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AN EVOLVING SPACE FRAMEWORK FOR OSEEN EQUATIONS ON A
MOVING DOMAIN

Ana Djurdjevac1 , Carsten Gräser2 and Philip J. Herbert3,*

Abstract. This article considers non-stationary incompressible linear fluid equations in a moving
domain. We demonstrate the existence and uniqueness of an appropriate weak formulation of the
problem by making use of the theory of time-dependent Bochner spaces. It is not possible to directly
apply established evolving Hilbert space theory due to the incompressibility constraint. After we have
established the well-posedness, we derive and analyse a first order time discretisation of the system.
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1. Introduction

The study of Partial Differential Equations (PDEs) in or on moving domains has received much attention
recently, particularly the case of moving surfaces. This is not only due to the interesting analysis required but
also the range of applications where it is necessary to consider the motion of a domain for a more accurate model.
Typical applications include biological and physical phenomena, including pattern formation [7, 19, 20, 54] and
the modelling of surfactants in multi-phase flow [15,25].

Classically the study of PDEs on moving domains involves pulling the equations back onto a given stationary
reference domain. The work [55] introduced a moving space framework whereby the equations are posed in
time-dependent Bochner spaces. Shortly after, Alphonse et al. [3] extended this to general Hilbert spaces, with
examples given in [4] and to Banach spaces in [6]. Non-linear extensions have been considered in [1, 5] and
non-local in [2]. These examples and extensions however do not cover incompressible fluid equations.

We are motivated by the many physical situations in which one finds a moving domain in a fluid, examples
range from large scale engineering [28], computational geophysics, in-cylinder flows in internal engines to car-
diovascular biomechanics [32, 33, 42], etc. For more examples see for instance Chapter 1 of [49]. Study of fluid
equations in moving domains has been mathematically considered. Some of the classical results are [8,23,29,37].
Those have been developed further by numerous authors such as [24,29,37,39,46–48]. Note however that these
approaches are based on the so-called method of pulling-back to the fixed domain. The aim of this article is to
utilise time-dependent Bochner spaces to provide a structure which can directly be used for proving the well-
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posedness results, without the need to transform to a fixed domain. For the equations we consider, it is possible
to pull back the PDE system to a reference space and apply standard theory on fixed domains after verifying
the appropriate assumptions. The approach we develop allows the problem to be considered in its natural for-
mulation. Handling the equations in natural spaces gives an elegance and simplicity which becomes particularly
apparent in numerical implementation and finite element analysis [18] of PDEs on evolving surfaces/domains,
while also being an interesting mathematical problem.

This article extends the moving space framework of Alphonse, Elliott and Stinner to include the example of
incompressible fluid equations. We focus on a linear version of the Navier–Stokes Equations in a flat domain.
We will derive and analyse a first order time-discretisation of the equation we study. We neglect the spatial
discretisation. However, we will design the time-stepping method such that it is suited to an evolving finite
element method, which relies on moving the mesh and basis functions together with the domain. In each time
step this could be based on a classical mixed Finite Element Method [9].

As commented in [14], the challenging aspects of the incompressible fluid equations lie in the constraint
that the velocity should remain divergence free. If one uses a standard pullback to the reference domain, the
divergence free constraint on the velocity becomes a differential constraint which depends on time. In order
to preserve the structure of the divergence constraint under domain deformations, one can use the so-called
contravariant Piola transform. This appears in [8, 11, 37]. Both of these approaches have the difficulty that,
instead of a moving domain, one has time dependent coefficients (cf. [8]). This can prove challenging when
ensuring appropriate approximation properties in a spatial discretisation.

We will use this contravariant Piola transform. As a consequence of using a different pullback map, many of
the necessary assumptions from [3] need to be verified. In addition, we consider a different pivot space from the
typical choice of 𝐿2, this means that there are some technical challenges which need to be addressed.

Discretisations for fluid equations in moving domains have been considered as early as the 1990s, where
[13] considers a finite volume discretisation for Navier–Stokes in a moving domain. The article [52] provides
an overview of of methods for discretisation of fluid dynamics with evolving domains. Let us note [11], which
considers a method for discretising a non-stationary Stokes in a moving domain using geometrically unfitted
meshes and ghost penalties.

Voulis and Reusken [57] consider an interface problem for a non-stationary Stokes equation, they show well-
posedness and give space-time finite element discretisations. We note that, while they have an evolving interface,
their fluid is contained within a stationary domain, therefore they do not need to use evolving space methods.
It is worth commenting that the problem we consider may be considered as one of the phases of their interface
problem.

Many of the evolving function space problems previously mentioned are for parabolic equations on surfaces.
We do not currently consider surface problems for the fluid equations, see [10, 30, 31, 36] for such models. We
point out the article [41] which considers the analysis of a tangential Navier–Stokes system using a similar
evolving space methodology to that which we consider. The primal evolving spaces are also defined using the
contravariant Piola transformation. Notice, however, that this work differs from the presented one in three
fundamental aspects: First, Olshanskii et al. [41] considers 2-dimensional closed surfaces which does not cover
the case of flat 2- and 3-dimensional domains with (non-periodic) boundary conditions. Second, the dual evolving
space of the Gelfand-triple in [41] is defined using the adjoint (covariant) of the contravariant Piola transform,
while we use the contravariant Piola itself which simplifies computations. Finally, Olshanskii et al. [41] proves
well-posedness using a discretisation approach, whereas we apply the Banach–Nečas–Babuška Theorem.

It is furthermore worth noting that fluid equations on stationary hypersurfaces have been the subject of
recent study in particular the numerical analysis of a Navier–Stokes equation [44] and Stokes equations [40,43].

1.1. Formulation of the problem

We are interested in the flow of an incompressible fluid in a moving domain. For our purposes the flow of a
fluid will be governed by a parabolic Oseen equation. The parabolic Oseen equation is a linear version of the
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Navier–Stokes equations. In the future, one may wish to consider the non-linear Navier–Stokes equations in this
moving domain setting.

For simplicity we will consider that the moving domain is a subset of an open bounded hold-all domain in
R𝑑, 𝑑 = 2, 3. We will denote our moving domain by Ω(𝑡), 𝑡 ∈ [0, 𝑇 ] for some 𝑇 > 0, assuming that it flows with
a given, sufficiently smooth velocity field 𝑤, which is divergence free. The standard parabolic Stokes equations
in this domain moving with 𝑤 would be given as: find (𝑢, 𝑝) such that

𝜕∙𝑤𝑢− 𝜇∆𝑢 +∇𝑝 = 0, div 𝑢 = 0 in Ω(𝑡), (1)

where 𝜕∙𝑤 is a physical material derivative defined by 𝜕∙𝑤𝑢 := 𝑢𝑡 + (𝑤 · ∇)𝑢 and corresponds to the movement of
the domain induced by 𝑤 and 𝜇 > 0 is the viscosity. For simplicity, we will consider the case 𝜇 = 1, the analysis
we present will be valid for 𝜇 ̸= 1, however the constants which appear will depend on 𝜇. We will consider the
more general case given by the parabolic Oseen equation: given 𝑉 , find (𝑢, 𝑝) such that

𝑢𝑡 + (𝑉 · ∇)𝑢−∆𝑢 +∇𝑝 = 0, div 𝑢 = 0 in Ω(𝑡), (2)

where, for 𝑉 = 𝑤, one recovers the previous equation (1); also see that for unknown 𝑉 = 𝑢, one is in the
non-linear Navier–Stokes setting. We note that one may also consider a porous medium term 𝑐𝑢, where 𝑐 is a
sufficiently regular scalar function and 𝑐 ≥ 0 almost everywhere.

Regarding the boundary conditions, we will consider non-zero Dirichlet boundary conditions, assuming that
𝑢(𝑡, ·)|𝜕Ω(𝑡) = 𝑢𝑑(𝑡, ·)|𝜕Ω(𝑡), where 𝑢𝑑 is a given function which is divergence free and sufficiently smooth, i.e.
it belongs to 𝐻1. Taking the particular choice 𝑢𝑑 = 𝑤 effectively corresponds to a no-slip condition, other
conditions are possible [38]. We note that although the geometry of Ω(𝑡) is determined entirely by the normal
component of 𝑤 on 𝜕Ω(𝑡), when considering the no-slip condition the tangential component of 𝑤 will affect the
solution 𝑢. This is exemplified by the Taylor–Couette flow between two concentric cylinders [50].

We now introduce the problem we wish to study:

Problem 1.1. Given 𝑓 , 𝑢̂0, and 𝑉 , find velocity field 𝑢̂ and pressure field 𝑝 such that

𝑢̂𝑡 + (𝑉 · ∇)𝑢̂−∆𝑢̂ +∇𝑝 = 𝑓 in ∪𝑡∈(0,𝑇 ) {𝑡} × Ω(𝑡), (3)
div 𝑢̂ = 0 in ∪𝑡∈(0,𝑇 ) {𝑡} × Ω(𝑡), (4)

𝑢̂ = 𝑢𝑑 on ∪𝑡∈(0,𝑇 ) {𝑡} × 𝜕Ω(𝑡), (5)
𝑢̂|𝑡=0 = 𝑢̂0 on {0} × Ω(0). (6)

In order to obtain zero Dirichlet boundary conditions, we consider 𝑢 := 𝑢̂ − 𝑢𝑑, the above problem then
becomes:

Problem 1.2. Given 𝑓 , 𝑢̂0, and 𝑉 find velocity field 𝑢 and pressure field 𝑝 such that

𝑢𝑡 + (𝑉 · ∇)𝑢−∆𝑢 +∇𝑝 = 𝑓 := 𝑓 − (𝑢𝑑)𝑡 − (𝑉 · ∇)𝑢𝑑 + ∆𝑢𝑑 in ∪𝑡∈(0,𝑇 ) {𝑡} × Ω(𝑡), (7)
div 𝑢 = 0 in ∪𝑡∈(0,𝑇 ) {𝑡} × Ω(𝑡), (8)

𝑢 = 0 on ∪𝑡∈(0,𝑇 ) {𝑡} × 𝜕Ω(𝑡), (9)
𝑢|𝑡=0 = 𝑢0 := 𝑢̂0 − 𝑢𝑑|𝑡=0 on {0} × Ω(0). (10)

Our goal in this article is to apply, where possible, the methods of [3] to this system by considering the certain
time-dependent Bochner spaces along with an appropriate transformation.

1.2. Outline

The structure of the paper is the following. We begin in Section 2.1 by giving the conditions we require on
the movement of our domain and briefly introducing the flow transformation of the domain. This is followed
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by the construction of the evolving space structure in Section 2.2. More precisely, we introduce divergence free
function spaces and the so-called Piola transformation which has the property of preserving the divergence-free
structure. Based on this setting and the approach from [3], in Section 2.3 we define time-dependent Bochner
spaces and material derivative (Sect. 2.4), which are exploited in Section 2.5 for the definition of the solution
space. Existence and uniqueness, in a suitably weak sense, of Problem 1.1 are proved in Section 3. We state and
derive time discretisation strategy for Problem 1.1 in Section 4 for which we also prove convergence.

2. Incompressible function spaces on moving domains

2.1. Assumptions on the evolution of the domain

We now outline some requirements we have on the initial domain and domain velocity 𝑤, these conditions
are used in order to properly define the evolving Hilbert space structures which we will use. The conditions we
require for 𝑉 are deferred until Assumption 3.2. We will henceforth fix 𝐷 ⊂ R𝑑 a bounded open domain, Ω0

open and compactly contained in 𝐷 with 𝐶2 boundary, and 𝑤 : 𝐷 → R𝑑.

Assumption 2.1. Assume that there is 𝑘 ≥ 2 such that 𝑤 ∈ 𝐶1((0, 𝑇 ); 𝐶𝑘
𝑐 (𝐷; R𝑑)) with compact support in

space. Also assume that div 𝑤 = 0 in [0, 𝑇 ]×𝐷.

We now define the transformation induced by 𝑤.

Definition 2.2. Let Φ: [0, 𝑇 ]×𝐷 → 𝐷 be the solution of the ODE

d
d𝑡

Φ(𝑡, ·) = 𝑤(𝑡, Φ(𝑡, ·)) in 𝐷, for 𝑡 ∈ (0, 𝑇 ), (11)

Φ(0, ·) = Id𝐷 in 𝐷. (12)

We write Φ𝑡 := Φ(𝑡, ·).

The fact that this Φ exists is a standard result in the theory of ODEs, see [27] for example.

Lemma 2.3. The map Φ: [0, 𝑇 ]×𝐷 → 𝐷 exists, is unique and is a 𝐶𝑘-diffeomorphism.

We now use this flow map to define our moving domain.

Definition 2.4. We define the family of moving domains {Ω(𝑡)}𝑡∈[0,𝑇 ] by Ω(𝑡) := Φ𝑡(Ω0), the image of Ω0

under Φ𝑡 for each 𝑡 ∈ [0, 𝑇 ].

We now have the following properties of the family {Ω(𝑡)}𝑡∈(0,𝑇 ).

Lemma 2.5. It holds that Ω(0) = Ω0. For each 𝑡 ∈ [0, 𝑇 ], Ω(𝑡) ⊂ 𝐷 and has 𝐶2 boundary. Finally, det(𝐷Φ𝑡) =
1 in Ω0 for all 𝑡 ∈ [0, 𝑇 ].

Proof. First note that since Φ𝑡 = Id𝐷, we have that Ω(0) = Ω0 The fact that Ω(𝑡) ⊂ 𝐷 follows from the 𝑤
having compact support in 𝐷. Furthermore, since Φ𝑡 is a 𝐶2-diffeomorphism, 𝜕Ω(𝑡) is 𝐶2. Finally, utilising
div 𝑤 = 0 and Φ0 = Id𝐷, one has det(𝐷Φ𝑡) = 1. For further details, see Proposition 1.4 of [35]. �

2.2. Evolving function spaces and compatibility

We begin by defining function spaces of interest.

Definition 2.6. Let

𝒱 : =
{︀
𝑢 ∈ 𝐻1

0

(︀
Ω0; R𝑑

)︀
: div 𝑢 = 0

}︀
, (13)

ℋ : =
{︀
𝑢 ∈ 𝐿2

(︀
Ω0; R𝑑

)︀
: 𝑢 is weakly divergence free

}︀
, (14)
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where we say 𝑢 ∈ 𝐻−1(Ω0; R𝑑) is weakly divergence free if

⟨𝑢,∇𝑞⟩𝐻−1,𝐻1 = 0 ∀𝑞 ∈ 𝐶2
0 (Ω0; R). (15)

We will equip 𝒱 with the 𝐻1(Ω0) inner product, and ℋ with the 𝐿2(Ω0) inner product:

(𝑢, 𝑣)𝐻1 =
∫︁

Ω0

𝐷𝑢 : 𝐷𝑣 + 𝑢 · 𝑣, (𝑢, 𝑣)𝐿2 =
∫︁

Ω0

𝑢 · 𝑣. (16)

The time-dependent spaces are, for each 𝑡 ∈ [0, 𝑇 ],

𝑉 (𝑡) :=
{︀
𝑢̃ ∈ 𝐻1

0

(︀
Ω(𝑡); R𝑑

)︀
: div 𝑢̃ = 0

}︀
, (17)

𝐻(𝑡) :=
{︀
𝑢̃ ∈ 𝐿2

(︀
Ω(𝑡); R𝑑

)︀
: 𝑢̃ is weakly divergence free

}︀
, (18)

where we say for 𝑢̃ ∈ 𝐻−1(Ω(𝑡); R𝑑), is weakly divergence free if

⟨𝑢̃,∇𝑞⟩𝐻−1,𝐻1 = 0 ∀𝑞 ∈ 𝐶2
0 (Ω(𝑡); R). (19)

We will equip 𝑉 (𝑡) with the 𝐻1(Ω(𝑡)) inner product, and 𝐻(𝑡) with the 𝐿2(Ω(𝑡)) inner product:

(𝑢̃, 𝑣)𝐻1 :=
∫︁

Ω(𝑡)

𝐷𝑢̃ : 𝐷𝑣 + 𝑢̃ · 𝑣, (𝑢̃, 𝑣)𝐿2 :=
∫︁

Ω(𝑡)

𝑢̃ · 𝑣. (20)

Throughout, on inner-product spaces, we will use the induced norms ‖𝑢‖𝑋 =
√︀

(𝑢, 𝑢)𝑋 . In the above, we
have dropped the domain and codomain for the spaces which appear in the subscripts to avoid cumbersome
notation, this will be done whenever it is clear as to which is the appropriate domain.

It is clear that these spaces are Hilbert with their inner products. We also have that

𝑉 (𝑡) ⊂ 𝐻(𝑡) ∼= 𝐻(𝑡)* ⊂ 𝑉 *(𝑡) (21)

is a Gelfand triple for every 𝑡 ∈ [0, 𝑇 ]. The evolving family of Hilbert spaces that we will consider are {𝑉 (𝑡)}𝑡∈(0,𝑇 )

and {𝐻(𝑡)}𝑡∈(0,𝑇 ). In this setting, we make use of the characterisation of the dual space ([51], Page 8)

𝑉 *(𝑡) =
{︀
𝑢̃ ∈ 𝐻−1

(︀
Ω(𝑡); R𝑑

)︀
: 𝑢̃ is weakly divergence free

}︀
. (22)

We will repeatedly use the fact that 𝑉 (𝑡) ⊂ 𝐻1
0 (Ω(𝑡); R𝑑), 𝐻(𝑡) ⊂ 𝐿2(Ω(𝑡); R𝑑), and 𝑉 *(𝑡) ⊂ 𝐻−1(Ω(𝑡); R𝑑).

We now define a family of maps which will transform functions on Ω0 to functions on Ω(𝑡).

Definition 2.7 (Piola transform). For each 𝑡 ∈ [0, 𝑇 ], the linear map 𝜑𝑡 : 𝐿2(Ω0; R𝑑) → 𝐿2(Ω(𝑡); R𝑑) is defined
by

𝜑𝑡𝑢 := (𝐷Φ𝑡𝑢) ∘ Φ−1
𝑡 (23)

for 𝑢 ∈ 𝐿2(Ω0; R𝑑). Similarly define the family of linear maps (𝜑−𝑡)𝑡∈[0,𝑇 ] : 𝐿2(Ω(𝑡); R𝑑) → 𝐿2(Ω0; R𝑑) by

𝜑−𝑡𝑢̃ := 𝐷Φ−1
𝑡 (𝑢̃ ∘ Φ𝑡) (24)

for 𝑢̃ ∈ 𝐿2(Ω(𝑡); R𝑑), for each 𝑡 ∈ [0, 𝑇 ].

Notice that this transformation is different to the plain pull-back considered in [3, 4], which is induced by
the given diffeomorphism of the domains. The reason for using this map is that we want to ensure that the
transformation takes divergence free functions to divergence free functions. This transformation is known as the
(contravariant) Piola transform in the particular case that det(𝐷Φ𝑡) is spatially constant, for more details see
[45], for example. With this definition in mind and the appropriate regularity of Φ𝑡, courtesy of Lemma 2.3, we
give the result that 𝜑𝑡 and 𝜑−𝑡 preserve the divergence of the functions they are applied to.
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Lemma 2.8. For each 𝑡 ∈ (0, 𝑇 ), let 𝑢 ∈ 𝐶1(Ω0; R𝑑), it holds that

div(𝜑𝑡𝑢) = (div 𝑢) ∘ Φ−1
𝑡 , (25)

in addition, for 𝑢̃ ∈ 𝐶1(Ω(𝑡) : R𝑑) it also holds that

div(𝜑−𝑡𝑢̃) = (div 𝑢̃) ∘ Φ𝑡. (26)

This result may be found in e.g. [45] and makes use of Jacobi’s formula for the derivative of a determinant.
For completeness, we provide the proof in Appendix A.

We now state that 𝜑𝑡 and 𝜑−𝑡 are bounded in appropriate norms, the proof of which is also in Appendix A.

Lemma 2.9. For any 𝑡 ∈ (0, 𝑇 ), there are constants 𝐶1, 𝐶2, 𝐶3, 𝐶4 > 0 independent of 𝑡 such that

‖𝜑𝑡𝑢‖𝐻1(Ω(𝑡)) ≤ 𝐶1‖𝑢‖𝐻1(Ω0) ∀𝑢 ∈ 𝐻1
(︀
Ω0; R𝑑

)︀
, (27)

‖𝜑𝑡𝑢‖𝐿2(Ω(𝑡)) ≤ 𝐶2‖𝑢‖𝐿2(Ω0) ∀𝑢 ∈ 𝐿2
(︀
Ω0; R𝑑

)︀
, (28)

‖𝜑−𝑡𝑢̃‖𝐻1(Ω0)
≤ 𝐶3‖𝑢̃‖𝐻1(Ω(𝑡)) ∀𝑢̃ ∈ 𝐻1

(︀
Ω(𝑡); R𝑑

)︀
, (29)

‖𝜑−𝑡𝑢̃‖𝐿2(Ω0)
≤ 𝐶4‖𝑢̃‖𝐿2(Ω(𝑡)) ∀𝑢̃ ∈ 𝐿2

(︀
Ω(𝑡); R𝑑

)︀
. (30)

We now define the dual operators to 𝜑𝑡 and 𝜑−𝑡, this will allow us to appropriately define the extension of
𝜑𝑡 to 𝐻−1(Ω0; R𝑑), similarly for 𝜑−𝑡 to 𝐻−1(Ω(𝑡); R𝑑).

Definition 2.10. For each 𝑡 ∈ [0, 𝑇 ], we define the linear maps 𝜑*𝑡 : 𝐿2(Ω(𝑡); R𝑑) → 𝐿2(Ω0; R𝑑) and
𝜑*−𝑡 : 𝐿2(Ω0; R𝑑) → 𝐿2(Ω(𝑡); R𝑑) by

𝜑*𝑡 𝑢̃ := 𝐷Φ𝑇
𝑡 (𝑢̃ ∘ Φ𝑡), (31)

𝜑*−𝑡𝑢 :=
(︀
𝐷Φ−𝑇

𝑡 𝑢
)︀
∘ Φ−1

𝑡 , (32)

for 𝑢̃ ∈ 𝐿2(Ω(𝑡); R𝑑) and 𝑢 ∈ 𝐿2(Ω0; R𝑑).

These maps are known as the covariant Piola transforms [45]. In future appearances of composition with
maps, we will relax the number of brackets to avoid an excessive number in a single expression e.g. for (24), we
will write 𝐷Φ−1

𝑡 𝑢̃ ∘ Φ𝑡 It is always the case that only the final term should be composed with the map (with
brackets).

Remark 2.11.

– By a minor modification to the proof of Lemma 2.9, it follows that the maps 𝜑*𝑡 and 𝜑*−𝑡 are bounded.
– It is also possible to see that 𝜑*𝑡 is dual to 𝜑𝑡 in the following sense: for 𝑢 ∈ 𝐿2(Ω0), 𝜂 ∈ 𝐿2(Ω(𝑡)), we

calculate, utilising that det(𝐷Φ𝑡) = 1,

(𝜑𝑡𝑢, 𝜂)𝐿2 =
∫︁

Ω(𝑡)

𝜑𝑡𝑢 · 𝜂 =
∫︁

Ω(𝑡)

(𝐷Φ𝑡𝑢) ∘ Φ−1
𝑡 · 𝜂

=
∫︁

Ω0

𝑢 ·𝐷Φ𝑇
𝑡 𝜂 ∘ Φ𝑡 =

∫︁
Ω0

𝑢 · 𝜑*𝑡 𝜂 = (𝑢, 𝜑*𝑡 𝜂)𝐿2 . (33)

We may do a similar calculation for 𝜑*−𝑡 and 𝜑−𝑡 and 𝑢̃ ∈ 𝐿2(Ω(𝑡)) and 𝜂 ∈ 𝐿2(Ω0),

(𝜑−𝑡𝑢̃, 𝜂)𝐿2 =
∫︁

Ω0

𝜑−𝑡𝑢̃ · 𝜂 =
∫︁

Ω0

𝐷Φ−1
𝑡 𝑢̃ ∘ Φ𝑡 · 𝜂

=
∫︁

Ω(𝑡)

𝑢̃ ·
(︀
𝐷Φ−𝑇

𝑡 𝜂
)︀
∘ Φ−1

𝑡 =
∫︁

Ω(𝑡)

𝑢̃ · 𝜑*−𝑡𝜂 =
(︀
𝑢̃, 𝜑*−𝑡𝜂

)︀
𝐿2 . (34)
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An immediate consequence of this remark is that the maps 𝜑𝑡 and 𝜑−𝑡 may be extended to distributions via
duality.

Definition 2.12. For each 𝑡 ∈ [0, 𝑇 ], we define the map 𝜑𝑡 : 𝐻−1(Ω0; R𝑑) → 𝐻−1(Ω(𝑡); R𝑑) by: for 𝑢 ∈
𝐻−1(Ω0; R𝑑), let 𝜑𝑡𝑢 to be the unique element 𝑔 ∈ 𝐻−1(Ω(𝑡); R𝑑) such that

⟨𝑔, 𝑣⟩𝐻−1,𝐻1 = ⟨𝑢, 𝜑*𝑡 𝑣⟩𝐻−1,𝐻1 ∀𝑣 ∈ 𝐻1
0

(︀
Ω(𝑡); R𝑑

)︀
. (35)

For each 𝑡 ∈ [0, 𝑇 ], We define the map 𝜑−𝑡 : 𝐻−1(Ω(𝑡); R𝑑) → 𝐻−1(Ω0; R𝑑) by: for 𝑢̃ ∈ 𝐻−1(Ω(𝑡); R𝑑), we define
𝜑−𝑡𝑢̃ to be the unique element 𝑔 ∈ 𝐻−1(Ω0; R𝑑) such that

⟨𝑔, 𝑣⟩𝐻−1,𝐻1 =
⟨︀
𝑢̃, 𝜑*−𝑡𝑣

⟩︀
𝐻−1,𝐻1 ∀𝑣 ∈ 𝐻1

0

(︀
Ω0; R𝑑

)︀
. (36)

Notice that, by the calculations in (33) and (34), this is seen to be an extension of 𝜑𝑡 and 𝜑−𝑡 as defined on
𝐿2(Ω0) and 𝐿2(Ω(𝑡)) respectively. The unique elements 𝑔 and 𝑔 exist by applications of the Riesz representation
theorem. We comment that this definition of the maps between elements of 𝐻−1(Ω(𝑡); R𝑑) and 𝐻−1(Ω0; R𝑑) are
in the same spirit of [3]. However, the maps are considered differently due to the way we wish to characterise
our spaces; in particular the fact that we wish for our 𝑉 * spaces to be divergence free 𝐻−1 spaces, rather than
the abstract dual of the 𝑉 spaces, which will be larger than 𝐻−1.

Lemma 2.13. For 𝑢 ∈ 𝒱*, it holds that 𝜑𝑡𝑢 ∈ 𝑉 *(𝑡) and for 𝑢̃ ∈ 𝑉 *(𝑡) it holds that 𝜑−𝑡𝑢̃ ∈ 𝒱*.

Proof. The result follows by seeing that when 𝜂 ∈ 𝐶2
0 (Ω0), ∇(𝜂 ∘ Φ−1

𝑡 ) = 𝜑*−𝑡∇𝜂, therefore

⟨𝜑−𝑡𝑢̃,∇𝜂⟩𝐻−1,𝐻1 =
⟨︀
𝑢̃, 𝜑*−𝑡∇𝜂

⟩︀
𝐻−1,𝐻1 =

⟨︀
𝑢̃,∇

(︀
𝜂 ∘ Φ−1

)︀⟩︀
𝐻−1,𝐻1 = 0, (37)

since 𝑢̃ is weakly divergence free and 𝜂 ∘ Φ−1
𝑡 ∈ 𝐶2

0 (Ω(𝑡)). The converse direction follows through the same
idea. �

Lemma 2.14. For any 𝑡 ∈ [0, 𝑇 ], there are 𝐶1, 𝐶2 > 0 independent of 𝑡 such that

‖𝜑𝑡𝑢‖𝐻−1(Ω(𝑡)) ≤ 𝐶1‖𝑢‖𝐻−1(Ω0) ∀𝑢 ∈ 𝐻−1
(︀
Ω0; R𝑑

)︀
, (38)

‖𝜑−𝑡𝑢̃‖𝐻−1(Ω0)
≤ 𝐶2‖𝑢̃‖𝐻−1(Ω(𝑡)) ∀𝑢̃ ∈ 𝐻−1

(︀
Ω(𝑡); R𝑑

)︀
. (39)

Proof. This is a consequence of using the dual norm, the boundedness of 𝜑*𝑡 and 𝜑*−𝑡 and that the transformation
is given by duality. �

We now define what it means for our moving spaces to be compatible in the sense of [3].

Definition 2.15. A pair (𝑋, (𝜑𝑡)𝑡) is compatible if and only if the following holds:

– for every 𝑡 ∈ [0, 𝑇 ], 𝑋(𝑡) is a real separable Hilbert space and the map 𝜑𝑡 : 𝑋0 → 𝑋(𝑡) is a linear homeo-
morphism such that 𝜑0 is the identity;

– there exists a constant 𝐶𝑋 independent of 𝑡 such that

‖𝜑𝑡𝑢‖𝑋(𝑡) ≤ 𝐶𝑋‖𝑢‖𝑋0 ∀𝑢 ∈ 𝑋0 (40)

‖𝜑−𝑡𝑢‖𝑋0
≤ 𝐶𝑋‖𝑢‖𝑋(𝑡) ∀𝑢 ∈ 𝑋(𝑡) (41)

where 𝜑−𝑡 : 𝑋(𝑡) → 𝑋0 is the inverse of 𝜑𝑡;
– the map 𝑡 ↦→ ‖𝜑𝑡𝑢‖𝑋(𝑡) is continuous for all 𝑢 ∈ 𝑋0.

Proposition 2.16. The pairs (𝐻1, 𝜑), (𝐿2, 𝜑), and (𝐻−1, 𝜑) are compatible pairs.

The proof of this follows as in the following result.
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Proposition 2.17. The pairs (𝑉 *, 𝜑), (𝐻,𝜑) and (𝑉, 𝜑) are compatible.

Proof. It is standard to verify that 𝑉 *(𝑡), 𝐻(𝑡) and 𝑉 (𝑡) are real and separable. They are Hilbert spaces as closed
subspaces of Hilbert space. Further it is seen that 𝜑0 is the identity since Φ0 is defined to be the identity map,
then the derivative of the identity map is the identity matrix. The bounds are shown in Lemmas 2.9 and 2.14.

In order to show continuity of the map 𝑡 ↦→ (‖𝜑𝑡𝑢‖𝐻(𝑡), ‖𝜑𝑡𝑣‖𝑉 (𝑡)) for any 𝑢 ∈ ℋ and 𝑣 ∈ 𝒱, inspection of
the formulae in the proof of Lemma 2.9 suffices, noting that all of the terms are assumed to be continuous in 𝑡.
To show continuity of the dual norm, we make use of the following explicit definition of the dual norm:

‖𝜑𝑡𝑣‖𝐻−1 = sup
𝜉∈𝐻1(Ω0;R𝑑)

⟨𝜑𝑡𝑣, 𝜑𝑡𝜉⟩
‖𝜑𝑡𝜉‖𝐻1

· (42)

Let us choose 𝜉𝑡 ∈ 𝐻1(Ω0; R𝑑) such that 𝜉𝑡 ̸= 1 and ‖𝜑𝑡𝑣‖𝐻−1 = ‖𝜑𝑡𝜉𝑡‖−1
𝐻1⟨𝜑𝑡𝑣, 𝜑𝑡𝜉𝑡⟩. It then holds that

‖𝜑𝑠𝑣‖𝐻−1 ≥ ‖𝜑𝑠𝜉𝑡‖−1
𝐻1⟨𝜑𝑠𝑣, 𝜑𝑠𝜉𝑡⟩. Furthermore,

‖𝜑𝑡𝑣‖𝐻−1 − ‖𝜑𝑠𝑣‖𝐻−1 ≤ ⟨𝑣, 𝜑*𝑡 𝜑𝑡𝜉𝑡 − 𝜑*𝑠𝜑𝑠𝜉𝑡⟩‖𝜑𝑡𝜉𝑡‖−1
𝐻1 + ⟨𝑣, 𝜑*𝑠𝜑𝑠𝜉𝑡⟩

(︂
1

‖𝜑𝑡𝜉𝑡‖𝐻1

− 1
‖𝜑𝑠𝜉𝑡‖𝐻1

)︂
· (43)

From the regularity of Φ, the form of 𝜑*𝑡 𝜑𝑡, and the previously stated continuity of 𝑡 ↦→ ‖𝜑𝑡𝜉‖𝐻1 , it follows that
the right hand side of (43) tends to zero as 𝑠 → 𝑡. By repeating the same argument exchanging 𝑠 and 𝑡, it holds
that 𝑡 ↦→ ‖𝜑𝑡𝑣‖𝐻−1 is continuous. �

2.3. Time-dependent Bochner spaces

We now define the time-dependent Bochner spaces which will be of use for well-posedness. The following
definition may be found in [3].

Definition 2.18. Let 𝑋(𝑡) be a family of Hilbert spaces and 𝜑𝑡 a family of maps which has extension onto
𝑋(𝑡)*. Furthermore, let

𝐿2
𝑋 :=

{︀
𝑢 : [0, 𝑇 ] → ∪𝑡𝑋(𝑡)× {𝑡}, 𝑡 ↦→ (𝑢, 𝑡)|𝜑−(·)𝑢(·) ∈ 𝐿2(0, 𝑇 ; 𝑋0)

}︀
, (44)

𝐿2
𝑋* :=

{︀
𝑓 : [0, 𝑇 ] → ∪𝑡𝑋

*(𝑡)× {𝑡}, 𝑡 ↦→
(︀
𝑓, 𝑡
)︀
|𝜑−(·)𝑓(·) ∈ 𝐿2(0, 𝑇 ; 𝑋*

0 )
}︀
, (45)

with inner products

(𝑢, 𝑣)𝐿2
𝑋

:=
∫︁ 𝑇

0

(𝑢(𝑡), 𝑣(𝑡))𝑋(𝑡) d𝑡 (46)

(𝑓, 𝑔)𝐿2
𝑋*

:=
∫︁ 𝑇

0

(𝑓(𝑡), 𝑔(𝑡))𝑋*(𝑡) d𝑡. (47)

In the above definition, at each 𝑡 ∈ (0, 𝑇 ), 𝑢(𝑡) = (𝑢̄(𝑡), 𝑡) where 𝑢̄(𝑡) is an element of 𝑋(𝑡) for almost every
𝑡. We will identify 𝑢(𝑡) with 𝑢̄(𝑡) for convenience. We note that our definition of 𝐿2

𝑋* does not use the map 𝜑*𝑡
as appears in the corresponding definition of [3]. We are instead using the map 𝜑𝑡 as in Definition 2.12.

From Proposition 2.16 it follows that 𝐿2
𝐻1 , 𝐿2

𝐿2 , and 𝐿2
𝐻−1 are Hilbert spaces with the associated inner

products, and that 𝐿2
𝐻1 ⊂ 𝐿2

𝐿2 ⊂ 𝐿2
𝐻−1 is a Gelfand triple. Similarly, from Proposition 2.17, the same conclusion

follows for 𝐿2
𝑉 ⊂ 𝐿2

𝐻 ⊂ 𝐿2
𝑉 * . We note that

(︀
𝐿2

𝑉

)︀* is identified with 𝐿2
𝑉 * , for further properties of these spaces,

we refer the reader to [3].
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2.4. Strong and weak material derivative

Since the domain is changing in time, it is necessary to consider the so-called material derivative, which takes
into account not only the change in time of the function but the change in time of the domain. Recall first the
definition of the strong material derivative as it appears in Definition 2.20 of [3].

Definition 2.19. Let (𝑋, 𝜑) be a compatible pair, for 𝜉 ∈ 𝐶0
𝑋 := 𝐶0(0, 𝑇 ; 𝑋), we say 𝜉 ∈ 𝐶1

𝑋 := 𝐶1(0, 𝑇 ; 𝑋) if
the strong material derivative

∙𝜑
𝜉 (𝑡) := 𝜑𝑡

(︂
d
d𝑡

(𝜑−𝑡𝜉(𝑡))
)︂

, (48)

exists with
∙𝜑
𝜉 ∈ 𝐶0

𝑋 .

We choose to use the notation
∙𝜑
(·) to emphasise the contribution of 𝜑𝑡 to the material derivative and further

differentiate it from the standard material derivative.
Now we compute the strong material derivative induced by the Piola transformation given by 𝜑𝑡. Note that

this is different than the standard material derivative 𝜕∙𝑤 induced by the plain pull-back transformation. For

convenience, let us observe, by the definition of
∙𝜑
(·), and the product rule:

∙𝜑
𝜉 =

(︂
d
d𝑡

(𝜉 ∘ Φ𝑡)
)︂
∘ Φ−𝑡 +

(︂
𝐷Φ𝑡

d
d𝑡

(︀
𝐷Φ−1

𝑡

)︀)︂
∘ Φ−1

𝑡 𝜉 = 𝜕∙𝑤𝜉 +
(︂

𝐷Φ𝑡
d
d𝑡

(︀
𝐷Φ−1

𝑡

)︀)︂
∘ Φ−1

𝑡 𝜉. (49)

It is a standard case that, if we seek a solution to Problem 1.1 in 𝐶1
𝑉 , there might not be a solution. Essentially,

it might be too much to ask for existence of a strong material derivative. For this reason we define the weak
derivative as done in Section 2.4 of [3]. The main idea of the weak derivative is to use the transport theorem
([17], Thm. 5.1), which describes how the inner product on the pivot space varies in time. One has the following
version of the Transport theorem.

Theorem 2.20. Let 𝑢, 𝑣 ∈ 𝐶1
𝐻1 , then

d
d𝑡

(𝑢(𝑡), 𝑣(𝑡))𝐿2 =
(︂
∙𝜑
𝑢 , 𝑣

)︂
𝐿2

+
(︂

𝑢,
∙𝜑
𝑣

)︂
𝐿2

+ 𝜆(𝑡; 𝑢(𝑡), 𝑣(𝑡)), (50)

where 𝜆(𝑡, ; ·, ·) : 𝐿2(Ω(𝑡); R𝑑)× 𝐿2(Ω(𝑡); R𝑑) → R is a bounded bilinear form given by

𝜆(𝑡; 𝑢(𝑡), 𝑣(𝑡)) :=
∫︁

Ω(𝑡)

𝑢(𝑡) ·
(︂

𝐷Φ−𝑇
𝑡

d
d𝑡

(︀
𝐷Φ𝑇

𝑡 𝐷Φ𝑡

)︀
𝐷Φ−1

𝑡

)︂
∘ Φ−1

𝑡 𝑣(𝑡). (51)

Proof. Using that det(𝐷Φ𝑡) = 1, it holds that

d
d𝑡

∫︁
Ω(𝑡)

𝑢(𝑡) · 𝑣(𝑡) =
d
d𝑡

∫︁
Ω0

(𝑢 ∘ Φ𝑡) · (𝑣 ∘ Φ𝑡) det(𝐷Φ𝑡) =
d
d𝑡

∫︁
Ω0

(𝐷Φ𝑡𝜑−𝑡𝑢) · (𝐷Φ𝑡𝜑−𝑡𝑣) (52)

=
∫︁

Ω0

𝐷Φ𝑡
d
d𝑡

(𝜑−𝑡𝑢) · (𝐷Φ𝑡𝜑−𝑡𝑣) + (𝐷Φ𝑡𝜑−𝑡𝑢) ·𝐷Φ𝑡
d
d𝑡

(𝜑−𝑡𝑣)

+ 𝜑−𝑡𝑢 ·
d
d𝑡

(︀
𝐷Φ𝑇

𝑡 𝐷Φ𝑡

)︀
𝜑−𝑡𝑣 (53)

=
∫︁

Ω(𝑡)

∙𝜑
𝑢 · 𝑣 + 𝑢 · ∙𝜑𝑣 + 𝑢 ·

(︂
𝐷Φ−𝑇

𝑡

d
d𝑡

(︀
𝐷Φ𝑇

𝑡 𝐷Φ𝑡

)︀
𝐷Φ−1

𝑡

)︂
∘ Φ−1

𝑡 𝑣. (54)

Boundedness of 𝜆 follows from inspection and the assumed regularity of Φ. �
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Before we give the definition for a weak derivative, we define the test functions.

Definition 2.21. We define the space 𝐷(0, 𝑇 ) to be given by

𝐷(0, 𝑇 ) :=

⎧⎨⎩𝑣 : [0, 𝑇 ] →
⋃︁

𝑡∈[0,𝑇 ]

𝐻1
0

(︀
Ω(𝑡); R𝑑

)︀
× {𝑡}, 𝑡 ↦→ (𝑣, 𝑡) : 𝜑−(·)𝑣(·) ∈ 𝐶1

0

(︀
0, 𝑇 ; 𝐻1

0

(︀
Ω0; R𝑑

)︀)︀⎫⎬⎭. (55)

The following definition of the weak material derivative is similar to that which appears in Definition 2.28 of
[3].

Definition 2.22. For 𝑢 ∈ 𝐿2
𝐻1 , the function 𝑔 ∈ 𝐿2

𝐻−1 is called the weak material derivative of 𝑢 if it holds∫︁ 𝑇

0

⟨𝑔(𝑡), 𝜂(𝑡)⟩𝐻−1,𝐻1 = −
∫︁ 𝑇

0

(︂
𝑢(𝑡),

∙𝜑
𝜂 (𝑡)

)︂
𝐿2

−
∫︁ 𝑇

0

𝜆(𝑡; 𝑢(𝑡), 𝜂(𝑡)), (56)

for all 𝜂 ∈ 𝐷(0, 𝑇 ). We write 𝜕∙𝜑𝑢 = 𝑔.

Let us note that the operators 𝜕∙𝑤 and 𝜕∙𝜑 are defined independently, with 𝜑 and 𝑤 being different objects.
We are also abusing notation that 𝜕∙𝑤 is used for both a strong and weak material derivative.

In the definition we have given, when one takes the restriction 𝑢 ∈ 𝐿2
𝑉 , it is not immediate that 𝜕∙𝜑𝑢 is in

𝐿2
𝑉 * . For strongly differentiable functions, one may consider the following formal calculation:

div
∙𝜑
𝑢 = div

(︂
𝜑𝑡

d
d𝑡

(𝜑−𝑡𝑢)
)︂

=
(︂

div
(︂

d
d𝑡

(𝜑−𝑡𝑢)
)︂)︂

∘ Φ−1
𝑡

=
(︂

d
d𝑡

(div(𝜑−𝑡𝑢))
)︂
∘ Φ−1

𝑡 =
(︂

d
d𝑡

((div 𝑢) ∘ Φ𝑡)
)︂
∘ Φ−1

𝑡

= 0, (57)

which makes use of Lemma 2.8, that div 𝑢 = 0 and using regularity to commute div and d
d𝑡 . The following

lemma verifies this result for weakly differentiable functions.

Lemma 2.23. Let 𝜕∙𝜑𝑢 be the weak derivative of 𝑢 ∈ 𝐿2
𝑉 , then it holds that 𝜕∙𝜑𝑢 ∈ 𝐿2

𝑉 * .

Proof. It is immediate that 𝜕∙𝜑𝑢 lies in 𝐿2
𝐻−1 , in order to show that 𝜕∙𝜑𝑢 is in 𝐿2

𝑉 * , we are required to show that
it is weakly divergence free. More precisely, we are required to show∫︁ 𝑇

0

⟨︀
𝜕∙𝜑𝑢,∇𝑞

⟩︀
𝐻−1,𝐻1 = 0 (58)

for all appropriately smooth 𝑞 with ∇𝑞 ∈ 𝐷(0, 𝑇 ). By the definition of weak derivative (56) we have that∫︁ 𝑇

0

⟨︀
𝜕∙𝜑𝑢,∇𝑞

⟩︀
𝐻−1,𝐻1 = −

∫︁ 𝑇

0

(︃
𝑢(𝑡),

∙𝜑
(∇𝑞)(𝑡)

)︃
𝐿2(Ω(𝑡);R𝑑)

−
∫︁ 𝑇

0

𝜆(𝑡; 𝑢(𝑡),∇𝑞(𝑡)). (59)

It is convenient to calculate 𝜆(𝑡; 𝑢(𝑡),∇𝑞(𝑡)),

𝜆(𝑡; 𝑢(𝑡),∇𝑞(𝑡)) =
∫︁

Ω(𝑡)

𝑢 ·
(︂

𝐷Φ−𝑇
𝑡

d
d𝑡

(︀
𝐷Φ𝑇

𝑡 𝐷Φ𝑡

)︀
𝐷Φ−1

𝑡

)︂
∘ Φ−1

𝑡 ∇𝑞

=
∫︁

Ω(𝑡)

𝑢 ·
(︂

𝐷Φ−𝑇
𝑡

d
d𝑡

(︀
𝐷Φ𝑇

𝑡

)︀
+

d
d𝑡

(𝐷Φ𝑡)𝐷Φ−1
𝑡

)︂
∘ Φ−1

𝑡 ∇𝑞. (60)
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We also calculate
∙𝜑

(∇𝑞) to compare,

∙𝜑
(∇𝑞) =

(︂
𝐷Φ𝑡

d
d𝑡

(︀
𝐷Φ−1

𝑡 ((∇𝑞) ∘ Φ𝑡)
)︀)︂

∘ Φ−1
𝑡 =

(︂
d
d𝑡

((∇𝑞) ∘ Φ𝑡)
)︂
∘ Φ−1

𝑡 −
(︂

d
d𝑡

(𝐷Φ𝑡)𝐷Φ−1
𝑡

)︂
∘ Φ−1

𝑡 ∇𝑞, (61)

we see that the contribution of the second term of the above will cancel out the contribution of the second term
of the final equality in (60). We now calculate, for the remaining contribution of (61)

d
d𝑡

((∇𝑞) ∘ Φ𝑡) ∘ Φ−1
𝑡 =

(︂
d
d𝑡

(︀
𝐷Φ−𝑇

𝑡 ∇(𝑞 ∘ Φ𝑡)
)︀)︂

∘ Φ−1
𝑡

=
(︂

d
d𝑡

(︀
𝐷Φ−𝑇

𝑡

)︀
∇(𝑞 ∘ Φ𝑡) + 𝐷Φ−𝑇

𝑡

d
d𝑡
∇(𝑞 ∘ Φ𝑡)

)︂
∘ Φ−1

𝑡

=
(︂

d
d𝑡

(︀
𝐷Φ−𝑇

𝑡

)︀
𝐷Φ𝑇

𝑡 ∇𝑞 + 𝐷Φ−𝑇
𝑡

d
d𝑡
∇(𝑞 ∘ Φ𝑡)

)︂
∘ Φ−1

𝑡 . (62)

We see the contribution of the first term in the final equality of the above will cancel out with the first term of
(60). We are now left to handle the remaining term,(︂

𝐷Φ−𝑇
𝑡

d
d𝑡
∇(𝑞 ∘ Φ𝑡)

)︂
∘ Φ−1

𝑡 =
(︂

𝐷Φ−𝑇
𝑡 ∇ d

d𝑡
(𝑞 ∘ Φ𝑡)

)︂
∘ Φ−1

𝑡 = ∇
(︂(︂

d
d𝑡

(𝑞 ∘ Φ𝑡)
)︂
∘ Φ−1

𝑡

)︂
, (63)

where we are able to exchange the order of d
d𝑡 and ∇ by the smoothness of 𝑞 ∘Φ𝑡 and we have made use of the

fact that ∇
(︀
𝑓 ∘ Φ−1

𝑡

)︀
=
(︀
𝐷Φ−𝑇

𝑡 ∇𝑓
)︀
∘ Φ−1

𝑡 . We have therefore shown that∫︁ 𝑇

0

⟨𝜕∙𝜑𝑢,∇𝑞⟩𝐻−1,𝐻1 = −
∫︁ 𝑇

0

(︂
𝑢(𝑡),∇

(︂(︂
d
d𝑡

(𝑞 ∘ Φ𝑡)
)︂
∘ Φ−1

𝑡

)︂)︂
𝐿2

, (64)

which vanishes, since 𝑢(𝑡) is divergence free for a.e. 𝑡 ∈ (0, 𝑇 ) in the sense of (19). �

2.5. Solution space

Having the concept of Gelfand triple of evolving Hilbert spaces and weak material derivative, we can now
define the solution space, following the general concept presented in Section 2.5 of [3].

Definition 2.24 (Solution space). The solution space is defined by

𝑊 (𝑉, 𝑉 *) :=
{︀
𝑢 ∈ 𝐿2

𝑉 : 𝜕∙𝜑𝑢 ∈ 𝐿2
𝑉 *
}︀

(65)

and it is endowed with the inner product

(𝑢, 𝑣)𝑊 (𝑉,𝑉 *) :=
∫︁ 𝑇

0

(𝑢(𝑡), 𝑣(𝑡))𝐻1 +
∫︁ 𝑇

0

(︀
𝜕∙𝜑𝑢(𝑡), 𝜕∙𝜑𝑣(𝑡)

)︀
𝐻−1 . (66)

In order to prove properties of the solution space, we will connect it with the standard Sobolev-Bochner space
on the fixed domain, which is defined by

𝒲(𝒱,𝒱*) :=
{︀
𝑣 ∈ 𝐿2(0, 𝑇 ;𝒱) : 𝑣′ ∈ 𝐿2(0, 𝑇 ;𝒱*)

}︀
, (67)

where the weak derivative 𝑣′ of 𝑣 is defined by∫︁ 𝑇

0

⟨𝑣′, 𝜂⟩𝐻−1,𝐻1 = −
∫︁ 𝑇

0

(︂
𝑢,

d
d𝑡

𝜂

)︂
𝐿2

∀𝜂 ∈ 𝐶1
(︀
0, 𝑇 ; 𝐻1

0

(︀
Ω0; R𝑑

)︀)︀
. (68)
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Proposition 2.25. There is an evolving space equivalence between 𝑊 (𝑉, 𝑉 *) and 𝒲(𝒱,𝒱*) in the sense:

𝑣 ∈ 𝑊 (𝑉, 𝑉 *) if and only if 𝜑−(·)𝑣(·) ∈ 𝒲(𝒱,𝒱*) (69)

and there are 𝐶1, 𝐶2 > 0 such that

𝐶1

⃦⃦
𝜑−(·)𝑣(·)

⃦⃦
𝒲(𝒱,𝒱*) ≤ ‖𝑣‖𝑊 (𝑉,𝑉 *)‖ ≤ 𝐶2

⃦⃦
𝜑−(·)𝑣(·)

⃦⃦
𝒲(𝒱,𝒱*) (70)

for all 𝑣 ∈ 𝑊 (𝑉, 𝑉 *).

Proof. Let 𝑢̃ ∈ 𝑊 (𝑉, 𝑉 *), we wish to show 𝜑−(·)𝑢̃(·) ∈ 𝒲(𝒱,𝒱*). By Proposition 2.17 and definition of 𝐿2
𝑉 , it

follows 𝜑−(·)𝑢̃(·) ∈ 𝐿2(0, 𝑇 ;𝒱). We want to show that (𝜑−𝑡𝑢̃(𝑡))′ exists as a weak derivative in 𝐿2(0, 𝑇 ;𝒱*) in
the sense of (68).

For test function 𝜂 ∈ 𝐶1(0, 𝑇 ; 𝐻1
0 (Ω0; R𝑑)), we wish to calculate∫︁ 𝑇

0

∫︁
Ω0

𝜑−𝑡𝑢̃ ·
d
d𝑡

𝜂 (71)

and show it is appropriately bounded. We have, from the weak differentiability of 𝑢̃, that

∫︁ 𝑇

0

⟨︀
𝜕∙𝜑𝑢̃, 𝜑*−𝑡𝜂

⟩︀
𝐻−1,𝐻1 = −

∫︁ 𝑇

0

∫︁
Ω(𝑡)

𝑢̃ ·

∙𝜑⏞  ⏟  (︀
𝜑*−𝑡𝜂

)︀
−
∫︁ 𝑇

0

𝜆
(︀
𝑡; 𝑢̃, 𝜑*−𝑡𝜂

)︀
. (72)

From the definition of 𝜑*−𝑡 and the product rule on the derivative d
d𝑡 , we have that

∙𝜑⏞  ⏟  (︀
𝜑*−𝑡𝜂

)︀
= 𝐷Φ−𝑇

𝑡 ∘ Φ−1
𝑡

(︂
d
d𝑡

𝜂

)︂
∘ Φ−1

𝑡 +

∙𝜑⏞  ⏟  (︀
𝐷Φ−𝑇

𝑡 ∘ Φ−1
𝑡

)︀
𝜂 ∘ Φ−1

𝑡 , (73)

where we calculate

∙𝜑⏞  ⏟  (︀
𝐷Φ−𝑇

𝑡 ∘ Φ−1
𝑡

)︀
𝜂 ∘ Φ−1

𝑡 =
(︂

𝐷Φ𝑡
d
d𝑡

(︀
𝐷Φ−1

𝑡 𝐷Φ−𝑇
𝑡

)︀
𝐷Φ𝑇

𝑡

)︂
∘ Φ−1

𝑡 𝜑*−𝑡𝜂. (74)

Furthermore, it is possible to calculate

𝐷Φ𝑡
d
d𝑡

(︀
𝐷Φ−1

𝑡

)︀
= − d

d𝑡
(𝐷Φ𝑡)𝐷Φ−1

𝑡 , (75)

from this, one may see that

𝐷Φ𝑡
d
d𝑡

(︀
𝐷Φ−1

𝑡 𝐷Φ−𝑇
𝑡

)︀
𝐷Φ𝑇

𝑡 = −𝐷Φ−𝑇
𝑡

d
d𝑡

(︀
𝐷Φ𝑇

𝑡 𝐷Φ𝑡

)︀
𝐷Φ−1

𝑡 , (76)

which we notice is negative the integrand of 𝜆(·; ·, ·). Making use of this in (72), one has that∫︁ 𝑇

0

⟨︀
𝜕∙𝜑𝑢̃, 𝜑*−𝑡𝜂

⟩︀
𝐻−1,𝐻1 = −

∫︁ 𝑇

0

∫︁
Ω(𝑡)

𝑢̃ ·𝐷Φ−𝑇
𝑡 ∘ Φ−1

𝑡

(︂
d
d𝑡

𝜂

)︂
∘ Φ−1

𝑡

= −
∫︁ 𝑇

0

∫︁
Ω0

𝜑−𝑡𝑢̃ ·
d
d𝑡

𝜂, (77)
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which shows, by recalling the definition of weak derivative on a stationary domain (68), that 𝜑−𝑡𝑢̃ has a weak
derivative. In particular, for a.e. 𝑡, the weak derivative exists as an element of 𝒱* and is given by

(𝜑−𝑡𝑢̃)′ = 𝜑−𝑡𝜕
∙
𝜑𝑢̃. (78)

This has shown that (𝜑−𝑡𝑢̃)′ exists in 𝐿2(0, 𝑡;𝒱*), and the formula (78) demonstrates that there is 𝐶 > 0 such
that ⃦⃦

𝜑−(·)𝑢̃(·)
⃦⃦
𝒲(𝒱,𝒱*) ≤ 𝐶‖𝑢̃‖𝑊 (𝑉,𝑉 *). (79)

Now we let 𝑢 ∈ 𝒲(𝒱,𝒱*) and want to show 𝜑(·)𝑢(·) ∈ 𝑊 (𝑉, 𝑉 *). By Proposition 2.17, it follows that
𝜑(·)𝑢(·) ∈ 𝐿2

𝑉 . Now, our goal is to show that 𝜕∙𝜑(𝜑𝑡𝑢) exists as a weak derivative in 𝐿2
𝑉 * .

For test functions 𝜂 ∈ 𝐷(0, 𝑇 ), we have that∫︁ 𝑇

0

(︂
𝜑𝑡𝑢,

∙𝜑
𝜂

)︂
𝐻(𝑡)

=
∫︁ 𝑇

0

∫︁
Ω(𝑡)

(𝐷Φ𝑡𝑢) ∘ Φ−1
𝑡 ·

(︂
𝐷Φ𝑡

d
d𝑡

(︀
𝐷Φ−1

𝑡 𝜂 ∘ Φ𝑡

)︀)︂
∘ Φ−1

𝑡

=
∫︁ 𝑇

0

∫︁
Ω0

𝑢 ·
(︂

𝐷Φ𝑇
𝑡 𝐷Φ𝑡

d
d𝑡

(︀
𝐷Φ−1

𝑡 𝜂 ∘ Φ𝑡

)︀)︂
. (80)

As in the previous part of this proof, we wish to transform the above so that it is 𝑢 multiplied against the
derivative of something times 𝜂 ∘ Φ𝑡. This is done in order to utilise that 𝑢 has a weak derivative on the
stationary domain. In light of this, it is convenient to note that

d
d𝑡

(︀
𝐷Φ𝑇

𝑡 𝜂 ∘ Φ𝑡

)︀
= 𝐷Φ𝑇

𝑡 𝐷Φ𝑡
d
d𝑡

(︀
𝐷Φ−1

𝑡 𝜂 ∘ Φ𝑡

)︀
+

d
d𝑡

(︀
𝐷Φ𝑇

𝑡 𝐷Φ𝑡

)︀
𝐷Φ−1

𝑡 𝜂 ∘ Φ𝑡, (81)

which is a consequence of the product rule. Combining (80) and (81), one has that∫︁ 𝑇

0

(︂
𝜑𝑡𝑢,

∙𝜑
𝜂

)︂
𝐻(𝑡)

=
∫︁ 𝑇

0

∫︁
Ω0

𝑢 ·
(︂

d
d𝑡

(︀
𝐷Φ𝑇

𝑡 𝜂 ∘ Φ𝑡

)︀
− d

d𝑡

(︀
𝐷Φ𝑇

𝑡 𝐷Φ𝑡

)︀
𝐷Φ−1

𝑡 𝜂 ∘ Φ𝑡

)︂
. (82)

Applying the definition of the weak derivative on a stationary domain (68) with test function 𝐷Φ𝑇
𝑡 𝜂 ∘ Φ𝑡, one

has ∫︁ 𝑇

0

(︂
𝜑𝑡𝑢,

∙𝜑
𝜂

)︂
𝐻(𝑡)

= −
∫︁ 𝑇

0

⟨︀
𝑢′,
(︀
𝐷Φ𝑇

𝑡 𝜂 ∘ Φ𝑡

)︀⟩︀
𝐻−1,𝐻1 −

∫︁ 𝑇

0

∫︁
Ω0

𝑢 · d
d𝑡

(︀
𝐷Φ𝑇

𝑡 𝐷Φ𝑡

)︀
𝐷Φ−1

𝑡 𝜂 ∘ Φ𝑡

= −
∫︁ 𝑇

0

⟨︀
𝑢′,
(︀
𝐷Φ𝑇

𝑡 𝜂 ∘ Φ𝑡

)︀⟩︀
𝐻−1,𝐻1 −

∫︁ 𝑇

0

𝜆(𝑡; 𝜑𝑡𝑢, 𝜂) (83)

where we have used that 𝜑*𝑡 𝜂 := 𝐷Φ𝑇
𝑡 𝜂 ∘Φ𝑡. Therefore, by recalling the definition of a weak derivative (56), one

may conclude that for a.e 𝑡, as an element of 𝑉 *(𝑡),

𝜕∙𝜑(𝜑𝑡𝑢) = 𝜑𝑡(𝑢′). (84)

This has shown that 𝜕∙𝜑(𝜑𝑡𝑢) exists in 𝐿2
𝑉 * , and the formula (84) demonstrates that there is 𝐶 > 0 such that

‖𝜑(·)𝑢(·)‖𝑊 (𝑉,𝑉 *) ≤ 𝐶‖𝑢‖𝒲(𝒱,𝒱*). (85)

�

Remark 2.26. We note that the above proof is very different to the result which appears in the abstract work of
[3], however the result still shows a moving space equivalence. In the abstract setting of [3], the transformations
satisfy the condition that 𝑇𝑡 := 𝜑*𝑡 𝜑𝑡 takes ℋ to ℋ. This is not the case with the definition of 𝜑*𝑡 which appears
in this work. The transformations considered by Alphonse et al. [4] which are applications of the theory of [3]
are “orthogonal” in the sense that 𝜑*𝑡 = 𝜑−𝑡. In the present setting, one could potentially change the definition
of 𝜑*𝑡 to achieve 𝜑*𝑡 𝜑𝑡 : ℋ → ℋ, however one may then lose the ability to write down a meaningful interpretation
of 𝜑*𝑡 .
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An immediate corollary of Proposition 2.25 is the following.

Corollary 2.27. The solution space 𝑊 (𝑉, 𝑉 *) with inner product (66) is a Hilbert space.

Furthermore, by application of Lemma 2.35 of [3] we have:

Lemma 2.28. The embedding 𝑊 (𝑉, 𝑉 *) ⊂ 𝐶0
𝐻 holds, that is, for any 𝑡 ∈ (0, 𝑇 ) and 𝑢 ∈ 𝑊 (𝑉, 𝑉 *) the map

𝑡 ↦→ 𝑢(𝑡) is well defined.

This lemma also allows us to define the linear subspace

𝑊0(𝑉, 𝑉 *) := {𝑢 ∈ 𝑊 (𝑉, 𝑉 *) : 𝑢(0) = 0}, (86)

which is also a Hilbert space.
Analagously to this section, one may define the space 𝑊 (𝐻1, 𝐻−1) and prove the same results. Due to

the analytical simplicity of using a reduced velocity formulation, this space will not make an apperance until
Section 3.1 where we will consider the saddle point formulation.

3. Well-posedness result

Now that the variational evolving space framework has been set up, following the general setting presented
in Section 4 of [3], we are able to prove well-posedness by a straight forward application of the Banach–Nečas–
Babuška Theorem. The operator formulation of the problem we consider may be given as

𝐿𝜕∙𝜑𝑢 + 𝐴𝑢 + Λ𝑢 = 𝑓 in 𝐿2
𝑉 * ,

𝑢(0) = 𝑢0 ∈ ℋ,
(P)

where 𝐿 : 𝐿2
𝐻−1 → 𝐿2

𝐻−1 and 𝐴, Λ: 𝐿2
𝐻1 → 𝐿2

𝐻−1 . We compare (P) and Problem 1.2 to see that for each
𝑡 ∈ (0, 𝑇 ) and any 𝑣 ∈ 𝑊 (𝑉, 𝑉 *),

(Λ𝑣)(𝑡) : =
(︂

𝐷Φ−𝑇
𝑡

d
d𝑡

(︀
𝐷Φ𝑇

𝑡 𝐷Φ𝑡

)︀
𝐷Φ−1

𝑡

)︂
∘ Φ−1

𝑡 𝑣(𝑡), (87)

(𝐴𝑣)(𝑡) : = −∆𝑣(𝑡) + ((𝑉 (𝑡)− 𝑤(𝑡)) · ∇)𝑣(𝑡)−
(︂

𝐷Φ𝑡
d
d𝑡

(︀
𝐷Φ−1

𝑡

)︀)︂
∘ Φ−1

𝑡 𝑣 − (Λ𝑣)(𝑡), (88)

𝐿 : = Id𝐿2
𝐻−1

. (89)

In the above, we have made use of the characterisation of
∙𝜑
(·) noted in (49) which may be transfered to the weak

setting. Notice that Λ has been removed from 𝐴, this is so that we may keep our notation and calculations as
similar to [1] as possible. With these operators in mind, we give the definition of the following bilinear forms.

Definition 3.1. For each 𝑡 ∈ (0, 𝑇 ) we define the duality pairing

𝑙(𝑡; ·, ·) := ⟨·, ·⟩𝐻−1,𝐻1 : 𝐻−1
(︀
Ω(𝑡); R𝑑

)︀
×𝐻1

0

(︀
Ω(𝑡); R𝑑

)︀
→ R, (90)

and the bilinear forms

𝑏(𝑡; ·, ·) : 𝐻1
(︀
Ω(𝑡); R𝑑

)︀
×𝐻1

(︀
Ω(𝑡); R𝑑

)︀
→ R, (91)

𝑎(𝑡; ·, ·) : 𝐻1
(︀
Ω(𝑡); R𝑑

)︀
×𝐻1

(︀
Ω(𝑡); R𝑑

)︀
→ R, (92)

by

𝑏(𝑡; 𝑢, 𝑣) := (𝑢, 𝑣)𝐻1 − (𝑢, 𝑣)𝐿2 + (((𝑉 − 𝑤) · ∇)𝑢, 𝑣)𝐿2 ∀𝑢, 𝑣 ∈ 𝐻1
(︀
Ω(𝑡); R𝑑

)︀
𝑎(𝑡; 𝑢, 𝑣) := 𝑏(𝑡; 𝑢, 𝑣)−

(︂(︂
𝐷Φ𝑡

d
d𝑡

(︀
𝐷Φ−1

𝑡

)︀)︂
∘ Φ−1

𝑡 𝑢, 𝑣

)︂
𝐿2

− 𝜆(𝑡; 𝑢, 𝑣) ∀𝑢, 𝑣 ∈ 𝐻1
(︀
Ω(𝑡); R𝑑

)︀
where we also recall the definition for 𝜆(𝑡; ·, ·) as given in (51).
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Notice that (𝑢, 𝑣)𝐻1 − (𝑢, 𝑣)𝐿2 =
∫︀
Ω(𝑡)

𝐷𝑢 : 𝐷𝑣.
We now require some assumptions on 𝑉 to show appropriate properties of the bilinear forms 𝑎 and 𝑏 for the

well-posedness of our system.

Assumption 3.2. Assume that 𝑉 satisfies one of the following:

– 𝑉 ∘ Φ(·) ∈ 𝐿∞(0, 𝑇 ; 𝐿𝑝(Ω0)), where 𝑝 ≥ 𝑑 and div 𝑉 = 0 weakly;
– 𝑉 ∘ Φ(·) ∈ 𝐿∞(0, 𝑇 ; 𝐿∞(Ω0)).

These conditions are required to show the final point of the following proposition, which gives the properties
on the bilinear forms. It is worth mentioning that the edge case 𝑉 = 𝑤 satisfies this assumption as does, for
𝑑 = 2, the case 𝑉 = 𝑢, where 𝑢 is the solution to our parabolic problem. This case may be of interest when
considering a moving domain Navier–Stokes problem.

Proposition 3.3. The bilinear forms 𝑎, 𝑏, 𝜆, and 𝑙 satisfy the following conditions:

(1) The maps

𝑡 ↦→ 𝑏(𝑡; 𝑢(𝑡), 𝑣(𝑡)) ∀𝑢, 𝑣 ∈ 𝐿2
𝐻1 , (93)

𝑡 ↦→ 𝑎(𝑡; 𝑢(𝑡), 𝑣(𝑡)) ∀𝑢, 𝑣 ∈ 𝐿2
𝐻1 , (94)

𝑡 ↦→ 𝜆(𝑡; 𝑢(𝑡), 𝑣(𝑡)) ∀𝑢, 𝑣 ∈ 𝐿2
𝐿2 , (95)

𝑡 ↦→ 𝑙(𝑡; 𝑢(𝑡), 𝑣(𝑡)) ∀(𝑢, 𝑣) ∈ 𝐿2
𝐻−1 × 𝐿2

𝐻1 (96)

are measurable.
(2) The bilinear forms 𝑎, 𝑏, 𝜆, and 𝑙 are bounded uniformly in 𝑡.
(3) There is 𝐶1, 𝐶2 > 0 such that for any 𝑡 ∈ (0, 𝑇 ), 𝑢 ∈ 𝐻1(Ω(𝑡); R𝑑),

𝑏(𝑡, 𝑢, 𝑢) ≥ 𝐶1‖𝑢‖2𝐻1 − 𝐶2‖𝑢‖2𝐿2 . (97)

(4) There is 𝐶1, 𝐶2 > 0 such that for any 𝑡 ∈ (0, 𝑇 ), 𝑢 ∈ 𝐻1(Ω(𝑡); R𝑑),

𝑎(𝑡, 𝑢, 𝑢) ≥ 𝐶1‖𝑢‖2𝐻1 − 𝐶2‖𝑢‖2𝐿2 . (98)

Proof. Part 1. Since 𝑡 ↦→ 𝑢(𝑡), 𝑣(𝑡) are measurable functions, the measurability of the bilinear forms
𝑏(𝑡; 𝑢(𝑡), 𝑣(𝑡) and 𝑙(𝑡; 𝑢(𝑡), 𝑣(𝑡)) follows directly from their definitions and properties of measurable func-
tions. Furthermore, the measurability of t ↦→ 𝜆(𝑡; 𝑢(𝑡), 𝑣(𝑡)), can be proved in an analogous way as presented
in Lemma 2.26 of [3], which directly implies the measurability of the 𝑎(𝑡; 𝑢(𝑡), 𝑣(𝑡)).

Part 2. The boundedness of 𝑙 follows from inspection. For the boundedness of 𝜆, one appeals to the fact that
Φ𝑡 is regular in time and space. In order to see that 𝑏 and 𝑎 are bounded, it is enough to prove boundedness
of the term ((𝑉 − 𝑤) · ∇)𝑢 · 𝑣. For this, it is sufficient to only consider the contribution due to 𝑉 since
we are assuming 𝑤 to be regular in space and time. The minimal assumption in Assumption 3.2 is that
𝑉 ∘ Φ(·) ∈ 𝐿∞(0, 𝑇 ; 𝐿𝑝(Ω0)) for 𝑝 ≥ 𝑑, therefore∫︁

Ω(𝑡)

(𝑉 (𝑡) · ∇)𝑢 · 𝑣 ≤ ‖𝑉 (𝑡)‖𝐿𝑝‖𝑢‖𝐻1‖𝑣‖𝐿𝑝* ,

where 1
𝑝 + 1

𝑝* = 1
2 and 𝑝 ≥ 𝑑. By Sobolev embedding, we see that there is 𝐶 > 0 such that

‖𝑣‖𝐿𝑝* ≤ 𝐶‖𝑣‖𝐻1

which shows boundedness of 𝑏 and 𝑎.
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Part 3. For the weaker coercivity condition (97), we first note that div 𝑤 = 0 implies that ((𝑤 · ∇)𝑢, 𝑢)𝐿2 = 0,
by an integration by parts argument and 𝑢|𝜕Ω(𝑡) = 0. Hence the difficulty is again focused on 𝑉 . We consider
the two cases of Assumption 3.2 separately. If div 𝑉 = 0, the same integration by parts argument shows
that (((𝑉 − 𝑤) · ∇)𝑢, 𝑢)𝐻(𝑡) = 0, from which the result follows trivially with 𝐶1 = 𝐶2 = 1. In the case that
div 𝑉 ̸= 0 we use the bound⃒⃒⃒⃒

⃒
∫︁

Ω(𝑡)

(𝑉 (𝑡) · ∇)𝑢 · 𝑢

⃒⃒⃒⃒
⃒ ≤ ‖𝑉 (𝑡)‖𝐿∞‖𝑢‖𝐻1‖𝑢‖𝐿2 ≤ 1

2
‖𝑢‖2𝐻1 +

1
2
‖𝑉 (𝑡)‖2𝐿∞‖𝑢‖2𝐿2

to obtain the result with constants

𝐶1 =
1
2

and 𝐶2 = 1 +
1
2
‖𝑉 (𝑡)‖𝐿∞ . (99)

Part 4. Finally, weaker coercivity of 𝑎 follows from weaker coercivity of 𝑏 and the fact that regularity of Φ𝑡 in
space and time provides a bound for the difference

|𝑎(𝑡; 𝑢, 𝑢)− 𝑏(𝑡; 𝑢, 𝑢)| ≤ 𝐶‖𝑢‖2𝐿2 (100)

with some Φ-dependent constant 𝐶 > 0.
�

With the bilinear forms defined and their properties given, we may state the abstract problem we wish to
solve.

Problem 3.4. Given 𝑓 ∈ 𝐿2
𝑉 * 𝑢0 ∈ ℋ, find 𝑢 ∈ 𝑊 (𝑉, 𝑉 *) such that 𝑢|𝑡=0 = 𝑢0∫︁ 𝑇

0

𝑙
(︀
𝑡; 𝜕∙𝜑𝑢(𝑡), 𝑣(𝑡)

)︀
+ 𝑎(𝑡; 𝑢(𝑡), 𝑣(𝑡)) + 𝜆(𝑡; 𝑢(𝑡), 𝑣(𝑡)) d𝑡 = ⟨𝑓, 𝑣⟩𝐿2

𝐻−1 ,𝐿2
𝐻1

∀𝑣 ∈ 𝐿2
𝑉 . (101)

Remark 3.5. Notice that in the above formulation, other than the data 𝑓, 𝑉 , and 𝑤, there is minimial time
dependence. Assuming appropriate smoothness, one may reformulate (101) using (49) into∫︁ 𝑇

0

𝑙(𝑡; 𝜕∙𝑤𝑢(𝑡), 𝑣(𝑡)) + 𝑏(𝑡; 𝑢(𝑡), 𝑣(𝑡)) d𝑡 = ⟨𝑓, 𝑣⟩𝐿2
𝐻−1 ,𝐿2

𝐻1
∀𝑣 ∈ 𝐿2

𝑉 ,

which particularly emphasises the time dependence, or lack thereof. This form, however, is theoretically less
convienient as it need not hold 𝜕∙𝑤𝑢 ∈ 𝐿2

𝑉 * in this setting. This particular form may be more useful for a mixed
formulation, whereby one may only be interested in 𝜕∙𝑤𝑢 ∈ 𝐿2

𝐻−1 .

A standard method is to seek this 𝑢 such that it has decomposition:

𝑢(𝑡) = 𝑢̃(𝑡) + 𝑦(𝑡), (102)

where 𝑢̃ ∈ 𝑊0(𝑉, 𝑉 *) and 𝑦 = 𝜑(·)𝑦, for 𝑦 ∈ 𝒲(𝒱,𝒱*) with 𝑦(0) = 𝑢(0), which may potentially be chosen as the
solution of an appropriate PDE, say a parabolic Stokes equation on Ω0. It may be seen that, after relabelling,
it sufficient to seek 𝑢 ∈ 𝑊0(𝑉, 𝑉 *).

Problem 3.6. Given 𝑓 ∈ 𝐿2
𝑉 * 𝑢0 ∈ ℋ, find 𝑢 ∈ 𝑊0(𝑉, 𝑉 *) such that∫︁ 𝑇

0

𝑙
(︀
𝑡; 𝜕∙𝜑𝑢(𝑡), 𝑣(𝑡)

)︀
+ 𝑎(𝑡; 𝑢(𝑡), 𝑣(𝑡)) + 𝜆(𝑡; 𝑢(𝑡), 𝑣(𝑡)) d𝑡 =

⟨
𝑓, 𝑣
⟩

𝐿2
𝐻−1 ,𝐿2

𝐻1

∀𝑣 ∈ 𝐿2
𝑉 , (103)

where⟨
𝑓, 𝑣
⟩

𝐿2
𝐻−1 ,𝐿2

𝐻1

:= ⟨𝑓, 𝑣⟩𝐿2
𝐻−1 ,𝐿2

𝐻1
−
∫︁ 𝑇

0

(︀
𝑙
(︀
𝑡; 𝜕∙𝜑𝑦(𝑡), 𝑣(𝑡)

)︀
+ 𝑎(𝑡; 𝑦(𝑡), 𝑣(𝑡)) + 𝜆(𝑡; 𝑦(𝑡), 𝑣(𝑡))

)︀
d𝑡. (104)
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Our well-posedness, as in [3], follows from an application of the Banach–Nečas–Babuška theorem. The abstract
theorem is given as:

Theorem 3.7 (Banach–Nečas–Babuška theorem). Let 𝑋 be a Banach space and 𝑌 be a reflexive Banach space.
Let 𝐵 : 𝑋 × 𝑌 → R a bounded bilinear form and 𝐹 ∈ 𝑌 *. Then there is a unique 𝑢𝐹 ∈ 𝑋 such that

𝐵(𝑢𝐹 , 𝑣) = 𝐹 (𝑣) for all 𝑣 ∈ 𝑌 (105)

if and only if

∃𝐶 > 0 : ∀𝑢 ∈ 𝑋, sup
𝑣∈𝑌

𝐵(𝑢, 𝑣)
‖𝑣‖𝑌

≥ 𝐶‖𝑢‖𝑋 , (106)

∀𝑣 ∈ 𝑌, (∀𝑢 ∈ 𝑋, 𝐵(𝑢, 𝑣) = 0) =⇒ 𝑣 = 0. (107)

A proof of this may be found in [21]. We note that Problem 3.6 is of the form (105) for the bilinear form
𝐵 : 𝑋 × 𝑌 → R defined by

𝐵(𝑢, 𝑣) :=
∫︁ 𝑇

0

𝑙(𝑡; 𝜕∙𝜑𝑢(𝑡), 𝑣(𝑡)) + 𝑎(𝑡; 𝑢(𝑡), 𝑣(𝑡)) + 𝜆(𝑡; 𝑢(𝑡), 𝑣(𝑡)) d𝑡 (108)

on the spaces 𝑋 = 𝑊0(𝑉, 𝑉 *) and 𝑌 = 𝐿2
𝑉 and the right hand side 𝐹 = 𝑓 . Notice that showing well-posedness

of of the problem now amounts in summarising that Proposition 3.3 guarantees (106) and (107) and thus the
applicability of the abstract theorem.

Theorem 3.8. There is a unique solution to Problem 3.4.

Proof. We apply Theorem 3.7 to Problem 3.6 with 𝑋, 𝑌 , 𝐵 : 𝑋 × 𝑌 → R, and 𝐹 as given above. To this end
it is sufficient to show the inf-sup-type condition (106), the dual injectivety condition (107), and 𝐹 ∈ 𝑌 *.

Thanks to the properties of the bilinear forms shown in Proposition 3.3, conditions (106) and (107) follow
directly from Lemmas 4.3 and 4.4 in [3], respectively, where a slightly different notation (operators instead of
bilinear forms) is used.

Finally, one may verify that 𝑓 ∈ 𝐿2
𝑉 * since 𝑦, which appears in (102) satisfies 𝑦 ∈ 𝑊 (𝑉, 𝑉 *). This gives us

the 𝑢̃ ∈ 𝑊0(𝑉, 𝑉 *), thus by (102), we recover 𝑢 ∈ 𝑊 (𝑉, 𝑉 *) with 𝑢(0) = 𝑢0. �

This has given the existence of a weak solution to the parabolic Oseen equation in a moving domain in a
reduced velocity formulation.

3.1. Recovering a solution to the saddle point formulation

In the above analysis, we considered a reduced velocity formulation of a parabolic Oseen equation. It is then
natural to ask if there is a solution to the formulation with pressure. For convenience, let us define the pressure
space

𝐿2
𝐿2

0
:=

⎧⎨⎩𝑞 : [0, 𝑇 ] →
⋃︁

𝑡∈[0,𝑇 ]

𝐿2(Ω(𝑡))× {𝑡} : 𝑞(·) ∘ Φ−(·) ∈ 𝐿2
(︀
(0, 𝑇 ); 𝐿2(Ω0)

)︀
,

∫︁
Ω(·)

𝑞(·) = 0 a.e.

⎫⎬⎭. (109)

The answer to this question is given in the following corollary to Theorem 3.8.

Corollary 3.9. Let 𝑢0 ∈ ℋ and 𝑓 ∈ 𝐿2
𝑉 * and let 𝐿2

0(Ω0). Then there exist unique (𝑢, 𝑝) such that 𝑢 ∈
𝑊 (𝐻1, 𝐻−1), 𝑝 ∈ 𝐿2

𝐿2
0
, 𝑢|𝑡=0 = 𝑢0, and∫︁ 𝑇

0

𝑙
(︀
𝑡; 𝜕∙𝜑𝑢(𝑡), 𝑣(𝑡)

)︀
+ 𝑎(𝑡; 𝑢(𝑡), 𝑣(𝑡)) + 𝜆(𝑡; 𝑢(𝑡), 𝑣(𝑡)) +

∫︁
Ω(𝑡)

𝑝(𝑡) div 𝑣(𝑡) d𝑡 = ⟨𝑓, 𝑣⟩𝐿2
𝐻−1 ,𝐿2

𝐻1
, (110)
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0

∫︁
Ω(𝑡)

𝑞(𝑡) div 𝑢(𝑡) = 0 (111)

for all 𝑣 ∈ 𝐿2
𝐻1

0
and for all 𝑞 such that 𝑞 ∘Φ(·) ∈ 𝐿2(0, 𝑇 ; 𝐿2

0(Ω0)). In particular, 𝑢 is a solution to Problem 3.4.

The proof of the result follows almost identically to the proof of Theorem 5.1 in [57], where one must
make appropriate changes for the fact our domain moves. An outline of the proof relies on taking the solution
𝑢 ∈ 𝑊 (𝑉, 𝑉 *) to Problem 3.4 and grouping up all the terms involving 𝑢 from (110) as the linear operator
ℓ𝑢 ∈ (𝐿2

𝐿2
0
)* which satisfies ∫︁ 𝑇

0

∫︁
Ω(𝑡)

𝑝(𝑡) div 𝑣(𝑡) = ℓ𝑢(𝑣) ∀𝑣 ∈ 𝐿2
𝐻1

0
(112)

and we note that ℓ𝑢|𝐿2
𝑉

= 0. From this, one uses an adaptation of de Rham’s theorem to invert the linear
operator in (112). We refer the reader to Corollary 2.4 of [26] for a precise statement of de Rham’s theorem
which roughly states that ∇ : 𝐿2

0(Ω(𝑡)) → {𝑔 ∈ 𝐻−1(Ω(𝑡)) : 𝑔|𝑉 (𝑡) = 0} is an isomorphism for each 𝑡 ∈ (0, 𝑇 ).

4. Discretisation in time

In this section we wish to give an analysis of a time discrete system related to Problem 1.1. The discretisation of
evolving space PDEs has been studied extensively in [18], the study of a fully discrete system for a heat equation
was considered in [16] and for linear parabolic equations in [34] the full discretisation is also considered.

We neglect the full discretisation and focus on the time discretisation. This choice is made as the significant
difference in this article to previous articles considering evolving Bochner spaces is the construction of the time
derivative. Of course one might consider the spatial discretisation to obtain a full discretisation, however we
comment that this would not prove interesting or original since standard results can be applied. Other methods
are certainly of interest, making use of unfitted meshes [11,56].

For our system, we suggest the following time update step. For 𝑛 ≥ 0, let 𝑡𝑛 = 𝑛𝜏 for some 𝜏 > 0. Given
𝑢𝑛 ∈ 𝑉 (𝑡𝑛), find 𝑢𝑛+1 ∈ 𝑉 (𝑡𝑛+1) such that∫︁

Ω(𝑡𝑛+1)

𝑢𝑛+1 · 𝜂 + 𝜏∇𝑢𝑛+1 : ∇𝜂 + 𝜏((𝑉 − 𝑤)(𝑡𝑛+1) · ∇)𝑢𝑛+1 · 𝜂

=
∫︁

Ω(𝑡𝑛)

𝑢𝑛 ·
(︀
𝜂 ∘ Φ𝑡𝑛+1 ∘ Φ−1

𝑡𝑛

)︀
+ 𝜏

∫︁
Ω(𝑡𝑛+1)

𝑓 · 𝜂 (113)

for all 𝜂 ∈ 𝑉 (𝑡𝑛+1).

Remark 4.1. Despite the inconvenient terms involving 𝐷Φ𝑡 and derivatives which appear in the weak problem,
Problem 3.4, we see that this discretisation has the form of a “standard” moving domain discretisation. That is
to say the time discretisation we present appears to be the time discretisation one might propose from looking at
(2). Let us note that the discretisation we provide is first order. Higher order discretisations are certainly possible,
these could use higher order finite difference schemes, or even Discontinuous Galerkin strategies. However such
schemes may or may not require the inclusion of the aforementioned inconvenient terms involving 𝐷Φ𝑡.

We now provide a justification for this proposed discretisation.

4.1. Derivation of discretisation

We recall the explicit form of Problem 3.4 for sufficiently smooth data 𝑓 ,∫︁ 𝑇

0

∫︁
Ω(𝑡)

𝜕∙𝜑𝑢 · 𝜂 −
(︁
𝐷Φ𝑡

(︀
𝐷Φ−1

𝑡

)︀′)︁ ∘ Φ−1
𝑡 𝑢 · 𝜂 +∇𝑢 : ∇𝜂 + ((𝑉 − 𝑤) · ∇)𝑢 · 𝜂 =

∫︁ 𝑇

0

∫︁
Ω(𝑡)

𝑓𝜂
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for any 𝜂 ∈ 𝐿2
𝑉 . Let us assume that 𝑢 is sufficiently smooth so that 𝜕∙𝜑𝑢 =

∙𝜑
𝑢 . Using the transport formula from

Theorem 2.20 and rewriting 𝜆 using the chain rule yields

d
d𝑡

∫︁
Ω(𝑡)

𝑢 · 𝜂 =
∫︁

Ω(𝑡)

∙𝜑
𝑢 · 𝜂 + 𝑢 · ∙𝜑𝜂 −

(︁
𝐷Φ𝑡

(︀
𝐷Φ−1

𝑡

)︀′)︁ ∘ Φ−1
𝑡 𝑢 · 𝜂 − 𝑢 ·

(︁
𝐷Φ
(︀
𝐷Φ−1

𝑡

)︀′)︁ ∘ Φ−1
𝑡 𝜂.

Choosing 𝜂 to satisfy
∙𝜑
𝜂 = 0, one arrives at

d
d𝑡

∫︁
Ω(𝑡)

𝑢 · 𝜂 +
∫︁

Ω(𝑡)

𝑢 ·
(︁
𝐷Φ𝑡

(︀
𝐷Φ−1

𝑡

)︀′)︁ ∘ Φ−1
𝑡 𝜂 +∇𝑢 : ∇𝜂 + ((𝑉 − 𝑤) · ∇)𝑢 · 𝜂 =

∫︁
Ω(𝑡)

𝑓 · 𝜂 (114)

for almost every 𝑡 ∈ (0, 𝑇 ). We will now approximate the time derivatives which appear in (114). It is standard
to approximate the time derivative of the inner product as:

d
d𝑡

∫︁
Ω(𝑡)

𝑢 · 𝜂 ≈ 1
𝜏

(︃∫︁
Ω(𝑡𝑛+1)

𝑢(𝑡𝑛+1) · 𝜂(𝑡𝑛+1)−
∫︁

Ω(𝑡𝑛)

𝑢(𝑡𝑛) · 𝜂(𝑡𝑛)

)︃
. (115)

Notice that in (114) we have the time derivative of 𝐷Φ−1
𝑡 . This term could be included as is, providing a

different discretisation to (113), however if one were to work with an unknown 𝑤, hence unknown Φ, it may
not be convenient to directly use (𝐷Φ−1

𝑡 )′, so discretisation may be appropriate. Here, we use a first order
approximation 𝐷Φ𝑡(𝐷Φ−1

𝑡 )′ = −(𝐷Φ𝑡)′𝐷Φ−1
𝑡 ≈ − 1

𝜏 (𝐷Φ𝑡𝑛+1𝐷Φ−1
𝑡𝑛
− 𝐼), therefore∫︁

Ω(𝑡)

𝑢 ·
(︁
𝐷Φ𝑡

(︀
𝐷Φ−1

𝑡

)︀′)︁ ∘ Φ−1
𝑡 𝜂 ≈ 1

𝜏

∫︁
Ω(𝑡𝑛)

𝑢(𝑡𝑛) · 𝜂(𝑡𝑛)− 𝑢(𝑡𝑛) ·
(︀
𝐷Φ𝑡𝑛+1𝐷Φ−1

𝑡𝑛

)︀
∘ Φ−1

𝑡𝑛
𝜂(𝑡𝑛), (116)

where the first term of this will cancel with the second term from the time derivative of the integral.
It is also convenient to calculate what 𝜂(𝑡𝑛) is in terms of 𝜂(𝑡𝑛+1) under the relationship that 𝜂(𝑡) = 𝜑𝑡𝜂0 for

some given 𝜂0 ∈ 𝑉 (0),

𝜂(𝑡𝑛) = 𝜑𝑡𝑛
𝜑−𝑡𝑛+1𝜂(𝑡𝑛+1) =

(︁
𝐷Φ𝑡𝑛

𝐷Φ−1
𝑡𝑛+1

𝜂(𝑡𝑛+1) ∘ Φ𝑡𝑛+1

)︁
∘ Φ−1

𝑡𝑛
. (117)

This results in (︀
𝐷Φ𝑡𝑛+1𝐷Φ−1

𝑡𝑛

)︀
∘ Φ−1

𝑡𝑛
𝜂(𝑡𝑛) = 𝜂(𝑡𝑛+1) ∘ Φ𝑡𝑛+1 ∘ Φ−1

𝑡𝑛
. (118)

As such, when using (115)–(117) in (114) and approximating the other terms implicitly, we arrive at the
discretisation in (113).

4.1.1. Existence and uniqueness of discrete solution

It is of course necessary to demonstrate that for appropriate data, there is a solution to the discrete system.
It may be seen that this is the case, as the strong form of the problem posed in (113) is given by:

−∆𝑢𝑛+1 + ((𝑉 − 𝑤)(𝑡𝑛+1) · ∇)𝑢𝑛+1 +
1
𝜏

𝑢𝑛+1 +∇𝑝𝑛+1 =
𝑢𝑛 ∘ Φ𝑡𝑛

∘ Φ−1
𝑡𝑛+1

𝜏
+ 𝑓(𝑡𝑛+1) in Ω(𝑡𝑛+1) (119)

div 𝑢𝑛+1 = 0 in Ω(𝑡𝑛+1), (120)
𝑢𝑛+1|𝜕Ω(𝑡𝑛+1) = 0. (121)

From this form, with suitable assumptions on 𝑉 which will be given in Assumption 4.2, it follows that there
exists a unique solution (𝑢𝑛+1, 𝑝𝑛+1) to the above system.
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4.1.2. Interpolation of discrete solutions

For 𝑛 ≥ 0, for 𝑡 ∈ (𝑡𝑛, 𝑡𝑛+1), if one is interested in the interpolation between 𝑢𝑛 ∈ 𝑉 (𝑡𝑛) and
𝑢𝑛+1 ∈ 𝑉 (𝑡𝑛+1), we note that it is not necessarily appropriate to consider the standard interpolation
given by 1

𝑡𝑛+1−𝑡𝑛

(︀
𝑢𝑛+1 ∘ Φ𝑡𝑛+1(𝑡− 𝑡𝑛) + 𝑢𝑛 ∘ Φ𝑡𝑛

(𝑡𝑛+1 − 𝑡)
)︀
∘ Φ−𝑡 ̸∈ 𝑉 (𝑡). Instead, one should consider

1
𝑡𝑛+1−𝑡𝑛

𝜑𝑡

(︀
𝜑−𝑡𝑛+1𝑢

𝑛+1(𝑡− 𝑡𝑛) + 𝜑−𝑡𝑛𝑢𝑛(𝑡𝑛+1 − 𝑡)
)︀
∈ 𝑉 (𝑡).

4.2. Proof of convergence of discretisation

We now prove, under certain regularity assumptions that the above discretisation will converge as 𝜏 → 0.
Due to the moving space framework, this essentially boils down to calculating the error for an ODE.

Recall that
∙𝜑
𝑢 − (𝐷Φ𝑡(𝐷Φ−1

𝑡 )′) ∘ Φ−1
𝑡 𝑢 = 𝜕∙𝑤𝑢. We will use this to make the calculations somewhat shorter.

It is convenient to use the following alternate formulation of the continuous equation:∫︁
Ω(𝑡)

𝜕∙𝑤𝑢 · 𝜂 +∇𝑢 : ∇𝜂 + ((𝑉 − 𝑤) · ∇)𝑢 · 𝜂 =
∫︁

Ω(𝑡)

𝑓 · 𝜂 (122)

for 𝜂 ∈ 𝑉 (𝑡) for a.e. 𝑡 ∈ (0, 𝑇 ).

Assumption 4.2. We assume that 𝑓 is continuous in time and 𝐿2 in space; 𝑉 satisfies either 𝑉 ∘ Φ(·) ∈
𝐶(0, 𝑇 ; 𝐿𝑝(Ω0)) with div 𝑉 = 0 for 𝑝 ≥ 𝑑 or 𝑉 ∘Φ(·) ∈ 𝐶(0, 𝑇 ; 𝐿∞(Ω0)); 𝑢, the solution to Problem 3.6 satisfies
𝑢 ∈ 𝐶2

𝐻 ; Equation (122) holds for every 𝑡 ∈ (0, 𝑇 ).

We note that the assumptions made on 𝑓 and 𝑉 are not expected to be sufficient to ensure the assumptions
required on the solution 𝑢.

Furthermore we assume that the solution is sufficiently smooth to guarantee consistency with order 𝑟 > 0 of
the backward Euler method in the sense that its pullback by 𝑢̂(𝑡) = 𝑢(𝑡) ∘ Φ𝑡 satisfies⃦⃦⃦

𝑢̂(𝑡 + 𝜏)− 𝑢̂(𝑡)− 𝜏
d𝑢̂

d𝑡
(𝑡 + 𝜏)

⃦⃦⃦
𝐿2(Ω(0))

≤ 𝐶(𝑢)𝜏 𝑟+1. (123)

This can e.g. be shown with order 𝑟 = 1 if 𝑢̂ is 𝐶2(0, 𝑇 ; 𝐿∞(Ω(0))). For later reference we note that the time
derivative of the pullback is given by the pullback of the material derivative, that is

d
d𝑡

𝑢̂(𝑡) =
(︂

d
d𝑡

𝑢(𝑡) +∇𝑢(𝑡) · 𝑤(𝑡)
)︂
∘ Φ𝑡 = 𝜕∙𝑤𝑢(𝑡) ∘ Φ𝑡. (124)

Thus the assumed consistency estimate can be written as⃦⃦⃦
𝑢(𝑡𝑛+1)− 𝑢(𝑡𝑛) ∘ Φ𝑡𝑛 ∘ Φ−1

𝑡𝑛+1
− 𝜏𝜕∙𝑤𝑢(𝑡𝑛+1)

⃦⃦⃦
𝐿2(Ω(𝑡𝑛+1))

≤ 𝐶(𝑢)𝜏 𝑟+1, (125)

where we have again utilised that det(𝐷Φ𝑡) ≡ 1.
We will also assume that 𝜏 is sufficiently small.

Theorem 4.3. Let 𝑢 ∈ 𝑊 (𝑉, 𝑉 *) be the solution to Problem 3.4, let {𝑢𝑛}𝑛≥1 be the solutions to the discrete
system (113) with the same initial data. Under the assumption that (123) holds with 𝑟 ∈ (0, 1] and the conditions
of Assumption 4.2 it holds that there is 𝐶 > 0 independent of 𝜏 such that for each 𝑛 ≥ 0 with 𝜏𝑛 < 𝑇 ,

‖𝑢𝑛+1 − 𝑢(𝑡𝑛+1)‖2𝐿2(Ω(𝑡𝑛+1))
+ 𝜏‖∇

(︀
𝑢𝑛+1 − 𝑢(𝑡𝑛+1)

)︀
‖2𝐿2(Ω(𝑡𝑛+1))

≤ 𝐶𝜏2𝑟.

Before we prove this statement, let us note that this result follows exactly the same argumentation as if one
were using a discretisation based on the saddle point formulation, rather than the reduced velocity formulation
provided. This is due to the lack of spatial discretisation, whereby in full discretisations, one may not have
exactly divergence free velocity fields.
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Proof. We aim to estimate the quantities ‖𝑢𝑛+1 − 𝑢(𝑡𝑛+1)‖𝐿2 and ‖∇(𝑢𝑛+1 − 𝑢(𝑡𝑛+1))‖𝐿2 . For convenience,
let us write 𝑒𝑛 := 𝑢𝑛 − 𝑢(𝑡𝑛) and ‖ · ‖𝑛 = ‖ · ‖𝐿2(Ω(𝑡𝑛)). In the following we will make use of the fact that
‖𝑣‖𝑛 = ‖𝑣∘Φ𝑡𝑛‖𝐿2(Ω0) = ‖𝑣∘Φ𝑡𝑛 ∘Φ−1

𝑡𝑛+1
‖𝑛+1, which holds because det(𝐷Φ𝑡) = 1, which is shown in Lemma 2.5.

By argumentation similar to that which appears in Proposition 3.3, we have that there are constants 𝛼, 𝛽 > 0
such that

𝛼

∫︁
Ω(𝑡𝑛+1)

|∇𝜂|2 ≤
∫︁

Ω(𝑡𝑛+1)

(︁
|∇𝜂|2 + ((𝑉 − 𝑤)(𝑡𝑛+1) · ∇)𝜂 · 𝜂

)︁
+ 𝛽

∫︁
Ω(𝑡𝑛+1)

𝜂2 (126)

for all 𝜂 ∈ 𝐻1(Ω(𝑡𝑛+1); R𝑑). The estimate (126) follows from the assumptions on 𝑉 made in Assumption 4.2.
In order to estimate ‖𝑒𝑛+1‖𝑛+1 and ‖∇𝑒𝑛+1‖𝑛+1, it is convenient to define 𝐼 as

𝐼 := ‖𝑒𝑛+1‖2𝑛+1 + 𝛼𝜏‖∇𝑒𝑛+1‖2𝑛+1 =
∫︁

Ω(𝑡𝑛+1)

𝑒2
𝑛+1 + 𝛼𝜏

∫︁
Ω(𝑡𝑛+1)

|∇𝑒𝑛+1|2. (127)

We use this weaker coercivity (126) with 𝜂 = 𝑒𝑛+1 to estimate 𝐼, we also rearrange the products into a form
which will be convenient

𝐼 ≤
∫︁

Ω(𝑡𝑛+1)

𝑢𝑛+1 · 𝑒𝑛+1 + 𝜏

∫︁
Ω(𝑡𝑛+1)

∇𝑢𝑛+1 : ∇𝑒𝑛+1 + 𝜏

∫︁
Ω(𝑡𝑛+1)

((𝑉 − 𝑤)(𝑡𝑛+1) · ∇)𝑢𝑛+1 · 𝑒𝑛+1

−
∫︁

Ω(𝑡𝑛+1)

𝑢(𝑡𝑛+1) · 𝑒𝑛+1 − 𝜏

∫︁
Ω(𝑡𝑛+1)

∇𝑢(𝑡𝑛+1) : ∇𝑒𝑛+1

− 𝜏

∫︁
Ω(𝑡𝑛+1)

((𝑉 − 𝑤)(𝑡𝑛+1) · ∇)𝑢(𝑡𝑛+1) · 𝑒𝑛+1 + 𝜏𝛽

∫︁
Ω(𝑡𝑛+1)

𝑒2
𝑛+1.

(128)

We use the discrete equation (113) with test function 𝑒𝑛+1 ∈ 𝑉 (𝑡𝑛+1) to see that

𝐼 ≤
∫︁

Ω(𝑡𝑛)

𝑢𝑛 · 𝑒𝑛+1 ∘ Φ𝑡𝑛+1 ∘ Φ−1
𝑡𝑛

+ 𝜏

∫︁
Ω(𝑡𝑛+1)

𝑓𝑛+1 · 𝑒𝑛+1 −
∫︁

Ω(𝑡𝑛+1)

𝑢(𝑡𝑛+1) · 𝑒𝑛+1

− 𝜏

∫︁
Ω(𝑡𝑛+1)

∇𝑢(𝑡𝑛+1) : ∇𝑒𝑛+1 − 𝜏

∫︁
Ω(𝑡𝑛+1)

((𝑉 − 𝑤)(𝑡𝑛+1) · ∇)𝑢(𝑡𝑛+1) · 𝑒𝑛+1 + 𝜏𝛽

∫︁
Ω(𝑡𝑛+1)

𝑒2
𝑛+1.

(129)

Using the assumption that the continuous equation (122) holds for every 𝑡 ∈ (0, 𝑇 ), we test with 𝑒𝑛+1 ∈
𝑉 (𝑡𝑛+1) to see that

𝐼 ≤
∫︁

Ω(𝑡𝑛)

𝑢𝑛 · 𝑒𝑛+1 ∘ Φ𝑡𝑛+1 ∘ Φ−1
𝑡𝑛

+ 𝜏

∫︁
Ω(𝑡𝑛+1)

𝑓𝑛+1 · 𝑒𝑛+1 −
∫︁

Ω(𝑡𝑛+1)

𝑢(𝑡𝑛+1) · 𝑒𝑛+1

+ 𝜏

∫︁
Ω(𝑡𝑛+1)

𝜕∙𝑤𝑢(𝑡𝑛+1) · 𝑒𝑛+1 − 𝜏

∫︁
Ω(𝑡𝑛+1)

𝑓𝑛+1 · 𝑒𝑛+1 + 𝜏𝛽

∫︁
Ω(𝑡𝑛+1)

𝑒2
𝑛+1.

(130)

We now collect terms to get

𝐼 ≤
∫︁

Ω(𝑡𝑛)

𝑢𝑛 · 𝑒𝑛+1 ∘ Φ𝑡𝑛+1 ∘ Φ−1
𝑡𝑛
−
∫︁

Ω(𝑡𝑛+1)

(𝑢(𝑡𝑛+1)− 𝜏𝜕∙𝑤𝑢(𝑡𝑛+1)) · 𝑒𝑛+1 + 𝜏𝛽

∫︁
Ω(𝑡𝑛+1)

𝑒2
𝑛+1. (131)

Adding and subtracting the term
∫︀
Ω0

(𝑢(𝑡𝑛) ∘Φ𝑡𝑛) · (𝑒𝑛+1 ∘Φ𝑡𝑛+1) and using the Cauchy–Schwarz inequality
and the consistency error bound we get

𝐼 ≤ ‖𝑒𝑛‖𝑛‖𝑒𝑛+1‖𝑛+1 + 𝐶(𝑢)𝜏 𝑟+1‖𝑒𝑛+1‖𝑛+1 + 𝜏𝛽‖𝑒𝑛+1‖2𝑛+1. (132)

From now on we assume that 𝜏 is sufficiently small, such that 0 < 𝛾−1
0 ≤ 1 − 𝜏𝛽 holds true for some fixed

𝛾0 > 0, independent of 𝜏 and denote 𝛾 = (1− 𝜏𝛽)−1 ≤ 𝛾0 for convenience. Then, by subtracting the last term
from the previous estimate and inserting 𝐼 we arrive at

(1− 𝜏𝛽)‖𝑒𝑛+1‖2𝑛+1 + 𝜏𝛼‖∇𝑒𝑛+1‖2𝑛+1 ≤
(︀
‖𝑒𝑛‖𝑛 + 𝐶(𝑢)𝜏 𝑟+1

)︀
‖𝑒𝑛+1‖𝑛+1 (133)
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and by dropping the ∇𝑒𝑛+1 term and dividing by (1− 𝜏𝛽)‖𝑒𝑛+1‖𝑛+1 at

‖𝑒𝑛+1‖𝑛+1 ≤ 𝛾‖𝑒𝑛‖𝑛 + 𝛾𝐶(𝑢)𝜏 𝑟+1. (134)

Using this estimate recursively together with ‖𝑒0‖0 = 0 yields

‖𝑒𝑛‖𝑛 ≤ 𝜏 𝑟+1𝐶(𝑢)
𝑛∑︁

𝑘=1

𝛾𝑘 ≤ 𝜏 𝑟𝐶(𝑢)(𝑛𝜏) exp((𝑛𝜏)𝛽𝛾) = 𝜏 𝑟𝐶(𝑢)𝑡𝑛 exp(𝑡𝑛𝛽𝛾)

≤ 𝜏 𝑟𝐶(𝑢)𝑇 exp(𝑇𝛽𝛾).

(135)

Here we made use of the elementary estimate
𝑛∑︁

𝑘=1

𝛾𝑘 ≤ 𝑛𝛾𝑛 ≤ 𝑛 exp(𝛾 − 1)𝑛 = 𝑛 exp(𝑛(𝛾 − 1)). (136)

and 𝛾 − 1 = 𝜏𝛽𝛾. Inserting (135) into (133) and bounding 𝑡𝑛 and 𝛾 by 𝑇 and 𝛾0, respectively, we finally get

‖𝑒𝑛‖2𝑛 + 𝜏‖∇𝑒𝑛‖2𝑛 ≤ 𝜏2𝑟𝐶(𝑢, 𝑇, 𝛼, 𝛽, 𝛾0). (137)

�

Corollary 4.4. Under the assumptions of the previous theorem and assuming 𝑡 ↦→ 𝑝(𝑡, ·) ∘ Φ𝑡 ∈
𝐶((0, 𝑇 ); 𝐿2

0(Ω0)), it holds that for every 𝑛 ≥ 1 with 𝜏𝑛 < 𝑇 ,

‖𝑝𝑛 − 𝑝(𝑡𝑛)‖𝐿2
0
≤ 𝐶𝜏 𝑟, (138)

where 𝑝(𝑡𝑛) is the pressure component of the solution to the problem in Corollary 3.9 and 𝑝𝑛 is the pressure
component to the solution to the discrete problem (119).

Proof. Let 𝑒𝑢
𝑛 := 𝑢𝑛 − 𝑢(𝑡𝑛) and 𝑒𝑝

𝑛 := 𝑝𝑛 − 𝑝(𝑡𝑛). One finds that (𝑒𝑢
𝑛, 𝑒𝑝

𝑛) ∈ 𝐻1
0 (Ω(𝑡𝑛); R𝑑) × 𝐿2

0(Ω(𝑡)) weakly
satisfies

−∆𝑒𝑢
𝑛 + ((𝑉 − 𝑤) · ∇)𝑒𝑢

𝑛 +∇𝑒𝑝
𝑛 = 𝜕∙𝑤𝑢(𝑡𝑛)− 𝑢𝑛 − 𝑢𝑛−1

𝜏
in Ω(𝑡𝑛), (139)

div 𝑒𝑢
𝑛 = 0 in Ω(𝑡𝑛), (140)

𝑒𝑢
𝑛|𝜕Ω(𝑡𝑛) = 0. (141)

Therefore the result follows by standard estimates for the above stationary Oseen equation and the estimate in
(123). �

5. Conclusion

In this work, we have shown the well posedness of the Oseen equation on an evolving domain, making use
of an evolving space framework. It turned out that, by considering the problem in suitable evolving spaces of
divergence free functions, it can essentially be treated like a parabolic problem on stationary domain. With this
variational formulation, we have then derived and analysed a first-order time-discretisation.

Regarding further work, uncertainty quantification would be an interesting problem to study, in particular
from the application perspective [22, 53]. For example one could model the uncertainty of the initial value, or
to consider the equations on random moving domains. This type of problem was already considered by one
of the authors for elliptic PDEs on curved random domain [12] and for linear parabolic equations on random
domains [14], where the study of a parabolic Stokes equation on a moving domain was also mentioned. In this
setting, the solution of the equation is a random variable and one is interested in its expected value, for example.
We expect that combining our well-posedness result on moving domains with the ideas from [14] for random
domains would allow for the treatment of Oseen problems on random domains. However, this is left for future
consideration.
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Appendix A. Proof of Lemmas 2.8 and 2.9

Proof of Lemma 2.8. We calculate the divergence of 𝜑𝑡𝑢,

div(𝜑𝑡𝑢) =
𝑑∑︁

𝑖=1

𝜕𝑖

(︀
(𝐷Φ𝑡𝑢) ∘ Φ−1

𝑡

)︀
=

𝑑∑︁
𝑖,𝑗=1

𝜕𝑖

(︀
(𝜕𝑗(Φ𝑡)𝑖𝑢𝑗) ∘ Φ−1

𝑡

)︀
=

𝑑∑︁
𝑖,𝑗,𝑘=1

𝜕𝑖

(︀
Φ−1

𝑡

)︀
𝑘
𝜕𝑘(𝜕𝑗(Φ𝑡)𝑖𝑢𝑗) ∘ Φ−1

𝑡 =
𝑑∑︁

𝑖,𝑗,𝑘=1

(︀
𝐷Φ−1

𝑡

)︀
𝑘𝑖

𝜕𝑘(𝜕𝑗(Φ𝑡)𝑖𝑢𝑗) ∘ Φ−1
𝑡

=
𝑑∑︁

𝑖,𝑗,𝑘=1

(︁(︀
𝐷Φ−1

𝑡

)︀
𝑘𝑖

(𝐷Φ𝑡)𝑖𝑗𝜕𝑘𝑢𝑗 +
(︀
𝐷Φ−1

𝑡

)︀
𝑘𝑖

𝜕𝑘(𝐷Φ𝑡)𝑖𝑗𝑢𝑗

)︁
∘ Φ−1

𝑡

= (div 𝑢) ∘ Φ−1
𝑡 +

𝑑∑︁
𝑖,𝑗,𝑘=1

(︁(︀
𝐷Φ−1

𝑡

)︀
𝑘𝑖

𝜕𝑘(𝐷Φ𝑡)𝑖𝑗𝑢𝑗

)︁
∘ Φ−1

𝑡 . (A.1)

We now wish to show that the second term of (A.1) vanishes. Recall Jacobi’s formula, which gives the derivative
of a determinant of a matrix

𝜕𝑗 det(𝐷Φ𝑡) = det(𝐷Φ𝑡)
𝑑∑︁

𝑖,𝑘=1

(︀
𝐷Φ−1

𝑡

)︀
𝑘𝑖

𝜕𝑘(𝐷Φ𝑡)𝑖𝑘 = det(𝐷Φ𝑡)
𝑑∑︁

𝑖,𝑘=1

(︀
𝐷Φ−1

𝑡

)︀
𝑘𝑖

𝜕𝑘(𝐷Φ𝑡)𝑖𝑗 . (A.2)

Moreover, in Lemma 2.5 we show that det(𝐷Φ𝑡) is constant, therefore the derivative vanishes. Hence the second
term of (A.1) vanishes. This shows that div(𝜑𝑡𝑢) = (div 𝑢) ∘ Φ−1

𝑡 .
Now we calculate the divergence of 𝜑−𝑡𝑢̃,

div(𝜑−𝑡𝑢̃) =
𝑑∑︁

𝑖,𝑗=1

𝜕𝑖

(︁(︀
𝐷Φ−1

𝑡

)︀
𝑖𝑗

𝑢̃𝑗 ∘ Φ𝑡

)︁

=
𝑑∑︁

𝑖,𝑗=1

(︃
𝜕𝑖

(︀
𝐷Φ−1

𝑡

)︀
𝑖𝑗

𝑢̃𝑗 ∘ Φ𝑡 +
𝑑∑︁

𝑘=1

(𝐷Φ−1
𝑡 )𝑖𝑗𝜕𝑖(Φ𝑡)𝑘𝜕𝑘𝑢̃𝑗 ∘ Φ𝑡

)︃

= div(𝑢̃) ∘ Φ𝑡 +
𝑑∑︁

𝑖,𝑗=1

𝜕𝑖

(︀
𝐷Φ−1

𝑡

)︀
𝑖𝑗

𝑢̃𝑗 ∘ Φ𝑡. (A.3)

We again must deal with the extra term, the second term of (A.3). It is known that the derivative of the inverse
of a matrix is given by 𝜕𝑖(𝐷Φ−1

𝑡 ) = −(𝐷Φ𝑡)−1𝜕𝑖𝐷Φ𝑡(𝐷Φ𝑡)−1, therefore

𝑑∑︁
𝑖=1

𝜕𝑖𝜕𝑗(Φ𝑡)𝑖 =
𝑑∑︁

𝑖,𝑘,𝑙=1

(︀
𝐷Φ−1

𝑡

)︀
𝑖𝑘

𝜕𝑖(𝐷Φ𝑡)𝑘𝑙

(︀
𝐷Φ−1

𝑡

)︀
𝑙𝑗

, (A.4)

where we again note that, by Jacobi’s formula and det(𝐷Φ−1
𝑡 ) = 1,

∑︀𝑑
𝑖,𝑘=1(𝐷Φ−1

𝑡 )𝑖𝑘𝜕𝑖(𝐷Φ𝑡)𝑘𝑙 = 0. This has
shown div(𝜑−𝑡𝑢̃) = div(𝑢̃) ∘ Φ𝑡 and completed the result. �

Proof of Lemma 2.9. Let 𝑢 ∈ 𝐿2(Ω(𝑡); R𝑑), we calculate∫︁
Ω(𝑡)

|𝜑𝑡𝑢|2 =
∫︁

Ω(𝑡)

|𝐷Φ𝑡𝑢|2 ∘ Φ−1
𝑡 =

∫︁
Ω0

|𝐷Φ𝑡𝑢|2det(𝐷Φ𝑡), (A.5)
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where we recall det(𝐷Φ𝑡) = 1, therefore,

‖𝜑𝑡𝑢‖𝐻(𝑡) ≤ ‖𝐷Φ𝑡‖𝐿∞‖𝑢‖ℋ. (A.6)

For 𝑢̃ ∈ 𝐿2(Ω(𝑡); R𝑑), the following, almost identical calculation,∫︁
Ω0

|𝜑−𝑡𝑢̃|2 =
∫︁

Ω(𝑡)

⃒⃒
𝐷Φ−1

𝑡 ∘ Φ−1
𝑡 𝑢̃

⃒⃒2 ≤ ⃦⃦𝐷Φ−1
𝑡

⃦⃦2

𝐿∞
‖𝑢̃‖2𝐻(𝑡). (A.7)

Now let 𝑢 ∈ 𝐻1
0 (Ω0; R𝑑), we calculate the Dirichlet energy,∫︁
Ω(𝑡)

|𝐷(𝜑𝑡𝑢)|2 =
∫︁

Ω(𝑡)

⃒⃒
𝐷
(︀
𝐷Φ𝑡 ∘ Φ−1

𝑡 𝑢 ∘ Φ−1
𝑡

)︀⃒⃒2
=
∫︁

Ω0

⃒⃒
𝐷
(︀
𝐷Φ𝑡 ∘ Φ−1

𝑡 𝑢 ∘ Φ−1
𝑡

)︀⃒⃒2 ∘ Φ𝑡. (A.8)

We now look at the integrand termwise,

𝜕𝑖

(︀
𝐷Φ𝑡 ∘ Φ−1

𝑡 𝑢 ∘ Φ−1
𝑡

)︀
𝑗
∘ Φ𝑡 =

𝑑∑︁
𝑘=1

𝜕𝑖

(︁(︁
𝜕𝑘(Φ𝑡)𝑗𝑢𝑘

)︁
∘ Φ−1

𝑡

)︁
∘ Φ𝑡

=
𝑑∑︁

𝑘,𝑙=1

(︁
𝜕𝑖

(︀
Φ−1

𝑡

)︀
𝑙
∘ Φ𝑡𝜕𝑙

(︁
𝜕𝑘(Φ𝑡)𝑗𝑢𝑘

)︁)︁
≤
⃦⃦
𝐷
(︀
Φ−1

𝑡

)︀⃦⃦
𝐿∞

(︀⃦⃦
𝐷2Φ𝑡

⃦⃦
𝐿∞
|𝑢|+ ‖𝐷Φ𝑡‖𝐿∞ |𝐷𝑢|

)︀
(A.9)

Hence ∫︁
Ω(𝑡)

|𝐷(𝜑𝑡𝑢)|2 ≤ 𝐶
⃦⃦
𝐷
(︀
Φ−1

𝑡

)︀⃦⃦2

𝐿∞

(︁⃦⃦
𝐷2Φ𝑡

⃦⃦2

𝐿∞
‖𝑢‖2ℋ + ‖𝐷Φ𝑡‖2𝐿∞‖𝐷𝑢‖2ℋ

)︁
, (A.10)

therefore,
‖𝜑𝑡𝑢‖2𝑉 (𝑡) ≤ 𝐶

⃦⃦
𝐷
(︀
Φ−1

𝑡

)︀⃦⃦2

𝐿∞

(︁⃦⃦
𝐷2Φ𝑡

⃦⃦2

𝐿∞
‖𝑢‖2ℋ + ‖𝐷Φ𝑡‖2𝐿∞‖𝑢‖

2
𝒱

)︁
. (A.11)

For 𝑢̃ ∈ 𝐻1(Ω(𝑡); R𝑑),∫︁
Ω0

|𝐷(𝜑−𝑡𝑢̃)|2 =
∫︁

Ω0

⃒⃒
𝐷
(︀
𝐷Φ−1

𝑡 𝑢̃ ∘ Φ𝑡

)︀⃒⃒2
=
∫︁

Ω(𝑡)

⃒⃒
𝐷
(︀
𝐷Φ−1

𝑡 𝑢̃ ∘ Φ𝑡

)︀⃒⃒2 ∘ Φ−1
𝑡 . (A.12)

Again, looking at the integrand termiwse,

𝜕𝑖

(︁(︀
𝐷Φ−1

𝑡

)︀
𝑗𝑘

𝑢̃𝑘 ∘ Φ𝑡

)︁
∘ Φ−1

𝑡 =
𝑑∑︁

𝑘=1

𝜕𝑖

(︁(︁
𝐷
(︀
Φ−1

𝑡

)︀
𝑗𝑘

𝑢̃𝑘

)︁
∘ Φ𝑡

)︁
∘ Φ−1

𝑡

=
𝑑∑︁

𝑘,𝑙=1

𝜕𝑖(Φ𝑡)𝑙𝜕𝑙

(︁
𝜕𝑘

(︀
Φ−1

𝑡

)︀
𝑗
𝑢̃𝑘

)︁
≤ ‖𝐷Φ𝑡‖𝐿∞

(︀⃦⃦
𝐷2
(︀
Φ−1

𝑡

)︀⃦⃦
𝐿∞
|𝑢̃|+

⃦⃦
𝐷
(︀
Φ−1

𝑡

)︀⃦⃦
𝐿∞
|𝐷𝑢̃|

)︀
.

(A.13)

As before, this gives

‖𝜑−𝑡𝑢̃‖𝒱 ≤ 𝐶‖𝐷Φ𝑡‖2𝐿∞
(︁⃦⃦

𝐷2
(︀
Φ−1

𝑡

)︀⃦⃦2

𝐿∞
‖𝑢̃‖2𝐻(𝑡) +

⃦⃦
𝐷
(︀
Φ−1

𝑡

)︀⃦⃦2

𝐿∞
‖𝑢̃‖2𝑉 (𝑡)

)︁
. (A.14)
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