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Zusammenfassung 

Hintergrund: Die Entscheidungsfindung spielt eine zentrale Rolle in unserem Leben und 

die Qualität unserer Entscheidungen hat einen großen Einfluss auf unsere Zukunft. Um 

den Entscheidungsprozess besser zu verstehen, hat sich die kognitive Neurowissen-

schaft bisher auf das Konzept des Entscheidungswerts konzentriert. Einer der wichtigsten 

Befunde ist, dass der Gesamtwert einer Entscheidungsoption mit der neuronalen Aktivität 

im ventromedialen präfrontalen Kortex (vmPFC) korreliert. Es ist jedoch immer noch un-

klar, wie genau dieses Signal im Gehirn berechnet wird. 

Methodik: Um diesen Prozess besser zu verstehen, wurden zwei Studien durchgeführt, 

welche die funktionelle Magnetresonanztomographie nutzen. Die erste Studie basiert auf 

der Idee, dass der Gesamtwert einer Entscheidungsoption sich in der Regel aus den 

Werten von verschiedenen Attributen zusammensetzt. Insbesondere sollte untersucht 

werden, ob die Werte von Attributen im vmPFC berechnet werden, wie Gesamtbewer-

tungen, oder in abgegrenzten, Attribut-spezifischen Regionen. Das Experiment bestand 

aus einer Entscheidungsaufgabe mit abstrakten Stimuli, die mit monetären Belohnungen 

verbunden waren und hinsichtlich der Attribute Bewegung (assoziiert mit der Hirnregion 

V5) und Farbe (Hirnregion V4) variierten. Die zweite Studie untersuchte, wie die Berech-

nung des Entscheidungswerts bei Patienten mit Alkoholabhängigkeit beeinflusst wird. In 

der experimentellen Aufgabe mussten Entscheidungen zu verschiedenen Geldangebo-

ten unter Unsicherheit gemacht werden. 

Ergebnisse: In der ersten Studie konnte repliziert werden, dass Gesamtwerte mit der 

Aktivität im vmPFC korrelieren. Allerdings wurde nicht bestätigt, dass Attributwerte sys-

tematisch in Attribut-spezifischen Hirnregionen repräsentiert werden. Stattdessen waren 

Attributwerte mit Aktivitäten im posterioren cingulären Kortex, ventralen Striatum und 

posterioren inferioren temporalen Gyrus verbunden. In der zweiten Studie gab es keine 

Unterschiede in der wertbezogenen neuronalen Aktivität oder im Verhalten zwischen ge-

sunden Probanden und Patienten, aber die Patienten zeigten während modellbasierter 

Entscheidungsprozesse eine geringere Aktivierung des Nucleus caudatus. 

Diskussion: Die Ergebnisse deuten darauf hin, dass die Charakterisierung der Funktio-

nen von isolierten Hirnregionen für die Beschreibung von neuronalen Entscheidungspro-

zessen weniger geeignet ist und Entscheidungsprozesse stattdessen innerhalb dynami-

scher Netzwerke berechnet werden. Die Ergebnisse des zweiten Experiments zeigen au-
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ßerdem, dass Krankheiten wie Alkoholabhängigkeit die neuronalen Prozesse von Ent-

scheidungen auch dann beeinflussen können, wenn keine alkoholbezogenen Stimuli vor-

liegen. Dies hatte in der Studie allerdings keinen signifikanten Einfluss auf die Qualität 

der Entscheidungen, was darauf hindeutet, dass die dynamischen Eigenschaften von 

neuronalen Entscheidungsnetzwerken Kompensationsmechanismen ermöglichen kön-

nen. 
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Abstract 

Background: Decision-making plays a key role in the human experience and the quality 

of our choices has a fundamental impact on our future. To better understand the decision-

making process, the field of decision neuroscience has focused on the concept of deci-

sion value and found that the overall value of a choice option correlates with neural activity 

in ventromedial prefrontal cortex (vmPFC). However, it is still unclear how exactly this 

neural signal is computed. 

Methods: Two studies using functional magnetic resonance imaging (fMRI) were con-

ducted to investigate this process from different angles. The first study is based on the 

idea that the overall value of a choice option is typically determined by evaluating and 

integrating different attributes. In particular, the goal was to investigate whether attribute 

values are computed in vmPFC, like overall values, or whether they are computed in 

distinct attribute-specific regions. The experiment consisted of a choice task with abstract 

stimuli, which were associated with monetary rewards and varied with respect to the at-

tributes motion and color (associated with the brain regions V5 and V4, respectively). The 

second study investigated how the computation of decision value is affected in patients 

suffering from alcohol dependence. The task required the evaluation of monetary offers 

with respect to dynamically changing constraints and different levels of uncertainty. 

Results: The first study could replicate the finding that overall values correlate with ac-

tivity in vmPFC. However, I did not find that attribute values were systematically repre-

sented in attribute-specific regions. Instead, attribute values were associated with activity 

in the posterior cingulate cortex, ventral striatum, and posterior inferior temporal gyrus. In 

the second study, there were no group differences in value-related neural activity or task 

performance, but patients showed lower activation associated with model-based decision 

processes in the caudate nucleus. 

Discussion: The results support the idea that the neural mechanisms for choices should 

be studied from the perspective of neural networks instead of investigating the functional 

properties of brain regions in isolation. Further, the findings of the second experiment 

demonstrate that clinical conditions like alcohol dependence can affect regional activa-

tions related to choices even in the absence of alcohol-related stimuli. However, this did 

not significantly affect behavioral task performance in the choice task, which suggests 

that the dynamic properties of decision-making networks can allow for compensatory 

mechanisms.
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1 Background 

Every day, we are faced with a virtually countless number of decisions. For the most part, 

they happen fast and seemingly automatic, such as the choice between taking the stairs 

or the elevator, when to drink water, or which chair to sit on. But from time to time, more 

important decisions must be made, such as choosing a career path or deciding to have 

children. These choices can require long periods of time, in which we carefully think about 

our available options, consider short- as well as long-term consequences, and evaluate 

them with respect to their advantages and disadvantages. We often invest a lot of time 

and effort into this process, because it can have a long-lasting impact on our future. 

Apart from its personal significance, decision-making also plays an important role in 

scientific research and receives wide interest from a variety of disciplines (Glimcher & 

Fehr, 2013; Kahneman, 2011). In the early days of decision research, psychologists were 

primarily interested in conscious and unconscious factors that can influence decisions, 

philosophers in the properties of free and ethical choices, biologists in the neural basis of 

decisions and its evolutionary development, economists in the prediction of consumer 

decisions, and computer scientists in the construction of artificial systems that exhibit in-

telligent choice behavior. Today, traditional borders between disciplines are collapsing, 

and researchers engage in interdisciplinary collaboration to develop a more comprehen-

sive account of decision-making. This endeavor has led to the emergence of new re-

search areas, such as the field of neuroeconomics, which has the goal to integrate eco-

nomic models of decision-making with findings from neuroscience and psychology. 

In this chapter, I will outline the conceptual framework that is being used in decision 

research, introduce typical experimental paradigms and prominent findings in decision 

neuroscience, and illustrate how my thesis fits into this context. 

1.1 Conceptual Framework 

In short, decision-making is the process that identifies the most valuable option from a 

set of alternatives. Conceptually, it has been proven difficult to clearly delineate the pre-

cise processes that decision-making consists of. This is in part because decision-making 

is intricately connected to various other cognitive functions. Choices are not made in iso-

lation, but heavily depend on functions like perception (what information is currently avail-
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able?), memory (have similar choices been made in the past?), or reasoning (which con-

sequences could the different choice options result in?). It has therefore been difficult to 

separate other cognitive functions from computations that can be considered as “pure” 

decision processes. 

One account proposes that decision-making involves five different stages (Fig. 1; 

Rangel et al., 2008): In the representation stage, the structure of the choice problem is 

defined, including the current state of the individual, the context of the situation, and the 

set of available options. In the valuation stage, each option is evaluated based on the 

desirability of the respective consequences and the probability of their occurrence. Cru-

cially, this does not necessarily lead to the objective value, but merely the subjective 

value, which is determined relative to the perspective of the individual and can be prone 

to errors based on false information. Finally, in the action selection stage, the option with 

the highest expected value is selected as the outcome of the decision, since it is esti-

mated to deliver the largest benefits. After the decision, the experienced consequences 

are compared with previous expectations in the outcome evaluation stage, and potential 

mismatches are being corrected for in the learning stage to improve future decisions. 

While the separation of these stages is certainly not clear-cut and can be questioned, it 

nevertheless provides a useful framework to structure research questions on decision-

making.  

Figure 1. Stages of Decision-Making. Figure adapted from Rangel et al. (2008). 



Background   6 

1.2 Experimental Paradigms 

Studies on decision-making have made use of a range of experimental paradigms, which 

are generally divided into the categories of value-based, social, and perceptual decision 

tasks. In this section, I will introduce each of them by describing typical task structures. 

Value-based decision tasks are designed to investigate the valuation stage of deci-

sion-making. A classical paradigm is the so-called Becker-DeGroot-Marschak auction 

(Becker et al., 1964; Plassmann et al., 2010), in which participants are given a monetary 

budget and asked to indicate how much they are willing to pay for presented products 

(such as food or clothing items). Afterwards, their bid competes against a computer-gen-

erated bid, which is computed as a random number within the budget of the participant, 

and participants can only buy the products for their bid if it is higher than the computer-

generated bid. Hence, the higher the bid of the participant, the more likely it is that they 

can buy the product. Through this procedure, the task has shown to provide a reliable 

estimate of the subjective value that participants associate with specific products, which 

can be used to investigate how value impacts choice behavior. 

In social decision tasks, participants are faced with choices that involve other peo-

ple. Paradigms are specifically designed such that participants must take different per-

spectives into account and consider the expectations, intentions, and emotions of others. 

Economists have investigated these types of decisions under the heading of game theory 

(Camerer, 2003; von Neumann & Morgenstern, 1947). A typical paradigm is the so-called 

ultimatum game (Güth et al., 1982; Sanfey et al., 2003), in which a player A receives a 

certain amount of money that he can share with another player B. Player A is free to 

choose how much money he wants to keep for himself and how much he wants to share. 

But crucially, player B has the option to decline an offer suggested by player A, in which 

case none of the two players receive any money. Traditional economic theories would 

predict that player B will accept any offer, since even the smallest offer is a gain for the 

player compared to not receiving any money. However, it has been shown that players 

do not attempt to maximize their profit in this way and instead frequently reject offers 

when they are considered unfair (Nowak et al., 2000). 

Finally, perceptual decision tasks are designed to study choices based on sensory 

information. In the random-dot motion discrimination task (Heekeren et al., 2006; New-

some et al., 1989), participants are required to estimate the dominant motion direction 

within a set of moving dots. A subset of these dots exhibits random motion, whereas 
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another subset coherently moves into the same direction. If the number of coherently 

moving dots is low, then the decision is more difficult, because the sensory evidence is 

low. The paradigm therefore provides an elegant way to manipulate levels of sensory 

evidence on a continuous scale and investigate how choices are affected. 

1.3 Major Findings in Decision Neuroscience 

In the following, I will outline some of the milestones in decision neuroscience that are 

particularly relevant for this thesis. The goal of this section is not to discuss the specific 

experiments in detail, but merely to sketch the research landscape and provide a general 

overview of the major findings. 

1.3.1 Neural Representation of Value 

The valuation stage of decision-making has arguably received the most attention in the 

literature so far. One of the most robust findings is that neural activity in ventromedial 

prefrontal cortex (vmPFC) correlates with the subjective value of a choice option when it 

is considered (Bartra et al., 2013; Kable & Glimcher, 2007; Lee et al., 2021; Pelletier et 

al., 2021; Rangel & Clithero, 2013). This has been demonstrated for a variety of stimuli 

in neuroimaging research, such as food items (Hare et al., 2009; Plassmann et al., 2007), 

monetary gambles (Chib et al., 2009; Levy et al., 2010; Tom et al., 2007), clothes (Lim et 

al., 2013), charity donations (Hare et al., 2010), or wine (Plassmann et al., 2008). Further 

evidence for this finding was observed in clinical studies on vmPFC lesions (Fellows & 

Farah, 2007; Gläscher et al., 2012) as well as electrophysiological studies in primates 

(Leathers & Olson, 2012; Padoa-Schioppa, 2009; Wallis & Miller, 2003). 

Based on the consistency of these findings, decision neuroscientists have hypothe-

sized that vmPFC could be an area where multiple sources of evidence converge and get 

integrated into an overall value signal that drives decision-making (Hare et al., 2009; Levy 

& Glimcher, 2012; Padoa-Schioppa & Cai, 2011). According to this theory, different parts 

of a decision problem could be processed in a range of different brain regions, but even-

tually, all the relevant information is propagated to the vmPFC, where it is combined to a 

unified value representation. Signals in vmPFC could thus encode a summary of the 

available evidence and serve as an indicator of the overall value of a choice option. Apart 

from vmPFC, value signals are also frequently found in the ventral striatum (vStr) and the 

posterior cingulate cortex (PCC; Bartra et al., 2013; Clithero & Rangel, 2014). Up to this 
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point, it is still unclear how exactly these regions interact in the process of value integra-

tion and what their differential roles are. 

1.3.2 Model-Based vs. Model-Free Decisions 

While it is a challenging scientific endeavor to isolate where values are encoded in the 

brain, it is even more challenging to identify how they are computed. Which computational 

strategy does the brain use to solve this task and what are the sub-processes that lead 

up to an estimate of decision value? 

One way this question has been investigated in the literature is based on a distinc-

tion between model-based and model-free decision-making (Daw et al., 2011; Dolan & 

Dayan, 2013; Gläscher et al., 2010). Model-based choices are based on an explicit cog-

nitive model of the environment, which is used to form predictions about potential conse-

quences of decisions, their likelihood, and their subjective value. This type of decision-

making is prospective, goal-directed, and can flexibly adapt to changing circumstances, 

but typically requires a considerable amount of time and effort. In contrast, model-free 

choices are based on a relatively simple set of rules to form habitual connections between 

specific stimuli and behavioral responses. Here, we do not take the full complexity of a 

choice problem into account and instead apply simplified heuristics that have been shown 

to produce satisfactory choices in similar situations in the past. Compared to model-based 

choices, model-free decisions are retrospective, automatic, and fast. But we must accept 

the risk of oversimplifying the situation and potentially overlooking important details. 

For instance, when we decide whether we want to go to a specific restaurant, a 

model-free mechanism could evaluate the restaurant simply by how well the food tasted 

on average during our last visits. In contrast, a model-based mechanism could be based 

on a complex cognitive model that considers recommendations from friends, the specific 

cook that is preparing the food today, or the restaurant’s online ratings. Each of these 

attributes is first evaluated separately and then finally integrated to a combined overall 

value to determine optimal choices (Hunt et al., 2014; Kahnt et al., 2011). 

A particularly influential mechanism that has been proposed for the computation of 

value in model-free decisions is known as reinforcement learning (Dayan & Niv, 2008; 

Sutton & Barto, 1998). In reinforcement learning, the expected value of a choice option 

(pre-choice) is compared with the experienced value (post-choice). If the two values 

turned out to be different, the prediction of the expected value is changed for future 

choices based on the magnitude of the difference between expected and experienced 
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value (called prediction error). The larger the prediction error, the stronger is the change 

of the expected value towards the experienced value. In the classical formulation, ex-

pected values are updated via the following learning rule (known as temporal difference 

learning): 

 

𝑉!"# = 𝑉! + 𝛼 × 𝛿! 

𝛿! = 𝑅! − 𝑉! 

 

where 𝑉 is the expected value, 𝑅 the experienced value (reward), 𝛿 the prediction error, 

and 𝑡 a time variable. Further, 0 ≤ 𝛼 ≤ 1 defines the learning rate that controls how 

strongly the expected value should be changed (the expected value would not change at 

all with	𝛼 = 0, whereas it would be completely adapted to the experienced value with	𝛼 =
1). 

One experimental paradigm that is used to study model-based choices is the so-

called two-step decision task (Deserno et al., 2015), in which participants are required to 

make two sequential choices between pairs of abstract stimuli to obtain monetary re-

wards. For example, one option might offer a higher potential reward but also a higher 

risk of failure, while the other option might offer a lower potential reward but also a lower 

risk of failure. Since the transition probabilities of the first stage are explicitly instructed, 

participants can strategically use this knowledge of the task structure to increase their 

odds of reaching stimuli with a high expected value. By fitting a computational model to 

the choice behavior, researchers can then quantify to what extent participants were ap-

plying a model-based compared to a model-free approach.  

It has been observed that people often use a mixture of both strategies, but that 

there is individual variation in the relative emphasis placed on each strategy (Daw et al., 

2011; Gläscher et al., 2010; Smittenaar et al., 2013). On the neural level, experiments 

have shown that the striatum plays a crucial role for these computations. Model-based 

decision processes have primarily been associated with activity in the caudate nucleus/ 

dorsomedial striatum (in humans/rodents), whereas model-free computations have been 

linked to the putamen/dorsolateral striatum (Dolan & Dayan, 2013; Gahnstrom & Spiers, 

2020; Geerts et al., 2020; Sharpe et al., 2019; Wunderlich et al., 2012). Further, in rein-

forcement learning models of model-free choices, studies have demonstrated that the 

ventral part of the striatum is associated with the magnitude of prediction errors (Hare et 
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al., 2008; McClure et al., 2003; O’Doherty et al., 2003), with a particular involvement of 

dopaminergic neurons (Montague et al., 1996; Schonberg et al., 2007). 

1.4 Goal of Thesis 

As noted above, the majority of previous studies in decision neuroscience were con-

cerned with the question of where decision values are represented in the brain. This has 

led to the discovery of robust findings, in particular the correlation between overall deci-

sion values and vmPFC activation. However, little is known about the processes that gen-

erate this signal. The main goal of this thesis is to shed further light on the neural compu-

tations that lead to decision value signals in the brain, and to explore the factors that can 

influence these signals in the decision-making process. To this end, two studies using 

functional magnetic resonance imaging (fMRI) were conducted. 

1.4.1 Study 1: Neural Integration of Attributes in Decision-Making 

The first fMRI experiment aimed to investigate how the brain evaluates and integrates 

decision attributes. In most situations, the value of a choice option could be determined 

by evaluating a range of individual attributes separately and then combining these evalu-

ations to arrive at a unified overall value (O’Doherty et al., 2021; Suzuki, 2022). For ex-

ample, the overall value of a car can depend on how we evaluate its size, speed, or color, 

and how much subjective weight we assign to each of these attributes. In the experiment, 

I used a decision task in which monetary values were attached to different perceptual 

attributes of an artificial stimulus, to examine how attribute values are computed in the 

brain. The results could then be compared with the neural correlates of 1) attribute iden-

tification, which must occur before attribute valuation, and 2) overall value computation, 

which must occur after attribute valuation. 

1.4.2 Study 2: Neural Basis of Decisions in Alcohol-Dependent Patients 

The second fMRI experiment examined neural differences in decision processes between 

alcohol-dependent (AD) patients and healthy control subjects. By studying the functional 

properties of psychiatric disorders and how they affect cognitive functions, we can not 

only gain insights for clinical applications, but also improve our understanding of cognitive 

functions in general. Alcohol addiction is a highly prevalent disease that severely affects 

the physical and psychological health of patients, but its cause as well as its neural basis 
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is not well understood. Since AD patients compulsively choose to consume alcoholic stim-

uli that provide short-term rewards, but fail to make decisions that take the negative long-

term consequences of sustained alcohol consumption into account, impairments of 

model-based or value-related decision processes could be crucial factors. Previous stud-

ies showed neural differences between patients and controls when tasks required deci-

sions about alcoholic stimuli (Beck et al., 2012; Schad et al., 2019), but it is unclear to 

what extent these results generalize to non-alcoholic stimuli as well. To investigate this, 

a new experimental paradigm was designed, which included decisions about monetary 

stimuli and specifically relied on the ability to compute model-based decisions and dy-

namically adapt to changing circumstances. 
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2 Methods 

This section summarizes the most important parts of the experimental methods that were 

used to conduct the experiments. More details can be found in the attached original pub-

lications. 

2.1 Study 1: Neural Integration of Attributes in Decision-Making 

Twenty-five subjects (14 female; mean age 28.1 ± 4 SD) participated in the fMRI experi-

ment. Participants had to complete a variation of the random dot task (e.g., Gold & Shad-

len, 2007), in which moving dots varied with respect to two attributes, motion direction 

and color (with 6 different levels each). Each attribute level was associated with a mone-

tary value from the set {-15, -10, -5, 5, 10, 15} (€ cents). The task of the participants was 

to identify the attribute levels of a stimulus, remember the corresponding monetary val-

ues, and combine them, to decide whether they want to accept or reject a stimulus. For 

example, if the dots are blue and move to the right, and this would correspond to -15 and 

+5 cents respectively, then the combined value of the stimulus is -10 cents and should 

therefore be rejected to avoid a monetary loss. The task consisted of six experimental 

blocks with 30 trials each. Associations between attribute levels and monetary values 

were learned separately a few days before scanning (mean days 2 ± 0.4 SD). 

The task design allowed to investigate the brain regions responsible for the pro-

cessing of attribute values and compare them with 1) the regions integrating individual 

attribute values to combined overall values, 2) the regions associated with the identifica-

tion and perceptual processing of an attribute (independent of decision value), namely 

area V4 (McKeefry and Zeki, 1997) for color and area V5 for motion (Watson et al., 1993; 

Gallivan et al., 2018), and 3) the regions involved in processing attribute salience (the 

subjective importance of a stimulus that guides attention, corresponding to absolute at-

tribute values; Kahnt and Tobler, 2013; Litt et al., 2011; Maunsell, 2004; Zhang et al., 

2017). 

To analyze the fMRI data, two general linear models (GLM) were computed. GLM1 

included a regressor R1 of all trials with correct choices (in which participants accepted 

positive and rejected negative overall values) and five linear parametric modulators: P1) 

motion value, P2) color value, P3) motion salience (absolute motion value), P4) color 

salience (absolute color value), and P5) the absolute difference between motion and color 
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value. Further, regressors of no interest were included to increase the signal-to-noise 

ratio of the model, namely regressor R2 including trials with incorrect choices trials and 

six movement regressors R3-R8 from the MRI image realignment procedure. 

Whereas GLM1 was targeted at analyzing individual attribute properties, GLM2 was 

designed to analyze overall value and overall salience. In contrast to GLM1, it only in-

cluded two parametric modulators: P1) overall value (sum of motion and color value) and 

P2) overall salience (absolute overall value). These modulators were not part of GLM1, 

because the significant correlations between individual and overall attribute values/sali-

ence would confound the results of the analyses. 

Apart from analyzing whole-brain effects (punc < 0.001, cluster extent threshold kE = 

15 voxels, pFWE < 0.05), region-of-interest (ROI) analyses were also conducted to analyze 

whether areas V4 and V5 were involved in computing color and motion value instead of 

merely attribute identification and perceptual processing. The precise locations of color- 

and motion-sensitive regions were estimated for each participant with the help of inde-

pendent localizer tasks. Mean beta weights were extracted from parametric modulators 

P1 (motion value) and P2 (color value) of GLM1 and analyzed for significance via a re-

peated-measures analysis of variance (rm-ANOVA) with the factors attribute value (mo-

tion/color), region (V5/V4), and hemisphere (left/right). 

2.2 Study 2: Neural Basis of Decisions in Alcohol-Dependent Patients 

32 detoxified alcohol-dependent (AD) patients (10 female; mean age 46.5 ± 8.9 SD) and 

32 healthy control subjects (9 female; mean age 38.9 ± 10.5 SD) participated in the ex-

periment. Patients were diagnosed according to the DSM-IV and ICD-10 (Diagnostic and 

Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), Structured Clinical Inter-

view for DSM-IV Axis I Disorders (SCID-I); First & Gibbon, 2004). Group comparisons 

revealed a significant difference with respect to age (T64 = -3.13, p < 0.01), which was 

controlled for by including age as a covariate in statistical analyses of group differences. 

In addition to that, patients showed increase smoking behavior (indicated by pack years 

of cigarette consumption; T64 = -2.9, p < 0.01), which is a common finding in studies on 

AD patients (Batel et al., 1995). But since cigarette consumption was significantly corre-

lated with lifetime alcohol intake in AD patients (r = 0.52, p < 0.01) and can therefore 

interfere with variance related to alcohol dependence, covariates relating to smoking be-

havior were not included in my analyses. 
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In the MRI scanner, participants had to complete a sequential decision-making task 

in which they had to accept or reject monetary offers between 1 and 99 cents (€). Cru-

cially, for each experimental block of 20 offers, participants were only allowed to accept 

a maximum of 5 offers. To make optimal choices and maximize the probability of accept-

ing only the highest offers in a block, participants thus had to consider three factors: 1) 

the value of the current offer, 2) the number of offers that can still be accepted before 

reaching the limit, and 3) the number of offers that are remaining in the current block. 

These parameters were included in a computational decision model (Economides et al., 

2014) and fitted to the choices of each participant. The model estimates the expected 

value of accepting an offer 𝑉$ by comparing the monetary offer value 𝑅 with a model 

threshold 𝑀: 

 

𝑉$ = 𝑅 −𝑀 

 

Accordingly, a high model threshold indicates that accepting an offer has a low expected 

value. The model threshold is calculated with this formula: 

 

𝑀 = 𝑐# 	+ 	𝑎 × 𝑐% − 𝑜 × 𝑐& 

 

with 𝑐# being a constant threshold, 𝑎 the number of offers accepted previously, 𝑜 the offer 

index, and 𝑐% and 𝑐& as weight parameters for 𝑎 and 𝑜, respectively. In this formulation, 

the model threshold increases linearly when 𝑎 increases (since accept choices should be 

more conservative when many offers have already been accepted), and the model thresh-

old decreases linearly when 𝑜 increases (since accept choices should be more liberal 

when the end of a block is near). Finally, the expected value of accepting 𝑉$ is used to 

compute the probability of accepting 𝑃$ via a sigmoid function: 

 

𝑃$ =
1

1 + exp(−𝜏 × 𝑉$)
 

 

with 𝜏 governing the slope of the probability distribution. Parameter estimates of the model 

were then used as parametric modulators in the analysis of the fMRI data to identify brain 

regions that compute model-based decision processes and to test for putative differences 
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between AD patients and controls. This was modelled as a regressor representing the 

decision phase of valid trials with parametric modulators for the offer value and model 

threshold. The remaining regressors were of no interest and represented invalid trials 

(when participants failed to make a response within the time limit), the response phase, 

the feedback phase, and pauses between experimental blocks.  

Based on previous studies, I defined regions of interest (ROIs) and hypothesized that 

AD patients would show 1) an increased representation of decision value in vmPFC, 2) a 

decreased representation of model-based decision processes in caudate nucleus. 
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3 Results 

3.1 Study 1: Neural Integration of Attributes in Decision-Making 

Participants showed high accuracies in the main decision task (mean 87.5 ± 6.8 % SD; 

one-sample t-test against chance level, t24 = 27.56, p < 0.001) and responded on average 

873 ± 157 ms (SD) after trial onset.  

Analyses of fMRI data revealed differential neural correlates for the attribute values 

of motion and color, respectively (see GLM1; section 2.1). For motion value, activity dur-

ing correct decision trials showed a significant positive parametric modulation in regions 

including the posterior cingulate cortex (PCC) and left posterior inferior temporal gyrus 

(PIT; Fig. 2A), whereas a significant positive parametric modulation by color value was 

observed in ventral striatum and PCC (anterior to the PCC cluster for motion value; Fig. 

2B). However, a direct comparison of motion- and color-related parametric effects using 

paired t-tests did not reveal significant differences at the whole-brain level. To further 

investigate this relationship, these regions were used as post-hoc ROIs (the PIT and PCC 

cluster of the motion value contrast, and the ventral striatum and PCC cluster of the color 

value contrast, thresholded at punc = 0.001) and mean beta values for motion and color 

value within these ROIs were compared via paired t-tests (Bonferroni-corrected p-value 

criterion of 0.05/4 = 0.0125). Consistent with whole-brain results, the analysis did not 

reveal significant differences between motion- and color-related parametric effects (PIT: 

t(24) = 1.5, p = 0.15; PCCmotion: t(24) = 0.4, p = 0.71; PCCcolor: t(24) = -2.4, p = 0.02; vStr: 

t(24) = -0.7, p = 0.5). Although these findings do not definitively refute the existence of 

attribute-specific valuation, they imply that the calculation of motion and color value does 

not appear to involve distinct, attribute-specific valuation modules in this study. 

Significant positive modulation of task-related activity by the stimulus’ overall value 

(combined values; GLM2) were found in regions including left dorsolateral prefrontal cor-

tex (dlPFC) and vmPFC (Fig. 2C). Further, the absolute difference between motion and 

color values was used as a variable in GLM1 to identify comparator regions that estimate 

differences between attribute values. Here, I observed a significant positive modulation 

of task-related hemodynamic activity within the dorsomedial prefrontal cortex (dmPFC; 

Fig. 2D). 
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Figure 2. Brain regions showing significant activations at the group level for A) motion value (GLM1), B) color 
value (GLM1), C) overall value (GLM2), and D) absolute attribute value differences (GLM1). For illustration 
purposes, t-maps (from second-level one-sample t-tests on parameter estimates of respective parametric mod-
ulators) are thresholded at punc < 0.001 with a cluster extent threshold of kE = 15. Labeled clusters survive 
cluster-level FWE-correction at pFWE < 0.05. Figure adapted from Magrabi et al. (2022a). 

 

ROI analyses were conducted to test whether regions specialized in attribute identifica-

tion (i.e., V4 for color and V5 for motion) are also involved in processing the respective 

attribute values of the stimuli. For this purpose, beta estimates from parametric modula-

tions by motion and color value were extracted from V5 and V4 (Fig. 3) in both hemi-

spheres and included in a rm-ANOVA with factors attribute value (motion/color), region 

(V5/V4) and hemisphere (left/right). Neither the two-way interaction between attribute 

value and region (F(1, 24) = 0.51, p = 0.48) nor the three-way interaction between attrib-

ute value, region and hemisphere (F(1, 24) = 0.53, p = 0.47) were significant, which does 

not support the hypothesis that attribute values are systematically processed in V5 and 

V4. Further, there were no significant results for the main effects or the remaining inter-

actions of no interest (attribute value: F(1, 24) = 0.01, p = 0.93; region: F(1, 24) = 3.15, p 

= 0.09; hemisphere: F(1, 24) = 0.12, p = 0.73; hemisphere x region: F(1, 24) = 0.51, p = 

0.48; hemisphere x attribute value: F(1, 24) = 2.57, p = 0.12). 
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Figure 3. Activations of localizer tasks in A) bilateral V4 (color localizer) and B) bilateral V5 (motion localizer). 
For illustration purposes, t-maps are thresholded at punc < 0.001 with a cluster extent threshold of kE = 15. All 
clusters survive cluster-level FWE-correction at pFWE < 0.05. C) Mean beta estimates of parametric modulation 
by motion and color value in bilateral V5 and V4 (regions adapted to single-subject peaks of localizers; for details 
see methods section). Results of the rm-ANOVA with factors attribute value (motion/color), region (V5/V4) and 
hemisphere (left/right) indicate that the data do not reveal a systematic representation of motion and color value 
in V5 and V4, respectively. Figure adapted from Magrabi et al. (2022a). 

 

3.2 Study 2: Neural Basis of Decisions in Alcohol-Dependent Patients 

On the behavioral level, patients did not show significant differences to control subjects 

(earned profits: F(1, 60) = 2.06, p = 0.16; reaction times: F(1, 60) = 0.47, p = 0.49; model 

value threshold c1: F(1, 60) = 0.35, p = 0.56; model number of accepts c2: F(1, 60) = 0.01, 

p = 0.91; model offer index c3: F(1, 60) = 0.4, p = 0.55; model threshold	M: F(1, 60) = 

1.25, p = 0.27). 

The first goal of the fMRI analysis was to locate regions that process monetary val-

ues of offers. In the control group, whole-brain analyses revealed a significant parametric 

modulation of offer values (P1) in a distributed set of regions including dlPFC, ventral 

striatum, and dmPFC (Fig. 2A). The patient group showed activation in a largely overlap-

ping set of regions, and a whole-brain comparison of parametric group effects in a two-

sample t-test did not reveal significant differences between the two groups. 
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Figure 4. Brain regions showing parametric effects in the control group for A) offer value and B) negative model 
threshold. For illustration purposes, t-maps are thresholded at p < 0.001 (uncorrected), kE = 10. Labelled clusters 
survive cluster-level FWE-correction at p < 0.05. The patient group showed largely overlapping clusters for offer 
values, and no significant clusters for negative model thresholds. Abbreviations: dlPFC, dorsolateral prefrontal 
cortex; dmPFC, dorsomedial prefrontal cortex; vStr, ventral striatum. C) Functional ROI results. Mean beta val-
ues in caudate nucleus were extracted from parametric modulators of model thresholds, and beta values in 
vmPFC from modulators of offer values, respectively. ROIs were defined as 5 mm spheres centered on coordi-
nates from Economides et al (2014). Asterisks denote significant FDR-corrected p-values < 0.05. Figure adapted 
from Magrabi et al. (2022b). 

 

Second, I investigated brain areas that demonstrated activation related to model-based 

decision processes via the model threshold parameter of the GLM (P2). In the control 

group, I did not observe effects related to positive model thresholds, but activity in caudate 

nucleus and inferior parietal lobe (IPL) was significantly associated with negative model 

thresholds (Fig. 2B), indicating stronger neural activity when the threshold was low and 

participants were more likely to accept offers. This is in line with a previous study that 
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found stronger effects for negative compared to positive model thresholds (Economides 

et al., 2014) and can be due to the BOLD signal being highest for go responses. In con-

trast, the patient group did not exhibit any activity associated with negative model thresh-

olds in the whole-brain brain analysis. 

ROI analyses were conducted to investigate group differences in vmPFC (associ-

ated with value representation) and caudate activation (associated with model-based de-

cision processes). There were no group differences with respect to parametric effects of 

offer values in vmPFC (F(1,60) = 0.1, pFDR = 0.834), but there was a significant difference 

in parametric effects of model thresholds in the caudate nucleus (F(1,60) = 4.4, pFDR = 

0.028; Fig. 2C) involving stronger negative beta values in the control group. 
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4 Discussion 

4.1 Study 1: Neural Integration of Attributes in Decision-Making 

The computation of decision value often relies on multiple attributes. Values of relevant 

attributes must be computed separately before they can be integrated to an overall value 

that ultimately determines choices. So far, most studies investigated neural representa-

tions of overall values (Kable & Glimcher, 2007; Levy & Glimcher, 2012; Rangel et al., 

2008; Sanfey et al., 2006), but little is known about the computation of attribute values 

(Basten et al., 2010; Kahnt et al., 2011; Lim et al., 2013; Suzuki, 2022). 

Regarding the neural basis of attribute valuation, two competing hypotheses are 

conceivable. On the one hand, attribute values could be computed in distinct, attribute-

specific brain regions (Basten et al., 2010; Hanks & Summerfield, 2017; Lim et al., 2013; 

Persichetti et al., 2015; Philiastides et al., 2010). These could be the same regions that 

are responsible for the identification and perceptual processing of a particular attribute. 

For example, this would imply that the fusiform face area, which is known to specifically 

process facial information (Kanwisher et al., 1997), is also involved in evaluating faces. 

Consequently, attribute values for a choice option would be calculated in different brain 

regions that highly depend on the specific attribute. Alternatively, attribute-specific value 

computations could instead be carried out within the general value network that is known 

to process overall values. This would mean that different attribute values as well as overall 

values would be processed in a centralized manner via vmPFC, ventral striatum, and 

PCC (Bartra et al., 2013; Clithero & Rangel, 2014; Ludwig et al., 2014; Peters & Büchel, 

2010). 

In the first study, I investigated these hypotheses with an experimental task that 

required the identification, valuation, and integration of separate decision attributes relat-

ing to the visual properties of motion and color. The perceptual processing of these at-

tributes is robustly associated with area V5 for motion (Watson et al., 1993; Gallivan et 

al., 2018) and area V4 for color (McKeefry and Zeki, 1997). However, I did not find signif-

icant correlations with attribute values in these regions, neither in whole-brain nor in ded-

icated ROI analyses, which does not support the hypothesis that attribute values are 

computed in distinct, attribute-specific brain regions. Instead, whole brain-analyses 

showed that activity in PCC and ventral striatum correlated with color value, whereas 

activity related to motion value correlated with PCC and left PIT. In a direct comparison, 
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I found no region that had a significantly stronger representation of one attribute value 

over the other. Even though one cannot draw definitive conclusions from absence of ev-

idence, this lack of specificity is consistent with the idea that the computation of attribute 

values is not implemented within attribute-specific cortical modules and is instead accom-

plished in a dynamic manner within a general valuation network including PCC, ventral 

striatum, and PIT. 

In contrast to these results, previous studies have supported the hypothesis that 

attribute values are computed in attribute-specific regions. In an experiment by Lim et al. 

(2013), participants had to evaluate t-shirts based on how much they liked both the ap-

pearance and meaning of Korean symbols that were printed on them. The authors found 

that activity in fusiform gyrus correlated with visual values, whereas activity in superior 

temporal gyrus correlated with semantic values. In a probabilistic choice task, Philiastides 

et al. (2010) showed that activity in the fusiform face area corresponds to the value of 

face stimuli, while activity in the parahippocampal place area corresponds to the value of 

house stimuli. For both studies, the brain regions correlating with attribute values have 

also been associated with the identification and perceptual processing of the respective 

attributes, which is not confirmed by the data of my experiment. 

There are several possible explanations for this discrepancy. First, the experimental 

design allowed me to differentiate value- and salience-related effects for each attribute, 

which was not possible in the experiment by Philiastides et al. (2010). Therefore, the 

value correlations observed in the fusiform face area and parahippocampal place area 

may be due to differences in salience rather than value. Second, the motion and color 

attributes in the experimental paradigm are robustly associated with well-defined regions 

in area V5 and V4. Arguably, this connection is less evident in the previously mentioned 

studies, in particular for the semantic attribute of the study by Lim et al. (2013), because 

the effects are more widespread across neural regions. Therefore, it is more unclear 

whether these results arise from attribute-specific regions, as it is more difficult to pre-

cisely determine regions of interest. Third, I used abstract, novel stimuli in my task, 

whereas the other studies used more familiar stimuli (faces, t-shirts, houses). One possi-

ble explanation for how the brain computes attribute values could be that novel stimuli 

are initially processed in a domain-general network, where attribute values are computed 

in a uniform manner. But if stimuli become more familiar and require frequent evaluation, 



Discussion   23 

the computation of attribute values shifts to attribute-specific regions. Thus, the pro-

cessing of attribute values might change as a function of learning, which could reconcile 

the effects of my experiment with previous studies. 

In addition to analyzing individual attribute values, I also examined brain activity 

related to the overall value of stimuli and discovered correlations with activity in various 

regions, including left dlPFC and vmPFC (Fig. 4C). Due to the correlation between attrib-

ute values and overall values, my results show an overlap in their effects on the neural 

level, which cannot be easily disentangled on statistical grounds. However, it is notewor-

thy that the whole-brain analysis of overall values revealed a significant correlation for a 

cluster in vmPFC, which was not identified in my analysis of attribute values, neither for 

color nor motion value. This is in line with the view that vmPFC is one of the main regions 

that represent integrated value signals, which previous studies have argued for (Hare et 

al., 2009; Levy & Glimcher, 2012; O’Doherty et al., 2021; Padoa-Schioppa & Cai, 2011; 

Rangel & Clithero, 2013). 

4.2 Study 2: Neural Basis of Decisions in Alcohol-Dependent Patients 

Alcohol dependence (AD) is a widespread mental disorder, responsible for approx-

imately 3.3 million deaths annually (World Health Organization, 2018). It is characterized 

by a loss of control over the consumption of alcohol, compulsive drinking despite repeated 

harmful consequences, and a negative emotional state (such as anxiety) in the face of 

withdrawal (Everitt & Robbins, 2005; Koob & Volkow, 2010, Phung et al., 2019).  

Neuroscientific studies have suggested that AD develops through a systematic shift 

in the neural systems that regulate behavior, with increased involvement of the puta-

men/dorsolateral striatum (in humans/rodents) controlling habitual behavior, and de-

creased involvement of the caudate nucleus/dorsomedial striatum controlling flexible and 

model-based behavior (Corbit et al., 2012; DePoy et al., 2013; Everitt & Wolf, 2002; Fur-

long et al., 2014; Geerts et al., 2020; Gremel & Costa, 2013). Another account suggests 

that the impulsive behavior of AD patients (Rubio et al., 2008; Virkkunen, 1994) is based 

on an overactive neural value system (Arcurio et al., 2015; Goldstein & Volkow, 2011; 

Kamarajan et al., 2020; Seo et al., 2013), which has been associated with ventromedial 

prefrontal cortex (vmPFC; Bartra et al., 2013; Clithero & Rangel, 2014). However, it is not 

clear how and under what circumstances these changes in neural information processing 

occur. 
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In this study, I used a monetary decision-making task to investigate group differ-

ences between AD patients and control subjects with respect to value computation and 

model-based decision processes. Unlike the majority of previous studies in this area 

(Goldstein & Volkow, 2011; Schacht et al., 2013), the task did not include alcoholic stimuli, 

which made it possible to further examine whether AD patients have a general impairment 

of decision processes, even when alcoholic stimuli are not part of the decision context. 

The results showed that patients had decreased functional representation of model-

based decision processes in the caudate nucleus, while there were no significant differ-

ences between groups in terms of neural value representation or task performance. Pre-

vious research has identified that the caudate is a vital region for the computation of goal-

directed decisions that involve taking multiple factors into account and long-term planning 

(Balleine & O’Doherty, 2010; Dolan & Dayan, 2013; Tanaka et al., 2008; Wunderlich et 

al., 2012). Likewise, in rodents, model-based decision processes have been associated 

with signals in dorsomedial striatum (Balleine, 2005; Corbit et al., 2012; Yin et al., 2005), 

which corresponds to the caudate activation that human neuroscience studies have iden-

tified. My finding that the neural representation of model-based decision processes in 

caudate nucleus is decreased for patients therefore suggests that alcohol dependence 

impairs the neural computations for goal-directed choices and supports the hypothesis 

that the ability to flexibly adapt choices to long-term consequences is one of the core 

functions affected by the disorder (Bechara et al., 2001; Goudriaan et al., 2007; Sebold 

et al., 2014). 

The data further revealed that offer value is represented in a distributed set of re-

gions including ventral striatum, dlPFC, and dmPFC for both the patient and the control 

group. However, I did not observe systematic differences with respect to neural value 

computations between the two groups, which does not support the hypothesis that alco-

hol dependence is based on a stimulus-independent overactive valuation system (Arcurio 

et al., 2015; Goldstein & Volkow, 2011; Kamarajan et al., 2020; Seo et al., 2013). 

Surprisingly, patients also did not show deviations in behavioral task performance. 

One explanation for this finding could be that patients are able to achieve the same level 

of performance in sequential decision tasks but rely on different neural systems, which 

are not associated with the model threshold parameter that was employed in the compu-

tational model. It remains an open question for future research whether patients generally 

do not have deficits in performing sequential decision-making tasks, or whether different 

task designs can reveal systematic deficits in this regard. 
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4.3 General Discussion 

In a nutshell, the goal of the first study was to study the neural mechanisms of computing 

attribute values: Whereas the perceptual processing of attributes can robustly be associ-

ated with specific regions (area V4 for perceiving color and V5 for perceiving motion), this 

does not seem to be the case for the process of attribute valuation during decision-mak-

ing. Instead of being computed in characteristic regions, attribute values seem to be pro-

cessed dynamically in a distributed network, comprising regions including PCC, ventral 

striatum, and PIT. 

The core finding of the second study was that AD patients showed decreased func-

tional activation relating to model-based decision processes in the caudate nucleus, 

whereas there were no neural differences relating to decision value. The effect in the 

caudate nucleus could be evidence for an impairment of model-based decision-making 

in AD patients. However, patients did not show behavioral differences in the decision task, 

which might indicate the involvement of compensatory mechanisms. 

A common pattern in both studies and the literature in general is that the neural 

processes underlying decision-making appear to be very dynamic and distributed across 

a broad range of brain regions. So far, it does not seem to be possible to establish a clear 

functional association between the subprocesses involved in decision-making and spe-

cific brain regions. This relates to a larger debate in neuroscience about cognitive locali-

zation and the question to what extent cognitive functions can be mapped to specific brain 

regions (Genon et al., 2018). In this context, researchers have distinguished between 

functional segregation and functional integration (Friston, 2011). 

Functional segregation describes the idea that the brain can be divided into region-

ally distinct modules based on functional or structural properties. In contrast, functional 

integration refers to the idea that no region is by itself responsible for a cognitive function, 

and that this requires a dynamic interplay between multiple brain regions in distributed 

neural networks instead (Siddiqi et al., 2022). In contrast to the traditional idea of phre-

nology (Gall, 1818), it is now widely accepted that functional segregation alone is not a 

realistic conceptual framework to explain neural processing. However, it is still common 

practice to characterize brain regions by their relative contribution to cognitive functions 

because some brain regions seem to be clearly more involved in specific cognitive func-

tions than others. 
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While this appears to be a reasonable approach in some areas of cognitive neuro-

science, I think the results of my experiments and the literature in general increasingly 

show that this approach is less promising and harder to apply in domain of decision neu-

roscience. The brain regions that are correlated with decision-related processes seem to 

be more numerous and more widespread, and the findings appear less robust than in 

other domains (e.g., perception or memory; although it is hard to objectively quantify re-

lations between research domains like these). One explanation for this pattern could be 

that decision-making is late in the cognitive hierarchy and highly dependent on other cog-

nitive functions. Everything must come together to be able to make good decisions: Per-

ceiving relevant information, remembering past experiences, estimating the likelihood of 

future events, reasoning about logical implications, evaluating different attributes, etc. 

This high level of interdependence could explain why decision-related brain activations 

are more widespread across the brain and have a particularly high variance, which makes 

it harder to detect strong and robust functional associations in decision neuroscience. 

This problem is further exacerbated by 1) the high number of confounding variables 

that correlate with decision-making processes (O’Doherty, 2014), like the correlation be-

tween decision value and salience (Kahnt and Tobler, 2013; Zhang et al., 2017), and 2) 

the limitations that neuroscientific methods like fMRI and EEG have with respect to spatial 

and temporal resolution. One could speculate that the neural pathways for decision-mak-

ing become more simple and easier to detect when the decision scenario is already fa-

miliar and very similar to decisions that were made in the past. In that case, decisions 

become automatic, repetitive, and eventually turn into habits (Guida et al., 2022; Patter-

son & Knowlton, 2018). But for decisions in novel situations, which have never been en-

countered before and require the careful evaluation of multiple attributes under uncer-

tainty, the underlying neural processes are likely much more complex. 

One example for the issue with establishing reliable findings in decision neurosci-

ence is also apparent in the results of my experiments. It is often considered as one of 

the most robust findings in the field that neural signals in vmPFC correlate with the overall 

decision value that determines choices (O’Doherty et al., 2021; Rangel et al., 2008). How-

ever, I could only replicate this finding in the first study, but not in the second study. In-

stead of the vmPFC, offer value in the second study correlated with neural activity in the 

ventral striatum, dlPFC, and dmPFC. While there could be several potential methodolog-
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ical reasons for this (like differences in scanning parameters, trial structure, or task de-

sign), inconsistencies like these appear more common in the decision neuroscience liter-

ature than in other domains of cognitive neuroscience. 

To improve on this, I think the field of decision neuroscience should focus on several 

aspects in the future. First, we need to work on a more detailed conceptual framework for 

decision-making. Terms like “value” or “uncertainty” are important for the decision-making 

process, but more work needs to be done to distinguish between different subtypes of 

general concepts like these, which would allow us to design more precise experiments 

with more control over confounding variables and higher signal-to-noise ratios. The dis-

tinction between overall values and attribute values in my first study was a step into this 

direction.  

Second, more interdisciplinary work needs to be done. While this has been a popu-

lar theme for a while now, too many interdisciplinary efforts are largely superficial and 

need to go deeper to make real progress. I want to highlight two fields that are especially 

valuable for decision neuroscience: 1) Philosophy, which could help to make the concep-

tual framework more precise and inspire new angles for empirical research, and 2) psy-

chiatry, which allows us to investigate how the cognitive and neural processes underlying 

decision-making are affected by dysfunctions. Like philosophy, psychiatry can also help 

to reveal blind spots in our conceptual framework for decision-making. My second study 

was a step into this direction and showed how the clinical disorder of alcoholism can affect 

the neural processes that drive model-based decision-making. 

Third, decision neuroscience needs to put a stronger emphasis on functional inte-

gration instead of functional segregation, and focus on understanding the properties of 

interconnected neural networks rather than trying to characterize specific brain regions in 

isolation. Needless to say, advances in brain imaging methods that would improve the 

spatial or temporal resolution of neural measurements would make this paradigm shift a 

lot easier and open up possibilities for new experimental designs. 

Making decisions is one of the most important parts of our lives. Our choices define 

our actions, our future, our happiness, and our identity. We invest a vast amount of time 

and energy into deliberating and optimizing our decisions, so a better scientific under-

standing of this process has a tremendous potential to improve our lives. The field of 

decision neuroscience faces a lot of challenges, but with the direction I outlined above, I 

think we are on a good path towards meaningful progress.
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Abstract
Studies in decision neuroscience have identified robust neural representations for the value of choice options. However, overall values
often depend on multiple attributes, and it is not well understood how the brain evaluates different attributes and integrates them
to combined values. In particular, it is not clear whether attribute values are computed in distinct attribute-specific regions or within
the general valuation network known to process overall values. Here, we used a functional magnetic resonance imaging choice task
in which abstract stimuli had to be evaluated based on variations of the attributes color and motion. The behavioral data showed
that participants responded faster when overall values were high and attribute value differences were low. On the neural level, we
did not find that attribute values were systematically represented in areas V4 and V5, even though these regions are associated with
attribute-specific processing of color and motion, respectively. Instead, attribute values were associated with activity in the posterior
cingulate cortex, ventral striatum and posterior inferior temporal gyrus. Furthermore, overall values were represented in dorsolateral
and ventromedial prefrontal cortex, and attribute value differences in dorsomedial prefrontal cortex, which suggests that these regions
play a key role for the neural integration of attribute values.

Key words: decision-making; value; attribute; salience; fMRI

Introduction
Valuation is a crucial part of decision-making. To make benefi-
cial choices, available options need to be accurately evaluated,
and the ones with the highest value need to be selected. Studies
in decision neuroscience have investigated valuation processes
extensively and found neural representations of value in the ven-
tromedial prefrontal cortex (vmPFC), posterior cingulate cortex
(PCC) and ventral striatum (Bartra et al., 2013; Clithero and Rangel,
2014). Most studies addressed the question as to where overall
values of choice options are processed in the brain (Rangel et al.,
2008; Kable and Glimcher, 2009). However, overall values are
often based on values of different attributes. For example, the
overall value of a car can depend on the evaluation of its size,
speed or color. In these cases, values of relevant attributes have
to be computed separately, before they can be integrated to a
combined value that ultimately determines choices. So far, the

majority of studies investigated neural representations of over-
all values (Sanfey et al., 2006; Kable and Glimcher, 2007; Rangel
et al., 2008; Levy and Glimcher, 2012), but little is known about
the computation and integration of attribute values (Basten et al.,
2010; Kahnt et al., 2011; Lim et al., 2013; Suzuki et al., 2017; Vaidya
et al., 2018; Pelletier et al., 2021).

With regard to known functional specializations of different
brain regions, two hypotheses concerning neuronal attribute val-
uation are conceivable. On the one hand, attribute values could
be computed in distinct, attribute-specific brain regions (Basten
et al., 2010; Philiastides et al., 2010; Lim et al., 2013). From this per-
spective, attribute values are processed within regions that are
also specialized in processing objective properties of the particu-
lar attributes. For instance, it would be predicted that the fusiform
face area, which is known to selectively process faces (Kanwisher
et al., 1997), is also responsible for the evaluation of faces. As a
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