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Abstract
Spin-based quantum information processing makes extensive use of spin-state manipulation. This
ranges from dynamical decoupling of nuclear spins in quantum sensing experiments to applying
logical gates on qubits in a quantum processor. Fast manipulation of spin states is highly desirable
for accelerating experiments, enhancing sensitivity, and applying elaborate pulse sequences. Strong
driving using intense radio-frequency (RF) fields can, therefore, facilitate fast manipulation and
enable broadband excitation of spin species. In this work, we present an antenna for strong driving
in quantum sensing experiments and theoretically address challenges of the strong driving regime.
First, we designed and implemented a micron-scale planar spiral RF antenna capable of delivering
intense fields to a sample. The planar antenna is tailored for quantum sensing experiments using
the diamond’s nitrogen-vacancy (NV) center and should be applicable to other solid-state defects.
The antenna has a broad bandwidth of 22MHz, is compatible with scanning probes, and is suitable
for cryogenic and ultrahigh vacuum conditions. We measure the magnetic field induced by the
antenna and estimate a field-to-current ratio of 113± 16G/A, representing a six-fold increase in
efficiency compared to the state-of-the-art, crucial for cryogenic experiments. We demonstrate the
antenna by driving Rabi oscillations in 1H spins of an organic sample on the diamond surface and
measure 1H Rabi frequencies of over 500 kHz, i.e. π-pulses shorter than 1µs—an order of
magnitude faster than previously reported in NV-based nuclear magnetic resonance (NMR).
Finally, we discuss the implications of driving spins with a field tilted from the transverse plane in a
regime where the driving amplitude is comparable to the spin-state splitting, such that the rotating
wave approximation does not describe the dynamics well. We present a simple recipe to optimize
pulse fidelity in this regime based on a phase and offset-shifted sine drive, which may be optimized
in situ without numerical optimization procedures or precise modeling of the experiment. We
consider this approach in a range of driving amplitudes and show that it is particularly efficient in
the case of a tilted driving field. The results presented here constitute a foundation for
implementing fast nuclear spin control in various systems.

1. Introduction

Quantum sensing with solid-state spin sensors, such as the nitrogen-vacancy (NV) center in diamond,
frequently involves manipulating nuclear spin states. Nuclear spins may be part of the sample of interest, as
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in the case of nanoscale nuclear magnetic resonance (NMR) spectroscopy, which relies on sequences of
radio-frequency (RF) pulses applied to the sample to recover information on its chemical structure [1–5].
Solid-state nuclear spins around the sensor are also utilized as ancilla qubits that store the quantum state of a
sensor to retrieve it repeatedly [3, 6] or to prolong the sensing time [7].

Most experiments have relied so far on antennas that induce weak RF driving fields, with a standard
π-pulse lasting a few tens of microseconds [1, 6, 8]. These lengthy pulses imply longer measurement times
and, thus, reduced sensitivity [9]. They may also impede the application of elaborate pulse sequences, as the
sensing time in NV-based NMR is limited by the spin relaxation time of the NV center (T1) [10], or a nuclear
memory [3].

Fast manipulation of nuclear spins by strong RF driving fields can better utilize the limited sensing time
of NV center sensors, generate broadband excitation of the nuclear spin resonance, and enable novel sensing
protocols [11]. Previous works demonstrated strong driving for the NV center electron spin at a rate of
∼1GHz [12], and 13C spins in diamond at∼70kHz [13]. The highest reported driving rates for protons in
NV-based NMR are 50–80 kHz [1, 3].

The system described below enables spin manipulation in a regime where the driving strength Ωd is close
to the energy splitting (i.e. Ωd ≲ ω0). Alongside the experimental challenges of producing strong driving
fields, working in this regime poses a theoretical control challenge. Most experimental setups deliver linearly
polarized fields often tilted away from the transverse plane. For weak driving strengths (Ωd ≪ ω0), the
dynamics are accurately approximated by sinusoidal state transitions, known as Rabi oscillations, under the
rotating-wave approximation (RWA). In the regime where Ωd ≲ ω0, however, the deviations from an ideal
drive (specifically, a linearly polarized drive with a longitudinal component) will markedly alter the dynam-
ics [12]. Without proper adaptations, this ‘breakdown’ of the RWA results in the deterioration of pulse fidelity.
It is thus crucial to design the signals so as to optimize an operation’s fidelity in the strong driving regime.

The issue of transverse strong driving has attracted interest, especially for quantum information
processing, where strong driving can accelerate operations and increase the speed of quantum processors [14,
15]. Among others, optimal control strategies have been employed for optimizing quantum control in the
strong driving regime. In particular, the concept of time-optimal control fields [16] has been introduced to
identify the shortest possible signals to control a qubit state [17, 18]. Bang-bang control sequences have been
shown to be the quickest form, while bang-bang driving at rates exceeding ω0 has been demonstrated on
solid-state qubits [19], and other optimal control theory-derived waveforms have been demonstrated for
solid-state qubit controls [20]. Floquet theory has also been employed to derive optimal quantum gates under
strong driving [21]. Optimal control and Floquet approaches require a precise description of the driving field
and the qubit, e.g. the relative orientation and magnitude, according to which the control signal is calculated.
However, errors in the estimated parameters might deteriorate the ultimate performance compared with the
simulations [20]. Also, in situ optimization is difficult as it requires sampling a complex parameter space.

In this work, we design and implement a micrometer-scale planar spiral RF antenna compatible with NV
magnetometry and capable of delivering intense RF pulses to a diamond sample. We characterize the
antenna’s characteristics and performance. Demonstrating the antenna’s function by driving proton (1H)
spins in an oil sample on the diamond, we observe spin state Rabi oscillations at frequencies surpassing
500 kHz, an order of magnitude faster than previously reported.

We then discuss the unique characteristics of spin-state control by a strong and tilted driving field. We
propose a novel approach to optimize the fidelity of control pulses in this regime, which is particularly
suitable for driving fields that are noisy or not fully characterized.

2. Experimental methods

We use individual NV center electron spins inside diamond crystal as quantum sensors for detecting nuclear
spins. As a model organic sample for nanoscale NMR we use microscope immersion oil that contains 1H
(proton) spins, which has been used previously in a similar context [3, 22, 23].

We performed experiments on a home-built room temperature confocal microscope. The NV center
electron spins were excited by a 520 nm diode laser, and their fluorescence was measured by a single-photon
counting module. Low-frequency RF signals (∼1MHz) were irradiated to the sample via our novel, custom-
designed spiral antenna (see further in section 3), and the NV center electronic spins were controlled by
microwave pulses delivered by a wire drawn above the sample (see schematic in Figure 1(a)).

The diamond sample was a thin, single-crystal [100] diamond membrane (approximately 30 µm thick)
patterned with nanopillar diamond waveguides. Shallow NV centers were created in the diamond by
nitrogen ion implantation. For proton sensing, a small drop of microscope immersion oil was applied to the
diamond’s surface with a sterile syringe (see further details in SI-2). The oil had no optical function in the
experiment and served solely as a sample for investigation.
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Figure 1. Schematic of the experimental system for sensing and driving nuclear spins in the strong regime (not to scale). (a) NV
centers in a thin diamond sample serve as quantum sensors. The RF spiral antenna sits underneath the diamond. Individual NV
centers are addressed optically through an aperture in the antenna. Microwave signals to the NV center are applied with a thin
copper wire drawn above the diamond sample. Immersion oil is used as a model sample for nanoscale 1H NMR It is applied to
the top of the diamond. (b) The static magnetic field B0 is aligned with the NV center’s axis. The spiral antenna’s field is
approximately perpendicular to the diamond’s surface, inducing an RF field component along the NV’s axis (Bz) and a
component perpendicular to B0 (Bx).

3. Planar spiral RF antenna

We designed the RF antenna as a planar spiral. Figure 1(a) depicts the setup schematically. Compatibility
with a typical NV magnetometry apparatus was the fundamental design principle. The diamond is placed
directly on the antenna to enhance the magnetic field induced at the sample’s position. A small aperture at
the center of the spiral allows optical access to NV centers. An additional wire, drawn above the sample, is
dedicated to signals in the gigahertz range for manipulating the NV center’s electron spin.

The antenna was fabricated on a polyimide flexible printed circuit, suitable for ultra-high vacuum and
cryogenic environments. The planar geometry can accommodate a scanning probe, such as an atomic force
microscope, which may be used, for example, to carry a sample [24] or create a magnetic field gradient [25].

In our antenna, the inner loop diameter is 600µm, at the center of which is a 200µm-diameter optical
aperture; the sample’s area of interest is placed on the aperture (figure 2(a)). The inner diameter was
minimized to achieve the strongest field up to the fabrication capabilities. The spiral consists of two identical
layers, separated by a 20µm polyimide layer and connected by a via at the center. The number of turns and
trace width of the spiral can be set to optimize its operation; for a larger field-per-current ratio, the number
of turns should be increased. However, the bandwidth decreases with the number of turns, and the field-
per-power is maximal for a specific number of turns (see further in SI-1). The results presented in this study
were measured with a 15-turn spiral and a 100µm trace width.

We terminate the antenna with a∼50 Ω load that dissipates over 90% of the generated power. By
monitoring the voltage on the load, we also determine the current through the antenna. The 3 dB bandwidth
of the antenna is approximately 22 MHz, as observed in the transmission spectrum of the system (S21
parameter, figure 2(b)). The antenna’s bandwidth allows working with bias fields of up to 500 mT (when
detecting proton spins). Such bias fields are required when wishing to utilize an ancilla nuclear spin in the
diamond as a quantum memory [6, 26]. Additionally, the large bandwidth enables the transmission of pulses
shorter than a microsecond without significant distortion.

Figure 2(c) shows a finite element simulation of the antenna’s field distribution. The figure depicts the
field along a cross-section of the antenna’s center and where the sample sits. The simulation confirms that the
expected magnetic field is approximately uniform in magnitude and orientation over the projected sample
position. The magnetic field for a 1 A current at the experiment’s sample position was estimated to be
136± 1 G. The field vector was nearly perpendicular to the spiral plane, with a slight tilt of 1± 0.7◦.

We characterized the magnetic field vector emitted by the antenna using in situ static magnetic field
measurements with the NV center. We swept a direct current through the antenna and measured the Zeeman
shift of the NV center’s levels around B0 = 0 (without an additional applied field). From the optically
detected magnetic resonance (ODMR) spectra, we extracted the dependence of the field magnitude on the
current and the tilt of the applied magnetic field to the NV axis. The result is plotted in figure 3. We fit the
data to a spin Hamiltonian incorporating strain and a magnetic field tilted away from the NV center axis.
Thus, the transitions are not linearly dependent on the magnetic field (see SI-2 for further details on the
analysis). From the transitions, we obtain the DC field-to-current ratio of B / Ispiral = 113± 16 G

A . The field’s
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Figure 2. Spiral broadband RF antenna. (a) Photo of the spiral antenna. The sample sits on the antenna, and the working region is
directly above the aperture. (b) Transmission characteristics of the antenna (S21 parameter). (c) Finite-element simulation of the
antenna’s field, focusing on the region of interest. The image shows a cross-section along the dashed line in (a). The color map
and contours depict the magnetic field magnitude per 1 A current, and the arrows show the projection of the field’s orientation
on the XZ plane. The golden polygons depict the cross-section of the spiral’s trace. The markings inside the polygons denote the
direction of the simulated current. The sample’s position in the current experiment is marked by the semitransparent rectangle.

Figure 3. Direct current magnetic field characterization. The NV center level shifts were measured in a series of ODMR spectra
with varying currents through the spiral. The points were fit to a model incorporating the magnetic field tilt and a strain field.
The pink areas mark the confidence intervals of the fit.

angle is measured to be tilted from the plane transverse to the NV axis by θd = 36.5± 5.8◦(corresponding to
a tilt of∼1.2◦ from the normal to the spiral plane). The measured field’s magnitude agrees with the finite
element simulation. The NV center lies at an angle of∼54.7◦ to the diamond surface, parallel to the spiral
plane. Thus, the measured orientation is consistent with our expectation that the planar spiral antenna
induces a field normal to its plane.
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In a sensing experiment, as discussed in the following section, there will usually be an applied quantizing
magnetic field (B⃗0) along the NV center’s axis (ẑ in figure 1(b)). Under the RWA, the transverse component
(Bx in figure 1(b)) drives the spins and is proportional to the Rabi frequency. From the DC characterization,
we estimate it to be Bx / Ispiral = Bcos(θd)/Ispiral = 92± 14 G

A (the magnitude might be attenuated according
to the transmission at the specific frequency, as described in figure 2(b)).

4. Fast 1HRabi oscillations

We demonstrate the antenna’s function by driving Rabi oscillations in a proton spin ensemble of an organic
sample on the diamond’s surface. As a preliminary experiment, we detect proton NMR with an XY8-N
dynamical decoupling sequence [22], employing phase randomization to exclude spurious harmonics of 13C
spins [27]. Figure 4(b) features an XY8-10 trace with a dip at the expected position of the proton Larmor
frequency (B0 ≈ 652 G, ω1H ≈ 2.78 MHz), indicating that the NV senses the proton’s oscillating
magnetization.

We then employ a correlation spectroscopy sequence with RF pulses [3, 28] to observe proton Rabi
oscillations, as depicted in figure 4(c). We use a correlation spectroscopy sequence based on XY8-4
dynamical decoupling blocks locked to the proton Larmor frequency to sense the phase of the proton’s
oscillation [29, 30]. The correlation delay, i.e. the spacing between the two sensing blocks, was fixed at 20µs.
The RF pulses of varying duration during the correlation delay, tuned to the proton Larmor frequency, drive
the nuclear magnetization, inducing a | ↑⟩ ↔ | ↓⟩ transition.

The resulting Rabi oscillations are plotted in figure 4(d) for several driving powers corresponding to
different spiral currents. The oscillations were fitted to a decaying sine function, from which we extracted the
driving frequency (Ωd). Figure 4(e) summarizes the observed driving frequencies as a function of spiral
currents. The driving frequency is proportional to the driving current, as expected. We achieve a maximal
driving frequency of 530± 12 kHz, ultimately limited by the amplifier’s saturation power.

We estimate a driving frequency-to-current ratio of Ωd / Ispiral = 463± 3 kHz
A . From this ratio, we

estimate the field-to-current ratio of the transverse field at 2.78MHz to be B1 / Ispiral = 108.8± 0.7 G
A ; this is

in good agreement with the value expected from in situ DC measurement (92± 14 G
A ) presented previously

and the finite-element simulations (111.0± 0.8 G
A ).

5. Manipulating spins in the strong driving regime

As our spiral antenna can indeed reach the strong driving regime (Ωd ∼ ω0/5 in the aforementioned
experiment), we describe a straightforward approach to generate control signals in the Ωd ≲ ω0 regime for
high-fidelity operations. We show that a simple sine signal with an offset may provide sufficient fidelity in
this regime by optimizing just one or two parameters.

Our approach is particularly suitable for tilted drive signals, that is, signals with a component along the
quantization axis (hereinafter referred to as ẑ). Tilted drives are found in various solid-state spin qubit
systems, such as the NV center in diamond as described in the previous section, the SiV defect in
diamond [31], defects in SiC [32] and in h-BN [33], as well as superconducting flux qubits [34]. However, to
our knowledge, optimizing strong tilted drives has not been discussed in the literature.

In what follows, we motivate our approach analytically using a clear physical picture, illustrate its validity
numerically, and compare it to optimal control-derived signals. We argue that offset-sine signals bear benefits
over optimal control-derived signals while providing similar and sufficiently high fidelity rates. Our focus is
on the optimization of the π-pulse, which is to be reached at tπ ∼ π

Ωd
(a precise definition follows below).

5.1. Resonant offset-sine driving pulses
We consider a two-level system driven by a tilted driving field. The system is described by the following
Hamiltonian:

H=
ω0

2
σz +Ωdf (t)(σx + tan(θd)σz) (1)

where ω0 is the energy splitting of the two-level system, Ωd is the maximum driving field amplitude,
|f(t)|⩽ 1 is the waveform, and θd ∈

[
0, π2

)
is the driving field’s tilt angle from x̂. Under this definition, the

drive vector is not normalized; rather, the field’s magnitude depends on the angle θd.
In the weak-driving regime, conventional driving pulses are based on resonant sine waveforms, i.e.

f(t) = sin(ω0t+φd). The standard analysis proceeds with the rotating-wave-approximation (RWA) [35],
which neglects the ẑ component of the drive (i.e. assuming θd = 0, see figure S2(a) for schematic), as well as
the counter-rotating term of the transversal component. The resulting rotating frame Hamiltonian is
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Figure 4. Fast Rabi oscillations of 1H nuclear spins. (a) A diagram of the randomized XY8-N pulse sequence used to sense the 1H
nuclear magnetic resonance. (b) A randomized XY8-10 spectrum featuring a dip related to the 1H Larmor precession. (c)
Diagram of the pulse sequence used to observe 1H nuclear spin Rabi oscillations. The nuclear spin precession was detected by
correlating two XY8-4 dynamical decoupling blocks tuned to the 1H frequency found in (b). A varying radio frequency pulse
tuned to the 1H frequency during the correlation time drives the 1H spin state. (d) Rabi oscillations of the 1H spins for different
current amplitudes driven through the spiral antenna. (e) Summary of several Rabi frequencies measured, with a linear
dependence on the current through the antenna.

HI =
Ωd
2 (sin(φd)σx − cos(φd)σy). In this regime, the only effect of the phase, φd, is to determine the axis of

Rabi nutation, and for a π pulse, the effect vanishes.
In the strong-driving regime, we expect the dynamics to depend on φd beyond the trivial dependence of

the weak-driving regime. This is based on the observation that finite-duration sine waveforms contain a DC

component. Namely, the zero-frequency Fourier component, 2Ωd
π

´ π/Ωd

0 sin(ω0t+φd)dt, which depends on
φd, is significant for Ωd/ω0 ∼ 1. Thus, in this regime, we anticipate that varying the phase modulates the
interplay between the different terms of the Hamiltonian, offering flexibility for pulse fidelity optimization.

We suggest utilizing the phase φd to mitigate the effects of the counter-rotating term in the regime of
Ωd ≲ ω0 and optimize pulse fidelity rates in this regime. This may be supplemented by a DC offset to the
drive, serving as another DC component that may be controlled to optimize the pulse. We note that the
phase of the driving field was shown to be important in the strong driving regime in NMR already more than
five decades ago [36]. More recently, the phase’s effect was shown in single solid-state qubit experiments [37,
38] and in NMR [39]. However, the phase has not been discussed in the context of tilted drives or in
combination with a DC offset.

The first-order correction to the rotating frame HamiltonianHI is the Bloch-Siegert shift [40] that acts as
an effective DC field along ẑ in the rotating frame [41]. Thus, the DC component of the longitudinal driving
field (present for tilted field θd > 0) may assist in canceling out the effects of the counter-rotating term. Let
us now consider the special case of driving at an amplitude of Ωd =

ω0
2 tan(θd)

. In this case, a constant (DC)
waveform equal to−1 yields an ideal driving HamiltonianH=Ωdσx. These observations motivate us to
consider waveforms f (t) based on the ‘offset-sine’ waveform:

f(t)≡ ϵ(t)(a+(1− |a|) sin(ω0t+φd)) (2)

where the optimization parameters are |a|⩽ 1 (the DC offset component) and φd (the phase). For a= 0, we
obtain a standard sine (symmetric around 0), while for |a|= 1 we get a constant DC drive.

In equation (2) we introduced the pulse’s envelope function 0⩽ ϵ(t)⩽ 1, which is zero at the pulse edges
(ϵ(t0) = ϵ

(
tpulse

)
= 0). For weak driving, a simple rectangle function is often used as the envelope

(i.e. rectangular pulse shape). However, as realistic transmission lines always have limited bandwidth, a
discontinuous ϵ(t) will result in a distorted signal, and this distortion is significant for strong and short
pulses. A smooth envelope function with finite rise and fall times can fit the signal into a prescribed
bandwidth [42], and here specifically, we used an error-function pulse envelope [43] (see equation (S.2) and
figure S2(b) in the SI for a schematic pulse).
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Figure 5. Optimizing offset sine π-pulse drives at different driving strengths. Top row: Calculating pulse infidelity for several
driving strengthsΩd as a function of pulse drive phase φd and offset a. Center row: spin state evolution for pulses at the
corresponding drive strengths. Trajectories for many values of φd at a= 0 are shown in light curves. The best (worst) φd values
for a= 0 are marked by dashed (dotted) curves. Evolution for pulses with both optimal phase and offset are shown by solid red
curves. Insets focus on the pulses’ ends to highlight the final fidelity for each case. Bottom row: the waveforms corresponding to
the trajectories drawn in the center row, with matching curve format.

5.2. Optimizing control pulses based on the offset-sine waveform
We demonstrate the performance of the offset-sine waveforms by numerically calculating the state evolution
of a qubit under such a drive Hamiltonian (equations (1) and (2)). We consider as examples driving
amplitudes of Ωd =

ω0
10 ,

ω0
3 ,ω0. We focus on π-pulses, i.e. flipping the initial state | ↑⟩ with the goal of

maximizing the probability for | ↓⟩.
As an illustration, we choose parameters inspired by the aforementioned spiral antenna, namely, a drive

tilt of θd = 35.3◦, and limit the signals to a bandwidth of≲10ω0 using an error-function envelope with a
rise-time δt= π

10ω0
. The pulse durations are extrapolated from the weak driving regime and set to be

tπ = π
Ωd

+ 2δt, which accounts for the rise and fall times of the signal (for further details, see SI-3).

We numerically calculate the pulse fidelity according to F = |⟨ψ (tπ) | ↓⟩|2 under the driving field for
each driving amplitude, sampling various values of the phase (φd) and offset (a) of the signal. The results are
presented in figure 5 (top row) in terms of infidelity 1−F to contrast the results. Figure 5 (center row)
shows the state evolution for various driving signals at the driving amplitude of the corresponding column.
Evolutions are shown for various phases at zero-offset (a= 0, light gray curves), with the zero-offset phase
yielding the best (worst) pulse fidelity marked by dashed (dotted) curves. Evolutions under an optimal
offset-sine drive are marked by red curves. The optimal offset-sines have offset and phase corresponding to
the coordinates of minimum infidelity in the diagrams of the top row, i.e. the brightest points. The bottom
row shows the waveforms corresponding to the different state evolutions in the center row.

The center row of figure 5 illustrates how increasing the driving strength Ωd from
ω0
10 to ω0 leads to

increasing deviation from the standard sinusoidal evolution characteristic of the RWA. For the stronger drive
amplitudes, adjusting the drive phase φd is crucial: for the extreme case of Ωd = ω0, a correct choice of drive
phase φd will yield F ≈ 0.94, while the worst choice will yield F ≈ 0. Additional optimization of the DC
offset significantly impacts the final state fidelity for the strongest drive amplitudes. For example, at Ωd ≲ ω0,
adding a proper offset will increase the fidelity to F > 0.999, beyond the fault-tolerance threshold for some
quantum computer architectures [44, 45].

7
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The drive phase is a single optimization parameter to optimize strong drive pulses and obtain pulse
fidelities over 0.9, sufficient for quantum sensing tasks. The optimal choice of phase would depend on the
driving amplitude and envelope function [41].

The DC offset we introduced as a novel optimization parameter may also be significant, particularly for a
driving field tilted by θd from ẑ. The drive tilt even serves as an additional resource: a tilted drive can achieve
higher fidelities than driving fields purely along x̂ when both the phase and offset are optimized (see
figure S3(a) in the SI).

5.3. Comparing with optimal control theory signals
We compare our strategy with control signals generated by quantum optimal control theory (OCT) [46–50].
In OCT, the optimization task is formulated as a maximization problem of a functional object by means of
variational calculus. This yields a set of control equations, which are solved numerically by optimization
algorithms. The optimization target is the maximization of the occupation of | ↓⟩ at a predefined final time,
tπ = π

Ωd
+ 2δt, as defined previously.

For our experiment, additional restrictions were added to the control problem:

(i) A restriction was imposed on the total energy of the drive that effectively kept the peak amplitude near
Ωd. However, we emphasize that in the OCT solution, there was no explicit restriction on the amplitude
as in the offset-sine optimization. As a result, some OCT waveforms shown below exceed an amplitude
of Ωd.

(ii) The spectral composition of the drive was restricted to<10.7ω0 to produce an experimentally realistic
waveform with a smooth temporal profile. As mentioned before, this value is inspired by the spiral
antenna.

(iii) Homogeneous boundary conditions were imposed on the drive and its temporal derivative (i.e. zero
drive and zero time-derivative of the drive at t= 0 and t= tπ). This was done in order to obtain a
realistic, smooth rise and fall of the drive.

The optimization problem was solved for six values of Ωd, corresponding to different values of tπ . The
drive tilt was set to θd = 35.3◦. We compared the OCT signals with two forms of offset-sine signals: an
approximation to the OCT signal, obtained by a least-square fitting of the OCT signal to equation (2); and
the optimal offset-sine, obtained by optimizing the offset and phase for the same parameters as the OCT
signals. The offset and phase optimization was done, as previously described, by fixing tπ and the amplitude
Ωd, and sampling a range of offsets and phases, choosing the offset and phase set that minimizes the infidelity.

The signals for three cases are presented in figures 6(a)–(c). The fitted offset-sine approximates the
OCT-generated signals well, supporting the offset-sine approach. Conversely, the optimal offset-sine is very
similar when Ωd ≪ ω0, but takes on a distinct shape as Ωd approaches ω0. The difference, however, does not
come at the expense of fidelity.

Figure 6(d) compares the pulse fidelity rates for the OCT signals, the approximated offset-sines, and the
optimized offset-sine (for clarity, the data is presented in terms of infidelity 1−F). The optimized
offset-sine signals differ from the OCT signals but provide comparable fidelity rates, with F > 0.999.
Interestingly, for the highest values of Ωd considered here (i.e. shortest tπ times), the fidelity rate of the
optimized offset-sine even surpasses that of the OCT signal. While the difference presumably stems from the
details of the optimization procedure, it underlines the potential of the optimized offset-sine waveforms as
an alternative optimization strategy.

Our strategy for controlling qubits in the regime of Ωd ≲ ω0 thus relies on optimizing an offset-sine
driving signal as an alternative to existing approaches for designing strong driving pulses, namely optimal
control theory [20] and bang-bang control sequences [17]. The optimized offset-sine approach does not
require precise driving field characterization and prior numerical optimization, and it suits a tilted driving
field. Although the fidelity rates of the OCT and optimized offset-sine waveforms differ, the real rate would
likely be lower due to deviations between the simulated and actual drive parameters. This emphasizes the
benefit of a strategy that conveniently enables in situ optimization. The offset-sine signal may be optimized
experimentally by varying over one or two parameters, namely the drive phase and DC offset. As such, this
strategy is convenient to minimize deviations between the real and simulated conditions, for example, due to
driving noise or a limited bandwidth [20].

To test the theory experimentally, we needed to reach the regime of Ωd ⩾ ω0/3, where the effect is clear
and pronounced above the noise level. Unfortunately, technical challenges regarding limited signal power and
sensor coherence time prevented us from achieving this regime (see SI-5 for further details). Nonetheless,
these do not constitute fundamental limitations, and we assert that the theory may be verified in future work.
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Figure 6. Comparing OCT drive signals with offset sine drives. (a)–(c) Drive signals for different drive strengthsΩd denoted
above the plots, corresponding to different pulse durations tπ = π

Ωd
+ 2δt. The blue dashed curves are OCT waveforms. The

dotted black curves are approximations of the OCT waveform by an offset-sine obtained by least-square fitting (OCT fit). The
solid red curves are optimized offset-sine waveforms. (d) Infidelity rates of the driving signals for each of the shown waveforms.

6. Summary and conclusions

We developed a broadband spiral antenna tailored for quantum sensing experiments with NV centers, such
as nanoscale NMR. The antenna’s bandwidth suits nuclear spins at fields up to 0.5 T. We drive 1H spins at a
Rabi frequency of over 500 kHz, faster than previously reported. The field-to-current ratio of the spiral
antenna is three-fold better than the state-of-the-art, and the field-to-power ratio is over ten-fold better [13].
Thus, owing to a low field-to-current ratio, it is possible to drive spins at appreciable driving frequencies with
low power consumption, e.g. a Rabi frequency of over 100 kHz requires less than 2.5 W input power, making
it especially appropriate for sensitive samples or cryogenic environments.

Furthermore, we discussed the issue of driving spins in a strong driving regime where Ωd ≲ ω0. We show
that spins may be flipped with high fidelity by utilizing resonant offset-sine drive pulses optimized by varying
the drive field’s phase and offset. Our approach obtains fidelity rates comparable to optimal control-derived
signals and can be conveniently optimized in situ, which is significant in experimental settings where the
driving field is noisy or not fully characterized. Also, offset-sine signals are especially suitable for tilted
driving fields. Pulse fidelities over 0.95 may be achieved by optimizing the drive phase, while varying the
offset may bring fidelity rates over 0.999, above the fault-tolerance threshold.
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