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Abstract

This thesis investigates two topics related to fundamental problems in com-
binatorial geometry. The first being related to plane graphs, one of the most
widely studied themes in various disciplines related to graph drawing. The
second part is concerned with reconfiguraton problems, a fundamental field
with increasing popularity (see e.g. [BH09, Nis18]).

Edge partitions of complete geometric graphs. The first part of this thesis
is concerned with a well-known question posed by Bose, Hurtado, Rivera-
Campo, and Wood [BHRW06], who asked whether the edges of every com-
plete geometric graph Kn on an even number of vertices can be partitioned
into plane spanning trees. In other words, they asked whether the edges of Kn
can be colored in a way such that every color class forms a plane spanning
tree. For the special cases that the underlying vertex set is in convex or regular
wheel position, a positive answer is known [BHRW06, AHK+17, TCAK19].
However, we prove that the statement is not true in general. Even for parti-
tions into arbitrary plane subgraphs instead of spanning trees we provide a
negative answer. Our constructions are based on bumpy wheel sets and we give
a full characterization which bumpy wheels can be partitioned and which
cannot. Additionaly, we provide a characterization for arbitrary wheel sets
to admit a partition into plane double stars and give a sufficient condition for
plane spanning trees.

Finally, we investigate the problem in the broader setting of beyond-
planar subgraphs. More precisely, we derive bounds on the number of colors
necessary and sufficient to partition a complete geometric graph into k-plane
and k-quasi-plane subgraphs. Along the way, we also study the well-known
crossing lemma and derive an improvement when restricting to the special
case of convex geometric graphs.

Flip graphs. The second part of this thesis is concerned with reconfiguration
problems. A natural way to provide structure for a reconfiguration problem
is by studying the so-called flip graph, which is defined on a ground set X
of objects and a corresponding (local) flip operation. More precisely, the flip
graph on X under a given flip operation has a vertex for every element in X
and two vertices are adjacent if and only if the corresponding objects differ by
a single flip. For a given ground set and flip operation, an important property
one is usually interested in, is whether the flip graph is connected. In the
affirmative, more refined questions concerning the diameter, the degree of
connectivity, or Hamiltonicity are of interest. We study the following three
reconfiguration problems:
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• Flipping plane spanning paths. For a given point set S ⊂ R2 in
general position, the ground set X consists of all plane straight-line
paths with vertex set S. The flip operation exchanges a single pair
of (potentially crossing) edges. We prove connectedness of the flip
graph if the underlying point set S is in wheel position or generalized
double circle position. Furthermore, we prove that it suffices to show
flip-connectivity for certain subgraphs where the starting edge is fixed.

• Compatible trees. For a given simple drawing D of the complete
graph Kn, the ground set X consists of all subdrawings of D that are
plane spanning trees. The flip operation exchanges a set of non-crossing
edges. We prove connectedness of the flip graph for special classes
of drawings, namely cylindrical, monotone, and strongly c-monotone
drawings. Furthermore, we prove connectedness of certain subgraphs,
corresponding to some classes of graphs, namely stars, double stars,
and twin stars.

• Flipping pseudocircles. An arrangement of pseudocircles is a finite
collection of simple closed curves in the plane such that every pair
of curves is either disjoint or intersects in two crossing points. We
prove that triangle flips induce a connected flip graph on intersecting
arrangements, i.e., on arrangements where every pair of pseudocircles
intersects. As an intermediate result we also show flip-connectivity on
cylindrical intersecting arrangements, i.e., arrangements where a single
point stabs the interior of every pseudocircle. Moreover, we obtain that
the diameter of both flip graphs is cubic in the number of pseudocircles.
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Frequently used symbols

E(G) the edge set of a graph G.

V(G) the vertex set of a graph G.

e(G) the number of edges in a graph G.

f (G) the number of faces in a plane graph G.

K(S) the complete straight-line graph on a point set S.

Wk the regular wheel with k + 1 vertices.

BWk,ℓ the bumpy wheel with k groups and ℓ vertices per group.

Gi the i-th group in a bumpy wheel.

e− in a bumpy wheel, the open halfplane defined by the supporting
line through e and not containing the center v0.

<c partial order on the non-radial edges (in bumpy wheels): e <c f
if the relative interior of e completely lies in f−.

P(S) the set of plane straight-line spanning paths on a point set S.

TD the set of plane spanning trees that are a subdrawing of the
drawing D.

F (X , f ) the flip graph on X under flip operaton f . Also F (X ) is used if
the flip operation is clear from the context.
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Chapter1
Introduction

Graph theory shapes almost every part of our modern life, e.g., when routing
any type of goods (food, people, electricity, data, etc.) from one place to
another. In practice, one is often interested in (efficient) algorithms to solve or
approximate a certain problem, such as shortest paths or coloring algorithms.
Especially in the light of big data, efficient (graph-theoretic) algorithms are of
great importance. One of the aspects that makes graph theory so powerful is
the fact that many real-world problems can be phrased as a graph-theoretic
problem, usually involving only simple concepts, making it also accessible
to non-experts. However, often the theory behind these innocent looking
problems is very deep and intricate. Throughout this thesis we will encounter
many problems that are simple to phrase but difficult to answer.

When working with graphs, it is very intuitive to visualize these by
drawing nodes and edges. These visualizations are not just nice to have, they
also play a key role for analyzing the structure of e.g. biological processes, such
as protein interactions or networks in social science (see e.g. [JS08, BBD+19]).
The field that is concerned with such questions – drawing graphs such that
they fulfill certain quality measures – is called graph drawing. It is crucial
to emphasize that there is a big difference between an abstract graph and a
drawing of this graph, which we will formally define in Chapter 2.

In this thesis, we study two fundamental topics from the field of combina-
torial geometry, a field that is concerned with discrete properties of geometric
objects, such as points, lines, circles, etc. Classical topics include e.g. packing,
covering, partitioning, coloring, crossings, etc.

The first part of this thesis is concerned with the question whether or not
the edges of every complete graph drawn with straight-line edges can be
colored in a way such that every color class forms a plane spanning tree. The
second part is concerned with the topic of reconfiguration (see [Nis18] for
a broad introduction of the topic). More specifically, we study connectivity
aspects of flip graphs: given a set of objects and a certain flip operation, can
any object be transformed into any other by applying suitable flips?
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1. Introduction

Edge partitions of complete geometric graphs. The focus of this part of the
thesis is a well-known and long standing question, generally attributed to
Ferran Hurtado and first published in [BHRW06]: is it possible to partition the
edges of every complete geometric graph Kn on an even number of vertices
into plane spanning trees (see also [OPG])? Or, in other words, can the edges
of Kn be colored in a way such that every color class forms a plane spanning
tree? For the special cases that the underlying vertex set is in convex or regular
wheel position, a positive answer is known [BHRW06, AHK+17, TCAK19].
However, we prove that the statement is not true in general. Even when
considering partitions into arbitrary plane subgraphs instead of spanning
trees we provide a negative answer. Our constructions are based on bumpy
wheel sets: intuitively speaking a bumpy wheel is derived from a regular wheel
by replacing each extreme point by a group of ℓ ≥ 1 points (see Chapter 2 for
the precise definition). We give a full characterization which bumpy wheels
can be partitioned and which cannot. In fact, it turns out that there is only one
bumpy wheel that can be partitioned into plane subgraphs but not into plane
spanning trees. Also for arbitrary wheel sets we provide a characterization
to admit a partition into plane double stars and give a sufficient condition for
plane spanning trees.

Lastly, we investigate the problem in the broader setting of beyond-planar
subgraphs (see e.g. [Hon20, DLM19] for further information on beyond planar-
graphs). More precisely, we derive bounds on the number of colors needed
and sufficient to partition a complete geometric graph into k-plane and k-
quasi-plane subgraphs. Along the way, we also study the well-known crossing
lemma and derive an improvement when restricting to the special case of
convex geometric graphs.

Flip graphs. Reconfiguration is a widely studied topic in discrete math-
ematics and theoretical computer science [BH09, Nis18]. In many cases,
reconfiguration problems can be stated in terms of a flip graph, which is de-
fined on a ground set X of objects and a corresponding (local) flip operation.
More precisely, the flip graph on X under a given flip operation has a vertex
for every element in X and two vertices are adjacent if and only if the cor-
responding objects differ by a single flip. Typically, for a given ground set
and flip operation, the first question is whether the flip graph is connected. In
the affirmative case, more refined questions regarding diameter, the degree of
connectivity, or Hamiltonicity can be of interest. Hamiltonicity of flip graphs
is related to Gray codes, cf. the survey by Mütze [Müt22].

A classical example is the flip graph of triangulations of a convex polygon,
cf. [Lee89]. The vertex set of this graph are all triangulations of the polygon,
and two triangulations are adjacent if one can be obtained from the other by
exchanging the common edge of two adjacent triangles by the other diag-
onal of the convex quadrilateral formed by them. Similar flip graphs have
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also been investigated in the context of Delaunay triangulations [Ede01] and
for triangulations of general point sets [DLRS10]. Wagner [Wag36] proved
connectivity of the flip graph of maximal planar graphs in the 1930s. Its
diameter, however, is still not known exactly [BV11]. Further results con-
cerning flip graphs on triangulations, matchings, and trees can be found in
[HHN02, HHNR05, Law72, NPTZ20].

In this thesis, we study the following three reconfiguration problems:

• Flipping plane spanning paths. For a given point set S ⊂ R2 in
general position, the ground set X comprises all plane straight-line
spanning paths on S. The flip operation exchanges a single pair of
(potentially crossing) edges. We prove connectedness of the flip graph if
the underlying point set S is in wheel position or generalized double
circle position (which include, e.g., double chains and double circles).
Furthermore, we prove that it suffices to show flip-connectivity for
certain subgraphs where the starting edge is fixed.

• Compatible trees. For a given simple drawing D of the complete
graph Kn, the ground set X comprises the set of all subdrawings of D
that are plane spanning trees. The flip operation exchanges a set of
non-crossing edges. We prove connectedness of the flip graph for spe-
cial classes of drawings, namely cylindrical, monotone, and strongly
c-monotone drawings. Furthermore, we prove connectedness of cer-
tain subgraphs, corresponding to some classes of graphs, namely stars,
double stars, and twin stars.

• Flipping pseudocircles. An arrangement of pseudocircles is a finite
collection of simple closed curves in the plane such that every pair of
curves is either disjoint or intersects in two crossing points. We study flip
graphs of families of pseudocircle arrangements. We prove that triangle
flips induce a connected flip graph on intersecting arrangements, i.e.,
on arrangements where every pair of pseudocircles intersects. First we
show that every intersecting arrangement can be flipped into a cylindrical
arrangement, i.e., an arrangement where a single point stabs the interior
of every pseudocircle. Next we flip the cylindrical arrangement into a
canonical arrangement, which also shows the connectivity of cylindrical
intersecting arrangements of pseudocircles under triangle flips. With a
careful analysis we obtain that the diameter of both flip graphs is cubic
in the number of pseudocircles. The construction of the two flipping
sequences makes essential use of variants of the sweeping lemma for
pseudocircle arrangements due to Snoeyink and Hershberger [SH91].

3



1. Introduction

Notation and conventions. Every work in the context of graph drawing
requires a certain flexibility between precise distinction of abstract objects and
their corresponding drawings on the one hand and concise language on the
other hand. Whenever it is clear from the context what object we are refering
to, we favour concise language and may use terms such as vertex or point
interchangeably.

In Chapter 2 we introduce, in addition to several very basic terms, also the
most important results of this thesis in a formal manner. To this end, we also
define all terms required to state these results. We assume a certain familiarity
with the terms introduced in Chapter 2, but may recall some less standard
definitions in later chapters for easier readability.

Whenever we consider the indices of a set of k objects in some order (e.g.
in cyclic order), we always consider these indices modulo k without further
notice. Also, when our indexing begins with 1 rather than 0, we of course
consider the representative of the corresponding equivalence class in the range
1, . . . , k (rather than 0, . . . , k − 1).

Unless stated otherwise, all graphs, curves, and arrangements in this
thesis are simple and all point sets are in general position (we introduce these
notions in the following chapter).

4



Chapter2
Basic Definitions & Summary of Results

In this chapter, we first introduce basic terms and notation that we will use
throughout and then summarize the main results of this thesis in a formal
manner.

Graphs and Drawings. A graph G = (V, E) consists of a set V of vertices and
a set E of unordered pairs of vertices, called edges. Unless stated otherwise,
all graphs in this thesis are simple, i.e., do not contain edges of the form {v, v}
or multiple edges between the same pair of vertices. The complete graph Kn
on n vertices contains all (n

2) possible edges. A drawing of a graph G is a
representation of G in the plane such that every vertex is mapped to a distinct
point and every edge is mapped to a simple curve connecting its endpoints
and not passing through any other vertex. Two edges sharing a common
endpoint are adjacent. In a simple drawing, every pair of edges has at most
one point in common – either a common endpoint or a (proper) crossing, i.e.,
touchings are not allowed. All drawings in this thesis are simple drawings. In
a straight-line drawing all edges are straight line segments. A graph equipped
with a straight-line drawing is called geometric graph (as usual, we refer to
the drawing and underlying graph interchangeably). In this thesis, we will
often consider complete geometric graphs. These graphs are fully determined
by the underlying point set. For a point set S in general position (i.e. no three
points lie on a common line), the complete geometric graph with vertex set S
is denoted by K(S).

Isomorphism classes. The question under which conditions two drawings
should be considered equal is a bit subtle. Two simple drawings are strongly
isomorphic if there exists a homeomorphism of the underlying space transform-
ing one drawing into the other. However, often already the set of crossing
edge pairs captures all relevant information: Two simple drawings D, D′ are
weakly isomorphic if there exists an isomorphism between the vertex sets such
that two edges in D cross if and only if their corresponding edges in D′ cross.
Essentially, weak isomorphism gives information on which edges cross and
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2. Basic Definitions & Summary of Results

strong isomorphism additionally captures the order and orientation of the
crossings. In particular, strong isomorphism implies weak isomorphism, but
not the other way around.

For complete graphs, weak isomorphism is also determined by the so-
called rotation system. The rotation of a vertex v in a simple drawing is the
cyclic order in which the edges incident to v leave the vertex v. The rotation
system of a simple drawing is the set of rotations of all its vertices. If two
simple drawings of a complete graph have the same rotation system, they are
weakly isomorphic [PT06]. Conversely, if two simple drawings of a complete
graph are weakly isomorphic, they either have the same or inverted rotation
systems [Gio22]. For further information on the topic, we refer the reader to
the literature, particularly to the work of Kynčl [Kyn09, Kyn11, Kyn13].

Planarity. A graph is called planar, if it admits a drawing without crossings.
Such a drawing is called crossing-free or plane.1 A planar graph equipped with
a particular plane drawing is called plane graph. It is important to understand
that the term “planar” refers to a property of an abstract graph, while “plane”
corresponds to a specific drawing.

The notion of planarity can be relaxed in the sense that we allow only a
certain number of crossings. We consider two notions of such a relaxation,
namely (i) restricting the number of crossings per edge and (ii) restricting
the number of pairwise crossing edges (such a set of pairwise crossing edges
is called crossing family). For an integer k ≥ 0, we call a graph k-planar, if it
admits a drawing such that every edge is crossed at most k times. Further, a
graph is called k-quasi-planar if it admits a drawing with no crossing family
of size k. Again, k-plane and k-quasi-plane drawings/graphs correspond to
specific drawings fulfilling the mentioned properties.

For a plane graph G, a face Φ of G is a maximal connected region in the
complement of the drawing. The edges of G that bound a face Φ are called
bounding edges and |Φ| denotes the number of bounding edges, where edges
are counted with multiplicities. Furthermore, there is exactly one unbounded
face and all other faces are bounded. The number of faces in a plane graph G
is denoted by f (G).

Point sets. Three points in the plane that lie on a common line are collinear.
Recall that a point set is in general position if there are no three collinear
points. All point sets in this thesis are in general position.

A sequence of three non-collinear points p, q, r either forms a left turn or
a right turn; in the former we define its orientation to be +1 and in the latter
to be −1. Two point sets S, S′ ⊂ R2 of equal cardinality are order-equivalent

1Also the term embedding is common in the literature. However, as this term is afflicted
with a certain ambiguity whether or not it refers to a plane drawing, we do not use it in this
thesis.
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if there exists a bijection between S and S′ that preserves the orientation
of all point triples or changes the orientation of every triple. The resulting
equivalence classes are called order types. Hence, two point sets being of the
same order type means that they are order-equivalent. For more information
on order types we refer the reader to [PW18].

The convex hull CH(S) of a point set S is the intersection of all convex
supersets of S. If there is no danger of confusion, we also use the term convex
hull when refering to its boundary or the cycle determining the boundary.
Every point of S lying on the boundary of CH(S) is called extreme point. Every
point of S that is not an extreme point is called interior point.

For geometric graphs, there is a close relation between its rotation system
and the order type of the underlying point set: Clearly, the order type deter-
mines the rotation system. Conversely, reconstructing the order type from the
rotation system is only possible if there are more than three extreme points or
the three extreme points are given [ACK+16].

For a straight-line edge e = pq, we denote the supporting line through p
and q by ℓe. For a set S of n points, an edge e joining two points of S is called
halving edge if each of the two open halfplanes determined by ℓe contains
⌈(n − 2)/2⌉ or ⌊(n − 2)/2⌋ points of S. That is, if n is even there are equally
many points on each side of ℓe and if n is odd, the numbers of points differ
by one. The corresponding line is called halving line.

The behaviour of drawings of graphs can be very subtle and difficult to
handle. Hence, it is not surprising that many researchers make additional
assumptions to restrict the class of drawings to be considered (we will see a
couple of examples shortly). In the setting of straight-line drawings, these
assumptions usually restrict the configuration of the underlying point set.
Also in this thesis, we often consider geometric graphs defined on certain
classes of point sets (see also Figure 2.1).

• convex position – A set of points is in convex position, if every point is an
extreme point.

• wheel position – A set of points is in wheel position, if there is exactly
one point that is not an extreme point.

• regular wheel position – A set of n + 1 (n odd) points is in regular wheel
position, if n points are placed equidistantly along a circle and the
remaining point is placed at the circle center. Regular wheels are denoted
by Wn. Also note that we require n to be odd in order to assure general
position.

• bumpy wheel position ([Sch15, Sch16]) – For positive odd integers k and ℓ,
the bumpy wheel BWk,ℓ is derived from the regular wheel Wk by replacing
each of the k extreme points by a group of ℓ vertices as follows. All
vertices (except the center) lie on the convex hull and the vertices within

7



2. Basic Definitions & Summary of Results

(a) Regular wheel. (b) Bumpy wheel. (c) Generalized
wheel.

(d) Generalized
double circle.

Figure 2.1: Some classes of point sets.

each group are ε-close for some (small enough) ε > 0. In particular, the
convex hull of any k+1

2 consecutive groups does not contain the center
vertex. Note that for ℓ = 1 we obtain a regular wheel set and for k = 1 a
point set in convex position and hence, we assume k, ℓ ≥ 3 throughout
this thesis.2

• generalized wheel position – For an odd integer k and a list N = [n1, . . . , nk]
of k positive integers, the generalized wheel GWN is derived from the
regular wheel Wk by replacing each of the k hull vertices by a group
of ni (for i = 1, . . . , k) vertices in the same way as for bumpy wheels.

Note that for every wheel set there exists a generalized wheel with the
same rotation system (Theorem 5.3).

• generalized double circle position – Defining generalized double circles
precisely here would be somewhat clumsy as there are several subtleties
that become clear later. Therefore, we decided to defer the precise
definition to Section 7.3. However, intuitively speaking a generalized
double circle is obtained by replacing each edge of the convex hull by a
flat enough concave chain of arbitrary size (as depicted in Figure 2.1(d)).

We call a geometric graph whose underlying point set is in convex position
convex graph or convex geometric graph. Similarly, for the other classes of point
sets. Furthermore, if there is no danger of confusion we may use the same
notation to refer to the point set and the graph.

Special classes of drawings. A drawing of a graph as defined in its most
general form allows a lot of freedom concerning the structure of the drawing,
which makes those objects difficult handle. However, it is not always necessary
to consider drawings in their most general form. For instance, it is well-
known (and follows from a simple rerouting argument) that crossing minimal

2Strictly speaking the definition requires only k to be odd, but later we need an even
number of vertices and hence, we define both, k and ℓ, to be odd right away.

8



(a) Cylindrical drawing. (b) Monotone drawing. (c) Strongly c-monotone
drawing.

Figure 2.2: Some classes of drawings.

drawings are always simple drawings and hence, whenever concerned with
the crossing number, it suffices to consider the class of simple drawings.
Unfortunately, also simple drawings provide very little structure and many
fundamental questions are unresolved: One of the most prominent open
problems is the question whether or not for every n ∈ N every simple
drawing of Kn contains a plane Hamiltonian cycle. Already in 1988 Rafla
[Raf88] conjectured a positive answer; however, despite a lot of effort the
question remains open to date. A positive answer is only known for small
point sets (n ≤ 9 [ÁAFM+15]) and special classes of drawings (see Bergold et
al. [BFRS23] and Aichholzer et al. [AOV23] for recent results in this context).

Given the intrinsic difficulties of simple drawings, it is natural that many
researchers consider drawings with additional structure. One very important
class of drawings that we already came across are straight-line drawings
(geometric graphs), where every edge is drawn as a straight-line segment. We
introduce a few more common classes of drawings, relevant for this thesis
(see also Figure 2.2):

• cylindrical drawing – A drawing, where every vertex is placed on one of
two concentric circles and no edge intersects either of the two circles.

• monotone drawing – A drawing, where every edge is drawn as x-monotone
curve (a curve is x-monotone if every vertical line has at most one crossing
with the curve).

• c-monotone drawing – A drawing, where every vertex is placed on a
circle (with center c) and every edge e has the property that every ray
emanating from c intersects e at most once.

• strongly c-monotone drawing – A c-monotone drawing with the additional
property that for every pair of edges e1, e2 there exists a ray emanating
from c that intersects neither e1 nor e2.

9



2. Basic Definitions & Summary of Results

(a) Star. (b) Double star. (c) Twin star.

Figure 2.3: Some classes of graphs.

We encourage the interested reader to spend a few moments on the
nice exercise of verifying Rafla’s conjecture concerning the existence of a
plane Hamiltonian cycle for special classes of drawings, e.g. for straight-line
drawings, cylindrical drawings, or monotone drawings.

Special classes of graphs. Instead of considering special classes of drawings,
one can also consider special classes of (abstract) graphs. One such class that
we already came across are complete graphs, where all (|V|

2 ) edges are present.
Other very common graph classes are, e.g., bipartite graphs, trees, and paths
(we omit the standard definitions, see e.g. [Die17]). A k-star is a graph that
contains a path v0, . . . , vk of length exactly k such that all remaining vertices
have degree one and are adjacent to v0 or vk. A 0-star is called star, a 1-star is
called double star, and a 2-star is called twin star (see also Figure 2.3).

Partitions. For a set of objects X and a collection X1, . . . , Xk ⊆ X of subsets
of X , we call this collection a

• covering of X , if X1 ∪ . . . ∪ Xk = X ;

• packing of X , if X1, . . . , Xk are pairwise disjoint;

• partition of X , if X1 ∪ . . . ∪ Xk = X and X1, . . . , Xk are pairwise disjoint.

Applied to the context of partitioning the edge set of a graph, we call a
partition or edge partition of a graph G to be a set of edge-disjoint subgraphs
of G whose union is G. We will be interested in partitions of geometric
graphs where each subgraph forms a plane spanning tree or just a plane
subgraph. Equivalently, one can think of this problem as coloring the edges
of a geometric graph in a way such that every color class forms a plane
subgraph/spanning tree.

10



(a) Neither intersecting
nor cylindrical.

(b) Intersecting but not
cylindrical.

(c) Intersecting and
cylindrical.

Figure 2.4: Pseudocircle arrrangements.

Arrangements of Pseudocircles. A pseudocircle is a simple closed curve C
which partitions the plane into a bounded region, the interior int(C), and an
unbounded region, the exterior ext(C). An arrangement of pseudocircles is a
finite collection of pseudocircles such that every two pseudocircles either are
disjoint or they intersect in exactly one point, where the curves touch, or they
intersect in two points, where the curves cross properly. In this thesis, we
only consider simple arrangements, i.e., there are no touchings and no three
curves intersect in a common point. Also note that all curves in this thesis are
simple, i.e., do not have self-intersections.

An arrangement of pseudocircles is intersecting if every pair of pseudocir-
cles intersects. An intersecting arrangement forms a 4-regular plane graph,
possibly with multi-edges. An arrangement of pseudocircles is cylindrical3

if the interiors of all pseudocircles can be stabbed by a single point. See
Figure 2.4 for an illustration.

Flip graphs. For a ground set X of objects, a flip operation f transforms an
object x ∈ X into another object x′ ̸= x ∈ X and vice versa; we say that x
and x′ differ by a single flip. This symmetry enables us to define an (abstract)
graph F (X , f ) that has vertex set X and two vertices are adjacent if and only
if the corresponding objects differ by a single flip; F (X , f ) is called flip graph
on X under flip operation f . If the flip operation or the ground set is clear
from the context, we may omit one or both and just say flip graph F or flip
graph F (X ) on X for short. For clarity and easier distinguishability we may
also introduce a different name.

In order to describe the settings that we investigate for flip connectivity,
it suffices to provide the ground set X and the flip operation f . One of the
settings that has most commonly been studied, is the setting where X denotes

3A cylindrical pseudocircle arrangement is not to be confused with a cylindrical drawing.
The name “cylindrical” stems from the fact that in both cases the objects can be “nicely” drawn
on a cylinder, as we will see later.

11



2. Basic Definitions & Summary of Results

(a) Flipping plane paths. (b) Compatible trees. (c) Flipping pseudocircles.

Figure 2.5: Illustration of the flip operations in the three settings. In (a) and (b),
a set of edges (blue dashed) is replaced by another set of edges (red dotted), while
in (c) an arc of a pseudocircle is moved over a crossing of two other pseudocircles.

a class of graphs and the flip operation refers to the exchange of a single pair
of edges. In this thesis, we investigate the following three settings (see also
Figure 2.5 for an illustration):

• Flipping plane spanning paths. Here, X denotes, for a given point set S,
the set of all plane straight-line paths with vertex set S. We denote this
set by P(S). The flip operation exchanges a single pair of (potentially
crossing) edges, precisely: P1, P2 ∈ P(S) differ by a single flip if and only
if E(P1) \ E(P2) = e1 and E(P2) \ E(P1) = e2, where the edges e1 ̸= e2
may cross.

• Compatible trees. Here, X denotes, for a given simple drawing D of Kn,
the set of all subdrawings of D that are plane spanning trees. We denote
this set by TD. Two vertices in the flip graph are adjacent if and only
if the corresponding trees are compatible, where two plane graphs are
said to be compatible if their union is still plane.

For clarity, we use the term compatibility graph instead of flip graph here.

• Flipping pseudocircles. Here, X denotes a class of pseudocircle arrange-
ments with a fixed number of pseudocircles (e.g. cylindrical, intersecting
arrangements). The flip operation reroutes a single pseudocircle over a
crossing of two others; called a triangle flip.

We remark that transformations via compatible trees (the second setting)
can be simulated in terms of crossing free edge flips as follows. For two
compatible trees T1, T2, successively perform the following flips: add an edge
from T2 \ T1 to T1 and from the resulting cycle remove an edge that is not
in T2.

12



2.1. Summary of results

2.1 Summary of results

This section is meant as a listing of the most important results of this thesis in
a formal manner. In particular, it is not the goal of this section to motivate
the results, which we did earlier (and will do in the upcoming chapters).
Additionaly, the chapters where to find the results are specified.

Edge partitions of geometric graphs

First, we characterize for which parameters k and ℓ, bumpy wheels can and in
particular cannot be partitioned into plane spanning trees or plane subgraphs.

Theorem 2.1. For odd parameters k, ℓ ≥ 3, the edges of BWk,ℓ cannot be partitioned
into n = kℓ+1

2 plane spanning trees if and only if ℓ > 3.
Chapter 3

Theorem 2.2. For odd parameters k, ℓ ≥ 3, the edges of BWk,ℓ cannot be partitioned
into n = kℓ+1

2 plane subgraphs if and only if ℓ > 5 or (ℓ = 5 and k > 3).
Chapter 4

Second, we give a necessary condition for generalized wheels to admit a
partition into plane spanning trees and characterize which generalized wheels
can be partitioned into plane double stars. Recall that generalized wheels
always have an odd number of groups.

Theorem 2.3. Let GWN be a generalized wheel with k groups and 2n vertices. Then
GWN cannot be partitioned into plane spanning trees if each family of k−1

2 consecutive
groups contains (strictly) less than n − 2 vertices.

Chapter 5

Theorem 2.4. Let GWN be a generalized wheel with k groups and 2n vertices. Then
GWN cannot be partitioned into plane spanning double stars if and only if there are
three families of k−1

2 consecutive groups, such that (i) every family contains at most
n − 2 vertices and (ii) every group is in at least one family.

Chapter 5

Finally, we study partitions into beyond-planar substructures, namely
k-plane and k-quasiplane subgraphs and spanning trees. Along the way, we
also study the well-known crossing lemma and derive an improvement when
restricting to the special case of convex geometric graphs (to the best of our
knowledge, this special case has not been studied before).

Theorem 2.5. For a point set S in convex position with |S| = n ≥ 5, K(S) can
be partitioned into

⌈ n
3

⌉
many 1-plane subgraphs and

⌈ n
3

⌉
subgraphs are required in

every 1-plane partition.

Chapter 6

Chapter 6

Theorem 2.6. For an n-point set S in convex position and every k ∈ N, K(S) admits
a partition into at most n√

2k
k-plane subgraphs. More precisely, for every s > 2, K(S)

admits a (s−1)(s−2)
2 -plane partition into ⌈ n

s ⌉ subgraphs. Conversely, for every k ∈ N,
at least n−1

4.93
√

k
subgraphs are required in any k-plane partition of K(S).

13



2. Basic Definitions & Summary of Results

Lemma 2.7 (convex crossing lemma). Let G be a graph with n vertices and e edges
such that e ≥ 9

2 n. Then every straight-line drawing of G in which the vertices of G
are placed in convex position has at least

20
243

e3

n2 ≈ 0.0823
e3

n2

crossings.

Chapter 6

Theorem 2.8. Let S be a point set of size 2n, then the complete geometric graph K(S)
can be partitioned into n 3-quasi-plane spanning trees.

Chapter 6

Theorem 2.9. Let S be a set of n points in general position and denote the size of
a largest crossing family on S by m. Also let k ∈ N such that 3 ≤ k ≤ m. Then,
at least ⌈ m

k−1⌉ subgraphs are required and at most ⌈ m
k−1⌉+ ⌈ n−2m

k−1 ⌉ subgraphs are
needed to partition the complete geometric graph K(S) into k-quasi-plane subgraphs.

Chapter 6

Flip graphs

Recall that P(S) denotes the set of all plane spanning paths on a point set S.
Furthermore, for p, q ∈ S, let P(S, p, q) be the set of all plane spanning paths
for S that start at p and continue with q. In the context of flipping plane
spanning paths, we first show that it suffices to prove flip-connectivity on
P(S, p, q) and then prove connectedness of the flip graph for special classes
of point sets.

Theorem 2.10. Let S be a point set in general position. If, for every p, q ∈ S, the flip
graph on P(S, p, q) is connected, then the flip graph on P(S) is connected.

Chapter 7

Theorem 2.11. Let S be a set of n points in wheel configuration. Then the flip graph
on P(S) is connected with diameter at most 2n − 1.

Chapter 7

Theorem 2.12. Let S be a set of n points in generalized double circle configuration.
Then the flip graph on P(S) is connected with diameter O(n2).

Chapter 7

Next, we show flip-connectivity in the context of plane spanning trees for
broader classes of drawings, but allowing a stronger notion of flips, namely
compatibility.

Theorem 2.13. Let D be a cylindrical, monotone, or strongly c-monotone drawing of
the complete graph Kn. Then, the compatibility graph F (TD) is connected.

Chapter 8
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2.1. Summary of results

Theorem 2.14. Let D be a simple drawing of the complete graph Kn and let T ∗
D

be the set of all plane spanning stars, double stars, and twin stars on D. Then, the
compatibility graph F (T ∗

D ) is connected.
Chapter 8

Last but not least, we consider arrangements of pseudocircles and prove
flip-connectivity for two important classes, namely intersecting arrangements
and cylindrical intersecting arrangements. All flips are triangle flips.

Theorem 2.15. The flip graph of arrangements of n pairwise intersecting pseudocir-
cles is connected. Chapter 9

Theorem 2.16. The flip graph of cylindrical arrangements of n pairwise intersecting
pseudocircles is connected. Chapter 9

Furthermore, we provide (asymptotically) tight bounds on the diameters
of the corresponding flip graphs.

Proposition 2.17. The flip graph of cylindrical arrangements of n pairwise intersect-
ing pseudocircles has diameter at least 2(n

3) and at most 4(n
3).

Chapter 9

Proposition 2.18. The flip graph of arrangements of n pairwise intersecting pseudo-
circles has diameter Θ(n3). Chapter 9
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Edge Partitions of Geometric
Graphs
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Chapter3
Partitions into Plane Spanning Trees

The following long-standing open question is the focus of this chapter:

Question 3.1 ([BHRW06]). Can every complete geometric graph on 2n vertices be
partitioned into n plane spanning trees?

Recall that the complete graph Kn contains n
2 (n − 1) edges and a spanning

tree contains (n − 1) edges. Hence, only for an even number of vertices
the complete graph has the right number of edges to admit a partition into
spanning trees. Therefore, unless stated otherwise, we consider complete
geometric to have 2n vertices in the following.

Related work. Several attempts have been made to answer Question 3.1.
When the underlying point set S is in convex position it follows from a result of
Bernhart and Kainen [BK79] that K(S) can be partitioned into plane spanning
paths, implying a positive answer. Further, Bose et al. [BHRW06] gave a
complete characterization of all possible partitions into plane spanning trees
for convex point sets. Similarly, when S is a regular wheel set, Aichholzer et
al. [AHK+17] showed how to partition K(S) into plane spanning double stars
and Trao et al. [TCAK19] recently characterized the structure of all possible
partitions into arbitrary plane spanning trees. Furthermore, Aichholzer et
al. [AHK+17] provided a positive answer to Question 3.1 for all point sets of
(even) cardinality at most 10, obtained by exhaustive enumeration.

Relaxing the requirement that the trees need to be spanning, Bose et
al. [BHRW06] showed that if for a point set S in general position, there exists
an arrangement of k lines in which every cell contains at least one point from S,
then the complete geometric graph on S admits a partition into 2n − k plane
trees, k of which are plane double stars. This result implies that Question 3.1
has a positive answer if S contains n pairwise crossing segments, which is the
case if and only if S has exactly n halving lines [PS99].

For the related packing problem where not all edges of the underlying
graphs must be covered, Biniaz and Garcı́a [BG20] showed that ⌊n/3⌋ plane
spanning trees can be packed in any complete geometric graph on n vertices,
which is currently the best lower bound.
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3. Partitions into Plane Spanning Trees

(a) (b)

Figure 3.1: (a) A partition of BW3,3 into n = 5 plane spanning trees. (b) The
bumpy wheel BW3,5, which cannot be partitioned into plane spanning trees.

Contribution. We provide a negative answer to Question 3.1 (refuting the
prevalent conjecture). For this construction we use bumpy wheel sets. Recall
that the bumpy wheel BWk,ℓ is obtained from a regular wheel by replacing
each of the k extreme points by a group of ℓ points (cf. Chapter 2 for the
precise definition).

Our motivation to study bumpy wheels stemmed from the fact that
Schnider [Sch15] showed that BW3,3 cannot be partitioned into plane double
stars. In contrast, this is always possible for complete geometric graphs on
regular wheel sets [AHK+17], as well as complete geometric graphs on point
sets admitting n pairwise crossing edges [BHRW06] (which also includes
convex point sets).

We not only answer Question 3.1, but fully characterize for which parame-
ters k and ℓ, bumpy wheels can be partitioned into plane spanning trees (see
Figure 3.1 for an illustration):

Theorem 2.1. For odd parameters k, ℓ ≥ 3, the edges of BWk,ℓ cannot be partitioned
into n = kℓ+1

2 plane spanning trees if and only if ℓ > 3.

Organization of this chapter. In Section 3.1 we show how to model this
partition problem as an integer linear program (ILP) and provide an imple-
mentation that computes solutions for point sets up to roughly 25 points.
None of the proofs in this thesis rely on the computer assisted ILP, but it
served as a great source of inspiration. In Section 3.2 we show the “if” di-
rection of Theorem 2.1, proving the non-existence of partitions. Whereas in
Section 3.3 we prove the “only if” direction of Theorem 2.1, showing the
existence of partitions.

20



3.1. The ILP model

3.1 The ILP model

Given a geometric graph G = (P, E) and a fixed number m of available colors
as input, our ILP contains a binary variable xe,c ∈ {0, 1} for each edge-color
combination, that is, in our setting there are (2n

2 ) · m variables. A variable xe,c
being 1 then corresponds to edge e receiving color c.

We implement1 the following constraints, enforcing that every edge re-
ceives exactly one color (3.1), crossing edges receive different colors (3.2),
ensuring 2n − 1 edges in each color class (3.3), and forbidding monochromatic
triangles (3.4). Clearly, these are necessary but not sufficient constraints:

m

∑
c=1

xe,c = 1 ∀e ∈ E (3.1)

xe,c + x f ,c ≤ 1 ∀c ∈ {1, . . . , m}; ∀e, f crossing (3.2)

∑
e∈E

xe,c = 2n − 1 ∀c ∈ {1, . . . , m} (3.3)

xe,c + x f ,c + xg,c ≤ 2 for each triangle e, f , g; ∀c ∈ {1, . . . , m} (3.4)

For BW3,5 and m = 8 as input, using an industry strength ILP solver, the
ILP turns out to be infeasible (taking less than a minute)2. Furthermore, for
BW3,7 and m = 11 as input our program reports an infeasible ILP even when
omitting the constraints (3.3) and (3.4) (taking roughly 5h). Figure 3.2 shows a
partition of BW3,5 into plane subgraphs found by the program, when omitting
the triangle constraint (3.4).

Figure 3.2: Partition of the bumpy wheel BW3,5 into 8 plane subgraphs. A partition
into plane spanning trees is not possible.

1See Appendix A for details concerning the source code.
2This and all other experiments were run on an Intel Core i5, 1.6 GHz, 16 GB RAM running

macOS Big Sur Version 11.4. All algorithms were implemented in Python 3.9.1, and for solving
the ILP we used Gurobi Optimizer Version 9.1.2 with default settings.
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3. Partitions into Plane Spanning Trees

3.2 Bumpy wheels that cannot be partitioned into PSTs

In this section, we prove Theorem 2.1. We remark that Theorem 2.1 and
Theorem 2.2 are somewhat related, where Theorem 2.2 considers a broader
setting. The non-existence direction in Theorem 2.1 follows almost from the
non-existence in Theorem 2.2 (the only case that is not covered is BW3,5).
However, we believe it is more instructive to first consider the more restrictive
setting for spanning trees and then extend the results to arbitrary subgraphs.
We split the proof of Theorem 2.1 into two parts, starting with the non-
existence:

Theorem 3.2. For any odd parameters k ≥ 3 and ℓ ≥ 5, the edges of BWk,ℓ cannot
be partitioned into n = kℓ+1

2 plane spanning trees.

We need a few more definitions. For a geometric graph in (bumpy) wheel
configuration we denote the center vertex by v0 and the remaining vertices by
v1, . . . , v2n−1 in clockwise order. We also enumerate the groups in clockwise
order: for i ∈ {1, . . . , k}, Gi denotes the i’th group (G1 contains v1, Gk contains
v2n−1). An edge having v0 as an endpoint is called a radial edge, an edge on
the convex hull is called a boundary edge and all other edges are called diagonal
edges. For a non-radial edge e, we define e− to be the open halfplane defined
by the supporting line through e and not containing v0, and similarly e+ to be
the open halfplane containing v0.

Additionally, we define a partial order <c on the set of non-radial edges,
where e <c f if the relative interior of e completely lies in f− (that is, f
is “closer” to the center vertex v0 than e)3. Two non-radial edges e, f are
incomparable with respect to <c, if neither e <c f nor f <c e holds (we omit
“with respect to <c” if it is clear from the context). In the following, when
speaking of an edge e lying in f− or in f+ for another edge f , we always
refer to the relative interior of e (that is, an endpoint of e may lie on the
line through f — which actually means it coincides with an endpoint of f ).
A non-radial edge e is maximal in some set of edges E, if there is no other
edge e′ ∈ E such that e <c e′. In the following we often consider maximal
diagonal edges of plane spanning trees. Minimal edges are defined similarly.
See Figure 3.3 for an illustration. Let us emphasize that we never use <c for
radial edges.

Towards the proof of Theorem 3.2, we will first prove several structural
results concerning the number and arrangement of radial and diagonal edges
in the spanning trees of a potential partition (some of which have a similar
flavor as those by Trao et al. [TCAK19]). We show that radial edges must lie
between maximal diagonal edges and those maximal diagonal edges need to
fulfill certain constraints. We will show that these cannot be satisfied if ℓ ≥ 5.

3Note that we defined the relation e <c f this way around, since e is the (combinatorially)
shorter edge.
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3.2. Bumpy wheels that cannot be partitioned into PSTs

v0f

f ′

e

e′

v1

v`

v`+1

. . .

...

G1

G2

Gkvk·`

v(k−1)·`+1

. . .

Figure 3.3: Example of a plane spanning tree on the bumpy wheel set BW5,5. The
diagonal edges f and f ′ are maximal. The edges e and e′ are boundary edges (they
are also the only minimal edges).

The following observation follows immediately from convexity and the
definition of the partial order <c.

Observation 3.3. For two non-radial, non-crossing, incomparable edges e, f the
vertex sets in e− and f− are disjoint and neither e− nor f− contains an endpoint of
the other edge.

Note that e and f in the above observation may share an endpoint. Fur-
thermore, for any set of edges E, two maximal edges e, e′ ∈ E are always
incomparable.

Lemma 3.4. Let T be a plane spanning tree of BWk,ℓ. Then the following properties
hold:

(i) for any diagonal edge e ∈ E(T), T contains at least one boundary edge in e−,

(ii) for any pair of incomparable diagonal edges e, f ∈ E(T), the boundary edges
of T in e− and f− are distinct, and

(iii) if T contains exactly one maximal diagonal edge, T contains all radial edges of
at least k−1

2 consecutive groups and at least one more consecutive radial edge
(in particular, T contains at least ( k−1

2 ℓ + 1) consecutive radial edges).

Proof. For part (i), let f be a minimal edge of T in e−. If f− does not contain
any vertex of the input point set, it is a boundary edge and we are done.
Otherwise, since T is connected and plane, at least one vertex in f− has
to be connected to an endpoint of f , forming a smaller edge, which is a
contradiction to the minimality of f .

Part (ii) follows immediately from Observation 3.3 (distinctness) and
part (i) (existence).
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3. Partitions into Plane Spanning Trees

Concerning part (iii), let f be the maximal diagonal edge of T. Due to
the regularity of the group placement in bumpy wheels, f+ contains the
vertices of at least k−1

2 consecutive groups. Hence, since f is the only maximal
diagonal edge, all vertices in f+ need to be reached by radial edges (plus one
to connect to f ).

Note that any spanning tree in a partition of BWk,ℓ contains a maximal
diagonal edge, since the star around v0 cannot be used in such a partition (as
it would not leave any radial edge to reach v0 for the other trees).

Before diving into further technical details, we first outline the proof from
a high level view.

High level proof strategy. Given a bumpy wheel BWk,ℓ on 2n vertices, as-
sume that a partition into n plane spanning trees T0, . . . , Tn−1 exists. We will
successively derive several properties concerning the structure of the Ti’s,
e.g., we show that one tree, say T0, contains many radial edges. Putting all
structural results from Proposition 3.5 to Proposition 3.9 together we will see
that these cannot be satisfied if ℓ ≥ 5.

Proposition 3.5. Let T0, . . . , Tn−1 be a partition of BWk,ℓ into plane spanning trees
(if it exists). Then exactly one of those trees, say T0, contains a single boundary edge
and a single maximal diagonal edge and all other n − 1 trees contain exactly two
boundary edges and exactly two maximal diagonal edges each. In particular, any
diagonal edge e ∈ E(Ti) contains exactly one boundary edge of Ti in e−.

Proof. Every Ti contains at least one maximal diagonal edge and hence, by
Lemma 3.4 (i), also at least one boundary edge.

Since there are 2n − 1 boundary edges in total, at least one tree (w.l.o.g. T0)
contains exactly one boundary edge. By Lemma 3.4 (i) and (ii) it also contains
exactly one maximal diagonal edge.

Now, if there was a second spanning tree T1 in the partition with exactly
one maximal diagonal edge, T0 and T1 together would use at least (k− 1) · ℓ+ 2
radial edges (by Lemma 3.4 (iii)). This leaves at most ℓ− 2 radial edges for
the remaining n − 2 trees; clearly not enough (since n = k

2ℓ+
1
2 > ℓ for k ≥ 3).

Hence, all other n − 1 spanning trees have to contain at least two maximal
diagonal edges and therefore at least two boundary edges. However, since
we have 2n − 1 boundary edges in total and only one tree contains a single
boundary edge, all other n − 1 trees have to contain exactly two boundary
edges. By Lemma 3.4 (ii), they also contain at most, and therefore exactly, two
maximal diagonal edges.

From now on, T0 always denotes the spanning tree with exactly one
boundary edge (when considering a partition into plane spanning trees).
Further, we let all radial edges v0vi for i ∈ {1, 2, . . . , k−1

2 ℓ+ 1} be part of T0
(which we can assume without loss of generality due to symmetry).
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3.2. Bumpy wheels that cannot be partitioned into PSTs

v0e

f...

Figure 3.4: Illustration of Lemma 3.6. All edges in the span of the maximal
diagonal edges e and f are radial (except e and f itself).

For two non-radial, non-crossing edges e, f , we define the span of e and f
to be the (closed) region between the two edges, more precisely:

span(e, f ) =

{
cl(e+ ∩ f+) if e and f are incomparable
cl(e+ ∩ f−) if e <c f ,

where cl(·) denotes the closure. See also Figure 3.4 for an illustration.
Note, however, that we are more interested in the vertices and edges

contained in the span, rather than the region itself. If we want to emphasize
this, we may use the notation V(span(e, f )) or E(span(e, f )). In the following
we are mostly interested in the span of maximal diagonal edges of some plane
spanning tree. Figure 3.4 gives an illustration of the following lemma.

Lemma 3.6. Let T0, . . . , Tn−1 be a partition of BWk,ℓ into plane spanning trees (if it
exists) and let e, f be the maximal diagonal edges of some Ti (i ̸= 0). Then, all edges
of Ti in the span of e and f are radial (except e and f ), and all radial edges of Ti lie in
the span of e and f .

Proof. Assume that h is a non-radial edge in the span of e and f . Then, h−

either contains e or f or an additional third boundary edge (or h is a boundary
edge itself), a contradiction in any case. Furthermore, any radial edge not
contained in span(e, f ) must cross either e or f , and therefore cannot be part
of Ti due to planarity.

We define the distance dist(e) of a non-radial edge e to be the number of
vertices in e− plus one (or in other words, the number of convex hull edges of
the underlying point set in cl(e−)). Clearly, 1 ≤ dist(e) ≤ k+1

2 ℓ− 1 holds for
any non-radial edge e and dist( f ) < dist(e) holds for any edge f ⊆ e−. It will
be convenient to define, for i ∈ {1, . . . , k+1

2 ℓ− 1}:

di =
k + 1

2
ℓ− i. (3.5)
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3. Partitions into Plane Spanning Trees

(a) Outmost radial edges. (b) Opposite groups.

v0

vj`

vj`+1

e

f

apex

(c) Special wedge.

Figure 3.5: Illustration of some terms.

We define it in this (slightly counter-intuitive) way, d1 being the largest dis-
tance, since we are mostly concerned with edges of large distances and thereby
aim to improve the readability.

Lemma 3.7. Consider a plane spanning tree T of a partition of BWk,ℓ and let e be a
diagonal edge in T of distance dist(e) > 1. Then T also contains exactly one of the
edges of distance (dist(e)− 1) in e−.

Proof. Let f be a maximal edge among the edges of T in e− and assume
dist( f ) ≤ dist(e)− 2. Then the span of e and f contains at least one (non-
radial) edge h /∈ {e, f } of T (since either e and f have no endpoint in common
and therefore need to be connected via edges in span(e, f ) or span(e, f )
contains at least one vertex v which is neither an endpoint of e nor f and
needs to be connected to the rest of T). Since f is maximal in e−, h and f are
incomparable. So, by Lemma 3.4 (ii) this forces at least two distinct boundary
edges to be contained in e−, a contradiction to Proposition 3.5. Therefore, we
get dist( f ) = dist(e)− 1.

Furthermore, there are exactly two edges of distance (dist(e)− 1) in e−. If
dist(e) = 2 these two edges together with e form a cycle and otherwise they
cross. Either way, T cannot contain both.

We need a little more terminology towards the proof of Theorem 3.2 (see
also Figure 3.5). We call the first and last vertex of each group outmost vertices
(and the corresponding radial edges outmost radial edges). Note that there are
exactly 2k outmost radial edges in BWk,ℓ. Every hull vertex or radial edge that
is not outmost, is called an inside vertex or an inside radial edge.

Furthermore, we define two groups Gi,Gj to be opposite if |i − j| = k−1
2

or |i − j| = k+1
2 . In particular, each group has two opposite groups and two

consecutive groups have exactly one opposite group in common (we call that
group the opposite group of a pair of consecutive groups).

Let e, f be two maximal (non-crossing) diagonal edges that have an end-
point in a common group. Then the set of vertices of span(e, f ) in the common
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3.2. Bumpy wheels that cannot be partitioned into PSTs

group is called apex. Note that any apex contains at least one vertex (and this
lower bound is attained if the endpoints of e and f coincide).

Moreover, two maximal (non-crossing) diagonal edges e = {u, v} and
f = {u′, v′} form a special wedge if two endpoints (say u and u′) are consecutive
outmost vertices of different groups (that is, u = vjℓ and u′ = vjℓ+1 for some j)
and v and v′ are inside vertices lying in the opposite group of Gj and Gj+1.

Proposition 3.8. Let T0, . . . , Tn−1 be a partition of BWk,ℓ into plane spanning trees
(if it exists) and let Ti (i ̸= 0) be a spanning tree that does not use any outmost radial
edge. Then the two maximal diagonal edges e, f of Ti form a special wedge and Ti
uses all radial edges incident to the apex of this wedge.

Proof. Indeed, by Proposition 3.5, Ti has exactly two maximal diagonal edges.
We first argue that all but exactly two radial edges in span(e, f ) must be part
of Ti. The subgraph of Ti induced by V(span(e, f )) needs to form a tree.
Moreover, the total number of radial edges in span(e, f ) is |V(span(e, f ))| − 1.
Since Ti uses the two diagonal edges e, f ∈ E(span(e, f )) and all other edges
in the span need to be radial (Lemma 3.6), Ti uses exactly all but two radial
edges.

Further note that we cannot have two maximal diagonal edges between the
same pair of groups, because diagonal edges between the same pair of groups
are either comparable or crossing. Hence, the span of e and f contains at least
two outmost vertices, namely in the two distinct groups which contain an
endpoint of e and f , respectively. On the other hand, span(e, f ) cannot contain
a third outmost vertex, since otherwise Ti has to use an outmost radial edge
(by Lemma 3.6 and above argument). Furthermore, by the same argument,
none of the two outmost vertices may be in the interior of span(e, f ), i.e., the
two outmost vertices are endpoints of e and f . In particular, e and f share a
common group and the apex does not contain any outmost vertex. Hence, e
and f form a special wedge, as depicted in Figure 3.5.

Moreover, since Ti has to use all but two radial edges in the span, it has to
use all radial edges incident to the apex.

Note that for two spanning trees Ti, Tj (i ̸= j) not using an outmost radial
edge, their apexes are disjoint.

Proposition 3.9. Let T0, . . . , Tn−1 be a partition of BWk,ℓ into plane spanning trees
(if it exists). Then for each pair G,G ′ of opposite groups and each i ∈ {1, . . . , ℓ} there
is a unique diagonal edge connecting G and G ′ of distance di =

(
k+1

2 ℓ− i
)

that is
maximal in its tree.

Proof. All edges considered in this proof are between G and G ′ without further
notice. Observe first that for any i ∈ {1, . . . , ℓ} there are exactly i edges of
distance di and all edges of the same distance pairwise cross. Also note, for
any two edges e, e′ with dist(e) > dist(e′), either e′ ⊆ e− holds or they cross.
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3. Partitions into Plane Spanning Trees

In particular, if they do not cross and belong to the same tree, the shorter is
not a maximal edge.

Consider now for some i ∈ {2, . . . , ℓ} the distance di and let c1, . . . , ci
be the colors4 used for all i edges of this distance, which are all distinct,
since these edges form a crossing family. By Lemma 3.7, the i − 1 pairwise
crossing edges of (the larger) distance di−1 must each use the same color as
an edge of distance di, w.l.o.g. c1, . . . , ci−1. Hence, the corresponding edges of
distance di cannot be maximal (again using the argument that there cannot be
two maximal diagonal edges between the same pair of groups).

On the other hand, the color ci cannot be used by any edge of larger
distance, since again by Lemma 3.7 there would also be an edge of color ci
with distance di−1. Hence, indeed the only edge of distance di that is maximal
in its tree is the one of color ci.

Lastly, for i = 1, the single edge of distance d1 is clearly maximal.

Finally, we are ready to prove Theorem 3.2:

Theorem 3.2. For any odd parameters k ≥ 3 and ℓ ≥ 5, the edges of BWk,ℓ cannot
be partitioned into n = kℓ+1

2 plane spanning trees.

Proof. Assume to the contrary that there is such a partition T0, . . . , Tn−1. There
are 2k outmost radial edges and T0 uses (at least) k of them (see Proposition 3.5
and the remark thereafter). Hence, there are at most k + 1 spanning trees
(including T0) containing an outmost radial edge.

Next, let us count how many spanning trees without an outmost radial
edge we can have. Since, by Proposition 3.8, the apex of such a tree can neither
use any outmost vertex nor any vertex already incident to a radial edge in T0,
there remain k+1

2 (ℓ− 2) possible vertices to be used by apexes, namely the
inside vertices of the last k+1

2 groups G k+1
2

, . . . ,Gk (the radial edges of those
groups not fully used by T0). Recall that each apex contains at least one vertex.

It is crucial to emphasize that among those last k+1
2 groups, group G k+1

2
and

group Gk are opposite (the only opposite pair). Therefore, by Proposition 3.8,
two spanning trees with an apex in group G k+1

2
and group Gk, respectively,

must each have a maximal diagonal edge between these two groups. Hence,
by Proposition 3.9, we can have at most (ℓ− 2) spanning trees with apex in
one of these two groups (instead of 2(ℓ− 2)); see Figure 3.6.

In total there are at most k−1
2 (ℓ− 2) spanning trees which do not use an

outmost radial edge. Hence, in total we have at most

k + 1 +
k − 1

2
(ℓ− 2) =

2k + 2 + kℓ− ℓ− 2k + 2
2

=
kℓ+ 1

2
− ℓ− 3

2
< n

spanning trees in our partition, where we used ℓ > 3 in the last step. This
yields the desired contradiction and concludes the proof.

4As mentioned, we associate edges with colors to identify the subgraphs.
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3.3. Bumpy wheels that can be partitioned into PSTs

v1

v`
v2n−1

vk−1
2 `+1

T0

v0

Figure 3.6: In the black stripes (the darker one is the crucial one) the maximal
diagonal edges (of those trees without outmost radial edge) need to have distinct
distances. That allows ℓ− 2 many for each stripe. Two spanning trees (red and
orange) with apex in group G k+1

2
and group Gk, respectively, both need to have a

maximal diagonal edge in the dark stripe.

3.3 Bumpy wheels that can be partitioned into PSTs

The following theorem implies the other direction of Theorem 2.1:

Theorem 3.10. For any odd k ≥ 3, there are exactly 4k−1 + 4k−2 non-isomorphic
partitions of BWk,3 into plane spanning trees.

Towards the proof of Theorem 3.10, we need a little more terminology. A
partial partition of a graph G is a set of edge-disjoint subgraphs of G whose
union is a subgraph of G (i.e. the edge sets of the subgraphs form a packing
of E(G)). A subgraph of G, which can be extended to a spanning tree of G,
is called partial tree. Our construction consists of three steps, where we are
starting from a partial partition that fulfills certain properties and show how
to extend it to a proper partition step by step adding edges to the subgraphs.
Whenever we use the phrase “an edge is covered”, we mean that this edge
already belongs to a subgraph (of the partial partition).

A partial partition of BWk,ℓ into n subgraphs is called base partition if the
following properties are fulfilled:

(a) all radial edges are covered,

(b) for each pair of opposite groups, there is exactly one diagonal edge of each
distance d1, . . . , dℓ covered, and no further diagonal edges are covered,

(c) each of the covered diagonal edges is maximal in its partial tree, and

(d) each partial tree is connected, plane, and non-empty.
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3. Partitions into Plane Spanning Trees

Figure 3.7: An example of a base partition for BW7,3.

Figure 3.7 gives an illustration of a base partition. Proving the exact
value of 4k−1 + 4k−2 in Theorem 3.10 is somewhat cumbersome. Hence, we
decided to first state the essential ingredients and defer the proofs of the
helping lemmas to the following subsections. We remark that Lemma 3.12
and Lemma 3.13 hold more general for arbitrary ℓ, whereas ℓ = 3 is only
needed in Lemma 3.11. The following lemma identifies all possible base
partitions of BWk,3:

Lemma 3.11. For any odd k ≥ 3 there are exactly 2 · 2
k−1

2 + 2
k−3

2 non-isomorphic
base partitions of BWk,3.

Next, we extend these base partitions to a proper partition in two steps:

Lemma 3.12. Let T0, . . . , Tn−1 be a base partition of the edges of BWk,ℓ. Then there
is a unique way to extend it to a partial partition that covers all diagonal edges of
distance d1, . . . , dℓ.

Lemma 3.13. Let T0, . . . , Tn−1 be a partial partition of the edges of BWk,ℓ such that
exactly all radial edges and all diagonal edges of distance d1, . . . , dℓ are covered, and
such that all partial trees are connected, plane, and non-empty. Then, this partial
partition can be extended to a partition of BWk,ℓ into plane spanning trees. More
precisely, there are exactly 2

k−1
2 ℓ−1 such possible extensions.

The proofs of these three lemmas can be found in Section 3.3.1, Sec-
tion 3.3.2, and Section 3.3.3 respectively. We are now ready to prove Theo-
rem 3.10. Let us first show that there cannot be any partition that does not
conform to the properties of a base partition:
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3.3. Bumpy wheels that can be partitioned into PSTs

v0

Figure 3.8: Left endpoints are marked blue and right endpoints are red.

Lemma 3.14. Let T0, . . . , Tn−1 be a partition of the edges of BWk,3 into plane
spanning trees. Then, there are subtrees T′

0, . . . , T′
n−1 fulfilling the properties of a base

partition.

Proof. Define the subtrees T′
i to consist only of the radial and maximal diag-

onal edges (of the respective Ti). Properties (a) and (c) are clearly fulfilled.
Moreover, every T′

i is non-empty and plane, and connectedness follows from
the fact that the maximal diagonal edges define the span and within each
span there can only be radial edges (Lemma 3.6). Hence, property (d) holds
as well. Finally, the first part of property (b) holds by Proposition 3.9 and by
Proposition 3.5 there are no further maximal diagonal edges.

Theorem 3.10. For any odd k ≥ 3, there are exactly 4k−1 + 4k−2 non-isomorphic
partitions of BWk,3 into plane spanning trees.

Proof. By Lemma 3.14 it suffices to count the partitions that we get from our
construction via base partitions (Lemma 3.11, Lemma 3.12, and Lemma 3.13).
These are:

23 k−1
2 −1(2 · 2

k−1
2 + 2

k−3
2 ) = 23 k−1

2 −1+ k−1
2 +1 + 23 k−1

2 −1+ k−3
2

= 22(k−1) + 22(k−2)

= 4k−1 + 4k−2

This concludes the proof.

We now present the proofs of Lemma 3.11, Lemma 3.12, and Lemma 3.13,
though in reverted order, as we find that more instructive.

For convenience, we associate the endpoints of non-radial edges as left
and right viewed from the center v0 as follows: let e = uv be a non-radial
edge such that (v0, u, v) forms a left-turn, then u is called right endpoint of e
and v is called left endpoint of e; see Figure 3.8.

31



3. Partitions into Plane Spanning Trees

3.3.1 Proof of Lemma 3.13 (full extension)

Lemma 3.13. Let T0, . . . , Tn−1 be a partial partition of the edges of BWk,ℓ such that
exactly all radial edges and all diagonal edges of distance d1, . . . , dℓ are covered, and
such that all partial trees are connected, plane, and non-empty. Then, this partial
partition can be extended to a partition of BWk,ℓ into plane spanning trees. More
precisely, there are exactly 2

k−1
2 ℓ−1 such possible extensions.

Proof. First of all note that for any i ≥ ℓ, there are exactly 2n − 1 edges of
distance di. Starting from di = dℓ, we iteratively add all edges of distance
di+1 to our partial partition. To this end, consider all edges e1, e2, . . . , e2n−1
of distance di in clockwise circular order. For every ej there are two edges
of distance di+1 in e−j , both of which share an endpoint with ej (one of them
with the left endpoint of ej and the other with the right endpont of ej). By
Lemma 3.7 exactly one of the two edges belongs to the same tree as ej and
initially both choices are valid. However, once the first edge of distance
di+1 is assigned to a tree, the distribution of the remaining edges of distance
di+1 is determined. More precisely, at the beginning of each iteration, fix an
orientation o ∈ {left, right}. Then, for each edge ej of distance di attach to
ej the edge eo

j , which is the edge of distance di+1 incident to the endpoint
of ej corresponding to o (see Figure 3.9 for an illustration). Since there are
equally many edges of distance di and di+1, every edge of distance di+1 is
added to exactly one tree. Furthermore, adding the distance di+1 edges
preserves planarity as well as the tree structure. Continue this process until
distance di+1 = d k+1

2 ℓ−1 = 1, where we have 2 choices (left or right) in each
step independently. Then all edges are covered and, since we started with n
non-empty partial trees, all Ti’s form plane spanning trees.

Lastly, since there are two choices (left/right) in each iteration to pick
the next smaller diagonal edge and in total we have k+1

2 ℓ− 1 − ℓ = k−1
2 ℓ− 1

iterations, there are exactly 2
k−1

2 ℓ−1 possible extensions.

3.3.2 Proof of Lemma 3.12 (base extensions)

Lemma 3.12. Let T0, . . . , Tn−1 be a base partition of the edges of BWk,ℓ. Then there
is a unique way to extend it to a partial partition that covers all diagonal edges of
distance d1, . . . , dℓ.

Proof. The proof is very similar to the one of Lemma 3.13, with the difference
that we need to go through the distances in each pair of opposite groups
separately. So, let G,G ′ be a pair of opposite groups and consider some
distance di with i ∈ {2, . . . , ℓ} (assuming all edges of larger distance between
this pair are already covered). Note that by assumption (b) of the base
partition, the one edge of distance d1 is covered (providing a base case).
Furthermore, also by assumption (b), for every distance di (i ≤ ℓ) there is
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3.3. Bumpy wheels that can be partitioned into PSTs

(a) (b)

Figure 3.9: (a) All diagonal edges of distance d1, . . . , dℓ. (b) All solid edges are of
distance di and are already covered. If the dashed black edge (of distance di+1) is
attached to the left endpoint of the blue edge, the red edge has only one choice,
namely to also attach the next edge (dashed gray) to the left endpoint.

exactly one edge e that is already covered. Assumption (c) implies that e is
maximal in its partial tree Tk, in particular, no edge of distance di−1 between
G and G ′ belongs to Tk.

Now, at least one of the endpoints of e is incident to an edge f of distance
di−1 between G and G ′ (it could be both, then name the other f ′). More
precisely, let f be incident to the left endpoint of e and f ′ be incident to the
right endpoint of e. Let f be colored blue and f ′ be colored red. The crucial
observation is that e now blocks the left extension of the blue tree as well as
the right extension of the red tree. Therefore the red and the blue tree have a
unique extension and by using those, they subsequently fix the orientation
of the extension for all further trees with an edge of distance di−1 between
G and G ′ (to left for all edges to the left of the red edge f ′ and to right for
all edges to the right of the blue edge f – see Figure 3.10 for an illustration).
Finally, since there is exactly one more edge of distance di than of distance
di−1 between G and G ′, this uniquely determines the color for all edges of
distance di. And similar to the proof of Lemma 3.13, all extended partial trees
are still connected, plane, and non-empty.

3.3.3 Proof of Lemma 3.11 (base partition)

Note that Lemma 3.12 and Lemma 3.13 imply that in order to prove only
the existence in Theorem 3.10 it suffices to provide a single base construction
for BWk,3. We, however, give a full characterization of all possible such base
partitions.
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3. Partitions into Plane Spanning Trees

v0

ef

(a)

v0

ef ′

f

(b)

Figure 3.10: Illustration of Lemma 3.12. All edges up to distance di−1 = d3 (solid,
non-orange) and one edge e of distance di (solid orange) are covered. The edge e
now subsequently forces the continuations for the previous trees (dashed). In (a), e
is incident to one edge of distance di−1 and in (b) it is incident to two such edges.

Property (b) of a base partition requires us to have one maximal diagonal
edge of each distance d1, d2, and d3 between every pair of opposite groups.
We need to pair two of them in each tree (except for T0, that only contains one
such edge). The following lemma, which we state in more general terms of
subgraphs since we need it that way later (Chapter 4), gives a restriction on
which edges we can pair.

Lemma 3.15. Let e1, . . . , em be pairwise (non-crossing) incomparable edges of a plane
subgraph of BWk,ℓ. Then, ∑i dist(ei) ≤ 2n − 1 (= kℓ) holds. Moreover, if m = 2,

dist(e1) + dist(e2) ≤ 2n − 2

holds.

Proof. The first part follows immediately from Observation 3.3 and the second
part then from the fact that two edges cannot cover the entire range of the
2n − 1 boundary edges.

Lemma 3.16. For any two incomparable edges with distances di and dj (1 ≤ i, j <
k+1

2 ℓ) belonging to the same plane subgraph of BWk,ℓ, the inequality

i + j ≥ ℓ+ 1

holds.
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3.3. Bumpy wheels that can be partitioned into PSTs

d1

d3

(a)

d3

d2

(b)

v0

(c)

Figure 3.11: (a) Maximal diagonal edges sum to 3k − 1. (b) Maximal diagonal
edges sum to 3k − 2. (c) Center radial edges; left vertices are blue and right vertices
are red.

Proof. We directly compute:

i + j =
k + 1

2
ℓ− di +

k + 1
2

ℓ− dj

= (k + 1)ℓ− (di + dj)

≥ kℓ+ ℓ− (2n − 2) (Lemma 3.15)
= kℓ+ ℓ− (kℓ+ 1 − 2)
= ℓ+ 1,

which concludes the proof.

In the setting of BWk,3, Lemma 3.16 implies that we can pair a maximal
diagonal edge of distance d1 only with one of distance d3 in its plane spanning
tree. And a maximal diagonal edge of distance d2 can only be paired with
one of distance d2 or d3.

Further note that if the distances of the two maximal diagonal edges sum
to 2n − 2 = 3k − 1 (i.e., d1 + d3 or d2 + d2) the respective spanning tree has
exactly one radial edge in its span, and if they only sum to 3k − 2 (d2 + d3),
there are exactly 2 radial edges in the span; see Figure 3.11(a,b).

In the following we call the radial edges incident to the middle vertex of
each group center radial edges. Also, we call the two outmost vertices of a group
the right and left vertex of that group, respectively, as viewed from v0 (that is,
v3i is the right and v3(i−1)+1 the left vertex of group Gi); see Figure 3.11(c) for
an illustration.

Finally, we are ready to prove Theorem 3.10, which we restate for easier
readability:

Lemma 3.11. For any odd k ≥ 3 there are exactly 2 · 2
k−1

2 + 2
k−3

2 non-isomorphic
base partitions of BWk,3.

Proof. Using the structural properties derived on the way to prove Theorem 3.2,
we show how to construct all possible base partitions. First of all, we need
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3. Partitions into Plane Spanning Trees

(a) T0 (b) T1 (c) Class I. (d) Class I.

(e) Class I. (f) Class II. (g) Class II. (h) Class II.

(i) Class II. (j) Class II. (k) Class II.

Figure 3.12: Illustration of the different classes of trees and the distribution of
maximal diagonal edges. Note that the radial edges are only depicted exemplary
and allow certain freedom of choice.

to have a tree T0 using at least (3 k−1
2 + 1) radial edges and a single maximal

diagonal edge e0 (Lemma 3.4 and Proposition 3.5). Let e0 again be between
G k+1

2
and Gk and let the radial edge {v0, v3 k−1

2 +1} be part of T0.

First we argue that dist(e0) = d1 holds. If dist(e0) = d3, there is one
more maximal diagonal edge of distance d1 than of distance d3 left, so we
cannot pair all edges of distance d1. Further, if dist(e0) = d2, all distance d1
edges need to be paired with distance d3 edges and, especially, all remaining
distance d2 edges need to be paired with each other. In particular, the tree
containing the center radial edge of Gk (which cannot be part of T0) would
also have a maximal diagonal edge of distance d2 between the groups G k+1

2

and Gk; a contradiction to Proposition 3.9. Hence, we know dist(e0) = d1.

Considering the remaining k − 1 maximal diagonal edges of distance d1,
they all must be paired with distance d3 edges. This leaves one distance d3
edge to be paired with a distance d2 edge (let the respective tree be T1) and
two distance d2 edges each for the remaining trees. To summarize (see also
Figure 3.12):
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3.3. Bumpy wheels that can be partitioned into PSTs

G1 Gk

Gk+1
2

v1

v3 k−1
2

+1

Gk−1
2

Gk−1

v3k

Figure 3.13: Illustration of the claim in the proof of Theorem 3.10. T0 (blue) uses
the d1 edge between G k+1

2
and Gk. If a Class I tree (green) uses the center radial

edge of G k+1
2

(and therefore the d2 edge between G k+1
2

and Gk), either T1 (red) or

the orange tree uses the d3 edge between G k+1
2

and Gk. Consequently, the radial

edge {v0, v3k} (dashed black) cannot be accommodated anymore.

• T1 contains one maximal diagonal edge of distance d2 and one of dis-
tance d3,

• there are k−1
2 trees with two distance d2 maximal diagonal edges (call

these trees Class I), and

• k − 1 trees with one maximal diagonal edge of distance d1 and d3 each
(call these trees Class II).

Next, consider the k+1
2 remaining center radial edges (not used by T0),

which clearly cannot be used by trees of Class II and no tree can use more
than one of them. Hence, T1 and every Class I tree needs to use exactly one
such center radial edge. Furthermore, every Class I tree must have the center
radial edge incident to its apex and hence, using Proposition 3.9, the center
radial edges of the groups G k+1

2
and Gk cannot be used by two Class I trees.

Therefore, T1 has to use one of them and some Class I tree Tc the other. The
remaining k−3

2 Class I trees use the center radial edges of the groups G k+3
2

to
Gk−1 (with apex in the respective group). Next we show that T1 uses the center
radial edge of G k+1

2
and Tc the one of Gk (see Figure 3.13 for an illustration):

Claim. Tc cannot use the center radial edge of G k+1
2

.

Proof. Assume for the sake of contradiction that Tc uses the center radial edge
of G k+1

2
and hence, T1 contains the center radial edge of Gk. Moreover, T1 has

its d2 edge between Gk and G k−1
2

(since all other d2 edges are already used by
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3. Partitions into Plane Spanning Trees

Class I trees). Then, T1 has its d3 edge either between Gk and G k+1
2

, or between
G k−1

2
and Gk−1. In the latter case, the tree using the d1 edge between Gk and

G k−1
2

must have its d3 edge between Gk and G k+1
2

. In any case, the radial edge
{v0, v3k} cannot be accommodated anymore, since the corresponding tree
would need to have a maximal diagonal edge between Gk and G k+1

2
(all of

which are already taken). ■

So, the Class I trees have their apexes in groups G k+3
2

to Gk and T1 has to
use the last remaining distance d2 edge (between G k+1

2
and G1). Therefore, the

distance d3 edge of T1 is either between G k+1
2

and Gk or between G1 and G k+3
2

.
As a next step, consider the Class II trees. Remember that T0 uses the

distance d1 edge between G k+1
2

and Gk. Hence, the distance d3 edge between
G1 and G k+1

2
needs to be paired with the distance d1 edge between G1 and G k+3

2
,

forcing the respective Class II tree to have its apex in the right vertex of G1.
Subsequently, this forces another Class II tree to have its apex in the right
vertex of G2 and so on, up to group G k−1

2
.

Similarly, considering the distance d3 edge between G k−1
2

and Gk, we get a
Class II tree with its apex in the left vertex of G k−1

2
. And again subsequently

another with its apex in the left vertex of G k−3
2

and so on, down to group G2.
Note that, since T1 might use the distance d3 edge between G1 and G k+3

2
, we

cannot yet conclude where the apex of the last Class II tree will be (let that
tree be Tn−1). So, let us summarize what we know so far:

• T0 uses all radial edges {v0, vi} (for 1 ≤ i ≤ 3 k−1
2 + 1) and the maximal

diagonal edge {v3 k−1
2 +1, v3k} of distance d1 (between G k+1

2
and Gk),

• T1 uses the center radial edge of group G k+1
2

and the maximal diagonal
edge {v1, v3 k−1

2 +2} of distance d2 (between G1 and G k+1
2

),

• the center radial edges of groups G k+3
2

to Gk are used by Class I trees
(with apex in the respective group),

• there are k − 2 Class II trees with apexes in an outmost vertex from the
right vertex of group G1 to the right vertex of group G k−1

2
, and

• the last Class II tree Tn−1 uses the maximal diagonal edge {v1, v3 k+1
2
} of

distance d1 (between G1 and G k+1
2

— it is the only distance d1 edge left).

It remains to determine the distance d3 edge and the second radial edge
of T1 as well as the distance d3 edge (and hence the apex) of Tn−1. We will see
that there are three base cases for that:
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3.3. Bumpy wheels that can be partitioned into PSTs

G1 Gk

Gk+1
2

v1 v3k

v3k−12 Gk+3
2

(a) Case 1.

G1 Gk

Gk+1
2

v1 v3k

v3k−12 Gk+3
2

(b) Case 2a.

G1 Gk

Gk+1
2

v1 v3k

v3k−12 Gk+3
2

(c) Case 2b.

Figure 3.14: Illustration of the three base cases. T0 is depicted in blue, T1 is red,
and Tn−1 orange. The red dashed radial edge depicts the second radial edge, that
T1 has to use.

Case 1: T1 has its apex in G1.

That is, T1 has its distance d3 edge between G1 and G k+3
2

. Hence, the
second radial edge of T1 is {v0, v3 k+1

2
} and Tn−1 has its apex in the right

vertex of G k+1
2

(see Figure 3.14(a)).

Case 2: T1 has its apex in G k+1
2

.

That is, T1 has its distance d3 edge between G k+1
2

and Gk. Hence, Tn−1 has
its distance d3 edge between G1 and G k+3

2
(so its apex is in the left vertex

of G1) and therefore the second radial edge of T1 must be {v0, v3k} (since
no other tree can use it anymore). However, there are two possibilities
for the distance d3 edge of T1 now:

a) either {v3 k+1
2

, v3k} as depicted in Figure 3.14(b), or

b) {v3 k−1
2 +2, v3(k−1)+2} as depicted in Figure 3.14(c).

By now, we have fixed all maximal diagonal edges and they fulfill prop-
erty (b) of a base partition. Finally, it only remains to determine the radial
edges of all Class II trees. Note that for each group G ′ (from G1 to G k−1

2
) with

two apexes of Class II trees in it (at the outmost vertices), those two trees have
the same pair of radial edges in their span (in the groups opposite to G ′). So
we have two (non-isomorphic) choices for each of those cases (independently).

Further, in Case 1 Tn−1 needs to contain {v0, v3k} and the Class II tree with
apex in the right vertex of G1 needs to contain {v0, v3 k+1

2 +1} (the other radial
edges in its span are used by T1 and T0). This leaves a pair of Class II trees for
each group from G2 to G k−1

2
. Meanwhile, in Case 2 we have a pair of Class II

trees for each group from G1 to G k−1
2

. That is, in Case 2 we have exactly 2
k−1

2

possibilities (for the Class II trees) to conform to the base partition properties,
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3. Partitions into Plane Spanning Trees

while in Case 1 we only have 2
k−3

2 possibilities. Given the two choices for T1
in Case 2, we get

2 · 2
k−1

2 + 2
k−3

2

base partitions in total.

In Appendix B, we give some examples of partitions corresponding to the
three base constructions.
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Chapter4
Partitions into Plane Subgraphs

In this chapter we generalize our ideas from Chapter 3 to partitions into
arbitrary plane subgraphs. We show a negative answer to the following
question:

Question 4.1. Can every complete geometric graph on 2n vertices be partitioned into
n plane subgraphs?

Now that we are concerned with partitions into subgraphs it would also
be viable to allow other values for the number of subgraphs in a partition, or
allow complete geometric graphs with an odd number of vertices. However,
given the fact that e.g. a point set S in convex position determines a crossing
family of size ⌊ |S|2 ⌋, we cannot aim for a smaller size partition in general. On
the other hand, allowing more subgraphs, the problem gets trivial once we
allow 2n− 1 subgraphs (since any 2n− 1 stars form a proper partition). Hence,
whenever we speak of a partition into subgraphs, we refer to a partition into
(at most) n subgraphs, thereby also staying close to the notion of the previous
chapters.

In Theorem 2.1 we heavily exploited the structure enforced by spanning
trees. This is not possible anymore: we cannot make any assumptions on the
number of edges, not even about connectedness. The only property we can
(and will) exploit is the fact that we still have maximal diagonal edges and
radial edges may only be contained in their span (cf. Lemma 3.6).

Recall that the problem of partitioning a geometric graph into plane sub-
graphs is equivalent to a classic edge coloring problem, where each edge
should be assigned a color in such a way that no two edges of the same
color cross (of course using as few colors as possible). This problem be-
longs to a broader question concerning the chromatic number of intersection
graphs of geometric objects, a problem that received considerable attention;
see e.g. [PKK+14, Dav21, KKN04]. The geometric objects in our setting are
line segments, a natural setting, which was also the topic of the CG:SHOP
challenge 2022 [CGC].
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4. Partitions into Plane Subgraphs

Contribution. We show that there exist bumpy wheels that cannot even be
partitioned into plane subgraphs. In fact, it turns out that allowing arbitrary
plane subgraphs instead of plane spanning trees does not help much: the only
bumpy wheel that can be partitioned into plane subgraphs but not into plane
spanning trees is BW3,5.

Theorem 2.2. For odd parameters k, ℓ ≥ 3, the edges of BWk,ℓ cannot be partitioned
into n = kℓ+1

2 plane subgraphs if and only if ℓ > 5 or (ℓ = 5 and k > 3).

The remainder of this chapter is dedicated to the proof of Theorem 2.2,
where we first focus on the case ℓ > 5.

Theorem 4.2. For any odd parameters k ≥ 3 and ℓ > 5, the edges of BWk,ℓ cannot
be partitioned into n = kℓ+1

2 plane subgraphs.

The proof is more technical than for spanning trees. Again, we start with
some structural results. Recall that the distances of two incomparable edges
sum to at most 2n − 2 (Lemma 3.15). Also recall the notation di =

k+1
2 ℓ− i

from Section 3.2. The following result is the analogue of Proposition 3.9:

Proposition 4.3. Let D0, . . . , Dn−1 be a partition of BWk,ℓ into n = kℓ+1
2 plane

subgraphs (if it exists). Then between each pair of opposite groups and for each
1 ≤ i ≤ ℓ there are at least i diagonal edges of distance at least di that are maximal
in their subgraph.

Proof. First note that for every diagonal edge e it holds dist(e) ≤ d1. Further-
more, every diagonal edge e with dist(e) ≥ dℓ connects opposite groups.

Observe that between every pair of opposite groups and every 1 ≤ i ≤ ℓ
there is a crossing family of size i (where each edge has distance di). Hence,
all these edges need to belong to different subgraphs. Furthermore, each
such edge gives rise to a maximal diagonal edge in its subgraph: either it is
maximal itself or there is a larger edge that is maximal. However, since i ≤ ℓ,
larger edges are necessarily between the same pair of opposite groups. Hence,
we conclude that there are at least i maximal diagonal edges of distance at
least di between each pair of opposite groups.

Rephrasing Proposition 4.3, we may also say that between each pair of
opposite groups there is one maximal diagonal edge of distance (at least) d1,
another of distance at least d2, yet another of distance at least d3, and so on
until distance dℓ.

And since there are exactly k pairs of opposite groups, Proposition 4.3
guarantees at least k · ℓ maximal diagonal edges of distance at least dℓ in any
partition of BWk,ℓ. For each pair of opposite groups, we distinctly pick for
each 1 ≤ i ≤ ℓ one of those edges that has distance at least di to get precisely
k · ℓ edges in total, which we call forced diagonal edges in the following (or
forced edges for short).
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These forced edges will take the role of the maximal diagonal edges from
the previous chapter. Let Eforced be the set of forced diagonal edges, then from
the definition it follows:

∑
e∈Eforced

dist(e) ≥ k ·
ℓ

∑
i=1

di

= k ·
ℓ

∑
i=1

(
k + 1

2
ℓ− i

)
= k ·

(
ℓ2(k + 1)

2
− ℓ(ℓ+ 1)

2

)
= k · (kℓ− 1)

ℓ

2
(4.1)

Note in the following that Lemmas 3.15 and 3.16 hold especially for forced
diagonal edges that are contained in the same plane subgraph, since they are
maximal and therefore incomparable.

The following proposition is the analogue of Proposition 3.5 generalized
to subgraphs.

Proposition 4.4. Let D0, . . . , Dn−1 be a partition of BWk,ℓ into n = kℓ+1
2 plane

subgraphs (if it exists). Then one subgraph, say D0, contains exactly one forced
diagonal edge and all other n − 1 subgraphs contain exactly two forced diagonal
edges.

Proof. In total there are k · ℓ forced edges and we have n = kℓ+1
2 subgraphs.

Hence, to prove the statement, we only need to show that no subgraph can
contain more than two forced edges. To this end, we consider the two cases
k = 3 and k > 3 separately:

Case 1: k > 3.

By Lemma 3.15, in each subgraph the sum of distances of its maximal
diagonal edges may not exceed kℓ. If there is a subgraph with more
than two forced edges (each of distance at least dℓ = k−1

2 ℓ), the sum of
their distances is at least 3 · k−1

2 ℓ > kℓ for k > 3.

For the case k = 3, we need a more careful analysis.

Case 2: k = 3.

Again by Lemma 3.15, if there is a subgraph D′ containing three forced
edges, then all three need to have distance exactly dℓ = ℓ (for a combined
distance of at most 3ℓ) and the subgraph cannot contain any further
forced edges. Consider now the three forced edges of distance d1
(between the three pairs of opposite groups). The subgraphs containing
such a forced edge of distance d1 cannot contain any other forced edge,
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4. Partitions into Plane Subgraphs

which can be seen as follows: By Lemma 3.16, the d1 edges can only
be paired with an edge of distance dℓ (which are already used by D′).
Hence, we get three subgraphs containing only one forced edge (of
distance d1). Together with D′ this leaves 3ℓ− 6 forced edges of distance
at least dℓ−1 to be covered by the remaining subgraphs (note that by
Lemma 3.15 any of the other subgraphs contains at most two of them).
Hence, in total we would already need at least

4 +
3ℓ− 6

2
=

3ℓ+ 1
2

+
1
2
= n +

1
2

plane subgraphs to cover all forced edges.

Therefore, we need n − 1 subgraphs containing exactly two forced edges
and one subgraph (say D0) containing one forced edge, to cover all k · ℓ =
2n − 1 forced edges.

The following proposition is also a generalization of an idea, that we
already used towards the proof of Theorem 3.10.

Proposition 4.5. Let D0, . . . , Dn−1 be a partition of BWk,ℓ into n = kℓ+1
2 plane

subgraphs (if it exists) and let e0 be the forced diagonal edge in D0 with dist(e0) =
d1 − x0 (for some integer x0 ≥ 0). Moreover, for each 1 ≤ i ≤ n − 1, let xi ≥ 0
be such that the distances of the two forced diagonal edges ei and e′i in Di sum to
2n − 2 − xi. Then,

n−1

∑
i=0

xi ≤
ℓ− 1

2

holds.

Proof. By Equation (4.1), we know that

dist(e0) +
n−1

∑
i=1

(
dist(ei) + dist(e′i)

)
≥ k · (kℓ− 1)

ℓ

2

holds for the sum of all forced diagonal edges. Plugging in dist(e0) =
k+1

2 ℓ− 1 − x0 and dist(ei) + dist(e′i) = kℓ− 1 − xi, yields

k + 1
2

ℓ− 1 + (n − 1)(kℓ− 1)−
n−1

∑
i=0

xi ≥ kℓ
kℓ− 1

2
.
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Finally, plugging in n = kℓ+1
2 and rearranging terms

n−1

∑
i=0

xi ≤
k + 1

2
ℓ− 1 +

kℓ− 1
2

(kℓ− 1)− kℓ
kℓ− 1

2

=
k + 1

2
ℓ− 1 − kℓ− 1

2

=
kℓ+ ℓ− 2 − kℓ+ 1

2

=
ℓ− 1

2
provides the desired result.

Note that, in Proposition 4.5, equality holds if and only if all forced
diagonal edges attain there minimal possible distance, i.e., between every
pair of opposite groups there is exactly one forced edge of distance exactly d1,
exactly one forced edge of distance exactly d2, exactly one forced edge of
distance exactly d3, etc. (cf. Proposition 4.3, which was giving only a lower
bound). Indeed, the only step in the proof of Proposition 4.5 that used an
inequality was the usage of Equation (4.1), which gives equality precisely
under the mentioned condition.

Let the forced diagonal edge e0 in D0 from now on connect groups G k+1
2

and Gk (similar to the maximal diagonal edge of T0 in Section 3.2). Further
note that two endpoints of the two forced diagonal edges ei and e′i in Di (i ̸= 0)
must be contained in a common group G, since otherwise ei and e′i would
cross. We call the set of vertices in span(ei, e′i) that lie in this common group
G the apex of Di (again as in Section 3.2). Especially note that all radial edges
in Di (i ̸= 0) are contained in span(ei, e′i) (cf. Lemma 3.6).

As in Section 3.2, we are using a counting argument to show that certain
edges cannot be covered. To this end, it is convenient to introduce the notion
of additional vertices. Intuitively, consider the span of a subgraph (say with
two forced diagonal edges), then this span contains at least three vertices –
two endpoints of the forced edges and at least one vertex in the apex (which
may be a common endpoint of the forced edges). All other vertices in the
span contribute to the additional vertices (except v0 which is not relevant
here). More formally, note that cl(e+0 ) contains exactly ( k−1

2 ℓ+ 2+ x0) vertices
(those of the first k−1

2 groups, two outmost vertices, and x0 extra vertices).
Moreover, for i ̸= 0, span(ei, e′i) contains exactly (2 + 1 + xi) vertices (two
outmost vertices, one vertex in the apex, and xi extra vertices (possibly also in
the apex, making its size larger than 1)). We call the set of all extra vertices
additional vertices; see Figure 4.1(a).

Lemma 4.6. In any partition of BWk,ℓ into n = kℓ+1
2 plane subgraphs any inside

radial edge of the last k+1
2 groups G k+1

2
, . . . ,Gk is either incident to the apex or to an

additional vertex of its subgraph.

45



4. Partitions into Plane Subgraphs

(a) Additional vertices.

G1 Gk

Gk+1
2

(b) Special radial edges.

Figure 4.1: Illustration of some terms.

Proof. Let f be an inside radial edge of one of the last k+1
2 groups. If f belongs

to D0, it is incident to an additional vertex (since it is not in the first k−1
2

groups and not incident to one of the two outmost vertices). On the other
hand, if f belongs to some Di with i ̸= 0, it still cannot be incident to one of
the two outmost vertices in span(ei, e′i), so it is either incident to the apex or
an additional vertex.

Finally we call the inside radial edges and inside vertices of the two groups
G k+1

2
and Gk special radial edges and special vertices; see Figure 4.1(b). Now we

are ready to prove Theorem 4.2, which we again restate for easier readability:

Theorem 4.2. For any odd parameters k ≥ 3 and ℓ > 5, the edges of BWk,ℓ cannot
be partitioned into n = kℓ+1

2 plane subgraphs.

Proof. Note that there are exactly 2ℓ− 4 special radial edges. By Lemma 4.6
they are either incident to an apex (in one of the two groups) or an additional
vertex. Any subgraph with an apex in G k+1

2
or Gk must contain a forced

edge between those two groups. By the definition of forced edges there are
exactly ℓ of them between G k+1

2
and Gk and one of them is taken by D0. Hence,

G k+1
2

and Gk together contain the apexes of at most ℓ− 1 subgraphs. Finally,
Proposition 4.5 gives an upper bound on the total number of additional
vertices. Hence, in total we can cover at most

(ℓ− 1) +
ℓ− 1

2
=

3
2
(ℓ− 1)

special radial edges with our n subgraphs (note that we count only one vertex
for each apex because if an apex is larger than 1, that is, contains additional
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vertices, we already accounted for that in the additional vertices bound). Using
ℓ > 5, we conclude that not all 2ℓ− 4 special radial edges can be covered:

3
2
(ℓ− 1) <

3
2
(ℓ− 1) +

1
2
(ℓ− 5) = 2ℓ− 4.

For the case ℓ = 5, we need to analyze the structure of our plane subgraphs
a little further.

Theorem 4.7. For any odd parameter k ≥ 5, the edges of BWk,5 cannot be partitioned
into n = 5k+1

2 plane subgraphs.

Proof. As before, we first consider the special radial edges, that is, the inside
radial edges of the groups G k+1

2
and Gk. Since ℓ = 5, there are 6 of them

here. Furthermore, any subgraph that has its apex in G k+1
2

or Gk must use a
forced edge between those two groups (the blue stripe in Figure 4.2). However,
because D0 already uses one of these 5 forced edges, there are at most 4 apexes
in G k+1

2
and Gk together. Moreover, Proposition 4.5 yields at most 5−1

2 = 2
additional vertices in total.

To summarize, between the two groups G k+1
2

and Gk there are 6 special
radial edges to be covered in 4 apexes. This implies that two of these special
vertices must be additional vertices. In particular, there cannot be any further
additional vertex in another apex. Moreover, all forced diagonal edges attain
their minimal possible distance (see the remark after Proposition 4.5), i.e.,
we have exactly one forced diagonal edge of each distance d1, . . . , d5 between
every pair of opposite groups.

Consider now the inside radial edges in all groups from G k+3
2

to Gk−1.
By Lemma 4.6 and the fact that all additional vertices are special vertices,
they must be incident to some apex. Also, since the opposite groups are
between G1 and G k−1

2
, it is not possible to place special vertices as additional

vertices in the respective subgraphs. Hence, these subgraphs use up all forced
edges of distances d2, d3, d4 (in the grey stripes in Figure 4.2), except of course
those between the pairs of opposite groups G1 and G k+1

2
, G k+1

2
and Gk, and Gk

and G k−1
2

.
Since k ≥ 5, each edge between G1 and G k+1

2
crosses every edge between

Gk and G k−1
2

(the red stripes in Figure 4.2). Furthermore, two forced edges
between the same pair of opposite groups cannot be in the same subgraph
(because they are both maximal). Hence, we have 6 forced edges of distances
d2, d3, d4 (call them leftover edges) between those two pairs of opposite groups,
that we still need to pair with a second forced edge in their subgraph.

However, by Lemma 3.16 all forced edges of distance d1 (except one if used
by D0) need to be paired with a distance d5 forced edge in their subgraph.
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4. Partitions into Plane Subgraphs

G1

G k−1
2

G k+1
2

G k+3
2

Gk

G2 Gk−1

e

Figure 4.2: High level overview of the proof of Theorem 4.7. We have at most
5−1

2 = 2 additional vertices in total and the blue stripe (which contains the single
forced edge e of D0) has to use both of them. Then, in the grey stripes we must
use all forced edges of distances d2, d3, d4. However, since the two red stripes
intersect (k ≥ 5), there will not be enough forced edges to pair all 6 forced edges
of distances d2, d3, d4 from the red stripes.

This leaves the 3 forced edges of distances d2, d3, d4 between groups G k+1
2

and Gk, and possibly one forced edge of distance d5 to pair the leftover edges
with. That is two less than what we would need.

Theorems 4.2 and 4.7 prove the “if” direction of Theorem 2.2. Towards
the other direction, using Theorem 2.1, it only remains to show that there is a
partition for BW3,5. However, in Section 3.1 (see Figure 3.2) we already gave
such a partition.
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Chapter5
Generalized Wheels

In this chapter we generalize our construction to non-regular wheel sets. We
give a necessary condition in the setting of plane spanning trees (Theorem 2.3)
and a full characterization for partitioning into plane double stars (Theo-
rem 2.4). Recall that, for a tuple N = [n1, . . . , nk] of integers ni ≥ 1, GWN
denotes the generalized wheel with group sizes ni. In Section 5.1, we prove
the following result:

Theorem 2.3. Let GWN be a generalized wheel with k groups and 2n vertices. Then
GWN cannot be partitioned into plane spanning trees if each family of k−1

2 consecutive
groups contains (strictly) less than n − 2 vertices.

Note that the geometric regularity of generalized wheels is not strictly
required (but eases the proofs). In fact, we show that for every wheel graph
there exists a generalized wheel graph with the same rotation system.

Considering the other side of the story, we show that many generalized
wheels can already be partitioned into plane double stars. In fact, we give the
following characterization:

Theorem 2.4. Let GWN be a generalized wheel with k groups and 2n vertices. Then
GWN cannot be partitioned into plane spanning double stars if and only if there are
three families of k−1

2 consecutive groups, such that (i) every family contains at most
n − 2 vertices and (ii) every group is in at least one family.

We phrased Theorem 2.4 this way to make it consistent with Theorem 2.3;
however, let us rephrase it in a way that better indicates the gap between the
two theorems. Let Fi denote the family of k−1

2 consecutive groups starting
at Gi in clockwise order (whenever speaking of a family without further
specification, we refer to such a family of k−1

2 groups for the remainder of this
section). Two families Fi and Fi+1 are called consecutive and |Fi| denotes the
number of vertices in Fi. If |Fi| ≤ n − 2 holds, we call Fi small, and otherwise
large.
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5. Generalized Wheels

Corollary 5.1. Let GWN be a generalized wheel with k groups and 2n vertices. Then
GWN can be partitioned into plane spanning double stars if and only if there are k−1

2
consecutive families each containing (strictly) more than n − 2 vertices.

Proof. If, for the one direction, there are k−1
2 large consecutive families, then

there is a group G⋆ (namely the one that is contained in all these k−1
2 families)

such that any family containing G⋆ is large. In particular, there cannot be
three small families covering all groups. Hence, by Theorem 2.4, there is a
partition into plane double stars.

On the other hand, if there are no k−1
2 large consecutive families, we can

find three small families as follows. Note first that every group is contained in
some small family. Pick a small family F arbitrarily and let G be the first group
after F (in clockwise order). Among all small families containing G, pick the
one that is “furthest” from F, that is, has least overlap with F, and call it F′.
Let G ′ again be the first group after F′ and among all small families containing
G ′ pick the one furthest from F′ and call it F′′. Since F′′ cannot contain G, we
conclude that the three small families F, F′, F′′ cover all groups.

5.1 Plane Spanning Trees

Theorem 2.3 extends Theorem 3.2 to generalized wheels and, as we will see,
to a large extent the proof is analogous. We remark that the condition in
Theorem 2.3 is only a sufficient condition but not a necessary one. In fact, we
found some generalized wheels not fulfilling the condition, that still cannot
be partitioned into plane spanning trees (verified by computer assistance), for
example, GW[2,3,3,4,5] cannot be partitioned.

In Section 3.2 we considered the more restrictive setting of bumpy wheels
and showed for which parameters these cannot be partitioned into plane
spanning trees. We found this presentation more instructive, however, now
we need some of the technical results in the context of generalized wheels.
All results from Observation 3.3 to Proposition 3.9 hold for generalized
wheels as well, exactly the way they were stated for bumpy wheels, with
two exceptions: Lemma 3.4 (iii) and Proposition 3.9. In the following, we
explain precisely which parts of the mentioned results do not carry over and
how to resolve this (also in the proofs of the other results that use Lemma 3.4
(iii) or Proposition 3.9).

Adjusting Lemma 3.4 (iii). Recall that Lemma 3.4 (iii) guarantees, for a
spanning tree T0 with exactly one maximal diagonal edge, the presence of all
radial edges along k−1

2 consecutive groups plus one. This statement carries
one-to-one over to generalized wheels. However, the precise bound ( k−1

2 ℓ+ 1)
on the number of radial edges does not carry over. We used this value in the
proof of Proposition 3.5 to show that there is a single spanning tree in the
partition with exactly one maximal diagonal edge.
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5.1. Plane Spanning Trees

We claim, however, that this statement also holds in our setting of gen-
eralized wheels, in other words, Proposition 3.5 persists. The argument in
the proof of Proposition 3.5 can be adjusted as follows. Assume that there
are two trees T0, T1 with only a single maximal diagonal edge, then T0 and T1
together cover all radial edges of k − 1 groups plus two (using the first part
Lemma 3.4 (iii)). Hence, there is only a single group, say Gk, whose radial
edges are not entirely covered by T0 and T1. Since each of the remaining
n − 2 trees contains at least one radial edge, it follows that Gk contains at least
n − 2 + 2 = n vertices.

However, in this case, the condition of Theorem 2.3 is not fulfilled. Or,
phrased the other way around, a generalized wheel that fulfills the condition
of Theorem 2.3, also fulfills Proposition 3.5.

Adjusting Proposition 3.9. It requires some effort to fit the formulation of
Proposition 3.9 to generalized wheels. In essence, this reformulation only
affects the values of the distances of maximal edges (which is not

(
k+1

2 ℓ− j
)

anymore), however, not the value of the distance is relevant but the number
of different distances. We give the precise formulation of Proposition 3.9 in
the context of generalized wheels and add the proof, which is very similar to
the one of Proposition 3.9, for the sake of completeness:

Proposition 5.2 (cf. Proposition 3.9). Let T0, . . . , Tn−1 be a partition of GWN (with
N = [n1, . . . , nk] positive integers) into plane spanning trees (if it exists). Further
let Gx,Gy be a pair of opposite groups and d⋆ be the distance of a largest edge between
Gx and Gy. Then, for each j ∈ {1, . . . , max(nx, ny)} there is at most one diagonal
edge connecting Gx and Gy of distance d′j = (d⋆ + 1 − j) that is maximal in its tree.

Proof. Without loss of generality, let nx ≥ ny, i.e. max(nx, ny) = nx. Observe
that for any j ∈ {1, . . . , nx} there are at most j edges of distance d′j between Gx

and Gy (since some edges of this distance may be between a different pair of
groups now); see Figure 5.1(a).

For the remainder of the proof, we only consider edges with one endpoint
in Gx and the other endpoint in Gy. First note that for every j ∈ {1, . . . , nx},
there are j⋆ = min(j, ny) edges of distance d′j (between Gx and Gy).

Consider for some j ∈ {2, . . . , nx} the distance d′j and let c1, . . . , cj⋆ be the
colors used for the j⋆ edges of this distance, which are all distinct, since these
edges form a crossing family.

Case 1: j ≤ ny, i.e., j⋆ = j.

By Lemma 3.7, the j − 1 pairwise crossing edges of (the larger) dis-
tance d′j−1 must use the same color as an edge of distance d′j (w.l.o.g.
c1, . . . , cj−1). Hence, the corresponding edges of distance d′j cannot be
maximal (again using the argument that there cannot be two maximal
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Gx

Gyv0d?

(a)

Gx

Gyv0d?

(b)

Figure 5.1: Illustration of the proof of Proposition 5.2. (a) The edges of distance d′j
(j = 4 here) form a crossing family. (b) Maximal diagonal edges may not all be
between Gx and Gy.

diagonal edges between the same pair of groups). On the other hand,
the color cj cannot be used by any edge of larger distance, since again
by Lemma 3.7 there would also be an edge of color cj with distance d′j−1.
Hence, indeed the only edge of distance d′j that is maximal in its tree is
the one of color cj.

Case 2: j > ny, i.e., j⋆ = ny.

First note that now there are equally many edges of distance d′j and d′j−1,
namely ny many. Using the arguments as in Case 1, we conclude that
there is no edge of distance d′j that is maximal in its tree.

Lastly, for j = 1 observe that the single edge of distance d′1 is clearly
maximal.

Putting everything together. We are now ready to prove Theorem 2.3. For
convenience we introduce a little more notation and slightly rephrase the
theorem. For j ∈ {1, . . . , k}, define (the indices of) the k−1

2 consecutive groups
starting at Gj as Ij, that is, Ij = {j, j+ 1, . . . , j+ k−1

2 − 1} (as usual all indices are
taken modulo k). Then, Theorem 2.3 can be equivalently phrased as follows:
GWN cannot be partitioned into plane spanning trees if for all j ∈ {1, . . . , k}
the inequality ∑i∈Ij

ni < n − 2 holds.

Proof of Theorem 2.3. First of all note that if there is an i such that ni = 1 (that is,
a group consisting of only one vertex v1), the condition of Theorem 2.3 cannot
be satisfied: Consider the line through v0 and v1, then on each side there are
k−1

2 consecutive groups and one side must contain a total of at least n − 1
vertices. So, we can assume from now on that ni ≥ 2 holds for all 1 ≤ i ≤ k.
The remainder of the proof is analogous to the proof of Theorem 3.2.
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5.2. Dropping the geometric regularity

Let the condition in Theorem 2.3 be satisfied and assume for the contrary
that there was a partition T0, . . . , Tn−1. Again, since T0 uses at least k outmost
radial edges (Proposition 3.5), we can have at most k + 1 spanning trees
containing an outmost radial edge.

Counting the trees not containing any outmost radial edge, we need to be
a bit more careful now. We claim that there are at most

max
j∈{1...k}

∑
i∈Ij

(ni − 2)

spanning trees not containing any outmost radial edge. The arguments are
analogous as in Theorem 3.2: By Proposition 3.8, the apex of a special wedge
can only be in one of the k+1

2 groups whose radial edges are not fully used
by T0. Also by Proposition 3.8 each such group Gi contains the apex of
at most ni − 2 special wedges. Furthermore, by Proposition 5.2, instead of
considering k+1

2 consecutive groups it suffices to sum over k−1
2 consecutive

groups. The crucial difference to Theorem 3.2 is that we cannot just assume
w.l.o.g. a position of T0 and hence, we need to take the maximum over all
possible families of k−1

2 consecutive groups.
Hence, whenever

k + 1 + ∑
i∈Ij

(ni − 2) < n

holds for all j, we cannot find enough spanning trees. Rearranging terms, this
inequality is equivalent to ∑i∈Ij

ni < n − 2 (recall that |Ij| = k−1
2 ).

5.2 Dropping the geometric regularity

In this section, we illustrate how to drop the geometric regularity of general-
ized wheel sets. More precisely, we show that for every wheel set there exists
a weakly isomorphic generalized wheel, i.e., a generalized wheel with the
same rotation system.

Similarly to Chapter 3 we will use the notation e− for the (open) halfplane
defined by (the supporting line through) e and not containing v0 (the only
vertex inside the convex hull). Note that we do not need an even number of
vertices here, so we consider point sets on n vertices now (instead of 2n).

Theorem 5.3. Let P be a set of n ≥ 4 points in the plane in general position with
exactly one point v0 inside the convex hull. Then there exists a generalized wheel
GWN defining the same rotation system.

Proof. Denote the vertices on the convex hull by v1, . . . , vn−1 in clockwise
order (around v0) and for each vertex vi (1 ≤ i ≤ n − 1) define the opposite
boundary edge (denoted by ē(vi)) as the unique boundary edge {vj, vj+1} such
that v0 ∈ ∆vivjvj+1. Further define the groups as sets of vertices having

53



5. Generalized Wheels

g1
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g3
g4

g5

g6g7

(a)

u
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vi

vj

x
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v0

(b)

g1
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g3

g4

g5

g6

g7

(c)

Figure 5.2: (a) Defining the groups (marked in green); opposite boundary edges
drawn blue. (b) For any vertex vk between vi and vj, the triangle ∆xuv has to
be contained in ∆vkuv, since vk lies in the cone vixvj. (c) The corresponding
generalized wheel.

the same opposite boundary edge (see Figure 5.2(a)). We will see that these
groups correspond precisely to the groups in the generalized wheel. Note
that not all vertices can be in the same group (for example, the endpoints of
ē(vi) cannot be in the same group as vi).

First, we show that each of those groups consists of consecutive vertices
in P (along the convex hull). Let vi, vj (i < j) be two vertices on the convex hull
with ē(vi) = ē(vj) := {u, v}. We claim that all vertices of P in e− = {vi, vj}−
(w.l.o.g. vi+1, . . . , vj−1) belong to the same group as vi and vj. Indeed, for
any vk with i < k < j we have ∆xuv ⊆ ∆vkuv (where x is the intersection of
{vi, u} and {vj, v}); see Figure 5.2(b). And since v0 ∈ ∆xuv, the claim follows.

Next, we show that for each opposite boundary edge ē(vk) = {u, v}
(of some hull vertex vk) the vertices u and v belong to different groups.
Indeed, since v0 ∈ ∆vkuv, we get that ē(u) must lie in cl(e−v ) of the edge
ev = {v, vk} (see also Figure 5.2(b)). Similarly, ē(v) must lie in cl(e−u ) of the
edge eu = {u, vk}. Hence, u and v have different opposite boundary edges.

Further, we show the following two properties by induction on the number
of vertices m = n − 1 on the convex hull:

(P1) P defines an odd number of groups and

(P2) for each vi, its opposite boundary edge ē(vi) splits the remaining groups
into equal parts with respect to the number of groups, that is, the line
through vi and any point of (the interior of) ē(vi) has equally many
groups on each side (excluding the group containing vi).

Concerning the base case m = 3 note that each of the 3 vertices forms
its own group and hence, (P1) and (P2) hold. So, let P be a point set with
m ≥ 4 hull vertices and consider P′ by removing an arbitrary hull vertex vi
such that P′ = P \ vi still contains exactly one point inside the convex hull
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(d) Case 3.

Figure 5.3: Illustration of the case distinction. The blue shaded region always
depicts the area of vertices having opposite boundary edge {vi−1, vi+1}.
(a) Case 0: vi joins the group of vi−1 and all remaining groups remain unchanged.
(b) Case 1: vi joins the group of vi−1 and vi+1 and all remaining groups remain
unchanged.
(c) Case 2: vi forms a new group of size 1 and the group containing u and v is
split into two groups, one with opposite boundary edge {vi−1, vi} and the other
with opposite boundary edge {vi, vi+1}.
(d) Case 3: vi joins the group of vi−1 and all remaining groups remain unchanged.

(that is, v0 ̸∈ ∆vivi+1vi−1). By the induction hypothesis, P′ fulfills properties
(P1) and (P2). Now, insert vi back in and let ē(vi) = {u, v}. First, we will
discuss the case that u and vi+1 (or analogously v and vi−1) coincide (Case 0);
otherwise, consider the (crossing) edges {vi−1, u} and {vi+1, v} and call their
intersection x; further denote their intersections with ∆viuv by y and z (see
Figure 5.3). Then, there are 4 different regions of ∆viuv that may contain v0
(shaded gray in Figure 5.3(b-d)). We consider these cases separately (note that
in Case 0 only one of the two crossing points y and z exists, say z):

Case 0: u and vi+1 coincide (or analogously v and vi−1 coincide).

First, if u and vi+1 coincide, v and vi−1 cannot coincide too, since other-
wise there would only be three vertices on the convex hull. Furthermore,
v0 is contained in the triangle uzv, since otherwise v0 would not lie in
the interior of the convex hull without vi.

Then vi and vi−1 have the same opposite boundary edge {u, v}, i.e.,
vi joins the group of vi−1. Moreover, the edge {vi−1, vi+1} is replaced
by the two edges {vi−1, vi}, {vi, vi+1}. There cannot be any vertex
having {vi−1, vi} as opposite boundary edge and all vertices that had
opposite boundary edge {vi−1, vi+1} now have opposite boundary edge
{vi, vi+1}; see Figure 5.3(a). In total, the number of groups remains
unchanged, hence (P1) holds. Concerning (P2) note that all groups
remain unchanged except vi joining the group of vi−1. Furthermore, all
vertices that had opposite boundary edge {vi−1, vi+1} now have opposite
boundary edge {vi, vi+1}. Hence, using the induction hypothesis, (P2)
also holds.
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5. Generalized Wheels

Case 1: v0 ∈ ∆xuv.

Here vi−1 and vi+1 belong to the same group with opposite boundary
edge {u, v}. So, vi joins this already existing group. Moreover, the edge
{vi−1, vi+1} is replaced by the two edges {vi−1, vi}, {vi, vi+1}. However,
due to the convex position of the hull vertices there cannot be any
vertex having {vi−1, vi} or {vi, vi+1} as opposite boundary edge (see
Figure 5.3(b)). In total, the number of groups remains unchanged, hence
(P1) holds. Further (P2) holds by induction hypothesis (clearly for any
vertex other than vi, and for vi since it has the same opposite boundary
edge as vi−1 and vi+1).

Case 2: v0 ∈ ♢viyxz.

In this case, ē(vi−1) lies in e−u of the edge eu = {u, vi} and ē(vi+1) lies in
e−v of the edge ev = {v, vi}. Hence, vi−1 and vi+1 are in different groups
already in P′ and in addition vi forms a new group of size one in P.
Furthermore, u and v belong to the same group in P′ (with opposite
boundary edge {vi−1, vi+1}). However, after inserting vi, this group
will be split into two parts — the u part with opposite boundary edge
{vi, vi−1} and the v part with opposite boundary edge {vi, vi+1} (see
Figure 5.3(c)). All other groups stay the same. So in total, the number of
groups increases by two, that is, it remains odd (confirming (P1)).

Concerning (P2), each vertex in the group containing u gains precisely
one group on each side of its line through the new opposite boundary
edge {vi, vi−1}, namely the group containing vi on the one side and
the group containing v on the other side. The same holds for each
other vertex in e−u (without any change to the opposite boundary edge).
Similarly, the vertices in the group containing v and all other vertices
in e−v gain exactly one additional group on each side as well. Finally, vi
fulfills (P2) because (P2) holds for u (and v) in P′ and any line through vi
and (the interior of) {u, v} has the same groups on each side in P as any
line through u and (the interior of) {vi−1, vi+1} in P′, with the addition
of the group containing u on the one side and the group containing v
on the other side. Hence, also (P2) holds for all vertices.

Case 3: v0 ∈ ∆xvz.

Similar as before, vi−1 and vi+1 belong to different groups already
in P′. However, vi now joins the group of vi−1 in P. Moreover, the
group that had {vi−1, vi+1} as opposite boundary edge (that is, the
group containing v), now has the opposite boundary edge {vi, vi+1}
and there is no vertex having {vi−1, vi} as opposite boundary edge
(see Figure 5.3(d)). Therefore, the total number of groups remains
unchanged (confirming (P1)). Concerning (P2) note that all groups
remain unchanged except vi joining the group of vi−1. Furthermore, all
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5.3. Plane Double Stars

vertices that had opposite boundary edge {vi−1, vi+1} now have opposite
boundary edge {vi, vi+1}. Hence, using the induction hypothesis, (P2)
also holds.

Case 4: v0 ∈ ∆xyu.

This is analogous to Case 3 (just laterally reversed).

Finally, by property (P1) we can define the generalized wheel GWN (recall
that we need an odd number of groups here) with the exact same group sizes
in the same circular order as defined for P (see Figure 5.2(c)).

It remains to argue that P and GWN define the same rotation system, i.e.,
every point encounters the remaining points in the same cyclic order. In
particular we need to argue that v0 always appears at the “right” spot: By
property (P2) and the definition of generalized wheels we know that for each
extreme point vi, the opposite boundary edge ē(vi) of vi is the same for P and
GWN . Furthermore, in the cyclic order around vi, the inner point v0 appears
between the two endpoints of ē(vi). Hence, P and GWN define the same
rotation system, which concludes the proof.

5.3 Plane Double Stars

This section is dedicated to the proof of Theorem 2.4.

Theorem 2.4. Let GWN be a generalized wheel with k groups and 2n vertices. Then
GWN cannot be partitioned into plane spanning double stars if and only if there are
three families of k−1

2 consecutive groups, such that (i) every family contains at most
n − 2 vertices and (ii) every group is in at least one family.

Roughly speaking this theorem tells us that generalized wheels with
rather evenly distributed group sizes cannot be partitioned into double stars,
whereas those with very uneven group sizes can be. An exception are regular
wheels, where every family of k−1

2 consecutive groups contains precisely n − 1
vertices and hence, can always be partitioned into plane double stars.

Towards the proof of Theorem 2.4 we need a couple of definitions and
results introduced by Schnider [Sch16]. The edge v1v2 in a double star (where
v1 and v2 are the non-leaf vertices) is called spine edge1. Given a partition of
the edge set of a complete geometric graph into double stars, the collection of
spine edges of the double stars forms a perfect matching [Sch16, Lemma 2],
called the spine matching. Conversely, a perfect matching M (on a point set P)
for which there exists a partition of K(P) into plane double stars such that the
edges of M are the spines of the double stars is also called spine matching.

1The term “spine edge” is a frequently used term and in later chapters we will also define
it in other contexts.
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5. Generalized Wheels

Figure 5.4: A partition of the generalized wheel GW[2,3,4] into plane double stars.
The thicker edges form a spine matching.

(a) Spine matching
(see also Figure 5.4).

e

f

ℓe
ℓf

g

(b) Stabbing chain.

e

f g

v0

(c) Cross-blocker.

Figure 5.5: Illustration of some terms.

Let e and f be two non-adjacent edges and let s be the intersection of their
supporting lines. Recall that we say e and f cross, if s lies in both e and f . If
s lies in f but not in e, we say that e stabs f and we call the vertex of e that
is closer to s the stabbing vertex of e. If s lies neither in e nor in f , or even
at infinity, we say that e and f are parallel. A stabbing chain are three edges,
e, f and g, where e stabs f and f stabs g. We call f the middle edge of the
stabbing chain. Note that a stabbing chain implies two interior points, so in
our setting of wheel sets, there are no stabbing chains.

A cross-blocker is a perfect matching on six points in wheel position, where
the edge e connecting to the interior point v0 stabs both other edges f and g,
f and g cross, and v0 is not in the convex hull of f and g. See Figure 5.4 and
Figure 5.5 for an illustration of these terms.

Schnider [Sch16, Theorem 9] showed that a spine matching can neither
contain two parallel edges nor a cross-blocker.2 On the other hand, it turns
out that for wheel sets, these two configurations are the only two obstructions:

2There is a third configuration that cannot occur, but this configuration requires a stabbing
chain, so when only considering wheel sets, we may ignore this.
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5.3. Plane Double Stars

Theorem 5.4 ([Sch16, Theorem 11]). Let P be a point set in general position and
let M be a perfect matching on P, such that

(a) no two edges are parallel,

(b) if an edge e stabs two other edges f and g, then the respective stabbing vertices of
e lie inside the convex hull of f and g, and

(c) if there is a stabbing chain, then the stabbing vertex of the middle edge lies inside
the convex hull of the other two edges.

Then M is a spine matching.

In the setting of wheel sets, case (c) cannot occur, whereas cases (a) and
(b) correspond exactly to the obstructions mentioned above. We thus get the
following characterization of generalized wheel sets that allow a partition into
double stars as a corollary of Theorem 2.4:

Corollary 5.5. A generalized wheel GWN can be partitioned into plane spanning
double stars if and only if it admits a perfect geometric matching that contains neither
two parallel edges nor a cross-blocker.

Consider a generalized wheel GWN with 2n vertices and interior vertex v0.
Let us try to construct a spine matching on GWN . To this end, we first con-
nect v0 to some other point v1 with an edge e = v0v1. Note that the remaining
points are now in convex position and hence, there is a unique perfect match-
ing on them without parallel edges, namely, the matching consisting of the
halving edges of GWN \ {v0, v1}. Indeed, if a perfect matching on a convex
point set contains a non-halving edge, the side of larger cardinality must
determine a parallel edge. Thus, for each choice of e we get a unique possible
matching, which we call a potential matching, and this matching is a spine
matching unless some edge is parallel to e or there are two edges that together
with e form a cross-blocker. In the following, we investigate the conditions,
under which these cases occur.

Consider a non-radial halving edge h of GWN . Then we call cl(h−) a bad
halfplane. Note that there might be no bad halfplanes, for example if GWN is
a regular wheel. Let us emphasize again that bad halfplanes are closed and
in particular, due to the properties of halving edges, the intersection of bad
halfplanes either is empty or contains a vertex of GWN .

Lemma 5.6. Let GWN be a generalized wheel and assume it has a bad halfplane B
bounded by an edge h. Assume M is a spine matching on GWN which contains the
edge e = v0v1. Then the vertex v1 lies in the bad halfplane B.

Proof. Assume for the sake of contradiction that v1 does not lie in B. Then,
GWN \ {v0, v1} contains two more vertices in B than the other (closed) side
of h. Let f and g be the two edges in M incident to the endpoints of h. Since
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Figure 5.6: (a) Illustration of the proof of Lemma 5.6. The edges e, f , g form
a cross-blocker. (b) The drawn edges form a spine matching M and every bad
halfplane (blue) contains the vertex v1 (Lemma 5.6). Furthermore, M is also the
potential matching defined by the halving edge v0v1 and it does not contain any
parallel edges (Lemma 5.8).

M is a spine matching and by the arguments following Corollary 5.5, f and g
need to be halving edges in GWN \ {v0, v1}. Hence, f and g connect to vertices
in B. But then h separates f and g from e, and thus either one of them is
parallel to e or the three of them form a cross-blocker; see Figure 5.6(a). A
contradiction to M being a spine matching.

See also Figure 5.6(b) for an illustration of Lemma 5.6. We immediately
derive the following corollary:

Corollary 5.7. If GWN has a collection of bad halfplanes whose intersection is empty,
then GWN cannot be partitioned into plane spanning double stars.

Proof. By Lemma 5.6, v1 (the vertex connected to v0) lies in the intersection
of all bad halfplanes, implying that the intersection of all bad halfplanes is
non-empty.

Next, we prove that the other direction of Corollary 5.7 holds as well. To
this end, we first derive some preliminary lemmas (again, see Figure 5.6(b)
for an illustration of Lemma 5.8).

Lemma 5.8. Let e = v0v1 be a halving edge of GWN . Then the potential matching
defined by e has no parallel edges.

Proof. By the construction of the potential matching, for every pair of parallel
edges, one of the edges must be e. Assume for the sake of contradiction that
there is an edge f parallel to e. Since every edge of the potential matching
is a halving edge in GWN \ {v0, v1}, f contains n − 2 vertices on either side
(recall that GWN contains 2n vertices in total). Furthermore, since e and f are
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u
w

A

v0

Figure 5.7: The solid edges are halving edges defining bad halfplanes with inter-
section A. The dashed lines contain at least n vertices on the side containing A.
Rotating a line from v0u to v0w will therefore find a halving edge with vertex in A
(red).

parallel, one side of e contains both endpoints of f and the n − 2 vertices from
one side of f . Hence, e contains n vertices on the same side; a contradiction to
e being a halving edge.

For the following lemma we use a standard rotation argument.

Lemma 5.9. Let A be a non-empty intersection of bad halfplanes. Then A contains a
vertex vi such that v0vi is a halving edge of GWN .

Proof. First note that the intersection of the bad halfplanes contains a vertex
of GWN (recall that bad halfplanes are closed). Let u and w be the first and
the last vertex of GWN in this intersection (in clockwise order). Note that u
and w are both incident to one of the respective halving edges each. Since
bad halfplanes do not contain the center v0, the corresponding lines through
the radial edges v0u and v0w have at least n vertices on the side containing A
(see Figure 5.7). Rotating a line ℓ through v0 from u to w (alongside A) will
therefore yield a radial halving edge of GWN with endpoint in A (because
hitting a vertex in A decreases the number of vertices on the “right” side of ℓ,
while hitting a vertex on the opposite side of A increases that value).

We are now ready to prove the other direction of Corollary 5.7:

Lemma 5.10. If GWN cannot be partitioned into plane spanning double stars, then
GWN has three bad halfplanes whose intersection is empty.
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Figure 5.8: Illustration of the proof of Lemma 5.10. (a) Replacing f ′ by f ′′ yields
a cross blocker with the consecutive diagonal edges f and f ′′. (b) Since f and f ′

are halving edges in GWN \ {v0, v1}, the edge h is a halving edge in GWN.

Proof. Assume that GWN cannot be partitioned into plane double stars, that
is, for every radial edge e the resulting potential matching contains either an
edge parallel to e or two edges which together with e form a cross-blocker.

Since every vertex is incident to at least one halving edge (again using a
standard rotation argument), we can now consider the potential matching
M defined by some radial halving edge e = v0v1. By Lemma 5.8, M has
no parallel edges. Since M is not a spine matching by assumption and it
does not contain any parallel edges, it has to contain a cross blocker. Let
f = uw and f ′ = u′w′ be the diagonal edges in this cross blocker. We pick a
cross blocker in such a way that u and u′ as well as w and w′ are consecutive
along the convex hull (see Figure 5.8(a) for an illustration). Then the unique
minimal edge h such that f <c h and f ′ <c h is a halving edge in GWN ; see
Figure 5.8(b). Hence, there exists a bad halfplane, which does not contain v1.

We claim that the intersection of all bad halfplanes is empty. Indeed, if it
was not empty, then by Lemma 5.9 the intersection would contain a point vi
such that v0vi is a halving edge. But then, by the above arguments, there is a
bad halfplane which does not contain vi, which is a contradiction to vi lying
in the intersection of all bad halfplanes.

As the halfplanes are convex, it now follows from Helly’s theorem that
if the whole family has empty intersection, then there are some three bad
halfplanes whose intersection is already empty. Also note that there cannot
be two bad halfplanes with empty intersection.

To summarize, we get:

Corollary 5.11. A generalized wheel GWN cannot be partitioned into plane spanning
double stars if and only if GWN has three bad halfplanes whose intersection is empty.

Proof. Follows from Corollary 5.7 and Lemma 5.10.

Finally, we are ready to prove Theorem 2.4, which we restate here for
easier readability:
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Figure 5.9: Illustration of the proof of Theorem 2.4.

Theorem 2.4. Let GWN be a generalized wheel with k groups and 2n vertices. Then
GWN cannot be partitioned into plane spanning double stars if and only if there are
three families of k−1

2 consecutive groups, such that (i) every family contains at most
n − 2 vertices and (ii) every group is in at least one family.

Proof. Let GWN be a generalized wheel with k groups and 2n vertices. For
the proof it is more convenient to consider everything from the side of the
(complementary) k+1

2 consecutive groups. That is, by Corollary 5.11, it is
enough to show that GWN contains three bad halfplanes whose intersection is
empty, if and only if there are three families of k+1

2 consecutive groups, each
containing at least n + 1 vertices, such that no group is in all three families.

For the one direction, assume there are three bad halfplanes whose in-
tersection is empty (see Figure 5.9 for an illustration). Let h1, h2, h3 be the
three respective halving edges. Next, consider for each of the three halving
edges, a maximal diagonal edge fi (of distance d1) with hi <c fi (for i = 1, 2, 3).
Clearly, the closure of each f−i contains k+1

2 consecutive groups and at least
n + 1 vertices. It remains to show that there is no group contained in all f−i .
To this end, note first that any pair of bad halfplanes overlaps, that is, contains
vertices of GWN in their intersection. Therefore, the union of the three bad
halfplanes covers the entire convex hull of GWN , which also holds for the
union of the three cl( f−i ). Assume for the contrary that there is a common
group in the intersection of the three maximal diagonal edges, that is,

⋂
cl( f−i )

is non-empty. Let x be a point in
⋂

cl( f−i ) and x′ be the antipodal point. Then
x′ lies in f+i for any i and hence the convex hull is not fully covered, a
contradiction.

For the other direction, let F1, F2, F3 be three families of k+1
2 consecutive

groups each containing at least n + 1 vertices such that no group is in all three
families. Also let f1, f2, f3 be the (maximal) diagonal edges bounding these
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5. Generalized Wheels

families. Then each cl( f−i ) contains a halving edge ei. It remains to show
that the intersection of the corresponding bad halfplanes is empty. Note that
a non-empty intersection of three bad halfplanes must also contain a vertex
of GWN . Then, the corresponding group would be a common group of the
three Fi’s.
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Chapter6
Beyond-planar Partitions

Given the negative answers to Question 3.1 and Question 4.1, it is natural to
study partitions into beyond-planar subgraphs, that is, subgraphs in which
some crossings are allowed. Beyond-planar graphs are a natural generalization
of planar graphs and a rapidly growing research area. We refer the interested
reader to the book of Hong and Tokuyama [Hon20] or the survey of Didimo
et al. [DLM19] and references therein.

However, to the best of our knowledge, edge partitions into beyond-planar
graphs have not been studied. We initiate this study for two important classes
of beyond planar-graphs, namely, k-plane subgraphs (where every edge is
crossed by at most k other edges) and k-quasi-plane subgraphs (in which no k
edges pairwise cross). For the former, we show bounds on the number of
subgraphs required for partitioning K(S) for S in convex position (Theorem 2.5
and Theorem 2.6). For the latter, we show that a partition into 3-quasi-plane
spanning trees is possible for any S with |S| even (Theorem 2.8). This is best
possible, as 2-quasi-plane graphs are plane. We further present bounds on the
partition of any K(S) into k-quasi-plane subgraphs for general k (Theorem 2.9).

Contribution. In the setting of k-plane partitions we focus on the convex
setting, showing the following bounds (which are tight for k = 1):

Theorem 2.5. For a point set S in convex position with |S| = n ≥ 5, K(S) can
be partitioned into

⌈ n
3

⌉
many 1-plane subgraphs and

⌈ n
3

⌉
subgraphs are required in

every 1-plane partition.

Theorem 2.6. For an n-point set S in convex position and every k ∈ N, K(S) admits
a partition into at most n√

2k
k-plane subgraphs. More precisely, for every s > 2, K(S)

admits a (s−1)(s−2)
2 -plane partition into ⌈ n

s ⌉ subgraphs. Conversely, for every k ∈ N,
at least n−1

4.93
√

k
subgraphs are required in any k-plane partition of K(S).

Towards the lower bound of Theorem 2.6, it will be crucial to understand
how many edges a k-planar graph can maximally have: Pach and Tóth [PT97]
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6. Beyond-planar Partitions

showed an upper of
(

4.108
√

k · n
)

in general and an improved bound of
(k + 3)(n − 2) for k ≤ 4. In our convex setting, we improve these bounds
to

(
2.465

√
k · n

)
and to

(
k+4

2 n − (k + 3)
)

= ( k
2 + 2)(n − 2) + 1 for k ≤ 4

(Proposition 6.3 and Proposition 6.1).
Along the way, we also study the well-known crossing lemma, which gives

a lower bound on the crossing number of a graph G in terms of |V(G)| and
|E(G)|. The crossing number cr(G) of a graph G is the minimum number of
crossings in any drawing of G. Ajtai et al. [ACNS82] and, independently,
Leighton [Lei83] showed that there exists a constant c > 0 such that for every
graph G with n vertices and e ≥ 4n edges, cr(G) ≥ c · e3

n2 holds. Asymptotically
this bound is known to be tight and currently the best constant c = 1

29 is
due to Ackerman [Ack19]. In our convex setting, we derive the following
improved bound:

Lemma 2.7 (convex crossing lemma). Let G be a graph with n vertices and e edges
such that e ≥ 9

2 n. Then every straight-line drawing of G in which the vertices of G
are placed in convex position has at least

20
243

e3

n2 ≈ 0.0823
e3

n2

crossings.

Moreover, we consider partitions into k-quasi-plane subgraphs for arbitrary
point sets (in general position). We show that a partition into 3-quasi-plane
spanning trees is possible for any S with |S| even. This is best possible, as
2-quasi-plane graphs are plane. We further present bounds on the partition of
any K(S) into k-quasi-plane subgraphs for general k.

Theorem 2.8. Let S be a point set of size 2n, then the complete geometric graph K(S)
can be partitioned into n 3-quasi-plane spanning trees.

Theorem 2.9. Let S be a set of n points in general position and denote the size of
a largest crossing family on S by m. Also let k ∈ N such that 3 ≤ k ≤ m. Then,
at least ⌈ m

k−1⌉ subgraphs are required and at most ⌈ m
k−1⌉+ ⌈ n−2m

k−1 ⌉ subgraphs are
needed to partition the complete geometric graph K(S) into k-quasi-plane subgraphs.

Organization of this chapter. Section 6.1 and Section 6.2 are dedicated to the
k-plane setting, while Section 6.3 is concerned with k-quasi-plane subgraphs.
In Section 6.1 we focus on the case k = 1 and prove Theorem 2.5. In Section 6.2
we generalize to arbitrary k, proving Theorem 2.6 and Lemma 2.7. Finally, in
Section 6.3 we prove Theorem 2.8 and Theorem 2.9.
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6.1. Partitions into 1-plane subgraphs

Figure 6.1: A 2-plane graph M (black solid and dashed) and a plane subgraph M′

(solid black) with a maximum number of edges. The eight partial edges are depicted
in red.

6.1 Partitions into 1-plane subgraphs

In this section, we prove Theorem 2.5. As the upper bound follows immedi-
ately from Theorem 2.6, which we prove in the following section, we are only
concerned with the lower bound. To this end, we first prove a proposition
concerning the number of edges that a k-planar graph can maximally have for
small values of k:

Proposition 6.1. For every k ≤ 4, every straight-line convex k-plane graph G on
n ≥ 2 vertices has at most

(
k+4

2 n − (k + 3)
)

edges.

For the proof we need the following notion: Given a k-plane graph M,
consider a plane subgraph M′ of M with a maximum number of edges.
Then every edge e ∈ E(M) \ E(M′) must cross at least one edge of M′. For
e ∈ E(M) \ E(M′), the closed portion between an endpoint of e and the
nearest crossing of e with an edge of M′ is called a partial edge. Note that every
edge in E(M) \ E(M′) contributes exactly two partial edges. Furthermore,
every partial edge is fully contained in a face of M′. See Figure 6.1 for an
illustration.

Pach and Tóth [PT97] proved the following bound concerning the maximal
number of partial edges1:

Lemma 6.2 (cf. [PT97, Lemma 2.1]). Let k ≤ 4 and let M be a k-plane graph.
Let M′ be a plane subgraph of M with a maximum number of edges. Let Φ be a
face in M′ with |Φ| ≥ 3, whose boundary is connected. Then there are at most
(|Φ| − 2)(k + 1)− 1 partial edges contained in the closed interior of Φ.

With this lemma at hand, we are now ready to prove Proposition 6.1.
Recall that |Φ| counts the number of bounding edges of Φ with multiplicities.

1Note that Pach and Tóth use the term half-edge. However, as this term is also commonly
used in other contexts, we decided to use partial edge.
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6. Beyond-planar Partitions

Proof of Proposition 6.1. Let k ≤ 4 and let G be a straight-line, convex k-plane
graph. Furthermore, let G′ be a plane subgraph of G with a maximum number
of edges. W.l.o.g. we may assume that G and hence, also G′ contains all n
convex hull edges.

Thus every face Φ in G′ has a connected boundary and hence, using
Lemma 6.2, contains at most (|Φ| − 2)(k + 1)− 1 partial edges. Further note
that the unbounded face does not contain any partial edge. Denote the set of
bounded faces of G′ by F . Then, using the fact that the unbounded face of G′

contributes exactly n edges, it follows:

∑
Φ∈F

(|Φ| − 2) = (2e(G′)− n)− 2|F |

= (2e(G′)− n)− 2( f (G′)− 1)
= 2(e(G′)− n − f (G′)) + n + 2
= n − 2,

where in the last equality we used Euler’s formula n − e(G′) + f (G′) = 2.
Recall that every partial edge is contained in a bounded face of G′ and

hence, using Lemma 6.2, the total number of partial edges is at most

∑
Φ∈F

((|Φ| − 2)(k + 1)− 1) = k ∑
Φ∈F

(|Φ| − 2) + ∑
Φ∈F

|Φ| − 3|F |

= k(n − 2) + (2e(G′)− n)− 3( f (G′)− 1).

On the other hand, since every edge in E(G) \ E(G′) contributes precisely
two partial edges, the total number of partial edges equals 2(e(G)− e(G′)),
and hence we conclude:

2e(G)− 2e(G′) ≤ k(n − 2) + (2e(G′)− n)− 3 f (G′) + 3.

Rearranging, again applying Euler’s formula n − e(G′) + f (G′) = 2, and
using the fact that f (G′) ≤ n − 1 holds, now yields:

2e(G) ≤ k(n − 2)− n + 3 + 4e(G′)− 3 f (G′)

= k(n − 2)− n + 3 + 4(e(G′)− f (G′)) + f (G′)

≤ k(n − 2)− n + 3 + 4(n − 2) + (n − 1)
= (k + 4)n − (2k + 6).

Dividing by two yields the claimed bound e(G) ≤ k+4
2 n − (k + 3), as

desired.

Next, we prove Theorem 2.5.

Theorem 2.5. For a point set S in convex position with |S| = n ≥ 5, K(S) can
be partitioned into

⌈ n
3

⌉
many 1-plane subgraphs and

⌈ n
3

⌉
subgraphs are required in

every 1-plane partition.
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6.2. Partitions into k-plane subgraphs

Proof. The upper bound follows from Theorem 2.6 with s = 3.
For the lower bound, suppose we are given a 1-plane partition E1, . . . , Ec

of K(S). Then we show that c ≥
⌈ n

3

⌉
holds. Let O ⊆ E(K(S)) be the set of

the n boundary edges of K(S), and note that they are not crossed by any other
edge. Hence, for every i ∈ {1, . . . , c}, the geometric graph formed by the
points in S and the edges in O ∪ Ei is 1-plane, and hence by Proposition 6.1
we have |O ∪ Ei| ≤ 5

2 n − 4 for all i ∈ {1, . . . , c}. This clearly implies that
|Ei \ O| ≤

( 5
2 n − 4

)
− n = 3

2 n − 4 for every i. Since the sets {Ei \ O}i∈{1,...,c}

form a partition of the set of all n(n−1)
2 − n = n(n−3)

2 interior edges of K(S), we
conclude:

c ≥

(
n(n−3)

2

)
3
2 n − 4

=
n(n − 3)
3n − 8

=
n
3
− n

3(3n − 8)
>

n
3
− 1

3
.

(For the last inequality we used n ≥ 5). This implies c ≥ ⌈ n
3 ⌉, as claimed. This

concludes the proof.

6.2 Partitions into k-plane subgraphs

For the proof of Theorem 2.6, we need to generalize Proposition 6.1 to larger
values of k. To this end, we first prove the following convex crossing lemma.
We adapt the standard probabilistic proof from the textbooks (see e.g. [AZ99]).

Lemma 2.7 (convex crossing lemma). Let G be a graph with n vertices and e edges
such that e ≥ 9

2 n. Then every straight-line drawing of G in which the vertices of G
are placed in convex position has at least

20
243

e3

n2 ≈ 0.0823
e3

n2

crossings.

Proof. We consider the following process: We start with G, and repeatedly up-
date a subgraph of G. As long as the current subgraph still contains crossings,
pick an edge with the highest number of crossings from the current drawing
and remove it. Repeat until we end up with a crossing-free subgraph. As
long as the current subgraph has more than 4n − 7 edges, by Proposition 6.1
applied for k = 4, it follows that the current subgraph contains edges which
cross with at least 5 other edges, and hence, in the next step the edge we re-
move will remove at least 5 crossings from G. Similarly, as long as the number
of edges in the subgraph is strictly greater than 7

2 n − 6, by Proposition 6.1 the
edges we remove will be edges with at least 4 crossings, if it is strictly greater
than 3n − 5, then we remove at least 3 crossings at each step, etc.
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6. Beyond-planar Partitions

Summing up all these different contributions of how many crossings are
lost in the process by removing edges, we obtain the following lower bound
on the number of crossings of G:

cr(G) ≥ 5 (e − (4n − 7)) + 4
(
(4n − 7)−

(
7
2

n − 6
))

+ 3
((

7
2

n − 6
)
− (3n − 5)

)
+

2
(
(3n − 5)−

(
5
2

n − 4
))

+

((
5
2

n − 4
)
− (2n − 3)

)
= 5e − 15n + 25.

So, let p ∈ [0, 1] be a probability to be determined later and let Gp be the
induced random subgraph of G, where each vertex is picked with probability p.
Then we have:

E[e(Gp)] = p2e(G)

E[v(Gp)] = pn

E[cr(Gp)] = p4 · cr(G)

By the above inequality, which also holds for the convex geometric sub-
graph Gp of G, we get:

cr(Gp) ≥ 5e(Gp)− 15v(Gp)

Taking expectations and dividing by p4, yields:

cr(G) ≥ 5e(G)

p2 − 15
n
p3

Plugging in the optimal value p∗ = 9n
2e ≤ 1 (here we used our assumption

e ≥ 9
2 n) yields the desired result.

Using this lemma, we can generalize Proposition 6.1 as follows:

Proposition 6.3. For every k ≥ 5, every convex k-plane graph G on n vertices has

at most
√

243
40 k · n ≈ 2.465

√
k · n edges.

Proof. Let k ≥ 5 and let G be a convex k-plane graph with n vertices. If

e(G) ≤ 9
2 n, there is nothing to show, because

√
243
40 k > 9

2 holds for every k ≥ 5.

Hence, we assume e := e(G) > 9
2 n and apply the convex crossing lemma to

conclude:

cr(G) ≥ 20
243

e3

n2 .

On the other hand, since G is convex k-plane we know that every edge
participates in at most k crossings. By double-counting (noting that exactly
two edges participate in every crossing), we get that

ke
2

≥ cr(G) ≥ 20
243

e3

n2 .

Rearranging the inequality yields the claim.
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6.2. Partitions into k-plane subgraphs

(a) (b) (c) (d) (e)

Figure 6.2: (a) Partition into 1-plane subgraphs by composing groups of (at most)
3 consecutive slopes each. (b)-(e) Edges with slope distance 1/2/3/4 intersect at
most 0/1/2/3 times.

Finally, we are ready to prove Theorem 2.6. Also recall that we associate
subgraphs with colors for convenience.

Theorem 2.6. For an n-point set S in convex position and every k ∈ N, K(S) admits
a partition into at most n√

2k
k-plane subgraphs. More precisely, for every s > 2, K(S)

admits a (s−1)(s−2)
2 -plane partition into ⌈ n

s ⌉ subgraphs. Conversely, for every k ∈ N,
at least n−1

4.93
√

k
subgraphs are required in any k-plane partition of K(S).

Proof. Let us first prove the upper bound. To this end, suppose that s ≥ 2
is such that (s−1)(s−2)

2 ≤ k, and let us show that K(S) can be partitioned into
⌈ n

s ⌉ k-plane subgraphs. W.l.o.g. assume that the points in S form a regular
n-gon (as the crossings are determined by the rotation system). Then every
edge defines a slope and in total there are n different slope values, which
we sort in circular order. Next, we partition this list of slope values into ⌈ n

s ⌉
(contiguous) intervals of size at most s. Then, define a color class for all edges
whose slopes fall into a common interval of this partition, see Figure 6.2(a).

We show that all these subgraphs are (s−1)(s−2)
2 -plane. To this end, define

the slope distance to be the distance between two slope values in the circularly
sorted list of slopes. Note that edges cannot be crossed by other edges of the
same slope or slope distance 1; by at most one edge of slope distance 2, by at
most two edges of slope distance 3, etc. (see Figures 6.2(b) to 6.2(e)). Hence,
if an edge e has color i, and if the slope of e is the j-th slope (j ∈ {1, . . . , s})
in its circular interval of slopes, then e can cross with at most the following
amount of edges of color i:

∑
1≤k<j−1

(j − k − 1) + ∑
j+1<k≤s

(k − j − 1) =
(j − 1)(j − 2)

2
+

(s − j)(s − j − 1)
2

=

=
(s − 1)(s − 2)

2
− (s − j)(j − 1) ≤ (s − 1)(s − 2)

2
.

For the lower bound, note that K(S) has n(n−1)
2 edges, and that in every

k-plane partition of K(S), every color class induces a convex k-plane subgraph

71



6. Beyond-planar Partitions

on n vertices. Hence, by Proposition 6.3, every color class has size at most√
243
40 k · n. So, the number of colors required in any k-plane partition is at least(

n(n−1)
2

)
√

243
40 k · n

≥ n − 1

4.93
√

k
.

This concludes the proof.

The following intriguing question is left open by our study.

Question 6.4. Is the upper bound in Theorem 2.6 tight up to lower-order terms?

More generally, it would be interesting to shed some more light on the
“in-between-cases” coming out of the upper bound in Theorem 2.6: the term
(s−1)(s−2)

2 covers only the values 0, 1, 3, 6, 10, . . .. For instance, can we partition
convex complete geometric graphs with fewer colors into 2-plane subgraphs
than we need for the 1-plane partition? More generally, for (s−1)(s−2)

2 < k <
s(s−1)

2 , can we improve upon the ⌈ n
s ⌉ bound from Theorem 2.6 for k-plane

partitions? This question is surprisingly difficult (even for k = 2)2 and we do
not know of any improvements of the bounds for these “in-between-cases”.

6.3 Partitions into k-quasi-plane subgraphs and spanning
trees

In this section, we develop bounds on the number of colors required in a
k-quasi-plane partition for point sets in general position (for k = 2 this again
amounts to the setting of plane subgraphs and hence, we assume k ≥ 3 in the
following). The setting of spanning trees is resolved by Theorem 2.8:

Theorem 2.8. Let S be a point set of size 2n, then the complete geometric graph K(S)
can be partitioned into n 3-quasi-plane spanning trees.

Proof. Let p1, . . . , p2n be the points of S sorted by x-coordinate (w.l.o.g. no
two points have the same x-coordinate). We distinguish the points into
evenly indexed points p2i for i = 1, . . . , n and oddly indexed points p2i−1 for
i = 1, . . . , n.

The goal is to define n double stars that partition K(S). We construct a
double star Ti for every two consecutive vertices {p2i−1, p2i}, for i = 1, . . . , n
as follows (see Figure 6.3 for an illustration). We connect p2i−1 with all evenly
indexed points left of p2i−1 and all oddly indexed points right of p2i−1. Further,
we connect p2i with the remaining vertices, namely with all oddly indexed

2Using computer assistance, we can show that at least 3n
10 colors are required for any

2-plane partition, almost matching the n
3 bound from the 1-plane partition.
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6.3. Partitions into k-quasi-plane subgraphs and spanning trees
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Figure 6.3: Illustration of Theorem 2.8.

points left of p2i and all evenly indexed points right of p2i. Note that this
includes the edge p2i−1 p2i. Ti indeed forms a double star, as all vertices are
connected to either p2i−1 or p2i. In particular Ti forms a spanning tree.

It remains to show that every edge is covered exactly once. Let e = pi pj be
an edge (1 ≤ i < j ≤ n). If i and j have the same parity, e belongs to Ti and
otherwise to Tj.

Since every double star is necessarily 3-quasi-plane, the claim follows.

So, we turn our attention to the subgraph setting. Consider a point set S
of size 2n with a crossing family of size n. Then all edges involved in this
crossing family are halving edges. Let ℓ1, . . . , ℓn be the corresponding halving
lines. We label these lines in clockwise order, more precisely their intersections
with a sufficiently large circle appear in clockwise order (where it follows
from the properties of halving lines that this enumeration is consistent on both
sides). For each halving line ℓi define an infinitesimally counter-clockwise
rotated line ℓ′i, such that the two defining vertices (say pi, qi) of ℓi lie to either
side of ℓ′i. Define ℓ+i to be the upper halfplane (bounded by ℓ′i) and let it
contain pi; similarly ℓ−i denotes the lower halfplane (bounded by ℓ′i) and it
contains qi. See Figure 6.4 for an illustration.

Theorem 6.5. Let S be a point set of size 2n with a crossing family of size n and
let k ≥ 3. Then ⌈ n

k−1⌉ colors are required and sufficient to partition K(S) into
k-quasi-plane subgraphs.

Proof. The lower bound is easy: since we have a crossing family of size n,
we need at least ⌈ n

k−1⌉ different colors to partition K(S) into k-quasi-plane
subgraphs.

The other direction is more involved. We build c := ⌈ n
k−1⌉ subgraphs

G1, . . . , Gc of K(S) as follows. Each subgraph Gi in turn is formed by the
union of three subgraphs.

To construct G1, let X1 be the collection of vertices of the first k − 1 con-
secutive halving lines starting from ℓ1, i.e., X1 := {p1, . . . , pk−1, q1, . . . , qk−1}.
Next, we consider all points in ℓ+1 and form the complete bipartite graph B+

1
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p1

q1

p2

p3
p4

p5

q2
q3

q4

q5

`1

`−1

Figure 6.4: The labeling of the halving lines ℓ1, . . . , ℓn in clockwise order. Illustra-
tion of the definition of the halfplane ℓ−1 . Note that pi ∈ ℓ+1 and qi ∈ ℓ−1 for any i.

p1

q1

`1

`−1

`+1

Figure 6.5: The vertices of X1 are represented by squares. The dotted edges in
the blue (red) region represent the complete bipartite subgraph B+

1 (B−
1 ) of G1

corresponding to the line ℓ1 with the defining vertices p1 and q1.

between the points in (X1 ∩ ℓ+1 ) and those in ((S \ X1) ∩ ℓ+1 ). Symmetrically,
we form the complete bipartite graph B−

1 between the point set X1 ∩ ℓ−1 and
the point set (P \ X1) ∩ ℓ−1 . An illustration of the construction is given in
Figure 6.5. The subgraph G1 is finally defined to be the union of K(X1), B+

1
and B−

1 .
We iteratively repeat the same process for the next k − 1 halving lines until

reaching pn. More precisely, Gl consists of the union of the complete graph
with vertex set Xl = {pi, qi | (l − 1)(k − 1) < i ≤ min(l(k − 1), n)} and the
two bipartite graphs defined by ℓ(l−1)(k−1)+1 as before. The last graph Gc may
be formed by less than k − 1 halving lines.
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6.3. Partitions into k-quasi-plane subgraphs and spanning trees

We first validate that each Gi is k-quasi-plane. For notational convenience
we prove it only for G1 in the following, though the same argument works
for any Gi. The two bipartite subgraphs B+

1 and B−
1 are disjoint, as they lie

to either side of the line ℓ′1. Thus, any crossing family contains only edges
from at most one of them, and potentially further edges from the complete
subgraph K(X1). Therefore every edge from the crossing family must be
incident to one of the vertices that are both in X1 and on the respective side
of ℓ1. By construction, there can be at most k − 1 such vertices and therefore,
any crossing family has at most size k − 1 as well.

It remains to show that any edge of K(S) is covered by some Gi. Let
e := {u, v} be an edge of K(S). For every i = 1, . . . , n, pi and qi are part
of X⌈i/(k−1)⌉. Thus, the endpoint u is contained in Xr for some r, and v is
contained in Xs, for some s. If r = s we are done, as then e is contained in
K(Xr) and thus part of Gr. So suppose r ̸= s. Then v and u lie on the same
side of either ℓ′r or ℓ′s. In the former case, e would be contained in either of
the two complete bipartite subgraphs of Gr, that is, B+

r or B−
r . In the latter, e

is contained in Gs.

The restriction in Theorem 6.5 to have a crossing family of size n is rather
restrictive, however, not nearly as restricitive as e.g. convex position. Given
that every point set determines a near linear size crossing family [PRT19], it
is natural to ask whether Theorem 6.5 can be adjusted to point sets in general
position. We leave this as an interesting open question (cf. Question 10.5).

Theorem 2.9. Let S be a set of n points in general position and denote the size of
a largest crossing family on S by m. Also let k ∈ N such that 3 ≤ k ≤ m. Then,
at least ⌈ m

k−1⌉ subgraphs are required and at most ⌈ m
k−1⌉+ ⌈ n−2m

k−1 ⌉ subgraphs are
needed to partition the complete geometric graph K(S) into k-quasi-plane subgraphs.

Proof. Let S′ ⊆ S be the subset of endpoints induced by a largest crossing
family of size m.

Then, the lower bound follows immediately from Theorem 6.5 applied
on S′.

For the upper bound, divide the point set S \ S′ into disjoint subsets
Q1, . . . , Qc of size k − 1, where c = ⌈ n−2m

k−1 ⌉. For each edge with an endpoint
in some Qi assign it the color i (for edges that have two choices, pick one
arbitrarily). Certainly, each color class is k-quasi-plane, since it consists of (at
most) the union of k − 1 stars. Together with K(S′), which we can partition
by using ⌈ m

k−1⌉ colors, the upper bound follows.
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Chapter7
Flipping Plane Spanning Paths

The focus of this chapter is the following conjecture posed by Akl et al. [AIM07]:

Conjecture 7.1 (Akl et al. [AIM07]). For every point set S in general position, the
flip graph on P(S) is connected.

Recall that P(S) denotes the set of all plane straight-line spanning paths
on S. Also recall that a flip on a path P ∈ P(S) is the operation of removing
an edge e from P and replacing it by another edge f on S such that the graph
(P \ e) ∪ f is again a valid path from P(S). Note that the edges e and f might
cross.

Related work. In the setting of plane spanning paths, flips are rather re-
stricted, making it difficult to prove a positive answer. Prior to our work
only results for point sets in convex position and very small point sets were
known. Akl et al. [AIM07], who initiated the study of flip connectivity on
plane spanning paths, showed connectedness of the flip graph on P(S) if S is
in convex position or |S| ≤ 8. In the convex setting, Chang and Wu [CW09]
derived tight bounds concerning the diameter of the flip graph, namely, 2n− 5
for n = 3, 4, and 2n − 6 for n ≥ 5.

Furthermore, using the order type database [AAK02], Aichholzer [Aic]
computationally verified Conjecture 7.1 for every set of n ≤ 10 points in
general position (even when using only Type 1 flips).1

For the remainder of this chapter, we consider the flip graph on P(S) (or
a subset of P(S)). Moreover, unless stated otherwise, the word path always
refers to a path from P(S) for an underlying point set S that is clear from the
context.

Flips in plane spanning paths. Let us have a closer look at the different
types of possible flips for a path P = v1, . . . , vn ∈ P(S) (see also Figure 7.1).

1The source code is available at https://github.com/jogo23/flipping_plane_

spanning_paths.

79

https://github.com/jogo23/flipping_plane_spanning_paths
https://github.com/jogo23/flipping_plane_spanning_paths


7. Flipping Plane Spanning Paths

(a) Type 1 flip. (b) Type 2 flip. (c) Type 3 flip.

Figure 7.1: The three types of flips in plane spanning paths.

When removing an edge vi−1vi from P with 2 ≤ i ≤ n, there are three
possible new edges that can be added in order to obtain a path (where, of
course, not all three choices will necessarily lead to a valid path in P(S)):
v1vi, vi−1vn, and v1vn. A flip of Type 1 adds the edge v1vi (if i > 2) or the
edge vi−1vn (if i < n). It results in the path vi−1, . . . , v1, vi, . . . , vn, or the path
v1, . . . , vi−1, vn, . . . , vi. That is, a Type 1 flip inverts a contiguous chunk from
one of the two ends of the path. A flip of Type 2 adds the edge v1vn and has
the additional property that the edges vi−1vi and v1vn do not cross. In this
case, the path P together with the edge v1vn forms a plane cycle. If a Type 2
flip is possible for one edge vi−1vi of P, then it is possible for all edges of P. A
flip of Type 3 also adds the edge v1vn, but now the edges v1vn and vi−1vi cross.
Note that a Type 3 flip is only possible if the edge v1vn crosses exactly one
edge of P, and then the flip is possible only for the edge vi−1vi that is crossed.
We further remark that Type 2 flips are not relevant for the connectedness of the
flip graph but only for the diameter, since every Type 2 flip can be simulated
by a sequence of Type 1 flips, e.g., flip v1v2 to v1vn, then flip v2v3 to v1v2, then
v3v4 to v2v3, etc., until flipping vi−1vi to vi−2vi−1. For Type 3 flips it remains
open whether they are relevant for the connectedness of the flip graph (in the
following, we are not using any Type 3 flip). Unless mentioned otherwise, all
flips we are using in the following are Type 1 flips.

Contribution. We approach Conjecture 7.1 from two directions. First, we
show that it is sufficient to prove flip connectivity for paths with a fixed
starting edge. Second, we verify Conjecture 7.1 for several classes of point
sets, namely wheel sets and generalized double circles (which include, e.g.,
double chains and double circles).

Towards the first part, we define, for two distinct points p, q ∈ S, the
following subsets of P(S): let P(S, p) be the set of all plane spanning paths
for S that start at p, and let P(S, p, q) be the set of all plane spanning paths
for S that start at p and continue with q. Then for any S, the flip graph
on P(S, p, q) is a subgraph of the flip graph on P(S, p), which in turn is a
subgraph of the flip graph on P(S). We conjecture that all these flip graphs
are connected:
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7.1. A Sufficient Condition

v1

v2

v3

Figure 7.2: Example where the flip graph is disconnected if the first three vertices
of the paths are fixed. No edge of the solid path can be flipped, but there is at
least one other path (dotted) with the same three starting vertices.

Conjecture 7.2. For every point set S in general position and every p ∈ S, the flip
graph on P(S, p) is connected.

Conjecture 7.3. For every point set S in general position and every p, q ∈ S, the flip
graph on P(S, p, q) is connected.

Towards Conjecture 7.1, we show that it suffices to prove Conjecture 7.3:

Theorem 7.4. Conjecture 7.2 implies Conjecture 7.1.

Theorem 7.5. Conjecture 7.3 implies Conjecture 7.2.

Note that the analogue of Conjecture 7.3 for paths where the first k ≥ 3
vertices are fixed, does not hold: Figure 7.2 shows a counterexample with 7
points and k = 3.

Towards the flip connectivity for special classes of point sets, we consider
wheel sets and generalized double circles and prove that the flip graph is
connected in both cases:

Theorem 2.11. Let S be a set of n points in wheel configuration. Then the flip graph
on P(S) is connected with diameter at most 2n − 1.

Theorem 2.12. Let S be a set of n points in generalized double circle configuration.
Then the flip graph on P(S) is connected with diameter O(n2).

7.1 A Sufficient Condition

In this section we prove Theorem 7.4 and Theorem 7.5.

Lemma 7.6. Let S be a point set in general position and p, q ∈ S. Then there exists
a path P ∈ P(S) which has p and q as its end vertices.
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p

p

q

q

x

Figure 7.3: For any two given points p and q there exists a plane spanning path
having these two points as start and end points. Left: the case if at least one of
the two points is in the interior of the point set. Right: the case when both points
are on the boundary of the convex hull.

Proof. We consider two different cases. Let us first assume that at least one
of the two points, w.l.o.g. say p, is not an extreme point of S. Sort all other
points of S radially around p, starting at q. Connect p to the second point
in this order (the point radially just after q) and connect all other points in
radial order to a path, such that q becomes the last point of this path; see
Figure 7.3 (left). Since p is an interior point, each edge of this path stays in a
cone defined by p and two successive points in the radial order, in particular
all these cones are disjoint. Hence, we have obtained a plane spanning path
starting at p and ending at q.

Assume now for the second case that both given points lie on the boundary
of the convex hull of S. Then consider two tangents of CH(S) through p and q,
respectively. By the general position assumption of S we can always perturb
these two tangents so that they still go through the two given vertices but are
not parallel, and thus cross in a point x outside of the convex hull of S; see
Figure 7.3 (right). Sort all points radially around x and connect the points in
this order to a path. By construction the points p and q are the first and last
point in this sorting, and we thus obtain the required path.

Theorem 7.4. Conjecture 7.2 implies Conjecture 7.1.

Proof. Let S be a point set and Ps, Pt ∈ P(S). If Ps and Pt have a common
endpoint, we can directly apply Conjecture 7.2 and the statement follows.
So assume that Ps has the endpoints va and vb, and Pt has the endpoints vc
and vd, which are all distinct. By Lemma 7.6 there exists a path Pm having
the two endpoints va and vc. By Conjecture 7.2 there is a flip sequence from
Ps to Pm with the common endpoint va, and again by Conjecture 7.2 there
is a further flip sequence from Pm to Pt with the common endpoint vc. This
concludes the proof.

Towards Theorem 7.5, we first have a closer look at what edges form viable
starting edges. For a given point set S and points p, q ∈ S, we say that pq
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u

u
v

v

v`

vr

v−

Figure 7.4: Illustration of Lemma 7.7. Left: u is an interior point of S. Right: u
is an extreme point and v an interior point.

forms a viable starting edge if there exists a path P ∈ P(S) that starts with pq.
For instance, an edge connecting two extreme points that are not consecutive
along CH(S) is not a viable starting edge. The following lemma shows that
these are the only non-viable starting edges.

Lemma 7.7. Let S be a point set in general position and u, v ∈ S. The edge uv is a
viable starting edge if and only if one of the following is fulfilled:

(i) u or v lies in the interior of CH(S), or

(ii) u and v are consecutive along the boundary of CH(S).

Proof. “⇒”. We argue by contraposition. If (i) and (ii) are not fulfilled, i.e., u
and v are extreme points that are not consecutive along CH(S), then there
exist points in both halfplanes defined by the line through uv. However, any
plane path starting with uv can only reach the points on one side. Hence, uv
is not a viable starting edge.

“⇐”. If u is in the interior of CH(S), we sort the remaining points in
radial order around u. We construct a path starting with uv that visits the
remaining points consecutively in this radial order (see Figure 7.4 (left)).

If u and v are consecutive extreme points, we proceed exactly the same
way.

If u is an extreme point and v an interior point, let vℓ and vr be the two
neighbors of u along the convex hull. Let S′ ⊂ S be the set of points in the
interior of CH(S) plus {vℓ, vr}. Again we sort the points of S′ in radial order
around u. Let v− ∈ S′ be the vertex that is right before v in this radial order.

We construct three paths P1, P2, P3 from v− via vℓ and vr to v as follows.
The paths P1 = vℓ, . . . , v− and P2 = vr, . . . , v connect the points in S′ in radial
order (between its corresponding endpoints). Note that P1 may have length
zero. The path P3 = vℓ, . . . , vr connects vℓ to vr along the boundary of the
convex hull of S (along the side not containing u). Then the union of the three
paths P1, P2, P3 together with uv forms the desired plane spanning path (see
Figure 7.4 (right)).

83



7. Flipping Plane Spanning Paths

q
q

v1

v1
r

r

v`

vr

Figure 7.5: There exists a plane spanning cycle of S such that v1 is connected to
two points neighbored in the radial order around v1. Left: v1 is an interior point.
Right: v1 is an extreme point.

The following lemma is the analogue of Lemma 7.6:

Lemma 7.8. Let S be a point set in general position and v1 ∈ S. Further let S′ ⊂ S
be the set of all points p ∈ S such that v1 p forms a viable starting edge. Then for two
points q, r ∈ S′ that are consecutive in the circular order of S′ around v1, there exists
a plane spanning cycle containing the edges v1q and v1r.

Proof. The construction of these plane spanning cycles is completely analogous
to the construction of the paths in the proof of Lemma 7.7 but we add the
proof for the sake of completeness.

First assume that v1 is an interior point. Then, by Lemma 7.7, S′ = S \ {v1}
holds. We construct a plane spanning path starting with v1q and visiting the
remaining points in circular order around v1 such that r is the last in this
order. Lastly, connect r to v1 (see Figure 7.5 (right)).

Now, let v1 be an extreme point. Again we proceed analogously if q and r
are the two neighbors of v1 along CH(S). Otherwise, by Lemma 7.7, at least
one of the vertices q or r is an interior point. Then we construct the same
three paths P1, P2, P3 as in Lemma 7.7 (replacing the roles of v, v− by q and r).
Then the union of P1, P2, P3 together with v1q and v1r forms the desired cycle
(see Figure 7.5 (right)).

We are now ready to prove Theorem 7.5:

Theorem 7.5. Conjecture 7.3 implies Conjecture 7.2.

Proof. Let S be a point set and v1 ∈ S. Further let P, P′ ∈ P(S, v1). If P and P′

have the starting edge in common, then we directly apply Conjecture 7.3 and
are done. So let us assume that the starting edge of P is v1v2 and the starting
edge of P′ is v1v′2. Clearly v2, v′2 ∈ S′ holds (where S′ is the set of points p
such that v1 p forms a viable starting edge). Sort the points in S′ in radial order
around v1. Further let vx ∈ S′ be the next vertex after v2 in this radial order
and C be the plane spanning cycle with edges v1v2 and v1vx, as guaranteed
by Lemma 7.8; see Figure 7.6.
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v1

v2

v′2
vx

Figure 7.6: Illustratiion of the proof of Theorem 7.5

By Conjecture 7.3, we can flip P to C \ v1vx. Then, flipping v1v2 to v1vx we
get to the path C \ v1v2, which now has v1vx as starting edge. We iteratively
continue this process of “rotating” the starting edge until reaching v1v′2.

Theorem 7.4 and Theorem 7.5 imply that it suffices to show connectedness
of certain subgraphs of the flip graph. A priori it is not clear whether this is
an easier or a more difficult task – on the one hand we have smaller graphs,
making it easier to handle. On the other hand, we may be more restricted
concerning which flips we can perform, or exclude certain “nice” paths.

7.2 Flip Connectivity for Wheel Sets

Akl et al. [AIM07] proved connectedness of the flip graph if the underlying
point set S is in convex position. They showed that every path in P(S) can
be flipped to a canonical path that uses only edges on the convex hull of S. To
generalize this approach to other classes of point sets, we need two ingredients:
(i) a set of canonical paths that serve as the target of the flip operations and
that have the property that any canonical path can be transformed into any
other canonical path by a simple sequence of flips, usually of constant length;
and (ii) a strategy to flip any given path to some canonical path.

Recall that a set S of n ≥ 4 points in the plane is a wheel set if there is
exactly one interior point c ∈ S. We call c the center of S and classify the edges
on S as follows2: an edge incident to the center c is called a radial edge, and an
edge along CH(S) is called spine edge (the set of spine edges forms the spine,
which is just the boundary of the convex hull here). All other edges are called
inner edges. The canonical paths are those that consist only of spine edges and
one or two radial edges.

We need two observations. Let S be a point set in general position and
P = v1, . . . , vn ∈ P(S). Further, let vi (i ≥ 3) be a vertex such that no edge
on S crosses v1vi. We denote the face bounded by v1, . . . , vi, v1 by Φ(vi).

2Note that we introduced similar notions earlier (boundary edges, diagonal edges, etc.).
However, with regard to Section 7.3 it makes sense to introduce a new terminology here.
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7. Flipping Plane Spanning Paths

Observation 7.9. Let S be a point set in general position, P = v1, . . . , vn ∈ P(S),
and vi (i ≥ 3) be a vertex such that no edge on S crosses v1vi. Then all vertices
after vi (i.e., {vi+1, . . . , vn}) are entirely contained in either the interior or the exterior
of Φ(vi).

Observation 7.10. Let S be a wheel set and let P = v1, . . . , vn ∈ P(S). Suppose that
the edge vivi+1 of P is an inner edge. Then the sets {v1, . . . , vi−1} and {vi+2, . . . , vn}
lie on different sides of the line spanned by vivi+1.

Note that the sets {v1, . . . , vi−1} and {vi+2, . . . , vn} in Observation 7.10 are
non-empty due to Lemma 7.7.

Theorem 2.11. Let S be a set of n points in wheel configuration. Then the flip graph
on P(S) is connected with diameter at most 2n − 1.

Proof. Let P = v1, . . . , vn ∈ P(S) be a non-canonical path. W.l.o.g., we can
assume v1 ̸= c (at least one of the two endpoints of P is not the center). We
show how to apply suitable flips to increase the number of spine edges of P.

By Lemma 7.7, the edge v1v2 is either radial or a spine edge. We distinguish
the two cases:

Case 1 v1v2 is radial, i.e., (since we assumed v1 ̸= c), we have v2 = c.

Then v2v3 is radial and, in analogy to Observation 7.10, the remaining
path can only visit vertices on one side of the “line” through v1v2v3
(which is bent at v2); see Figure 7.7(a). Hence, v3 must be a neighbor
of v1 along the convex hull.

Thus we can increase the number of spine edges by flipping the radial
edge v2v3 to the spine edge v1v3.

Case 2 v1v2 is a spine edge.

Let va (a ̸= 2) be the other neighbor of v1 along the convex hull. Note
first that we can assume va−1va to be a spine edge, since otherwise
we can increase the number of spine edges by flipping va−1va to v1va.
Furthermore, we can assume a ̸= n, since otherwise we can insert v1vn
and remove an arbitrary (non-spine) edge (performing a Type 2 flip).

By Observation 7.10, P cannot have any inner edge e before va, since
otherwise e would have the neighbors v1 and va on the same side. On
the other hand, since v1v2 and va−1va are spine edges, va+1 must be in
the interior of the face Φ(va). Then, by Observation 7.9, all extreme
points must already be covered before va+1 (see Figure 7.7(b)). This,
however, implies that P does not contain an inner edge.

Hence, if v1v2 and va−1va are spine edges P is in fact already canonical.
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v1

v2

v3

(a) Case 1.

v1

va
va−1

v2

(b) Case 2.

Figure 7.7: (a) If v1 and v3 are not neighbors, there are vertices that cannot be
reached. (b) If va−1va is a spine edge, the path after va cannot visit any extreme
point anymore.

r′

(a)

(b)
r

Figure 7.8: (a) Illustration of Remark 1. (b) Illustration of Remark 2.

Iteratively applying above procedure, we obtain a canonical path. We
claim that any two canonical paths can be transformed into each other by at
most 7 flips. First note that for any fixed set of one or two radial edges there
are exactly two different canonical paths in P(S) using these radial edges.

Remark 1: If two canonical paths C1, C2 use the same radial edges, they
can be transformed into each other by either one flip (if C1 and C2 contain
exactly one radial edge) or by three flips (if C1 and C2 contain exactly two
radial edges.); see Figure 7.8(a).

Remark 2: For every radial edge r′ and every canonical path C with radial
edge r, using at most two flips, C can be transformed into a canonical path C′

such that (i) C′ contains r′ but not r and (ii) all other radial edges remain the
same; see Figure 7.8(b).

Applying Remark 2 at most two times and next Remark 1, it follows that
any two canonical paths can be transformed into each other by at most 7 flips.

Lastly, we need to count the number of iterations it takes to transform
a plane spanning path into a canonical path. By Observation 7.10 and the
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(a) (b) Double chain. (c) Double circle. (d)

Figure 7.9: (a-c) Examples of generalized double circles (the uncrossed spanning
cycle is depicted in orange). (d) A point set that is not a generalized double circle,
but admits an uncrossed spanning cycle.

fact that not all edges can be radial, we know that any plane spanning path
contains at least one spine edge and hence, we need at most n − 3 iterations to
reach a canonical path. Since every iteration requires at most 2 flips, we need
at most 2(n − 3) + 7 = 2n + 1 flips in total. However, having a closer look at
the intermediate step that transforms the two canonical paths, we see that in
the case of n − 3 iterations where only one radial edge remains, we need only
3 flips rather than 7. Hence, we either save one iteration or 4 intermediate
flips, where the former yields a total of 2(n − 4) + 7 = 2n − 1 flips.

7.3 Flip Connectivity for Generalized Double Circles

The proof for generalized double circles is generally similar to the one for
wheel sets but much more involved. For a point set S and two extreme points
p, q ∈ S, we call a subset CC(p, q) ⊂ S concave chain (chain for short) for S, if
(i) p, q ∈ CC(p, q); (ii) CC(p, q) is in convex position; (iii) CC(p, q) contains
no other extreme points of S; and (iv) every line ℓxy through any two points
x, y ∈ CC(p, q) has the property that all points of S \ CC(p, q) lie in the open
halfplane bounded by ℓxy that contains neither p nor q. Note that the extreme
points p and q must necessarily be consecutive along CH(S). If there is no
danger of confusion, we also refer to the spanning path from p to q along the
convex hull of CC(p, q) as the concave chain.

A point set S is in generalized double circle position if there exists a family
of concave chains such that every inner point of S is contained in exactly one
chain and every extreme point of S is contained in exactly two chains. Note
that such a family of concave chains is not necessarily unique (e.g. with 4
points in non-convex position, the interior point may belong to any of the
three chains). Whenever concerned with a point set in generalized double
circle position, we implicitly assume a family of concave chains to be fixed.
We denote the class of generalized double circles by GDC (see Figure 7.9 for an
illustration). For S ∈ GDC, it is not hard to see that the union of the concave
chains forms an uncrossed spanning cycle:
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p
q

r

s

Figure 7.10: Illustration of the proof of Lemma 7.11.

Lemma 7.11. Every point set S ∈ GDC admits an uncrossed spanning cycle formed
by the union of the concave chains.

Proof. Let S ∈ GDC and denote the extreme points of S by u1, . . . , uk in circular
order. Assume, for the sake of contradiction, that there is an edge rs along
the convex hull of a concave chain CC(ui, ui+1) that is crossed by some edge
pq (in particular, at least one of the points r, s is not an extreme point in S).
Then p and q lie on different sides of the line ℓrs through rs and hence, at
least one of the points p or q belongs to CC(ui, ui+1), say q ∈ CC(ui, ui+1).
Furthermore, ℓqs or ℓqr must have p on the same side as ui or ui+1 (note that
this is also the case if r, s, or q coincide with ui or ui+1); see Figure 7.10. Hence,
also p ∈ CC(ui, ui+1) holds. However, since rs is a hull edge of CC(ui, ui+1) it
cannot be crossed by pq; a contradiction.

Before diving into the details of the proof of Theorem 2.12, we start by
collecting preliminary results in a slightly more general setting, namely for
point sets S fulfilling the following property:

(USC) There is an uncrossed spanning cycle C on S, i.e., no edge joining two
points of S crosses any edge of C.

A point set fulfilling (USC) is called spinal point set. When considering a
spinal point set S, we first fix an uncrossed spanning cycle C, which we call
spine and all edges in C spine edges. For instance, generalized double circles
are spinal point sets and the spine is precisely the uncrossed spanning cycle
formed by the concave chains as described in Lemma 7.11. Whenever speaking
of the spine or spine edges for some point set without further specification, the
underlying uncrossed cycle is either clear from the context, or the statement
holds for any choice of such a cycle. Furthermore, we call all edges in the
exterior/interior of the spine outer/inner edges.

Except Lemma 7.13, all preliminary results from Observation 7.12 to
Lemma 7.15 hold for the more general setting of spinal point sets.
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v1

va

va−1 v1

va

va−1

va+1 v1

va

va−1

va+1

Figure 7.11: Illustration of the three flips in Observation 7.12. The spine is
depicted in orange and edge flips are indicated by replacing dashed edges for dotted
(in the middle, the two flips are of course executed one after the other).

We define the canonical paths to be those that consist only of spine edges.
Note that this definition also captures the canonical paths used by Akl et
al. [AIM07], and that any canonical path can be transformed into any other
by a single flip (of Type 2). Two vertices incident to a common spine edge are
called neighbors.

Next, we need a strategy to flip an arbitrary path to a canonical path. The
biggest issue is to ensure that all intermediate paths in the flip sequence are
plane. To this end, it is very helpful if many triangles that are spanned by
a spine edge and a third point of S are empty, i.e., do not contain any other
point from S in their interior.

Valid flips. We collect a few observations which will be useful to confirm
the validity of a flip. Whenever we apply more than one flip, the notation in
subsequent flips refers to the original graph and not the current (usually we
apply one or two flips in a certain step). Figure 7.11 gives an illustration of
the following observation.

Observation 7.12. Let S be a spinal point set, P = v1, . . . , vn ∈ P(S), and v1, va
(a ̸= 2) be neighbors. Then the following flips are valid (under the specified additional
assumptions):

(a) flip va−1va to v1va

(b) flip in (a) + flip vava+1 to va−1va+1 (if the triangle ∆va−1vava+1 is empty)

(c) flip vava+1 to v1va+1 (if the triangle ∆v1vava+1 is empty and
va−1va is a spine edge).

Strictly speaking, in Observation 7.12(c) we do not require va−1va to be a
spine edge, but merely to be an edge not crossing v1va+1. The following lemma
provides structural properties for generalized double circles, if the triangles in
Observation 7.12(b,c) are non-empty:
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Figure 7.12: Illustration of the proof of Lemma 7.13.

Lemma 7.13. Let S ∈ GDC and p, q, x ∈ S such that p and q are neighbors. Further,
let the triangle ∆pqx be non-empty. Then the following holds:

(i) At least one of the two points p, q is an extreme point (say p),

(ii) x does not lie on a common chain with p and q, but shares a common chain
with either p or q (the latter may only happen if q is also an extreme point).

Proof. Concerning part (i), assume for the sake of contradiction that neither p
nor q is an extreme point and let y ∈ ∆pqx. First recall that p and q belong to
exactly one concave chain and since they are neighbors, they belong to the
same chain – call it Cpq. Further note that y is not an extreme point and hence,
also belongs to a unique concave chain.

Let us first consider the case that x and y share a common chain Cxy. Since
concave chains are in convex position, this cannot be Cpq. However, since y
is contained in the interior of ∆pqx, the line ℓxy through x and y separates p
and q; a contradiction to property (iv) of the chain Cxy (see Figure 7.12(a)).

Consider next, that x and y do not share a common chain. If y does
not belong to Cpq, then neither of the points p, q, x belongs to the chain Cy
of y. However, any line through y and another point of Cy separates these
three points; a contradiction to property (iv) of Cy (see Figure 7.12(b)). If y
belongs to Cpq, then either p and q are not neighbors or the line ℓpq has x
and the extreme points (in S) of Cpq on the same side (see Figure 7.12(c) and
Figure 7.12(d)); a contradiction either way. This finishes the proof of part (i).

Concerning part (ii), first note that the extreme point p belongs to two
chains Cpq and Cpq̄ (the former also contains q while the latter does not). Also
assume that q is not an extreme point. Then we need to show that x belongs
to Cpq̄.
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First we argue that x does not belong to Cpq. Indeed, if this was the case,
the point y ∈ ∆pqx (which does not belong to Cpq) would lie on the same side
of ℓqx as p (see Figure 7.12(e)); a contradiction to property (iv) of Cpq.

Second, suppose for the sake of contradiction that x belongs to some other
chain C ̸= Cpq̄. Again we consider the two cases where x and y share a
common chain or not.

First, let x and y share a common chain (which, as before, is not Cpq). Since
ℓxy separates p and q this is a contradiction, except p, x, y lie on a common
chain, which however is excluded because x /∈ Cpq̄ (see Figure 7.12(f)).

Second, let x and y not share a common chain. The cases that y be-
longs to a chain that is not Cpq̄ are completely analogous as before (see
Figures 7.12(b,c,d)). Hence, it remains to consider y ∈ Cpq̄. In this case, the
line ℓpy separates q and x; again a contradiction (see Figure 7.12(g)).

The case that q is an extreme point is now completely analogous. Fig-
ures 7.12(h,i) summarize the possible configurations for a non-empty triangle
∆pqx.

Combinatorial distance measure. In contrast to the proof for wheel sets, it
may now not be possible anymore to directly increase the number of spine
edges and hence, we need a more sophisticated measure. Let C be the spine of
a spinal point set S and p, q ∈ S. Further let o ∈ {cw, ccw} be an orientation.
We define the distance between p, q in direction o, denoted by do(p, q), as
the number of spine edges along C that lie between p and q in direction o.
Furthermore, we define the distance between p and q to be

d(p, q) = min{dcw(p, q), dccw(p, q)}.

Note that neighboring points along the spine have distance one. Using this
notion we define the weight of an edge to be the distance between its endpoints
and the (overall) weight of a graph on S to be the sum of its edge weights.

Our goal is to perform weight decreasing flips (the terms increase/decrease
always refer to strict increase/decrease). To this end, we state two useful
preliminary results (see also Figure 7.13):

Observation 7.14. Let S be a spinal point set and p, q, r be three neighboring points
in this order (i.e., q lies between p and r). Further let s ∈ S \ {p, q, r} be another
point. Then d(p, s) < d(q, s) or d(r, s) < d(q, s) holds.

Combining Observation 7.12 and Observation 7.14, it is apparent that we
can perform weight decreasing flips whenever ∆va−1vava+1 and ∆v1vava+1
are empty.

Lemma 7.15. Let S be a spinal point set, P = v1, . . . , vn ∈ P(S) a non-canonical
path, and va, vb be the neighbors of v1 as well as vc, vd be the neighbors of vn. If
max(a, b) > min(c, d), then the number of spine edges in P can be increased by
performing at most two flips, which also decreases the overall weight of P.
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p

s

q

r

(a) Observation 7.14.

v1 va

vn

vb

vc vd

va−1

vc+1

(b) Lemma 7.15.

Figure 7.13: (a) One of the dashed edges has smaller weight than the solid:
d(s, q) = 4; d(s, p) = 4; d(s, r) = 3. (b) The initial path is depicted by solid and
dashed edges. Flipping the dashed edges to the dotted edges increases the number
of spine edges.

Proof. First of all we can assume v1 and vn not to be neighbors, since otherwise
we can increase the number of spine edges by a single flip, inserting v1vn and
removing an arbitrary non-spine edge. Let max(a, b) > min(c, d) and assume
w.l.o.g. that a > c holds. In particular a ̸= 2 and c ̸= n − 1 holds.

If va−1va or vcvc+1 is not a spine edge, we can increase the number of spine
edges by a single flip using Observation 7.12(a). Hence, we can assume these
edges to be spine edges, which implies that vava+1 and vc−1vc are not spine
edges.

Then we flip the spine edge va−1va to the other spine edge v1va resulting
in the path va−1, . . . , vc+1, vc, . . . , v1, va, . . . , vn. Next, flipping vc−1vc to vcvn is
valid and now replaces a non-spine edge by a spine edge. See Figure 7.13(b)
for an illustration.

Lemma 7.15 essentially enables us to perform weight decreasing flips
whenever the path traverses a neighbor of vn before it reached both neighbors
of v1. We are now ready to prove Theorem 2.12, but briefly summarize the
proof strategy from a high-level perspective beforehand:

High-level proof strategy. To flip an arbitrary path P ∈ P(S) to a canonical
path, we perform iterations of suitable flips such that in each iteration we
either

(i) strictly increase the number of spine edges along P, while not increasing
the overall weight of P, or

(ii) strictly decrease the overall weight of P, while not decreasing the number
of spine edges along P.
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Note that for the connectivity of the flip graph it is not necessary to
guarantee the non increasing overall weight in the first part. However, this
will provide us with a better bound on the diameter of the flip graph. The
remainder of this chapter is concerned with the proof of Theorem 2.12.

Theorem 2.12. Let S be a set of n points in generalized double circle configuration.
Then the flip graph on P(S) is connected with diameter O(n2).

Proof. Let P = v1, . . . , vn ∈ P(S) be a non-canonical path. As described
in the high-level proof strategy, we show how to iteratively transform P to
a canonical path by increasing the number of spine edges or decreasing its
overall weight. As usual let va (a ̸= 2) be a neighbor of v1.

We can assume, w.l.o.g., that v1 and vn are not neighbors, since otherwise
we can flip an arbitrary (non-spine) edge of P to the spine edge v1vn (perform-
ing a Type 2 flip), i.e., a < n. Furthermore, we can also assume w.l.o.g., that
va−1va is a spine edge, since otherwise we can flip va−1va to the spine edge
v1va (Observation 7.12(a)). This also implies that the edge vava+1, which exists
because a < n, is not a spine edge, since va already has the two neighbors
va−1 and v1.

We distinguish two cases – v1v2 being a spine edge or not:

Case 1 v1v2 is not a spine edge.

This case is easier to handle, since we are guaranteed that both neighbors
va, vb (a, b ̸= 2) of v1 are potential candidates to flip to. In order to apply
Observation 7.12, we require ∆v1vava+1 or ∆v1vbvb+1 to be empty. So,
let’s consider these two subcases separately:

Case 1.1 ∆v1vava+1 (or analogously ∆v1vbvb+1) is empty.
Then we apply the following two flips:

flip vava+1 to v1va+1 and flip v1v2 to v1va,

where the first flip results in the path va, . . . , v1, va+1, . . . , vn (and is
valid by Observation 7.12(c)) and the second flip then results in the
path v2, . . . , va, v1, va+1, . . . , vn (valid due to Observation 7.12(a)).
The first flip replaces a non-spine edge by another non-spine edge
and may increase the weight by at most one. The second flip re-
places a non-spine by a spine edge, which also decreases the weight
by at least one. Together, the number of spine edges increases, while
the overall weight does not increase.

Case 1.2 ∆v1vava+1 and ∆v1vbvb+1 are not empty.
Lemma 7.13(i) implies that (v1 or va) and (v1 or vb) is an extreme
point. We consider these cases separately. For convenience we
introduce one more term: For an outer edge e (which necessarily
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va+1

vb−1

vb+1

(a) Case 1.2.1.

v1

va−1

vb+1vb−1vb

va
va+1

(b) Case 1.2.3.

v1
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va−1

va+1vb+1

vb−1

vb

(c) Case 1.2.4.

Figure 7.14: (a) Case 1.2.1. There cannot be more than n/2 points in each
yellow region and hence, at least one of the flips vava+1 to va−1va+1 or vbvb+1 to
vb−1vb+1 decreases the weight. (b) Case 1.2.3. Either ∆v1vava+1 or ∆v1vbvb+1
must be empty. (c) Case 1.2.4.

connects two points from the same chain), we say that the points
along this chain between the two endpoints of e (excluding the
endpoints) lie under e.

Case 1.2.1 v1, va, vb are all extreme points.
The triangles ∆v1vava+1 and ∆v1vbvb+1 being non-empty im-
plies that both, vava+1 and vbvb+1 are outer edges (see Fig-
ure 7.14(a)). Not both of them can contain n/2 points under its
edge. Hence, one of the two flips (replacing vava+1 by va−1va+1,
or vbvb+1 by vb−1vb+1) is weight decreasing, say w.l.o.g. the
one for va. Then we apply the following flips:

flip va−1va to v1va and flip vava+1 to va−1va+1.

The first flip is valid due to Observation 7.12(a) (replacing a
spine edge by another spine edge) and the second is valid due
to Observation 7.12(b) and decreases the weight by assumption.

Case 1.2.2 v1 and va are extreme points and vb is not (analogous
with exchanged roles of va and vb).
In this case, using Lemma 7.13(ii), we conclude that the triangle
∆v1vbvb+1 is empty; a contradiction.

Case 1.2.3 v1 is an extreme point and va, vb are not.
By Lemma 7.13(ii), the edge vava+1 must be an inner edge
between the two concave chains of v1. If va+1 is a neighbor of v1,
we can simply replace vava+1 by v1va+1 (Observation 7.12(a)).
Otherwise, the other neighbor vb of v1 cannot be incident to an
inner edge and hence, ∆v1vbvb+1 is empty; a contradiction (see
Figure 7.14(b)).

Case 1.2.4 v1 is not an extreme point and va, vb are both extreme
points.
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This case is analogous to Case 1.2.1. Again, both, vava+1 and
vbvb+1 must be outer edges and the regions under those two
edges must be disjoint (see Figure 7.14(c)). Hence, one of the
two flips (replacing vava+1 by va−1va+1, or vbvb+1 by vb−1vb+1)
is weight decreasing, say w.l.o.g. the one for va. Then, as in
Case 1.2.1, we apply the following flips:

flip va−1va to v1va and flip vava+1 to va−1va+1.

Case 2 v1v2 is a spine edge.

In this case we will consider P from both its endpoints v1 and vn. Our
general strategy here is to first rule out some easier cases and collect
all those cases where we cannot immediately make progress. For these
remaining “bad” cases we consider the setting from both ends of the
path, i.e., we need to consider all combinations of bad cases.

Case 2.1 v1, va are not extreme points. And va−1 is also not an extreme
point. Then we either

• flip vava+1 to v1va+1, or

• flip va−1va to v1va and vava+1 to va−1va+1.

By Observation 7.14, one of the two choices decreases the over-
all weight and all flips are valid because neither of the vertices
v1, va, va−1 is an extreme point and hence, the triangles ∆v1vava+1
and ∆va−1vava+1 are empty (Lemma 7.13).

Case 2.2 v1, va are not extreme points. And va−1 is an extreme point.

Case 2.2.1 va−2 lies on the same chain as v1.

Case 2.2.1.1 d(va−2va−1) = 2.
This implies va−2 to be an extreme point and there is only
one other point in S that does not belong to the chain of
va−2 and va−1; see Figure 7.15(a). This, however, implies
that both triangles ∆v1vava+1 and ∆va−1vava+1 are empty
and hence, using Observation 7.12 and Observation 7.14,
we can perform weight decreasing flips.

Case 2.2.1.2 d(va−2va−1) > 2.
Then we flip va−2va−1 to v1va−1, which decreases the overall
weight, since v1va−1 has weight 2. See Figure 7.15(b).

Case 2.2.2 va−2 lies on a different chain as v1.
Recall that the notation Φ(vx) refers to the face bounded by
v1, . . . , vx, v1.
If va+1 lies in the exterior of Φ(va), then va−1, va, v1, va+1 share
a common chain and we can apply the flips of Case 2.1.
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va−2
v2

va+1

(c) Case 2.2.2.

Figure 7.15: (b) Replacing va−2va−1 by v1va−1 is weight decreasing. (c) The first
“bad” case.

If va+1 lies in the interior of Φ(va) this constitutes our first
“bad” case (note that Observation 7.9 implies that the subpath
va+1, . . . , vn does not contain any extreme point). Further, we
can assume va−2va−1 also to be a spine edge, since otherwise
we flip va−1va to v1va and are back in Case 1. Also we can
assume vava+1 to be an inner edge towards the va−1 chain,
since otherwise we can make progress (using Observations 7.12
and 7.14) because both triangles ∆v1vava+1 and ∆va−1vava+1
would be empty by Lemma 7.13(ii). See Figure 7.15(c).

Case 2.3 v1 is an extreme point and va is not an extreme point.
Again it suffices to consider the case that at least one of the triangles
∆v1vava+1 or ∆va−1vava+1 is non-empty. Either way, again using
Lemma 7.13(ii), this can only happen, if va+1 is in the interior
of Φ(va), more precisely, vava+1 is an inner edge towards one of
the neighboring chains of the va chain (where the one case is only
relevant if va−1 is an extreme point); see Figure 7.16(a,b). This
constitutes the second “bad” case. As before, there are no extreme
points along the subpath va+1, . . . , vn.

Case 2.4 va is an extreme point and v1 is not an extreme point.
If vava+1 is an inner edge both triangles ∆v1vava+1 and ∆va−1vava+1
are empty and we can make progress by Observation 7.12 and
Observation 7.14. Hence, there are two “bad” cases to consider
here, namely when vava+1 is an outer edge (see Figure 7.16(c,d)).

Case 2.5 v1, va are extreme points.
Again, there are two “bad” cases to consider here, namely when
vava+1 is an outer edge or an inner edge to the v1, v2 chain (see
Figure 7.16(e,f)).

Let us summarize the six “bad” cases, where we cannot immediately make
progress (note that (II) comprises two cases but for the following arguments it
will not be important to distinguish between them):
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v1
va

va−1

va+1

v2

(b) Case 2.3.

v1

va

va−1

va+1
v2

(d) Case 2.4.

v1 va

va−1

va+1

v2

(f) Case 2.5.

Figure 7.16: (a,b) The two “bad” cases of Case 2.3. Either way, vava+1 is in the
interior of Φ(va). (c,d) The two “bad” cases of Case 2.4. The edge vava+1 is in
the exterior of Φ(va). (e,f) The two “bad” cases of Case 2.5. The edge vava+1
can be in the interior (f) or exterior (e) of Φ(va). Recall that the dashed red arc
shall emphasize that there is no vertex lying on this chain between the two extreme
points v1, va.

(I) v1, va are not extreme points, va−1 is an extreme point, vava+1 is an inner
edge towards the va−1 chain that does not contain v1, and va−1va−2 is a
spine edge (Figure 7.15(c)).

(II) v1 is an extreme point, va is not an extreme point, and vava+1 is an
inner edge towards a neighboring chain (in the one case va−1 must be
extreme); Figure 7.16(a,b).

(IIIa) v1 is not an extreme point, va is an extreme point, and vava+1 is an outer
edge on the va−1 chain (Figure 7.16(c)).

(IIIb) v1 is not an extreme point, va is an extreme point, and vava+1 is an outer
edge on the v1 chain (Figure 7.16(d)).

(IVa) v1, va are extreme points and vava+1 is an outer edge (Figure 7.16(e)).

(IVb) v1, va are extreme points and vava+1 is an inner edge to the v1 chain
(Figure 7.16(f)).

In the remainder of the proof we settle these “bad” cases by arguing about
both ends of the path, i.e, we consider all (6

2) + 6 = 21 combinations of these
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Figure 7.17: The two non-isomorphic ways to realize a combination of “bad”
cases ((IIIa)+(IVa) is drawn here). Recall that the red dashed arc indicates that
there are no more vertices on this chain.

“bad” cases. Recall that the order at the vn end must be thought of as inverted,
e.g., the analogue of va−1va is vcvc+1 and the analogue of vava+1 is vc−1vc.

Further note that there are two non-isomorphic ways two realize a com-
bination of “bad” cases (see Figure 7.17). Furthermore, there are two ways
to connect the “loose” ends of the fixed structures with each other (one case
where we have a < c and another where we have c < a). However, by
Lemma 7.15, only the former is of interest.

Since we are not using the edges of the intermediate subpaths, we are
mostly interested in the question whether or not a certain combination can be
realized in a plane manner (in one of the two ways) or not.

Fortunately, we can immediately exclude several combinations with the
following observations:

1. As noted above, we can assume a < c and hence, no “bad” case where
va+1 is in the interior of Φ(va) can be combined with a “bad” case having
vn or vc as extreme point. Hence, we can exclude all combinations
involving (I), (II), or (IVb), except (I)+(I). In fact, (I)+(I) is also not
possible as the path starting from v1 would first need to traverse vc+1,
then va and then vc, which is not possible.

2. If vava+1 is an outer edge, there is always an “easy” flip possible to either
v1 or va−1 (depending on which lies on the same chain as va and va+1).
Hence, similar to Case 1.2.4, we can rule out cases by showing that the
regions (towards we flip vava+1 and vc−1vc to) are disjoint. Also, we need
to consider a subtle edge case, namely when vava+1 and vc−1vc coincide.
We consider the remaining six cases separately (see also Figure 7.18).
As depicted in Figure 7.18, we have disjoint regions in all 6 remaining
combinations except for the edge cases where the edges vava+1 and
vc−1vc coincide.

99



7. Flipping Plane Spanning Paths

vc−1

vn−1

vn

vcvc+1

v1 v2va

va−1

va+1

v2

v1

va

vn vn−1
vc

vc+1

va−1

v1 v2va

va−1

va+1

v2
v1
va
va−1

v1

v2

va va−1va+1

v2v1

va

va−1

vc−1
vn−1

vn

vcvc+1

v1 v2

va

va−1

va+1

v2
v1
va

vn
vn−1

vc vc+1

va−1

v2
v1
va

vn

vn−1

vc

vc+1

va−1

v1
v2

va va−1va+1

v2v1

va

va−1

v1
v2

va va−1va+1

vn

vn−1

vcvc+1vc−1

(IIIa)+(IIIa) (IIIa)+(IIIb) (IIIa)+(IVa)

(IIIa)+(IIIa) (edge case) (IIIa)+(IIIb) (edge case) (IIIa)+(IVa) (edge case)

(IIIb)+(IIIb) (IIIb)+(IVa) (IVa)+(IVa)

(IIIb)+(IIIb) (edge case) (IIIb)+(IVa) (edge case) (IVa)+(IVa) (edge case)

vc−1

vn−1

vn

vcvc+1 vc−1

vn−1

vn

vcvc+1

vn vn−1
vc

vc+1

vn vn−1
vc

vc+1

vc−1
vn−1

vn

vcvc+1

vn

vn−1

vc

vc+1

Figure 7.18: The remaining combinations where we try to find disjoint regions
each having to contain at least half of the point set. Edge cases are those cases
where the edges vava+1 and vc−1vc coincide.
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Hence, 1. and 2. rule out all possible cases, except the 6 edge cases from 2.,
where also these regions (containing at least n/2 points) coincide on the chain
CC(va, vc). These can be resolved as follows. In all cases there exists an inner
edge vx−1vx along the path v2 . . . va−1 that is “closest” to v1 and vx lies on the
chain CC(va, vc). By closest we mean that v1vx does not intersect the path.
Hence, flipping vx−1vx to v1vx forms a valid flip and at least one of the two
choices (either from the v1 end or vn) decreases the weight. This argument is
analogous in all six edge cases, with the only difference that we may replace
v1 by va−1 by first flipping va−1va to v1va if v1 lies on the CC(va, vc) chain.
This concludes the case distinction. In each case we showed how to perform
suitable flips to increase the number of spine edges or decrease the overall
weight.

Now, iteratively applying the above process, we will eventually trans-
form P to a canonical path that consists only of spine edges (the only paths
with minimum overall weight). Doing the same for Q and noting that any
pair of canonical paths can be transformed into each other by a single flip, the
connectedness of the flip graph follows.

Concerning the required number of flips, note that any edge has weight at
most n

2 − 1 and the path has n − 1 edges. Hence, the total number of iterations
to transform P into a canonical path is at most(

(n − 1) ·
(n

2
− 2

)
+ (n − 1)

)
∈ O(n2)

Furthermore, any iteration requires at most two flips and hence, the total
number of flips to transform P into Q is still in O(n2).

101





Chapter8
Compatible Trees

In the previous chapter we studied the flip graph on straight-line paths,
whereas in this chapter, we are now leaving the realm of straight-line draw-
ings. For a fixed integer n, let D be a simple drawing of the complete graph
Kn and let TD be the set of all subdrawings of D which are plane spanning
trees. Note that TD is non-empty, as it contains at least the n stars in D. In
this chapter, unless stated otherwise, the word tree always refers to a plane
spanning tree in TD, where the drawing D is either clear from the context or
the statement holds for any simple drawing of Kn.

Recall that two trees are compatible if their union is plane. Again, we are
concerned with the question of connectedness of a certain flip graph. In this
chapter, our ground set is TD (for some fixed drawing D of Kn) and the flip
operation is defined via compatibility, i.e., two vertices are adjacent if and
only if the corresponding trees are compatible.

For clarity and easier distinguishability we call this particular flip graph
compatibility graph.

Question 8.1. Is the compatibility graph F (TD) connected for every simple draw-
ing D of the complete graph Kn, for all n ∈ N?

Note that the compatibility graph is not connected if the underlying
drawing is not a drawing of the complete graph but instead one of a complete
bipartite graph for example (see Figure 8.1).

Related work. Considering the notion of compatibility, most of the work has
been done in the straight-line setting, e.g., in the context of perfect matchings:
Houle et al. [HHNR05] proved connectedness of the compatibility graph (even
using a weaker notion of flips). Their bound of n − 2 on the diameter has been
improved to O(log n) by Aichholzer et al. [ABD+09], while Razen [Raz08] pro-
vided a lower bound of Ω(log n/ log log n). Aloupis et al. [ABLS15] showed
connectedness of the compatibility graph of perfect matchings, where the
underlying points are colored red and blue and Aichholzer et al. [ABH+18]
provided an upper bound of 2n on the diameter in this setting.
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Figure 8.1: The red tree intersects all other edges and hence, is an isolated vertex
in the corresponding compatibility graph.

In the context of plane spanning trees, Aichholzer et al. [AAH02] showed,
in the straight-line setting, that the compatibility graph is connected with
diameter O(log n) and slightly later the refined upper bound of O(log k)
[AAHK06], where k denotes the number of convex layers of the point set.
Buchin et al. [BRUW09] provided a construction proving a lower bound of
Ω(log n/ log log n) and a matching lower bound of Ω(log k) in terms of the
number of convex layers.

It is natural to extend this question, concerning the connectedness of the
compatibility graph, also to simple drawings. In this chapter, we aim to shed
some light on this wide open topic in the context of plane spanning trees.
Note that every plane spanning tree (in every simple drawing of Kn) has a
compatible tree, which follows from the property that every maximal plane
subgraph is 2-connected [GTP21]: given a plane spanning tree, which clearly
is not 2-connected, there must be an edge that can be added and preserves
planeness and hence, gives rise to a compatible tree.

Contribution. We approach Question 8.1 from two directions, proving a
positive answer for special classes of drawings (namely, cylindrical, monotone,
and strongly c-monotone drawings) and for special classes of spanning trees
(namely stars, double stars, and twin stars).

Theorem 2.13. Let D be a cylindrical, monotone, or strongly c-monotone drawing of
the complete graph Kn. Then, the compatibility graph F (TD) is connected.

Theorem 2.14. Let D be a simple drawing of the complete graph Kn and let T ∗
D

be the set of all plane spanning stars, double stars, and twin stars on D. Then, the
compatibility graph F (T ∗

D ) is connected.

Section 8.1 is concerned with the proof of Theorem 2.13, while Section 8.2
is dedicated to the proof of Theorem 2.14.

8.1 Special simple drawings of Kn

In this section we prove connectedness of the compatibility graph for certain
classes of drawings. Clearly, for any drawing of Kn that has a plane spanning
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8.1. Special simple drawings of Kn

Figure 8.2: Illustration of a cylindrical drawing. Side edges are red; inner edges
are blue; and outer edges are green. Cycle edges are drawn thicker.

tree which is not crossed by any edge of D, the compatibility graph is con-
nected with diameter at most 2. This is, for example, the case for 2-page book
drawings, where the vertices are placed along a line and each edge lies entirely
in one of the two open halfplanes defined by this line.

8.1.1 Cylindrical drawings

Recall that in a cylindrical drawing of a graph the vertices are placed along
two concentric circles, the inner and outer circle, and no edge is allowed to
cross these circles. We denote the vertices on the inner/outer circle of a
cylindrical drawing by inner/outer vertices and the edges connecting any two
inner/outer vertices by inner/outer edges. The remaining edges are called side
edges. Furthermore, edges that join consecutive vertices of either of the two
circles are called cycle edges. See Figure 8.2 for an illustration.

Remark 8.2. Cycle edges may only be crossed by side edges and both circles each
contain at most one such cycle edge that is crossed.

In other words, there exists an inner and an outer Hamiltonian path visiting
all inner/outer vertices and consisting entirely of cycle edges that are not
crossed by any other edge.

Furthermore, any plane spanning tree in a cylindrical drawing contains at
least one side edge.

Lemma 8.3. Let D be a cylindrical drawing of Kn. Then the compatibility graph
F (TD) is connected with diameter at most 4.

Proof. Let T1, T2 ∈ TD and e1 = vsvr be a side edge of T1 and e2 = v′sv′r be a
side edge of T2. Furthermore, as guaranteed by Remark 8.2, let S1 ∈ TD be
a plane spanning tree consisting of the two uncrossed paths of cycle edges
and e1 (and similarly S2 ∈ TD consists of the cycle paths and e2). Clearly, T1
and S1 are compatible as well as T2 and S2. If S1 and S2 are compatible, we are
done. Otherwise, e1 and e2 cross in D. As the 4-tuple {vs, v′s, vr, v′r} induces at
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8. Compatible Trees

Figure 8.3: Illustration of a monotone drawing. The spine path is drawn thicker.
The red edge is a twiggly edge.

most one crossing (due to properties of simple drawings), the two side edges
vsv′r and v′svr can neither cross e1 nor e2. Take one of these edges and call it e′

and construct a plane spanning tree S3, using only e′ and the uncrossed cycle
paths. Then S3 is compatible to S1 as well as S2 and hence, T1,S1,S3,S2,T2 is a
path of length 4 in F (TD).

8.1.2 Monotone drawings

A simple drawing in which no two vertices have the same x-coordinate
and every edge is drawn as an x-monotone curve is called monotone. Let
v1, v2, . . . , vn denote the vertices in increasing x-order. Then, S = v1, v2, . . . , vn
is a plane spanning path, which we call spine path. An edge that intersects the
spine path is called twiggly edge. See Figure 8.3 for an illustration.

We define a relation on the twiggly edges of D as follows: for two twiggly
edges e, f we have e ≻ f if they are non-intersecting and there is a vertical
line intersecting the relative interiors of both edges that intersects e at a larger
y-coordinate than f . All other pairs of twiggly edges are incomparable, i.e.,
those that have disjoint support or are intersecting. Note that the relation ≻
does not define a poset, since transitivity is not fulfilled.

For a set E of pairwise non-intersecting twiggly edges, an edge e ∈ E
is maximal in E, if there is no other edge f ∈ E with f ≻ e. Note that
this relation is acyclic, i.e., there are no twiggly edges e1, . . . , ek such that
e1 ≻ e2 ≻ . . . ≻ ek ≻ e1. Hence, any non-empty set of twiggly edges admits a
maximal element.

Lemma 8.4. For any monotone drawing D of Kn, the compatibility graph F (TD) is
connected with diameter O(n).

Proof. We prove the connectedness by showing that any plane spanning tree
in D can be transformed (via a sequence of compatible trees) to the spine
path S . So, let T ∈ TD be a plane spanning tree. If T does not contain
any twiggly edge, then it is compatible to S . Otherwise, let e = vivj (with
i < j) be a maximal twiggly edge of T. Note that all twiggly edges in T are
non-intersecting, since T is plane. Define

V↑
e = (vk : i < k < j, vk is above e).
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vi

e

P ′

vj vi

e

P ′

vjvx vy

Figure 8.4: Left: The (maximal) twiggly edge e = vivj divides the vertices between
vi and vj into two groups – above and below. The path P′ is formed by joining the
consecutive vertices lying above e including the vertices of e. Right: If an edge of
T (green) intersects P′, it cannot leave the red region.

Note that V↑
e is not empty. Consider the path P′ = vi, V↑

e , vj that starts at vi,
ends at vj and inbetween uses only vertices of V↑

e (see Figure 8.4 (left)). Note
that the vertices in P′ are in increasing x-order. No edge in P′ can intersect
the twiggly edge e, since it would have to intersect it twice. Hence, P′ lies
(strictly) above e. Further note that the interior of the face bounded by (P′ ∪ e)
does not contain a vertex of T.

Next we show that P′ cannot intersect T. To this end, let f ∈ T and
assume, for the sake of contradiction, that it intersects an edge vxvy of P′. By
the properties of simple drawings, f can neither be incident to vx nor to vy.
However, by construction of P′, in order to reach its incident vertices, f has to
either (i) intersect vxvy twice, or (ii) intersect e, or (iii) intersect a spine edge;
see Figure 8.4 (right). (i) yields a contradiction to the properties of simple
drawings, (ii) yields a contradiction to the planarity of T, and (iii) yields a
contradiction to the maximality of the twiggly edge e.

Hence, we can add P′ to T without introducing any crossings. Note that
some edges of P′ may already be present in T, however, since this insertion
creates a cycle, at least one is not. In order to reach a compatible tree, we
remove e from this cycle (and potentially more edges until reaching a plane
spanning tree again). We created a compatible tree with at least one twiggly
edge less and repeating this process, we will eventually reach the spine path S .
As we have at most n − 1 twiggly edges, F (TD) has diameter O(n).

8.1.3 Strongly c-monotone drawings

A curve is called c-monotone (w.r.t. a point x) if every ray emanating from
x intersects the curve at most once. A simple drawing is c-monotone, if all
vertices are drawn along a circle and every edge is a c-monotone curve w.r.t.
the center of the circle. A c-monotone drawing is strongly c-monotone if for
every pair of edges e, e′ there is a ray (rooted at the circle center) that intersects
neither e nor e′. See Figure 8.5 for an illustration.

In a (strongly) c-monotone drawing, we label the vertices v1, v2, . . . , vn in
cyclic order and denote the center of the circle by c. In the following, we often
consider edges and their intersections with rays emanating at c; unless stated
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Figure 8.5: Illustration of a strongly c-monotone drawing.

otherwise, any ray is rooted at c and edges are intersected in their relative
interiors.

An edge e connecting two consecutive vertices vi, vi+1 is called cycle edge.
A cycle edge e is called spine edge if no ray formed by the center and any
other vertex crosses e. All spine edges form the spine and any path consisting
entirely of spine edges is called spine path.

Lemma 8.5. Let D be a strongly c-monotone drawing of Kn. Then, either all cycle
edges in D are spine edges, or D is weakly isomorphic to a monotone drawing.

Proof. Assume there is an edge e = vivi+1 of consecutive vertices which does
not form a spine edge, i.e., e intersects every ray that is not in the wedge
vicvi+1. The c-monotonicity of edges implies that every edge intersecting the
wedge vicvi+1 must intersect every ray in this wedge. This, however, would
be in contradiction to the property of strong c-monotonicity and hence, the
wedge vicvi+1 is not intersected by any edge. This implies the drawing to be
weakly1 isomorphic to a monotone drawing: no ray r in the wedge vicvi+1 is
crossed by an edge and hence, we can cut the spine at the intersection with r
and stretch the drawing to a monotone drawing.

Similar to Section 8.1.2, we define twiggly edges to be those that intersect a
spine edge. A crucial difference to the monotone setting is that an analogue to
the relation ’≻’ (adjusted with respect to the intersection with rays emanating
from c) may now be cyclic and hence, we cannot guarantee the existence of a
maximal twiggly edge anymore. We therefore need a different approach.

For a twiggly edge e = uw, let x1, . . . , xk be its crossings with the spine
(note that these are not vertices of Kn) and assume the labeling to be in such a
way that u, x1, . . . , xk, w appear in clockwise order. For i ∈ {1, . . . , k} denote
the vertex (of Kn) in clockwise order before xi by x−i and the one after xi by x+i .
Furthermore, set u = x−0 and w = x+k+1. Then, for i ∈ {0, . . . , k}, we call the
edges x−i x+i+1 bumpy edges (see Figure 8.6 (left)). Note that bumpy edges do

1In fact, it even implies strong isomorphism, which, however, is not relevant for the
following arguments.
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u

x1

x2

x3
we

Figure 8.6: Left: The red edges are bumpy edges of the twiggly edge e. Right: A
set of twiggly edges and some corridors; the green is an inner corridor.

not intersect the spine and for every twiggly edge uw there are at least two
bumpy edges, namely one incident to u and one incident to w.

We identify a ray r with the angle θ that r forms with the vertical ray
(upwards). Two edges e, f are called neighbours on an interval [θ1, θ2], if for any
ray r ∈ [θ1, θ2] the intersections of e and f with r appear consecutively on r.
For a set E of twiggly edges, a corridor is a maximal connected region bounded
by two neighbouring edges of E (along a maximal interval of angles). Again,
we identify corridors by an interval [θ1, θ2] and usually we speak of corridors
defined by the twiggly edges of a plane spanning tree. The twiggly depth with
respect to a plane spanning tree T of a ray r is the number of twiggly edges
of T that r intersects.

We extend our definition of neighbours (along an interval) also to the very
inside and very outside by inserting a dummy edge at the circle center and
one at infinity. More precisely, an edge e is the neighbor of the circle center c
along an interval [θ1, θ2] if for any ray r ∈ [θ1, θ2] the intersection of r and e is
closest to c (and furthest in the case of being a neighbor of infinity). We call
the corresponding corridors inner/outer corridors. See Figure 8.6 (right) for an
illustration.

We further remark that for any plane spanning tree T, any corridor
C = [θ1, θ2] of twiggly edges of T begins and ends at a vertex, i.e., the
rays at θ1 and θ2 hit a vertex.

Lemma 8.6. For any plane spanning tree T of a strongly c-monotone drawing D
of Kn and any corridor C of T with start and end vertex s and t, there is a path P
in D from s to t staying entirely in C and not intersecting T. Furthermore, if C is an
inner or outer corridor, P does not use any twiggly edge.

Proof. Let v0, v1, . . . , vk, vk+1 be the vertices of D that are contained in C in
cyclic order, where v0 = s and vk+1 = t. Furthermore, let P = v0, . . . , vk+1 be
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s
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C
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f
P

Figure 8.7: Illustration of Lemma 8.6. Left: A path constructed inside a corridor.
Right: If P intersects an edge e of T, the edges bounding the corridor are not
neighbours.

the corresponding path that connects consecutive vertices; see Figure 8.7 (left).
We claim that P fulfills the desired properties.

First, P stays entirely in C, since any edge leaving C would either violate
the properties of simple drawings or strong c-monotonicity.

Second, we argue that P does not intersect T. Assume that there is an
edge e of T crossing an edge f of P. Since P connects consecutive vertices
in C, we conclude that e intersects the spine, i.e., is a twiggly edge. Hence,
at the angle corresponding to the intersection of e and f , the two bounding
edges of C are not neighboring twiggly edges in T (see Figure 8.7 (right)); a
contradiction.

Lastly, we argue that if P uses a twiggly edge e′, which intersects a spine
edge uv, then both twiggly edges bounding C must also intersect uv. Assume
that one of the bounding edges of C does not intersect uv. Then u or v lie
in C. Since P connects consecutive vertices in C, the edge e′ would actually
use u or v; a contradiction. Hence, if C is an inner or outer corridor, P does
not use a twiggly edge.

Lemma 8.7. For any strongly c-monotone drawing of Kn, the compatibility graph
F (TD) is connected with diameter O(n).

Proof. Let D be a strongly c-monotone drawing of Kn and let T be a plane
spanning tree. We show that T can be compatibly transformed to a spine path
(by iteratively decreasing its twiggly depth). By Lemma 8.5, we may assume
that all n spine edges are present in D. Again, if there is no twiggly edge in T,
there is nothing to show.

So let Etwig be the set of twiggly edges of T and construct the set C of all
corridors for Etwig. Next, for any corridor C ∈ C with start and end vertex s
and t, we add the path PC as guaranteed by Lemma 8.6 to T, which preserves
planarity by Lemma 8.6.

Then we do not disconnect T when removing Etwig now. Indeed, let
e = uw ∈ Etwig, then the collection of corridor paths below (and also above) e
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connects u and w. So we remove Etwig and potentially some further edges
until T forms a spanning tree again.

Next we argue that the twiggly depths of all rays must have strictly
decreased. Let r be a ray that intersects x previous twiggly edges (i.e., edges
from Etwig). Then r intersects x + 1 corridors, two of which are either an inner
or outer corridor. By Lemma 8.6 and the properties of c-monotone curves, r
intersects at most x − 1 (new) twiggly edges. Hence, the twiggly depth of
any ray decreased by at least one and we recursively continue this process
until all rays have twiggly depth 0, in which case T is compatible to a spine
path. As we have twiggly depth at most n − 1 in the beginning, F (TD) has
diameter O(n).

Theorem 2.13 now follows from Lemma 8.3, Lemma 8.4, and Lemma 8.7.

8.2 Special Plane Spanning Trees

In this section, we no longer restrict our drawing anymore, i.e., D will be a
simple drawing of Kn. Instead we focus on special classes of spanning trees
and show that the subgraph F (T ∗

D ) of F (TD) induced by the set of vertices
corresponding to stars (0-stars), double stars (1-stars), and twin stars (2-stars)
is connected.

The following relation, introduced in [APS+19], will be very useful: Given
a simple drawing of Kn with vertex set V and two vertices g ̸= r ∈ V, for any
two vertices vi, vj ∈ V \ {g, r}, we define vi →gr vj if and only if the edges
vir and vjg cross. Aichholzer et al. [APS+19, Lemma 2.1] showed that this
relation is asymmetric and acyclic.

We start by showing that stars can always be transformed into each other
via a sequence of crossing free edge flips.

Lemma 8.8. Any two stars in D have distance O(n) in F (T ∗
D ).

Proof. Given a star T in g (i.e., g is incident to all other vertices of T), we
can transform it into a star H in r via a sequence of crossing free edge flips,
such that in every step, the graph is a double star with fixed path r,g, in the
following way. We label the vertices in V \ {g, r} such that vi →gr vj implies
i < j, which is possible due to the acyclicity of →gr (see Figure 8.8). We
iteratively replace an edge gvi by rvi starting from i = n − 2 and continuing
in decreasing order. Then all intermediate trees are double stars (with fixed
path r,g) and hence, it remains to argue that the flips are compatible, i.e., for
i = n − 2, . . . , 1 the edge gvi does not cross any edge of the current T. By
construction, in any step i, T contains edges of the form (a) rvj for j > i and
(b) gvk for k < i. The edge gvi cannot cross edges in (a) by the definition
of the relation →gr and also not those in (b) due to the properties of simple
drawings. As we need at most n − 2 steps for the transformation, any two
stars have distance O(n) in F (T ∗

D ).
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v4

Figure 8.8: Proof of Lemma 8.8. The vertices are labelled in a way conforming to
the relation →gr.

Theorem 2.14 then follows from Lemma 8.8 in combination with the
following two lemmata.

Lemma 8.9. Any double star in D has distance O(n) to any star in F (T ∗
D ).

Proof. Let T be a double star with fixed path g,r and T′ be a star in r′. T can
be transformed to a star in r (or g) completely analogous as in the proof of
Lemma 8.8. The only difference is that there are additional edges attached
to r, i.e., edges of type (a) in Lemma 8.8, which do not interfere. Next, using
Lemma 8.8 again, we transform this star in r to T′. This also implies the
distance between a double star and a star in F (T ∗

D ) to be O(n).

Lemma 8.10. Any twin star in D has distance O(n) to any star in F (T ∗
D ).

Proof. Let T be a twin star with fixed path g, s, r and T′ be a star in r′. Note
that all edges in T are incident to g or r and hence, we can add the edge gr
and remove gs or rs in order to obtain a double star. Using Lemma 8.9 this
double star can be transformed to T′. Thus, a twin star can be tranformed to
a star in O(n) steps.
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Chapter9
Flip Graphs on Arrangements of
Pseudocircles

In this chapter we study flip-connectivity of arrangements of pseudocircles
with the triangle flip as local transformation. Results and questions about
pseudocircles are often motivated by results concerning proper circles or
pseudolines. So, let us consider these objects first. We first present the results
from a high-level perspective and postpone the precise definitions to the
following section.

Ringel [Rin56] studied arrangements of pseudolines with the triangle
flip as local transformation. His homotopy theorem [Rin56] implies that the
corresponding flip graph is connected.

The study of arrangements of pseudocircles was initiated by Grünbaum
[Grü72]. A class where flip-connectivity is easy to show is the class of
great-pseudocircle arrangements. As they are in bijection to pseudoline
arrangements, Ringel’s theorem carries over. Note, however, that for great-
pseudocircle arrangements, a flip must consist of two simultaneous triangle
flips of an antipodal pair of triangles.

Flipping triangles is not enough if disjoint pseudocircles are allowed.
In such cases we extend the set of flips by digon-create to allow two initially
disjoint pseudocircles to start intersecting in a digon and the reverse operation,
called digon-collapse.

With all the three flips, the flip connectivity of arrangements of (proper)
circles is evident since one can shrink all the circles until they have pairwise
disjoint interiors. Essentially the same idea works for arrangements of pseu-
docircles. In this case, however, the fact that a pseudocircle can be shrunk is
based on the sweeping lemma of Snoeyink and Hershberger [SH91].

Felsner and Scheucher considered intersecting arrangements of circles as
well as pseudocircles. They showed [FS20a, FS20b] that for every n ∈ N:

(1) The flip graph of intersecting arrangements of n circles is connected.

(2) The flip graph of digon-free intersecting arrangements of n circles is
connected.
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They also conjecture that their results persist if circles are replaced by
pseudocircles:

Conjecture 9.1 ([FS20a, FS20b]). For every n ∈ N:

(1) The flip graph of intersecting arrangements of n pseudocircles is connected.

(2) The flip graph of digon-free intersecting arrangements of n pseudocircles is
connected.

As the main result of this chapter we prove part (1) of Conjecture 9.1.

Theorem 2.15. The flip graph of arrangements of n pairwise intersecting pseudocir-
cles is connected.

For our proof of Theorem 2.15, we use cylindrical arrangements. These are
arrangements of pseudocircles in the plane such that the bounded interiors
of all the pseudocircles have a common intersection, which we call the center.
We first show that every cylindrical intersecting arrangement can be flipped
into a canonical arrangement by only using triangle flips and without leaving
the class of cylindrical arrangements.

Theorem 2.16. The flip graph of cylindrical arrangements of n pairwise intersecting
pseudocircles is connected.

Showing that every intersecting arrangement A can be flipped into some
cylindrical arrangement then completes the proof of Theorem 2.15. We further
study the diameter of flip graphs and obtain asymptotically tight bounds in
both settings:

Proposition 2.17. The flip graph of cylindrical arrangements of n pairwise intersect-
ing pseudocircles has diameter at least 2(n

3) and at most 4(n
3).

Proposition 2.18. The flip graph of arrangements of n pairwise intersecting pseudo-
circles has diameter Θ(n3).

Outline. In Section 9.1, we introduce the necessary concepts and terminology,
as well as preliminary results. Section 9.2 is dedicated to the proofs of flip
graph connectivity and diameter.

9.1 Preliminaries

A pseudocircle is a simple closed curve C which partitions the plane into a
bounded region, the interior int(C), and an unbounded region, the exterior
ext(C). An arrangement of pseudocircles is a finite collection of pseudocircles
such that every two pseudocircles either are disjoint or they intersect in exactly
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one point, where the curves touch, or they intersect in two points, where the
curves cross properly.

An arrangement partitions the plane into cells. The 0-dimensional cells or
vertices are the intersection points (including touchings), the 1-dimensional
cells or edges are maximal contiguous vertex-free pieces of pseudocircles, and
2-dimensional cells or faces are the maximal connected components of the
plane after removing all pseudocircles. One can think of the arrangement as a
plane graph consisting of vertices, edges, and faces.

Two arrangements are isomorphic, i.e., considered the same, if they can be
mapped onto each other by a homeomorphism of the plane. Note that we
do not require this homeomorphism to be a continuous process (however, in
our setting of pseudocircle arrangements, any two isomorphic arrangements
can actually be continuously transformed to each other without ever chang-
ing the combinatorics1). It is noteworthy that our approach of flipping all
arrangements to a canonical arrangement has the advantage that these isomor-
phism issues are not of concern. We adopt the common practice and identify
arrangements and their isomorphism class.

Every arrangement of circles is an arrangement of pseudocircles and
hence, arrangements of pseudocircles generalize arrangements of circles. The
generalization is proper since there are non-circularizable arrangements, i.e.,
arrangements of pseudocircles which have no arrangement of circles in their
isomorphism class. A thorough study of circularizability was done by Felsner
and Scheucher [FS20a].

Throughout this chapter we only consider simple arrangements, i.e., there
are no touchings and no three curves intersect in a common point. With this
convention the cell decomposition of an arrangement of pairwise intersecting
pseudocircles is an embedded 4-regular plane graph, possibly with multi-
edges. Also recall that all curves are simple, i.e., do not have self-intersections.

A 2-dimensional cell of an arrangement with k edges along its boundary
is a k-face, a 2-face is a digon (some authors call it empty lens), and a 3-face is a
triangle.

It is an instructive exercise to verify that there are exactly four arrange-
ments of three pairwise intersecting pseudocircles (they are shown in Fig-
ure 9.1).

Some authors prefer to think of the sphere as the adequate ambient space
for arrangements of pseudocircles. Note that in this setting there are only two
arrangements of three pairwise intersecting pseudocircles: The arrangements
(b), (c), and (d) of Figure 9.1 are isomorphic on the sphere, since they only
differ in the choice of the unbounded face. Following [FS20a], we call the
arrangement, depicted in Figure 9.1(a), with 8 triangles the Krupp arrange-

1We remark that in other settings, e.g., arrangements of proper lines, this is not the case.
This is referred to as disconnected realization space. For instance, Mnëv [Mne88] showed that
the realization space for order types is disconnected.
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(a) Krupp. (b) NonKrupp(4). (c) NonKrupp(2). (d) NonKrupp(3).

Figure 9.1: The four non-isomorphic arrangements of 3 pairwise intersecting
pseudocircles in the plane.

ment and the other ones NonKrupp. To make them distinguishable we write
NonKrupp(k) to denote the NonKrupp arrangement whose unbounded face
has complexity k, e.g. NonKrupp(2) is the arrangement shown in Figure 9.1(c).

Recall that an arrangement of pseudocircles is cylindrical if there is a
point p which is contained in the interiors of all the pseudocircles. Among
the arrangements of Figure 9.1, the arrangement (d), i.e., the NonKrupp(3), is
the only non-cylindrical one.

A subclass of cylindrical arrangements are the great-pseudocircle arrange-
ments. A great-pseudocircle arrangement is an arrangement of pseudocircles
with the property that every triple of pseudocircles from the arrangement in-
duces a Krupp subarrangement. This class naturally generalizes arrangements
of great-circles on the sphere.

9.1.1 Sweeps and Flips

Every two arrangements of (proper) circles can be continuously transformed
into each other by moving, expanding, and shrinking circles. The combi-
natorics of the arrangement changes whenever one circle moves over the
crossing of two others, gains two intersections with a circle, or loses its two
intersections with a circle.

Snoeyink and Hershberger [SH91] studied continuous transformations
of curves and, in particular, of pseudocircles. More precisely, they define
the sweep of a pseudocircle as a continuous process to expand or shrink the
pseudocircle. However, crucially, they also argue that this continuous process
can be viewed as a discrete process as the combinatorics of the arrangement
changes with one of the following operations:

• a pseudocircle moves over the crossing of two others (triangle flip),

• a pseudocircle gains two intersections with a pseudocircle (digon-create), or

• a pseudocircle loses its two intersections with a pseudocircle (digon-
collapse).
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digon-collapse

digon-create

triangle-flip

Figure 9.2: An illustration of the three flip operations.

Figure 9.2 depicts the three flip operations. Whenever we speak of flips
without further specification we refer to these three flips, the term digon flip
refers to the two flips involving a digon, and otherwise we use the precise
term when referring to a specific type of flip.

Snoeyink and Hershberger prove a sweeping lemma (cf. [SH91, Lemma 3.2])
for families of simple curves that pairwise intersect at most twice and are ei-
ther bi-infinite or closed (i.e., pseudocircles). The flip operations for bi-infinite
curves are defined analogously.

Lemma 9.2 (Sweeping Lemma [SH91]). Let A be an arrangement of pseudocircles
or an arrangement of bi-infinite curves that pairwise intersect at most twice. Then A
can be swept starting from any curve C in A by using three operations: triangle flips,
digon-create, and digon-collapse.

Note that in the context of pseudocircles we sweep towards the inside
or outside, whereas in the context of bi-infinite curves we sweep upwards or
downwards. In other words, Lemma 9.2 guarantees that every pseudocircle C
can be continuously expanded or shrunk within A using the mentioned flips.
This can be done until all other pseudocircles are fully contained in the exterior
or in the interior of C, respectively. As a consequence, every pseudocircle
of an arrangement can be shrunk to an arbitrarily small circle with a finite
sequence of flips. Hence, every arrangement can be flipped into the canonical
arrangement where all pseudocircles are disjoint. This implies the connectivity
of the flip graph of arrangements of pseudocircles. Moreover, the number of
flip operations required to flip between two given arrangements is at most
O(n3), which can be seen as follows: Initially a pseudocircle contains at most
n(n − 1) crossings in its interior and with each triangle flip the number of
crossings in the interior decreases. Moreover, each pseudocircle is involved in
at most 2(n − 1) digon flips.

A lens in an arrangement is a maximally bounded region in a subarrange-
ment formed by two intersecting pseudocircles. An arc is a contiguous subset
of a pseudocircle, starting and ending at a vertex of the arrangement.

It will be convenient to have a separate sweeping lemma for lenses. Let A
be an intersecting arrangement of pseudocircles and let Q be (the closure of)
a lens bounded by two pseudocircles CL and CR. We denote by L = CL ∩ Q
and R = CR ∩ Q the two boundary arcs on Q belonging to CL and CR,
respectively. An arc of Q is a maximal connected piece of the intersection of a
pseudocircle C with Q, where C /∈ {CL, CR}. In other words, an arc of Q is
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L
R

CLCR

Q

Figure 9.3: Illustration of Lemma 9.3: a lens Q with four transversal arcs and a
sweep of Q.

always a contiguous subset of C which has both endpoints on the boundary
of Q and whose relative interior lies completely in the interior of Q. If an arc
a of Q has both endpoints on L or both endpoints on R, then a forms a lens
with L or R respectively. Otherwise the arc has one endpoint on L and one
on R, in this case we call the arc transversal (see Figure 9.3).

Lemma 9.3. If Q is a lens and all the arcs of Q are transversal, then, using only
triangle flips, L can be swept towards R until the interior of Q does not contain a
vertex of the arrangement anymore.

Proof. We orient all arcs of Q from L to R, and consider the arrangement A|Q
of these arcs (note that the intersections with L and R do not belong to A|Q).

Claim (A). If two oriented arcs a and a′ intersect in two points p and q such that p
preceedes q on a, then p preceedes q on a′.

Proof. Suppose for the contrary that q is the first intersection with a on a′.
Consider the region T bounded by the subarcs of a and a′ from L to q,
respectively, and the corresponding part of L; see Figure 9.4(a). Then the
arc a′ enters the interior of T at p, but cannot leave it anymore to reach R, a
contradiction. ■

Claim (B). The directed graph of the arrangement A|Q is acyclic.

Proof. Suppose that A|Q contains a directed cycle. Let Z be a directed cycle
such that the enclosed area is minimal. Then Z is the boundary of a face of
the arrangement: Indeed, if Z was not a face, there would be a directed cycle
contained in Z, contradicting the area minimality of Z; see Figure 9.4(b). Let
v1, e1, v2, . . . ek, vk+1 = v1 be the sequence of vertices and edges along Z. From
Claim A we know that k ≥ 3 holds. Let edge ei be part of arc ai and let αi be
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Figure 9.4: Illustration of the proof of Lemma 9.3.

the subarc of ai starting at L and ending in vi. Similarly, let βi be the subarc
of ai starting in vi+1 and ending at R.

We will show that for all j = 2, . . . , k there is an intersection of αj and β1.
This implies Claim B because the intersection of αk and β1 is after v1 on a1
and before v1 on ak, a contradiction to Claim A.

We argue with induction on j. For j = 2, the intersection of α2 and β1
is at v2. For the induction step, given that there is an intersection of αj−1
and β1 we consider the region T in Q whose boundary consists of the directed
subpath S from v2 to vj on the boundary of Z together with β1, β j−1, and some
piece of R, or in case β1 and β j−1 meet in a point q the boundary consists of S,
the arc from v2 to q on β1 and the arc from vj to q on β j−1, see Figure 9.4(c).
It is important to note that due to Claim A the interior of Z is not part of T.
The final part of αj is inside T and ends at vj. Since another intersection of
αj and β j−1 is forbidden by Claim A it follows that αj had to enter region T
through β1. ■

Since the directed graph A|Q is acyclic, there is at least one source. We
claim that every source gives rise to a triangle with an edge on L that can
be flipped. Indeed, let s be a source that is the intersection of two arcs a, a′.
Further let x, x′ be the intersections of a and a′ with L. Since s is a source the
subarcs of a and a′ from L to s are uncrossed. Moreover, since all arcs in Q
are transversal, also the subarc of L from x to x′ is uncrossed. Hence, x, x′, s
form the desired triangle; see also Figure 9.3.

A topological ordering of A|Q yields a sequence of triangle flips which
can be used to sweep Q with L. This completes the proof of Lemma 9.3.

For the sake of completeness we kept the standalone proof of Lemma 9.3.
However, let us remark that Lemma 9.3 can also be deduced from the sweeping
lemma of Snoeyink and Hershberger: The idea is to extend the left boundary
curve L of Q and all the arcs of Q to bi-infinite curves. For the extension of
each of the curves use two pseudorays – one at each end.

The collection of all pseudorays can be chosen such that they are pairwise
disjoint (non-crossing) and do not introduce any further crossings. Further-
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L
R

CL

CR

Q

Figure 9.5: All arcs are extended to −∞ and +∞ such that CL has the property
that all transversal arcs are above CL towards −∞ and below CL towards +∞.

more, the pseudorays can be chosen such that the sweep with sweep-line L in
the resulting arrangement of bi-infinite curves does not require any digon-flips;
see Figure 9.5.

Furthermore, it is also possible to add the extending pseudorays in such
a way that each pair of the resulting bi-infinite curves has an odd number
of crossings and infer Lemma 9.3 from the odd-crossing sweeping lemma of
Bokowski et al. [BKPZ18, Lemma 5.2].

9.1.2 Cylindrical Arrangements

An arrangement of pseudoparabolas is a finite collection of x-monotone curves
defined over a common interval such that every two curves are either disjoint
or intersect in two points where the curves cross. The following proposition
gives a reversible mapping from cylindrical arrangements to arrangements of
pseudoparabolas. The result has been announced by Bultena et al. [BGR99,
Lemma 1.3] and a full proof has been given by Agarwal et al. [ANP+04,
Lemma 2.11].

Proposition 9.4 ([BGR99, ANP+04]). A cylindrical arrangement of pseudocircles C
can be mapped to an arrangement of pseudoparabolas A in an axis-aligned rectangle B
such that C is isomorphic to the arrangement obtained by identifying the two vertical
sides of B and mapping the resulting cylindrical surface homeomorphically to a ring
in the plane.

Agarwal et al. [ANP+04, Lemma 2.11] showed that every cylindrical
pseudocircle arrangement can be isomorphically represented by a star-shaped
arrangement, i.e., there exists a point p such that every ray emanating from p
intersects all pseudocircles exactly once. Cutting the arrangement along such
a ray and stretching it accordingly immediately yields Proposition 9.4.
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9.2 Flip Graphs on Pseudocircle Arrangements

The outline of this section is as follows. We prove flip connectivity for
cylindrical arrangements of pairwise intersecting pseudocircles in Section 9.2.1
and show in Section 9.2.2 that the corresponding flip graph has diameter at
least 2(n

3) and at most 4(n
3). Sections 9.2.3 and 9.2.4 are dedicated to proving flip

connectivity for all intersecting arrangements and showing that the diameter
of the flip graph is again cubic, where the latter requires several technical
arguments.

9.2.1 Proof of Theorem 2.16: Connectivity Cylindrical

In this section we prove flip-connectivity for cylindrical intersecting arrange-
ments by showing that any given arrangement can be flipped to a canonical
arrangement. We define a canonical intersecting arrangement B−

n of pseu-
doparabolas as follows:

1. On the left, the pseudoparabolas are labelled C1, . . . , Cn from top to
bottom and on the right, the top to bottom order is the same.

2. For every 1 ≤ i ≤ n, the pseudoparabola Ci intersects the other pseu-
doparabolas first in increasing and then in decreasing order, that is:
C1, . . . , Cn, Cn, . . . , C1.

Analogously, B+
n denotes the intersecting arrangement of pseudoparabolas

in which Ci intersects the other pseudoparabolas first in decreasing and then
in increasing order. Closing the pseudoparabolas of B−

n and B+
n above yields

cylindrical intersecting arrangements of pseudocircles, which we call A−
n and

A+
n , respectively; see Figure 9.6 for an illustration. Note that every triple of

pseudocircles forms a NonKrupp(2) in A−
n and a NonKrupp(4) in A+

n .

C1

C2

Cn

C1

C2

Cn

C1

C2

Cn

C1

C2

Cn

Figure 9.6: The two canonical arrangements A−
n (left) and A+

n (right).
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C1

Ck

Cn

Ck

Cn

Figure 9.7: An illustration of the proof of Theorem 2.16: flipping the pseu-
doparabola Ck downwards.

Theorem 2.16. The flip graph of cylindrical arrangements of n pairwise intersecting
pseudocircles is connected.

Proof. Let A be an intersecting, cylindrical arrangement of n pseudocircles.
Then, using Proposition 9.4, we can represent A as a pseudoparabola arrange-
ment, in which we label the curves from top to bottom by C1, . . . , Cn. The idea
is to flip the pseudoparabolas downwards one by one in the order of increas-
ing indices. When Cn has been processed the arrangement B−

n corresponding
to A−

n is reached. When flipping Ck downwards the following invariant holds
(see Figure 9.7 for an illustration).

1. For every 1 ≤ i < k, the pseudoparabola Ci intersects the other pseu-
doparabolas first in increasing and then in decreasing order, that is:
C1, . . . , Cn, Cn, . . . , C1.

2. For every i ≥ k, the pseudoparabola Ci first intersects C1, ..., Ck−1 in in-
creasing order, then it has the intersections with the pseudoparabolas Cj
for j ∈ {k, . . . , n} \ {i} in some order, and finally intersects Ck−1, . . . , C1
in decreasing order.

Let A≥k denote the subarrangement induced by Ck, . . . , Cn. We claim
that in A≥k the pseudoparabola Ck can be swept downwards using only
triangle flips. Applying Lemma 9.2 to the subarrangement A≥k, we can
sweep Ck downwards using a sequence of triangle, digon-create and digon-
collapse flips. However, the latter two flips cannot occur: Since every pair of
pseudoparabolas already intersects, a digon-create is impossible. A digon-
collapse is impossible because in A≥k pseudoparabola Ck is the topmost on
the left.

By the invariant, all crossings of A≥k lie above all the pseudoparabolas
C1, . . . , Ck−1. Therefore, we can perform the flip sequence from A≥k also
in the original arrangement A. Since we do not flip triangles involving
C1, . . . , Ck−1, their intersection orders remain unchanged. Moreover, since in
the subarrangement A≥k all crossings between Ck+1, . . . , Cn lie above Ck, the
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order of intersections in A≥k on Ck is Ck+1, . . . , Cn, Cn, . . . , Ck+1. From this it
follows that the invariant has been preserved.

When Cn has been processed the invariant implies that the canonical
arrangement B−

n has been reached.
This completes the proof of Theorem 2.16.

9.2.2 Proof of Proposition 2.17: Diameter Cylindrical

Proposition 2.17. The flip graph of cylindrical arrangements of n pairwise intersect-
ing pseudocircles has diameter at least 2(n

3) and at most 4(n
3).

Proof. Concerning the upper bound, following the proof of Theorem 2.16,
we can transform any cylindrical arrangement A of n pairwise intersecting
pseudocircles into the canonical arrangement A−

n . To do so, we iteratively
transform the selected pseudocircle Ci by only flipping downwards until all
crossings of Cj and Ck with j, k > i are above Ci. For every Ci, there are at
most 2(n−i

2 ) such crossings below Ci and hence, in total, we need at most

n

∑
i=1

2
(

n − i
2

)
= 2

n−1

∑
i=2

(
i
2

)
= 2

(
n
3

)
flips to reach A−

n . Hence, we need at most 4(n
3) flips to transform any two

arrangements into each other.
Concerning the lower bound, note that 2(n

3) flips are needed to transform
A−

n into A+
n because every NonKrupp(2) needs to be flipped twice to become

a NonKrupp(4).

9.2.3 Proof of Theorem 2.15: Connectivity Intersecting

For an arrangement A of n pairwise intersecting pseudocircles, we identify a
designated point p and then iteratively expand pseudocircles by triangle flips
until all pseudocircles contain p, i.e., until the arrangement is cylindrical. The
flip-connectivity then follows from Theorem 2.16.

For convenience we introduce the notation A − {C1, . . . , Ck} to denote
the arrangement that is obtained from A by removing the pseudocircles
{C1, . . . , Ck}. We say that two pseudocircles C and C′ are parallel in A if every
vertex of A− {C, C′} lies in (int(C) ∩ int(C′)) or in (ext(C) ∩ ext(C′)).

Theorem 2.15. The flip graph of arrangements of n pairwise intersecting pseudocir-
cles is connected.

Proof. Let A be an intersecting arrangement of n pseudocircles. We show by
induction on n that A can be transformed into a cylindrical arrangement with
a finite number of triangle flips. The statement of the theorem then follows
from Theorem 2.16.
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C

C ′

(a)

T
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C ′
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T
C

C ′

(c)

Figure 9.8: (a) C forms a digon with C′ that is in ext(C) ∩ int(C′). (b) Expand
C′ so that it becomes parallel to C. (c) Flip C′ so that T becomes also a triangle
in A.

The induction base is trivially fulfilled for n = 2. For the induction step,
we choose p as a point which lies inside a maximum number of pseudocircles.
If p lies in the interior of all pseudocircles, then A is already cylindrical and
we are done.

Hence, we may assume that there exists a pseudocircle C which does not
contain p in its interior. We show how to expand C until containing p, using
only triangle flips. First observe that Lemma 9.2 guarantees the existence of
a flip to expand C. Since C already intersects all other pseudocircles, this
must be a triangle or digon-collapse flip. As long as there exists a triangle flip
expanding C, we perform it and transform A accordingly.

Suppose now that C does not yet contain p and can only be expanded
by collapsing a digon D formed with another pseudocircle C′. Then all
remaining pseudocircles must intersect the lens int(C) ∩ ext(C′) transversally
(see Figure 9.8(a)). Hence, using Lemma 9.3, we can expand C′ until C and C′

are parallel (Figure 9.8(b)).

Next consider the arrangement A′ := A − {C′}. By the induction hy-
pothesis, A′ can be transformed into a cylindrical arrangement by a finite
sequence of triangle flips. We now carefully mimic this flip sequence on A,
while maintaining that C and C′ are parallel. Suppose that a triangle T in A′

is flipped. If none of the edges of T belongs to C, we can directly apply this
triangle flip also in A. If an edge e of T belongs to C and e is crossed by C′

then the digon D is located along e. In this case, we apply two triangle flips
to C′ so that the digon is transferred to one of the two neighboring edges of C
as illustrated in Figure 9.8(c), obtaining that e is not crossed by C′ (without
changing A′). Finally, if e is not crossed by C′ then we apply the according
triangle flip twice, namely, once for C and once for C′. This concludes the
proof.
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9.2.4 Proof of Proposition 2.18: Diameter Intersecting

Extending the notion of parallelism from Section 9.2.3, we call a subset C of
pseudocircles from an intersecting arrangement A parallel if every vertex of
the arrangement A− C either lies in the exterior of every C ∈ C or in the
interior of every C ∈ C. A set of parallel pseudocircles is also called a bundle.
Note that, for any bundle C of size k in A, the order of intersections of the
n − k pseudocircles from A− C is the same for every C ∈ C. Hence, A− C
splits C into 2(n − k) parts. Moreover, the crossings within the bundle can
easily be moved between the parts using only triangle flips; see Figure 9.9.

Let A be an intersecting arrangement of n pseudocircles. In the proof of
Theorem 2.15 we have seen how to transform A into a cylindrical arrangement
with finitely many triangle flips. We now show that O(n3) flips are sufficient
and sometimes necessary. To this end, we first refine the strategy from the
proof of Theorem 2.15.

The general situation is that we have a designated point p and a bundle
C[k] = {C1, . . . , Ck} of pseudocircles, which are simultaneously expanded to
eventually contain p. In order to guarantee the cubic bound on the diameter,
we need to carefully distribute and move the crossings formed by the bundle
in relation to crossings of other pseudocircles with the bundle.

Initial setup. We start with an arbitrary point p from the plane and initialize
D as the set of pseudocircles that already contain p in the interior. We choose
C1 as an arbitrary pseudocircle which is not yet in D, set the bundle size to
k = 1, set C[1] := {C1}, and proceed with the following steps.

Step 1 (Reset if bundle becomes too large). If k > n/2, we reset the process
by choosing a new p as an interior point of the bundle C[k] and set D := C[k].
Next, we choose C1 as an arbitrary pseudocircle from A−D, set the bundle
size to k := 1, and set C[1] := {C1}. Note that such a reset happens at most
once, because, as soon as |D| > n/2 holds, the bundle size k cannot exceed
n/2 again.

Step 2 (Distribute crossings). If k ≥ 2 then the k pseudocircles in the bundle
C[k] form 2(k

2) crossings. Also, C[k] is split by the n − k pseudocircles from
A− C[k] into 2(n − k) parts. The aim is to distribute the crossings of C[k] such

that each part contains at most k2

n crossings, where k2

n ≥ 2(k
2)

2(n−k) due to k ≤ n/2.
In this case we say that the crossings are well-distributed.

We now describe how to maintain the property that crossings are well-
distributed when a new pseudocircle Ck enters the bundle C[k−1]. The 2(k−1

2 )
crossings formed by C[k−1] are well-distributed among the parts of C[k−1] that

are induced by A− C[k−1], i.e., each part contains at most (k−1)2

n crossings.
When Ck enters the bundle, two boundaries between parts of size at most
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Ck−1

CkCk

Ck−1

Figure 9.9: An illustration of the distribution of crossings in step 2. Left: Well-
distributed crossings w.r.t. to the bundle C1, . . . , Ck−1. Right: Well-distributed
crossings w.r.t. to the bundle C1, . . . , Ck.

(k−1)2

n disappear and on the old boundaries, 2k − 2 crossings involving Ck
appear, see Figure 9.9. To move crossings from parts of the expanded bundle
C[k] which contain too many crossings into sparser parts of it we use triangle
flips.

The cost for moving an excess of one crossing to a part where it complies
with the bound is at most n − k, i.e., at most n − k triangle flips are needed.
Hence, to reach well-distribution for the expanded bundle C[k], we need at
most (

2
(k − 1)2

n
+ 2k − 2

)
· (n − k) <

(
2

k2

n
+ 2k

)
· n ≤ 3kn

triangle flips, where we used k ≤ n/2 for the last inequality.

Step 3 (Expand bundle). Let A′ = A−C[k−1]. Using Lemma 9.2, we expand
Ck in A′ via a sequence of xk triangle flips until Ck either contains p or forms
a digon in A′ with another pseudocircle, which we denote by Ck+1. We next
show how to mimic this flip sequence in A.

For a triangle T flipped in the sequence in A′, denote by Ck, D, E the three
involved pseudocircles. While in A′, the pseudocircle Ck moves over the
crossing of D and E, in A we have to move the entire bundle C[k] over this
crossing. Note that the pseudocircles D and E cross Ck consecutively along Ck

in A′. Hence they bound a part P of C[k], which contains at most k2

n crossings
of C[k]. The strategy is to transfer all crossings of the bundle from the part P
to one of its neighboring parts. Each crossing can be transferred by a single
triangle flip, so that the total transfer requires at most k2

n flips.
Next we move the pseudocircles C1, . . . , Ck from C[k] over the crossing of

D and E. More precisely, we flip the triangles determined by (Ci, D, E) for
all i ∈ {1, . . . , k}. After performing these k flips, we move all previously
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transferred crossings back to ensure that each part of C[k] again contains at

most k2

n crossings, which also requires at most k2

n flips.
A single flip of Ck in A′ thus maps to a sequence of at most (k + 2 k2

n ) ≤ 2k
triangle flips of C[k] in A. We call this sequence a bundle flip. Since we had xk
triangle flips when expanding Ck in A′, we get a total of at most 2kxk triangle
flips to move C[k] in A.

If the process terminates with Ck containing p in the interior, then also
the other pseudocircles C1, . . . , Ck−1 from the bundle contain p in the interior.
In this case we add C[k] to D. Then we pick another pseudocircle C1 which
is not yet in D arbitrarily, set k = 1, and continue with Step 1. Also, if p is
in a face which is incident to Ck in A′, then we can move p to the adjacent
face inside Ck. This move can also be done in A where p is moved across the
whole bundle. In this case again we add the bundle to D, pick a new C1 and
continue with Step 1. Otherwise we proceed with Step 4.

Step 4 (Add Ck+1 to bundle). If Ck does not yet contain p and cannot be
further expanded by triangle flips, Ck forms a digon with another pseudocircle
Ck+1 from A−C[k]. Since the digon lies outside of Ck and is incident to Ck, we
know that p is not in the digon (otherwise we would have moved p to the other
side of Ck). Consider again the arrangement A− C[k−1]. Using Lemma 9.3, we
can expand Ck+1 in A− C[k−1] via triangle flips until it is parallel to Ck. Since
none of those flips involves Ck, the same flips can be performed in A. Before
those flips, at most 2(n−k−1

2 ) crossings are located between Ck and Ck+1. As
each flip reduces this number by one, the expansion process for Ck+1 requires
at most 2(n−k−1

2 ) < n2 triangle flips. After performing these flips, Ck+1 is
parallel to the entire bundle C[k]. We set k := k + 1, C[k+1] := C[k] ∪ {Ck+1},
and proceed with Step 1.

Analysis. In Step 1, we reset the procedure at most once. Hence, each of
Steps 2 to 5 is performed at most twice for each pseudocircle.

Step 2 (well-distribution) is performed for each of the n pseudocircles at
most once and each time O(n2) flips are sufficient. In total, this gives O(n3)
flips.

Step 3 (expand bundle) is a bit more involved. When a bundle has
reached p we add the bundle to D and restart with a new C1, i.e., a new
seed for a bundle. Suppose that bundles of sizes n1, n2, . . . nb are added to D.
Then n1 + n2 + . . . + nb ≤ n holds. During processing a bundle C1, . . . , Cni ,
we perform (x1 + . . . + xni) bundle flips. Whenever we perform a bundle flip,
this reduces the number of crossings which lie outside of the pseudocircles
C1, . . . , Cni . Hence we have x1 + . . . + xni ≤ 2(n

2) and the number of triangle
flips in Step 3 for a bundle of size ni is bounded by

(x1 + . . . + xni) · 2ni ≤ 2n2 · ni.
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The number of triangle flips in Step 3 for the expansion of all b bundles can
therefore be bounded by

2n2 · (n1 + . . . + nb) ≤ 2n3.

Step 4 (add to bundle) is again easy. For each of the n pseudocircles, the
overall expansion can be performed with at most n2 flips. For all pesudocircles,
this gives O(n3) flips in Step 4.

Summing up over all steps and multiplying the result by two for the
possible case of one reset in Step 1, this completes the proof for the cubic
upper bound.

Lower bound. We again consider the two canonical cylindrical arrangements
A+

n and A−
n from Section 9.2.2 and show that their flip-distance in the flip

graph of intersecting arrangements is also 2(n
3). Note that the flip graph of

cylindrical intersecting arrangements is an induced subgraph of the flip graph
of intersecting arrangements. Recall that each triple of pseudocircles in A−

n is
a NonKrupp(2) while each triple of pseudocircles in A+

n is a NonKrupp(4).
In the flip graph of arrangements of three pairwise intersecting pseudocircles,
the flip distance between NonKrupp(2) and NonKrupp(4) is 2. Hence, at
least 2(n

3) triangle flips are needed to get from A−
n to A+

n . This completes the
proof of Proposition 2.18.
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Chapter10
Conclusion and further questions

Edge Partitions. In the first part of this thesis, we showed that there exist
complete geometric graphs that cannot be partitioned into plane spanning
trees. However, there remain several interesting open questions. First of all, it
remains wide open how many colors are required to partition any complete
geometric graph into plane subgraphs. It would be interesting to settle the
leading factor of the n term – a question that was already posed by Bose et al.:

Question 10.1 ([BHRW06, Problem 16]). Does there exist an ε > 0 such that
every complete geometric graph K2n can be partitioned into at most (2 − ε)n plane
subgraphs?

Besides the trivial bound that every K(S) with |S| = 2n can always be
partitioned into 2n − 1 plane stars, one can also try to approach this question
via the result of Bose et al. [BHRW06] that a partition into 2n − k plane trees,
where k is the size of a largest crossing family on S, is possible. In combination
with a result of Pach, Rubin, and Tardos [PRT19], who showed that every
point set admits a crossing family of size n1−o(1), Question 10.1 is likely to
have a positive answer. In fact, we conjecture that the leading constant is 1,
i.e., ε = 1 in Question 10.1.

On the other hand, it would be interesting to investigate how many com-
plete geometric graphs cannot be partitioned. In other words, are bumpy
wheels the only examples providing a negative answer to Question 3.1, or
are there “many” such examples? It also remains open whether BW3,5 is the
smallest counterexample (with respect to the number of vertices):

Question 10.2. Does there exist a complete geometric graph with less than 16 vertices
that cannot be partitioned into plane spanning trees?

Recall that Aichholzer et al. [AHK+17] showed that every Kn for n ≤ 10
can be partitioned into plane spanning trees. Hence, if there is a smaller
counterexample, it contains 12 or 14 points.

Question 10.3. “How many” complete geometric graphs can be partitioned into
plane spanning trees?
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10. Conclusion and further questions

This question is wide open. Using the computer program described in
Section 3.1, we were unable to find any other counterexamples on point
sets sampled uniformly at random from a square. However, given the vast
amount of order types (cf. [AAK02]), our program could of course test only a
vanishingly tiny fraction of point sets. Further investigating this probabilistic
approach, one can consider the following question:

Question 10.4. What is the probability of a complete geometric graph K(S), where S
is sampled uniformly at random from, e.g., a square, to admit a partition into plane
spanning trees?

In the context of partitions into beyond-planar subgraphs, we barely
scratched the surface and the obvious next steps would be to investigate non-
convex geometric graphs (especially in the context of k-plane subgraphs). One
further step in the context of k-quasi-plane subgraphs could be the following
question (cf. Theorem 6.5):

Question 10.5. Let S be a set of n points in general position and k ≥ 3 be an integer.
What is the smallest c ≥ 1 such that K(S) can be partitioned into

⌈
c · n

2(k−1)

⌉
many

k-quasi-plane subgraphs?

We remark that the questions considered in part I of this thesis combine
classical graph theoretic questions (“decomposing a graph”) with geomet-
ric aspects (“into non-crossing subgraphs”). Dropping the geometric aspect
changes the problem drastically: Tutte [Tut61] and Nash-Williams [NW61]
independently obtained necessary and sufficient conditions for an abstract
graph to admit k edge-disjoint spanning trees. There are many more impor-
tant questions related to the field of decomposing abstract graphs into certain
subgraphs, e.g., Ringel’s conjecture [Rin63] and the graceful tree conjecture
[Ros67]. The former states that the complete graph K2n+1 can be decomposed
into copies of any tree with n edges. An affirmative answer for large enough n
was given by Montgomery et al. [MPS20].

Concerning the complexity of the corresponding decision problem, Dor
and Tarsi [DT97] showed that, given abstract graphs G and H, it is NP - com-
plete to decide whether G can be partitioned into subgraphs isomorphic to H.
Given the fact that not every complete geometric graph can be partitioned into
plane spanning trees, it now also makes sense to ask the question concerning
the complexity of the decision problem in our geometric setting:

Question 10.6. What is the complexity of deciding whether a given complete geomet-
ric graph K2n can be partitioned into n plane subgraphs / spanning trees?
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Flip graphs. Concerning the second part of this thesis, i.e. flip graphs, there
are several questions that remain open.

• Flipping paths. In Chapter 7 we proved that edge flips induce a con-
nected flip graph on straight-line paths, if the underlying point set is in
generalized double circle position. This covers several important classes
of point sets, such as double chains or double circles. For these results
we used only Type 1 and Type 2 flips (which can be simulated by Type 1
flips). It is an intriguing question whether Type 3 flips are necessary at
all:

Question 10.7. Does the connectivity of the flip graph on spanning paths
under edge flips depend on whether or not Type 3 flips are allowed?

A natural next step towards Conjecture 7.1 would be to adapt our proof
of Theorem 2.12 to other classes of point sets, where general spinal point
sets are an obvious candidate:

Question 10.8. Is the flip graph on spanning paths under edge flips connected
for every spinal point set?

Most of our results towards Theorem 2.12 hold for spinal point sets in
general. The main obstacle is Lemma 7.13.

A proof for general point sets requires new ideas and seems elusive at
the moment.

• Compatible trees. In the context of compatible spanning trees, we again
proved partial answers towards Question 8.1, namely, we showed con-
nectedness of the compatibility graph for cylindrical, monotone, and
strongly c-monotone drawings. Furthermore, we showed connectedness
of certain subgraphs, induced by the set of stars, double stars, and twin
stars. Again, Question 8.1 remains open in general:

Question 8.1. Is the compatibility graph F (TD) connected for every simple
drawing D of the complete graph Kn, for all n ∈ N?

• Flipping pseudocircle arrangements. Concerning the flip connectivity of
pseudocircle arrangements we proved part (1) of Conjecture 9.1, showing
that triangle flips induce a connected flip graph on intersecting pseudo-
circle arrangements. As a side-product we also showed connectedness
for the subclass of cylindrical intersecting arrangements. In both cases
we provided an asymptotically tight bound of Θ(n3) on the diameter of
the flip graph. However, part (2) of Conjecture 9.1 concerning the class
of digon-free arrangements remains a challenging open question:
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10. Conclusion and further questions

Question 10.9. Is it true that for every n ∈ N, the flip graph of digon-free
intersecting arrangements of n pseudocircles is connected?

The same question for cylindrical, intersecting arrangements remains
open, too.

Lastly, several questions concerning the structure of the flip graphs remain
open, e.g., concerning Hamiltonicity, the degree of connectivity, or maxi-
mum/minimum degree. Especially in the setting of pseudocircle arrange-
ments, the question concerning the maximum/minimum degree is interesting.
Observe that, here, the maximum degree of the flip graph corresponds to
the maximum number of triangles among all arrangements and is known
to be ∆ = 4

3 (
n
2) + O(n) [FS21]. The minimum degree δ corresponds to the

minimum number of triangles. For intersecting arrangements with digons
it is known that 2n

3 ≤ δ ≤ n − 1 holds and δ = n − 1 is conjectured. For
intersecting arrangements without digons it is known that δ = ⌈ 4n

3 ⌉ holds for
n ≥ 6 [FRS22, FS21].

Concerning the degree of connectivity, Alves [Alv23] recently showed that
the flip graph on pseudoline arrangements is (n − 2)-connected. It is a highly
tempting question whether this approach can be adapted also to pseudocircle
arrangements:

Question 10.10. Is the flip graph of intersecting arrangements of n pseudocircles
(n − 2)-connected?

132



Bibliography
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AppendixA
Source code

The source code that we used for partitioning complete geometric graphs
(part I of this thesis) is available as github repository and can be downloaded
from:

https :// github.com/jogo23/edge_partitions_cgg

To obtain the results presented in this thesis, we used the code at the following
commit id:

d338a54abf3d0b0bfe8420a41dc134f98eea4963
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AppendixB
Additional Figures

Figure B.1: Full partition of BW9,3 into 14 plane spanning trees according to the
construction in case 1 of Lemma 3.11 (generated by the computer assisted ILP).

145



B. Additional Figures

Figure B.2: Full partition of BW9,3 into 14 plane spanning trees according to the
construction in case 2a of Lemma 3.11 (generated by the computer assisted ILP).
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Figure B.3: Full partition of BW9,3 into 14 plane spanning trees according to the
construction in case 2b of Lemma 3.11 (generated by the computer assisted ILP).
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Zusammenfassung

Wir untersuchen zwei fundamentale Themen aus dem Bereich der kombina-
torischen Geometrie: planare Graphen und Rekonfigurationsprobleme.

Partitionierung der Kanten von vollständigen geometrischen Graphen. Dieser
Teil der Arbeit ist einer langjährigen Frage gewidmet, die zuerst von Bose,
Hurtado, Rivera-Campo und Wood [BHRW06] publiziert wurde: Können
die Kanten von jedem vollständigen geometrischen Graphen mit einer ger-
aden Anzahl Knoten in planare Spannbäume partitioniert werden? Positive
Antworten sind bekannt für Spezialfälle, nämlich wenn die Knotenmenge in
konvexer oder regulärer Rad-Lage ist [BHRW06, AHK+17, TCAK19].

Wir zeigen, dass eine solche Partitionierung nicht immer möglich ist und
darüberhinaus, dass dies auch für Partitionierungen in planare Teilgraphen
nicht immer möglich ist. Alle Konstruktionen basieren auf Punktmengen in
Rad Lage, die wir genauer untersuchen und Charakterisierungen angeben
unter welchen Bedingungen Partitionierungen existieren oder nicht.

Außerdem untersuchen wir das Problem in allgemeineren Settings jenseits
planarer Teilgraphen und zeigen Schranken an die Anzahl der benötigten Teil-
graphen für Partitionierungen in k-planare und k-quasiplanare Teilgraphen.

Flip-Graphen. Eine natürliche Art und Weise die Struktur von Rekonfigu-
rationsproblemen zu untersuchen ist über sogenannte Flip-Graphen: für eine
Menge X von Objekten und eine lokale Flip-Operation f , hat der Flip-Graph
auf X unter f einen Knoten für jedes Element in X und zwei Knoten sind
benachbart genau dann, wenn die korrespondierenden Objekte mit einem
Flip ineinander überführt werden können. Die erste fundamentale Frage,
die üblicherweise von Bedeutung ist, ist die Frage, ob ein Flip-Graph zusam-
menhängend ist. Wir untersuchen die folgenden drei Konstellationen:

• Flip-Graphen für planare Pfade. Wir zeigen, dass Kanten-Flips einen
zusammenhängenden Flip-Graphen induzieren für die Spezialfälle, dass
die Knoten der Pfade in Rad- oder generalisierter Doppelkreis Lage sind.

• Kompatible Bäume. Wir zeigen, dass Kompatibilitäts-Flips einen zusam-
menhängenden Flip-Graphen induzieren für die Spezialfälle, dass die zu-
grundeliegende Zeichnung zylindrisch, monoton oder stark c-monoton
ist.

• Flip-Graphen für Pseudokreise. Wir zeigen, dass Dreiecks-Flips einen
zusammenhängenden Flip-Graphen auf Arrangements von paarweise
schneidenden Pseudokreisen induzieren.
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