of erroneous k-mers as provided by Blanca et al. (2022) For a given read

r with length len(r) and k-mer length k, we denote the number of k-mers of a read r
as L = len(r)− k + 1, and define q by (1 − (1 − e)k). Then, the expected number of

erroneous k-mers can be calculated as follows:

E[Nerr] = L × q (A.1)

Let Var(Nerr) be the variance for the number of erroneous k-mers. We can then calculate

the upper bound of the (1 − α) confidence interval by

E[Nerr] + zα

√
Var(Nerr) (A.2)

With zα = ϕ−1(1 − α
2 ), where we denote ϕ−1 as the inverse of the cumulative distri-

bution function of the standard Gaussian distribution. Based on the calculation of the

confidence interval for the number of erroneous k-mers, we define our threshold for the

minimum number of matching k-mers for read r as:

min[Nmatch] = L − (E[Nerr] + zα

√
Var(Nerr)) (A.3)

We classify a read as a match with a reference sequence if the number of matching

k-mers is bigger or equal to

t = min[Nmatch] (A.4)

Profiling methods commands

To facilitate reproducible results, we provide general commands or instructions to run

each method.
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genome_updater

We used genome_updater version 0.5.2 (https://github.com/pirovc/genome_updater)

to download all complete genome sequences and chromosomes of archaea, bacteria,

viruses, and fungi from the NCBI RefSeq database (Release 217) (O’Leary et al., 2016)

genome_updater.sh -d refseq -g archaea,bacteria,fungi,\

viral -l complete genome,chromosome, -f genomic.fna.gz \

-o refseq-abfv -t 12 -A species:1 -m -a -p

mkdir -p refseq-abfv/2023-03-15_12-56-12/taxdump

tar -xvzf refseq-abfv/2023-03-15_12-56-12/taxdump.tar.gz \

-C refseq-abfv/2023-03-15_12-56-12/taxdump

Centrifuge

We ran Centrifuge version 1.0.4 (Kim et al., 2016). First, we created a Fasta file of all

downloaded reference genomes and a corresponding conversion table. Then we used the

prepared input data and the downloaded NCBI taxonomy dump to build a Centrifuge

database index

cut -f 1,6 refseq-abfv/2023-03-15_12-56-12/assembly\

_summary.txt > refseq-abfv/2023-03-15_12-56-12/taxid.map

centrifuge_conversion_table.py -t refseq-abfv/2023-03-15\

_12-56-12/taxid.map -s refseq-abfv/2023-03-15_12-56-12/\

files -o refseq-abfv/2023-03-15_12-56-12/centrifuge_data/\

conversion_table.tsv

centrifuge-build --conversion-table refseq-abfv/2023-03-15\

_12-56-12/centrifuge_data/conversion_table.tsv \

--taxonomy-tree refseq-abfv/2023-03-15_12-56-12/taxdump/\

nodes.dmp --name-table refseq-abfv/2023-03-15_12-56-12/\

taxdump/names.dmp -p 30 refseq-abfv/2023-03-15_12-56-12/\

files/all.fna refseq-abfv/2023-03-15_12-56-12/\

centrifuge_data/refseq-abfv
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Finally, we queried the fastq file of one of the samples against the index and create a

Kraken report file from the Centrifuge output.

centrifuge -q --min-hitlen 22 -k 20 -t -p 30 -x refseq-\

abfv/2023-03-15_12-56-12/centrifuge_data/refseq-abfv -U \

SAMPLE.fastq.gz -S refseq-abfv/2023-03-15_12-56-12/\

centrifuge_data/SAMPLE.centrifuge.search.txt --report-file

refseq-abfv/2023-03-15_12-56-12/centrifuge_data/\

SAMPLE.centrifuge.report.tsv

centrifuge-kreport -x refseq-abfv/2023-03-15_12-56-12/\

centrifuge_data/refseq-abfv --no-lca refseq-abfv/2023-\

03-15_12-56-12/centrifuge_data/SAMPLE.centrifuge.search\

.txt > refseq-abfv/2023-03-15_12-56-12/centrifuge_data/\

SAMPLE.centrifuge.kreport.txt

Kraken2

We ran Kraken2 version 2.1.2 (Wood et al., 2019). We first needed to prepare input data

by adding the Kraken header information to the fasta file using the conversion table we

also created for building the Centrifuge index.

kraken2-build --download-taxonomy --db refseq-abfv/2023-\

03-15_12-56-12/kraken2_data/refseq-abfv

add_kraken_header.py -t refseq-abfv/2023-03-15_12-56-12/\

centrifuge_data/conversion_table.tsv -f refseq-abfv/2023-\

03-15_12-56-12/files/all.fna -o refseq-abfv/2023-03-15\

_12-56-12/kraken2_data/all_seq.fna

kraken2-build -add-to-library refseq-abfv/2023-03-15_12-\

56-12/kraken2_data/all_seq.fna --db refseq-abfv/2023-03-\

15_12-56-12/kraken2_data/refseq-abfv-k32-m22 --no-masking
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kraken2-build --build --kmer-len 32 --minimizer-len 22 \

--minimizer-spaces 0 --threads 30 --db refseq-abfv/2023-\

03-15_12-56-12/kraken2_data/refseq-abfv-k32-m22

After building the database index we can query each sample against it, resulting in

a kraken report file and an output txt with binning information per read.

kraken2 --db refseq-abfv/2023-03-15_12-56-12/kraken2\

_data/refseq-abfv-k32-m22 --threads 30 --report refseq-\

abfv/2023-03-15_12-56-12/kraken2_data/SAMPLE.report \

--output refseq-abfv/2023-03-15_12-56-12/kraken2_data/\

SAMPLE.output.txt --gzip-compressed SAMPLE.fq.gz

KMCP

We used KMCP version 0.9.1 (Shen et al., 2023). First, we needed to prepare the input

data for creating the database index, as described in the KMCP wiki

(https://bioinf.shenwei.me/kmcp/database/#refseq-viral-or-fungi) using the tools rush

and brename, provided by the author of KMCP.

cut -f 1,6 refseq-abfv/2023-03-15_12-56-12/assembly\

_summary.txt > refseq-abfv/2023-03-15_12-56-12/taxid.map

cut -f 1,8 refseq-abfv/2023-03-15_12-56-12/assembly \

_summary.txt > refseq-abfv/2023-03-15_12-56-12/name.map

mkdir -p refseq-abfv/2023-03-15_12-56-12/kmcp_data/ \

files.renamed

cd refseq-abfv/2023-03-15_12-56-12/kmcp_data/files.renamed

find refseq-abfv/2023-03-15_12-56-12/files \

-name "*.fna.gz" | rush ’ln -s {}’

cd ..
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brename -R -p ’∧(\w{3}_\d{9}\.\d+).+’ -r ’$1.fna.gz’ \

refseq-abfv/2023-03-15_12-56-12/kmcp_data/files.renamed

In the next step, we compute the syncmers and create the database index with a false

positive rate of 0.3%.

kmcp compute -I refseq-abfv/2023-03-15_12-56-12/kmcp_data\

/files.renamed -O refseq-abfv/2023-03-15_12-56-12/kmcp\

_data/refseq-abfv-k22-s12 -S 12 -k 22 --seq-name-filter \

plasmid --split-number 10 --split-overlap 150 --log \

refseq-abfv-k22-s12.log -j 30 --force

kmcp index -I refseq-abfv/2023-03-15_12-56-12/kmcp_data\

/refseq-abfv-k22-s12/ -O refseq-abfv/2023-03-15_12-56-12/\

kmcp_data/refseq-abfv-k22-s12.kmcp -j 30 -f 0.003 -n 3 \

-x 100K --log refseq-abfv-k22-s12.kmcp.log --force

Finally, the sample file is queried against the index and the profiling refines read assign-

ments and report taxonomic abundances.

kmcp search --db-dir refseq-abfv/2023-03-15_12-56-12/\

kmcp_data/refseq-abfv-k22-s12.kmcp --threads 30 -f 0.003 \

--min-query-cov 0.12 --out-file refseq-abfv/2023-03-15\

_12-56-12/kmcp_data/SAMPLE.tsv.gz SAMPLE.fq.gz

kmcp profile --taxid-map refseq-abfv/2023-03-15_12-56-12/\

kmcp_data/taxid.map --taxdump refseq-abfv/2023-03-15\

_12-56-12/taxdump/ --level species --min-query-cov 0.12 \

-m 3 refseq-abfv/2023-03-15_12-56-12/kmcp_data/SAMPLE\

.tsv.gz --min-hic-ureads-qcov 0.2 --min-chunks-fraction \

0.2 --out-prefix refseq-abfv/2023-03-15_12-56-12/kmcp\

_data/SAMPLE.kmcp.profile --cami-report refseq-abfv/2023-\

03-15_12-56-12/kmcp_data/SAMPLE.cami.profile --sample-id \

SAMPLE_NAME --binning-result refseq-abfv/2023-03-15_12-\

56-12/kmcp_data/SAMPLE.binning.gz
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Ganon

We used Ganon version 1.8.0 (Piro et al., 2020). Here, no further preprocessing step is

needed to create the custom database index. We used the same minimizer and k-mer

lengths as for Kraken2 and created the index with a false positive rate of 0.3%. When

classifying the SAMPLE reads, Ganon reports read assignments and taxonomic

abundances in CAMI report format.

ganon build-custom --db-prefix refseq-abfv/2023-03-15_12-\

56-12/ganon_data/refseq-abfv --input refseq-abfv/2023-03-\

15_12-56-12/files/ --level species --ncbi-file-info \

refseq-abfv/2023-03-15_12-56-12/assembly_summary.txt \

--threads 30 --max-fp 0.003 --kmer-size 22 --window-size \

32 --hash-functions 3 --hibf

ganon classify --db-prefix refseq-abfv/2023-03-15_12-56-\

12/ganon_data/refseq-abfv -s SAMPLE.fq.gz -o refseq-abfv/\

2023-03-15_12-56-12/ganon_data/SAMPLE.search --threads \

30 -a --output-all -c 0.12 -e 0.9

MetaMaps

We used MetaMaps version 0.1 (Dilthey et al., 2019). To create the custom database

index, we followed the steps described at

https://github.com/DiltheyLab/MetaMaps#databases.

mkdir refseq-abfv/2023-03-15_12-56-12/metamaps_data/\

download

perl downloadRefSeq.pl --seqencesOutDirectory refseq-\

abfv/2023-03-15_12-56-12/metamaps_data/download/refseq \

--taxonomyOutDirectory refseq-abfv/2023-03-15_12-56-12/\

metamaps_data/download/taxonomy -targetBranches archaea,\

bacteria,fungi,viral

Then, we needed to modify the following line in script

annotateRefSeqSequencesWithUniqueTaxonIDs.pl from
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next unless($assembly_level eq ’Complete Genome’);

to

next unless($assembly_level eq ’Complete Genome’ \

|| ($assembly_level eq ’Chromosome’);

and execute the script using the taxonomy downloaded by genome_updater and

build the database used for indexing.

perl annotateRefSeqSequencesWithUniqueTaxonIDs.pl \

--refSeqDirectory refseq-abfv/2023-03-15_12-56-12/\

metamaps_data/download/refseq --taxonomyInDirectory \

refseq-abfv/2023-03-15_12-56-12/taxdump/ \

--taxonomyOutDirectory refseq-abfv/2023-03-15_12-56-12/\

metamaps_data/download/taxonomy_uniqueIDs

mkdir -p refseq-abfv/2023-03-15_12-56-12/taxdump/ \

--taxonomyOutDirectory refseq-abfv/2023-03-15_12-56-12/\

metamaps_data/databases

perl buildDB.pl --DB refseq-abfv/2023-03-15_12-56-12/\

metamaps_data/databases/refseq-abfv --FASTAs refseq-abfv/\

2023-03-15_12-56-12/metamaps_data/download/refseq \

--taxonomy refseq-abfv/2023-03-15_12-56-12/metamaps_data/\

download/taxonomy_uniqueIDs

Then we finally index the created database with the following command.

metamaps index -r refseq-abfv/2023-03-15_12-56-12/\

metamaps_data/databases/refseq-abfv/DB.fa -t 30 -i \

refseq-abfv/2023-03-15_12-56-12/metamaps_data/\

refseq-abfv-k16

For querying sample reads against the created index, we used the following commands.

metamaps mapAgainstIndex --all -q SAMPLE.fq.gz -i \
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refseq-abfv/2023-03-15_12-56-12/metamaps_data/databases/\

refseq-abfv-k16 -o refseq-abfv/2023-03-15_12-56-12/\

metamaps_data/SAMPLE.map.txt -t 30

metamaps classify --DB refseq-abfv/2023-03-15_12-56-12/\

metamaps_data/databases/refseq-abfv-k16 -t 30 --mappings \

refseq-abfv/2023-03-15_12-56-12/metamaps_data/\

SAMPLE.map.txt

Taxor

We used Taxor version 0.1.0. For preprocessing, we have to create a tab-separated file

containing important taxonomic information using the tool

taxonkit(https://github.com/shenwei356/taxonkit).

cut -f 1,7,20 refseq-abfv/2023-03-15_12-56-12/assembly\

_summary.txt | taxonkit lineage -i 2 -r -n -L --data-dir \

refseq-abfv/2023-03-15_12-56-12/taxdump | taxonkit \

reformat -I 2 -P -t --data-dir refseq-abfv/2023-03-15\

_12-56-12/taxdump | cut -f 1,2,3,4,6,7 > refseq-abfv/\

2023-03-15_12-56-12/taxor_data/refseq_accessions\

_taxonomy.csv

Then we build the Taxor index using the tab-separated file and the sequence files

downloaded with genome_updater.

taxor build --input-file refseq-abfv/2023-03-15_12-56-12/\

taxor_data/refseq_accessions_taxonomy.csv --input-\

sequence_dir refseq-abfv/2023-03-15_12-56-12/files --\

output-filename refseq-abfv/2023-03-15_12-56-12/\

taxor_data/refseq-abfv-k22-s12.hixf --threads 30 \

--kmer-size 22 --syncmer-size 12 --use-syncmer

Finally, we query the sample fastq file against the index, allowing a sequencing er-

ror rate of 15%. The query result file is used as input for taxonomic profiling, which has

three output files containing taxonomic abundances and sequence abundances in CAMI

report format as well as a binning file with final read to reference assignments.
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taxor search --index-file refseq-abfv/2023-03-15_12-56-\

12/taxor_data/refseq-abfv-k22-s12.hixf --query-file \

SAMPLE.fq.gz --output-file refseq-abfv/2023-03-15_12-\

56-12/taxor_data/SAMPLE.search.txt --error-rate 0.15 \

--threads 30

taxor profile --search-file refseq-abfv/2023-03-15\

_12-56-12/taxor_data/SAMPLE.search.txt --cami-report-file \

refseq-abfv/2023-03-15_12-56-12/taxor_data/SAMPLE.report \

--seq-abundance-file refseq-abfv/2023-03-15_12-56-12/\

taxor_data/SAMPLE.abundance --binning-file refseq-abfv/\

2023-03-15_12-56-12/taxor_data/SAMPLE.binning \

--sample-id SAMPLE

Evaluation Results

Table A.2: Comparison of Taxor and five different taxonomic profilers classifying simulated
host background reads. We simulated nanopore reads from Aedes aegypti and Toxoplasma
gondii with 95% read accuracy. Then, we taxonomically classified these reads using the indexed
database consisting of archaea, bacteria, fungi and viruses and list the percentage of falsely
assigned reads by each of the tools.

Experiment Mosquito Toxoplasma
Reads 685,303 142,677
Tool % unclassified
Centrifuge 22.90 26.74
Kraken2 5.67 8.84
MetaMaps 98.29 97.13
Ganon 99.83 99.95
KMCP 100.00 100.00
Taxor 99.99 99.99
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Table A.3: Comparison of Taxor and five different taxonomic profilers across various
metrics on a simulated community consisting of 100 bacterial species we simulated 1,124,128
nanopore reads from 100 randomly selected bacterial species from the GTDB database with a
mean read accuracy of 95%. After the taxonomic classification of the reads by all six tools, we
calculated precision, recall, and F-scores on five different taxonomic ranks.

Tool Centrifuge Kraken2 MetaMaps Ganon KMCP Taxor
Rank Species
Precision 0.9919 0.9869 0.9996 0.9971 0.9994 0.9999
Recall 0.9853 0.9814 0.9954 0.9382 0.8711 0.9669
F1-Score 0.9886 0.9841 0.9975 0.9668 0.9308 0.9831
F0.5-Score 0.9906 0.9858 0.9987 0.9848 0.9708 0.9931
Rank Genus
Precision 0.9985 0.9978 0.9997 0.9986 0.9999 1.0000
Recall 0.9960 0.9972 0.9954 0.9383 0.9004 0.9669
F1-Score 0.9972 0.9975 0.9975 0.9675 0.9476 0.9831
F0.5-Score 0.9980 0.9976 0.9988 0.9859 0.9783 0.9932
Rank Family
Precision 0.9988 0.9988 0.9998 0.9991 0.9999 1.0000
Recall 0.9987 0.9989 0.9954 0.9383 0.9014 0.9669
F1-Score 0.9987 0.9989 0.9976 0.9678 0.9481 0.9832
F0.5-Score 0.9988 0.9989 0.9989 0.9863 0.9785 0.9932
Rank Order
Precision 0.9992 0.9989 0.9998 0.9995 0.9999 1.0000
Recall 0.9989 0.9992 0.9954 0.9384 0.9020 0.9669
F1-Score 0.9990 0.9991 0.9976 0.9680 0.9485 0.9832
F0.5-Score 0.9991 0.9990 0.9989 0.9867 0.9787 0.9932
Rank Class
Precision 0.9993 0.9992 0.9998 0.9998 0.9999 1.0000
Recall 0.9991 0.9995 0.9954 0.9384 0.9026 0.9669
F1-Score 0.9992 0.9993 0.9976 0.9681 0.9488 0.9832
F0.5-Score 0.9993 0.9992 0.9989 0.9869 0.9788 0.9932
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Table A.4: Comparison of Taxor and five different taxonomic profilers across various
metrics classifying real nanopore reads from a ZymoBiomics mock community (ZymoR10.3)
We created a ground truth data set by mapping 426,213 nanopore reads against the reference
sequences provided by the manufacturer. After the taxonomic classification of the reads by all
six tools, we calculated precision, recall, and F-scores on five different taxonomic ranks.

Tool Centrifuge Kraken2 MetaMaps Ganon KMCP Taxor
Rank Species
Precision 0.8761 0.7392 0.9361 0.8866 0.9431 0.9697
Recall 0.7407 0.7994 0.9893 0.8827 0.4277 0.8932
F1-Score 0.8027 0.7681 0.9619 0.8846 0.5885 0.9299
F0.5-Score 0.8452 0.7505 0.9462 0.8858 0.7599 0.9533
Rank Genus
Precision 0.9563 0.9623 0.9683 0.9676 0.9847 0.9779
Recall 0.9907 0.9913 0.9896 0.8914 0.6478 0.8940
F1-Score 0.9732 0.9766 0.9789 0.9280 0.7815 0.9341
F0.5-Score 0.9630 0.9679 0.9725 0.9514 0.8919 0.9599
Rank Family
Precision 0.9744 0.9768 0.9797 0.9745 0.9870 0.9851
Recall 0.9929 0.9941 0.9897 0.8921 0.7090 0.8947
F1-Score 0.9835 0.9854 0.9847 0.9315 0.8252 0.9378
F0.5-Score 0.9780 0.9802 0.9817 0.9568 0.9152 0.9656
Rank Order
Precision 0.9773 0.9798 0.9824 0.9790 0.9878 0.9875
Recall 0.9930 0.9943 0.9898 0.8925 0.7109 0.8950
F1-Score 0.9851 0.9870 0.9861 0.9338 0.8268 0.9390
F0.5-Score 0.9804 0.9826 0.9839 0.9604 0.9164 0.9675
Rank Class
Precision 0.9838 0.9849 0.9872 0.9888 0.9941 0.9915
Recall 0.9934 0.9946 0.9898 0.8935 0.7174 0.8953
F1-Score 0.9886 0.9897 0.9885 0.9387 0.8334 0.9410
F0.5-Score 0.9857 0.9868 0.9877 0.9681 0.9229 0.9706
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Table A.5: Comparison of Taxor and five different taxonomic profilers across various
metrics classifying real nanopore reads from a ZymoBiomics mock community (ZymoQ20)
We created a ground truth data set by mapping 4,179,959 nanopore reads against the reference
sequences provided by the manufacturer. After the taxonomic classification of the reads by all
six tools, we calculated precision, recall, and F-scores on five different taxonomic ranks.

Tool Centrifuge Kraken2 MetaMaps Ganon KMCP Taxor
Rank Species
Precision 0.8348 0.7295 0.8761 0.8717 0.8790 0.9095
Recall 0.6665 0.5855 0.9851 0.9436 0.2934 0.9472
F1-Score 0.7412 0.6496 0.9274 0.9063 0.4399 0.9280
F0.5-Score 0.7947 0.6953 0.8959 0.8852 0.6282 0.9168
Rank Genus
Precision 0.8976 0.9002 0.9120 0.8781 0.9569 0.9169
Recall 0.9877 0.9871 0.9856 0.9440 0.5984 0.9476
F1-Score 0.9405 0.9416 0.9474 0.9099 0.7363 0.9320
F0.5-Score 0.9143 0.9163 0.9258 0.8905 0.8545 0.9229
Rank Family
Precision 0.9215 0.9257 0.9280 0.8911 0.9645 0.9295
Recall 0.9908 0.9930 0.9859 0.9448 0.7101 0.9483
F1-Score 0.9549 0.9582 0.9561 0.9171 0.8180 0.9388
F0.5-Score 0.9345 0.9384 0.9390 0.9013 0.9000 0.9332
Rank Order
Precision 0.9288 0.9332 0.9348 0.9055 0.9661 0.9362
Recall 0.9911 0.9932 0.9860 0.9456 0.7158 0.9487
F1-Score 0.9589 0.9623 0.9597 0.9251 0.8224 0.9424
F0.5-Score 0.9406 0.9446 0.9446 0.9133 0.9030 0.9387
Rank Class
Precision 0.9444 0.9472 0.9477 0.9385 0.9781 0.9496
Recall 0.9918 0.9940 0.9862 0.9474 0.7405 0.9493
F1-Score 0.9675 0.9700 0.9666 0.9429 0.8429 0.9495
F0.5-Score 0.9535 0.9562 0.9551 0.9402 0.9191 0.9496
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A.3 Fast and space-efficient taxonomic classification of long reads with hierarchical interleaved XOR filters

Table A.6: Comparison of Taxor and five different taxonomic profilers across various met-
rics classifying real PacBio HiFi reads from a ZymoBiomics mock community (HiFi_D6331)
We created a ground truth data set by mapping 1,978,408 reads against the reference sequences
provided by the manufacturer. After the taxonomic classification of the reads by all six tools, we
calculated precision, recall, and F-scores on five different taxonomic ranks.

Tool Centrifuge Kraken2 MetaMaps Ganon KMCP Taxor
Rank Species
Precision 0.8835 0.8699 0.8859 0.8205 0.9872 0.9444
Recall 0.9402 0.9137 0.9459 0.9692 0.6746 0.9729
F1-Score 0.9109 0.8913 0.9149 0.8887 0.8015 0.9585
F0.5-Score 0.8943 0.8783 0.8973 0.8465 0.9035 0.9500
Rank Genus
Precision 0.9483 0.9476 0.9481 0.8341 0.9946 0.9752
Recall 0.9971 0.9957 0.9492 0.9697 0.7937 0.9737
F1-Score 0.9721 0.9711 0.9487 0.8968 0.8829 0.9745
F0.5-Score 0.9577 0.9569 0.9484 0.8581 0.9467 0.9749
Rank Family
Precision 0.9865 0.9894 0.9893 0.9949 0.9986 0.9942
Recall 0.9978 0.9971 0.9512 0.9745 0.9529 0.9742
F1-Score 0.9921 0.9933 0.9699 0.9846 0.9752 0.9841
F0.5-Score 0.9887 0.9910 0.9814 0.9907 0.9891 0.9902
Rank Order
Precision 0.9928 0.9951 0.9966 0.9992 0.9998 0.9985
Recall 0.9981 0.9977 0.9516 0.9746 0.9615 0.9743
F1-Score 0.9954 0.9964 0.9736 0.9867 0.9803 0.9862
F0.5-Score 0.9938 0.9956 0.9873 0.9941 0.9919 0.9935
Rank Class
Precision 0.9929 0.9948 0.9966 0.9992 0.9998 0.9985
Recall 0.9982 0.9980 0.9516 0.9746 0.9615 0.9743
F1-Score 0.9955 0.9964 0.9736 0.9867 0.9803 0.9862
F0.5-Score 0.9939 0.9955 0.9873 0.9942 0.9919 0.9935
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Zusammenfassung

Die metagenomische Sequenzierung erlaubt es sämtliche genetische Information aller Or-
ganismen in einer komplizierten Probe zu erhalten. Diese Methode ermöglicht sowohl die
Identifikation von Krankheitserregern in klinischen Proben als auch die Untersuchung
mikrobieller Diversität in verschiedensten Lebensräumen. Durch die Entwicklung
der Nanopore-Sequenzierung haben sich viele neue Möglichkeiten für Mikrobiologen
eröffnet. Besonders die Portabilität der kleinen Nanopore-Sequenziergeräte und die
Möglichkeit gezielt bestimmte DNA-Moleküle zu sequenzieren, haben das Forschungs-
feld enorm verändert. Die Anwendung dieser beiden Möglichkeiten erfordert jedoch
speichereffiziente Algorithmen, die eine Echtzeitanalyse auf herkömmlichen Laptops
ermöglichen. In der vorliegenden Arbeit präsentiere ich neue Methoden zur Echtzeit-
analyse von Nanopore-Sequenzierdaten im metagenomischen Kontext. Diese Methoden
basieren auf optimierten algorithmischen Ansätzen zum Vergleich der Sequenzierdaten
mit großen Referenzsequenz-Datenbanken. Das Hauptziel der Arbeit ist es die Sequen-
zierung und Analyse von unterrepräsentierten Organismen in metagenomischen Proben
zu verbessern und Analysen direkt am Ort der Probennahme zu ermöglichen, wo es
kaum Zugang zu leistungsstarken Servern oder Internet gibt.
Zuerst präsentiere ich ReadBouncer, ein neues Tool zur Anwendung von Nanopore Adap-
tive Sampling, das es ermöglicht die Sequenzierung uninteressanter DNA-Moleküle
abzubrechen. ReadBouncer verbessert nicht nur die Klassifikation der sequenzierten
Fragmente im Vergleich zu anderen Tools, es verringert auch den Speicherbedarf. Diese
Verbesserungen ermöglichen eine bessere Anreicherung der unterrepräsentierten DNA
und die Anwendung von Adaptive Sampling am Ort der Probennahme. Im weiteren
zeige ich wie Adaptive Sampling nicht nur Wirts-DNA verringern kann, sondern auch
unterrepäsentierte Plasmide in bakteriellen Proben anreichert. Diese Plasmide spielen
eine entscheidende Rolle bei der Verbreitung von Antibiotikaresistenzen, sind aber nur
mit Hilfe teurer und zeitintensiver Laborprotokolle charakterisierbar. Hier beschreibe
ich Adaptive Sampling als kostengünstige Methode zur Anreicherung von Plasmiden,
die einen entscheidenden Beitrag für die Sequenzierung und Charakterisierung von
bakteriellen Krankheitserregern darstellen kann. Schlussendlich präsentiere ich eine spe-
ichereffiziente Methode für die taxonomische Echtzeit-Charakterisierung von Nanopore
Sequenzierdaten, die ich in einem Tool namens Taxor implementiert habe. Taxor
verbessert die taxonomische Klassifikation im Vergleich zu ähnlichen Tools und re-
duziert den Speicherbedarf dabei erheblich. Der resultierende Datenbank-Index für
tausende mikrobielle Referenzgenome ist klein genug um in den Hauptspeicher eines
üblichen Laptops zu passen und ermöglicht somit eine metagenomische Echtzeitanalyse
am Ort der Probennahme.
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