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Zusammenfassung

Hintergrund: Die Entscheidungsfindung spielt eine zentrale Rolle in unserem Leben und
die Qualitat unserer Entscheidungen hat einen gro3en Einfluss auf unsere Zukunft. Um
den Entscheidungsprozess besser zu verstehen, hat sich die kognitive Neurowissen-
schaft bisher auf das Konzept des Entscheidungswerts konzentriert. Einer der wichtigsten
Befunde ist, dass der Gesamtwert einer Entscheidungsoption mit der neuronalen Aktivitat
im ventromedialen prafrontalen Kortex (vmPFC) korreliert. Es ist jedoch immer noch un-
klar, wie genau dieses Signal im Gehirn berechnet wird.

Methodik: Um diesen Prozess besser zu verstehen, wurden zwei Studien durchgefuhrt,
welche die funktionelle Magnetresonanztomographie nutzen. Die erste Studie basiert auf
der Idee, dass der Gesamtwert einer Entscheidungsoption sich in der Regel aus den
Werten von verschiedenen Attributen zusammensetzt. Insbesondere sollte untersucht
werden, ob die Werte von Attributen im vmPFC berechnet werden, wie Gesamtbewer-
tungen, oder in abgegrenzten, Attribut-spezifischen Regionen. Das Experiment bestand
aus einer Entscheidungsaufgabe mit abstrakten Stimuli, die mit monetaren Belohnungen
verbunden waren und hinsichtlich der Attribute Bewegung (assoziiert mit der Hirnregion
V5) und Farbe (Hirnregion V4) variierten. Die zweite Studie untersuchte, wie die Berech-
nung des Entscheidungswerts bei Patienten mit Alkoholabhangigkeit beeinflusst wird. In
der experimentellen Aufgabe mussten Entscheidungen zu verschiedenen Geldangebo-
ten unter Unsicherheit gemacht werden.

Ergebnisse: In der ersten Studie konnte repliziert werden, dass Gesamtwerte mit der
Aktivitat im vmPFC korrelieren. Allerdings wurde nicht bestatigt, dass Attributwerte sys-
tematisch in Attribut-spezifischen Hirnregionen reprasentiert werden. Stattdessen waren
Attributwerte mit Aktivitaten im posterioren cingularen Kortex, ventralen Striatum und
posterioren inferioren temporalen Gyrus verbunden. In der zweiten Studie gab es keine
Unterschiede in der wertbezogenen neuronalen Aktivitat oder im Verhalten zwischen ge-
sunden Probanden und Patienten, aber die Patienten zeigten wahrend modellbasierter
Entscheidungsprozesse eine geringere Aktivierung des Nucleus caudatus.

Diskussion: Die Ergebnisse deuten darauf hin, dass die Charakterisierung der Funktio-
nen von isolierten Hirnregionen fur die Beschreibung von neuronalen Entscheidungspro-
zessen weniger geeignet ist und Entscheidungsprozesse stattdessen innerhalb dynami-
scher Netzwerke berechnet werden. Die Ergebnisse des zweiten Experiments zeigen au-
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Rerdem, dass Krankheiten wie Alkoholabhangigkeit die neuronalen Prozesse von Ent-
scheidungen auch dann beeinflussen kdnnen, wenn keine alkoholbezogenen Stimuli vor-
liegen. Dies hatte in der Studie allerdings keinen signifikanten Einfluss auf die Qualitat
der Entscheidungen, was darauf hindeutet, dass die dynamischen Eigenschaften von
neuronalen Entscheidungsnetzwerken Kompensationsmechanismen ermoglichen kon-

nen.
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Abstract

Background: Decision-making plays a key role in the human experience and the quality
of our choices has a fundamental impact on our future. To better understand the decision-
making process, the field of decision neuroscience has focused on the concept of deci-
sion value and found that the overall value of a choice option correlates with neural activity
in ventromedial prefrontal cortex (vmPFC). However, it is still unclear how exactly this
neural signal is computed.

Methods: Two studies using functional magnetic resonance imaging (fMRI) were con-
ducted to investigate this process from different angles. The first study is based on the
idea that the overall value of a choice option is typically determined by evaluating and
integrating different attributes. In particular, the goal was to investigate whether attribute
values are computed in vmPFC, like overall values, or whether they are computed in
distinct attribute-specific regions. The experiment consisted of a choice task with abstract
stimuli, which were associated with monetary rewards and varied with respect to the at-
tributes motion and color (associated with the brain regions V5 and V4, respectively). The
second study investigated how the computation of decision value is affected in patients
suffering from alcohol dependence. The task required the evaluation of monetary offers
with respect to dynamically changing constraints and different levels of uncertainty.
Results: The first study could replicate the finding that overall values correlate with ac-
tivity in vmPFC. However, | did not find that attribute values were systematically repre-
sented in attribute-specific regions. Instead, attribute values were associated with activity
in the posterior cingulate cortex, ventral striatum, and posterior inferior temporal gyrus. In
the second study, there were no group differences in value-related neural activity or task
performance, but patients showed lower activation associated with model-based decision
processes in the caudate nucleus.

Discussion: The results support the idea that the neural mechanisms for choices should
be studied from the perspective of neural networks instead of investigating the functional
properties of brain regions in isolation. Further, the findings of the second experiment
demonstrate that clinical conditions like alcohol dependence can affect regional activa-
tions related to choices even in the absence of alcohol-related stimuli. However, this did
not significantly affect behavioral task performance in the choice task, which suggests
that the dynamic properties of decision-making networks can allow for compensatory

mechanisms.
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1 Background

Every day, we are faced with a virtually countless number of decisions. For the most part,
they happen fast and seemingly automatic, such as the choice between taking the stairs
or the elevator, when to drink water, or which chair to sit on. But from time to time, more
important decisions must be made, such as choosing a career path or deciding to have
children. These choices can require long periods of time, in which we carefully think about
our available options, consider short- as well as long-term consequences, and evaluate
them with respect to their advantages and disadvantages. We often invest a lot of time
and effort into this process, because it can have a long-lasting impact on our future.

Apart from its personal significance, decision-making also plays an important role in
scientific research and receives wide interest from a variety of disciplines (Glimcher &
Fehr, 2013; Kahneman, 2011). In the early days of decision research, psychologists were
primarily interested in conscious and unconscious factors that can influence decisions,
philosophers in the properties of free and ethical choices, biologists in the neural basis of
decisions and its evolutionary development, economists in the prediction of consumer
decisions, and computer scientists in the construction of artificial systems that exhibit in-
telligent choice behavior. Today, traditional borders between disciplines are collapsing,
and researchers engage in interdisciplinary collaboration to develop a more comprehen-
sive account of decision-making. This endeavor has led to the emergence of new re-
search areas, such as the field of neuroeconomics, which has the goal to integrate eco-
nomic models of decision-making with findings from neuroscience and psychology.

In this chapter, | will outline the conceptual framework that is being used in decision
research, introduce typical experimental paradigms and prominent findings in decision
neuroscience, and illustrate how my thesis fits into this context.

1.1 Conceptual Framework

In short, decision-making is the process that identifies the most valuable option from a
set of alternatives. Conceptually, it has been proven difficult to clearly delineate the pre-
cise processes that decision-making consists of. This is in part because decision-making
is intricately connected to various other cognitive functions. Choices are not made in iso-

lation, but heavily depend on functions like perception (what information is currently avail-
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able?), memory (have similar choices been made in the past?), or reasoning (which con-
sequences could the different choice options result in?). It has therefore been difficult to
separate other cognitive functions from computations that can be considered as “pure”
decision processes.

One account proposes that decision-making involves five different stages (Fig. 1;
Rangel et al., 2008): In the representation stage, the structure of the choice problem is
defined, including the current state of the individual, the context of the situation, and the
set of available options. In the valuation stage, each option is evaluated based on the
desirability of the respective consequences and the probability of their occurrence. Cru-
cially, this does not necessarily lead to the objective value, but merely the subjective
value, which is determined relative to the perspective of the individual and can be prone
to errors based on false information. Finally, in the action selection stage, the option with
the highest expected value is selected as the outcome of the decision, since it is esti-
mated to deliver the largest benefits. After the decision, the experienced consequences
are compared with previous expectations in the outcome evaluation stage, and potential
mismatches are being corrected for in the learning stage to improve future decisions.
While the separation of these stages is certainly not clear-cut and can be questioned, it
nevertheless provides a useful framework to structure research questions on decision-

making.

Representation
— Set of feasible actions?
Internal states?
External states?

v

Learning ) Valuation
Update the representation, valuation | e |  \What is the value of each action
and action-selection processes (given the internal and external states)?
N Action selection
Choose actions based on valuations

\

Outcome evaluation
How desirable are the outcomes and
states that followed the action?

Figure 1. Stages of Decision-Making. Figure adapted from Rangel et al. (2008).
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1.2 Experimental Paradigms

Studies on decision-making have made use of a range of experimental paradigms, which
are generally divided into the categories of value-based, social, and perceptual decision
tasks. In this section, | will introduce each of them by describing typical task structures.

Value-based decision tasks are designed to investigate the valuation stage of deci-
sion-making. A classical paradigm is the so-called Becker-DeGroot-Marschak auction
(Becker et al., 1964; Plassmann et al., 2010), in which participants are given a monetary
budget and asked to indicate how much they are willing to pay for presented products
(such as food or clothing items). Afterwards, their bid competes against a computer-gen-
erated bid, which is computed as a random number within the budget of the participant,
and participants can only buy the products for their bid if it is higher than the computer-
generated bid. Hence, the higher the bid of the participant, the more likely it is that they
can buy the product. Through this procedure, the task has shown to provide a reliable
estimate of the subjective value that participants associate with specific products, which
can be used to investigate how value impacts choice behavior.

In social decision tasks, participants are faced with choices that involve other peo-
ple. Paradigms are specifically designed such that participants must take different per-
spectives into account and consider the expectations, intentions, and emotions of others.
Economists have investigated these types of decisions under the heading of game theory
(Camerer, 2003; von Neumann & Morgenstern, 1947). A typical paradigm is the so-called
ultimatum game (Guth et al., 1982; Sanfey et al., 2003), in which a player A receives a
certain amount of money that he can share with another player B. Player A is free to
choose how much money he wants to keep for himself and how much he wants to share.
But crucially, player B has the option to decline an offer suggested by player A, in which
case none of the two players receive any money. Traditional economic theories would
predict that player B will accept any offer, since even the smallest offer is a gain for the
player compared to not receiving any money. However, it has been shown that players
do not attempt to maximize their profit in this way and instead frequently reject offers
when they are considered unfair (Nowak et al., 2000).

Finally, perceptual decision tasks are designed to study choices based on sensory
information. In the random-dot motion discrimination task (Heekeren et al., 2006; New-
some et al., 1989), participants are required to estimate the dominant motion direction
within a set of moving dots. A subset of these dots exhibits random motion, whereas
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another subset coherently moves into the same direction. If the number of coherently
moving dots is low, then the decision is more difficult, because the sensory evidence is
low. The paradigm therefore provides an elegant way to manipulate levels of sensory

evidence on a continuous scale and investigate how choices are affected.

1.3 Major Findings in Decision Neuroscience

In the following, | will outline some of the milestones in decision neuroscience that are
particularly relevant for this thesis. The goal of this section is not to discuss the specific
experiments in detail, but merely to sketch the research landscape and provide a general

overview of the major findings.

1.3.1 Neural Representation of Value

The valuation stage of decision-making has arguably received the most attention in the
literature so far. One of the most robust findings is that neural activity in ventromedial
prefrontal cortex (vmPFC) correlates with the subjective value of a choice option when it
is considered (Bartra et al., 2013; Kable & Glimcher, 2007; Lee et al., 2021; Pelletier et
al., 2021; Rangel & Clithero, 2013). This has been demonstrated for a variety of stimuli
in neuroimaging research, such as food items (Hare et al., 2009; Plassmann et al., 2007),
monetary gambles (Chib et al., 2009; Levy et al., 2010; Tom et al., 2007), clothes (Lim et
al., 2013), charity donations (Hare et al., 2010), or wine (Plassmann et al., 2008). Further
evidence for this finding was observed in clinical studies on vmPFC lesions (Fellows &
Farah, 2007; Glascher et al., 2012) as well as electrophysiological studies in primates
(Leathers & Olson, 2012; Padoa-Schioppa, 2009; Wallis & Miller, 2003).

Based on the consistency of these findings, decision neuroscientists have hypothe-
sized that vmPFC could be an area where multiple sources of evidence converge and get
integrated into an overall value signal that drives decision-making (Hare et al., 2009; Levy
& Glimcher, 2012; Padoa-Schioppa & Cai, 2011). According to this theory, different parts
of a decision problem could be processed in a range of different brain regions, but even-
tually, all the relevant information is propagated to the vmPFC, where it is combined to a
unified value representation. Signals in vmPFC could thus encode a summary of the
available evidence and serve as an indicator of the overall value of a choice option. Apart
from vmPFC, value signals are also frequently found in the ventral striatum (vStr) and the
posterior cingulate cortex (PCC; Bartra et al., 2013; Clithero & Rangel, 2014). Up to this
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point, it is still unclear how exactly these regions interact in the process of value integra-

tion and what their differential roles are.

1.3.2 Model-Based vs. Model-Free Decisions

While it is a challenging scientific endeavor to isolate where values are encoded in the
brain, it is even more challenging to identify how they are computed. Which computational
strategy does the brain use to solve this task and what are the sub-processes that lead
up to an estimate of decision value?

One way this question has been investigated in the literature is based on a distinc-
tion between model-based and model-free decision-making (Daw et al., 2011; Dolan &
Dayan, 2013; Glascher et al., 2010). Model-based choices are based on an explicit cog-
nitive model of the environment, which is used to form predictions about potential conse-
quences of decisions, their likelihood, and their subjective value. This type of decision-
making is prospective, goal-directed, and can flexibly adapt to changing circumstances,
but typically requires a considerable amount of time and effort. In contrast, model-free
choices are based on a relatively simple set of rules to form habitual connections between
specific stimuli and behavioral responses. Here, we do not take the full complexity of a
choice problem into account and instead apply simplified heuristics that have been shown
to produce satisfactory choices in similar situations in the past. Compared to model-based
choices, model-free decisions are retrospective, automatic, and fast. But we must accept
the risk of oversimplifying the situation and potentially overlooking important details.

For instance, when we decide whether we want to go to a specific restaurant, a
model-free mechanism could evaluate the restaurant simply by how well the food tasted
on average during our last visits. In contrast, a model-based mechanism could be based
on a complex cognitive model that considers recommendations from friends, the specific
cook that is preparing the food today, or the restaurant’s online ratings. Each of these
attributes is first evaluated separately and then finally integrated to a combined overall
value to determine optimal choices (Hunt et al., 2014; Kahnt et al., 2011).

A particularly influential mechanism that has been proposed for the computation of
value in model-free decisions is known as reinforcement learning (Dayan & Niv, 2008;
Sutton & Barto, 1998). In reinforcement learning, the expected value of a choice option
(pre-choice) is compared with the experienced value (post-choice). If the two values
turned out to be different, the prediction of the expected value is changed for future
choices based on the magnitude of the difference between expected and experienced
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value (called prediction error). The larger the prediction error, the stronger is the change
of the expected value towards the experienced value. In the classical formulation, ex-
pected values are updated via the following learning rule (known as temporal difference

learning):

Vt+1:Vt+aX6t
5t:Rt—Vt

where V is the expected value, R the experienced value (reward), § the prediction error,
and t a time variable. Further, 0 < a < 1 defines the learning rate that controls how
strongly the expected value should be changed (the expected value would not change at
all with ¢ = 0, whereas it would be completely adapted to the experienced value with a =
1).

One experimental paradigm that is used to study model-based choices is the so-
called two-step decision task (Deserno et al., 2015), in which participants are required to
make two sequential choices between pairs of abstract stimuli to obtain monetary re-
wards. For example, one option might offer a higher potential reward but also a higher
risk of failure, while the other option might offer a lower potential reward but also a lower
risk of failure. Since the transition probabilities of the first stage are explicitly instructed,
participants can strategically use this knowledge of the task structure to increase their
odds of reaching stimuli with a high expected value. By fitting a computational model to
the choice behavior, researchers can then quantify to what extent participants were ap-
plying a model-based compared to a model-free approach.

It has been observed that people often use a mixture of both strategies, but that
there is individual variation in the relative emphasis placed on each strategy (Daw et al.,
2011; Glascher et al., 2010; Smittenaar et al., 2013). On the neural level, experiments
have shown that the striatum plays a crucial role for these computations. Model-based
decision processes have primarily been associated with activity in the caudate nucleus/
dorsomedial striatum (in humans/rodents), whereas model-free computations have been
linked to the putamen/dorsolateral striatum (Dolan & Dayan, 2013; Gahnstrom & Spiers,
2020; Geerts et al., 2020; Sharpe et al., 2019; Wunderlich et al., 2012). Further, in rein-
forcement learning models of model-free choices, studies have demonstrated that the
ventral part of the striatum is associated with the magnitude of prediction errors (Hare et
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al., 2008; McClure et al., 2003; O’Doherty et al., 2003), with a particular involvement of

dopaminergic neurons (Montague et al., 1996; Schonberg et al., 2007).

1.4 Goal of Thesis

As noted above, the majority of previous studies in decision neuroscience were con-
cerned with the question of where decision values are represented in the brain. This has
led to the discovery of robust findings, in particular the correlation between overall deci-
sion values and vmPFC activation. However, little is known about the processes that gen-
erate this signal. The main goal of this thesis is to shed further light on the neural compu-
tations that lead to decision value signals in the brain, and to explore the factors that can
influence these signals in the decision-making process. To this end, two studies using

functional magnetic resonance imaging (fMRI) were conducted.

1.4.1 Study 1: Neural Integration of Attributes in Decision-Making

The first fMRI experiment aimed to investigate how the brain evaluates and integrates
decision attributes. In most situations, the value of a choice option could be determined
by evaluating a range of individual attributes separately and then combining these evalu-
ations to arrive at a unified overall value (O’'Doherty et al., 2021; Suzuki, 2022). For ex-
ample, the overall value of a car can depend on how we evaluate its size, speed, or color,
and how much subjective weight we assign to each of these attributes. In the experiment,
| used a decision task in which monetary values were attached to different perceptual
attributes of an artificial stimulus, to examine how attribute values are computed in the
brain. The results could then be compared with the neural correlates of 1) attribute iden-
tification, which must occur before attribute valuation, and 2) overall value computation,

which must occur after attribute valuation.

1.4.2 Study 2: Neural Basis of Decisions in Alcohol-Dependent Patients

The second fMRI experiment examined neural differences in decision processes between
alcohol-dependent (AD) patients and healthy control subjects. By studying the functional
properties of psychiatric disorders and how they affect cognitive functions, we can not
only gain insights for clinical applications, but also improve our understanding of cognitive
functions in general. Alcohol addiction is a highly prevalent disease that severely affects
the physical and psychological health of patients, but its cause as well as its neural basis



Background 11

is not well understood. Since AD patients compulsively choose to consume alcoholic stim-
uli that provide short-term rewards, but fail to make decisions that take the negative long-
term consequences of sustained alcohol consumption into account, impairments of
model-based or value-related decision processes could be crucial factors. Previous stud-
ies showed neural differences between patients and controls when tasks required deci-
sions about alcoholic stimuli (Beck et al., 2012; Schad et al., 2019), but it is unclear to
what extent these results generalize to non-alcoholic stimuli as well. To investigate this,
a new experimental paradigm was designed, which included decisions about monetary
stimuli and specifically relied on the ability to compute model-based decisions and dy-
namically adapt to changing circumstances.
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2 Methods

This section summarizes the most important parts of the experimental methods that were
used to conduct the experiments. More details can be found in the attached original pub-

lications.

2.1 Study 1: Neural Integration of Attributes in Decision-Making

Twenty-five subjects (14 female; mean age 28.1 + 4 SD) participated in the fMRI experi-
ment. Participants had to complete a variation of the random dot task (e.g., Gold & Shad-
len, 2007), in which moving dots varied with respect to two attributes, motion direction
and color (with 6 different levels each). Each attribute level was associated with a mone-
tary value from the set {-15, -10, -5, 5, 10, 15} (€ cents). The task of the participants was
to identify the attribute levels of a stimulus, remember the corresponding monetary val-
ues, and combine them, to decide whether they want to accept or reject a stimulus. For
example, if the dots are blue and move to the right, and this would correspond to -15 and
+5 cents respectively, then the combined value of the stimulus is -10 cents and should
therefore be rejected to avoid a monetary loss. The task consisted of six experimental
blocks with 30 trials each. Associations between attribute levels and monetary values
were learned separately a few days before scanning (mean days 2 + 0.4 SD).

The task design allowed to investigate the brain regions responsible for the pro-
cessing of attribute values and compare them with 1) the regions integrating individual
attribute values to combined overall values, 2) the regions associated with the identifica-
tion and perceptual processing of an attribute (independent of decision value), namely
area V4 (McKeefry and Zeki, 1997) for color and area V5 for motion (Watson et al., 1993;
Gallivan et al., 2018), and 3) the regions involved in processing attribute salience (the
subjective importance of a stimulus that guides attention, corresponding to absolute at-
tribute values; Kahnt and Tobler, 2013; Litt et al., 2011; Maunsell, 2004; Zhang et al.,
2017).

To analyze the fMRI data, two general linear models (GLM) were computed. GLM1
included a regressor R1 of all trials with correct choices (in which participants accepted
positive and rejected negative overall values) and five linear parametric modulators: P1)
motion value, P2) color value, P3) motion salience (absolute motion value), P4) color
salience (absolute color value), and P5) the absolute difference between motion and color
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value. Further, regressors of no interest were included to increase the signal-to-noise
ratio of the model, namely regressor R2 including trials with incorrect choices trials and
six movement regressors R3-R8 from the MRI image realignment procedure.

Whereas GLM1 was targeted at analyzing individual attribute properties, GLM2 was
designed to analyze overall value and overall salience. In contrast to GLM1, it only in-
cluded two parametric modulators: P1) overall value (sum of motion and color value) and
P2) overall salience (absolute overall value). These modulators were not part of GLM1,
because the significant correlations between individual and overall attribute values/sali-
ence would confound the results of the analyses.

Apart from analyzing whole-brain effects (punc < 0.001, cluster extent threshold ke =
15 voxels, prwe < 0.05), region-of-interest (ROI) analyses were also conducted to analyze
whether areas V4 and V5 were involved in computing color and motion value instead of
merely attribute identification and perceptual processing. The precise locations of color-
and motion-sensitive regions were estimated for each participant with the help of inde-
pendent localizer tasks. Mean beta weights were extracted from parametric modulators
P1 (motion value) and P2 (color value) of GLM1 and analyzed for significance via a re-
peated-measures analysis of variance (rm-ANOVA) with the factors attribute value (mo-

tion/color), region (V5/V4), and hemisphere (left/right).

2.2 Study 2: Neural Basis of Decisions in Alcohol-Dependent Patients

32 detoxified alcohol-dependent (AD) patients (10 female; mean age 46.5 £ 8.9 SD) and
32 healthy control subjects (9 female; mean age 38.9 + 10.5 SD) participated in the ex-
periment. Patients were diagnosed according to the DSM-IV and ICD-10 (Diagnostic and
Statistical Manual of Mental Disorders, Fourth Edition (DSM-1V), Structured Clinical Inter-
view for DSM-IV Axis | Disorders (SCID-I); First & Gibbon, 2004). Group comparisons
revealed a significant difference with respect to age (Tes = -3.13, p < 0.01), which was
controlled for by including age as a covariate in statistical analyses of group differences.
In addition to that, patients showed increase smoking behavior (indicated by pack years
of cigarette consumption; Tes = -2.9, p < 0.01), which is a common finding in studies on
AD patients (Batel et al., 1995). But since cigarette consumption was significantly corre-
lated with lifetime alcohol intake in AD patients (r = 0.52, p < 0.01) and can therefore
interfere with variance related to alcohol dependence, covariates relating to smoking be-

havior were not included in my analyses.
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In the MRI scanner, participants had to complete a sequential decision-making task
in which they had to accept or reject monetary offers between 1 and 99 cents (€). Cru-
cially, for each experimental block of 20 offers, participants were only allowed to accept
a maximum of 5 offers. To make optimal choices and maximize the probability of accept-
ing only the highest offers in a block, participants thus had to consider three factors: 1)
the value of the current offer, 2) the number of offers that can still be accepted before
reaching the limit, and 3) the number of offers that are remaining in the current block.
These parameters were included in a computational decision model (Economides et al.,
2014) and fitted to the choices of each participant. The model estimates the expected
value of accepting an offer V/, by comparing the monetary offer value R with a model
threshold M:

Vi=R-M

Accordingly, a high model threshold indicates that accepting an offer has a low expected
value. The model threshold is calculated with this formula:

M=c +aXc,—0Xc;

with ¢; being a constant threshold, a the number of offers accepted previously, o the offer
index, and ¢, and c; as weight parameters for a and o, respectively. In this formulation,
the model threshold increases linearly when a increases (since accept choices should be
more conservative when many offers have already been accepted), and the model thresh-
old decreases linearly when o increases (since accept choices should be more liberal
when the end of a block is near). Finally, the expected value of accepting V, is used to

compute the probability of accepting P, via a sigmoid function:

1
1+exp(—txV,)

Py

with T governing the slope of the probability distribution. Parameter estimates of the model
were then used as parametric modulators in the analysis of the fMRI data to identify brain

regions that compute model-based decision processes and to test for putative differences
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between AD patients and controls. This was modelled as a regressor representing the
decision phase of valid trials with parametric modulators for the offer value and model
threshold. The remaining regressors were of no interest and represented invalid trials
(when participants failed to make a response within the time limit), the response phase,
the feedback phase, and pauses between experimental blocks.

Based on previous studies, | defined regions of interest (ROls) and hypothesized that
AD patients would show 1) an increased representation of decision value in vmPFC, 2) a
decreased representation of model-based decision processes in caudate nucleus.
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3 Results

3.1 Study 1: Neural Integration of Attributes in Decision-Making

Participants showed high accuracies in the main decision task (mean 87.5 £ 6.8 % SD;
one-sample t-test against chance level, to4 = 27.56, p < 0.001) and responded on average
873 £ 157 ms (SD) after trial onset.

Analyses of fMRI data revealed differential neural correlates for the attribute values
of motion and color, respectively (see GLM1; section 2.1). For motion value, activity dur-
ing correct decision trials showed a significant positive parametric modulation in regions
including the posterior cingulate cortex (PCC) and left posterior inferior temporal gyrus
(PIT; Fig. 2A), whereas a significant positive parametric modulation by color value was
observed in ventral striatum and PCC (anterior to the PCC cluster for motion value; Fig.
2B). However, a direct comparison of motion- and color-related parametric effects using
paired t-tests did not reveal significant differences at the whole-brain level. To further
investigate this relationship, these regions were used as post-hoc ROIs (the PIT and PCC
cluster of the motion value contrast, and the ventral striatum and PCC cluster of the color
value contrast, thresholded at punc = 0.001) and mean beta values for motion and color
value within these ROIs were compared via paired t-tests (Bonferroni-corrected p-value
criterion of 0.05/4 = 0.0125). Consistent with whole-brain results, the analysis did not
reveal significant differences between motion- and color-related parametric effects (PIT:
t(24) = 1.5, p = 0.15; PCCotion: t(24) = 0.4, p = 0.71; PCCcolor: t(24) = -2.4, p = 0.02; vStr:
t(24) = -0.7, p = 0.5). Although these findings do not definitively refute the existence of
attribute-specific valuation, they imply that the calculation of motion and color value does
not appear to involve distinct, attribute-specific valuation modules in this study.

Significant positive modulation of task-related activity by the stimulus’ overall value
(combined values; GLM2) were found in regions including left dorsolateral prefrontal cor-
tex (dIPFC) and vmPFC (Fig. 2C). Further, the absolute difference between motion and
color values was used as a variable in GLM1 to identify comparator regions that estimate
differences between attribute values. Here, | observed a significant positive modulation
of task-related hemodynamic activity within the dorsomedial prefrontal cortex (dmPFC;
Fig. 2D).
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A Motion Value B Color Value

C

Figure 2. Brain regions showing significant activations at the group level for A) motion value (GLM1), B) color
value (GLM1), C) overall value (GLM2), and D) absolute attribute value differences (GLM1). For illustration
purposes, t-maps (from second-level one-sample t-tests on parameter estimates of respective parametric mod-
ulators) are thresholded at pu,c < 0.001 with a cluster extent threshold of ke = 15. Labeled clusters survive
cluster-level FWE-correction at prwe < 0.05. Figure adapted from Magrabi et al. (2022a).

ROI analyses were conducted to test whether regions specialized in attribute identifica-
tion (i.e., V4 for color and V5 for motion) are also involved in processing the respective
attribute values of the stimuli. For this purpose, beta estimates from parametric modula-
tions by motion and color value were extracted from V5 and V4 (Fig. 3) in both hemi-
spheres and included in a rm-ANOVA with factors attribute value (motion/color), region
(V5/V4) and hemisphere (left/right). Neither the two-way interaction between attribute
value and region (F(1, 24) = 0.51, p = 0.48) nor the three-way interaction between attrib-
ute value, region and hemisphere (F(1, 24) = 0.53, p = 0.47) were significant, which does
not support the hypothesis that attribute values are systematically processed in V5 and
V4. Further, there were no significant results for the main effects or the remaining inter-
actions of no interest (attribute value: F(1, 24) = 0.01, p = 0.93; region: F(1, 24) = 3.15, p
= 0.09; hemisphere: F(1, 24) = 0.12, p = 0.73; hemisphere x region: F(1, 24) =0.51, p =
0.48; hemisphere x attribute value: F(1, 24) = 2.57, p = 0.12).
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Figure 3. Activations of localizer tasks in A) bilateral V4 (color localizer) and B) bilateral V5 (motion localizer).
For illustration purposes, t-maps are thresholded at pun: < 0.001 with a cluster extent threshold of ke = 15. All
clusters survive cluster-level FWE-correction at prwe < 0.05. C) Mean beta estimates of parametric modulation
by motion and color value in bilateral V5 and V4 (regions adapted to single-subject peaks of localizers; for details
see methods section). Results of the rm-ANOVA with factors attribute value (motion/color), region (V5/V4) and
hemisphere (left/right) indicate that the data do not reveal a systematic representation of motion and color value
in V5 and V4, respectively. Figure adapted from Magrabi et al. (2022a).

3.2 Study 2: Neural Basis of Decisions in Alcohol-Dependent Patients

On the behavioral level, patients did not show significant differences to control subjects
(earned profits: F(1, 60) = 2.06, p = 0.16; reaction times: F(1, 60) = 0.47, p = 0.49; model
value threshold c4: F(1, 60) = 0.35, p = 0.56; model number of accepts c2: F(1, 60) = 0.01,
p = 0.91; model offer index c3: F(1, 60) = 0.4, p = 0.55; model threshold M: F(1, 60) =
1.25, p = 0.27).

The first goal of the fMRI analysis was to locate regions that process monetary val-
ues of offers. In the control group, whole-brain analyses revealed a significant parametric
modulation of offer values (P1) in a distributed set of regions including dIPFC, ventral
striatum, and dmPFC (Fig. 2A). The patient group showed activation in a largely overlap-
ping set of regions, and a whole-brain comparison of parametric group effects in a two-
sample t-test did not reveal significant differences between the two groups.
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Figure 4. Brain regions showing parametric effects in the control group for A) offer value and B) negative model
threshold. For illustration purposes, t-maps are thresholded at p < 0.001 (uncorrected), ke = 10. Labelled clusters
survive cluster-level FWE-correction at p < 0.05. The patient group showed largely overlapping clusters for offer
values, and no significant clusters for negative model thresholds. Abbreviations: dIPFC, dorsolateral prefrontal
cortex; dmPFC, dorsomedial prefrontal cortex; vStr, ventral striatum. C) Functional ROI results. Mean beta val-
ues in caudate nucleus were extracted from parametric modulators of model thresholds, and beta values in
vmPFC from modulators of offer values, respectively. ROIs were defined as 5 mm spheres centered on coordi-
nates from Economides et al (2014). Asterisks denote significant FDR-corrected p-values < 0.05. Figure adapted
from Magrabi et al. (2022b).

Second, | investigated brain areas that demonstrated activation related to model-based
decision processes via the model threshold parameter of the GLM (P2). In the control
group, | did not observe effects related to positive model thresholds, but activity in caudate
nucleus and inferior parietal lobe (IPL) was significantly associated with negative model
thresholds (Fig. 2B), indicating stronger neural activity when the threshold was low and

participants were more likely to accept offers. This is in line with a previous study that
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found stronger effects for negative compared to positive model thresholds (Economides
et al., 2014) and can be due to the BOLD signal being highest for go responses. In con-
trast, the patient group did not exhibit any activity associated with negative model thresh-
olds in the whole-brain brain analysis.

ROI analyses were conducted to investigate group differences in vmPFC (associ-
ated with value representation) and caudate activation (associated with model-based de-
cision processes). There were no group differences with respect to parametric effects of
offer values in vmPFC (F(1,60) = 0.1, pror = 0.834), but there was a significant difference
in parametric effects of model thresholds in the caudate nucleus (F(1,60) = 4.4, pror =

0.028; Fig. 2C) involving stronger negative beta values in the control group.
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4 Discussion

4.1 Study 1: Neural Integration of Attributes in Decision-Making

The computation of decision value often relies on multiple attributes. Values of relevant
attributes must be computed separately before they can be integrated to an overall value
that ultimately determines choices. So far, most studies investigated neural representa-
tions of overall values (Kable & Glimcher, 2007; Levy & Glimcher, 2012; Rangel et al.,
2008; Sanfey et al., 2006), but little is known about the computation of attribute values
(Basten et al., 2010; Kahnt et al., 2011; Lim et al., 2013; Suzuki, 2022).

Regarding the neural basis of attribute valuation, two competing hypotheses are
conceivable. On the one hand, attribute values could be computed in distinct, attribute-
specific brain regions (Basten et al., 2010; Hanks & Summerfield, 2017; Lim et al., 2013;
Persichetti et al., 2015; Philiastides et al., 2010). These could be the same regions that
are responsible for the identification and perceptual processing of a particular attribute.
For example, this would imply that the fusiform face area, which is known to specifically
process facial information (Kanwisher et al., 1997), is also involved in evaluating faces.
Consequently, attribute values for a choice option would be calculated in different brain
regions that highly depend on the specific attribute. Alternatively, attribute-specific value
computations could instead be carried out within the general value network that is known
to process overall values. This would mean that different attribute values as well as overall
values would be processed in a centralized manner via vmPFC, ventral striatum, and
PCC (Bartra et al., 2013; Clithero & Rangel, 2014; Ludwig et al., 2014; Peters & Buchel,
2010).

In the first study, | investigated these hypotheses with an experimental task that
required the identification, valuation, and integration of separate decision attributes relat-
ing to the visual properties of motion and color. The perceptual processing of these at-
tributes is robustly associated with area V5 for motion (Watson et al., 1993; Gallivan et
al., 2018) and area V4 for color (McKeefry and Zeki, 1997). However, | did not find signif-
icant correlations with attribute values in these regions, neither in whole-brain nor in ded-
icated ROI analyses, which does not support the hypothesis that attribute values are
computed in distinct, attribute-specific brain regions. Instead, whole brain-analyses
showed that activity in PCC and ventral striatum correlated with color value, whereas
activity related to motion value correlated with PCC and left PIT. In a direct comparison,
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| found no region that had a significantly stronger representation of one attribute value
over the other. Even though one cannot draw definitive conclusions from absence of ev-
idence, this lack of specificity is consistent with the idea that the computation of attribute
values is not implemented within attribute-specific cortical modules and is instead accom-
plished in a dynamic manner within a general valuation network including PCC, ventral
striatum, and PIT.

In contrast to these results, previous studies have supported the hypothesis that
attribute values are computed in attribute-specific regions. In an experiment by Lim et al.
(2013), participants had to evaluate t-shirts based on how much they liked both the ap-
pearance and meaning of Korean symbols that were printed on them. The authors found
that activity in fusiform gyrus correlated with visual values, whereas activity in superior
temporal gyrus correlated with semantic values. In a probabilistic choice task, Philiastides
et al. (2010) showed that activity in the fusiform face area corresponds to the value of
face stimuli, while activity in the parahippocampal place area corresponds to the value of
house stimuli. For both studies, the brain regions correlating with attribute values have
also been associated with the identification and perceptual processing of the respective
attributes, which is not confirmed by the data of my experiment.

There are several possible explanations for this discrepancy. First, the experimental
design allowed me to differentiate value- and salience-related effects for each attribute,
which was not possible in the experiment by Philiastides et al. (2010). Therefore, the
value correlations observed in the fusiform face area and parahippocampal place area
may be due to differences in salience rather than value. Second, the motion and color
attributes in the experimental paradigm are robustly associated with well-defined regions
in area V5 and V4. Arguably, this connection is less evident in the previously mentioned
studies, in particular for the semantic attribute of the study by Lim et al. (2013), because
the effects are more widespread across neural regions. Therefore, it is more unclear
whether these results arise from attribute-specific regions, as it is more difficult to pre-
cisely determine regions of interest. Third, | used abstract, novel stimuli in my task,
whereas the other studies used more familiar stimuli (faces, t-shirts, houses). One possi-
ble explanation for how the brain computes attribute values could be that novel stimuli
are initially processed in a domain-general network, where attribute values are computed

in a uniform manner. But if stimuli become more familiar and require frequent evaluation,
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the computation of attribute values shifts to attribute-specific regions. Thus, the pro-
cessing of attribute values might change as a function of learning, which could reconcile
the effects of my experiment with previous studies.

In addition to analyzing individual attribute values, | also examined brain activity
related to the overall value of stimuli and discovered correlations with activity in various
regions, including left dIPFC and vmPFC (Fig. 4C). Due to the correlation between attrib-
ute values and overall values, my results show an overlap in their effects on the neural
level, which cannot be easily disentangled on statistical grounds. However, it is notewor-
thy that the whole-brain analysis of overall values revealed a significant correlation for a
cluster in vmPFC, which was not identified in my analysis of attribute values, neither for
color nor motion value. This is in line with the view that vmPFC is one of the main regions
that represent integrated value signals, which previous studies have argued for (Hare et
al., 2009; Levy & Glimcher, 2012; O’'Doherty et al., 2021; Padoa-Schioppa & Cai, 2011;
Rangel & Clithero, 2013).

4.2 Study 2: Neural Basis of Decisions in Alcohol-Dependent Patients

Alcohol dependence (AD) is a widespread mental disorder, responsible for approx-
imately 3.3 million deaths annually (World Health Organization, 2018). It is characterized
by a loss of control over the consumption of alcohol, compulsive drinking despite repeated
harmful consequences, and a negative emotional state (such as anxiety) in the face of
withdrawal (Everitt & Robbins, 2005; Koob & Volkow, 2010, Phung et al., 2019).

Neuroscientific studies have suggested that AD develops through a systematic shift
in the neural systems that regulate behavior, with increased involvement of the puta-
men/dorsolateral striatum (in humans/rodents) controlling habitual behavior, and de-
creased involvement of the caudate nucleus/dorsomedial striatum controlling flexible and
model-based behavior (Corbit et al., 2012; DePoy et al., 2013; Everitt & Wolf, 2002; Fur-
long et al., 2014; Geerts et al., 2020; Gremel & Costa, 2013). Another account suggests
that the impulsive behavior of AD patients (Rubio et al., 2008; Virkkunen, 1994) is based
on an overactive neural value system (Arcurio et al., 2015; Goldstein & Volkow, 2011;
Kamarajan et al., 2020; Seo et al., 2013), which has been associated with ventromedial
prefrontal cortex (vmPFC; Bartra et al., 2013; Clithero & Rangel, 2014). However, it is not
clear how and under what circumstances these changes in neural information processing

occur.
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In this study, | used a monetary decision-making task to investigate group differ-
ences between AD patients and control subjects with respect to value computation and
model-based decision processes. Unlike the majority of previous studies in this area
(Goldstein & Volkow, 2011; Schacht et al., 2013), the task did not include alcoholic stimuli,
which made it possible to further examine whether AD patients have a general impairment
of decision processes, even when alcoholic stimuli are not part of the decision context.

The results showed that patients had decreased functional representation of model-
based decision processes in the caudate nucleus, while there were no significant differ-
ences between groups in terms of neural value representation or task performance. Pre-
vious research has identified that the caudate is a vital region for the computation of goal-
directed decisions that involve taking multiple factors into account and long-term planning
(Balleine & O’Doherty, 2010; Dolan & Dayan, 2013; Tanaka et al., 2008; Wunderlich et
al., 2012). Likewise, in rodents, model-based decision processes have been associated
with signals in dorsomedial striatum (Balleine, 2005; Corbit et al., 2012; Yin et al., 2005),
which corresponds to the caudate activation that human neuroscience studies have iden-
tified. My finding that the neural representation of model-based decision processes in
caudate nucleus is decreased for patients therefore suggests that alcohol dependence
impairs the neural computations for goal-directed choices and supports the hypothesis
that the ability to flexibly adapt choices to long-term consequences is one of the core
functions affected by the disorder (Bechara et al., 2001; Goudriaan et al., 2007; Sebold
et al., 2014).

The data further revealed that offer value is represented in a distributed set of re-
gions including ventral striatum, dIPFC, and dmPFC for both the patient and the control
group. However, | did not observe systematic differences with respect to neural value
computations between the two groups, which does not support the hypothesis that alco-
hol dependence is based on a stimulus-independent overactive valuation system (Arcurio
et al., 2015; Goldstein & Volkow, 2011; Kamarajan et al., 2020; Seo et al., 2013).

Surprisingly, patients also did not show deviations in behavioral task performance.
One explanation for this finding could be that patients are able to achieve the same level
of performance in sequential decision tasks but rely on different neural systems, which
are not associated with the model threshold parameter that was employed in the compu-
tational model. It remains an open question for future research whether patients generally
do not have deficits in performing sequential decision-making tasks, or whether different
task designs can reveal systematic deficits in this regard.
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4.3 General Discussion

In a nutshell, the goal of the first study was to study the neural mechanisms of computing
attribute values: Whereas the perceptual processing of attributes can robustly be associ-
ated with specific regions (area V4 for perceiving color and V5 for perceiving motion), this
does not seem to be the case for the process of attribute valuation during decision-mak-
ing. Instead of being computed in characteristic regions, attribute values seem to be pro-
cessed dynamically in a distributed network, comprising regions including PCC, ventral
striatum, and PIT.

The core finding of the second study was that AD patients showed decreased func-
tional activation relating to model-based decision processes in the caudate nucleus,
whereas there were no neural differences relating to decision value. The effect in the
caudate nucleus could be evidence for an impairment of model-based decision-making
in AD patients. However, patients did not show behavioral differences in the decision task,
which might indicate the involvement of compensatory mechanisms.

A common pattern in both studies and the literature in general is that the neural
processes underlying decision-making appear to be very dynamic and distributed across
a broad range of brain regions. So far, it does not seem to be possible to establish a clear
functional association between the subprocesses involved in decision-making and spe-
cific brain regions. This relates to a larger debate in neuroscience about cognitive locali-
zation and the question to what extent cognitive functions can be mapped to specific brain
regions (Genon et al., 2018). In this context, researchers have distinguished between
functional segregation and functional integration (Friston, 2011).

Functional segregation describes the idea that the brain can be divided into region-
ally distinct modules based on functional or structural properties. In contrast, functional
integration refers to the idea that no region is by itself responsible for a cognitive function,
and that this requires a dynamic interplay between multiple brain regions in distributed
neural networks instead (Siddiqi et al., 2022). In contrast to the traditional idea of phre-
nology (Gall, 1818), it is now widely accepted that functional segregation alone is not a
realistic conceptual framework to explain neural processing. However, it is still common
practice to characterize brain regions by their relative contribution to cognitive functions
because some brain regions seem to be clearly more involved in specific cognitive func-

tions than others.
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While this appears to be a reasonable approach in some areas of cognitive neuro-
science, | think the results of my experiments and the literature in general increasingly
show that this approach is less promising and harder to apply in domain of decision neu-
roscience. The brain regions that are correlated with decision-related processes seem to
be more numerous and more widespread, and the findings appear less robust than in
other domains (e.g., perception or memory; although it is hard to objectively quantify re-
lations between research domains like these). One explanation for this pattern could be
that decision-making is late in the cognitive hierarchy and highly dependent on other cog-
nitive functions. Everything must come together to be able to make good decisions: Per-
ceiving relevant information, remembering past experiences, estimating the likelihood of
future events, reasoning about logical implications, evaluating different attributes, etc.
This high level of interdependence could explain why decision-related brain activations
are more widespread across the brain and have a particularly high variance, which makes
it harder to detect strong and robust functional associations in decision neuroscience.

This problem is further exacerbated by 1) the high number of confounding variables
that correlate with decision-making processes (O’Doherty, 2014), like the correlation be-
tween decision value and salience (Kahnt and Tobler, 2013; Zhang et al., 2017), and 2)
the limitations that neuroscientific methods like fMRI and EEG have with respect to spatial
and temporal resolution. One could speculate that the neural pathways for decision-mak-
ing become more simple and easier to detect when the decision scenario is already fa-
miliar and very similar to decisions that were made in the past. In that case, decisions
become automatic, repetitive, and eventually turn into habits (Guida et al., 2022; Patter-
son & Knowlton, 2018). But for decisions in novel situations, which have never been en-
countered before and require the careful evaluation of multiple attributes under uncer-
tainty, the underlying neural processes are likely much more complex.

One example for the issue with establishing reliable findings in decision neurosci-
ence is also apparent in the results of my experiments. It is often considered as one of
the most robust findings in the field that neural signals in vmPFC correlate with the overall
decision value that determines choices (O’Doherty et al., 2021; Rangel et al., 2008). How-
ever, | could only replicate this finding in the first study, but not in the second study. In-
stead of the vmPFC, offer value in the second study correlated with neural activity in the
ventral striatum, dIPFC, and dmPFC. While there could be several potential methodolog-
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ical reasons for this (like differences in scanning parameters, trial structure, or task de-
sign), inconsistencies like these appear more common in the decision neuroscience liter-
ature than in other domains of cognitive neuroscience.

To improve on this, | think the field of decision neuroscience should focus on several
aspects in the future. First, we need to work on a more detailed conceptual framework for
decision-making. Terms like “value” or “uncertainty” are important for the decision-making
process, but more work needs to be done to distinguish between different subtypes of
general concepts like these, which would allow us to design more precise experiments
with more control over confounding variables and higher signal-to-noise ratios. The dis-
tinction between overall values and attribute values in my first study was a step into this
direction.

Second, more interdisciplinary work needs to be done. While this has been a popu-
lar theme for a while now, too many interdisciplinary efforts are largely superficial and
need to go deeper to make real progress. | want to highlight two fields that are especially
valuable for decision neuroscience: 1) Philosophy, which could help to make the concep-
tual framework more precise and inspire new angles for empirical research, and 2) psy-
chiatry, which allows us to investigate how the cognitive and neural processes underlying
decision-making are affected by dysfunctions. Like philosophy, psychiatry can also help
to reveal blind spots in our conceptual framework for decision-making. My second study
was a step into this direction and showed how the clinical disorder of alcoholism can affect
the neural processes that drive model-based decision-making.

Third, decision neuroscience needs to put a stronger emphasis on functional inte-
gration instead of functional segregation, and focus on understanding the properties of
interconnected neural networks rather than trying to characterize specific brain regions in
isolation. Needless to say, advances in brain imaging methods that would improve the
spatial or temporal resolution of neural measurements would make this paradigm shift a
lot easier and open up possibilities for new experimental designs.

Making decisions is one of the most important parts of our lives. Our choices define
our actions, our future, our happiness, and our identity. We invest a vast amount of time
and energy into deliberating and optimizing our decisions, so a better scientific under-
standing of this process has a tremendous potential to improve our lives. The field of
decision neuroscience faces a lot of challenges, but with the direction | outlined above, |
think we are on a good path towards meaningful progress.
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Abstract

Studies in decision neuroscience have identified robust neural representations for the value of choice options. However, overall values
often depend on multiple attributes, and it is not well understood how the brain evaluates different attributes and integrates them
to combined values. In particular, it is not clear whether attribute values are computed in distinct attribute-specific regions or within
the general valuation network known to process overall values. Here, we used a functional magnetic resonance imaging choice task
in which abstract stimuli had to be evaluated based on variations of the attributes color and motion. The behavioral data showed
that participants responded faster when overall values were high and attribute value differences were low. On the neural level, we
did not find that attribute values were systematically represented in areas V4 and V5, even though these regions are associated with
attribute-specific processing of color and motion, respectively. Instead, attribute values were associated with activity in the posterior
cingulate cortex, ventral striatum and posterior inferior temporal gyrus. Furthermore, overall values were represented in dorsolateral
and ventromedial prefrontal cortex, and attribute value differences in dorsomedial prefrontal cortex, which suggests that these regions
play a key role for the neural integration of attribute values.

Key words: decision-making; value; attribute; salience; fMRI

Introduction majority of studies investigated neural representations of over-
all values (Sanfey et al., 2006; Kable and Glimcher, 2007; Rangel
et al,, 2008; Levy and Glimcher, 2012), but little is known about
the computation and integration of attribute values (Basten et al.,
2010; Kahnt et al., 2011; Lim et al., 2013; Suzuki et al., 2017; Vaidya
et al., 2018; Pelletier et al., 2021).

With regard to known functional specializations of different

Valuation is a crucial part of decision-making. To make benefi-
cial choices, available options need to be accurately evaluated,
and the ones with the highest value need to be selected. Studies
in decision neuroscience have investigated valuation processes
extensively and found neural representations of value in the ven-
tromedial prefrontal cortex (vmPFC), posterior cingulate cortex
(PCC) and ventral striatum (Bartra et al., 2013; Clithero and Rangel,
2014). Most studies addressed the question as to where overall
values of choice options are processed in the brain (Rangel et al.,

brain regions, two hypotheses concerning neuronal attribute val-
uation are conceivable. On the one hand, attribute values could
be computed in distinct, attribute-specific brain regions (Basten

2008; Kable and Glimcher, 2009). However, overall values are
often based on values of different attributes. For example, the
overall value of a car can depend on the evaluation of its size,
speed or color. In these cases, values of relevant attributes have
to be computed separately, before they can be integrated to a
combined value that ultimately determines choices. So far, the

et al., 2010; Philiastides et al., 2010; Lim et al., 2013). From this per-
spective, attribute values are processed within regions that are
also specialized in processing objective properties of the particu-
lar attributes. For instance, it would be predicted that the fusiform
face area, which is known to selectively process faces (Kanwisher
et al., 1997), is also responsible for the evaluation of faces. As a
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result, attribute values for a choice option would be computed
in distinct neural regions that highly depend on the particular
attribute, which is consistent with studies that found evidence
of value correlations in sensory regions (Gold and Shadlen, 2007;
Serences, 2008; Persichetti et al., 2015; Hanks and Summerfield,
2017). On the other hand, all attribute-specific value computa-
tions could instead be performed within the general valuation
network that is known to process overall values (Bartra et al., 2013;
Clithero and Rangel, 2014). As such, different attribute values as
well as overall values would be processed in a homogeneous and
centralized manner via vmPFC, PCC and ventral striatum (Peters
and Biichel, 2010; Ludwig et al., 2014).

Here, we used model-based functional magnetic resonance
imaging (fMRI) to distinguish between these hypotheses and
investigate how attribute values are computed in the brain. Par-
ticipants were presented with a dot stimulus varying in two
constituent perceptual attributes: motion direction and dot color.
Each attribute level (i.e. each particular motion direction and each
color) was associated with a specific monetary gain or loss. Based
on these individual attribute values, participants had to deter-
mine the overall value of the stimulus and decide to accept or
reject the offer. In addition, we also conducted separate local-
izer tasks to identify regions specialized in the processing of the
physical properties of the attributes, independent of attribute
valuation.

Compared to previous studies on attribute valuation (Hare
et al., 2009; Basten et al., 2010; Philiastides et al., 2010; Kahnt et al.,
2011; Park et al., 2011; Lim et al., 2013; Hutcherson et al., 2015;
Suzuki et al., 2017; de Berker et al., 2019; Pelletier et al., 2021), this
approach combines two methodological advantages:

(i) Our decision task is based on two well-investigated stimu-
lus attributes, which are processed in separate, well-defined
cortical modules, namely Area V5 for motion (Watson
et al, 1993) and Area V4 for color (McKeefry and Zeki,
1997). By using independent localizer tasks, we were thus
able to specifically address whether valuation of individ-
ual attributes proceeds separately within these well-defined
perceptual areas, or instead within the network known to
compute overall values (comprising vimPFC, PCC and ventral
striatum).

(ii) The values assigned to each attribute in our task span a
range of both positive and negative values, which allows us
to disentangle the effects of value and salience. Salience,
in contrast to value, refers to the subjective importance of
a stimulus, which ultimately guides the amount of atten-
tional resources deployed to a certain stimulus or event
(Maunsell, 2004; Zink et al., 2006; Kahnt and Tobler, 2013).
When valuation processes are studied only by means of pos-
itive values, salience and value are indistinguishable, as
more positive stimuli are also more salient (Litt et al., 2011;
Leathers and Olson, 2012; Kahnt et al., 2014; Zhang et al.,
2017). For that reason, salience is a common experimental
confound in the majority of decision neuroscience studies
(O'Doherty, 2014). However, if both positive and negative
values are involved, salience- and valuation-related mech-
anisms of decision processes can easily be distinguished,
because stimuli with a high negative value are of low value,
but of high salience (as there is a high incentive to avoid
them). Hence, our design allows us to dissociate regions that
compute the value and salience of each attribute, to pro-
vide a more elaborate account of attribute valuation in the
human brain.

Methods

Participants

Twenty-five right-handed subjects (14 female; mean age
28.1+4 s.d.) participated in the study. All subjects had normal
or corrected-to-normal vision, had no history of psychiatric or
neurological illnesses, were free from medication interfering with
fMRI performance, were native German speakers, and provided
informed consent before participation. All experimental proce-
dures were approved by the local ethics committee. Participants
were compensated with 25€ for study participation and could
receive an additional performance-dependent bonus in the range
of 0-17€.

Stimulus material and experimental design

All stimuli were presented using MATLAB (version 8; MathWorks,
Natick, MA) and the Psychophysics Toolbox extension (version 3;
Brainard, 1997).

Main decision task

We decided to use a version of the random dot task, because
we found it to be a well-established paradigm in the perceptual
decision-making literature to elicit motion-related activation in
Area V5 (e.g. Gold and Shadlen, 2007; Gallivan et al., 2018). The
task was designed to require the computation and integration
of two distinct attribute values. For this purpose, stimuli vary-
ing in the attribute dimensions color and motion direction were
employed. Each stimulus consisted of a set of 200 dots presented
within a circular aperture in front of a black background (dot
radius 0.07° of visual angle, aperture radius 2°, Figure 1A). Across
trials, color and motion of the stimulus varied with respect to six
different levels (color: blue, red, turquoise, green, brown and pink;
motion direction: upward, downward, up-left, up-right, down-left
and down-right with a uniform angle of 60° between directions).
During each trial, all dots were constantly displayed in the same
color and moved coherently into one direction (dot velocity 4°/s).
Dots reaching the aperture limit were randomly replotted at the
opposite semicircle (orthogonal to the current motion direction)
according to a beta function (e« =1.9, B = 1.9) to maintain an even
density distribution of dots within the circular display. For both
color and motion, each of the six attribute levels was associated
with a monetary value taken from the set [-0.15, -0.10, -0.05,
0.05, 0.10, 0.15€]. These associations between particular mon-
etary values and attribute levels were counterbalanced across
participants and had to be acquired in a separate learning session
(described in the section “learning task”).

In each trial, participants had to identify the attribute values
of the current color and motion direction, while being required
to maintain ocular fixation throughout the trial at a cross dis-
played in the center of the circular aperture. These values then
had to be integrated, as the sum of attribute values indicated the
overall value of the stimulus. Stimuli covered all possible com-
binations of attribute values except those summing to O€ (i.e.
6 x 6 =36 unique combinations, out of which the 30 combinations
without zero-sums were included in the experiment). Note that
motion and color value are orthogonal to each other in this design,
which allows for an independent assessment of their respective
effects. Based on the integrated overall value, participants had
to decide whether to accept or reject the current offer (i.e. opti-
mal choices result in accepting all positive overall values and
rejecting all negative ones). Participants indicated their choices by
pressing one of two designated buttons on a response box using
their right index/middle finger (accept/reject), which terminated
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A Learning Task

Decision Phase

Feedback
0.10 €

v

time §
until button press

B Decision Task

Decision Phase

time

until button press

2 sec or until button press

2-10 sec

Fig. 1. Experimental design. A) Learning task. Participants had to indicate whether the left or right dot field represented a higher value and received
feedback on the values of both attributes and their choice accuracy. The figure shows an example of a color value trial in which dots within both
circular apertures were static but varied in their constituent color attribute. Motion value trials (which are not displayed) were designed analogously,
except that dots were uniformly displayed in gray and varied with respect to their motion direction. B) Main decision task. In contrast to the learning
task, participants were presented with a single circular aperture, within which the dots varied on a trial-by-trial basis with regard to both attributes.
The subjects’ task was to indicate whether they want to accept or reject a stimulus based on the sum of both attribute values. The decision screen
terminated either by button press responses or after reaching a time limit of 2s

the current trial. If no response was given within 2s after stim-
ulus onset, the trial was automatically terminated and classified
as if the inferior option had been chosen (i.e. stimuli with neg-
ative overall values were counted as accepted, and those with
positive ones as rejected). Duration of inter-trial intervals (dur-
ing which only the fixation cross remained on the screen) was
randomized between 2 and 10s according to a truncated expo-
nential function (A =6, mean sec 5.1+2.2 s.d.; Dale, 1999). After
completion of the experiment, the overall values chosen for each
trial were summed up and paid out as a monetary bonus (possi-
ble range: 0-17€) in addition to the monetary compensation for
participation.

Our design makes use of a categorical manipulation of
attribute levels. A dimensional manipulation would have also
been possible (i.e. a spectrum from weak to strong motion
opposed to six different motion directions), but we hypothesized
that it might add more uncertainty to our task, because it can be
more difficult for participants to assess the precise value of a stim-
ulus in a dimensional design. By reducing this level of uncertainty,
we reasoned that we can be more confident that participants
made their choices with the intended attribute values and reduce
noise in our data.

Learning task

To establish the associations between each of the individual
attribute levels (i.e. the particular colors and motion directions)
to one of the six monetary values, subjects completed an offline
learning task (Figure 1B) in the days before scanning (mean days

2+40.4 s.d.). Monetary values for color and motion levels were
learned in separate blocks. During motion blocks, participants
were presented with two apertures (4.5° to the left and right of
the central fixation cross) each composed of 200 moving dots
drawn in gray (dot and aperture size identical to the main decision
task). For each trial, motion was coherent within each aperture
(one of the six directions described above), but simultaneously
presented apertures never showed the same direction. The par-
ticipants’ task was to indicate whether the left (index finger)
or right (middle finger) dot field embodied the higher mone-
tary value. After button presses, participants received feedback
whether their choice was correct and corresponding monetary
values were displayed above both apertures. Trials of color blocks
were designed in an analogous manner with the difference that
dots within each aperture remained stationary, but varied in
their constituent color. Participants did not practice on stimuli
combining both attributes in the learning task, to make sure
that the combined experimental stimuli are not over-learned and
attributes need to be actively integrated in the main decision
task.

Each block consisted of 30 trials, which included two occur-
rences of all possible attribute value combinations. Participants
completed a minimum of six blocks, including three motion and
color blocks arranged in an alternating order (with the starting
block type being counterbalanced across participants). After the
sixth block, the task ended if participants achieved an accuracy of
at least 95% during the last two blocks. If the accuracy criterion
was not achieved, participants had to complete another motion
and color block until it was satisfied.
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Scanning session

Repetition of learning task

On the day of scanning, participants first repeated one motion
and color block of the learning task outside of the scanner with
15 trials per block.

Decision task

After the learning task repetition, participants were placed in
the MRI scanner. Before the recording of the first run, partic-
ipants completed 15 practice trials (randomly taken from the
available stimulus set) after each of which trial-wise feedback on
their earnings and the values of presented attributes were dis-
played. The subsequent main decision task was separated into
five runs with 60 trials each, with all of the 30 unique attribute
value combinations (see experimental design of the main decision
task) occurring twice per run. As a consequence, each motion and
color value type (-0.15, -0.10, -0.05, 0.05, 0.10 and 0.15€ for each
attribute) was presented 50 times throughout the entire experi-
ment. Trial ordering was fully randomized with the exception that
unique attribute value combinations were not allowed to occur
twice within the first 30 trials of a run. There was no trial-wise
feedback on participants’ performance during the main decision
task, but the total amount of earnings was displayed during brief
pauses between runs.

Localizers

After completion of the decision task, motion and color localizers
were conducted (order counterbalanced between participants).
Both localizer tasks consisted of ten 24-s trials separated by a 12-s
inter-trial interval. During the motion localizer task, subjects were
presented with the same circular aperture as during the main
experiment, which in contrast contained 200 dots drawn in gray.
During the 24-s motion phase, dots moved coherently into a ran-
domly chosen direction which was changed every second. During
the 12-s static phase (i.e. the inter-trial interval), dots were repo-
sitioned to a new random location within the aperture after every
second.

The color localizer task was designed in an analogous manner
with a 24-s color phase and a 12-s inter-trial interval (achro-
matic phase). Stimuli consisted of a 6 x 6 checkerboard with each
of the particular squares (0.4° x 0.4°) drawn in colors of random
RGB values, and each square changing its color every second.
The achromatic stimulus was geometrically identical, but squares
changed their appearance every second only in achromatic space.

fMRI data acquisition and preprocessing
Functional data

Imaging was conducted on a 3-T Siemens Tim Trio MRI scan-
ner (Siemens, Erlangen, Germany) with a 12-channel head coil.
Functional volumes consisted of 33 continuous slices that were
acquired in descending order by using a T2*-weighted gradient-
echo sequence [repetition time (TR): 2 s; echo time (TE): 30ms;
matrix size: 64 x 64; field of view (FOV): 192 mm; flip angle: 78°;
inter-slice gap: 0.75 mm; final voxel size: 3 x 3 x 3.75 mm]. For each
participant, 133 volumes were recorded for each localizer task
and an average number of 977 volumes for the main decision task
(dependent on reaction times). To allow for steady-state magneti-
zation, two dummy scans were acquired at the beginning of each
run and discarded.

Structural data

For registration purposes, a high-resolution, T1-weighted struc-
tural volume was acquired from every subject after completion of
the decision and localizer tasks using a magnetization-prepared
rapid gradient-echo (MPRAGE) sequence (192 slices; TR: 1900 ms;
TE 2.52ms, matrix size: 256 x256; FOV: 256 mm; flip angle: 9°;
final voxel size: 1x 1x 1mm).

fMRI data analysis

Preprocessing

Preprocessing was performed using SPM12 (Wellcome Trust Cen-
tre for Neuroimaging, UCL, London) and MATLAB (version 8;
MathWorks, Natick, MA). Functional images were realigned, slice-
time corrected, spatially normalized to the template of the Mon-
treal Neurological Institute (MNI) and smoothed using a Gaussian
kernel of 8-mm full-width at half-maximum.

GLM analysis of decision task

The decision task data were analyzed by means of two different
general linear models (GLMs) for each participant. For both GLMs,
event regressors were constructed as boxcar functions beginning
at the time of stimulus onsets and the duration of the respective
choice period.

For GLM1, regressor R1 comprised all trials during which par-
ticipants made correct choices (accepting positive and rejecting
negative overall values). Five linear parametric modulators of
regressor R1 were included in the model to analyze neural cor-
relates of the following decision variables: P1) motion value, P2)
color value, P3) motion salience (absolute motion value), P4)
color salience (absolute color value), and PS) absolute difference
between motion and color value. The latter parametric modulator
was included to investigate comparator regions, which could be
responsible for the integration of the two attribute values. Note
that PS is not significantly correlated with P1 (r=0), P2 (r=0), P3
(r=0.09) or P4 (r=0.09). All variables were z-transformed before
they were added to the model. In addition, to minimize the error
term of GLM1, an additional regressor R2 comprising all incorrect
choice trials was included, as well as six movement regressors
R3-R8 from the realignment procedure.

GLM2 was created to analyze overall value and overall salience.
These variables were not included in GLM1 due to multicollinear-
ity which would result from significant correlations between
overall values and attribute values (for each attribute r=0.77,
P<0.001), and between overall salience and attribute salience
(r=0.3, P<0.001). GLM2 was designed in an analogous manner
to GLM1, but only included two instead of four parametric mod-
ulators: P1) overall value (sum of motion and color value) and P2)
overall salience (absolute overall value).

For both models, all regressors were convolved with the canon-
ical hemodynamic response function (HRF) and regressed against
the blood-oxygen-level-dependent (BOLD) signal in each voxel.
Parametric modulators were not orthogonalized to each other,
allowing regressors to fully compete for explained variance. First-
level contrasts were constructed by weighting all parametric
modulators over baseline and submitted to second-level random-
effects group analyses for statistical analysis. All statistical para-
metric maps from group analyses were thresholded at P<0.001
(uncorrected) for voxel-level inference with a minimum cluster-
size criterion of 15 contiguous voxels, and subsequent cluster-
level family-wise error (FWE) correction for multiple testing at
P<0.05.
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GLM analysis of localizer tasks

The GLMs for analyses of motion and color localizers included
the following regressors: R1) boxcar function for the motion/color
phase, R2) boxcar function for the static/achromatic phase and
R3-R8) movement regressors as covariates of no interest. Again,
regressors were convolved with the canonical HRF and regressed
against the BOLD signal in each voxel. First-level contrasts were
constructed by separately weighting R1 and R2 over baseline, as
well as R1>R2. These contrasts were subsequently submitted to
second-level random-effects group analyses (paired t-tests) for
statistical evaluation.

ROI analyses

To investigate whether attribute values are systematically repre-
sented in Areas V4 and V5, a region of interest (ROI) analysis was
performed in two steps. First, regions maximally responsive to
functional localizers were identified. To this end, 9-mm spheres
were centered at peak activations in left and right V5 derived from
the group analysis of the motion localizer, and at peak activa-
tions in left and right V4 derived from the group analysis of the
color localizer. Within each of these four spheres, peak activa-
tions of the respective localizer were identified for each individual
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participant, and 6-mm spheres were centered at these coordi-
nates. Second, these individually adapted spherical ROIs were
used to extract mean beta weights from parametric modulators
for motion and color value (P1 and P2 of GLM1) for each partic-
ipant. The extracted beta values were then analyzed for signifi-
cance via a repeated-measures analysis of variance (rm-ANOVA)
with the factors attribute value (motion/color), region (V5/V4)
and hemisphere (left/right). Accordingly, the two-way interac-
tion between attribute value and region indicates whether the
respective attribute values are systematically represented in V5
and V4, and the three-way interaction between all factors further
allows testing for a hemisphere-specific effect. The remaining
interactions (hemisphere xregion, hemisphere x attribute value)
were included in the analysis, but were of no interest to our
research questions.

Results

Behavioral results

In the learning task, the mean accuracy for learning color values
(92.8+3.8% s.d.) was higher than the mean accuracy for motion
values (85.9 £ 6.6% s.d.; paired t-test, to3 =-5.57, P<0.001) across
all blocks. However, all participants successfully completed the
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Fig. 2. Behavioral results. A) Mean frequency of accept choices plotted against overall values (fitted with a sigmoid function). Error bars represent the
standard error of the mean. B) Mean reaction time plotted against overall values (fitted with a quadratic function). C) Mean accuracy for each
combination of attribute value types. D) Mean reaction time for each combination of attribute value types.
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learning task and achieved an accuracy of 98.1 (s.d. 2.5%) for both
attributes during their last two blocks (mean of additional block
number 4.4 +4 s.d.).

Participants showed a high level of accuracy in the main deci-
sion task (mean 87.5 + 6.8% s.d.; one-sample t-test against chance
level, t)s =27.56, P<0.001; Figure 2A and C) and responded on
average 873 +157ms (s.d.) after trial onset. Single-subject mul-
tiple linear regression models were used to estimate the effects of
the overall value and the absolute attribute value difference of a
stimulus (which are orthogonal to each other) on reaction times
(Figure 2B and D). This analysis was performed to test whether
overall value or attribute value similarity would facilitate choices.
Regression coefficients showed a negative effect for overall value
(one-sample t-test, tog =-4.27, P<0.001) and a positive effect for
absolute attribute values difference (o« = 3.87, P<0.001), suggest-
ing that participants were able to respond faster for stimuli with
high overall values and high attribute value similarity. Further-
more, the effect of overall value and absolute attribute value
difference on decision accuracy was tested using logistic regres-
sion models. In this analysis, absolute attribute value difference
had a significant negative influence on accuracy (one-sample t-
test, tos =—4.34, P<0.001), suggesting that participants were more
accurate when attribute values were similar, but the effect of
overall value was not significant (t;4 =-0.92, P=10.367).

Additional regression models were used to analyze differences
in the processing of motion and color values. These variables
were not included in the regression models above, since they are
highly correlated with overall value (r=0.77) and the absolute
attribute value difference (r= 1), respectively. In a logistic regres-
sion model predicting task accuracy, neither motion (one-sample
t-test, t4 =-0.38, P=0.704) nor color value (ts =-0.42, P=0.677)
were significant. In a linear regression model predicting reaction
times, motion value was not significant (tz4 =-1.86, P=0.076),
but color value had a significant negative impact (tzq =-2.80,
P=0.009). However, a paired t-test between the regression coef-
ficients of motion and color value did not reveal a significant
difference (t,4 =0.65, P=0.522). This suggests that, on aver-
age, participants paid approximately equal attention to both
attributes.

fMRI results
Value

The first goal of the fMRI analysis was to identify regions that
are involved in valuation processes. Using GLM1, we were able
to identify those regions that are specifically involved in the
valuation of individual stimulus attributes (i.e. the particular
values assigned to the stimulus’ motion and color). We only
report positive parametric modulations, because significant neg-
ative modulations were not observed. For motion value, activity
during correct decision trials showed a significant positive para-
metric modulation in regions including PCC and left posterior
inferior temporal gyrus (PIT; Figure 3A, Table 1), whereas a signifi-
cant positive parametric modulation by color value was observed
in ventral striatum and PCC (anterior to the PCC cluster for
motion value; Figure 3B, Table 1). However, a direct compari-
son of motion- and color-related parametric effects using paired
t-tests did not reveal significant differences at the whole-brain
level. To further explore this relationship, the aforementioned
regions were used as post hoc ROIs (PIT and PCC cluster of the
motion value contrast, and ventral striatum and PCC cluster of
the color value contrast, thresholded at Pync =0.001) and mean
beta values for motion and color value within these ROIs were

A Motion Value B

Color Value

C

Fig. 3. Brain regions showing significant activations at the group level
for A) motion value (GLM1), B) color value (GLM1), C) overall value
(GLM2) and D) absolute attribute value differences (GLM1). For
illustration purposes, t-maps (from second-level one-sample t-tests on
parameter estimates of respective parametric modulators) are
thresholded at Py <0.001 with a cluster extent threshold of kg = 15.
Labeled clusters survive cluster-level FWE correction at Pryg <0.05.

compared via paired t-tests (Bonferroni-corrected P-value crite-
rion of 0.05/4=0.0125). In line with the whole-brain results, the
analysis did not reveal significant differences between motion-
and color-related parametric effects [PIT: t(24)=1.5, P=0.15;
PCCrotion: 1(24) =0.4, P=0.71; PCCelor: t(24) =-2.4, P=0.02; ven-
tral striatum: t(24)=-0.7, P=0.5]. While these results do not
ultimately disprove the existence of attribute-specific valuation,
they nevertheless indicate that motion and color value computa-
tions do not seem to recruit clearly separable, attribute-specific
valuation modules within the current study.

Beyond the analyses of attribute valuation, GLM2 allowed to
investigate which neural regions take part in the computation
of overall value (i.e. the integrated value in terms of summed
attribute values). We observed clusters showing a significant
positive modulation of task-related activity by the stimulus’ over-
all value in regions including left dorsolateral prefrontal cortex
(dIPFC) and vmPFC (Figure 3C, Table 2). Compared to the anal-
yses of individual attribute values, the results reveal partially
overlapping neural regions (such as PCC and left PIT), which
is to be expected based on the intrinsic correlation between
overall and attribute-specific values. Due to this correlation, it
cannot be directly assessed in a statistically valid way whether
processes of overall and attribute-specific valuation show sys-
tematic neural differences. However, on the descriptive level, a
significant cluster in vmPFC was only observed for parametric
modulation of the stimulus’ overall value, whereas this clus-
ter was not significant in analyses of attribute-specific valua-
tion. This pattern fits well to previous studies which suggested
that vmPFC integrates information from multiple sources of evi-
dence to an overall value (Hare et al., 2009; Padoa-Schioppa
and Cai, 2011; Levy and Glimcher, 2012; Rangel and Clithero,
2013).

Absolute attribute value difference

The absolute difference between motion and color values was
used as a variable in GLM1 to identify comparator regions that
estimate differences between attribute values (Basten et al., 2010;
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Table 1. Brain regions showing task-related activation in GLM1. Height threshold: Punc <0.001, T24 = 3.47. Extent threshold: kg = 15 voxels.
All activations survive whole-brain correction for multiple comparisons at the cluster level (Prwg <0.05). Abbreviation: MOG, middle

occipital gyrus

MNI coordinates

Region Side x y z ke Trmax Prwe (cluster level)
Motion value
Posterior inferior temporal gyrus L -51 -61 -18 171 5.74 0.003
Posterior cingulate cortex 0 -31 35 105 5.03 0.025
Superior parietal lobe L -39 -76 46 157 4.68 0.005
Color value
Ventral striatum -9 14 -3 127 6.17 0.007
Superior parietal lobe R 18 -58 65 90 5.74 0.028
Posterior/middle cingulate cortex -15 -22 35 171 5.49 0.002
Superior frontal sulcus R 27 11 43 103 5.48 0.017
Anterior cingulate cortex 9 23 16 85 5.37 0.034
Dorsolateral prefrontal cortex L -48 35 16 167 391 0.002
Motion salience
Posterior cingulate cortex -9 -46 31 240 9.02 <0.001
LG/TPJ/MOG R 21 -58 -14 1670 8.56 <0.001
Posterior/middle cingulate cortex -3 -16 39 373 6.92 <0.001
Superior temporal gyrus/IPL/TPJ/mid-insular cortex/vmPFC L -54 -46 20 1504 5.87 <0.001
Superior frontal gyrus L -18 50 35 495 5.80 <0.001
Inferior frontal gyrus R 48 38 1 76 5.75 0.022
Mid-insular cortex R 33 -1 1 133 4.93 0.002
Superior frontal gyrus R 15 41 46 90 4.50 0.011
Color salience
IPL/middle temporal gyrus L -54 -13 -29 1610 9.08 <0.001
IPL/middle temporal gyrus 63 -52 20 1466 7.40 <0.001
Posterior cingulate cortex -12 -49 31 322 6.59 <0.001
Inferior frontal gyrus R 45 38 -10 84 6.50 0.009
Superior frontal gyrus/vmPFC L -18 29 58 345 6.06 <0.001
Posterior cingulate cortex 0 -16 39 215 5.91 <0.001
Hippocampus/putamen L =21 -4 5 262 5.67 <0.001
Fusiform gyrus R 42 -55 -18 189 5.60 <0.001
Cerebellum R 21 -82 -33 84 5.35 0.009
Inferior frontal gyrus L -51 32 -14 70 5.27 0.02
Middle frontal gyrus L -33 29 46 111 5.05 0.002
Absolute attribute value difference
Dorsomedial prefrontal cortex 0 32 43 287 8.85 <0.001
Inferior frontal gyrus R 33 26 -6 97 7.78 0.012
Middle frontal gyrus R 45 14 43 114 5.89 0.006
Inferior frontal gyrus L -33 20 1 72 5.75 0.038
Superior frontal gyrus R 27 17 58 92 5.66 0.015
IPL R 48 -52 58 113 5.56 0.006

Philiastides et al., 2010). By this means, we observed a significant
positive modulation of task-related hemodynamic activ-
ity within the dorsomedial prefrontal cortex (dmPFC; Figure 3D,
Table 1).

Salience

A significant positive modulation of task-related activity by
motion salience (GLM1) was observed in regions including bilat-
eral temporoparietal junction (TPJ), right lingual gyrus (LG)
and PCC (Figure 4A, Table 1), whereas a positive modulation
by color salience (GLM1) was found in bilateral inferior pari-
etal lobe (IPL), bilateral anterior temporal cortex (AT) and PCC
(see Figure 4B and Table 1). Direct comparisons of motion and
color salience effects by paired t-tests revealed no activations sur-
viving our significance criterion, suggesting that neither attribute
salience had a significantly stronger effect nor relies on spe-
cialized processing modules in our current decision task. For
modulation by overall stimulus salience (GLM2), partially over-
lapping regions including bilateral TP and PIT (Table 2) were
observed.

Attribute processing in V5/V4

Motion and color localizers were conducted to identify regions
specifically involved in the processing of physical stimulus
attributes (i.e. motion and color), independent of valuation pro-
cesses (Figure SA and B). As expected, the motion localizer
revealed significant activation in the group analysis within bilat-
eral VS (left V5: Tp=5.89, k=107, cluster-level Prwg=0.036,
x=-48, y=-67, z="5; right V5: T4 =6.28, k=109, cluster-level
Prwe =0.034, x=42, y=-64, z=9), and the color localizer within
bilateral V4 (left V4: T,4 = 8.66, k=753, cluster-level Prywg <0.001,
x=-30, y=-73, z=-14; right V4: T4 =8.63, k=753, cluster-level
Prwe <0.001, x =30, y=-73, z=-14).

ROI analyses were performed to test whether regions spe-
cialized in processing the physical attributes of the stimuli (i.e.
V5 for motion and V4 for color) also compute the respective
attribute values. For this purpose, beta estimates from paramet-
ric modulations by motion and color value were extracted from
V5 and V4 in both hemispheres, and entered into an rm-ANOVA
with factors attribute value (motion/color), region (V5/V4) and
hemisphere (left/right). Neither the two-way interaction between
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Table 2. Brain regions showing task-related activation in GLM2. Height threshold: Punc <0.001, T24 =3.47. Extent threshold: kg = 15 voxels.
All activations survive whole-brain correction for multiple comparisons at the cluster level (Prwe <0.05)

MNI coordinates
Region Side X y z ke Tmax Prwe (cluster level)
Overall value
Dorsolateral prefrontal cortex L -51 29 24 136 6.12 0.023
Superior parietal lobe L =27 -76 46 187 5.30 0.007
Posterior inferior temporal gyrus R 60 -25 -25 216 5.27 0.004
Posterior cingulate cortex -21 -22 35 499 5.14 <0.001
Inferior temporal gyrus L -54 -58 -18 215 4.97 0.004
Ventromedial prefrontal cortex 0 35 -18 212 4.74 0.004
Overall salience
Inferior temporal gyrus/TP] R 48 -34 1 1607 6.73 <0.001
TPJ/postcentral gyrus L =51 -22 35 415 6.11 <0.001
Inferior temporal gyrus L -33 -46 -18 181 5.87 <0.001
Occipital lobe L -33 -88 1 302 5.46 <0.001
Rostral anterior cingulate cortex 18 32 -10 108 5.24 0.007
Hippocampus R 30 -10 -18 96 492 0.012
Hippocampus L =27 -16 -14 81 4.53 0.024
Middle temporal gyrus L -39 -64 5 69 4.11 0.042

B Color Salience
x =53
L

Fig. 4. Brain regions showing significant group-level activations for A) motion salience and B) color salience (GLM1). For illustration purposes, t-maps
(from second-level one-sample t-tests on parameter estimates of the respective parametric modulator) are thresholded at Py <0.001 with a cluster
extent threshold of kg = 15. Labeled clusters survive cluster-level FWE correction at Pryg <0.05.

attribute value and region [F(1, 24) =0.51, P=0.48] nor the three-
way interaction between attribute value, region and hemisphere
[F(1, 24)=0.53, P=0.47] were significant, which does not sup-
port the hypothesis that attribute values are systematically pro-
cessed in V5 and V4. Furthermore, there were no significant
effects for the main effects or the remaining interactions of no
interest [attribute value: F(1, 24) =0.01, P=0.93; region: F(1, 24)
=3.15, P=0.09; hemisphere: F(1, 24)=0.12, P=0.73; hemi-
sphere xregion: F(1, 24)=0.51, P=0.48; hemisphere x attribute
value: F(1, 24)=2.57, P=0.12].

Discussion

The current experiment investigated how attribute values are pro-
cessed and integrated in the brain during decision-making. In par-
ticular, we tested the competing hypotheses whether (i) distinct
regions that specialize in the processing of a particular physical
attribute also compute the respective attribute value (Philiastides
et al., 2010; Lim et al., 2013), or whether (ii) attribute values are
collectively processed in a general valuation network consisting of
vmPFC, PCC and ventral striatum (Levy and Glimcher, 2012; Bartra
et al., 2013; Clithero and Rangel, 2014). To differentiate between
these hypotheses, we used a choice task in which monetary val-
ues were associated with the attributes motion and color, whose
physical properties are known to be processed in specialized brain

regions, namely Area V5 for motion (Watson et al., 1993) and Area
V4 for color (McKeefry and Zeki, 1997).

Whole-brain analyses showed that activity in PCC and ventral
striatum correlated with color value, whereas activity related to
motion value occurred in PCC and left PIT. In a direct comparison,
we did not detect any region that had a specifically stronger repre-
sentation of one compared to the other attribute value. This lack
of specificity suggests that the computation of particular attribute
values is not realized within specialized cortical modules, but
is instead accomplished in a dynamic manner within a network
comprising PCC, PIT and ventral striatum. Consistent with this
idea, ROI analyses did not reveal a systematic representation of
motion value in V5 and color value in V4, which does not sup-
port the hypothesis that attribute values and physical properties
of attributes are computed in the same regions. Taken together,
our data thus provide concordant evidence for the hypothesis that
values are homogeneously processed within a general valuation
network.

In contrast to our results, previous studies have supported
the hypothesis that attribute values are computed in attribute-
specific regions. In an experiment by Lim et al. (2013), participants
had to evaluate t-shirts based on how much they liked both the
appearance and meaning of Korean symbols that were printed on
them. The authors found that activity in fusiform gyrus corre-
lated with visual values, whereas activity in superior temporal
gyrus correlated with semantic values. Furthermore, a study by
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Fig. 5. Activations of localizer tasks in A) bilateral V4 (color localizer)
and B) bilateral V5 (motion localizer). For illustration purposes, t-maps
are thresholded at P, <0.001 with a cluster extent threshold of ky = 15.
All clusters survive cluster-level FWE correction at Prye <0.05. C) Mean
beta estimates of parametric modulation by motion and color value in
bilateral V5 and V4 (regions adapted to single-subject peaks of localizers;
for details see Methods section). As the corresponding results of the
rm-ANOVA with factors attribute value (motion/color), region (V5/V4)
and hemisphere (left/right) indicate, the data do not reveal a systematic
representation of motion and color value in V5 and V4, respectively.

Philiastides et al. (2010) demonstrated in a probabilistic choice
task that activity in fusiform face area correlates with the value
of face stimuli, and parahippocampal place area with the value of
house stimuli. For both studies, the brain regions correlating with
attribute values have also been associated with the processing of
physical attribute properties, which is not confirmed by data of
the present experiment.

This discrepancy could originate from several factors. First,
our design allowed us to differentiate value- and salience-related
effects for each attribute, which was not possible in the experi-
ment by Philiastides et al. (2010). As such, value correlations in
fusiform face area and parahippocampal place area might orig-
inate from differences in salience instead of value. Second, the
motion and color attributes in our paradigm are robustly asso-
ciated with well-defined regions in Areas V5 and V4. Arguably,
this connection is less straightforward in the aforementioned
studies, in particular for the semantic attribute of the study by
Lim et al. (2013), because the effects are more distributed across
brain regions. Therefore, it is less clear whether these results
actually arise from attribute-specific regions, as it is more diffi-
cult to precisely determine ROIs. Third, we used abstract, novel
stimuli in our paradigm, whereas the other studies used more
common stimuli (faces, houses and t-shirts). A possible mecha-
nism for neural attribute valuation could be that novel stimuli are
first computed in a domain-general network, in which attribute
values are processed homogeneously, but if stimuli are more
familiar and need to be evaluated frequently, the computation
of attribute values shifts toward the respective attribute-specific
regions. Thus, the processing of attribute values might change as
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a function of learning, which could reconcile the effects of our
experiment with previous studies.

Apart from analyses of single attribute values, we also inves-
tigated brain activity related to the overall value of stimuli and
found correlations with activity in, among other regions, left
dIPFC and vmPFC. Due to the correlation between attribute values
and overall values, our results show an overlap in their effects on
the neural level, which cannot be easily disentangled on statisti-
cal grounds. Nonetheless, it is of note that whole-brain analyses
of overall values revealed a significant correlation for a cluster in
vmPFC, which was not found in our analyses of attribute values
(neither for motion nor for color value). This is in line with the
view that viPFC is one of the main regions that represent inte-
grated value signals, which previous studies have argued for (Hare
et al., 2009; Padoa-Schioppa and Cai, 2011; Levy and Glimcher,
2012; Rangel and Clithero, 2013; Pelletier and Fellows, 2019). From
this perspective, decision problems are deconstructed into sub-
problems (such as the computation of single attribute values) that
are resolved in distributed brain regions, and the available evi-
dence is then ultimately combined to a unified value signal in
vmPFC, which is consistent with our findings.

Furthermore, we analyzed brain activity related to the absolute
difference between simultaneously presented attribute values.
This variable could be an indicator for regions that compare
attribute values and thus estimate difference signals that drive
the process of value integration. Consistent with findings from
other studies (Basten et al., 2010; Hare et al., 2011), we found
that absolute differences between attribute values were mainly
associated with activity in dmPFC. Moreover, the behavioral data
revealed that larger differences between attribute values were
associated with longer reaction times and a lower choice accu-
racy, which suggests that these trials were more difficult for
participants. One explanation for this relationship could be that
larger attribute value differences induce a higher need for value
integration and thus demand more cognitive resources. When
attribute value differences are small, each attribute value in
isolation already provides a good estimate for a stimulus’ over-
all value, and value integration is less important for effective
decision-making. But when attribute value differences are large,
itis crucial to integrate the underlying attribute values into a rep-
resentative overall value to make optimal decisions. Thus, dmPFC
could be responsible for the estimation of attribute value differ-
ence signals that indicate the need for value integration and form
the basis for the computation of overall values.

In addition to analyses of value-related effects, we also
explored salience-related effects. Salience refers to the subjec-
tive importance of a stimulus (Maunsell, 2004; Zink et al., 2006;
Litt et al., 2011; Leathers and Olson, 2012; Kahnt and Tobler,
2013; Kahnt et al., 2014) that guides attention and prioritizes the
processing of particular stimuli over less important ones. In the
context of this experiment, both high positive as well as high neg-
ative attribute values have a high salience, because both have a
large impact on decisions. The more salient an attribute value is
(i.e. the higher the absolute attribute value is), the less likely it is
that the other attribute value will outweigh its influence. Hence,
when time is limited, it is efficient to selectively process attributes
with higher salience and pay less attention to attributes with
lower salience (Kahnt and Tobler, 2013). We investigated brain
regions that could realize such a selection mechanism by ana-
lyzing neural correlates of absolute attribute values for motion
and color. As a result, motion salience was associated with bilat-
eral TPJ, right LG and PCC, whereas bilateral IPL, AT and PCC were
correlated with color salience. This network could therefore be
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responsible for allocating attentional resources and assigning pri-
ority to the attribute that is most relevant in a given situation.
Notably, activity in PCC was related to attribute value, attribute
salience as well as overall value, which suggests that it plays
a central part for neural information processing in value-based
decision-making.

There are some limitations that have to be taken into account
in the interpretation of our findings. First, our color and motion
attributes have different perceptual properties, but they were
both encoded via monetary values. However, in real-world deci-
sions, the attributes that have to be combined often have different
types of value encoding. For example, in the evaluation of a car,
the price has a monetary value encoding, the design an aesthetic
value encoding, and the safety rating is encoded as risk to our
health. Arguably, the attributes in our experiment still qualify as
different attributes, in the same way that the interior and exte-
rior design of a car can be evaluated independently, even though
both have an aesthetic value encoding. But it is an open question
in what way our results would differ if the attributes had different
types of value encodings. Second, while we did not observe rep-
resentations of attribute values in V4 or V5, we cannot decisively
rule out that possibility, since strong conclusions from null find-
ings are not statistically justified. Third, we modeled events in our
GLM for the duration of the whole choice period, but it is possible
that explicitly modeling different stages of the decision-making
process (such as attribute value identification and attribute inte-
gration) could reveal stronger and more precise effects. There is
also evidence that decision attributes are processed at different
rates (e.g. Sullivan et al., 2014), which could have played a role in
our task as well. For example, while color can, in principle, be per-
ceived immediately, motion perception requires the observation
of visual frames during a longer time span. The low temporal res-
olution of fMRI makes it challenging to better incorporate factors
like these, but a dedicated experimental design and methods like
the combination of electroencephalography and fMRI could help
to disentangle subprocesses of decision-making in more detail.

So far, most studies on attribute integration in value-based
decision-making (Hare et al., 2009; Basten et al., 2010; Philiastides
et al, 2010; Kahnt et al, 2011; Park et al, 2011; Lim et al,
2013; Hutcherson et al., 2015) have argued for a feed-forward
model, in which attribute values are separately computed in
dedicated regions, and only afterward integrated in a unifying
region like vmPFC. However, some studies have argued for a
more flexible model (Hunt et al., 2014; Siegel et al., 2015). In
this view, attribute values are determined in a dynamic process
that includes continuous feed-forward and feedback projections
as well as competitive inhibition between attributes. Hence, the
model proposes that attribute values are not computed sequen-
tially and in isolation. Instead, there is a constant exchange of
information in which value predictions are continuously updated
and re-evaluated, dependent on concurrent neural computa-
tions that process factors like salience, memory or affective
states. Since we observed a uniform neural network for differ-
ent types of attribute values, the results of our study are in
line with the latter model and support the idea that attribute
values are computed in an interdependent and contextualized
manner.
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Abstract

Background: Impaired decision making, a key characteristic of alcohol dependence
(AD), manifests in continuous alcohol consumption despite severe negative conse-
quences. The neural basis of this impairment in individuals with AD and differences
with known neural decision mechanisms among healthy subjects are not fully under-
stood. In particular, it is unclear whether the choice behavior among individuals with
AD is based on a general impairment of decision mechanisms or is mainly explained by
altered value attribution, with an overly high subjective value attributed to alcohol-
related stimuli.

Methods: Here, we use a functional magnetic resonance imaging (fMRI) monetary re-
ward task to compare the neural processes of model-based decision making and value
computation between AD individuals (n = 32) and healthy controls (n = 32). During
fMRI, participants evaluated monetary offers with respect to dynamically changing
constraints and different levels of uncertainty.

Results: Individuals with AD showed lower activation associated with model-based
decision processes in the caudate nucleus than controls, but there were no group dif-
ferences in value-related neural activity or task performance.

Conclusions: Our findings highlight the role of the caudate nucleus in impaired model-
based decisions of alcohol-dependent individuals.
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alcohol, computational modeling, decision making, fMRI, value
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INTRODUCTION

Alcohol dependence (AD) is a highly prevalent psychiatric disorder,
accounting for about 3 million deaths per year worldwide (World
Health Organization, 2018). It is characterized by a loss of control
over the consumption of alcohol, a negative emotional state (such as
anxiety) during withdrawal, and continued drinking despite repeated
harmful consequences (Everitt & Robbins, 2005; Koob & Volkow,
2010).

Regarding the neurobiological basis of addiction, multiple stud-
ies have investigated the neural response of AD patients to alcoholic
stimuli and related conditioning processes (Beck et al., 2012; Chase
et al., 2011; Kihn & Gallinat, 2011; Schad et al., 2019) indicating
an increased incentive salience and value attribution to those cues
(Wrase et al., 2007) as well as aberrant processing of nonalcoholic
stimuli, in terms of diminished responsiveness toward nonalcoholic
reinforcements (Goldstein & Volkow, 2011; Luijten et al., 2017;
Schacht et al., 2013; Sebold et al., 2017). However, it was also ob-
served that substance use disorders were associated with increased
limbic system sensitivity to reward and loss delivery (Bjork et al.,
2008).

A further important and putatively related aspect of addic-
tive disorders are maladaptive choices that oppose the explicitly
stated desires of the patients, such as continuing consumption
despite the desire to abstain. Here, two extensively explored
components of decision making are of importance that have been
characterized using computational modeling methods: (1) a flex-
ible planning system integrating all available information to find
the most appropriate decision and considering the consequences
of actions: the goal-directed or model-based system and (2) a rigid
habitual system that simply repeats actions that were rewarded in
the past without taking a model of the environment into account:
the habitual or model-free system (e.g., see Sebold et al., 2014).
In addictive behaviors, it was observed that there is a shift from
goal-directed (i.e, model-based) toward habitual (model-free) de-
cision making (e.g., Voon et al., 2017). On the neuronal level, it has
been suggested that AD develops through a systematic shift in the
neural systems that regulate behavior, with increased involvement
of the dorsolateral striatum/putamen (in rodents/humans) con-
trolling habitual behavior, and decreased involvement of the dor-
somedial striatum/caudate controlling flexible and goal-directed
behavior (Corbit et al., 2012; DePoy et al., 2013; Everitt & Wolf,
2002; Furlong et al., 2014; Gahnstrom & Spiers, 2020; Geerts
et al., 2020; Sharpe et al., 2019; Vollstadt-Klein et al., 2010). In
rodent studies, it has been shown that lesions of the dorsome-
dial striatum (comparable to human's caudate) block goal-directed
behavior (Yin et al., 2005), while in contrast, lesions of the dor-
solateral striatum (comparable to human's putamen) disrupt habit
formation (Yin et al., 2004). Thus, the capacity for decision making
in terms of goal-directed behavior seems to be a core function
affected in AD (Mollick & Kober, 2020; Sebold et al., 2014). In par-
ticular, AD patients continuously choose to consume alcohol and
neglect the long-term consequences of sustained consumption on

their physical and psychological health (Amlung et al., 2017; Phung
etal, 2019).

Other studies suggest that the choice behavior of AD patients
(Kamarajan et al., 2020; Rubio et al., 2008; Virkkunen, 1994) is based
on an overactive neural value system (Arcurio et al., 2015; Goldstein
& Volkow, 2011; Seo et al., 2013), which has been associated with
ventromedial prefrontal cortex (vmPFC; Bartra et al., 2013; Clithero
& Rangel, 2014; Lee et al., 2021). However, it is not well understood
how exactly and under what conditions these shifts in neural infor-
mation processing can occur.

Here, we developed a sequential decision-making task to inves-
tigate this process in AD patients and healthy control subjects via
functional magnetic resonance imaging (fMRI). To detect behavioral
and neural differences between AD patients and controls, we de-
signed a task that specifically relies on the ability to flexibly adapt
choices to multiple factors and their associated consequences. To
further contribute to the core question of whether AD affects deci-
sion networks in general, beyond choices that are specifically related
to alcohol, we used a task that relies on monetary incentives instead
of alcoholic stimuli.

In this decision task, participants had to decide whether to ac-
cept or reject various monetary offers that were presented to them.
Crucially, for each experimental block of 20 offers, participants
were only allowed to accept a maximum of 5 offers. To make optimal
choices and maximize the probability of accepting only the highest
offers in a block, participants thus had to consider three factors: (1)
the value of the current offer, (2) the number of offers that can still
be accepted before reaching the limit, and (3) the number of offers
that are remaining in the current block. These parameters were in-
cluded in a decision model (Economides et al., 2014) and computed
for the choice data. Parameter estimates of the model were then
used as parametric modulators in the analysis of the functional MRI
data to identify brain regions that compute model-based decision
processes, and to test for putative differences between AD patients
and controls.

Based on previous studies, we defined regions of interest
(ROIs) and hypothesized that AD patients would show (1) a de-
creased representation of model-based decision processes in cau-
date nucleus and (2) an increased representation of decision value
in vinPFC.

MATERIALS AND METHODS
Participants

The experimental sample consisted of 32 detoxified AD patients
and 32 healthy control subjects (Table 1). The sample was ac-
quired as part of the National Genome Research Network (Spanagel
et al., 2010) at Charité—Universitatsmedizin Berlin. All subjects
were right-handed, had a normal or corrected-to-normal vision,
and provided informed consent before participation. AD pa-
tients were diagnosed with AD according to DSM-IV and ICD-10
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TABLE 1 Descriptive statistics of alcohol-dependent patients and healthy control subjects

Control subjects (23 male, nine

AD patients (22 male, 10 female) female) Group difference

Mean SD Missing data Mean SD Missing data p T
Lifetime drinking history (consumption 9099 885.6 2 83.8 99 0 <0.01° -5.2

inkg)

Education level® Median: IQR: [o] Median: IQR: 4] M-W Z-value:

2 1 3 1 U-test: -1.49

0.137

Age 465 89 0 38.9 10.5 (o] <0.01* -3.13
Pack years of cigarette consumption® 216 181 (o] 96 147 (4] <0.01* -29
Number of smokers 25 - 0 10 - [} - -
Duration of dependence (years) 6.6 5.6 4 - - - - -
Age of dependence onset 40.8 7.8 4 - - - - -
Percentage of invalid trials® 24.27 9.40 [o] 2512 691 (4] 0.68 041

Abbreviations: AD, alcohol dependence; IQR, interquartile range; M-W U-test, Mann-Whitney U-test; SD, standard deviation.
*Ordinal variable corresponding to education levels in the German school system (from lowest to highest): 0 = no graduation, 1 = Hauptschule,

2 = Realschule, 3 = Abitur.

®Definition of pack years: ((number of consumed cigarettes per day/18) x c number of years smoked), with 18 as the standard amount of cigarettes in

one pack.

“Definition of invalid trials: maximum number of offers were already accepted or no response was given in time.

Decision Task

Response

2 sec

5 sec

2 sec

FIGURE 1 Trial structure of the decision task. In the decision phase, participants were presented with offer values (in cents) as well
as indicators for the remaining number of trials (maximum of 20 for each of the nine blocks) and for the number of offers that can still be
accepted (maximum of five in each block). In the response phase, participants specified their choice to accept or reject an offer with their left

or right index finger. IT, inter-trial interval

(Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition (DSM-1V), Structured Clinical Interview for DSM-IV Axis |
Disorders (SCID-I); First et al., 2001) and completed medically su-
pervised detoxification (mean detoxification days when data was
acquired: 12.71 + 4.93 SD). Exclusion criteria for all participants
were DSM-IV Axis-l disorders (excluding alcohol and nicotine
dependence in AD patients, and excluding only nicotine depend-
ence in control subjects), use of cannabinoids, benzodiazepines,
barbiturates, cocaine, amphetamines, opiates (tested by urine
screening) or psychotropic medication, claustrophobia, epilepsy,
other neurological or psychiatric ilinesses, and pregnancy. Data
sets of subjects that showed excessive head motion in the scan-
ner or failed to follow task instructions (i.e., subjects that con-
tinuously tried to accept offers even though the acceptance limit

was already reached) were excluded from further analyses. The
amount of lifetime alcohol consumption was assessed using the
Lifetime Drinking History (Skinner & Sheu, 1982) and the experi-
ment was approved by the local ethics committee.

Group comparisons revealed a difference with respect to age
(Table 1), which was controlled for by including age as a covariate
in statistical analyses of group differences. Further, as is commonly
found in studies on AD patients (Batel et al., 2006), patients showed
increased smoking behavior (Table 1) as indicated by pack years of
cigarette consumption (definition of pack years: (number of con-
sumed cigarettes per day/18) x number of years smoked; with 18
as the standard amount of cigarettes in one pack). Since cigarette
consumption was significantly correlated with lifetime alcohol intake
in AD patients (r=0.52, p= 0.003), and can therefore interfere with
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variance related to AD in statistical analyses, pack years of cigarette
consumption were not included as a covariate in our analyses.

Task

The decision task was implemented in Presentation software
(Neurobehavioral Systems) and consisted of nine blocks including
20 trials each. During each trial, participants had to decide whether
to accept or reject a monetary offer between 1 and 99 cents (€).
However, they were only allowed to accept a maximum of five out
of 20 offers in each block. The main challenge of the task was thus
to evaluate whether one should accept offers in early trials or one
should wait instead for potentially higher offers in later trials. To
allow for strategic decision making and rough estimates of upcoming
monetary offers, consecutive offers never exceeded a value differ-
ence of more than 11 cents, with possible value changes being taken
from the set [-11, -7, -3, 3, 7, 11]. Unknown to participants, the se-
quences of monetary offers followed a predefined pattern for each
block (Figure S1), but the order in which participants were presented
with block-specific patterns was randomized between participants.

Participants could base their decision whether to accept or reject
a given offer on primarily three factors: (1) offer value, indicating the
monetary amount of the current offer, (2) offer index, indicating how
many offers were already presented in a block, and (3) the number
of accepts, indicating how many offers were already accepted in a
block. Information about the current state of these three factors was
presented to participants in each trial for 5 s (Figure 1). After that,
in a separate response phase (2 s), participants had to indicate their
choice to accept or reject the offer via button presses with their left
or right index finger. When the choice was not indicated within the
time limit of 2 s, the offer was counted as rejected. The inter-trial
interval consisted of a simple fixation cross and lasted for 2 s. Every
block ended with a feedback screen (5 s), indicating the monetary
earnings of the respective block, and an empty pause screen (10 s),
in which participants could prepare for the next block.

Computational model

The decisions in the task allowed for strategic use of the variables
offer value, offer index, and the number of accepts. To estimate
to what extent participants took these variables into account, in-
stead of basing their choices solely on the offer value, a decision
model that has been validated for a similar sequential decision task
(Economides et al., 2014) was computed for the choice data. The
model estimates the expected value of accepting an offer V, by com-
paring the monetary offer value R with a model threshold M:

Va=R-M.

Accordingly, a high model threshold indicates that accepting an
offer has a low expected value.

The model threshold is computed in the following way:

M=ci+axc—-0xC3,

with ¢, being a constant threshold, a the number of offers accepted
previously, o the offer index, and ¢, and c, as weight parameters for a
and o, respectively. In this formulation, the model threshold increases
linearly when a increases (since accept choices should be more conser-
vative when many offers have already been accepted), and the model
threshold decreases linearly when o increases (since accept choices
should be more liberal when the end of a block is near).

Finally, the expected value of accepting V, is used to compute
the probability of accepting P, via a sigmoid function:

P 1
1+exp(—rxVy)

with r governing the slope of the probability distribution. Thus, the

computational model has four free parameters: a constant value

threshold (c,), weight parameters for the number of accepts (c,) and

the number of offers (c,), and a parameter for the slope of the sigmoid

function (z).

Invalid trials (i.e., in which the maximum number of offers were
already accepted or no response was given in time) were not included
in the model. To test for differences in task performance between
the patient and control group, the following behavioral variables
were analyzed: profit, mean reaction time, mean index of accepted
offers (indicating how long subjects were willing to wait), parameter
estimates of the computational decision model (c;, ¢,, and c;), and
mean model threshold (M). Group differences were tested via a gen-
eral linear model (GLM) including a fixed factor for group member-
ship (1 = controls, 2 = patients) and age as a covariate of no interest.

In addition to the analysis of behavioral data, the formula for the
model threshold M and the decision value R were also used in fMRI
analyses (as parametric modulators P2 and P1, see below). To iden-
tify neural correlates of these processes, the formula was applied for
each trial based on the participant’s extant behavior to that point
in the block, to create an idealized value that was entered into the
hemodynamic model as an idealized BOLD signal waveform.

MRI data acquisition and preprocessing
Functional data

Functional imaging was conducted in a 3 Tesla Siemens Tim Trio MRI
scanner (Siemens, Erlangen, Germany) with a 12-channel head coil.
32 contiguous slices were acquired in ascending order using a T2*-
weighted gradient-echo sequence. For each participant, 940 volumes
were recorded with the following imaging parameters: repetition
time (TR): 1.9 s; echo time (TE): 30 ms; matrix size: 64 x 64; field of
view (FOV): 192 mm; flip angle: 80°; voxel size: 3.1 x 3.1 x 2.8 mm®:
inter-slice gap: 0.7 mm.
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TABLE 2 Behavioral data of alcohol-dependent patients and healthy control subjects

Control subjects (23 male, nine

female)
Mean SD
Profit (cents; mean) 2725 134.6
Index of accepted offers (mean) 10.5 12
Reaction time (ms; mean) 596.9 1257
Model parameter c,: constant 66.8 6
value threshold
Model parameters c;: number 31 14
of accepts
Model parameter c;: offer index 13 01
Model threshold M: (cents; 59.3 38

mean)

AD patients (22 male, 10 female) Group difference®

Mean SD F p
2660.6 1225 206 0.157
10.2 15 0.47 0.498
605.5 130.3 0.07 0.787
67.7 7 0.35 0.556
31 12 0.01 0.908
13 0.1 04 0.551
60.2 49 125 0.268

*Group differences of behavioral data were analyzed via a GLM including a fixed factor for group membership and age as a covariate of no interest.

Structural data

For registration purposes, a high-resolution, T1-weighted structural
scan was acquired from every subject with a three-dimensional mag-
netization prepared rapid gradient-echo sequence (192 slices; TR:
2.3 s; TE 3.03 ms, matrix size: 256 x 256; FOV: 256 mm; flip angle:
9°; voxel size: 1x 1x 1 mm?).

Preprocessing

The data were analyzed in Matlab (MathWorks) using SPM12
(Wellcome Department of Imaging Neuroscience, Institute of
Neurology). Functional images were realigned to the first volume,
slice-time corrected, coregistered to the structural data, spatially
normalized to the template of the Montreal Neurological Institute
(MNI), resampled to a voxel size of 3 x 3 x 3 mm°, and smoothed
using a Gaussian kernel of 8 mm full-width at half-maximum.

fMRI data analysis
GLM analysis

The fMRI data were analyzed via a GLM for each participant.
Different event regressors were constructed as box-car functions
with onsets and durations of the respective choice periods:
Regressor R1 corresponded to the decision phase (Figure 1) of
all trials for which participants made valid choices, excluding tri-
als in which no response was given in the response phase, or tri-
als for which offers could not be accepted anymore because the
limit was already reached. To identify neural correlates of specific
decision variables, linear parametric modulators of regressor R1
were included in the GLM for the offer value (P1) and the model
threshold (P2). Thus, P1 comprises the raw monetary value of the
offer, whereas P2 represents model-based decision processes that

take the offer index and the number of accepts into account. Both
parametric modulators were z-transformed before they were added
to the model. In addition, to minimize the error term of the GLM,
regressors of no interest were included for the decision phase of
invalid trials (R2), the response phase (R3), the feedback (R4), and
pause (R5) phase between blocks, as well as six movement regres-
sors R6 to R11 from the realignment procedure. R2 was included as
aregressor of nointerest because it is uncertain whether meaningful
decision-making processes were present in invalid trials (since par-
ticipants either did not indicate their choice in time or did not need
to make a decision at all when they already accepted the maximum
of five offers per block). Likewise, regressors R3 to R5 were of no
interest since they were not part of the decision phase.

All regressors were convolved with the canonical hemodynamic
response function and regressed against the BOLD signal in each
voxel. Parametric modulators were not orthogonalized to each other,
allowing regressors to fully compete for explained variance. First-
level contrasts were constructed for offer values (P1) and model
thresholds (P2) by weighting parametric modulators over baseline
and submitted to second-level t-tests at the group level. One-sample
t-tests were conducted separately for the patient and control group,
and differential group effects were tested via two-sample t-tests
that included age as a covariate of no interest. All statistical para-
metric maps from group analyses were thresholded at p < 0.001
(uncorrected) for voxel-level inference with a minimum cluster-
size criterion of 10 contiguous voxels, and subsequent cluster-level
family-wise error rate -correction for multiple testing at p < 0.05.

ROI analysis

ROIs were defined via spheres centered on coordinates from
Economides et al. (2014). In particular, caudate nucleus (x = -12,
y = -6, z = 18, radius = 5 mm) was used as an ROI for model-based
decision processes, and vinPFC (x = 4, y = 52, z = 14, radius = 10 mm)
as an ROI for value representation. Mean beta values of modulator P1
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(offer value) and P2 (model threshold) were extracted from vmPFC and
caudate nucleus, respectively. To analyze differences between groups,
the beta values of each subject were entered into a GLM with a fixed
factor for group membership and a covariate of no interest for age.

RESULTS
Behavioral results

Behavioral measures did not show significant group differences
(Table 2), indicating that patients did not show impairments in task
performance. In line with this result, summed accept responses for
each trial in each block showed a similar distribution for both groups
(Figure S1).

fMRI results
Whole-brain results

The first goal of the fMRI analysis was to identify regions that pro-
cess the monetary value of offers. In the control group, whole-
brain analyses revealed significant parametric modulation of offer
values (P1) in a distributed set of regions including the dorsolateral
prefrontal cortex (dIPFC), ventral striatum (vStr), and dorsomedial
prefrontal cortex (dmPFC; Table 3; Figure 2A). The patient group
showed activation in a largely overlapping set of regions (Table 3),
and a whole-brain comparison of parametric group effects in a
two-sample t-test did not reveal significant differences between
the two groups.

Second, we investigated brain areas that demonstrated activation
related to model-based decision processes via the model threshold
parameter of the GLM (P2). In the control group, we did not observe
effects related to positive model thresholds, but activity in the cau-
date nucleus and inferior parietal lobe was significantly associated
with negative model thresholds (Table 3; Figure 2B), indicating stron-
ger neural activity when the threshold was low and participants were
more likely to accept offers. This is consistent with a previous study
that found stronger effects for negative compared to positive model
thresholds (Economides et al., 2014) and can be due to the BOLD
signal being highest for go responses. The patient group, in contrast,
did not show any activity related to negative model thresholds in the
whole-brain analysis, but there was a significant cluster in the middle
occipital gyrus associated with positive model thresholds (Table 3).

ROl results

ROI analyses were conducted to investigate group differences in
vmPFC (associated with value representation) and caudate activa-
tion (associated with model-based decision processes). There were
no group differences with respect to parametric effects of offer
values in vmPFC, F (1, 60) = 0.1, pspz = 0.834), but we observed

a significant difference in parametric effects of model thresholds
in caudate nucleus, F (1, 60) = 4.4, p-, = 0.028 (Figure 2C), with
stronger negative beta values for the control group.

DISCUSSION

This study was designed to compare neural processes of value
computation and model-based decision making between alcohol-
dependent patients and healthy control subjects. Participants per-
formed an fMRI decision task, in which monetary offers had to be
evaluated with respect to dynamically changing constraints. The re-
sults showed that patients had decreased functional representation
of model-based decision processes in the caudate nucleus, whereas
there were no group differences in terms of neural value representa-
tion or task performance.

Previous studies have found that the caudate is a crucial area
for the computation of goal-directed choices that require the con-
sideration of multiple factors and long-term planning (Balleine
& O’Doherty, 2010; Dolan & Dayan, 2013; Geerts et al., 2020;
Sharpe et al., 2019; Wunderlich et al., 2012). Likewise, in rodents,
model-based decision processes have been associated with signals
in the dorsomedial striatum (Balleine, 2005; Corbit et al., 2012;
Gahnstrom & Spiers, 2020), which corresponds to the caudate
activation that human neuroscience studies have identified. Our
finding that the neural representation of model-based decision
processes in the caudate nucleus is decreased for patients only
therefore suggests that AD impairs the neural computations in
the medial dorsal striatum for goal-directed choices, and supports
the hypothesis that the neural mechanism underlying the ability
to flexibly adapt choices to long-term consequences is one of
the core functions affected by the disorder (Bechara et al., 2001;
Goudriaan et al., 2007; Reiter et al, 2016; Sebold et al., 2014,
2017). Surprisingly, the occipital gyrus was associated with pos-
itive model thresholds in patients. Although this region clearly is
affected by AD (e.g., Hermann et al., 2007), so far little is known
about its role in decision-making processes, which makes it an in-
teresting research question for future studies.

Our data further revealed that offer value is represented in a
distributed set of regions including vStr, dIPFC, and dmPFC for both
the patient and the control group. However, we did not observe
systematic differences with respect to neural value computations
between the two groups. Previous studies have suggested that AD
could be based on an overactive valuation system (Arcurio et al.,
2015; Goldstein & Volkow, 2011; Seo et al., 2013). Since we did not
observe systematic group differences with respect to neural value
representations, the results of the current experiment do not sup-
port these hypotheses, and speak for a uniform processing of nonal-
coholic stimulus values in patients and healthy controls. In line with
that, Bjork et al. (2008) showed that reward and loss anticipation
during a monetary incentive delay task elicited similar activation of
vStr in patients and controls as well as similar mood responses. This
finding underlines the notion that value representation might not be
a characteristic marker of addiction.
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MNI coordinates
Pewe
Region Side X Y z T (cluster-level)
Controls
Offer value
Middle frontal gyrus L -24 -6 54 7.24 <0.001
Middle frontal gyrus R 48 14 40 712 <0.001
Dorsolateral prefrontal cortex R 44 40 24
Dorsomedial prefrontal M -2 30 42
cortex
Ventral striatum R 14 6 -6
Inferior parietal lobe R 40 -44 48 6.85 <0.001
Dorsolateral prefrontal cortex L -40 52 é 6.54 <0.001
Inferior parietal lobe L -44 -46 46 6.32 <0.001
Middle occipital gyrus R 20 -94 10 5.26 <0.001
Cerebellum L -38 -66 -38 498 <0.001
Cerebellum L -12 -78 -34 496 <0.001
Middle occipital gyrus L -38 -92 0 495 <0.001
Substantia nigra M 8 -18 -16 489 0.031
Negative model threshold
Caudate R 10 8 18 436 0.032
Inferior parietal lobe L 42 -54 48 41 0.039
AD patients
Offer value
Dorsolateral prefrontal cortex R 26 48 -8 6.51 <0.001
Dorsomedial prefrontal M -2 32 38
cortex
Ventral striatum R -10 10 -4
Inferior parietal lobe L 58 -44 50 5.65 <0.001
Cerebellum L -40 72 -32 4.69 <0.001
Cerebellum R 34 -56 -38 4.63 <0.001
Posterior cingulate cortex M 4 -26 32 3.99 0.02
Model threshold
Middle occipital gyrus -30 -80 10 4.06 0.022

Note: Height threshold, T,, = 3.23; extent threshold, k. = 10 voxels. All clus!
cluster-level FWE-control.

Interestingly, patients also did not show deviations in behavioral
task performance. One explanation for this finding is that patients
rely on different neural systems to achieve the same level of per-
formance. Compensatory effects like these could also be found in
other studies investigating decision making in AD patients (Charlet
etal, 2014; Claus et al., 2018; Sebold et al., 2017), but the literature
still shows mixed results (Galandra et al., 2018). The inconsisten-
cies in the studies could result from the relatively large variance of
decision-making tasks that were used since the tasks might recruit
slightly different neural systems.

The absence of group differences in behavior and caudate re-
sponding could also be interpreted in the light of a finding by Gilman
et al. (2015). They also observed that alcohol-dependent patients

ters survive whole-brain correction for multiple comparisons based on

and controls showed few differences in behavior or in mesolimbic
activation by choice for and receipt of (risky) gains. Interestingly, a
history of rewarded instrumental responses boosted the activation
of motivational neurocircuitry for additional reward in terms that pa-
tients exhibited heightened striatal activation that correlated with
total earnings during the task.

The lack of behavioral group differences in our data could be re-
lated to the novel decision-making paradigm that we used, which
might not have been optimal to detect differences on the behavioral
level. One could speculate that even though the neural differencesin
the caudate were not associated with behavioral group differences
in our task, they could have been revealed with a decision task that
includes more uncertainty and requires more complex long-term

st

980Q) S08 PEO) PUE SWD L, 3 395 [£20CHV10] B0 g ouR0 o M SEuSn m) 4G TISEL DR LLLO LI0P N0 & [ K 0 w0 i 9iq we) papeEn(] ‘S ‘TZ0T

Lo &

SOB0I7] SH0UAEO) 31 BIOE) HQEHALE 3Gh 4Q PAGIMOT MO SHAIE VO D JO BRI 0) KIBQFTOHBO KM B0



Original Publications

59

Al

MAGRABI €T AL

CLINIGAL  EXPERIMENTAL RESEARGH

A

Offer Value
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y=12

Mean Beta

caudate
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T T
Controls AD Patients

FIGURE 2 Brain regions showing parametric effects in the control group for (A) offer value and (B) negative model threshold. For
illustration purposes, t-maps are thresholded at p < 0.001 (uncorrected), k. = 10. Labelled clusters survive cluster-level FWE-correction at

p < 0.05. The patient group showed largely overlapping clusters for offer values (Table 3), and no significant clusters for negative model
thresholds. Abbreviations: dIPFC, dorsolateral prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; vStr, ventral striatum. (C) Functional
ROl results. Mean beta values in caudate nucleus were extracted from parametric modulators of model thresholds, and beta values in
vmPFC from modulators of offer values, respectively. ROls were defined as 5 mm spheres centered on coordinates from Economides et al.

(2014). Asterisks denote significant FDR-corrected p-values < 0.05

planning. In the framework of our task, this could for example be
tested in a future study by making trial-to-trial changes in monetary
values more erratic, by increasing the number of trials per block, or
by adding uncertainty to the number of offers that can be accepted
(e.g., an unknown randomized number between 5 and 10 instead of
the fixed number of 5).

Another limitation that has to be acknowledged in the interpreta-
tion of our study is that we did not control for nicotine dependence,

because it is significantly correlated with AD and would have inter-
fered with the analysis of alcohol-related effects. Even though this is
a common issue in the study of AD (Batel et al., 2006), it is a source
of uncertainty that limits the strength of the conclusions that can
be drawn.

To conclude, this study highlights the role of the caudate nucleus
in computing goal-directed choices and integrating multiple factors
into adaptive choices. AD patients showed a decreased functional

sl

S88Q) $08 1Pe0) PU SR, 3G 35 [€20240V10] 0 LWQETIERO LM “CEUBI) SWRI0D £Q TISHLBIYLLLL 0 L10PVe0d & [ 2 0 uje0 i 91 U0k} PapRBm] S TTOT

S

EHI0 ] S0 UAEO ) M1 BRAL) HGENEIE 3G £Q PAGIMOT M SHIGIE W) DI JO [N 20) Kieg ] dmpu) o 0



Original Publications

60

ALCOHOL DEPENDANCE AND DECISION-MAKING

ALC HOLISM

representation of model-based decision processes in this region,
which could be a key factor that characterizes decision-making dys-
functions related to AD.
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