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ABSTRACT
Extreme storms are becoming more frequent and intense with climate change. Assessing lake
ecosystem responses to extreme storms (resistance) and their capacity to recover (resilience) is
critical for predicting the future of lake ecosystems in a stormier world. Here we provide a
systematic, standardized, and quantitative approach for identifying critical processes shaping
lake ecosystem resistance following extreme storms. We identified 576 extreme wind storms for
8 lakes in Europe and North America. We calculated the resistance and resilience of each lake’s
surface water temperature and oxygen saturation following each storm. Sharp decreases and
increases in epilimnetic temperature and oxygen saturation caused by extreme storms resulted
in unpredictable changes in lake resilience values across lakes, with a tendency not to return to
pre-storm conditions. Resistance was primarily shaped by mean annual chlorophyll a
concentration and its overall relationship with other physiochemical lake and storm
characteristics. We modeled variation in resistance as a function of both lake and storm
conditions, and the results suggested that eutrophic lakes were consistently less resistant to
extreme storms compared to oligotrophic lakes. The lakes tended to be most resistant to
extreme storms when antecedent surface waters were warm and oxygen saturated, but overall
resistance was highest in lakes with low mean annual concentrations of chlorophyll a and total
phosphorus. Our findings suggest physiochemical responses of lakes to meteorological forcing
are shaped by ecological and/or physical feedback and processes that determine trophic state,
such as the influence of differences in nutrient availability and algal growth.
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Introduction

Lakes and their associated riverine and terrestrial eco-
systems provide many socioecological services via
clean drinking water and aesthetic/recreational value
as well as supporting a wide array of biodiverse habitats.
Such services are dependent on and influenced by the
capacity of lakes to be resistant and resilient in the
face of changing environmental conditions. Resistance
is the ability of varying lakes to absorb stress while resil-
ience indicates the ability of ecosystems to recover from,
or adapt to, external and internal forces (Holling 1973,
1996, Pimm 1984, Gunderson 2000, Murphy 2012).
Lake surface water temperature and oxygen saturation
are good diagnostic tools of lake ecosystem resistance

and resilience following extreme storms because they
are a product of changing atmospheric conditions, ther-
mal dynamics, and metabolic processes (Livingstone
et al. 2003, Shade et al. 2012, Meerhoff et al. 2022,
Thayne et al. 2022).

Eutrophication and climate change are 2 pressing
disturbances directly and indirectly changing surface
water temperature and oxygen saturation dynamics in
many lakes. Eutrophication tends to be a result of
point source pollution and poor land use practices in
the watershed and has led to drastic water quality shifts
in many lakes (Carpenter et al. 1998, Foley et al. 2005,
Jöhnk et al. 2008, Rigosi et al. 2014). The subsequent
changes in turbidity (e.g., from phytoplankton biomass
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and/or sediment inputs) and/or primary production are
driving factors shaping resistance and resilience follow-
ing extreme storms (Shade et al. 2010, 2012, Tsai et al.
2011, Thayne et al. 2022). While some lakes may expe-
rience atmospheric stilling (Vautard et al. 2010, Wool-
way et al. 2019, Janatian et al. 2020, Stetler et al.
2021), climate change is simultaneously impacting
pre-storm lake processes (Wagner and Adrian 2009,
Kraemer et al. 2021, Mesman et al. 2021, Woolway
et al. 2021a, 2021b) and increasing the frequency, inten-
sity, and duration of extreme storms globally (Webster
et al. 2005, Zhang et al. 2013, Lehmann et al. 2015,
Zeng et al. 2019). The extent to which extreme storms
impact the resistance and resilience of water tempera-
ture and oxygen saturation conditions is currently
unknown, but storms likely play a role in shaping resis-
tance and resilience through abrupt changes in physio-
chemical and biological conditions (Havens et al. 2011,
de Eyto et al. 2016, Kasprzak et al. 2017, Andersen et al.
2020, Calderó-Pascual et al. 2020).

Short- to long-term changes in water temperature
and oxygen saturation as a result of extreme storm
events tend to be related to changes in transparency
via overland flooding of materials into the lake, sedi-
ment resuspension, and the formation or deformation
of phytoplankton blooms (Williamson et al. 2016, Dou-
bek et al. 2021, Mesman et al. 2021, Sullivan et al. 2022).
Heavy rainfall can lead to flooding and/or influxes of
nutrients and colored dissolved organic matter, result-
ing in changes in water quality, trophic dynamics, and
the timing and/or onset of phytoplankton blooms (Gai-
ser et al. 2009a, 2009b, Jennings et al. 2012, Larsen et al.
2020). Depending on the lake, the time scale of said rain
effects may only be short-lived, especially when a lake
experiences flushing (Stockwell et al. 2020). Likewise,
in shallow lakes, high wind speeds can lead to the resus-
pension of nutrient-laden lake sediments, sometimes
driving the formation of cyanobacterial blooms (Zhu
et al. 2014). While extreme storms are a driving force
of change in lakes, whether a lake responds in an
extreme way is largely dependent on the antecedent
lake characteristics (Shade et al. 2012, Perga et al.
2018, Thayne et al. 2022). Climate change is affecting
antecedent lake characteristics and processes in impor-
tant ways that affect how lakes will respond to storms
(Woolway et al. 2020). Warming surface waters and
changing mixing regimes have led to changes in chloro-
phyll a (Chl-a) concentrations and global decreases in
dissolved oxygen in many lakes (Paerl and Huisman
2009, Woolway and Merchant 2019, Jane et al. 2021).
The resulting variability in surface Chl-a concentration
can have meaningful effects on the resistance and resil-
ience of water temperature and oxygen saturation

following extreme storms (Thayne et al. 2022). Ulti-
mately, how water temperature and oxygen saturation
resistance and resilience are shaped is a result of many
different processes acting on the system at different bio-
physical, temporal, and spatial extents (Carpenter and
Cottingham 1997, Stockwell et al. 2020).

In our previous study (Thayne et al. 2022), we discov-
ered several crucial antecedent lake characteristics that
significantly influence the ability of a lake to resist and
recover from severe storms. Specifically, our investiga-
tion of Müggelsee, a shallow eutrophic lake in Germany,
revealed that the antecedent lake characteristics held
greater significance than the actual storm conditions
in determining the lake’s resistance and resilience. Müg-
gelsee’s biological and physiochemical properties
showed enhanced resistance and resilience with increas-
ing antecedent turbidity and/or Chl-a concentration,
suggesting the lake was less likely to change (i.e.,
increased resistance and resilience) under turbid versus
clear conditions. This result, together with the finding
that antecedent lake characteristics were more impor-
tant than storm conditions, suggests that extreme
storms may affect lake resistance and resilience differ-
ently depending on feedback and processes that shape
lake trophic state (Mettelbach et al. 1995, Carpenter
et al. 2001, Nõges et al. 2011, Perga et al. 2018, Thayne
et al. 2022).

The surface lake dynamics driving resistance and
resilience of water temperature and oxygen saturation
following storms across a gradient of lake trophic states
are likely dependent on the antecedent biological and
physiochemical structural differences along the gradient
(Walker et al. 1981, 1997, Scheffer et al. 1993, Thayne
et al. 2022). The trophic state of a lake is generally
defined by its phosphorus and Chl-a concentration
and clarity (i.e., Secchi depth; Carlson 1977) and their
overall effect on food web interactions and biodiversity
(Carpenter 1987, Beaver and Crisman 1989, Biddanda
et al. 2001, Linz et al. 2017). Thus, resistance and resil-
ience among the varying trophic states are likely related
to differing pathways of secondary succession or the
ability of the existing physiochemical and biological
feedback of the lake to self-organize and maintain pre-
vious relationships and processes following sharp
changes in lake conditions (Tsai et al. 2011, Shade
et al. 2012, Shatwell et al. 2016, Sullivan et al. 2022,
Thayne et al. 2022). Therefore, to understand the syner-
gistic effects of climate forcing and shifting lake condi-
tions on the resistance and resilience of surface water
temperature and oxygen saturation, we analyzed the
effects of 576 extreme storms split across 8 lakes along
a trophic state gradient. Herein, we addressed whether
trophic state shapes resistance and resilience of surface
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water temperature and oxygen saturation relative to
extreme storm disturbances. We hypothesized that
eutrophic lakes, characterized by higher nutrient levels
and substantial algal growth, would exhibit lower resis-
tance to extreme storms due to the storm potential to
disrupt and break down biological controls on surface
water physiochemical dynamics. However, we antici-
pated that eutrophic lakes would demonstrate higher
resilience because the abundant algae in these lakes
could efficiently utilize excess nutrients and facilitate a
quicker recovery of surface water dynamics following
storms. By contrast, we expected oligotrophic lakes,
with lower nutrient levels and decreased algal growth,
to display higher resistance but lower resilience. By syn-
thesizing resistance and resilience of lake surface water
temperature and oxygen saturation using in situ high-
frequency data following extreme storms, we provide
an opportunity to guide theory development by linking
shifting lake and storm conditions to surface water
temperature and oxygen saturation resistance and
resilience.

Methods

Overview

We tested the effects of trophic state conditions, ante-
cedent lake characteristics, and storm conditions on
standardized indices of water temperature and oxygen
saturation resistance and resilience across 8 lakes
exposed to extreme storms between 2002 and 2019.
Extreme storms were classified by using wind speeds
estimated to have 100-day return periods for a given
lake, which are wind speeds predicted to be within the
99th percentile for a given lake/region according to
general extreme value (GEV) theory (discussed later).
Resistance and resilience were calculated using methods
(Orwin and Wardle 2004, Thayne et al. 2022) that fall
under interpretations of resistance and resilience intro-
duced by Holling (1973, 1996), commonly referred to as
ecological resilience (Gunderson 2000, Murphy 2012).
Ecological resilience is defined as an ecosystem’s ability
to absorb change (i.e., to be resistant) and persist (i.e., to
be resilient) while still maintaining relationships
between populations and/or state variables. While the
term resistance does not appear in the definition, we
can infer from the word “absorb” the ability to be resis-
tant. For example, if a lake is better able to absorb the
energy of a storm, then the magnitude of peak displace-
ment will be lower (i.e., high resistance) when compared
to a lake that cannot absorb the same amount of energy
(i.e., low resistance). Using this definition as a guide, we
developed a semiautomated process to calculate

resistance and resilience of surface water temperature
and oxygen saturation in response to extreme storms
(Thayne et al. 2022). To determine the relative impor-
tance and partial effects of lake trophic state (i.e., annual
mean phosphorus concentrations, Chl-a, and Secchi
depth) while controlling for antecedent lake characteris-
tics (i.e., surface water temperature, Schmidt stability,
percent oxygen saturation, photosynthetically active
radiation [PAR], and mean lake depth) and storm con-
ditions (i.e., wind direction/speed, storm duration, day
of peak wind speeds, accumulated rain, time between
storms, and storm year), we fit boosted regression
trees (BRT) to predict resistance and resilience. Resis-
tance and resilience of surface water temperature and
oxygen saturation across a lake trophic state gradient
reflects the varying physiographic and/or watershed
conditions shaping each lake’s evolved biophysical rela-
tionships for responding to extreme storms. Thus, by
synthesizing resistance and resilience together with
information on trophic state, antecedent lake character-
istics, and storm conditions, we provide a systematic,
standardized, and quantitative approach for analyzing
ecological resilience and the effects of extreme storms
on surface water dynamics.

Study sites and data collection

Each of the 8 lakes was equipped with high-frequency
monitoring (HFM) stations anchored in central loca-
tions to collect water temperature, percent oxygen satu-
ration, and PAR every 1–60 min at surface depths
between 0.5 and 1.5 m, depending on where epilimnetic
characteristics were measured in each lake. Hourly
mean lake conditions were calculated for each lake
parameter to ensure conformity in data collection fre-
quency between the lakes. In addition to surface lake
conditions, 7 of the lakes (excluding Lake Võrtsjärv)
collected hourly water temperature profiles of the entire
water column, which were used to calculate thermal
stratification, or Schmidt stability (Winslow et al.
2018). Measurements of PAR were taken above the
lake surface, and in the case of Müggelsee and Lough
Feeagh, solar radiation was measured in W/m2 but con-
verted to μmol/m2/s using an approximation of 1 W/m2

≈ 4.6 μmol/m2/s (Sager and McFarlane 1997). PAR in
this case could be considered either a storm condition
or an antecedent lake characteristic. Here, we inter-
preted PAR (i.e., incoming solar radiation) as an ante-
cedent lake condition because of its effects on water
temperature and phytoplankton growth; thus, we
could consider PAR a “non-stormy” condition. Lake
and storm data were collected on the lakes, or nearby
meteorological stations between 2002 and 2019,
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depending on the lake. Total phosphorus (TP) concen-
tration in the lakes was collected with different sampling
rates and strategies: weekly in Müggelsee; every 2 weeks
in Lake Erken; and monthly in Trout Lake, Trout Bog,
Lake Annie, Lough Feeagh, and Võrtsjärv. Mendota
had the most sporadic phosphorus collection but was
generally sampled 3–4 times a year in spring, summer,
and fall.

Storm conditions were measured and calculated dur-
ing a defined storm period centered around the peak in
wind speed/dynamic pressure (discussed later), defined
as starting when dynamic pressure at the surface of the
lake was ∼0 prior to the peak and ended when dynamic
pressure returned to 0 after the peak (Thayne et al.
2022). Dynamic pressure (Pa) is a measure of the
wind’s kinetic energy over the surface of the lake (i.e.,
0.5ρV2, where ρ is air density = 1.2 kg/m3 and V =
wind speed in m/s; Palutikof et al. 1999). Essentially
the wind peaks served as a way to classify storms and
accompanying conditions and characteristics such as
accumulated rainfall, storm duration, time elapsed
between storms, day of peak wind speeds, and year
the storm occurred. Therefore, storm duration was the
mean hourly length of the storm period, and the day
the peak wind speeds occurred was used as a proxy
for storm seasonality. Time between storms was quan-
tified by accounting for the months elapsed since the
last analyzed storm within a given year. When we
used dynamic pressure rather than wind speed when
fitting the GEVmodel, the number of storms considered
extreme increased slightly for each lake, thus increasing
the variability in storm type and lake surface conditions
considered. By doing so, we likely included storms that
may or may not fit the arbitrary definition of extreme.
Furthermore, the importance of antecedent lake charac-
teristics blurs further what exactly is an extreme disturb-
ance for any given lake. Nonetheless, mean hourly wind
speeds, wind directions, and rain were collected from
the HFM stations or nearby meteorological stations
(SMHI Centre 2022; i.e., Lake Erken) or from nearby
airports (National Centers For Environmental Informa-
tion 2022; i.e., the North American lakes). In relation to
wind directions collected above the lake surface, all
monitoring stations were centrally located in the lakes,
and thus obstructions (e.g., forest or hills) did not obfus-
cate the collection of wind direction. We used wind
direction to capture the effects of fetch with the under-
standing that the greatest fetch of a lake will be most
impacted by wind directions corresponding to that
fetch. Nearby meteorological stations and airports
were used in cases where the HFM station data were
not sufficient in length (Palutikof et al. 1999; i.e., ≥10
years) for classifying extremes and/or data were

unreliable. The station for Lake Erken is located
∼0.5 km from the lake shore, and airport data for
Trout Lake and Trout Bog is ∼4.8 km from the lakes.
For Lake Annie we used airport data ∼107 km from
the lake because all the nearby meteorological stations
with publicly downloadable data are located on the
coast where wind speeds are different from those inland.
Therefore, we chose the closest inland airport that had
publicly available data. While we may have identified
some storms for Lake Annie that were not extreme for
the area, these would be outlying events and mostly neg-
ligible during the modeling process. Furthermore, these
outlying events would result in a 1 for resistance and
resilience, or not extreme for Lake Annie. To put this
into context, of the 129 storms identified, 11 resulted
in water temperature and oxygen saturation with resis-
tance and resilience between 0.90 and 1.0. Here, resis-
tance and resilience were quantified on a standardized
scale between −1 and 1, where 1 indicates total resis-
tance and resilience, and ≤0 represent times of >100%
displacement for resistance and times of 0% recovery
for resilience. Thus, the station, while somewhat distant
from Lake Annie, captured weather conditions relevant
to storm responses in the lake. For Lough Feeagh and
the lakes in North America, wind speeds were collected
in knots or mph, which we converted to m/s. Wind
direction was included for all lakes except Võrtsjärv.
Hourly rain averages were summed over the storm
period to gain an understanding of the cumulative
effects of rain.

Extreme storm classification

Extreme storms were classified for each lake/region by
quantifying the return period or the maximum wind
speed/dynamic pressure that exceeded, on average,
once every T days (equation 1) during the growing sea-
son of phytoplankton (i.e., Mar–Oct) for each lake (Pal-
utikof et al. 1999, Thayne et al. 2022). We estimated
return periods by fitting GEV distribution models for
each of the lakes’ mean maximum wind speed/dynamic
pressure data, where the location, scale, and shape
parameters of their respective distributions were esti-
mated using L-moment statistics (Hosking 1990, Paluti-
kof et al. 1999, Gilleland and Katz 2006, 2016).
L-moment statistics used for parameter estimation pro-
vide better estimates of extremes when high frequency
time series are <20 years, as in our study. Therefore,
the probability of a dynamic pressure quantile (XT)
with a return period (T ) is given by:

XT = b+ a

k
1− − ln 1− 1

T

( )[ ]k{ }
k = 1, and (1)
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XT = b− a ln −ln 1− 1
T

( )][
k = 0, (2)

where XT is the return period for a given dynamic pres-
sure quantile, β is the mode (location parameter) of the
GEV distribution, α is the dispersion (scale parameter),
and k is the distribution shape parameter, which is
either of type Gumbel (k = 0), Fréchet (k > 0), or Wei-
bull (k < 0; Hosking 1990, Palutikof et al. 1999, Gilleland
and Katz 2006, 2016). If the L-moment statistics esti-
mates a distribution of type Gumbel (k = 0), the equa-
tion is reduced to equation 2. While all classified
storms were analyzed at hourly levels, we modeled
daily return periods in dynamic pressure. Therefore,
to be considered extreme we selected a threshold return
period of 100 days, or wind peaks that exceeded a given
wind speed for each lake, estimated to occur every 100
days or more. For example, Müggelsee wind speeds
exceeding 8.5 m/s, or 45.2 N/m2 as it relates to dynamic
pressure, were estimated to occur every 100 days or
more. All models were fit using the R statistical software
package extRemes version 2.0 (Gilleland and Katz 2006,
2016, Thayne et al. 2022). Not all the storms could be
labeled extreme, depending on the arbitrary definition
used to define extremes. Nonetheless, the methods
used here have been used previously to classify wind
extremes (Laib and Knavski 2016) and those laid out
in the 2012 Intergovernmental Panel on Climate
Change (IPCC) report on environmental extremes
(IPCC 2012). Overall, we analyzed mean wind speeds
between 5.7 and 21.1 m/s.

Quantifying resistance and resilience

To calculate resistance to storms and resilience follow-
ing the storms, we used hourly in situ measurements
capturing the response of surface water temperature
and oxygen saturation collected between 0.5 and
1.5 m depth. We calculated storm responses of surface
water temperature and oxygen saturation into resistance
and resilience indices to standardize comparisons
among lake ecosystems with differing biogeochemical
feedback and processes forming their trophic state
(Orwin and Wardle 2004, Tsai et al. 2011, Cantarello
et al. 2017, Guillot et al. 2019, Thayne et al. 2022). We
focused on the epilimnion of lakes, generally where
the strongest storm/mixing effects are observed. To cap-
ture the transient nature of surface lake dynamics we
used antecedent lake characteristics based on the
3-day mean of each lake state predictor variable prior
to the beginning of each storm analyzed. Thus, water
temperature and oxygen saturation resistance for the 8

lakes was quantified as the peak displacement in epilim-
netic water temperature or oxygen saturation induced
by the initial storm disturbance when compared to the
3-day mean of antecedent water temperature or percent
oxygen saturation conditions, respectively (Fig. 1a–b;
equation 2; Orwin and Wardle 2004, Thayne et al.
2022). Note that calculations of water temperature resis-
tance and resilience are unit dependent, and we used °C.

In some storm scenarios water temperature and/or
oxygen saturation displayed approximately equidistant
peaks but opposite displacement levels, one positive
and one negative. Or in other words, during some
storms, water temperature and/or oxygen saturation
increased above and then decreased below pre-event

Figure 1. Schematic depicting how to apply equations 3 and 4 to
calculate resistance and resilience indices of lake water tempera-
ture and percent oxygen saturation (y-axis, blue line) responding
to a storm disturbance (vertical black dashed line), and peaking
(P0) at time t0 and recovering (Px, horizontal red solid line)
between time tx and te. Vertical green dashed lines represent
times (x-axis) at which D0 and Dx are calculated. Resistance (RS)
is therefore the difference between the absolute peak displace-
ment in water temperature or percent oxygen saturation and
their respective 3-day mean control conditions (C, horizontal
red dashed line), or |D0| = |C − P0|. Resilience (RL) is then
calculated by taking the absolute difference between C and the
mean value of Px averaged over a 72 h window with the lowest
standard error (σM, horizontal black solid line) in water
temperature or percent oxygen saturation, or |Dx| = |C − Px|.
Both resistance and resilience indices range between −1 and 1,
where a 1 indicates total resistance and resilience. A resistance
value of 0 represents times when water temperature or oxygen
saturation conditions were displaced by 100%, either increasing
or decreasing relative to antecedent conditions. Therefore, a
resilience value of 0 indicates water temperature or oxygen
saturation remained at peak displacement levels, or there was
0% recovery. Thus, negative values of resistance represent
times of more than 100% displacement, while negative values
of resilience represent times when water temperature or oxygen
saturation continued to drift further from peak displacement
levels, or overcompensated in their recovery by overshooting
the 3-day mean antecedent control conditions.
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conditions (or vice versa), making peaks and recoveries
difficult to isolate. For example, wind may initially
increase surface oxygen saturation in the lake, but fol-
lowing the wind peak, oxygen saturation decreases as
a result of wind-driven change in water temperature.
These responses in surface dynamics may result from
upwelling or lake seiche, and in such cases we used ad
hoc BRTmodels to determine whether and when storms
typically increased or decreased the response variable
(Thayne et al. 2022). Thus, in some of the lakes (e.g.,
Müggelsee, Feeagh, Erken, Mendota, and Võrtsjärv)
these models included the effects of lake characteristics
such as turbidity, Chl-a, phycocyanin, and dissolved
organic matter, providing a holistic view of how each
lake characteristic partially affected water temperature
or oxygen saturation. This information provided a
diagnostic tool to determine the direct and indirect
effects of the storm and lake conditions effecting the
response of water temperature or oxygen saturation
and allowed us to determine the appropriate displace-
ment value for resistance, and ultimately resilience.
Returning to the previous example, although wind
directly contributed to the initial rise in oxygen satura-
tion, the indirect impact of wind on water temperature
played a more significant role than wind alone. Conse-
quently, the decline in oxygen saturation was utilized
in determining resistance. These models were fitted
with a maximum of 10 000 trees, a tree complexity of
2, and a learning rate between 0.82 and 0.1 × 10−9; bag
fractioning was set at 0.5 (Elith et al. 2008, Hijmans
et al. 2017, Thayne et al. 2022). Model selection methods
are discussed later.

Resilience was quantified by defining a 72 h sliding
“recovery” window immediately following the peak dis-
placement of surface water temperature or oxygen satu-
ration, during which we calculated the standard error in
water temperature or oxygen saturation in each win-
dow. The window resulting in the lowest mean standard
error compared to the previous windows was then
selected as the recovery level (Fig. 1a and c; equation
3). To understand how sensitive resilience calculations
were to the size of the recovery window we conducted
a sensitivity analysis comparing 72, 120, and 168 h slid-
ing windows (Supplemental Table S1). Although the
results were somewhat sensitive to the size of the win-
dow, we used 72 h to contain resilience calculations to
the identified storms to the exclusion of other possible
extreme disturbances (e.g., stratification and/or phyto-
plankton blooms), which warrant their own calculations
of resilience (Batt et al. 2017). Sensitivity between the
windows was dependent on the storm and overall
variability in post-storm water temperature and oxygen
saturation. Most important, despite some sensitivity, all

3 windows identified the same lake conditions for a
recovery point. Calculating resilience with this method
allows assumptions that ecosystems continuously
undergo gradual change through time with a tendency
to recover toward antecedent conditions, but also
allowed the system to find new balance by adapting,
or reorganizing, through changes in population rela-
tionships and/or state variables following storm distur-
bances (Holling 1973, 1996, Pimm et al. 1984,
Gunderson 2000, Murphy 2012, Thayne et al. 2022):

RS(t0) = 1− 2|D0|
(C + |D0|) , and (3)

RL(tx) = 2|D0|
(|D0| + |Dx|)− 1. (4)

The quantification of resistance and resilience was a
semiautomated process with predefined time windows
(R code: https://github.com/mthayne527/Resistance_
Resilience_Estimation). In cases where recovery was
incomplete because of time constraints, we extended
the post-storm period until a resilience level was deter-
mined (Thayne et al. 2022). While calculating resilience
this way introduced some subjectivity, the approach
constrained our calculations to the storm under analy-
sis and avoided assumptions about global equilibria, a
key tenet when calculating interpretations of ecological
resilience. Prior to quantifying resistance and resil-
ience, surface water temperature and oxygen saturation
were seasonally adjusted so that resilience could be
interpreted as a return to conditions expected outside
of seasonal driven variation (Thayne et al. 2022).
Water temperature for all lakes was adjusted for sea-
sonality, whereas percent oxygen saturation was
adjusted for both annual and diurnal oscillations
(Thayne et al. 2022). Seasonal decomposition was per-
formed using functions in the forecast (version 8.5)
package found in the R statistical environment
(Hyndman and Khandakar 2008, Nieto and Mélin
2017). Seasonal decompositions were conducted by
first transforming the respective time series into multi-
seasonal time series (R function msts), which were then
used to identify season and trend components using
Loess (R function mstl; Thayne et al. 2022). We then
subtracted the identified seasonal component from
the original time series.

Predicting variability in resistance and resilience

We fit 2 independent models consisting of 15 BRTs to
predict variability in lake-to-lake surface water temper-
ature and oxygen saturation resistance and resilience
following extreme storms. Predictors of water
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temperature and percent oxygen saturation resistance
and resilience were the varying lake trophic proxies,
antecedent lake characteristics, and storm conditions
(n = 1151; Fig. 2 and 3). Trophic conditions in the mod-
els were represented by annual means of Chl-a concen-
tration, TP concentration, and Secchi depth. Antecedent
lake characteristics included water temperature, percent
oxygen saturation, Schmidt stability, and PAR. All ante-
cedent lake characteristics were seasonally adjusted fol-
lowing the methods described previously to be
consistent with the quantification of resistance and resil-
ience. Additionally, we included mean lake depth as a
numerical variable in case the gradient in lake depths
was important for determining resistance and resilience.
We further tested other lake characteristics such as lake

surface area and shoreline length, but both were equally
as unimportant as mean lake depth.

Lake variables were chosen based on their impor-
tance in previous work (Shade et al. 2012, Thayne
et al. 2022) and their availability at an appropriate tem-
poral resolution (hourly) and consistency across all
lakes. Furthermore, both water temperature and oxygen
dynamics are critical in many biogeochemical feedbacks
and processes that might be disrupted as a result of
sharp changes in their conditions. To ensure we
accounted for times that surface water temperature
and oxygen saturation did not correlate in their direc-
tional response to storms, we included a factor variable
(i.e., WT/O2 response) representing the 2 response var-
iables, water temperature and oxygen saturation

Figure 2. (a–h) Distributions of antecedent lake characteristics and year of data collection/storm exposure (x-axis) for each of the 8
lakes (y-axis). The lakes followed along a (f, i) phosphorus, (g, j) chlorophyll a, (h, k) Secchi depth, and (g) lake depth (i.e., 2.8–15 m)
gradient. Both phosphorus (f) and chlorophyll a (g) were scaled for visual purposes by taking the square root of the raw values. While
phosphorus, chlorophyll a, and Secchi depth were included in the BRT models, panels i–l are included for visuals only. The colored
dots in panels i–l are organized by increasing mean values.
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resistance and resilience in the models, respectively. We
accounted for seasonality in the model by including the
proxy Julian day when peak wind speeds were observed.
Storm characteristic predictors in the model included
maximum wind speed, wind direction, duration, day
of peak wind speeds, and time elapsed between storms.
We also converted the year the storm occurred into dec-
imal year and included it as a numerical predictor in the
models. Last, we used antecedent lake characteristics
rather than post-storm lake characteristics to predict
resilience for 2 reasons. First, we found the more logical
approach was to use antecedent lake characteristics
because of the way resilience is calculated (i.e., a differ-
ence between antecedent control conditions and post
storm conditions). Second, using post-lake conditions
to predict resilience is a circular argument (i.e., post
conditions are dependent on post conditions). Nonethe-
less, we also fit the BRTs with post-storm lake condi-
tions to see whether predictability of resilience
improved with those conditions, but they did not.

We conducted multicollinearity tests to ensure we
did not reduce the predictive power of any given predic-
tor variable. To test multicollinearity among predictor
variables we used Pearson and Spearman rank correla-
tion matrices to gain a better understanding of the linear
and nonlinear relationships between predictors. Pear-
son correlations between the predictor variables showed
mostly low coherence between them (r ≤ ±0.39). How-
ever, water temperature and wind speed/wind direction/
mean lake depth showed moderate negative correlations
(r ≈ −0.50). Additionally, mean lake depth and wind
speed/wind direction showed moderate positive

correlations (r ≈ 0.50). The correlations likely represent
the regional differences among the lakes themselves and
the wind regimes they were exposed to, respectively. For
completeness, we additionally fit BRT models with
water temperature and wind speed standardized across
lakes to ensure these moderately high correlations
were not impacting the effect of lake depth. We found
that these correlations were not affecting the results,
so original values of water temperature and wind
speed were retained in the models.

Model fitting and parameter optimization were per-
formed using 10-fold cross-validation to minimize
BRT model overfitting (Elith et al. 2008). Before fitting
the models and to enhance predictive performance, we
selected a random sample of 52 storms and 6 of the 8
lakes where the number of storms sampled was equal
to the least number of possible outcomes for water tem-
perature and oxygen saturation (i.e., storms identified
for Lake Erken). We then used 10-fold cross-validation
to fit the models, where data were split 30–70% for
resistance and 50–50% for resilience (i.e., ∼30–50%, or
16–25, of the 52 randomly sampled storms were consid-
ered for each lake and model iteration). The data were
split for resilience 50%/50% because including slightly
more data per model iteration reduced error, learning
rate, and number of trees needed to find a model fit
and improved overall predictive performance following
cross-validation. Model parameters were tuned to max-
imize model performance in cross-validation. Models
were optimized by iteratively running each model with
decreasing learning rates beginning at 0.82 and decreas-
ing by a factor of 2 until reaching 0.1 × 10−9. An

Figure 3. Extreme wind storm characteristics related to each lake. (a–f) Conditions extracted from the identified extreme storms. Each
panel depicts the lakes (y-axis) and their associated storm conditions (x-axis).
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optimum learning rate was selected when ≥1000 trees
and holdout predictive deviance from cross-validation
were minimized (Elith et al. 2008). Tree complexities
of 1, 3, 5, and 7 were tested to evaluate whether
increased interactions between predictor variables
improved mean deviance standard error and predictive
performance in cross-validation (Supplemental Tables
S2–S3). Therefore, model selection was based on the
combination of learning rate, number of trees, and
tree complexity that resulted in the lowest holdout
mean predictive deviance and highest predictive perfor-
mance (Elith et al. 2008, Thayne et al. 2022). Results
were averaged across the 15 independent models to
ensure patterns and interactions described were robust
to the exclusion of some lake and storm conditions.
We found that models predicting resistance performed
well in cross-validation in which the correlation
between predicted and observed values in holdout test
datasets was r = 0.52. The models predicting resilience
resulted in comparatively lower predictive performance
in cross-validation when the correlation between pre-
dicted and observed values in holdout test datasets
was r = 0.25. To further understand predictive perfor-
mance following cross-validation, we averaged across
the models the mean absolute error and mean % devi-
ance explained and made predictions using the models
to determine the linear relationship between observed
and predicted values following cross-validation
(Supplemental Table S3). Predictions were conducted
using all predictors used in the models. Mean % devi-
ance explained was calculated using 2 methods. The
first (Elith et al. 2008), a more conservative method
than the second (Nieto and Mélin 2017), is calculated
by taking the total deviance minus the cross-validated
residual deviance and then dividing the outcome by
the total deviance. The second method is calculated by
subtracting from 1 the quotient of residual deviance
divided by total deviance (Supplemental Table S3).

Further exploration of the results, such as identifying
important interactions, was conducted by first extract-
ing the interaction “rank list” from each of the 15
BRT models. We then summed the importance of
each ranked interaction to identify the overall cumula-
tive importance of the varying interactions across the
15 models. Exploring individual predictions of resis-
tance and resilience relative to a specific lake and
storm condition(s) was performed by first setting all
predictors of non-interest to NA. We then fit predictive
models using the optimal number of trees from each of
the 15 models to predict resistance and resilience rela-
tive to the lake or storm condition(s) in focus. Optimi-
zation and selection of BRT hyperparameters (e.g.,
cutoffs captured by individual trees in the BRT) was

automated by using the function gbm.step as part of
the R package dismo (version 1.1-4; Hijmans et al.
2017). All statistics and associated graphics were pro-
duced in the R statistical computing environment
(Wickham 2016, R Core Team 2019, Kassambara 2020).

Results and discussion

Antecedent lake and storm conditions

Whether a storm is extreme or not largely depends on the
state of the antecedent surface lake conditions at the time
of storm exposure (Fig. 2). Mean antecedent surface
water temperature in the lakes was 18.1 °C, with a true
range of −0.8–31.9 °C and an interquartile range of
13.2–23.1 °C. Mean antecedent oxygen saturation was
99.6%, with a true range of 41.1–228.7% and an inter-
quartile range of 91.9–105.4%.Mean antecedent Schmidt
stability was 161.9 J/m2, with a true range of 0–1271 J/m2

and an interquartile range of 4.8–227.9 J/m2. Mean ante-
cedent regional PAR was 297 μmol/m2/s, with a range of
0–972 μmol/m2/s and an interquartile range of 157–405
μmol/m2/s; Trout Lake andVõrtsjärv had themost varied
light conditions prior to storm exposure. In addition to
antecedent conditions, we also considered the year in
which the wind peak occurred, thus capturing the num-
ber of storms analyzed for each lake and time span of lake
conditions considered. The number of storms each lake
was exposed to was Annie = 129, Erken = 26, Feeagh =
91, Mendota = 84, Müggelsee = 113, Trout Bog = 35,
Trout Lake = 52, and Võrtsjärv = 47. The lakes followed
a phosphorus, Chl-a, Secchi depth, and lake depth (i.e.,
2.8–15 m) gradient (Fig. 2i–l).

Depending on lake location, storms included tropical
storms, unnamed cyclonic depressions, derechos, heavy
rainfall events, and named European windstorms. We
also analyzed shorter duration storms where peak wind
speeds lasted only hours, such as microbursts and squalls
(Fig. 3). The varying storms were accompanied by mean
wind speeds of 10.6 m/s with a true range of 5.1–21.1 m/s
and an interquartile range of 10–11.6 m/s, where Lough
Feeagh on the coast of Ireland experienced the highest
wind speeds and Võrtsjärv and Müggelsee recorded
the lowest wind speeds to be considered extreme. Storms
had a mean wind direction of south by southwest with a
true range of 360° and an interquartile range of south by
southeast to southwest. Storm durations had a mean of
135 h, with a true range of 13–365 h and an interquartile
range of 96–164 h. Associated with many of the storms
were substantial amounts of accumulated rain (rain
was scaled by taking the square root of original values),
and in some cases were associated with major flooding
events in places such as Wisconsin (USA) and Ireland.
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Mean rain accumulation was 17.5 mm, with a true
range of 0–503 mm and an interquartile range of 1.7–
21.3 mm. Time between storms varied between the
different lake locations and had a mean of 0.9 months,
with a true range of 0.1–5.6 months and an interquartile
range of 0.4–1 months. Lake Annie was most frequently
exposed to extremes storms, and Lough Feeagh experi-
enced the longest time between extreme storms. Last,
the day that peak wind speeds occurred spanned the
seasonal spectrum and had a mean Julian day of 198,
with a true range of Julian day 56–305 and an inter-
quartile range of 138–262; thus, most storms occurred
approximately between May and September. Both sur-
face water temperature and oxygen saturation
decreased or increased sharply relative to storm initia-
tion and were generally correlated in their directional
response (i.e., positive or negative) and recovery trajec-
tories; however, the degree of change in observed resis-
tance and resilience varied among the lakes (Fig. 4a–c
and 5a–i).

Resistance and resilience indices

A simple approach to interpret the resistance and resil-
ience indices is to examine howmuch their distributions
overlap in each lake (Fig. 4). We observed a notable
increase in overlap as mean annual Chl-a concentration

increased, indicating a decline in resistance and an
enhancement of resilience (Fig. 4). A finer description
of the distributions revealed surface water temperature
across lakes had a mean resistance of 0.77. In other
words, water temperature conditions were displaced
on average by 23% at peak displacement relative to
3-day mean antecedent lake characteristics, ranging
from −0.53 (i.e., ∼150% change) to 1.0 (100% resistant),
and an interquartile range from 0.69 to 0.90. Water tem-
perature resilience was low across lakes and had a mean
resilience of 0.28, which means that on average the lakes
were able to recover 28% of antecedent water tempera-
ture conditions following the storms, ranging from
−0.88 (i.e., drifting, or overcompensation in resilience
level, discussed earlier) to 1.0 (100% resilient) and an
interquartile range from 0.04 to 0.52. Surface oxygen sat-
uration had a mean resistance of 0.74, which means oxy-
gen saturation conditions were displaced on average by
26% at peak displacement, ranging from −0.32 (∼130%
change) to 1.0 with an interquartile range from 0.62 to
0.92. Oxygen saturation conditions were moderately
resilient with a mean resilience of 0.46 (i.e., on average
the lakes were able to recover 46% of antecedent oxygen
saturation conditions following the storms) ranging
from −0.84 to 1.0 (100% resilient) with an interquartile
range from 0.22 to 0.72. While the 2 variables tended
to have similar directional responses to storms (i.e.,

Figure 4. (a) North America and (c) Europe with colored dots corresponding to the 8 lakes and their locations, respectively. (b) Dis-
tributions of observed resistance and resilience (quantified on a standardized scale from −1 to 1, see legend) of percent oxygen sat-
uration and water temperature. The red line marks 0, which represents 100% displacement relative to antecedent lake characteristics
and 0% recovery as it relates to resistance and resilience respectively, organized by each lake’s annual mean chlorophyll a concen-
tration, with Lough Feeagh having the lowest concentrations. The more overlap between resistance and resilience the more likely the
lake had low resistance but was more resilient following storms, whereas separation between distributions of resistance and resilience,
with sharp peaks in resistance and flat distributions in resilience, represents lakes with high resistance but low resilience.
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resistance), water temperature tended to show more
incomplete recovery (i.e., diminished resilience) in com-
parison. However, understanding how trophic state con-
ditions, antecedent lake characteristics, and storm
conditions relate is important before exploring the par-
tial effect patterns identified by the BRTs.

Trophic state proxies and storm conditions shape
antecedent lake characteristics

Feedback and processes that determine trophic state
and meteorological forces are widely understood to

impact the functioning of lake ecosystems (Carpenter
1998, Stockwell et al. 2020). While trophic state is gen-
erally defined here as mean annual Chl-a, TP, and Sec-
chi depth, their relationship to antecedent lake
characteristics (i.e., 3-day mean prior to storm) such
as surface water temperature and dissolved oxygen,
thermal stratification (i.e., Schmidt stability), and PAR
have a more immediate influence on shaping resistance
and resilience of the lakes (Thayne et al. 2022). Annual
means of Chl-a (i.e., a proxy for phytoplankton bio-
mass), TP concentration, and transparency (i.e., Secchi
depth) had significant (p < 0.001) positive and negative

Figure 5. Classified storm examples for Lake Annie, Lough Feeagh, and Müggelsee. (a) Satellite imagery of Tropical Storm Fay, Lake
Annie, Florida (2008); (b) an unnamed cyclonic depression coalescing over Lough Feeagh, Ireland (2012); and (c) European Wind Storm
Xavier (2017) with formation/direction depicted by the blue, red, and dashed black arrows. The red and blue arrows depict warmer
and cooler storm fronts, respectively, which form the jet stream depicted by the black dashed arrow. (d–f) Day and month (x-axis) of
the storm time series where the black line is mean wind speed (y-axis) and dynamic pressure (secondary y-axis), and the red dotted
line denotes the dynamic pressure threshold used to classify events for analysis. The green shaded area represents the area of the
storm in which storm conditions including wind direction, wind speed, peak wind speed, storm duration, and accumulated rain
were extracted. (g–i) Day and month (x-axis) of the time series, where the green line is percent oxygen saturation (x-axis) and the
blue line is water temperature (secondary y-axis). The green shaded area represents the storm period.
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nonlinear correlations with antecedent lake characteris-
tics (Fig. 6). Thus, higher Chl-a concentration and
nutrient concentrations were associated with decreased
transparency, thermal stratification, incoming PAR (i.e.,
affected by regional climate at each lake), and surface
water temperature (Fig. 6). PAR, while considered an
antecedent lake characteristic, was measured above the
water surface and thus suggests that increased Chl-a
and nutrient concentrations were associated with the
regional climate of the lake. Thus, PAR is affected by
more or fewer cloudy days and/or frequency of storm
exposure. Increased transparency was significantly and
positively correlated to antecedent Schmidt stability,
regional PAR, surface water temperatures, and to a

lesser extent oxygen saturation (Fig. 6). Wind speed
was significantly and negatively correlated with
decreases in mean annual Chl-a while antecedent
water temperature and Schmidt stability were negatively
correlated with both wind speed and wind direction
(Fig. 6). Thus, high wind speeds with directions between
southwest to northwest were associated with lakes with
lower phytoplankton biomass, cooler antecedent water
temperatures, and decreased thermal stratification.
Increased levels of accumulated rain were then associ-
ated with decreased lake transparency and cooler sur-
face water temperatures. Taken as a whole, the
correlations among lake and storm conditions suggest
that low transparency, warmer antecedent water

Figure 6. Spearman rank correlation showing relationships between trophic state proxies, antecedent lake characteristics, and storm
conditions (figure is hierarchically clustered for readability). Relative strength (see color bar) of positive (red) and negative (blue) non-
linear relationships between trophic state proxies (i.e., mean annual total phosphorus, mean annual chlorophyll a, and mean annual
Secchi depth), antecedent lake characteristics (i.e., Schmidt stability, water temperature, oxygen saturation, PAR, and mean lake
depth), and storm conditions (i.e., wind direction, wind speed, accumulated rain, storm duration, day of peak wind speeds, time
between storms, and storm year). Bolder values are stronger correlations, while grey values are weaker correlations. Total phosphorus
= TP, chlorophyll a = Chl-a, depth = d., and wind speed =WS. Overall, the figure gives a broad understanding of how slower changing
trophic sate proxies relate, or not, to faster changing antecedent lake characteristics. For example, mean annual TP is negatively cor-
related with Schmidt stability, PAR, and mean annual Secchi depth. The figure further shows how storm conditions relate to both slow
changing trophic state proxies and faster changing antecedent lake characteristics, providing an understanding of how storm con-
ditions can influence both gradual and rapid changes in lake surface dynamics. For example, accumulated rain was negatively cor-
related with antecedent water temperatures and mean annual Secchi depth.

350 M. W. THAYNE ET AL.



temperatures, decreased thermal stratification, and/or
regional PAR were associated with eutrophic lakes
and/or increased storm exposure. Conversely, increases
in the same lake characteristics (excluding water tem-
perature) were associated with increased transparency
(i.e., oligotrophy) and/or decreased storm exposure
(Fig. 6). Exploring these correlations provides a broader
context to understand the partial effects identified from
the BRTs.

Predicting resistance and resilience

The BRTs differed in predictive performance during
and following cross-validation (Supplemental Table
S2–S3). Following cross-validation, we calculated the
percent deviance explained using 2 methods, one con-
servative and one less conservative. The models pre-
dicting resistance were able to explain 26% and 45%
of the deviance in resistance values (Supplemental
Table S2–S3). Conversely, despite stable model perfor-
mance, surface water temperature and oxygen satura-
tion resilience values were unpredictable across lakes,
with models explaining 6–25% of the deviance in
resilience. The unpredictability is likely related to the
independence in resilience values across the different
lakes (Fig. 4b). Taken as a whole, predicting the

resilience of ecosystem dynamics is a complex task
when we consider the infinite possibilities and path-
ways by which individual lake ecosystems may or
may not recover following a disturbance. Thus, pre-
dicting the post-storm recovery trajectory of lake sur-
face water temperature and oxygen saturation may be
better understood on an ecosystem-to-ecosystem basis
(Thayne et al. 2022). Nonetheless, we provide the
results of resilience for cautious comparison to resis-
tance (Supplemental Fig. S1–S2). Because the models
poorly predicted resilience, the remainder of the dis-
cussion is focused on resistance.

Uncertainty in model predictions for resistance can
be attributed to 2 causes. First, not all trophic state prox-
ies, antecedent lake characteristics, and storm condi-
tions were important for explaining the variation in
resistance among lakes, at least for the water tempera-
ture and oxygen saturation proxies used here (refer to
Supplemental Fig. S3–S8). For example, thermal stratifi-
cation (i.e., Schmidt stability) only partially affected
resistance in 5 of the 8 lakes, of which 2 (i.e., Müggelsee
and Erken) showed decreasing resistance with increas-
ing stratification. Second, some trophic state variables,
antecedent lake characteristics, and/or storm conditions
led to opposing effects between lakes and/or between
water temperature and oxygen saturation.

Figure 7. (a) Box plots of percent relative importance (x-axis) of each of the trophic state proxies, antecedent lake characteristics, and
storm conditions (y-axis) predicting resistance. The varying color corresponds to the colors of the partial dependency plots in Fig. 8
and 9. Relative importance for each lake and storm variable in the BRT models is a function of the frequency with which it was
included in the BRTs individual regression trees and the overall improvement that resulted from its inclusion. The box plots give
the probability of percent relative importance of a given predictor and fitted BRT model (black dots); standard error is represented
by the error bars. Water temperature/oxygen saturation (WT/O2) response was a factor variable in the BRT models that accounted for
the possibility of differing responses in water temperature and oxygen saturation resistance. (b) Partial dependency of surface water
temperature and oxygen saturation resistance (y-axis) of 15 models (green lines) relative to annual mean chlorophyll a (x-axis). The
black line represents the results of a fitted general additive model (y ∼ s(x)) across the 15 outcomes of the fitted BRT models and
provides an overall sense of the variability explained by all the models combined.

INLAND WATERS 351

https://doi.org/10.1080/20442041.2023.2242081
https://doi.org/10.1080/20442041.2023.2242081
https://doi.org/10.1080/20442041.2023.2242081
https://doi.org/10.1080/20442041.2023.2242081
https://doi.org/10.1080/20442041.2023.2242081
https://doi.org/10.1080/20442041.2023.2242081


Trophic state effect on thermal and dissolved
oxygen resistance

Resistance in surface water temperature and oxygen sat-
uration was primarily shaped by mean annual Chl-a
concentration followed by antecedent oxygen satura-
tion, water temperature, and mean annual phosphorus
concentration (Fig. 7a–b and 8a–f). Although BRTs do
not pinpoint causation, the importance of Chl-a in
shaping resistance to storms is likely a result of its cor-
relation with physiochemical parameters (e.g., TP, PAR,
Schmidt stability, and wind speed; Fig. 6 and 8c–e) as
well as direct links to biological feedbacks and processes
that determine Chl-a concentration in lakes of varying
trophic state (Jones et al. 2005, Nõges et al. 2011, Shat-
well et al. 2016). Resistance tended to diminish with
increasing mean annual Chl-a and TP (Fig. 7b and
8c). Consequently, resistance in eutrophic lakes, which

was associated with warmer surface temperatures,
decreased stratification, and incoming PAR, experi-
enced greater initial displacement on average following
storms (Fig. 7b and 8b–d). In eutrophic lakes compared
to oligotrophic lakes, Chl-a concentration (e.g. phyto-
plankton) has a greater influence over physiochemical
processes such as thermal dynamics and/or light or
nutrient and oxygen availability (Fig. 6; Carpenter
1998, Nõges et al. 2011, Shade et al. 2012, Shatwell
et al. 2016, Thayne et al. 2022). Additionally, high
Chl-a and subsequent respiration and decomposition
of phytoplankton can drive eutrophic lakes out of equi-
librium with the atmosphere (i.e., < or > 100% oxygen
saturation; Nõges et al. 2011, Shatwell et al. 2016),
which here diminishes resistance to storms (Fig. 1b
and 8a). The increased interdependency between
Chl-a and physical parameters, especially in but not

Figure 8. (a–f) Order of importance of the partial dependency (y-axis) of resistance in each of the 15 models (colored lines) relative to
antecedent lake characteristics (x-axis), respectively. The black line represents the results of a fitted general additive model (y ∼ s(x))
across the 15 outcomes of the fitted BRT models and provides an overall sense of the variability explained by all the models combined.
The greatest effects on surface water temperature and oxygen saturation resistance following storms are driven by (a) antecedent
oxygen saturation conditions. Enhanced resistance tended to partially depend on increasing oxygen saturation conditions, increasing
(b) surface water temperatures and increasing (d) light availability (i.e., PAR). Diminished resistance tended to be partially dependent
on (c) increasing total phosphorus concentrations, (e) Schmidt stability, and (f) increasing transparency (i.e., Secchi depth). Mean lake
depth was 1% important for resistance and showed no directional effects and thus was not included in the figure.
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limited to eutrophic lakes, may present greater opportu-
nity for storms to initially displace biophysical relation-
ships controlling thermal and oxygen conditions. For
example, in eutrophic lakes, high Chl-a concentration
(e.g., >5–10 µg/L) can trap solar energy at the surface
of eutrophic lakes, subsequently increasing surface
water temperature and lake resistance (Jones et al.
2005, Nõges et al. 2011; Fig. 8b). Thus, the ability of
storms to both breakdown and/or stimulate phyto-
plankton growth increases the opportunity in eutrophic
lakes for storms to initially displace biophysical controls
on surface water temperature and oxygen saturation
dynamics (Mesman et al. 2021, Stelzer et al. 2022,
Thayne et al. 2022). Even so, in both eutrophic and
oligotrophic lakes with lower mean annual Chl-a
concentration, higher transparency (i.e., Secchi depth),
and increased PAR, physical mechanisms such as
water temperature, stratification and/or mixing state
are likely the dominant drivers of resistance to extreme
storms (Fig. 6 and 8b, d–f). Taken as a whole, the impor-
tance of trophic state proxies and their effect on shaping
light and thermal dynamics is an important finding
because they highlight links to previous research on
feedback between ecological and physical lake processes
(Jones et al. 2005, Nõges et al. 2011, Shade et al. 2012,
Shatwell et al. 2016).

Antecedent lake conditions

Trophic state proxies enabled a general assessment of
how surface water temperature and oxygen saturation
resistance is influenced across a trophic state gradient.
However, antecedent lake conditions provided a more
detailed understanding of how resistance is shaped by
lake conditions that closely reflect real-time conditions.
Surface water temperature and oxygen saturation in
lakes are driven by biogeochemical feedback and pro-
cesses. The 8 lakes tended to be more resistant to dis-
placement at ≥100% surface oxygen saturation versus
<100%, which suggests that enhanced resistance is par-
tially shaped by increased ecosystem productivity
and/or more frequent oxygen equilibrium with the
atmosphere, respectively (Fig. 8a, b, e; Tsai et al. 2011,
Shade et al. 2012, Thayne et al. 2022). For example,
when the lakes had surface oxygen saturation >100%,
saturation and water temperatures were warm, and
enhanced resistance was likely driven by metabolic pro-
cesses and biophysical relationships influencing dis-
solved oxygen dynamics (Jones et al. 2005, Shade et al.
2012, Shatwell et al. 2016, Sullivan et al. 2022). Con-
versely, when lake surface oxygen saturation was
<100%, resistance was likely more dependent on dimin-
ished primary productivity and/or changing physics and

phenology such as incoming PAR, thermal stratifica-
tion/mixing, and/or transparency (Fig. 8a, d–f). In rela-
tion to the partial effect of stratification (i.e., Schmidt
stability) on resistance, 2 possibilities emerge. First,
the negative correlation between Chl-a and Schmidt
stability may play a critical role in shaping the observed
pattern (Fig. 6). Second, lakes demonstrated higher
resistance levels during mixing than to stratification
(Fig. 8e). The latter argument makes sense because
less change is possible, so to say, under mixed condi-
tions than during times storms were able to breakdown
stratification and draw cooler, less oxygenated waters to
the surface. Overall, the importance of oxygen satura-
tion, water temperature, and Schmidt stability suggests
changes in productivity and mixing state are key factors
shaping lake resistance to extreme storms under varying
lake surface conditions.

Climatological setting and background seasonal
variation

Lake location, regional storm conditions, and the sur-
rounding topography can play a prominent role in shap-
ing how lakes respond to storms. Thus, lake orientation
relative to predominant wind direction of a storm is crit-
ical to determining lake response (Andersen et al. 2020,
Thayne et al. 2022). The BRT analysis showed that resis-
tance, or the peak displacement of surface water temper-
ature and oxygen saturation, was greatest when storms
were accompanied by winds out of the east to southwest
and storm duration was >150 h (Fig. 9a–b). Winds out of
the east to southwest corresponded, by chance, to the
predominant wind directions and longest fetch of 7 of
the 8 lakes. However, resistance was more dependent
on storm duration than wind direction (Fig. 9–b).
While we expected increasing wind speeds to diminish
the resistance of the lakes, resistance surprisingly
increased with increasing windspeeds (Fig. 9g), but this
phenomenon is the background effect of the positive
correlation of lake depth with wind speed. Therefore,
we suspect the pattern was driven by the relationship
between wind speed and increasing thermocline depth
(Andersen et al. 2020). Changes in antecedent thermo-
cline depth were positively related to increasing wind
speeds in Lough Feeagh, such that if the thermocline
was close to the surface (i.e., 4–15 m), the effect of
wind speed on surface water temperature and thermal
stratification was greater (Andersen et al. 2020). Thus,
when deeper lakes have a shallow thermocline, storms
have a higher likelihood to mix surface waters and
break down stratification. Although we did not include
thermocline depth as a predictor of resistance, we cap-
tured a similar effect by including lakes of varying
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depth, stratification regimes (i.e., Schmidt stability), and
storm exposure. Nonetheless, if climate change indeed
increases peak wind intensities, a lake’s ability to resist
sharp displacements in surface water temperatures and
oxygen concentrations may diminish, with cascading
effects on varying lake biophysical processes (Shade
et al. 2010, 2012, Tsai et al. 2011, Thayne et al. 2022).
In relation to storm frequency, we found that a longer
time between storms reduced surface water temperature

and oxygen saturation resistance (Fig. 9d). As time
between storms increases, lakes are more likely to
strengthen stratification, and while stratification resists
mixing effects, much more can be displaced under stra-
tified versus mixed conditions (Fig. 8e). Thus, in areas
where atmospheric stilling is expected (e.g., Lake Võrts-
järv), extreme storms may have a greater impact on the
resistance of surface water dynamic as more time elapses
between storms (Vautard et al. 2010, Woolway et al.

Figure 9. Partial dependency of water temperature and oxygen saturation resistance relative to measured storm conditions. Dimin-
ished resistance was partially dependent on (a) when storms were >150 h, (b) when storms accompanied by winds from east to south-
west, (c) when storms had increasing amounts of accumulated rain, (d) when increasing amounts of time had passed since the last
storm analyzed, and when storms (e) occurred in the fall, and (f) took place after 2010. Resistance in the lakes tended to enhance with
(g) increasing maximum wind speeds.
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2019, Zeng et al. 2019, Janatian et al. 2020, Stetler et al.
2021).

Storms accompanied by high accumulations of rain
resulted in diminished resistance of surface water tem-
perature and oxygen saturation conditions across lakes
(Fig. 9c), but some uncertainty surrounding the effects
of rain remains. Our analysis of rain predictions and
their impact on resistance across lakes revealed that
higher rainfall levels could occasionally enhance the
resistance of Lake Annie and Müggelsee
(Supplemental Fig. S6). This finding confirms previous
research suggesting that elevated precipitation levels
may actually strengthen rather than diminish the resis-
tance of specific lakes (Thayne et al. 2022). The primary
effect of extreme storms and rain events on more trans-
parent lakes tends to be changes in transparency and
subsequent light availability (Fig. 6; Gaiser et al.
2009a, 2009b, Havens et al. 2011, Williamson et al.
2016, Kasprzak et al. 2017, Larsen et al. 2020). Extreme
rainfall can strongly alter transparency and light avail-
ability in lakes via the introduction of dissolved and/
or particulate matter (Williamson et al. 2016, Zwart
et al. 2017, Larsen et al. 2020). Decreased transparency
increased surface water temperature and oxygen satura-
tion resistance to storms (Fig. 8f; Thayne et al. 2022).

Aside from its direct negative effect on water transpar-
ency, rainfall leading to flooding may also increase sur-
face temperatures and reduce the mixed depth layer, the
Chl-a maximum, and deep-water oxygen concentration
(Williamson et al. 2016), with subsequent positive or
negative effects on surface temperature and oxygen
resistance. Whether the effect is positive or negative
depends on the lake; therefore, decreases in transpar-
ency as a result of extreme rainfall may influence the
resistance of surface water temperature and oxygen sat-
uration conditions during future storm events. How-
ever, the effect of rain and other storm effects were
partially dependent on the seasonal variation and year
in which peak wind speeds occurred.

After 2010, surface water temperature and oxygen sat-
uration resistance to storms began to decrease. While
Earth experienced a recovery of terrestrial wind speeds
in 2010, we did not find a consistent pattern to suggest
this was why we observed a decrease in resistance
(Zeng et al. 2019). However, resistance was shaped
across the backdrop of seasonal variation in both lake
and storm conditions (Fig. 9e–f). Early spring and late
fall in the lakes, except for subtropical Lake Annie, are
dominated by mixed, cool, and clear conditions, and
thus resistance is primarily shaped by physical

Figure 10. Heatmaps depicting the resistance (see legend) of each of the lakes relative to the interaction between day of peak wind
speeds (x-axis) and oxygen saturation (y-axis), organized by mean annual chlorophyll a (Chl-a) concentration in the lakes (see legend).
We found lakes were more resistant under cooler/less saturated spring time conditions (i.e., mixed conditions) than similar but warmer
conditions in late summer to early fall, with the exception of subtropical Lakes Annie and Erken. Lake Annie shows no seasonal effect
but exhibited enhanced resistance during oxygen saturation >100% and decreases through the year as hurricane season approaches.
Lake Erken showed enhanced resistance during fall and late summer conditions when oxygen saturation was <100%. The overall
interpretation of the interaction between day of peak wind speeds (i.e., storm seasonality) and oxygen saturation is that spring to
midsummer primary productivity/lake conditions led to increased resistance of water temperature and/or oxygen saturation in the
lakes. Therefore, shifts in seasonal lake and storm phenology may influence the varying lake’s abilities to resist extreme storm
disturbances.
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conditions at those times of the year. Excepting Lakes
Erken and Annie, cooler spring conditions were more
resistant than warmer late summer to early fall condi-
tions (Fig. 9e and 10). In previous work, we found that
when silica concentrations were low (e.g., diatom
bloom presence), water temperatures were cool, storm
exposure occurred in spring to midsummer, and the
lake physiochemical conditions were more resistant

and resilient following storms (Shatwell et al. 2016, Sul-
livan et al. 2022, Thayne et al. 2022). We suggested this
finding is likely related to the strong linkage to lake dia-
tom community and antecedent spring time thermal
conditions (Thayne et al. 2022). Here, we found that
under late spring to midsummer bloom conditions
(e.g., oxygen saturation ≥ 100%), water temperature
and oxygen saturation conditions were more resistant

Figure 11. Diagram (inspired by Stockwell et al. 2020) showing how water temperature and oxygen saturation resistance and resil-
ience following extreme storms is shaped along a trophic state gradient, conceptualizing how positive and negative correlations
between (a) extreme storm conditions, (b) lake characteristics, and (c) antecedent lake conditions shape (d) short-term lake stability
states across a (e–f) trophic state gradient. Extreme storm characteristics (a) had negative correlations (red dashed arrows, C1 and C2)
with nontransitory and/or slow changing lake characteristics (b) and transitory antecedent lake conditions (c). Lake characteristics (b)
and antecedent lake conditions (c) had both positive and negative correlations with each other (blue double-pointed dashed arrow,
C3), which together with storm conditions (black dashed arrows, C2,3) shaped short-term surface lake stability states in water temper-
ature and oxygen saturation (d; i.e., resistance and resilience). The degree to which a given lake experiences seasonally clear and
turbid conditions is largely dependent on its trophic state, or whether it is (e) oligotrophic or (f) eutrophic, driven by positive and
negative correlations between C2,3. Oligotrophic lake processes (f; dark blue) optimized high resistance to storms at the expense
of low resilience, and while unpredictable, eutrophic lake processes (g; dark green) in this study optimized high resilience following
storms at the expense of low resistance. Photo credit for (b) Lake Erken to R. Rohdin; (f) to M. Anderson, and (g) to Aerial Associates
Photography, Inc. by Zachary Haslick.
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than similar conditions in late summer and fall (Fig. 10).
A similar link may exist here, where spring to midsum-
mer primary productivity and thermal conditions lead to
enhanced resistance to storms. The dynamic between
changing phenology related to differing sources of pri-
mary productivity and storm timing further confirms
that the resistance dynamics of the lakes are shaped by
transitory mixing dynamics and phytoplankton condi-
tions. For example, in lakes that captured early spring
and late fall storms, we saw clear changes across season,
where resistance was lowest during times of seasonal
mixing/low stratification and/or times of low gross pri-
mary production (Fig. 10). However, in Müggelsee,
which tends to be mixed, we saw a less definitive resis-
tance relationship between resistance and seasonality.
Overall, results suggest the importance of changing
lake and storm phenology and the potential role of cli-
mate change in impacting processes such as the timing
of plankton blooms or the onset of stratification and
their effect on shaping surface water temperature and
oxygen saturation resistance to extreme storms (Fig. 11).

Conclusion

Resistance of surface water temperature and oxygen sat-
uration conditions to extreme storms seems to be pri-
marily shaped by changing mean annual Chl-a and its
influence on and/or relationship with other physio-
chemical lake characteristics. The findings emphasize
the significance of physiographic and geochemical pro-
cesses in determining biophysical feedbacks regulating
the trophic state of lakes. Furthermore, the research
reveals unpredictable variability in resilience among
lake ecosystems, urging a shift in focus from solely
emphasizing resilience to considering strategies that
enhance ecosystem resistance, an often-overlooked
aspect of disturbance ecology. The distinct variations
in biophysical lake processes among lakes, including
Chl-a concentration (indicative of trophic state), oxygen
saturation, thermal regimes, transparency, and regional
PAR, significantly influence the resistance of surface
water temperature and oxygen saturation following
extreme storms. Moreover, the study demonstrates the
sensitivity of surface water temperature and oxygen sat-
uration resistance to various storm conditions, includ-
ing wind direction and speed, storm duration, day of
peak wind speeds, levels of accumulated rain, and alter-
ations in storm frequency. Overall, we provide a system-
atic, standardized, quantitative approach to unravel
processes shaping lake surface water temperature and
oxygen saturation resistance following extreme storms.
Furthermore, synthesizing lake storm responses into
standardized indices of resistance and resilience allows

many other questions and lake comparisons to be
explored. Given the unprecedented challenges socio-
ecological systems such as lakes are set to encounter
as a result of climate change, exploring questions that
untangle the complexities of dynamic systems will
begin to clarify the challenges we face in protecting
lake ecosystem resistance.
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