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Abstract

This thesis investigates two topics related to fundamental problems in com-
binatorial geometry. The first being related to plane graphs, one of the most
widely studied themes in various disciplines related to graph drawing. The
second part is concerned with reconfiguraton problems, a fundamental field
with increasing popularity (see e.g. [BH09, Nis18]).

Edge partitions of complete geometric graphs. The first part of this thesis
is concerned with a well-known question posed by Bose, Hurtado, Rivera-
Campo, and Wood [BHRWO06], who asked whether the edges of every com-
plete geometric graph K, on an even number of vertices can be partitioned
into plane spanning trees. In other words, they asked whether the edges of K,
can be colored in a way such that every color class forms a plane spanning
tree. For the special cases that the underlying vertex set is in convex or regular
wheel position, a positive answer is known [BHRW06, AHK*17, TCAK19].
However, we prove that the statement is not true in general. Even for parti-
tions into arbitrary plane subgraphs instead of spanning trees we provide a
negative answer. Our constructions are based on bumpy wheel sets and we give
a full characterization which bumpy wheels can be partitioned and which
cannot. Additionaly, we provide a characterization for arbitrary wheel sets
to admit a partition into plane double stars and give a sufficient condition for
plane spanning trees.

Finally, we investigate the problem in the broader setting of beyond-
planar subgraphs. More precisely, we derive bounds on the number of colors
necessary and sufficient to partition a complete geometric graph into k-plane
and k-quasi-plane subgraphs. Along the way, we also study the well-known
crossing lemma and derive an improvement when restricting to the special
case of convex geometric graphs.

Flip graphs. The second part of this thesis is concerned with reconfiguration
problems. A natural way to provide structure for a reconfiguration problem
is by studying the so-called flip graph, which is defined on a ground set X
of objects and a corresponding (local) flip operation. More precisely, the flip
graph on X under a given flip operation has a vertex for every element in X
and two vertices are adjacent if and only if the corresponding objects differ by
a single flip. For a given ground set and flip operation, an important property
one is usually interested in, is whether the flip graph is connected. In the
affirmative, more refined questions concerning the diameter, the degree of
connectivity, or Hamiltonicity are of interest. We study the following three
reconfiguration problems:
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* Flipping plane spanning paths. For a given point set S C R? in

general position, the ground set X’ consists of all plane straight-line
paths with vertex set S. The flip operation exchanges a single pair
of (potentially crossing) edges. We prove connectedness of the flip
graph if the underlying point set S is in wheel position or generalized
double circle position. Furthermore, we prove that it suffices to show
flip-connectivity for certain subgraphs where the starting edge is fixed.

Compatible trees. For a given simple drawing D of the complete
graph Kj;, the ground set X" consists of all subdrawings of D that are
plane spanning trees. The flip operation exchanges a set of non-crossing
edges. We prove connectedness of the flip graph for special classes
of drawings, namely cylindrical, monotone, and strongly c-monotone
drawings. Furthermore, we prove connectedness of certain subgraphs,
corresponding to some classes of graphs, namely stars, double stars,
and twin stars.

Flipping pseudocircles. An arrangement of pseudocircles is a finite
collection of simple closed curves in the plane such that every pair
of curves is either disjoint or intersects in two crossing points. We
prove that triangle flips induce a connected flip graph on intersecting
arrangements, i.e., on arrangements where every pair of pseudocircles
intersects. As an intermediate result we also show flip-connectivity on
cylindrical intersecting arrangements, i.e., arrangements where a single
point stabs the interior of every pseudocircle. Moreover, we obtain that
the diameter of both flip graphs is cubic in the number of pseudocircles.
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Frequently used symbols

the edge set of a graph G.
the vertex set of a graph G.
e(G) the number of edges in a graph G.

f(G) the number of faces in a plane graph G.

K(S) the complete straight-line graph on a point set S.

Wi the regular wheel with k + 1 vertices.

BWi ¢ the bumpy wheel with k groups and ¢ vertices per group.

g the i-th group in a bumpy wheel.

e in a bumpy wheel, the open halfplane defined by the supporting
line through e and not containing the center vy.

<c partial order on the non-radial edges (in bumpy wheels): e <. f
if the relative interior of e completely lies in f~.

P(S) the set of plane straight-line spanning paths on a point set S.

Tp the set of plane spanning trees that are a subdrawing of the
drawing D.

F(X,f) the flip graph on X under flip operaton f. Also F(X) is used if
the flip operation is clear from the context.

xiii






Introduction

Graph theory shapes almost every part of our modern life, e.g., when routing
any type of goods (food, people, electricity, data, etc.) from one place to
another. In practice, one is often interested in (efficient) algorithms to solve or
approximate a certain problem, such as shortest paths or coloring algorithms.
Especially in the light of big data, efficient (graph-theoretic) algorithms are of
great importance. One of the aspects that makes graph theory so powerful is
the fact that many real-world problems can be phrased as a graph-theoretic
problem, usually involving only simple concepts, making it also accessible
to non-experts. However, often the theory behind these innocent looking
problems is very deep and intricate. Throughout this thesis we will encounter
many problems that are simple to phrase but difficult to answer.

When working with graphs, it is very intuitive to visualize these by
drawing nodes and edges. These visualizations are not just nice to have, they
also play a key role for analyzing the structure of e.g. biological processes, such
as protein interactions or networks in social science (see e.g. [JS08, BBD19]).
The field that is concerned with such questions — drawing graphs such that
they fulfill certain quality measures — is called graph drawing. It is crucial
to emphasize that there is a big difference between an abstract graph and a
drawing of this graph, which we will formally define in Chapter 2.

In this thesis, we study two fundamental topics from the field of combina-
torial geometry, a field that is concerned with discrete properties of geometric
objects, such as points, lines, circles, etc. Classical topics include e.g. packing,
covering, partitioning, coloring, crossings, etc.

The first part of this thesis is concerned with the question whether or not
the edges of every complete graph drawn with straight-line edges can be
colored in a way such that every color class forms a plane spanning tree. The
second part is concerned with the topic of reconfiguration (see [Nis18] for
a broad introduction of the topic). More specifically, we study connectivity
aspects of flip graphs: given a set of objects and a certain flip operation, can
any object be transformed into any other by applying suitable flips?



1. INTRODUCTION

Edge partitions of complete geometric graphs. The focus of this part of the
thesis is a well-known and long standing question, generally attributed to
Ferran Hurtado and first published in [BHRWO6]: is it possible to partition the
edges of every complete geometric graph K, on an even number of vertices
into plane spanning trees (see also [OPG])? Or, in other words, can the edges
of K;, be colored in a way such that every color class forms a plane spanning
tree? For the special cases that the underlying vertex set is in convex or regular
wheel position, a positive answer is known [BHRW06, AHK*17, TCAK19].
However, we prove that the statement is not true in general. Even when
considering partitions into arbitrary plane subgraphs instead of spanning
trees we provide a negative answer. Our constructions are based on bumpy
wheel sets: intuitively speaking a bumpy wheel is derived from a regular wheel
by replacing each extreme point by a group of ¢ > 1 points (see Chapter 2 for
the precise definition). We give a full characterization which bumpy wheels
can be partitioned and which cannot. In fact, it turns out that there is only one
bumpy wheel that can be partitioned into plane subgraphs but not into plane
spanning trees. Also for arbitrary wheel sets we provide a characterization
to admit a partition into plane double stars and give a sufficient condition for
plane spanning trees.

Lastly, we investigate the problem in the broader setting of beyond-planar
subgraphs (see e.g. [Hon20, DLM19] for further information on beyond planar-
graphs). More precisely, we derive bounds on the number of colors needed
and sufficient to partition a complete geometric graph into k-plane and k-
quasi-plane subgraphs. Along the way, we also study the well-known crossing
lemma and derive an improvement when restricting to the special case of
convex geometric graphs.

Flip graphs. Reconfiguration is a widely studied topic in discrete math-
ematics and theoretical computer science [BH09, Nis18]. In many cases,
reconfiguration problems can be stated in terms of a flip graph, which is de-
fined on a ground set X of objects and a corresponding (local) flip operation.
More precisely, the flip graph on X under a given flip operation has a vertex
for every element in X and two vertices are adjacent if and only if the cor-
responding objects differ by a single flip. Typically, for a given ground set
and flip operation, the first question is whether the flip graph is connected. In
the affirmative case, more refined questions regarding diameter, the degree of
connectivity, or Hamiltonicity can be of interest. Hamiltonicity of flip graphs
is related to Gray codes, cf. the survey by Miitze [Miit22].

A classical example is the flip graph of triangulations of a convex polygon,
cf. [Lee89]. The vertex set of this graph are all triangulations of the polygon,
and two triangulations are adjacent if one can be obtained from the other by
exchanging the common edge of two adjacent triangles by the other diag-
onal of the convex quadrilateral formed by them. Similar flip graphs have
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also been investigated in the context of Delaunay triangulations [Ede01] and
for triangulations of general point sets [DLRS10]. Wagner [Wag36] proved
connectivity of the flip graph of maximal planar graphs in the 1930s. Its
diameter, however, is still not known exactly [BV11]. Further results con-
cerning flip graphs on triangulations, matchings, and trees can be found in
[HHNO02, HHNRO5, Law?72, NPTZ20].

In this thesis, we study the following three reconfiguration problems:

* Flipping plane spanning paths. For a given point set S C R? in
general position, the ground set X comprises all plane straight-line
spanning paths on S. The flip operation exchanges a single pair of
(potentially crossing) edges. We prove connectedness of the flip graph if
the underlying point set S is in wheel position or generalized double
circle position (which include, e.g., double chains and double circles).
Furthermore, we prove that it suffices to show flip-connectivity for
certain subgraphs where the starting edge is fixed.

¢ Compatible trees. For a given simple drawing D of the complete
graph K;,, the ground set X comprises the set of all subdrawings of D
that are plane spanning trees. The flip operation exchanges a set of
non-crossing edges. We prove connectedness of the flip graph for spe-
cial classes of drawings, namely cylindrical, monotone, and strongly
c-monotone drawings. Furthermore, we prove connectedness of cer-
tain subgraphs, corresponding to some classes of graphs, namely stars,
double stars, and twin stars.

¢ Flipping pseudocircles. An arrangement of pseudocircles is a finite
collection of simple closed curves in the plane such that every pair of
curves is either disjoint or intersects in two crossing points. We study flip
graphs of families of pseudocircle arrangements. We prove that triangle
flips induce a connected flip graph on intersecting arrangements, i.e.,
on arrangements where every pair of pseudocircles intersects. First we
show that every intersecting arrangement can be flipped into a cylindrical
arrangement, i.e., an arrangement where a single point stabs the interior
of every pseudocircle. Next we flip the cylindrical arrangement into a
canonical arrangement, which also shows the connectivity of cylindrical
intersecting arrangements of pseudocircles under triangle flips. With a
careful analysis we obtain that the diameter of both flip graphs is cubic
in the number of pseudocircles. The construction of the two flipping
sequences makes essential use of variants of the sweeping lemma for
pseudocircle arrangements due to Snoeyink and Hershberger [SH91].



1. INTRODUCTION

Notation and conventions. Every work in the context of graph drawing
requires a certain flexibility between precise distinction of abstract objects and
their corresponding drawings on the one hand and concise language on the
other hand. Whenever it is clear from the context what object we are refering
to, we favour concise language and may use terms such as vertex or point
interchangeably.

In Chapter 2 we introduce, in addition to several very basic terms, also the
most important results of this thesis in a formal manner. To this end, we also
define all terms required to state these results. We assume a certain familiarity
with the terms introduced in Chapter 2, but may recall some less standard
definitions in later chapters for easier readability.

Whenever we consider the indices of a set of k objects in some order (e.g.
in cyclic order), we always consider these indices modulo k without further
notice. Also, when our indexing begins with 1 rather than 0, we of course
consider the representative of the corresponding equivalence class in the range
1,...,k (rather than O,...,k —1).

Unless stated otherwise, all graphs, curves, and arrangements in this
thesis are simple and all point sets are in general position (we introduce these
notions in the following chapter).



Basic Definitions & Summary of Results

In this chapter, we first introduce basic terms and notation that we will use
throughout and then summarize the main results of this thesis in a formal
manner.

Graphs and Drawings. A graph G = (V,E) consists of a set V of vertices and
a set E of unordered pairs of vertices, called edges. Unless stated otherwise,
all graphs in this thesis are simple, i.e., do not contain edges of the form {v, v}
or multiple edges between the same pair of vertices. The complete graph K,
on 1 vertices contains all () possible edges. A drawing of a graph G is a
representation of G in the plane such that every vertex is mapped to a distinct
point and every edge is mapped to a simple curve connecting its endpoints
and not passing through any other vertex. Two edges sharing a common
endpoint are adjacent. In a simple drawing, every pair of edges has at most
one point in common — either a common endpoint or a (proper) crossing, i.e.,
touchings are not allowed. All drawings in this thesis are simple drawings. In
a straight-line drawing all edges are straight line segments. A graph equipped
with a straight-line drawing is called geometric graph (as usual, we refer to
the drawing and underlying graph interchangeably). In this thesis, we will
often consider complete geometric graphs. These graphs are fully determined
by the underlying point set. For a point set S in general position (i.e. no three
points lie on a common line), the complete geometric graph with vertex set S
is denoted by K(S).

Isomorphism classes. The question under which conditions two drawings
should be considered equal is a bit subtle. Two simple drawings are strongly
isomorphic if there exists a homeomorphism of the underlying space transform-
ing one drawing into the other. However, often already the set of crossing
edge pairs captures all relevant information: Two simple drawings D, D’ are
weakly isomorphic if there exists an isomorphism between the vertex sets such
that two edges in D cross if and only if their corresponding edges in D’ cross.
Essentially, weak isomorphism gives information on which edges cross and

5



2. Basic DEFINITIONS & SUMMARY OF RESULTS

strong isomorphism additionally captures the order and orientation of the
crossings. In particular, strong isomorphism implies weak isomorphism, but
not the other way around.

For complete graphs, weak isomorphism is also determined by the so-
called rotation system. The rotation of a vertex v in a simple drawing is the
cyclic order in which the edges incident to v leave the vertex v. The rotation
system of a simple drawing is the set of rotations of all its vertices. If two
simple drawings of a complete graph have the same rotation system, they are
weakly isomorphic [PT06]. Conversely, if two simple drawings of a complete
graph are weakly isomorphic, they either have the same or inverted rotation
systems [Gio22]. For further information on the topic, we refer the reader to
the literature, particularly to the work of Kyncl [Kyn09, Kyn11, Kyn13].

Planarity. A graph is called planar, if it admits a drawing without crossings.
Such a drawing is called crossing-free or plane.!” A planar graph equipped with
a particular plane drawing is called plane graph. It is important to understand
that the term “planar” refers to a property of an abstract graph, while “plane”
corresponds to a specific drawing.

The notion of planarity can be relaxed in the sense that we allow only a
certain number of crossings. We consider two notions of such a relaxation,
namely (i) restricting the number of crossings per edge and (ii) restricting
the number of pairwise crossing edges (such a set of pairwise crossing edges
is called crossing family). For an integer k > 0, we call a graph k-planar, if it
admits a drawing such that every edge is crossed at most k times. Further, a
graph is called k-quasi-planar if it admits a drawing with no crossing family
of size k. Again, k-plane and k-quasi-plane drawings/graphs correspond to
specific drawings fulfilling the mentioned properties.

For a plane graph G, a face @ of G is a maximal connected region in the
complement of the drawing. The edges of G that bound a face @ are called
bounding edges and |®| denotes the number of bounding edges, where edges
are counted with multiplicities. Furthermore, there is exactly one unbounded
face and all other faces are bounded. The number of faces in a plane graph G
is denoted by f(G).

Point sets. Three points in the plane that lie on a common line are collinear.
Recall that a point set is in general position if there are no three collinear
points. All point sets in this thesis are in general position.

A sequence of three non-collinear points p, g, either forms a left turn or
a right turn; in the former we define its orientation to be 41 and in the latter
to be —1. Two point sets S, S’ C R? of equal cardinality are order-equivalent

1Also the term embedding is common in the literature. However, as this term is afflicted
with a certain ambiguity whether or not it refers to a plane drawing, we do not use it in this
thesis.



if there exists a bijection between S and S’ that preserves the orientation
of all point triples or changes the orientation of every triple. The resulting
equivalence classes are called order types. Hence, two point sets being of the
same order type means that they are order-equivalent. For more information
on order types we refer the reader to [PW18].

The convex hull CH(S) of a point set S is the intersection of all convex
supersets of S. If there is no danger of confusion, we also use the term convex
hull when refering to its boundary or the cycle determining the boundary.
Every point of S lying on the boundary of CH(S) is called extrerme point. Every
point of S that is not an extreme point is called inferior point.

For geometric graphs, there is a close relation between its rotation system
and the order type of the underlying point set: Clearly, the order type deter-
mines the rotation system. Conversely, reconstructing the order type from the
rotation system is only possible if there are more than three extreme points or
the three extreme points are given [ACK'16].

For a straight-line edge ¢ = pg, we denote the supporting line through p
and g by /.. For a set S of n points, an edge e joining two points of S is called
halving edge if each of the two open halfplanes determined by ¢, contains
[(n—2)/2] or [(n—2)/2] points of S. That is, if n is even there are equally
many points on each side of /, and if n is odd, the numbers of points differ
by one. The corresponding line is called /ialving line.

The behaviour of drawings of graphs can be very subtle and difficult to
handle. Hence, it is not surprising that many researchers make additional
assumptions to restrict the class of drawings to be considered (we will see a
couple of examples shortly). In the setting of straight-line drawings, these
assumptions usually restrict the configuration of the underlying point set.
Also in this thesis, we often consider geometric graphs defined on certain
classes of point sets (see also Figure 2.1).

* convex position — A set of points is in convex position, if every point is an
extreme point.

o wheel position — A set of points is in wheel position, if there is exactly
one point that is not an extreme point.

* regular wheel position — A set of n +1 (n odd) points is in regular wheel
position, if n points are placed equidistantly along a circle and the
remaining point is placed at the circle center. Regular wheels are denoted
by W,. Also note that we require n to be odd in order to assure general
position.

o bumpy wheel position ([Sch15, Sch16]) — For positive odd integers k and ¥,
the bumpy wheel BWy ; is derived from the regular wheel Wy by replacing
each of the k extreme points by a group of ¢ vertices as follows. All
vertices (except the center) lie on the convex hull and the vertices within

7



2. Basic DEFINITIONS & SUMMARY OF RESULTS
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(a) Regular wheel. (b) Bumpy wheel. (c) Generalized (d) Generalized
wheel. double circle.

Figure 2.1: Some classes of point sets.

each group are e-close for some (small enough) € > 0. In particular, the
convex hull of any HTl consecutive groups does not contain the center
vertex. Note that for / = 1 we obtain a regular wheel set and for k =1 a
point set in convex position and hence, we assume k, ¢ > 3 throughout

this thesis.?

o oeneralized wheel position — For an odd integer k and a list N = [n, ..., 1]
of k positive integers, the generalized wheel GWy is derived from the
regular wheel W by replacing each of the k hull vertices by a group
of n; (fori =1,...,k) vertices in the same way as for bumpy wheels.

Note that for every wheel set there exists a generalized wheel with the
same rotation system (Theorem 5.3).

e generalized double circle position — Defining generalized double circles
precisely here would be somewhat clumsy as there are several subtleties
that become clear later. Therefore, we decided to defer the precise
definition to Section 7.3. However, intuitively speaking a generalized
double circle is obtained by replacing each edge of the convex hull by a
flat enough concave chain of arbitrary size (as depicted in Figure 2.1(d)).

We call a geometric graph whose underlying point set is in convex position
convex graph or convex geometric graph. Similarly, for the other classes of point
sets. Furthermore, if there is no danger of confusion we may use the same
notation to refer to the point set and the graph.

Special classes of drawings. A drawing of a graph as defined in its most
general form allows a lot of freedom concerning the structure of the drawing,
which makes those objects difficult handle. However, it is not always necessary
to consider drawings in their most general form. For instance, it is well-
known (and follows from a simple rerouting argument) that crossing minimal

2Strictly speaking the definition requires only k to be odd, but later we need an even
number of vertices and hence, we define both, k and ¢, to be odd right away.
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(a) Cylindrical drawing. (b) Monotone drawing. (c) Strongly c-monotone
drawing.

Figure 2.2: Some classes of drawings.

drawings are always simple drawings and hence, whenever concerned with
the crossing number, it suffices to consider the class of simple drawings.
Unfortunately, also simple drawings provide very little structure and many
fundamental questions are unresolved: One of the most prominent open
problems is the question whether or not for every n € IN every simple
drawing of K, contains a plane Hamiltonian cycle. Already in 1988 Rafla
[Raf88] conjectured a positive answer; however, despite a lot of effort the
question remains open to date. A positive answer is only known for small
point sets (1 < 9 [AAFM™15]) and special classes of drawings (see Bergold et
al. [BFRS23] and Aichholzer et al. [AOV23] for recent results in this context).

Given the intrinsic difficulties of simple drawings, it is natural that many
researchers consider drawings with additional structure. One very important
class of drawings that we already came across are straight-line drawings
(geometric graphs), where every edge is drawn as a straight-line segment. We
introduce a few more common classes of drawings, relevant for this thesis
(see also Figure 2.2):

* cylindrical drawing — A drawing, where every vertex is placed on one of
two concentric circles and no edge intersects either of the two circles.

* monotone drawing — A drawing, where every edge is drawn as x-monotone
curve (a curve is x-monotone if every vertical line has at most one crossing
with the curve).

e c-monotone drawing — A drawing, where every vertex is placed on a
circle (with center c) and every edge e has the property that every ray
emanating from c intersects e at most once.

e strongly c-monotone drawing — A c-monotone drawing with the additional
property that for every pair of edges ej, e; there exists a ray emanating
from c that intersects neither e; nor e,.



2. Basic DEFINITIONS & SUMMARY OF RESULTS

(a) Star. (b) Double star. (c) Twin star.

Figure 2.3: Some classes of graphs.

We encourage the interested reader to spend a few moments on the
nice exercise of verifying Rafla’s conjecture concerning the existence of a
plane Hamiltonian cycle for special classes of drawings, e.g. for straight-line
drawings, cylindrical drawings, or monotone drawings.

Special classes of graphs. Instead of considering special classes of drawings,
one can also consider special classes of (abstract) graphs. One such class that
we already came across are complete graphs, where all (“2”) edges are present.
Other very common graph classes are, e.g., bipartite graphs, trees, and paths
(we omit the standard definitions, see e.g. [Diel7]). A k-star is a graph that
contains a path vy, ..., vy of length exactly k such that all remaining vertices
have degree one and are adjacent to vy or v;. A O-star is called star, a 1-star is
called double star, and a 2-star is called fwin star (see also Figure 2.3).

Partitions. For a set of objects & and a collection Xy, ..., Xy € X of subsets
of X, we call this collection a

e coveringof X, if X3 U...UX =X
e packing of X, if Xy, ..., Xy are pairwise disjoint;
o partition of X,if X1 U...UX = X and Xj, ..., X are pairwise disjoint.

Applied to the context of partitioning the edge set of a graph, we call a
partition or edge partition of a graph G to be a set of edge-disjoint subgraphs
of G whose union is G. We will be interested in partitions of geometric
graphs where each subgraph forms a plane spanning tree or just a plane
subgraph. Equivalently, one can think of this problem as coloring the edges
of a geometric graph in a way such that every color class forms a plane
subgraph/spanning tree.
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(a) Neither intersecting (b) Intersecting but not (c) Intersecting and
nor cylindrical. cylindrical. cylindrical.

Figure 2.4: Pseudocircle arrrangements.

Arrangements of Pseudocircles. A pseudocircle is a simple closed curve C
which partitions the plane into a bounded region, the interior int(C), and an
unbounded region, the exterior ext(C). An arrangement of pseudocircles is a
finite collection of pseudocircles such that every two pseudocircles either are
disjoint or they intersect in exactly one point, where the curves touch, or they
intersect in two points, where the curves cross properly. In this thesis, we
only consider simple arrangements, i.e., there are no touchings and no three
curves intersect in a common point. Also note that all curves in this thesis are
simple, i.e., do not have self-intersections.

An arrangement of pseudocircles is intersecting if every pair of pseudocir-
cles intersects. An intersecting arrangement forms a 4-regular plane graph,
possibly with multi-edges. An arrangement of pseudocircles is cylindrical®
if the interiors of all pseudocircles can be stabbed by a single point. See
Figure 2.4 for an illustration.

Flip graphs. For a ground set X’ of objects, a flip operation f transforms an
object x € X into another object x’ # x € X and vice versa; we say that x
and x’ differ by a single flip. This symmetry enables us to define an (abstract)
graph F (X, f) that has vertex set X and two vertices are adjacent if and only
if the corresponding objects differ by a single flip; F (X, f) is called flip graph
on X under flip operation f. If the flip operation or the ground set is clear
from the context, we may omit one or both and just say flip graph F or flip
graph F(X) on X for short. For clarity and easier distinguishability we may
also introduce a different name.

In order to describe the settings that we investigate for flip connectivity,
it suffices to provide the ground set X and the flip operation f. One of the
settings that has most commonly been studied, is the setting where X" denotes

3A cylindrical pseudocircle arrangement is not to be confused with a cylindrical drawing.
The name “cylindrical” stems from the fact that in both cases the objects can be “nicely” drawn
on a cylinder, as we will see later.

11



2. Basic DEFINITIONS & SUMMARY OF RESULTS

(a) Flipping plane paths. (b) Compatible trees. (c) Flipping pseudocircles.

Figure 2.5: lllustration of the flip operations in the three settings. In (a) and (b),
a set of edges (blue dashed) is replaced by another set of edges (red dotted), while
in (c) an arc of a pseudocircle is moved over a crossing of two other pseudocircles.

a class of graphs and the flip operation refers to the exchange of a single pair
of edges. In this thesis, we investigate the following three settings (see also
Figure 2.5 for an illustration):

¢ Flipping plane spanning paths. Here, X’ denotes, for a given point set S,
the set of all plane straight-line paths with vertex set S. We denote this
set by P(S). The flip operation exchanges a single pair of (potentially
crossing) edges, precisely: P;, P, € P(S) differ by a single flip if and only
if E(P;) \ E(P,) = e; and E(P,) \ E(P;) = e, where the edges e; # e
may cross.

¢ Compatible trees. Here, X denotes, for a given simple drawing D of K,
the set of all subdrawings of D that are plane spanning trees. We denote
this set by 7p. Two vertices in the flip graph are adjacent if and only
if the corresponding trees are compatible, where two plane graphs are
said to be compatible if their union is still plane.

For clarity, we use the term compatibility graph instead of flip graph here.

¢ Flipping pseudocircles. Here, X denotes a class of pseudocircle arrange-
ments with a fixed number of pseudocircles (e.g. cylindrical, intersecting
arrangements). The flip operation reroutes a single pseudocircle over a
crossing of two others; called a triangle flip.

We remark that transformations via compatible trees (the second setting)
can be simulated in terms of crossing free edge flips as follows. For two
compatible trees Tj, T, successively perform the following flips: add an edge
from T, \ T to T; and from the resulting cycle remove an edge that is not
in Tz.

12



2.1. Summary of results

2.1 Summary of results

This section is meant as a listing of the most important results of this thesis in
a formal manner. In particular, it is not the goal of this section to motivate
the results, which we did earlier (and will do in the upcoming chapters).
Additionaly, the chapters where to find the results are specified.

Edge partitions of geometric graphs

First, we characterize for which parameters k and ¢, bumpy wheels can and in
particular cannot be partitioned into plane spanning trees or plane subgraphs.

Theorem 2.1. For odd parameters k, £ > 3, the edges of BWy , cannot be partitioned

inton = kg—ﬂ plane spanning trees if and only if £ > 3.

Theorem 2.2. For odd parameters k, £ > 3, the edges of BWy , cannot be partitioned

into n = K plane subgraphs if and only if ¢ > 5 or ({ =5 and k > 3).

Second, we give a necessary condition for generalized wheels to admit a
partition into plane spanning trees and characterize which generalized wheels
can be partitioned into plane double stars. Recall that generalized wheels
always have an odd number of groups.

Theorem 2.3. Let GWy be a generalized wheel with k groups and 2n vertices. Then
GWN cannot be partitioned into plane spanning trees if each family of k_Tl consecutive
groups contains (strictly) less than n — 2 vertices.

Theorem 2.4. Let GWy be a generalized wheel with k groups and 2n vertices. Then
GWN cannot be partitioned into plane spanning double stars if and only if there are
three families o k%l consecutive groups, such that (i) every family contains at most

n — 2 vertices and (ii) every group is in at least one family.

Finally, we study partitions into beyond-planar substructures, namely
k-plane and k-quasiplane subgraphs and spanning trees. Along the way, we
also study the well-known crossing lemma and derive an improvement when
restricting to the special case of convex geometric graphs (to the best of our
knowledge, this special case has not been studied before).

Theorem 2.5. For a point set S in convex position with |S| = n > 5, K(S) can
be partitioned into | %] many 1-plane subgraphs and [%| subgraphs are required in

every 1-plane partition.

Theorem 2.6. For an n-point set S in convex position and every k € IN, K(S) admits
a partition into at most \/% k-plane subgraphs. More precisely, for every s > 2, K(S)

admits a %z(s_z)-plane partition into [ %] subgraphs. Conversely, for every k € IN,

at least 4’;;\1& subgraphs are required in any k-plane partition of K(S).

13



2. Basic DEFINITIONS & SUMMARY OF RESULTS

Lemma 2.7 (convex crossing lemma). Let G be a graph with n vertices and e edges
such that e > In. Then every straight-line drawing of G in which the vertices of G
are placed in convex position has at least

3

2 3
0 ¢ 008235
n

243 n?

Crossings.

Theorem 2.8. Let S be a point set of size 2n, then the complete geometric graph K(S)
can be partitioned into n 3-quasi-plane spanning trees.

Theorem 2.9. Let S be a set of n points in general position and denote the size of
a largest crossing family on S by m. Also let k € IN such that 3 < k < m. Then,
at least [ subgraphs are required and at most [ 25 + [“2"] subgraphs are
needed to partition the complete geometric graph K(S) into k-quasi-plane subgraphs.

Flip graphs

Recall that P(S) denotes the set of all plane spanning paths on a point set S.
Furthermore, for p,q € S, let P(S, p,q) be the set of all plane spanning paths
for S that start at p and continue with 4. In the context of flipping plane
spanning paths, we first show that it suffices to prove flip-connectivity on
P(S,p,q) and then prove connectedness of the flip graph for special classes
of point sets.

Theorem 2.10. Let S be a point set in general position. If, for every p,q € S, the flip
graph on P(S, p,q) is connected, then the flip graph on P(S) is connected.

Theorem 2.11. Let S be a set of n points in wheel configuration. Then the flip graph
on P(S) is connected with diameter at most 2n — 1.

Theorem 2.12. Let S be a set of n points in generalized double circle configuration.
Then the flip graph on P(S) is connected with diameter O(n?).

Next, we show flip-connectivity in the context of plane spanning trees for
broader classes of drawings, but allowing a stronger notion of flips, namely
compatibility.

Theorem 2.13. Let D be a cylindrical, monotone, or strongly c-monotone drawing of
the complete graph K,,. Then, the compatibility graph F(Tp) is connected.

14



2.1. Summary of results

Theorem 2.14. Let D be a simple drawing of the complete graph K, and let T}
be the set of all plane spanning stars, double stars, and twin stars on D. Then, the
compatibility graph F (T};) is connected.

Last but not least, we consider arrangements of pseudocircles and prove
flip-connectivity for two important classes, namely intersecting arrangements
and cylindrical intersecting arrangements. All flips are triangle flips.

Theorem 2.15. The flip graph of arrangements of n pairwise intersecting pseudocir-
cles is connected.
Theorem 2.16. The flip graph of cylindrical arrangements of n pairwise intersecting

pseudocircles is connected.

Furthermore, we provide (asymptotically) tight bounds on the diameters
of the corresponding flip graphs.

Proposition 2.17. The flip graph of cylindrical arrangements of n pairwise intersect-
ing pseudocircles has diameter at least 2(%) and at most 4(3).

Proposition 2.18. The flip graph of arrangements of n pairwise intersecting pseudo-
circles has diameter ®(n®).

15
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Partitions into Plane Spanning Trees

The following long-standing open question is the focus of this chapter:

Question 3.1 ([BHRWO6]). Can every complete geometric graph on 2n vertices be
partitioned into n plane spanning trees?

Recall that the complete graph K, contains 5(n — 1) edges and a spanning
tree contains (n — 1) edges. Hence, only for an even number of vertices
the complete graph has the right number of edges to admit a partition into
spanning trees. Therefore, unless stated otherwise, we consider complete
geometric to have 2n vertices in the following.

Related work. Several attempts have been made to answer Question 3.1.
When the underlying point set S is in convex position it follows from a result of
Bernhart and Kainen [BK79] that K(S) can be partitioned into plane spanning
paths, implying a positive answer. Further, Bose et al. [BHRWO06] gave a
complete characterization of all possible partitions into plane spanning trees
for convex point sets. Similarly, when S is a regular wheel set, Aichholzer et
al. [AHK"17] showed how to partition K(S) into plane spanning double stars
and Trao et al. [TCAK19] recently characterized the structure of all possible
partitions into arbitrary plane spanning trees. Furthermore, Aichholzer et
al. [AHK"17] provided a positive answer to Question 3.1 for all point sets of
(even) cardinality at most 10, obtained by exhaustive enumeration.

Relaxing the requirement that the trees need to be spanning, Bose et
al. [BHRWO06] showed that if for a point set S in general position, there exists
an arrangement of k lines in which every cell contains at least one point from S,
then the complete geometric graph on S admits a partition into 2n — k plane
trees, k of which are plane double stars. This result implies that Question 3.1
has a positive answer if S contains n pairwise crossing segments, which is the
case if and only if S has exactly n halving lines [PS99].

For the related packing problem where not all edges of the underlying
graphs must be covered, Biniaz and Garcia [BG20] showed that |n/3] plane
spanning trees can be packed in any complete geometric graph on n vertices,
which is currently the best lower bound.
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3. PARTITIONS INTO PLANE SPANNING TREES

(b)

Figure 3.1: (a) A partition of BW33 into n = 5 plane spanning trees. (b) The
bumpy wheel BW3 5, which cannot be partitioned into plane spanning trees.

Contribution. We provide a negative answer to Question 3.1 (refuting the
prevalent conjecture). For this construction we use bumpy wheel sets. Recall
that the bumpy wheel BW, , is obtained from a regular wheel by replacing
each of the k extreme points by a group of ¢ points (cf. Chapter 2 for the
precise definition).

Our motivation to study bumpy wheels stemmed from the fact that
Schnider [Sch15] showed that BW3 3 cannot be partitioned into plane double
stars. In contrast, this is always possible for complete geometric graphs on
regular wheel sets [AHK™17], as well as complete geometric graphs on point
sets admitting n pairwise crossing edges [BHRWO06] (which also includes
convex point sets).

We not only answer Question 3.1, but fully characterize for which parame-
ters k and ¢, bumpy wheels can be partitioned into plane spanning trees (see
Figure 3.1 for an illustration):

Theorem 2.1. For odd parameters k, £ > 3, the edges of BWy ¢ cannot be partitioned

inton = MTH plane spanning trees if and only if £ > 3.

Organization of this chapter. In Section 3.1 we show how to model this
partition problem as an integer linear program (ILP) and provide an imple-
mentation that computes solutions for point sets up to roughly 25 points.
None of the proofs in this thesis rely on the computer assisted ILP, but it
served as a great source of inspiration. In Section 3.2 we show the “if” di-
rection of Theorem 2.1, proving the non-existence of partitions. Whereas in
Section 3.3 we prove the “only if” direction of Theorem 2.1, showing the
existence of partitions.
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3.1. The ILP model

3.1 The ILP model

Given a geometric graph G = (P, E) and a fixed number m of available colors
as input, our ILP contains a binary variable x.. € {0,1} for each edge-color
combination, that is, in our setting there are (22” ) - m variables. A variable x,

being 1 then corresponds to edge e receiving color c.

We implement! the following constraints, enforcing that every edge re-
ceives exactly one color (3.1), crossing edges receive different colors (3.2),
ensuring 2n — 1 edges in each color class (3.3), and forbidding monochromatic
triangles (3.4). Clearly, these are necessary but not sufficient constraints:

Z xe,C == 1 ve E E (3.1)

c=1
Xee+Xpe <1 Vee {1,...,m}; Ve, f crossing (3.2)
Y xee=2n—1 Vee{l,...,m} (3.3)

ecE

Xee+ Xfe+ Xge <2 for each triangle e, f, g; Vc € {1,...,m} (3.4)

For BW35 and m = 8 as input, using an industry strength ILP solver, the
ILP turns out to be infeasible (taking less than a minute)?. Furthermore, for
BW37 and m = 11 as input our program reports an infeasible ILP even when
omitting the constraints (3.3) and (3.4) (taking roughly 5h). Figure 3.2 shows a
partition of BW3 5 into plane subgraphs found by the program, when omitting
the triangle constraint (3.4).

N

: \ 7 %

\ \\\‘/ \ N ] L= 7

\ - =
\ AL AN

Figure 3.2: Partition of the bumpy wheel BW3 5 into 8 plane subgraphs. A partition
into plane spanning trees is not possible.

ISee Appendix A for details concerning the source code.

2This and all other experiments were run on an Intel Core i5, 1.6 GHz, 16 GB RAM running
macOS Big Sur Version 11.4. All algorithms were implemented in Python 3.9.1, and for solving
the ILP we used Gurobi Optimizer Version 9.1.2 with default settings.
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3. PARTITIONS INTO PLANE SPANNING TREES

3.2 Bumpy wheels that cannot be partitioned into PSTs

In this section, we prove Theorem 2.1. We remark that Theorem 2.1 and
Theorem 2.2 are somewhat related, where Theorem 2.2 considers a broader
setting. The non-existence direction in Theorem 2.1 follows almost from the
non-existence in Theorem 2.2 (the only case that is not covered is BW;5).
However, we believe it is more instructive to first consider the more restrictive
setting for spanning trees and then extend the results to arbitrary subgraphs.
We split the proof of Theorem 2.1 into two parts, starting with the non-
existence:

Theorem 3.2. For any odd parameters k > 3 and ¢ > 5, the edges of BW , cannot
k(+1

be partitioned into n = == plane spanning trees.

We need a few more definitions. For a geometric graph in (bumpy) wheel
configuration we denote the center vertex by vy and the remaining vertices by
v1,...,02n—1 in clockwise order. We also enumerate the groups in clockwise
order: fori € {1,...,k}, G; denotes the i'th group (G; contains v1, Gy contains
v2n—1). An edge having vy as an endpoint is called a radial edge, an edge on
the convex hull is called a boundary edge and all other edges are called diagonal
edges. For a non-radial edge e, we define e~ to be the open halfplane defined
by the supporting line through e and not containing vy, and similarly e™ to be
the open halfplane containing vy.

Additionally, we define a partial order <. on the set of non-radial edges,
where e <. f if the relative interior of e completely lies in f~ (that is, f
is “closer” to the center vertex vy than e)®>. Two non-radial edges e, f are
incomparable with respect to <., if neither e <. f nor f <. e holds (we omit
“with respect to <.” if it is clear from the context). In the following, when
speaking of an edge e lying in f~ or in f* for another edge f, we always
refer to the relative interior of e (that is, an endpoint of e may lie on the
line through f — which actually means it coincides with an endpoint of f).
A non-radial edge e is maximal in some set of edges E, if there is no other
edge ¢’ € E such that e <. ¢. In the following we often consider maximal
diagonal edges of plane spanning trees. Minimal edges are defined similarly.
See Figure 3.3 for an illustration. Let us emphasize that we never use <. for
radial edges.

Towards the proof of Theorem 3.2, we will first prove several structural
results concerning the number and arrangement of radial and diagonal edges
in the spanning trees of a potential partition (some of which have a similar
flavor as those by Trao et al. [TCAK19]). We show that radial edges must lie
between maximal diagonal edges and those maximal diagonal edges need to
fulfill certain constraints. We will show that these cannot be satisfied if ¢ > 5.

3Note that we defined the relation ¢ <. f this way around, since e is the (combinatorially)
shorter edge.
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3.2. Bumpy wheels that cannot be partitioned into PSTs
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Figure 3.3: Example of a plane spanning tree on the bumpy wheel set BWs5. The
diagonal edges f and f’ are maximal. The edges e and ¢’ are boundary edges (they
are also the only minimal edges).

The following observation follows immediately from convexity and the
definition of the partial order <.

Observation 3.3. For two non-radial, non-crossing, incomparable edges e, f the
vertex sets in e~ and f~ are disjoint and neither e~ nor f~ contains an endpoint of
the other edge.

Note that e and f in the above observation may share an endpoint. Fur-
thermore, for any set of edges E, two maximal edges ¢,¢/ € E are always
incomparable.

Lemma 3.4. Let T be a plane spanning tree of BWy . Then the following properties
hold:

(i) for any diagonal edge e € E(T), T contains at least one boundary edge in e™,

(ii) for any pair of incomparable diagonal edges e, f € E(T), the boundary edges
of T in e~ and f~ are distinct, and

(iii) if T contains exactly one maximal diagonal edge, T contains all radial edges of
at least k_Tl consecutive groups and at least one more consecutive radial edge

(in particular, T contains at least (k%lﬁ + 1) consecutive radial edges).

Proof. For part (i), let f be a minimal edge of T in e™. If f~ does not contain
any vertex of the input point set, it is a boundary edge and we are done.
Otherwise, since T is connected and plane, at least one vertex in f~ has
to be connected to an endpoint of f, forming a smaller edge, which is a
contradiction to the minimality of f.

Part (ii) follows immediately from Observation 3.3 (distinctness) and
part (i) (existence).
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3. PARTITIONS INTO PLANE SPANNING TREES

Concerning part (iii), let f be the maximal diagonal edge of T. Due to
the regularity of the group placement in bumpy wheels, f* contains the
vertices of at least k%l consecutive groups. Hence, since f is the only maximal
diagonal edge, all vertices in /T need to be reached by radial edges (plus one
to connect to f). O

Note that any spanning tree in a partition of BWj, contains a maximal
diagonal edge, since the star around vy cannot be used in such a partition (as
it would not leave any radial edge to reach vy for the other trees).

Before diving into further technical details, we first outline the proof from
a high level view.

High level proof strategy. Given a bumpy wheel BW; , on 2n vertices, as-
sume that a partition into n plane spanning trees Ty, ..., T;,—1 exists. We will
successively derive several properties concerning the structure of the T;’s,
e.g., we show that one tree, say Ty, contains many radial edges. Putting all
structural results from Proposition 3.5 to Proposition 3.9 together we will see
that these cannot be satisfied if ¢ > 5.

Proposition 3.5. Let Ty, ..., T,_1 be a partition of BWy , into plane spanning trees
(if it exists). Then exactly one of those trees, say Ty, contains a single boundary edge
and a single maximal diagonal edge and all other n — 1 trees contain exactly two
boundary edges and exactly two maximal diagonal edges each. In particular, any
diagonal edge e € E(T;) contains exactly one boundary edge of T; in e™.

Proof. Every T; contains at least one maximal diagonal edge and hence, by
Lemma 3.4 (i), also at least one boundary edge.

Since there are 2n — 1 boundary edges in total, at least one tree (w.l.o.g. Tp)
contains exactly one boundary edge. By Lemma 3.4 (i) and (ii) it also contains
exactly one maximal diagonal edge.

Now, if there was a second spanning tree T; in the partition with exactly
one maximal diagonal edge, Tp and T; together would use at least (k—1) - £ +2
radial edges (by Lemma 3.4 (iii)). This leaves at most ¢ — 2 radial edges for
the remaining n — 2 trees; clearly not enough (since n = %E + 1> (fork > 3).

Hence, all other n — 1 spanning trees have to contain at least two maximal
diagonal edges and therefore at least two boundary edges. However, since
we have 2n — 1 boundary edges in total and only one tree contains a single
boundary edge, all other n — 1 trees have to contain exactly two boundary
edges. By Lemma 3.4 (ii), they also contain at most, and therefore exactly, two
maximal diagonal edges. O

From now on, Ty always denotes the spanning tree with exactly one
boundary edge (when considering a partition into plane spanning trees).
Further, we let all radial edges vov; for i € {1,2,..., k%f + 1} be part of Ty
(which we can assume without loss of generality due to symmetry).
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3.2. Bumpy wheels that cannot be partitioned into PSTs

Figure 3.4: lllustration of Lemma 3.6. All edges in the span of the maximal
diagonal edges ¢ and f are radial (except e and f itself).

For two non-radial, non-crossing edges e, f, we define the spar of e and f
to be the (closed) region between the two edges, more precisely:

cllet Nf*) ifeand f are incomparable

span(e, f) = {cl(e+ Nf) ife<.f,

where cl(-) denotes the closure. See also Figure 3.4 for an illustration.

Note, however, that we are more interested in the vertices and edges
contained in the span, rather than the region itself. If we want to emphasize
this, we may use the notation V(span(e, f)) or E(span(e, f)). In the following
we are mostly interested in the span of maximal diagonal edges of some plane
spanning tree. Figure 3.4 gives an illustration of the following lemma.

Lemma 3.6. Let Ty, ..., T,,—1 be a partition of BWy ¢ into plane spanning trees (if it
exists) and let e, f be the maximal diagonal edges of some T; (i # 0). Then, all edges
of T; in the span of e and f are radial (except e and f), and all radial edges of T; lie in
the span of e and f.

Proof. Assume that & is a non-radial edge in the span of e and f. Then, h~
either contains e or f or an additional third boundary edge (or & is a boundary
edge itself), a contradiction in any case. Furthermore, any radial edge not
contained in span(e, f) must cross either e or f, and therefore cannot be part
of T; due to planarity. O

We define the distance dist(e) of a non-radial edge e to be the number of
vertices in e~ plus one (or in other words, the number of convex hull edges of
the underlying point set in cl(e™)). Clearly, 1 < dist(e) < 1/ — 1 holds for
any non-radial edge e and dist(f) < dist(e) holds for any edge f C e~ It will
be convenient to define, fori € {1,..., “Tlﬁ —1}:

d = ——L . (3.5)
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3. PARTITIONS INTO PLANE SPANNING TREES

(a) Outmost radial edges. (b) Opposite groups. (c) Special wedge.

Figure 3.5: lllustration of some terms.

We define it in this (slightly counter-intuitive) way, d; being the largest dis-
tance, since we are mostly concerned with edges of large distances and thereby
aim to improve the readability.

Lemma 3.7. Consider a plane spanning tree T of a partition of BWy , and let e be a
diagonal edge in T of distance dist(e) > 1. Then T also contains exactly one of the
edges of distance (dist(e) — 1) ine™.

Proof. Let f be a maximal edge among the edges of T in e~ and assume
dist(f) < dist(e) —2. Then the span of e and f contains at least one (non-
radial) edge /1 ¢ {e, f} of T (since either e and f have no endpoint in common
and therefore need to be connected via edges in span(e, f) or span(e, f)
contains at least one vertex v which is neither an endpoint of ¢ nor f and
needs to be connected to the rest of T). Since f is maximal in e~, h and f are
incomparable. So, by Lemma 3.4 (ii) this forces at least two distinct boundary
edges to be contained in ¢~, a contradiction to Proposition 3.5. Therefore, we
get dist(f) = dist(e) — 1.

Furthermore, there are exactly two edges of distance (dist(e) — 1) ine™. If
dist(e) = 2 these two edges together with e form a cycle and otherwise they
cross. Either way, T cannot contain both. O

We need a little more terminology towards the proof of Theorem 3.2 (see
also Figure 3.5). We call the first and last vertex of each group outmost vertices
(and the corresponding radial edges oufmost radial edges). Note that there are
exactly 2k outmost radial edges in BWj ;. Every hull vertex or radial edge that
is not outmost, is called an inside vertex or an inside radial edge.

Furthermore, we define two groups G;, G; to be opposite if |i — j| = 1
or|i—j| = k%l In particular, each group has two opposite groups and two
consecutive groups have exactly one opposite group in common (we call that
group the opposite group of a pair of consecutive groups).

Let e, f be two maximal (non-crossing) diagonal edges that have an end-
point in a common group. Then the set of vertices of span(e, f) in the common
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3.2. Bumpy wheels that cannot be partitioned into PSTs

group is called apex. Note that any apex contains at least one vertex (and this
lower bound is attained if the endpoints of ¢ and f coincide).

Moreover, two maximal (non-crossing) diagonal edges ¢ = {u,v} and
f =A{u', 7'} form a special wedge if two endpoints (say u and u’) are consecutive
outmost vertices of different groups (that is, u = vj; and u = Vj¢11 for some j)
and v and v’ are inside vertices lying in the opposite group of G; and G; ;.

Proposition 3.8. Let Ty, ..., T, be a partition of BW , into plane spanning trees
(if it exists) and let T; (i # 0) be a spanning tree that does not use any outmost radial
edge. Then the two maximal diagonal edges e, f of T; form a special wedge and T;
uses all radial edges incident to the apex of this wedge.

Proof. Indeed, by Proposition 3.5, T; has exactly two maximal diagonal edges.
We first argue that all but exactly two radial edges in span(e, f) must be part
of T;. The subgraph of T; induced by V(span(e, f)) needs to form a tree.
Moreover, the total number of radial edges in span(e, f) is |V (span(e, f))| — 1.
Since T; uses the two diagonal edges e, f € E(span(e, f)) and all other edges
in the span need to be radial (Lemma 3.6), T; uses exactly all but two radial
edges.

Further note that we cannot have two maximal diagonal edges between the
same pair of groups, because diagonal edges between the same pair of groups
are either comparable or crossing. Hence, the span of ¢ and f contains at least
two outmost vertices, namely in the two distinct groups which contain an
endpoint of e and f, respectively. On the other hand, span(e, f) cannot contain
a third outmost vertex, since otherwise T; has to use an outmost radial edge
(by Lemma 3.6 and above argument). Furthermore, by the same argument,
none of the two outmost vertices may be in the interior of span(e, f), i.e., the
two outmost vertices are endpoints of e and f. In particular, e and f share a
common group and the apex does not contain any outmost vertex. Hence, e
and f form a special wedge, as depicted in Figure 3.5.

Moreover, since T; has to use all but two radial edges in the span, it has to
use all radial edges incident to the apex. O

Note that for two spanning trees T;, T; (i # j) not using an outmost radial
edge, their apexes are disjoint.

Proposition 3.9. Let Ty, ..., T,—1 be a partition of BWy ; into plane spanning trees
(if it exists). Then for each pair G, G’ of opposite groups and each i € {1,...,¢} there
is a unique diagonal edge connecting G and G' of distance d; = (k%lé — i) that is
maximal in its tree.

Proof. All edges considered in this proof are between G and G’ without further
notice. Observe first that for any i € {1,..., ¢} there are exactly i edges of

distance d; and all edges of the same distance pairwise cross. Also note, for
any two edges e, ¢/ with dist(e) > dist(e’), either ¢/ C e~ holds or they cross.
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3. PARTITIONS INTO PLANE SPANNING TREES

In particular, if they do not cross and belong to the same tree, the shorter is
not a maximal edge.

Consider now for some i € {2,...,¢} the distance d; and let ¢y, ...,¢;
be the colors* used for all i edges of this distance, which are all distinct,
since these edges form a crossing family. By Lemma 3.7, the i — 1 pairwise
crossing edges of (the larger) distance d;_; must each use the same color as
an edge of distance d;, wl.o.g. ci,...,ci_1. Hence, the corresponding edges of
distance d; cannot be maximal (again using the argument that there cannot be
two maximal diagonal edges between the same pair of groups).

On the other hand, the color ¢; cannot be used by any edge of larger
distance, since again by Lemma 3.7 there would also be an edge of color c;
with distance d;_;. Hence, indeed the only edge of distance d; that is maximal
in its tree is the one of color c;.

Lastly, for i = 1, the single edge of distance d; is clearly maximal. ]

Finally, we are ready to prove Theorem 3.2:

Theorem 3.2. For any odd parameters k > 3 and ¢ > 5, the edges of BW ; cannot

be partitioned into n = MT“ plane spanning trees.
Proof. Assume to the contrary that there is such a partition Ty, ..., T,,_1. There

are 2k outmost radial edges and Tj uses (at least) k of them (see Proposition 3.5
and the remark thereafter). Hence, there are at most k + 1 spanning trees
(including Tp) containing an outmost radial edge.

Next, let us count how many spanning trees without an outmost radial
edge we can have. Since, by Proposition 3.8, the apex of such a tree can neither
use any outmost vertex nor any vertex already incident to a radial edge in T,
there remain ’“2’—1(6 — 2) possible vertices to be used by apexes, namely the
inside vertices of the last “t! groups G SRR Ok (the radial edges of those

groups not fully used by Tp). Recall that each apex contains at least one vertex.

It is crucial to emphasize that among those last k%l groups, group G k1 and
group Gy are opposite (the only opposite pair). Therefore, by Proposition 3.8,
two spanning trees with an apex in group ¢ i and group Gy, respectively,
must each have a maximal diagonal edge between these two groups. Hence,
by Proposition 3.9, we can have at most (¢ — 2) spanning trees with apex in
one of these two groups (instead of 2(¢ — 2)); see Figure 3.6.

In total there are at most % (¢ —2) spanning trees which do not use an
outmost radial edge. Hence, in total we have at most

k—1 2k +2+kl —£—2k+2 kl+1 (-3
k+1+T(€—2)— 5 =5 5 <n
spanning trees in our partition, where we used ¢ > 3 in the last step. This
yields the desired contradiction and concludes the proof. O

4As mentioned, we associate edges with colors to identify the subgraphs.
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3.3. Bumpy wheels that can be partitioned into PSTs

V-1
e l+1

] .
U1 Voan—1

Figure 3.6: In the black stripes (the darker one is the crucial one) the maximal
diagonal edges (of those trees without outmost radial edge) need to have distinct
distances. That allows ¢ — 2 many for each stripe. Two spanning trees (red and
orange) with apex in group Q;%l and group Gy, respectively, both need to have a
maximal diagonal edge in the dark stripe.

3.3 Bumpy wheels that can be partitioned into PSTs

The following theorem implies the other direction of Theorem 2.1:

Theorem 3.10. For any odd k > 3, there are exactly gk=1 4 gk-2 non-isomorphic
partitions of BWy 5 into plane spanning trees.

Towards the proof of Theorem 3.10, we need a little more terminology. A
partial partition of a graph G is a set of edge-disjoint subgraphs of G whose
union is a subgraph of G (i.e. the edge sets of the subgraphs form a packing
of E(G)). A subgraph of G, which can be extended to a spanning tree of G,
is called partial tree. Our construction consists of three steps, where we are
starting from a partial partition that fulfills certain properties and show how
to extend it to a proper partition step by step adding edges to the subgraphs.
Whenever we use the phrase “an edge is covered”, we mean that this edge
already belongs to a subgraph (of the partial partition).

A partial partition of BW; , into n subgraphs is called base partition if the
following properties are fulfilled:

(a) all radial edges are covered,

(b) for each pair of opposite groups, there is exactly one diagonal edge of each
distance d, . ..,d, covered, and no further diagonal edges are covered,

(c) each of the covered diagonal edges is maximal in its partial tree, and

(d) each partial tree is connected, plane, and non-empty.
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3. PARTITIONS INTO PLANE SPANNING TREES

Figure 3.7: An example of a base partition for BWy 3.

Figure 3.7 gives an illustration of a base partition. Proving the exact
value of 4¥~1 4+ 4k=2 jn Theorem 3.10 is somewhat cumbersome. Hence, we
decided to first state the essential ingredients and defer the proofs of the
helping lemmas to the following subsections. We remark that Lemma 3.12
and Lemma 3.13 hold more general for arbitrary ¢, whereas ¢ = 3 is only
needed in Lemma 3.11. The following lemma identifies all possible base
partitions of BWj 3:

Lemma 3.11. For any odd k > 3 there are exactly 2 - 27 427 non-isomorphic
base partitions of BWy 3.

Next, we extend these base partitions to a proper partition in two steps:

Lemma 3.12. Let Ty, ..., T,—1 be a base partition of the edges of BWy ;. Then there
is a unique way to extend it to a partial partition that covers all diagonal edges of
distance dq, ... ,dy.

Lemma 3.13. Let Ty, ..., T, be a partial partition of the edges of BWy ¢ such that
exactly all radial edges and all diagonal edges of distance dy, ..., dy are covered, and
such that all partial trees are connected, plane, and non-empty. Then, this partial
partition can be extended to a partition of BWy ¢ into plane spanning trees. More

k-1
-l

precisely, there are exactly 2 such possible extensions.

The proofs of these three lemmas can be found in Section 3.3.1, Sec-
tion 3.3.2, and Section 3.3.3 respectively. We are now ready to prove Theo-
rem 3.10. Let us first show that there cannot be any partition that does not
conform to the properties of a base partition:
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Figure 3.8: Left endpoints are marked blue and right endpoints are red.

Lemma 3.14. Let Ty,...,T,—1 be a partition of the edges of BWy 3 into plane
spanning trees. Then, there are subtrees T}, ..., T, , fulfilling the properties of a base
partition.

Proof. Define the subtrees T; to consist only of the radial and maximal diag-
onal edges (of the respective T;). Properties (a) and (c) are clearly fulfilled.
Moreover, every T/ is non-empty and plane, and connectedness follows from
the fact that the maximal diagonal edges define the span and within each
span there can only be radial edges (Lemma 3.6). Hence, property (d) holds
as well. Finally, the first part of property (b) holds by Proposition 3.9 and by
Proposition 3.5 there are no further maximal diagonal edges. O

Theorem 3.10. For any odd k > 3, there are exactly 41 + 45=2 non-isomorphic
partitions of BWy 3 into plane spanning trees.

Proof. By Lemma 3.14 it suffices to count the partitions that we get from our
construction via base partitions (Lemma 3.11, Lemma 3.12, and Lemma 3.13).
These are:

23%*1—1(2 X ZkEfl + ZLES) — 23](%1—1-0—](%14-1 + 23%—14-}(_73
— 22(k—1) + 22(](—2)
— 4k71 _}_41(72

This concludes the proof. O

We now present the proofs of Lemma 3.11, Lemma 3.12, and Lemma 3.13,
though in reverted order, as we find that more instructive.

For convenience, we associate the endpoints of non-radial edges as left
and right viewed from the center vy as follows: let ¢ = uv be a non-radial
edge such that (v, 1, v) forms a left-turn, then u is called rig/it endpoint of e
and v is called /¢ff endpoint of e; see Figure 3.8.
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3. PARTITIONS INTO PLANE SPANNING TREES

3.3.1 Proof of Lemma 3.13 (full extension)

Lemma 3.13. Let Ty, ..., T,_1 be a partial partition of the edges of BW ; such that
exactly all radial edges and all diagonal edges of distance dy, ..., dy are covered, and
such that all partial trees are connected, plane, and non-empty. Then, this partial
partition can be extended to a partition of BWy ¢ into plane spanning trees. More

precisely, there are exactly 251 such possible extensions.

Proof. First of all note that for any i > /¢, there are exactly 2n — 1 edges of
distance d;. Starting from d; = dy, we iteratively add all edges of distance
diy1 to our partial partition. To this end, consider all edges ey, ey, ...,e2,-1
of distance d; in clockwise circular order. For every e¢; there are two edges
of distance d;; in e]-_, both of which share an endpoint with e; (one of them
with the left endpoint of ¢; and the other with the right endpont of ¢;). By
Lemma 3.7 exactly one of the two edges belongs to the same tree as ¢; and
initially both choices are valid. However, once the first edge of distance
di11 is assigned to a tree, the distribution of the remaining edges of distance
diy1 is determined. More precisely, at the beginning of each iteration, fix an
orientation o € {left, right}. Then, for each edge ¢, of distance d; attach to
¢j the edge e7, which is the edge of distance d; incident to the endpoint
of e; corresponding to o (see Figure 3.9 for an illustration). Since there are
equally many edges of distance d; and d;;, every edge of distance d;; is
added to exactly one tree. Furthermore, adding the distance d;; edges
preserves planarity as well as the tree structure. Continue this process until
distance d;,1 = d kg g = 1, where we have 2 choices (left or right) in each
step independently. Then all edges are covered and, since we started with n
non-empty partial trees, all T;’s form plane spanning trees.

Lastly, since there are two choices (left/right) in each iteration to pick
the next smaller diagonal edge and in total we have ]‘er—lﬁ —-1-/= k%lé -1

iterations, there are exactly 25 -1 possible extensions. O

3.3.2 Proof of Lemma 3.12 (base extensions)

Lemma 3.12. Let Ty, ..., T,—1 be a base partition of the edges of BWy ;. Then there
is a unique way to extend it to a partial partition that covers all diagonal edges of
distance dq, ... ,dy.

Proof. The proof is very similar to the one of Lemma 3.13, with the difference
that we need to go through the distances in each pair of opposite groups
separately. So, let G,G’ be a pair of opposite groups and consider some
distance d; with i € {2,...,¢} (assuming all edges of larger distance between
this pair are already covered). Note that by assumption (b) of the base
partition, the one edge of distance d; is covered (providing a base case).
Furthermore, also by assumption (b), for every distance d; (i < /) there is
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3.3. Bumpy wheels that can be partitioned into PSTs

(a) (b)

Figure 3.9: (a) All diagonal edges of distance dy,...,d;. (b) All solid edges are of
distance d; and are already covered. If the dashed black edge (of distance d;.1) is
attached to the left endpoint of the blue edge, the red edge has only one choice,
namely to also attach the next edge (dashed gray) to the left endpoint.

exactly one edge e that is already covered. Assumption (c) implies that e is
maximal in its partial tree Tj, in particular, no edge of distance d;_; between
G and G’ belongs to Ty.

Now, at least one of the endpoints of e is incident to an edge f of distance
d;_1 between G and G’ (it could be both, then name the other f’). More
precisely, let f be incident to the left endpoint of e and f’ be incident to the
right endpoint of e. Let f be colored blue and f’ be colored red. The crucial
observation is that e now blocks the left extension of the blue tree as well as
the right extension of the red tree. Therefore the red and the blue tree have a
unique extension and by using those, they subsequently fix the orientation
of the extension for all further trees with an edge of distance d;_; between
G and G’ (to left for all edges to the left of the red edge f’ and to right for
all edges to the right of the blue edge f — see Figure 3.10 for an illustration).
Finally, since there is exactly one more edge of distance d; than of distance
d;_1 between G and G’, this uniquely determines the color for all edges of
distance d;. And similar to the proof of Lemma 3.13, all extended partial trees
are still connected, plane, and non-empty. O

3.3.3 Proof of Lemma 3.11 (base partition)

Note that Lemma 3.12 and Lemma 3.13 imply that in order to prove only
the existence in Theorem 3.10 it suffices to provide a single base construction
for BWy 3. We, however, give a full characterization of all possible such base
partitions.
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3. PARTITIONS INTO PLANE SPANNING TREES

(a) (b)

Figure 3.10: lllustration of Lemma 3.12. All edges up to distance d;_1 = d3 (solid,
non-orange) and one edge e of distance d; (solid orange) are covered. The edge e
now subsequently forces the continuations for the previous trees (dashed). In (a), e
is incident to one edge of distance d;_1 and in (b) it is incident to two such edges.

Property (b) of a base partition requires us to have one maximal diagonal
edge of each distance d;, d», and d3 between every pair of opposite groups.
We need to pair two of them in each tree (except for Tj, that only contains one
such edge). The following lemma, which we state in more general terms of
subgraphs since we need it that way later (Chapter 4), gives a restriction on
which edges we can pair.

Lemma 3.15. Let ey, . . ., ey, be pairwise (non-crossing) incomparable edges of a plane
subgraph of BWy y. Then, Y_; dist(e;) < 2n — 1 (= k¥) holds. Moreover, if m = 2,

dist(ey) + dist(ez) < 2n —2

holds.

Proof. The first part follows immediately from Observation 3.3 and the second
part then from the fact that two edges cannot cover the entire range of the
2n — 1 boundary edges. O

Lemma 3.16. For any two incomparable edges with distances d; and d; (1 <1i,j <
”Tlﬁ) belonging to the same plane subgraph of BWy ¢, the inequality

i+j>0+1
holds.
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o. dl ° :. d2 °
ds %
(a) (b)

Figure 3.11: (a) Maximal diagonal edges sum to 3k — 1. (b) Maximal diagonal
edges sum to 3k — 2. (c) Center radial edges; left vertices are blue and right vertices
are red.

Proof. We directly compute:

i+j= kaLlf—dH—k—;lE—dj
= (k+ 1) — (d; + d;)
>kl+ 10— (2n—2) (Lemma 3.15)
=kl+0—(k{+1-2)
=(+1,
which concludes the proof. O

In the setting of BWj 3, Lemma 3.16 implies that we can pair a maximal
diagonal edge of distance d; only with one of distance d3 in its plane spanning
tree. And a maximal diagonal edge of distance d, can only be paired with
one of distance d; or ds.

Further note that if the distances of the two maximal diagonal edges sum
to 2n —2 = 3k — 1 (i.e., di + d3 or dy + d) the respective spanning tree has
exactly one radial edge in its span, and if they only sum to 3k — 2 (d; + d3),
there are exactly 2 radial edges in the span; see Figure 3.11(a,b).

In the following we call the radial edges incident to the middle vertex of
each group center radial edges. Also, we call the two outmost vertices of a group
the right and left vertex of that group, respectively, as viewed from v (that is,
v3; is the right and V3(i-1)+1 the left vertex of group G;); see Figure 3.11(c) for
an illustration.

Finally, we are ready to prove Theorem 3.10, which we restate for easier
readability:

Lemma 3.11. For any odd k > 3 there are exactly 2 - 25 27 non-isomorphic
base partitions of BWy 3.

Proof. Using the structural properties derived on the way to prove Theorem 3.2,
we show how to construct all possible base partitions. First of all, we need
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(a) Ty (b) Ty (c) Class I. (d) Class I.

(e) Class I. (f) Class II. (g) Class II. (h) Class Il

(i) Class II. (j) Class Il. (k) Class II.

Figure 3.12: lllustration of the different classes of trees and the distribution of
maximal diagonal edges. Note that the radial edges are only depicted exemplary
and allow certain freedom of choice.

to have a tree Ty using at least (355! + 1) radial edges and a single maximal
diagonal edge ey (Lemma 3.4 and Proposition 3.5). Let ¢y again be between
Gy and G and let the radial edge {vo, v3z%1+1} be part of Tp.

First we argue that dist(ep) = dj holds. If dist(ep) = d3, there is one
more maximal diagonal edge of distance d; than of distance d3 left, so we
cannot pair all edges of distance dy. Further, if dist(ep) = d», all distance d;
edges need to be paired with distance d3 edges and, especially, all remaining
distance d, edges need to be paired with each other. In particular, the tree
containing the center radial edge of Gy (which cannot be part of Tp) would
also have a maximal diagonal edge of distance d, between the groups G k1

and Gy; a contradiction to Proposition 3.9. Hence, we know dist(ep) = d;.

Considering the remaining k — 1 maximal diagonal edges of distance d;,
they all must be paired with distance d3 edges. This leaves one distance d3
edge to be paired with a distance d, edge (let the respective tree be T;) and
two distance d, edges each for the remaining trees. To summarize (see also
Figure 3.12):
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i1 4\ )

g " Uk G,

Figure 3.13: lllustration of the claim in the proof of Theorem 3.10. Ty (blue) uses
the di edge between G and Gy. If a Class | tree (green) uses the center radial
edge of gk# (and therefore the dy edge between gk# and Gy), either T; (red) or
the orange tree uses the d3 edge between G and Gi. Consequently, the radial
edge {vo, v3r} (dashed black) cannot be accozmmodated anymore.

¢ T; contains one maximal diagonal edge of distance d> and one of dis-
tance ds,

¢ there are kg—l trees with two distance d, maximal diagonal edges (call

these trees Class I), and

* k —1 trees with one maximal diagonal edge of distance d; and d3 each
(call these trees Class II).

Next, consider the 3! remaining center radial edges (not used by Tp),

which clearly cannot be used by trees of Class II and no tree can use more
than one of them. Hence, T; and every Class I tree needs to use exactly one
such center radial edge. Furthermore, every Class I tree must have the center
radial edge incident to its apex and hence, using Proposition 3.9, the center
radial edges of the groups G k1 and Gy cannot be used by two Class I trees.
Therefore, T} has to use one of them and some Class I tree T, the other. The
remaining k%“o’ Class I trees use the center radial edges of the groups G i to
Gk—1 (with apex in the respective group). Next we show that T; uses the center
radial edge of G k1 and T, the one of Gy (see Figure 3.13 for an illustration):

Claim. T. cannot use the center radial edge of Gii1.
2

Proof. Assume for the sake of contradiction that T uses the center radial edge
of G and hence, T; contains the center radial edge of Gx. Moreover, T has

its dzzedge between G and G 1 (since all other d, edges are already used by
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Class I trees). Then, T; has its d3 edge either between Gy and G k1, OF between
g = and Gi_1. In the latter case, the tree using the d; edge between Gy and
g 1 must have its d3 edge between G and G g1 In any case, the radial edge

{v0, 3¢} cannot be accommodated anymore, since the corresponding tree
would need to have a maximal diagonal edge between Gy and G i1 (all of

which are already taken). |

So, the Class I trees have their apexes in groups G i to Gr and T; has to
use the last remaining distance d, edge (between G k1 and Gj). Therefore, the
distance d3 edge of T; is either between G k1 and G or between G, and G k3

As a next step, consider the Class II trees Remember that T uses the
distance d; edge between G k1 and Gi. Hence, the distance d3 edge between
Giand G 1 needs to be paired with the distance d; edge between G; and G K3,

forcing the respective Class II tree to have its apex in the right vertex of G;.
Subsequently, this forces another Class II tree to have its apex in the right
vertex of G, and so on, up to group ¢ 1

Similarly, considering the distance d3 edge between G = and Gy, we get a
Class II tree with its apex in the left vertex of G =y And again subsequently
another with its apex in the left vertex of Gy = and so on, down to group G,.
Note that, since T7 might use the distance d3 edge between G; and § k3, We

cannot yet conclude where the apex of the last Class II tree will be (let that
tree be T,,_1). So, let us summarize what we know so far:

e Tp uses all radial edges {vo,v;} (for 1 <i < 3k%1 + 1) and the maximal
diagonal edge {031%1 +1,v3k} of distance d; (between G k1 and Gy),

* T; uses the center radial edge of group G i and the maximal diagonal
edge {01,03;%1 +2} of distance d;, (between G; and G k%l),

¢ the center radial edges of groups § i to Gy are used by Class I trees
(with apex in the respective group),

¢ there are k — 2 Class II trees with apexes in an outmost vertex from the
right vertex of group §; to the right vertex of group Gy.1, and
2

e the last Class II tree T,,_1 uses the maximal diagonal edge {v1, [ ;%1} of
distance d; (between Gy and G 1 — it is the only distance d; edge left).

It remains to determine the distance d3 edge and the second radial edge
of Ty as well as the distance d3 edge (and hence the apex) of T;,_1. We will see
that there are three base cases for that:
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(a) Case 1. (b) Case 2a. (c) Case 2b.

Figure 3.14: lllustration of the three base cases. Tj is depicted in blue, Ty is red,
and T,,_1 orange. The red dashed radial edge depicts the second radial edge, that
T; has to use.

Case 1: Tj has its apex in G;.

That is, T; has its distance d3 edge between §; and QHTs. Hence, the
second radial edge of T is {vy, Uskp1 } and T, has its apex in the right
vertex of G k1 (see Figure 3.14(a)).

Case 2: Tj has its apex in G oy

That is, T; has its distance d3 edge between G k1 and G;. Hence, T,,_1 has
its distance d3 edge between G; and G e (so its apex is in the left vertex
of G1) and therefore the second radial edge of T; must be {vg, v3;} (since
no other tree can use it anymore). However, there are two possibilities
for the distance d3 edge of T; now:

a) either {03;%1, v3 } as depicted in Figure 3.14(b), or

b) {03;%1+2, U3(k—1)+2) as depicted in Figure 3.14(c).

By now, we have fixed all maximal diagonal edges and they fulfill prop-
erty (b) of a base partition. Finally, it only remains to determine the radial
edges of all Class II trees. Note that for each group G’ (from G; to G 1 ) with
two apexes of Class II trees in it (at the outmost vertices), those two trees have
the same pair of radial edges in their span (in the groups opposite to G’). So
we have two (non-isomorphic) choices for each of those cases (independently).

Further, in Case 1 T,,_1 needs to contain {vg, v3;} and the Class II tree with
apex in the right vertex of G; needs to contain {vy, v, k1 417 (the other radial
edges in its span are used by T; and Tp). This leaves a pair of Class II trees for
each group from G, to G =y Meanwhile, in Case 2 we have a pair of Class II

trees for each group from G; to Gi1. That is, in Case 2 we have exactly 25!
2
possibilities (for the Class II trees) to conform to the base partition properties,
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while in Case 1 we only have 2%’ possibilities. Given the two choices for T;
in Case 2, we get

227 427
base partitions in total. O

In Appendix B, we give some examples of partitions corresponding to the
three base constructions.
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Partitions into Plane Subgraphs

In this chapter we generalize our ideas from Chapter 3 to partitions into
arbitrary plane subgraphs. We show a negative answer to the following
question:

Question 4.1. Can every complete geometric graph on 2n vertices be partitioned into
n plane subgraphs?

Now that we are concerned with partitions into subgraphs it would also
be viable to allow other values for the number of subgraphs in a partition, or
allow complete geometric graphs with an odd number of vertices. However,
given the fact that e.g. a point set S in convex position determines a crossing

family of size LE—U, we cannot aim for a smaller size partition in general. On
the other hand, allowing more subgraphs, the problem gets trivial once we
allow 2n — 1 subgraphs (since any 2n — 1 stars form a proper partition). Hence,
whenever we speak of a partition into subgraphs, we refer to a partition into
(at most) n subgraphs, thereby also staying close to the notion of the previous
chapters.

In Theorem 2.1 we heavily exploited the structure enforced by spanning
trees. This is not possible anymore: we cannot make any assumptions on the
number of edges, not even about connectedness. The only property we can
(and will) exploit is the fact that we still have maximal diagonal edges and
radial edges may only be contained in their span (cf. Lemma 3.6).

Recall that the problem of partitioning a geometric graph into plane sub-
graphs is equivalent to a classic edge coloring problem, where each edge
should be assigned a color in such a way that no two edges of the same
color cross (of course using as few colors as possible). This problem be-
longs to a broader question concerning the chromatic number of intersection
graphs of geometric objects, a problem that received considerable attention;
see e.g. [PKK*14, Dav21, KKNO04]. The geometric objects in our setting are
line segments, a natural setting, which was also the topic of the CG:SHOP
challenge 2022 [CGC].
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4. PARTITIONS INTO PLANE SUBGRAPHS

Contribution. We show that there exist bumpy wheels that cannot even be
partitioned into plane subgraphs. In fact, it turns out that allowing arbitrary
plane subgraphs instead of plane spanning trees does not help much: the only
bumpy wheel that can be partitioned into plane subgraphs but not into plane
spanning trees is BW3 5.

Theorem 2.2. For odd parameters k, £ > 3, the edges of BWy , cannot be partitioned
k(+1

into n = *5= plane subgraphs if and only if £ > 5 or ({ = 5 and k > 3).
The remainder of this chapter is dedicated to the proof of Theorem 2.2,
where we first focus on the case ¢ > 5.

Theorem 4.2. For any odd parameters k > 3 and ¢ > 5, the edges of BW ; cannot
k(+1

be partitioned into n = == plane subgraphs.

The proof is more technical than for spanning trees. Again, we start with
some structural results. Recall that the distances of two incomparable edges
sum to at most 2n — 2 (Lemma 3.15). Also recall the notation d; = HTlé —1
from Section 3.2. The following result is the analogue of Proposition 3.9:

Proposition 4.3. Let Dy,...,D,_1 be a partition of BWy , into n = MT“ plane

subgraphs (if it exists). Then between each pair of opposite groups and for each
1 <1 < £ there are at least i diagonal edges of distance at least d; that are maximal
in their subgraph.

Proof. First note that for every diagonal edge e it holds dist(e) < d;. Further-
more, every diagonal edge e with dist(e) > d, connects opposite groups.
Observe that between every pair of opposite groups and every 1 <i </
there is a crossing family of size i (Where each edge has distance d;). Hence,
all these edges need to belong to different subgraphs. Furthermore, each
such edge gives rise to a maximal diagonal edge in its subgraph: either it is
maximal itself or there is a larger edge that is maximal. However, since i < /,
larger edges are necessarily between the same pair of opposite groups. Hence,
we conclude that there are at least i maximal diagonal edges of distance at
least d; between each pair of opposite groups. O

Rephrasing Proposition 4.3, we may also say that between each pair of
opposite groups there is one maximal diagonal edge of distance (at least) d;,
another of distance at least d, yet another of distance at least d3, and so on
until distance d,.

And since there are exactly k pairs of opposite groups, Proposition 4.3
guarantees at least k - / maximal diagonal edges of distance at least d; in any
partition of BWy ;. For each pair of opposite groups, we distinctly pick for
each 1 < i < / one of those edges that has distance at least d; to get precisely
k- ¢ edges in total, which we call forced diagonal edges in the following (or
forced edges for short).
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These forced edges will take the role of the maximal diagonal edges from
the previous chapter. Let E¢,eq be the set of forced diagonal edges, then from
the definition it follows:

(4.1)

Note in the following that Lemmas 3.15 and 3.16 hold especially for forced
diagonal edges that are contained in the same plane subgraph, since they are
maximal and therefore incomparable.

The following proposition is the analogue of Proposition 3.5 generalized
to subgraphs.

Proposition 4.4. Let Dy, ..., D,_1 be a partition of BWy, into n = k£27+1 plane

subgraphs (if it exists). Then one subgraph, say Dy, contains exactly one forced
diagonal edge and all other n — 1 subgraphs contain exactly two forced diagonal
edges.

Proof. In total there are k - £ forced edges and we have n = ¥l subgraphs.

Hence, to prove the statement, we only need to show that no subgraph can
contain more than two forced edges. To this end, we consider the two cases
k =3 and k > 3 separately:

Case 1: k > 3.

By Lemma 3.15, in each subgraph the sum of distances of its maximal
diagonal edges may not exceed k¢. If there is a subgraph with more
than two forced edges (each of distance at least d, = "_Tlé), the sum of
their distances is at least 3 - k%lﬁ > k¢ for k > 3.

For the case k = 3, we need a more careful analysis.

Case 2: k = 3.

Again by Lemma 3.15, if there is a subgraph D’ containing three forced
edges, then all three need to have distance exactly dy = ¢ (for a combined
distance of at most 3/) and the subgraph cannot contain any further
forced edges. Consider now the three forced edges of distance d;
(between the three pairs of opposite groups). The subgraphs containing
such a forced edge of distance d; cannot contain any other forced edge,
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4. PARTITIONS INTO PLANE SUBGRAPHS

which can be seen as follows: By Lemma 3.16, the d; edges can only
be paired with an edge of distance d; (which are already used by D’).
Hence, we get three subgraphs containing only one forced edge (of
distance d;). Together with D’ this leaves 3¢ — 6 forced edges of distance
at least dy_; to be covered by the remaining subgraphs (note that by
Lemma 3.15 any of the other subgraphs contains at most two of them).
Hence, in total we would already need at least

3—6 30+1 1 1
S 2~ "3

plane subgraphs to cover all forced edges.

Therefore, we need n — 1 subgraphs containing exactly two forced edges
and one subgraph (say D) containing one forced edge, to cover all k- / =
2n — 1 forced edges. O

The following proposition is also a generalization of an idea, that we
already used towards the proof of Theorem 3.10.

Proposition 4.5. Let Dy, ..., D,_1 be a partition of BWy , into n = MT“ plane

subgraphs (if it exists) and let eq be the forced diagonal edge in Dy with dist(ep) =
dy — xo (for some integer xo > 0). Moreover, foreach 1 <i <mn—1,let x; > 0
be such that the distances of the two forced diagonal edges e; and e} in D; sum to
2n — 2 — x;. Then,

n—1 o
i=0 2
holds.
Proof. By Equation (4.1), we know that

dist(ep) + Hi (dist(e;) + dist(e})) > k- (k¢ — 1)§

i=1

holds for the sum of all forced diagonal edges. Plugging in dist(eg) =
K10 — 1 — xq and dist(e;) + dist(e}) = kl — 1 — x;, yields

k+1 = ké —1
-V — — — — . > [R—
5 =14+ (n—-1)(kt—1) ;:0 x; >kl 5
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Finally, plugging in n = k“l and rearranging terms
n—1
Yo o M ) ke
o 2
k+1 ke —1
ket +0—2—kl+1
2
-1
)
provides the desired result. ]

Note that, in Proposition 4.5, equality holds if and only if all forced
diagonal edges attain there minimal possible distance, i.e., between every
pair of opposite groups there is exactly one forced edge of distance exactly d;,
exactly one forced edge of distance exactly dy, exactly one forced edge of
distance exactly d3, etc. (cf. Proposition 4.3, which was giving only a lower
bound). Indeed, the only step in the proof of Proposition 4.5 that used an
inequality was the usage of Equation (4.1), which gives equality precisely
under the mentioned condition.

Let the forced diagonal edge ¢y in Dy from now on connect groups G k1
and Gy (similar to the maximal diagonal edge of Ty in Section 3.2). Further
note that two endpoints of the two forced diagonal edges ¢; and e/ in Di (i #0)
must be contained in a common group G, since otherwise e; and ¢ would
cross. We call the set of vertices in span(e;, e}) that lie in this common group
G the apex of D; (again as in Section 3.2). Espec1ally note that all radial edges
in D; (i # 0) are contained in span(e;, e}) (cf. Lemma 3.6).

As in Section 3.2, we are using a counting argument to show that certain
edges cannot be covered. To this end, it is convenient to introduce the notion
of additional vertices. Intuitively, consider the span of a subgraph (say with
two forced diagonal edges), then this span contains at least three vertices —
two endpoints of the forced edges and at least one vertex in the apex (which
may be a common endpoint of the forced edges). All other vertices in the
span contribute to the additional vertices (except vy which is not relevant
here). More formally, note that cl(ej ) contains exactly (551¢ +2 + xq) vertices
(those of the first k’l groups, two outmost vertices, and xp extra vertices).
Moreover, for i # O span(e;, e!) contains exactly (2 + 1+ x;) vertices (two
outmost vertices, one vertex in the apex, and x; extra vertices (possibly also in
the apex, making its size larger than 1)). We call the set of all extra vertices
additional vertices; see Figure 4.1(a).

Lemma 4.6. In any partition of BWy ¢ into n = ké“ plane subgraphs any inside

radial edge of the last szrl groups Gy, ..., G is ezther incident to the apex or to an
2
additional vertex of its subgraph.
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4. PARTITIONS INTO PLANE SUBGRAPHS
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Or,
(a) Additional vertices. (b) Special radial edges.

Figure 4.1: lllustration of some terms.

Proof. Let f be an inside radial edge of one of the last kJFTl groups. If f belongs
to Dy, it is incident to an additional vertex (since it is not in the first k%l
groups and not incident to one of the two outmost vertices). On the other
hand, if f belongs to some D; with i # 0, it still cannot be incident to one of
the two outmost vertices in span(e;, eg), so it is either incident to the apex or
an additional vertex. O

Finally we call the inside radial edges and inside vertices of the two groups

G and Gy special radial edges and special vertices; see Figure 4.1(b). Now we
2

are ready to prove Theorem 4.2, which we again restate for easier readability:

Theorem 4.2. For any odd parameters k > 3 and ¢ > 5, the edges of BW , cannot
k(+1

be partitioned into n = == plane subgraphs.
Proof. Note that there are exactly 2/ — 4 special radial edges. By Lemma 4.6
they are either incident to an apex (in one of the two groups) or an additional
vertex. Any subgraph with an apex in G k1 OF Gr must contain a forced
edge between those two groups. By the definition of forced edges there are
exactly ¢ of them between G 1 and Gy and one of them is taken by Dy. Hence,
g k1 and Gy together contain the apexes of at most £ — 1 subgraphs. Finally,
Proposition 4.5 gives an upper bound on the total number of additional
vertices. Hence, in total we can cover at most
(-1 3

(=1)+——=-(/-1

(-1)+ 5 =5(t-1)
special radial edges with our n subgraphs (note that we count only one vertex
for each apex because if an apex is larger than 1, that is, contains additional
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vertices, we already accounted for that in the additional vertices bound). Using
¢ > 5, we conclude that not all 2/ — 4 special radial edges can be covered:

3 3 1
SE=1) <S(=1)+35(¢=5)=20—4

O]

For the case ¢ = 5, we need to analyze the structure of our plane subgraphs
a little further.

Theorem 4.7. For any odd parameter k > 5, the edges of BW 5 cannot be partitioned
Sk+1

into n = >5= plane subgraphs.

Proof. As before, we first consider the special radial edges, that is, the inside
radial edges of the groups QHTl and Gi. Since ¢ = 5, there are 6 of them
here. Furthermore, any subgraph that has its apex in § k1 OF 0k must use a
forced edge between those two groups (the blue stripe in Figure 4.2). However,
because Dy already uses one of these 5 forced edges, there are at most 4 apexes
ing k1 and Gy together. Moreover, Proposition 4.5 yields at most 251 = 2
additional vertices in total.

To summarize, between the two groups G i1 and Gy there are 6 special
radial edges to be covered in 4 apexes. This implies that two of these special
vertices must be additional vertices. In particular, there cannot be any further
additional vertex in another apex. Moreover, all forced diagonal edges attain
their minimal possible distance (see the remark after Proposition 4.5), i.e.,
we have exactly one forced diagonal edge of each distance d, . .., ds between
every pair of opposite groups.

Consider now the inside radial edges in all groups from gHTS to Gi_1.
By Lemma 4.6 and the fact that all additional vertices are special vertices,
they must be incident to some apex. Also, since the opposite groups are
between G; and § 1, it is not possible to place special vertices as additional
vertices in the respective subgraphs. Hence, these subgraphs use up all forced
edges of distances dy, d3, d4 (in the grey stripes in Figure 4.2), except of course
those between the pairs of opposite groups G; and G k1, g k1 and Gy, and Gy
and G 1

Since k > 5, each edge between G; and G k1 CrOsses every edge between
Gy and G 1 (the red stripes in Figure 4.2). Furthermore, two forced edges
between the same pair of opposite groups cannot be in the same subgraph
(because they are both maximal). Hence, we have 6 forced edges of distances
dy, d3,dy (call them [effover edges) between those two pairs of opposite groups,
that we still need to pair with a second forced edge in their subgraph.

However, by Lemma 3.16 all forced edges of distance d; (except one if used
by Dy) need to be paired with a distance ds forced edge in their subgraph.
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4. PARTITIONS INTO PLANE SUBGRAPHS

=y + Gris
o R, 2
gz.'-, .-:gk—l
G Gy
Figure 4.2: High level overview of the proof of Theorem 4.7. We have at most
5%1 = 2 additional vertices in total and the blue stripe (which contains the single

forced edge e of Dy) has to use both of them. Then, in the grey stripes we must
use all forced edges of distances d»,d3,ds. However, since the two red stripes
intersect (k > 5), there will not be enough forced edges to pair all 6 forced edges
of distances dy, ds, dy from the red stripes.

This leaves the 3 forced edges of distances d;,ds, ds between groups gk%l
and G, and possibly one forced edge of distance ds to pair the leftover edges
with. That is two less than what we would need. ]

Theorems 4.2 and 4.7 prove the “if” direction of Theorem 2.2. Towards
the other direction, using Theorem 2.1, it only remains to show that there is a
partition for BW3 5. However, in Section 3.1 (see Figure 3.2) we already gave
such a partition.

48



Generalized Wheels

In this chapter we generalize our construction to non-regular wheel sets. We
give a necessary condition in the setting of plane spanning trees (Theorem 2.3)
and a full characterization for partitioning into plane double stars (Theo-
rem 2.4). Recall that, for a tuple N = [ny,...,ni] of integers n; > 1, GWy
denotes the generalized wheel with group sizes n;. In Section 5.1, we prove
the following result:

Theorem 2.3. Let GWy be a generalized wheel with k groups and 2n vertices. Then
GWn cannot be partitioned into plane spanning trees if each family o k*Tl consecutive

groups contains (strictly) less than n — 2 vertices.

Note that the geometric regularity of generalized wheels is not strictly
required (but eases the proofs). In fact, we show that for every wheel graph
there exists a generalized wheel graph with the same rotation system.

Considering the other side of the story, we show that many generalized
wheels can already be partitioned into plane double stars. In fact, we give the
following characterization:

Theorem 2.4. Let GWy be a generalized wheel with k groups and 2n vertices. Then
GWn cannot be partitioned into plane spanning double stars if and only if there are
three families of k%l consecutive groups, such that (i) every family contains at most
n — 2 vertices and (ii) every group is in at least one family.

We phrased Theorem 2.4 this way to make it consistent with Theorem 2.3;
however, let us rephrase it in a way that better indicates the gap between the
two theorems. Let F; denote the family of 5! consecutive groups starting
at G; in clockwise order (whenever speaking of a family without further
specification, we refer to such a family of 45! groups for the remainder of this
section). Two families F; and F;, are called consecutive and |F;| denotes the
number of vertices in F;. If |F;| < n — 2 holds, we call F; simuall, and otherwise
large.
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5. GENERALIZED WHEELS

Corollary 5.1. Let GWy be a generalized wheel with k groups and 2n vertices. Then
GWy can be partitioned into plane spanning double stars if and only if there are k%l

consecutive families each containing (strictly) more than n — 2 vertices.

Proof. If, for the one direction, there are kal large consecutive families, then
there is a group G* (namely the one that is contained in all these *5! families)
such that any family containing G* is large. In particular, there cannot be
three small families covering all groups. Hence, by Theorem 2.4, there is a
partition into plane double stars.

On the other hand, if there are no k%l large consecutive families, we can
find three small families as follows. Note first that every group is contained in
some small family. Pick a small family F arbitrarily and let G be the first group
after F (in clockwise order). Among all small families containing G, pick the
one that is “furthest” from F, that is, has least overlap with F, and call it F'.
Let G’ again be the first group after F/ and among all small families containing
G’ pick the one furthest from F’ and call it F”. Since F” cannot contain G, we
conclude that the three small families F, F/, F” cover all groups. O

5.1 Plane Spanning Trees

Theorem 2.3 extends Theorem 3.2 to generalized wheels and, as we will see,
to a large extent the proof is analogous. We remark that the condition in
Theorem 2.3 is only a sufficient condition but not a necessary one. In fact, we
found some generalized wheels not fulfilling the condition, that still cannot
be partitioned into plane spanning trees (verified by computer assistance), for
example, GW[p 3345 cannot be partitioned.

In Section 3.2 we considered the more restrictive setting of bumpy wheels
and showed for which parameters these cannot be partitioned into plane
spanning trees. We found this presentation more instructive, however, now
we need some of the technical results in the context of generalized wheels.
All results from Observation 3.3 to Proposition 3.9 hold for generalized
wheels as well, exactly the way they were stated for bumpy wheels, with
two exceptions: Lemma 3.4 (iii) and Proposition 3.9. In the following, we
explain precisely which parts of the mentioned results do not carry over and
how to resolve this (also in the proofs of the other results that use Lemma 3.4
(iii) or Proposition 3.9).

Adjusting Lemma 3.4 (iii). Recall that Lemma 3.4 (iii) guarantees, for a
spanning tree Ty with exactly one maximal diagonal edge, the presence of all
radial edges along k%l consecutive groups plus one. This statement carries
one-to-one over to generalized wheels. However, the precise bound ("*Tlé +1)
on the number of radial edges does not carry over. We used this value in the
proof of Proposition 3.5 to show that there is a single spanning tree in the
partition with exactly one maximal diagonal edge.
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5.1. Plane Spanning Trees

We claim, however, that this statement also holds in our setting of gen-
eralized wheels, in other words, Proposition 3.5 persists. The argument in
the proof of Proposition 3.5 can be adjusted as follows. Assume that there
are two trees Ty, T; with only a single maximal diagonal edge, then Ty and T;
together cover all radial edges of k — 1 groups plus two (using the first part
Lemma 3.4 (iii)). Hence, there is only a single group, say Gi, whose radial
edges are not entirely covered by Ty and T;. Since each of the remaining
n — 2 trees contains at least one radial edge, it follows that Gy contains at least
n — 2+ 2 = n vertices.

However, in this case, the condition of Theorem 2.3 is not fulfilled. Or,
phrased the other way around, a generalized wheel that fulfills the condition
of Theorem 2.3, also fulfills Proposition 3.5.

Adjusting Proposition 3.9. It requires some effort to fit the formulation of
Proposition 3.9 to generalized wheels. In essence, this reformulation only

affects the values of the distances of maximal edges (which is not (k%lﬁ - ]>

anymore), however, not the value of the distance is relevant but the number
of different distances. We give the precise formulation of Proposition 3.9 in
the context of generalized wheels and add the proof, which is very similar to
the one of Proposition 3.9, for the sake of completeness:

Proposition 5.2 (cf. Proposition 3.9). Let Ty, ..., T,,_1 be a partition of GWy (with
N = [my, ..., ng] positive integers) into plane spanning trees (if it exists). Further
let Gy, Gy be a pair of opposite groups and d* be the distance of a largest edge between
Gy and G,. Then, for each j € {1,...,max(ny,ny)} there is at most one diagonal
edge connecting Gy and G, of distance d} = (d* + 1 —j) that is maximal in its tree.

Proof. Without loss of generality, let n, > n,, i.e. max(ny,ny,) = n,. Observe
that for any j € {1,...,n} there are at most j edges of distance d; between Gy
and G, (since some edges of this distance may be between a different pair of
groups now); see Figure 5.1(a).

For the remainder of the proof, we only consider edges with one endpoint
in G, and the other endpoint in G,. First note that for every j € {1,...,n.},
there are j* = min(j, ny) edges of distance d} (between G and G,).

Consider for some j € {2,...,n,} the distance d;. and let cy,...,cj be the
colors used for the j* edges of this distance, which are all distinct, since these
edges form a crossing family.

Case 1: j <ny, ie, " =].

By Lemma 3.7, the j — 1 pairwise crossing edges of (the larger) dis-
tance d;-_l must use the same color as an edge of distance d;- (w.lo.g.
Clyer-, c]-_l). Hence, the corresponding edges of distance d} cannot be
maximal (again using the argument that there cannot be two maximal
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G,

(a) (b)

Figure 5.1: lllustration of the proof of Proposition 5.2. (a) The edges of distance d;.
(j = 4 here) form a crossing family. (b) Maximal diagonal edges may not all be
between Gy and G,,.

diagonal edges between the same pair of groups). On the other hand,
the color ¢; cannot be used by any edge of larger distance, since again
by Lemma 3.7 there would also be an edge of color ¢; with distance d;‘q'
Hence, indeed the only edge of distance d;- that is maximal in its tree is
the one of color ¢;.

Case 2: j > ny, ie, = ny.

First note that now there are equally many edges of distance d;- and d;-_l,
namely n, many. Using the arguments as in Case 1, we conclude that
there is no edge of distance d]’. that is maximal in its tree.

Lastly, for j = 1 observe that the single edge of distance d/ is clearly
maximal. O

Putting everything together. We are now ready to prove Theorem 2.3. For
convenience we introduce a little more notation and slightly rephrase the
theorem. For j € {1,...,k}, define (the indices of) the 5! consecutive groups
starting at G; as [}, that is, [; = {j,j+1,...,j+ k_Tl — 1} (as usual all indices are
taken modulo k). Then, Theorem 2.3 can be equivalently phrased as follows:
GWy cannot be partitioned into plane spanning trees if for all j € {1,...,k}
the inequality } ;¢ 1; < 7 — 2 holds.

Proof of Theorem 2.3. First of all note that if there is an i such that n; = 1 (that is,
a group consisting of only one vertex v;), the condition of Theorem 2.3 cannot
be satisfied: Consider the line through vy and v;, then on each side there are
k1 consecutive groups and one side must contain a total of at least 1 — 1
vertices. So, we can assume from now on that n; > 2 holds forall 1 <i <k.

The remainder of the proof is analogous to the proof of Theorem 3.2.
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5.2. Dropping the geometric regularity

Let the condition in Theorem 2.3 be satisfied and assume for the contrary
that there was a partition Ty, ..., T,_1. Again, since Ty uses at least k outmost
radial edges (Proposition 3.5), we can have at most k + 1 spanning trees
containing an outmost radial edge.

Counting the trees not containing any outmost radial edge, we need to be
a bit more careful now. We claim that there are at most

max np—2
je{l..k} z;‘;( )

spanning trees not containing any outmost radial edge. The arguments are
analogous as in Theorem 3.2: By Proposition 3.8, the apex of a special wedge
can only be in one of the k%l groups whose radial edges are not fully used
by Tp. Also by Proposition 3.8 each such group §; contains the apex of
at most n; — 2 special wedges. Furthermore, by Proposition 5.2, instead of
considering HTl consecutive groups it suffices to sum over k%l consecutive
groups. The crucial difference to Theorem 3.2 is that we cannot just assume
w.l.o.g. a position of Ty and hence, we need to take the maximum over all
possible families of k%l consecutive groups.
Hence, whenever
k+14) (nj—2)<n
i€l

holds for all j, we cannot find enough spanning trees. Rearranging terms, this
inequality is equivalent to };cj n; < n — 2 (recall that |I;| = 1. O

5.2 Dropping the geometric regularity

In this section, we illustrate how to drop the geometric regularity of general-
ized wheel sets. More precisely, we show that for every wheel set there exists
a weakly isomorphic generalized wheel, i.e., a generalized wheel with the
same rotation system.

Similarly to Chapter 3 we will use the notation e~ for the (open) halfplane
defined by (the supporting line through) e and not containing vy (the only
vertex inside the convex hull). Note that we do not need an even number of
vertices here, so we consider point sets on n vertices now (instead of 2n).

Theorem 5.3. Let P be a set of n > 4 points in the plane in general position with
exactly one point vy inside the convex hull. Then there exists a generalized wheel
GWy defining the same rotation system.

Proof. Denote the vertices on the convex hull by v4,...,v,_1 in clockwise
order (around vp) and for each vertex v; (1 < i < n — 1) define the opposite
boundary edge (denoted by &(v;)) as the unique boundary edge {v}, v;1} such
that v9 € Av;v;vj,1. Further define the groups as sets of vertices having
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Figure 5.2: (a) Defining the groups (marked in green); opposite boundary edges
drawn blue. (b) For any vertex vy between v; and v}, the triangle Axuv has to
be contained in Aviuv, since vy lies in the cone v;xv;. (c) The corresponding
generalized wheel.

the same opposite boundary edge (see Figure 5.2(a)). We will see that these
groups correspond precisely to the groups in the generalized wheel. Note
that not all vertices can be in the same group (for example, the endpoints of
€(v;) cannot be in the same group as v;).

First, we show that each of those groups consists of consecutive vertices
in P (along the convex hull). Let v;, v; (i < j) be two vertices on the convex hull
with &(v;) = &(v;j) := {u,v}. We claim that all vertices of P in e~ = {v;,v;}~
(w.lo.g. vi11,...,0j-1) belong to the same group as v; and v;. Indeed, for
any v, with i < k < j we have Axuv C Aviuv (where x is the intersection of
{vi,u} and {vj,v}); see Figure 5.2(b). And since vy € Axuv, the claim follows.

Next, we show that for each opposite boundary edge &(vy) = {u,v}
(of some hull vertex vy) the vertices u and v belong to different groups.
Indeed, since vg € Aviuv, we get that &(u) must lie in cl(e, ) of the edge
ey, = {v,vx} (see also Figure 5.2(b)). Similarly, é(v) must lie in cl(e; ) of the
edge e, = {u,vx}. Hence, u and v have different opposite boundary edges.

Further, we show the following two properties by induction on the number
of vertices m = n — 1 on the convex hull:

(P1) P defines an odd number of groups and

(P2) for each v;, its opposite boundary edge &(v;) splits the remaining groups
into equal parts with respect to the number of groups, that is, the line
through v; and any point of (the interior of) &(v;) has equally many
groups on each side (excluding the group containing v;).

Concerning the base case m = 3 note that each of the 3 vertices forms
its own group and hence, (P1) and (P2) hold. So, let P be a point set with
m > 4 hull vertices and consider P’ by removing an arbitrary hull vertex v;
such that P’ = P\ v; still contains exactly one point inside the convex hull
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v

(a) Case 0. (b) Case 1. (c) Case 2. (d) Case 3.

v

Figure 5.3: lllustration of the case distinction. The blue shaded region always
depicts the area of vertices having opposite boundary edge {v;_1,v;,1}.

(a) Case 0: v; joins the group of v;_1 and all remaining groups remain unchanged.
(b) Case 1: v; joins the group of v;_1 and v;;1 and all remaining groups remain
unchanged.

(c) Case 2: v; forms a new group of size 1 and the group containing u and v is
split into two groups, one with opposite boundary edge {v;_1,v;} and the other
with opposite boundary edge {v;,v;11}.

(d) Case 3: v; joins the group of v;_7 and all remaining groups remain unchanged.

(that is, v € Av;v;110;_1). By the induction hypothesis, P’ fulfills properties
(P1) and (P2). Now, insert v; back in and let &(v;) = {u,v}. First, we will
discuss the case that u and v; ;1 (or analogously v and v;_;) coincide (Case 0);
otherwise, consider the (crossing) edges {v;_1,u} and {v;;1,v} and call their
intersection x; further denote their intersections with Av;uv by y and z (see
Figure 5.3). Then, there are 4 different regions of Av;uv that may contain vy
(shaded gray in Figure 5.3(b-d)). We consider these cases separately (note that
in Case 0 only one of the two crossing points y and z exists, say z):

Case 0: u and v;; coincide (or analogously v and v;_; coincide).

First, if u and v;, 1 coincide, v and v;_; cannot coincide too, since other-
wise there would only be three vertices on the convex hull. Furthermore,
v is contained in the triangle uzv, since otherwise vy would not lie in
the interior of the convex hull without v;.

Then v; and v;_; have the same opposite boundary edge {u,v}, ie.,
v; joins the group of v;_1. Moreover, the edge {v;_1,v;11} is replaced
by the two edges {vi_1,v;}, {vi,vit1}. There cannot be any vertex
having {v;_1,v;} as opposite boundary edge and all vertices that had
opposite boundary edge {v;_1,vi+1} now have opposite boundary edge
{vi,vi;1}; see Figure 5.3(a). In total, the number of groups remains
unchanged, hence (P1) holds. Concerning (P2) note that all groups
remain unchanged except v; joining the group of v;_;. Furthermore, all
vertices that had opposite boundary edge {v;_1, v;1} now have opposite
boundary edge {v;, v;11}. Hence, using the induction hypothesis, (P2)
also holds.

55



5. GENERALIZED WHEELS

Case 1: vg € Axuv.

Here v;_1 and v;;1 belong to the same group with opposite boundary
edge {u,v}. So, v; joins this already existing group. Moreover, the edge
{vi_1,vi41} is replaced by the two edges {v;_1,v;}, {vi, vi;1}. However,
due to the convex position of the hull vertices there cannot be any
vertex having {v;_1,v;} or {v;,v;11} as opposite boundary edge (see
Figure 5.3(b)). In total, the number of groups remains unchanged, hence
(P1) holds. Further (P2) holds by induction hypothesis (clearly for any
vertex other than v;, and for v; since it has the same opposite boundary
edge as v;_1 and v;41).

Case 2: vp € Qvjyxz.

In this case, &(v;_1) lies in ¢;, of the edge e, = {u,v;} and &(v;;1) lies in
e, of the edge e, = {v,v;}. Hence, v;_1 and v;;, are in different groups
already in P’ and in addition v; forms a new group of size one in P.
Furthermore, u and v belong to the same group in P’ (with opposite
boundary edge {vj_1,v;11}). However, after inserting v;, this group
will be split into two parts — the u part with opposite boundary edge
{vi,vi_1} and the v part with opposite boundary edge {v;, vi1} (see
Figure 5.3(c)). All other groups stay the same. So in total, the number of
groups increases by two, that is, it remains odd (confirming (P1)).

Concerning (P2), each vertex in the group containing u gains precisely
one group on each side of its line through the new opposite boundary
edge {v;,v;_1}, namely the group containing v; on the one side and
the group containing v on the other side. The same holds for each
other vertex in e, (without any change to the opposite boundary edge).
Similarly, the vertices in the group containing v and all other vertices
in e, gain exactly one additional group on each side as well. Finally, v;
fulfills (P2) because (P2) holds for u (and v) in P’ and any line through v;
and (the interior of) {u, v} has the same groups on each side in P as any
line through u and (the interior of) {v;_1,v;41} in P/, with the addition
of the group containing u on the one side and the group containing v
on the other side. Hence, also (P2) holds for all vertices.

Case 3: vy € Axvz.
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Similar as before, v;_1 and v;;; belong to different groups already
in P’. However, v; now joins the group of v;_; in P. Moreover, the
group that had {v;_1,v;41} as opposite boundary edge (that is, the
group containing v), now has the opposite boundary edge {v;, vi1}
and there is no vertex having {v;,_1,v;} as opposite boundary edge
(see Figure 5.3(d)). Therefore, the total number of groups remains
unchanged (confirming (P1)). Concerning (P2) note that all groups
remain unchanged except v; joining the group of v;_;. Furthermore, all
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vertices that had opposite boundary edge {v;_1, v;+1 } now have opposite
boundary edge {v;, v;11}. Hence, using the induction hypothesis, (P2)
also holds.

Case 4: vy € Axyu.

This is analogous to Case 3 (just laterally reversed).

Finally, by property (P1) we can define the generalized wheel GWy (recall
that we need an odd number of groups here) with the exact same group sizes
in the same circular order as defined for P (see Figure 5.2(c)).

It remains to argue that P and GWy define the same rotation system, i.e.,
every point encounters the remaining points in the same cyclic order. In
particular we need to argue that vy always appears at the “right” spot: By
property (P2) and the definition of generalized wheels we know that for each
extreme point v;, the opposite boundary edge &(v;) of v; is the same for P and
GWny. Furthermore, in the cyclic order around v;, the inner point vy appears
between the two endpoints of &(v;). Hence, P and GWy define the same
rotation system, which concludes the proof. O

5.3 Plane Double Stars

This section is dedicated to the proof of Theorem 2.4.

Theorem 2.4. Let GWy be a generalized wheel with k groups and 2n vertices. Then
GWN cannot be partitioned into plane spanning double stars if and only if there are
three families of k% consecutive groups, such that (i) every family contains at most
n — 2 vertices and (ii) every group is in at least one family.

Roughly speaking this theorem tells us that generalized wheels with
rather evenly distributed group sizes cannot be partitioned into double stars,
whereas those with very uneven group sizes can be. An exception are regular
wheels, where every family of 51 consecutive groups contains precisely n — 1
vertices and hence, can always be partitioned into plane double stars.

Towards the proof of Theorem 2.4 we need a couple of definitions and
results introduced by Schnider [Sch16]. The edge v1v; in a double star (where
1 and v; are the non-leaf vertices) is called spine edgel. Given a partition of
the edge set of a complete geometric graph into double stars, the collection of
spine edges of the double stars forms a perfect matching [Sch16, Lemma 2],
called the spine matching. Conversely, a perfect matching M (on a point set P)
for which there exists a partition of K(P) into plane double stars such that the
edges of M are the spines of the double stars is also called spine matching.

IThe term “spine edge” is a frequently used term and in later chapters we will also define
it in other contexts.
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5. GENERALIZED WHEELS

Figure 5.4: A partition of the generalized wheel GW|p 3 4) into plane double stars.
The thicker edges form a spine matching.

\ €
\ fl)O
f
e\ T~
\gf
(a) Spine matching (b) Stabbing chain. (c) Cross-blocker.

(see also Figure 5.4).

Figure 5.5: lllustration of some terms.

Let e and f be two non-adjacent edges and let s be the intersection of their
supporting lines. Recall that we say e and f cross, if s lies in both e and f. If
s lies in f but not in e, we say that e sfabs f and we call the vertex of e that
is closer to s the stabbing vertex of e. If s lies neither in e nor in f, or even
at infinity, we say that e and f are parallel. A stabbing chain are three edges,
e, f and g, where e stabs f and f stabs g. We call f the middle edge of the
stabbing chain. Note that a stabbing chain implies two interior points, so in
our setting of wheel sets, there are no stabbing chains.

A cross-blocker is a perfect matching on six points in wheel position, where
the edge e connecting to the interior point vy stabs both other edges f and g,
f and g cross, and vy is not in the convex hull of f and g. See Figure 5.4 and
Figure 5.5 for an illustration of these terms.

Schnider [Sch16, Theorem 9] showed that a spine matching can neither
contain two parallel edges nor a cross-blocker.? On the other hand, it turns
out that for wheel sets, these two configurations are the only two obstructions:

2There is a third configuration that cannot occur, but this configuration requires a stabbing
chain, so when only considering wheel sets, we may ignore this.
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5.3. Plane Double Stars

Theorem 5.4 ([Sch16, Theorem 11]). Let P be a point set in general position and
let M be a perfect matching on P, such that

(@) no two edges are parallel,

(b) if an edge e stabs two other edges f and g, then the respective stabbing vertices of
e lie inside the convex hull of f and g, and

(c) if there is a stabbing chain, then the stabbing vertex of the middle edge lies inside
the convex hull of the other two edges.

Then M is a spine matching.

In the setting of wheel sets, case (c) cannot occur, whereas cases (a) and
(b) correspond exactly to the obstructions mentioned above. We thus get the
following characterization of generalized wheel sets that allow a partition into
double stars as a corollary of Theorem 2.4:

Corollary 5.5. A generalized wheel GWy can be partitioned into plane spanning
double stars if and only if it admits a perfect geometric matching that contains neither
two parallel edges nor a cross-blocker.

Consider a generalized wheel GWy with 2n vertices and interior vertex vy.
Let us try to construct a spine matching on GWy. To this end, we first con-
nect vy to some other point v; with an edge e = vyv;. Note that the remaining
points are now in convex position and hence, there is a unique perfect match-
ing on them without parallel edges, namely, the matching consisting of the
halving edges of GWy \ {vo, v1}. Indeed, if a perfect matching on a convex
point set contains a non-halving edge, the side of larger cardinality must
determine a parallel edge. Thus, for each choice of e we get a unique possible
matching, which we call a potential matching, and this matching is a spine
matching unless some edge is parallel to e or there are two edges that together
with e form a cross-blocker. In the following, we investigate the conditions,
under which these cases occur.

Consider a non-radial halving edge h of GWy. Then we call cl(h~) a bad
halfplane. Note that there might be no bad halfplanes, for example if GWy is
a regular wheel. Let us emphasize again that bad halfplanes are closed and
in particular, due to the properties of halving edges, the intersection of bad
halfplanes either is empty or contains a vertex of GWy.

Lemma 5.6. Let GWy be a generalized wheel and assume it has a bad halfplane B
bounded by an edge h. Assume M is a spine matching on GWy which contains the
edge e = vovy. Then the vertex vy lies in the bad halfplane B.

Proof. Assume for the sake of contradiction that v; does not lie in B. Then,
GWNn \ {vo,v1} contains two more vertices in B than the other (closed) side
of h. Let f and g be the two edges in M incident to the endpoints of k. Since
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U1

(b)

Figure 5.6: (a) lllustration of the proof of Lemma 5.6. The edges e, f, g form
a cross-blocker. (b) The drawn edges form a spine matching M and every bad
halfplane (blue) contains the vertex v; (Lemma 5.6). Furthermore, M is also the
potential matching defined by the halving edge vyv; and it does not contain any
parallel edges (Lemma 5.8).

M is a spine matching and by the arguments following Corollary 5.5, f and g
need to be halving edges in GWy \ {vo, v1}. Hence, f and g connect to vertices
in B. But then h separates f and g from e, and thus either one of them is
parallel to e or the three of them form a cross-blocker; see Figure 5.6(a). A
contradiction to M being a spine matching. O

See also Figure 5.6(b) for an illustration of Lemma 5.6. We immediately
derive the following corollary:

Corollary 5.7. If GWy has a collection of bad halfplanes whose intersection is empty,
then GWy cannot be partitioned into plane spanning double stars.

Proof. By Lemma 5.6, v; (the vertex connected to vp) lies in the intersection
of all bad halfplanes, implying that the intersection of all bad halfplanes is
non-empty. t

Next, we prove that the other direction of Corollary 5.7 holds as well. To
this end, we first derive some preliminary lemmas (again, see Figure 5.6(b)
for an illustration of Lemma 5.8).

Lemma 5.8. Let e = vgv; be a halving edge of GWy. Then the potential matching
defined by e has no parallel edges.

Proof. By the construction of the potential matching, for every pair of parallel
edges, one of the edges must be e. Assume for the sake of contradiction that
there is an edge f parallel to e. Since every edge of the potential matching
is a halving edge in GWy \ {vo, v1}, f contains n — 2 vertices on either side
(recall that GWy contains 2n vertices in total). Furthermore, since e and f are
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5.3. Plane Double Stars

Figure 5.7: The solid edges are halving edges defining bad halfplanes with inter-
section A. The dashed lines contain at least n vertices on the side containing A.
Rotating a line from vgu to vow will therefore find a halving edge with vertex in A
(red).

parallel, one side of e contains both endpoints of f and the n — 2 vertices from
one side of f. Hence, e contains n vertices on the same side; a contradiction to
e being a halving edge. O

For the following lemma we use a standard rotation argument.

Lemma 5.9. Let A be a non-empty intersection of bad halfplanes. Then A contains a
vertex v; such that vyv; is a halving edge of GWy.

Proof. First note that the intersection of the bad halfplanes contains a vertex
of GWy (recall that bad halfplanes are closed). Let u and w be the first and
the last vertex of GWy in this intersection (in clockwise order). Note that u
and w are both incident to one of the respective halving edges each. Since
bad halfplanes do not contain the center vy, the corresponding lines through
the radial edges vou and vow have at least n vertices on the side containing A
(see Figure 5.7). Rotating a line ¢ through vy from u to w (alongside A) will
therefore yield a radial halving edge of GWy with endpoint in A (because
hitting a vertex in A decreases the number of vertices on the “right” side of /,
while hitting a vertex on the opposite side of A increases that value). ]

We are now ready to prove the other direction of Corollary 5.7:

Lemma 5.10. If GWy cannot be partitioned into plane spanning double stars, then
GWN has three bad halfplanes whose intersection is empty.
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U1 U1
Vo
° h N
7 .
(b)

Figure 5.8: lllustration of the proof of Lemma 5.10. (a) Replacing f’ by f” yields
a cross blocker with the consecutive diagonal edges f and f”. (b) Since f and f’
are halving edges in GWy \ {vo, 01}, the edge i is a halving edge in GWy.

Proof. Assume that GWy cannot be partitioned into plane double stars, that
is, for every radial edge e the resulting potential matching contains either an
edge parallel to e or two edges which together with e form a cross-blocker.

Since every vertex is incident to at least one halving edge (again using a
standard rotation argument), we can now consider the potential matching
M defined by some radial halving edge e = vpv;. By Lemma 5.8, M has
no parallel edges. Since M is not a spine matching by assumption and it
does not contain any parallel edges, it has to contain a cross blocker. Let
f =uw and " = u'w’ be the diagonal edges in this cross blocker. We pick a
cross blocker in such a way that u and u’ as well as w and w’ are consecutive
along the convex hull (see Figure 5.8(a) for an illustration). Then the unique
minimal edge & such that f <. h and f’ <. h is a halving edge in GWy; see
Figure 5.8(b). Hence, there exists a bad halfplane, which does not contain v;.

We claim that the intersection of all bad halfplanes is empty. Indeed, if it
was not empty, then by Lemma 5.9 the intersection would contain a point v;
such that vgv; is a halving edge. But then, by the above arguments, there is a
bad halfplane which does not contain v;, which is a contradiction to v; lying
in the intersection of all bad halfplanes.

As the halfplanes are convex, it now follows from Helly’s theorem that
if the whole family has empty intersection, then there are some three bad
halfplanes whose intersection is already empty. Also note that there cannot
be two bad halfplanes with empty intersection. O

To summarize, we get:

Corollary 5.11. A generalized wheel GWy cannot be partitioned into plane spanning
double stars if and only if GWy has three bad halfplanes whose intersection is empty.

Proof. Follows from Corollary 5.7 and Lemma 5.10. O

Finally, we are ready to prove Theorem 2.4, which we restate here for
easier readability:
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5.3. Plane Double Stars

Figure 5.9: lllustration of the proof of Theorem 2.4.

Theorem 2.4. Let GWy be a generalized wheel with k groups and 2n vertices. Then
GWN cannot be partitioned into plane spanning double stars if and only if there are
three families o k%l consecutive groups, such that (i) every family contains at most

n — 2 vertices and (ii) every group is in at least one family.

Proof. Let GWy be a generalized wheel with k groups and 2n vertices. For
the proof it is more convenient to consider everything from the side of the
(complementary) 1 consecutive groups. That is, by Corollary 5.11, it is
enough to show that GWy contains three bad halfplanes whose intersection is
empty, if and only if there are three families of kzil consecutive groups, each
containing at least n + 1 vertices, such that no group is in all three families.

For the one direction, assume there are three bad halfplanes whose in-
tersection is empty (see Figure 5.9 for an illustration). Let hy, hy, h3 be the
three respective halving edges. Next, consider for each of the three halving
edges, a maximal diagonal edge f; (of distance dq) with h; <. f; (fori =1,2,3).
Clearly, the closure of each f;” contains HTI consecutive groups and at least
n + 1 vertices. It remains to show that there is no group contained in all f;".
To this end, note first that any pair of bad halfplanes overlaps, that is, contains
vertices of GWp in their intersection. Therefore, the union of the three bad
halfplanes covers the entire convex hull of GWy, which also holds for the
union of the three cl(f;”). Assume for the contrary that there is a common
group in the intersection of the three maximal diagonal edges, that is, " cl(f;”)
is non-empty. Let x be a point in (cl(f;”) and x” be the antipodal point. Then
x' lies in f;* for any i and hence the convex hull is not fully covered, a
contradiction.

For the other direction, let F;, F,, F5 be three families of k%l consecutive
groups each containing at least n +- 1 vertices such that no group is in all three
families. Also let fi, f», f3 be the (maximal) diagonal edges bounding these
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families. Then each cl(f;”) contains a halving edge e;. It remains to show
that the intersection of the corresponding bad halfplanes is empty. Note that
a non-empty intersection of three bad halfplanes must also contain a vertex
of GWy. Then, the corresponding group would be a common group of the
three F;’s. O
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Beyond-planar Partitions

Given the negative answers to Question 3.1 and Question 4.1, it is natural to
study partitions into beyond-planar subgraphs, that is, subgraphs in which
some crossings are allowed. Beyond-planar graphs are a natural generalization
of planar graphs and a rapidly growing research area. We refer the interested
reader to the book of Hong and Tokuyama [Hon20] or the survey of Didimo
et al. [DLM19] and references therein.

However, to the best of our knowledge, edge partitions into beyond-planar
graphs have not been studied. We initiate this study for two important classes
of beyond planar-graphs, namely, k-plane subgraphs (where every edge is
crossed by at most k other edges) and k-quasi-plane subgraphs (in which no k
edges pairwise cross). For the former, we show bounds on the number of
subgraphs required for partitioning K(S) for S in convex position (Theorem 2.5
and Theorem 2.6). For the latter, we show that a partition into 3-quasi-plane
spanning trees is possible for any S with |S| even (Theorem 2.8). This is best
possible, as 2-quasi-plane graphs are plane. We further present bounds on the
partition of any K(S) into k-quasi-plane subgraphs for general k (Theorem 2.9).

Contribution. In the setting of k-plane partitions we focus on the convex
setting, showing the following bounds (which are tight for k = 1):

Theorem 2.5. For a point set S in convex position with |S| = n > 5, K(S) can
be partitioned into [ %] many 1-plane subgraphs and [% | subgraphs are required in

every 1-plane partition.

Theorem 2.6. For an n-point set S in convex position and every k € IN, K(S) admits
a partition into at most \/% k-plane subgraphs. More precisely, for every s > 2, K(S)

admits a %Z(S_Z)—plane partition into [ %] subgraphs. Conversely, for every k € IN,

at least 47;;\1& subgraphs are required in any k-plane partition of K(S).

Towards the lower bound of Theorem 2.6, it will be crucial to understand
how many edges a k-planar graph can maximally have: Pach and Té6th [PT97]
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6. BEYOND-PLANAR PARTITIONS

showed an upper of (4.108\/%- n) in general and an improved bound of
(k4 3)(n —2) for k < 4. In our convex setting, we improve these bounds
to (2.465\/%-71) and to (%n— (k—|—3)) = (5+2)n—2)+1fork <4
(Proposition 6.3 and Proposition 6.1).

Along the way, we also study the well-known crossing lemma, which gives
a lower bound on the crossing number of a graph G in terms of |V(G)| and
|E(G)|. The crossing number cr(G) of a graph G is the minimum number of
crossings in any drawing of G. Ajtai et al. [ACNS82] and, independently,
Leighton [Lei83] showed that there exists a constant ¢ > 0 such that for every

graph G with n vertices and e > 4n edges, cr(G) > c- z—z holds. Asymptotically

this bound is known to be tight and currently the best constant ¢ = % is

due to Ackerman [Ack19]. In our convex setting, we derive the following
improved bound:

Lemma 2.7 (convex crossing lemma). Let G be a graph with n vertices and e edges
such that e > %n. Then every straight-line drawing of G in which the vertices of G
are placed in convex position has at least

3

20 &
C ~ 008235
n

243 n2
Crossings.

Moreover, we consider partitions into k-quasi-plane subgraphs for arbitrary
point sets (in general position). We show that a partition into 3-quasi-plane
spanning trees is possible for any S with |S| even. This is best possible, as
2-quasi-plane graphs are plane. We further present bounds on the partition of
any K(S) into k-quasi-plane subgraphs for general k.

Theorem 2.8. Let S be a point set of size 2n, then the complete geometric graph K(S)
can be partitioned into n 3-quasi-plane spanning trees.

Theorem 2.9. Let S be a set of n points in general position and denote the size of
a largest crossing family on S by m. Also let k € IN such that 3 < k < m. Then,
at least [ 2] subgraphs are required and at most [ 2] + [2=2%] subgraphs are

needed to partition the complete geometric graph K(S) into k-quasi-plane subgraphs.

Organization of this chapter. Section 6.1 and Section 6.2 are dedicated to the
k-plane setting, while Section 6.3 is concerned with k-quasi-plane subgraphs.
In Section 6.1 we focus on the case k = 1 and prove Theorem 2.5. In Section 6.2
we generalize to arbitrary k, proving Theorem 2.6 and Lemma 2.7. Finally, in
Section 6.3 we prove Theorem 2.8 and Theorem 2.9.
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6.1. Partitions into 1-plane subgraphs

Figure 6.1: A 2-plane graph M (black solid and dashed) and a plane subgraph M’
(solid black) with a maximum number of edges. The eight partial edges are depicted
in red.

6.1 Partitions into 1-plane subgraphs

In this section, we prove Theorem 2.5. As the upper bound follows immedi-
ately from Theorem 2.6, which we prove in the following section, we are only
concerned with the lower bound. To this end, we first prove a proposition
concerning the number of edges that a k-planar graph can maximally have for
small values of k:

Proposition 6.1. For every k < 4, every straight-line convex k-plane graph G on
n > 2 vertices has at most (k%‘}n — (k+ 3)) edges.

For the proof we need the following notion: Given a k-plane graph M,
consider a plane subgraph M’ of M with a maximum number of edges.
Then every edge e € E(M) \ E(M’) must cross at least one edge of M’'. For
e € E(M)\ E(M’), the closed portion between an endpoint of ¢ and the
nearest crossing of e with an edge of M’ is called a partial edge. Note that every
edge in E(M) \ E(M') contributes exactly two partial edges. Furthermore,
every partial edge is fully contained in a face of M’'. See Figure 6.1 for an
illustration.

Pach and Té6th [PT97] proved the following bound concerning the maximal
number of partial edges!:

Lemma 6.2 (cf. [PT97, Lemma 2.1]). Let k < 4 and let M be a k-plane graph.
Let M’ be a plane subgraph of M with a maximum number of edges. Let ® be a
face in M' with |®| > 3, whose boundary is connected. Then there are at most
(|®| —2)(k+ 1) — 1 partial edges contained in the closed interior of .

With this lemma at hand, we are now ready to prove Proposition 6.1.
Recall that |®| counts the number of bounding edges of ® with multiplicities.

INote that Pach and Téth use the term half-edge. However, as this term is also commonly
used in other contexts, we decided to use partial edge.
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Proof of Proposition 6.1. Let k < 4 and let G be a straight-line, convex k-plane
graph. Furthermore, let G’ be a plane subgraph of G with a maximum number
of edges. W.l.o.g. we may assume that G and hence, also G’ contains all n
convex hull edges.

Thus every face ® in G’ has a connected boundary and hence, using
Lemma 6.2, contains at most (|®| —2)(k+ 1) — 1 partial edges. Further note
that the unbounded face does not contain any partial edge. Denote the set of
bounded faces of G’ by F. Then, using the fact that the unbounded face of G’/
contributes exactly n edges, it follows:

Y, (|®]=2) = (2(G') — ) — 2| F]

decF
= (2¢(G') —n) =2(f(G) - 1)
=2(e(G) —n—f(G)) +n+2
=n-2,
where in the last equality we used Euler’s formula n —e(G’) + f(G') = 2.

Recall that every partial edge is contained in a bounded face of G’ and
hence, using Lemma 6.2, the total number of partial edges is at most

Y, (ol =2)(k+1)=1) =k ) (|®[-2)+ }_ |®|-3|F|

= PeF QeF
= k(n—2)+ (2¢(G') —n) —3(f(G') —1).

On the other hand, since every edge in E(G) \ E(G’) contributes precisely
two partial edges, the total number of partial edges equals 2(e(G) —e(G')),
and hence we conclude:

2¢(G) —2e(G') <k(n—2)+ (2¢(G") —n) —3f(G') +3.
Rearranging, again applying Euler’s formula n — ¢(G’) + f(G’) = 2, and
using the fact that f(G’) < n — 1 holds, now yields:
2¢(G) <k(n—2)—n+3+4e(G") —3f(G)
=k(n—2)—n+3+4(e(G") - f(G)) + f(G)
<k(n—2)—n+3+4(n—-2)+(n—1)
= (k+4)n— (2k+6).

Dividing by two yields the claimed bound ¢(G) < *n — (k+3), as
desired. ]

Next, we prove Theorem 2.5.

Theorem 2.5. For a point set S in convex position with |S| = n > 5, K(S) can
be partitioned into [ %] many 1-plane subgraphs and [ % subgraphs are required in

every 1-plane partition.
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6.2. Partitions into k-plane subgraphs

Proof. The upper bound follows from Theorem 2.6 with s = 3.

For the lower bound, suppose we are given a 1-plane partition E, ..., E.
of K(S). Then we show that ¢ > [4] holds. Let O C E(K(S)) be the set of
the n boundary edges of K(S), and note that they are not crossed by any other
edge. Hence, for every i € {1,...,c}, the geometric graph formed by the
points in S and the edges in O U E; is 1-plane, and hence by Proposition 6.1
we have [OUE;| < 3n—4 foralli € {1,...,c}. This clearly implies that
|Ei\ O] < (3n—4) —n = 3n —4 for every i. Since the sets {E;\ O}icq1 o

form a partition of the set of all "(”2_1) —n= @ interior edges of K(S), we
conclude:
-3
C>(n(n2 )>_n(n—3)_ﬁ_ n >E_1
~ 3n1-4 3-8 3 3Brn-8 3 3

(For the last inequality we used n > 5). This implies ¢ > [%], as claimed. This
concludes the proof. O

6.2 Partitions into k-plane subgraphs

For the proof of Theorem 2.6, we need to generalize Proposition 6.1 to larger
values of k. To this end, we first prove the following convex crossing lemma.
We adapt the standard probabilistic proof from the textbooks (see e.g. [AZ99]).

Lemma 2.7 (convex crossing lemma). Let G be a graph with n vertices and e edges
such that e > $n. Then every straight-line drawing of G in which the vertices of G
are placed in convex position has at least

3

2 3
0e 0.0823
n

243 n?

Crossings.

Proof. We consider the following process: We start with G, and repeatedly up-
date a subgraph of G. As long as the current subgraph still contains crossings,
pick an edge with the highest number of crossings from the current drawing
and remove it. Repeat until we end up with a crossing-free subgraph. As
long as the current subgraph has more than 4n — 7 edges, by Proposition 6.1
applied for k = 4, it follows that the current subgraph contains edges which
cross with at least 5 other edges, and hence, in the next step the edge we re-
move will remove at least 5 crossings from G. Similarly, as long as the number
of edges in the subgraph is strictly greater than 41 — 6, by Proposition 6.1 the
edges we remove will be edges with at least 4 crossings, if it is strictly greater
than 3n — 5, then we remove at least 3 crossings at each step, etc.
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6. BEYOND-PLANAR PARTITIONS

Summing up all these different contributions of how many crossings are
lost in the process by removing edges, we obtain the following lower bound
on the number of crossings of G:

t(G) 25(6—(411—7))—1—4((471—7)— <Zn—6>> +3<<Zn—6> —(3n—5)> +

2((3n—5)— (gn—él)) + <<gn—4> —(2n—3)> = 5e — 15n + 25.

So, let p € [0,1] be a probability to be determined later and let G, be the
induced random subgraph of G, where each vertex is picked with probability p.
Then we have:

E[e(Gy)] = p(G)
E[o(Gy)] = pn
Eler(G,)] = p* - cr(G)

By the above inequality, which also holds for the convex geometric sub-
graph G, of G, we get:

cr(Gp) > 5e(Gp) — 150(Gp)
Taking expectations and dividing by p*, yields:

er(G) > 248) 51
p p
Plugging in the optimal value p* = 92—’2 < 1 (here we used our assumption
e> %n) yields the desired result. ]

Using this lemma, we can generalize Proposition 6.1 as follows:

Proposition 6.3. For every k > 5, every convex k-plane graph G on n vertices has
at most %k -1~ 2.465Vk - n edges.

Proof. Let k > 5 and let G be a convex k-plane graph with n vertices. If

e(G) < 3n, there is nothing to show, because 1/ 28k > 3 holds for every k > 5.

Hence, we assume ¢ := ¢(G) > 2n and apply the convex crossing lemma to

conclude: X
20 e
> =
r(C) 2 23w
On the other hand, since G is convex k-plane we know that every edge
participates in at most k crossings. By double-counting (noting that exactly
two edges participate in every crossing), we get that

ke 20 &3
s >0
y 2625

Rearranging the inequality yields the claim. O
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6.2. Partitions into k-plane subgraphs
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Figure 6.2: (a) Partition into 1-plane subgraphs by composing groups of (at most)
3 consecutive slopes each. (b)-(e) Edges with slope distance 1/2/3/4 intersect at
most 0/1/2/3 times.

Finally, we are ready to prove Theorem 2.6. Also recall that we associate
subgraphs with colors for convenience.

Theorem 2.6. For an n-point set S in convex position and every k € IN, K(S) admits

a partition into at most \/”sz k-plane subgraphs. More precisely, for every s > 2, K(S)

admits a %ﬁ—plane partition into [ %] subgraphs. Conversely, for every k € N,

at least 4’;;\1@ subgraphs are required in any k-plane partition of K(S).

Proof. Let us first prove the upper bound. To this end, suppose that s > 2

is such that % < k, and let us show that K(S) can be partitioned into
[%] k-plane subgraphs. W.l.o.g. assume that the points in S form a regular
n-gon (as the crossings are determined by the rotation system). Then every
edge defines a slope and in total there are n different slope values, which
we sort in circular order. Next, we partition this list of slope values into [ %]
(contiguous) intervals of size at most s. Then, define a color class for all edges

whose slopes fall into a common interval of this partition, see Figure 6.2(a).

We show that all these subgraphs are %—plane. To this end, define
the slope distance to be the distance between two slope values in the circularly
sorted list of slopes. Note that edges cannot be crossed by other edges of the
same slope or slope distance 1; by at most one edge of slope distance 2, by at
most two edges of slope distance 3, etc. (see Figures 6.2(b) to 6.2(e)). Hence,
if an edge e has color 7, and if the slope of e is the j-th slope (j € {1,...,s})
in its circular interval of slopes, then e can cross with at most the following
amount of edges of color i:

1<k<j—-1 jH1<k<s 2 2
= (5_1)2“_2)—@—]')(]‘—1) < “”2(‘2)

For the lower bound, note that K(S) has n(nzfl) edges, and that in every

k-plane partition of K(S), every color class induces a convex k-plane subgraph
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6. BEYOND-PLANAR PARTITIONS

on n vertices. Hence, by Proposition 6.3, every color class has size at most

\/ %k -n. So, the number of colors required in any k-plane partition is at least

(@) S n—1

\/% o 493Vk

This concludes the proof. O

The following intriguing question is left open by our study.
Question 6.4. Is the upper bound in Theorem 2.6 tight up to lower-order terms?

More generally, it would be interesting to shed some more light on the
“in-between-cases” coming out of the upper bound in Theorem 2.6: the term
(s_l)zﬁ covers only the values 0,1, 3,6, 10, .. .. For instance, can we partition
convex complete geometric graphs with fewer colors into 2-plane subgraphs
than we need for the 1-plane partition? More generally, for (S_l)zﬁ <k<
5(52_ U can we improve upon the [%] bound from Theorem 2.6 for k-plane
partitions? This question is surprisingly difficult (even for k = 2)? and we do

not know of any improvements of the bounds for these “in-between-cases”.

6.3 Partitions into k-quasi-plane subgraphs and spanning
trees

In this section, we develop bounds on the number of colors required in a
k-quasi-plane partition for point sets in general position (for k = 2 this again
amounts to the setting of plane subgraphs and hence, we assume k > 3 in the
following). The setting of spanning trees is resolved by Theorem 2.8:

Theorem 2.8. Let S be a point set of size 2n, then the complete geometric graph K(S)
can be partitioned into n 3-quasi-plane spanning trees.

Proof. Let py,...,p2n be the points of S sorted by x-coordinate (w.l.o.g. no
two points have the same x-coordinate). We distinguish the points into
evenly indexed points py; fori = 1,...,n and oddly indexed points py;_; for
i=1,...,n

The goal is to define n double stars that partition K(S). We construct a
double star T; for every two consecutive vertices {pai_1, p2i}, fori=1,...,n
as follows (see Figure 6.3 for an illustration). We connect py;_1 with all evenly
indexed points left of py;_1 and all oddly indexed points right of py;_1. Further,
we connect py; with the remaining vertices, namely with all oddly indexed

2Using computer assistance, we can show that at least % colors are required for any

2-plane partition, almost matching the % bound from the 1-plane partition.

72



6.3. Partitions into k-quasi-plane subgraphs and spanning trees

g
P2

D
p\/-pﬁ "

p3

Figure 6.3: lllustration of Theorem 2.8.

points left of py; and all evenly indexed points right of p,;. Note that this
includes the edge pai_1p2i. T; indeed forms a double star, as all vertices are
connected to either py;_1 or py;. In particular T; forms a spanning tree.

It remains to show that every edge is covered exactly once. Let e = p;p; be
an edge (1 <i < j < n).Ifiand j have the same parity, e belongs to T; and
otherwise to Tj.

Since every double star is necessarily 3-quasi-plane, the claim follows. [

So, we turn our attention to the subgraph setting. Consider a point set S
of size 2n with a crossing family of size n. Then all edges involved in this
crossing family are halving edges. Let ¢4, ..., ¢, be the corresponding halving
lines. We label these lines in clockwise order, more precisely their intersections
with a sufficiently large circle appear in clockwise order (where it follows
from the properties of halving lines that this enumeration is consistent on both
sides). For each halving line ¢; define an infinitesimally counter-clockwise
rotated line ¢}, such that the two defining vertices (say p;, q;) of /; lie to either
side of ¢/. Define £ to be the upper halfplane (bounded by ¢!) and let it
contain p;; similarly ¢, denotes the lower halfplane (bounded by ¢;) and it
contains g;. See Figure 6.4 for an illustration.

Theorem 6.5. Let S be a point set of size 2n with a crossing family of size n and
let k > 3. Then [4] colors are required and sufficient to partition K(S) into
k-quasi-plane subgraphs.

Proof. The lower bound is easy: since we have a crossing family of size n,
we need at least | 5] different colors to partition K(S) into k-quasi-plane
subgraphs.

The other direction is more involved. We build ¢ := [ 5] subgraphs
Gi,...,Gc of K(S) as follows. Each subgraph G; in turn is formed by the
union of three subgraphs.

To construct Gy, let X; be the collection of vertices of the first k — 1 con-
secutive halving lines starting from ¢y, i.e., X1 := {p1,---, Pk—1, 91, - - -, Gk—1}-
Next, we consider all points in ¢; and form the complete bipartite graph B,
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6. BEYOND-PLANAR PARTITIONS

Figure 6.4: The labeling of the halving lines /1, ..., £, in clockwise order. lllustra-
tion of the definition of the halfplane ¢; . Note that p; € ¢] and gq; € ¢; for any i.

Figure 6.5: The vertices of X; are represented by squares. The dotted edges in
the blue (red) region represent the complete bipartite subgraph B;" (B;) of G
corresponding to the line ¢1 with the defining vertices p; and g;.

between the points in (X; N ¢]) and those in ((S\ X1) N ¢;). Symmetrically,
we form the complete bipartite graph B;” between the point set X; N/ and
the point set (P \ X;) N¢;. An illustration of the construction is given in
Figure 6.5. The subgraph G; is finally defined to be the union of K(X;), B;
and B; .

We iteratively repeat the same process for the next k — 1 halving lines until
reaching p,,. More precisely, G; consists of the union of the complete graph
with vertex set X; = {p;,qi| (I —1)(k—1) < i < min(l(k—1),n)} and the
two bipartite graphs defined by £;_1)(_1)41 as before. The last graph G. may
be formed by less than k — 1 halving lines.
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6.3. Partitions into k-quasi-plane subgraphs and spanning trees

We first validate that each G; is k-quasi-plane. For notational convenience
we prove it only for G; in the following, though the same argument works
for any G;. The two bipartite subgraphs B;" and B; are disjoint, as they lie
to either side of the line ¢|. Thus, any crossing family contains only edges
from at most one of them, and potentially further edges from the complete
subgraph K(Xj). Therefore every edge from the crossing family must be
incident to one of the vertices that are both in X; and on the respective side
of /1. By construction, there can be at most k — 1 such vertices and therefore,
any crossing family has at most size k — 1 as well.

It remains to show that any edge of K(S) is covered by some G;. Let
e := {u,v} be an edge of K(S). For every i = 1,...,n, p; and g; are part
of X[i/x-1)]- Thus, the endpoint u is contained in X, for some r, and v is
contained in X;, for some s. If r = s we are done, as then e is contained in
K(X,) and thus part of G,. So suppose r # s. Then v and u lie on the same
side of either ¢, or £.. In the former case, ¢ would be contained in either of
the two complete bipartite subgraphs of G,, that is, B;” or B, . In the latter, e
is contained in Gs. O

The restriction in Theorem 6.5 to have a crossing family of size n is rather
restrictive, however, not nearly as restricitive as e.g. convex position. Given
that every point set determines a near linear size crossing family [PRT19], it
is natural to ask whether Theorem 6.5 can be adjusted to point sets in general
position. We leave this as an interesting open question (cf. Question 10.5).

Theorem 2.9. Let S be a set of n points in general position and denote the size of
a largest crossing family on S by m. Also let k € IN such that 3 < k < m. Then,
at least [ subgraphs are required and at most [ 25 + ["“=2"] subgraphs are

needed to partition the complete geometric graph K(S) into k-quasi-plane subgraphs.

Proof. Let S' C S be the subset of endpoints induced by a largest crossing
family of size m.

Then, the lower bound follows immediately from Theorem 6.5 applied
onS'.

For the upper bound, divide the point set S\ S’ into disjoint subsets
Q1,...,Qc of size k — 1, where ¢ = (”k:zlm} For each edge with an endpoint
in some Q; assign it the color i (for edges that have two choices, pick one
arbitrarily). Certainly, each color class is k-quasi-plane, since it consists of (at
most) the union of k — 1 stars. Together with K(S’), which we can partition
by using [ 5| colors, the upper bound follows. O
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Part 11

Flip Graphs
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Flipping Plane Spanning Paths

The focus of this chapter is the following conjecture posed by Akl et al. [AIMO7]:

Conjecture 7.1 (Akl et al. [AIMO7]). For every point set S in general position, the
flip graph on P(S) is connected.

Recall that P(S) denotes the set of all plane straight-line spanning paths
on S. Also recall that a /ip on a path P € P(S) is the operation of removing
an edge e from P and replacing it by another edge f on S such that the graph
(P\e) U f is again a valid path from P(S). Note that the edges e and f might
Cross.

Related work. In the setting of plane spanning paths, flips are rather re-
stricted, making it difficult to prove a positive answer. Prior to our work
only results for point sets in convex position and very small point sets were
known. Akl et al. [AIMO07], who initiated the study of flip connectivity on
plane spanning paths, showed connectedness of the flip graph on P(S) if S is
in convex position or |S| < 8. In the convex setting, Chang and Wu [CW09]
derived tight bounds concerning the diameter of the flip graph, namely, 2n — 5
forn = 3,4, and 2n — 6 for n > 5.

Furthermore, using the order type database [AAKO02], Aichholzer [Aic]
computationally verified Conjecture 7.1 for every set of n < 10 points in
general position (even when using only Type 1 flips).!

For the remainder of this chapter, we consider the flip graph on P(S) (or
a subset of P(S)). Moreover, unless stated otherwise, the word path always
refers to a path from P(S) for an underlying point set S that is clear from the
context.

Flips in plane spanning paths. Let us have a closer look at the different
types of possible flips for a path P = ©v4,...,v, € P(S) (see also Figure 7.1).

IThe source code is available at https://github.com/jogo23/flipping_plane_
spanning_paths.
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7. FLiPPING PLANE SPANNING PATHS

(a) Type 1 flip. (b) Type 2 flip. (c) Type 3 flip.

Figure 7.1: The three types of flips in plane spanning paths.

When removing an edge v;_1v; from P with 2 < i < n, there are three
possible new edges that can be added in order to obtain a path (where, of
course, not all three choices will necessarily lead to a valid path in P(S)):
010, Ui—10y, and v10,. A flip of Type 1 adds the edge viv; (if i > 2) or the
edge v;_1v, (if i < n). It results in the path v;_4,...,v1,v;,...,0;, or the path
V1,...,0i-1,0n,...,0;. Thatis, a Type 1 flip inverts a contiguous chunk from
one of the two ends of the path. A flip of Type 2 adds the edge vv, and has
the additional property that the edges v;,_1v; and v;v, do not cross. In this
case, the path P together with the edge v,v, forms a plane cycle. If a Type 2
flip is possible for one edge v;_1v; of P, then it is possible for all edges of P. A
flip of Type 3 also adds the edge v1v,, but now the edges v1v, and v;_1v; cross.
Note that a Type 3 flip is only possible if the edge v1v, crosses exactly one
edge of P, and then the flip is possible only for the edge v;_1v; that is crossed.
We further remark that Type 2 flips are not relevant for the connectedness of the
flip graph but only for the diameter, since every Type 2 flip can be simulated
by a sequence of Type 1 flips, e.g., flip v1v, to v1v,, then flip v,v3 to v1v;, then
0304 to V03, etc., until flipping v;_1v; to v;_,v;_1. For Type 3 flips it remains
open whether they are relevant for the connectedness of the flip graph (in the
following, we are not using any Type 3 flip). Unless mentioned otherwise, all
flips we are using in the following are Type 1 flips.

Contribution. We approach Conjecture 7.1 from two directions. First, we
show that it is sufficient to prove flip connectivity for paths with a fixed
starting edge. Second, we verify Conjecture 7.1 for several classes of point
sets, namely wheel sets and generalized double circles (which include, e.g.,
double chains and double circles).

Towards the first part, we define, for two distinct points p,q € S, the
following subsets of P(S): let P(S, p) be the set of all plane spanning paths
for S that start at p, and let P(S, p,q) be the set of all plane spanning paths
for S that start at p and continue with 4. Then for any S, the flip graph
on P(S,p,q) is a subgraph of the flip graph on P(S, p), which in turn is a
subgraph of the flip graph on P(S). We conjecture that all these flip graphs
are connected:
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7.1. A Sufficient Condition

Figure 7.2: Example where the flip graph is disconnected if the first three vertices
of the paths are fixed. No edge of the solid path can be flipped, but there is at
least one other path (dotted) with the same three starting vertices.

Conjecture 7.2. For every point set S in general position and every p € S, the flip
graph on P(S, p) is connected.

Conjecture 7.3. For every point set S in general position and every p,q € S, the flip
graph on P(S, p,q) is connected.

Towards Conjecture 7.1, we show that it suffices to prove Conjecture 7.3:

Theorem 7.4. Conjecture 7.2 implies Conjecture 7.1.

Theorem 7.5. Conjecture 7.3 implies Conjecture 7.2.

Note that the analogue of Conjecture 7.3 for paths where the first k > 3
vertices are fixed, does not hold: Figure 7.2 shows a counterexample with 7
points and k = 3.

Towards the flip connectivity for special classes of point sets, we consider
wheel sets and generalized double circles and prove that the flip graph is
connected in both cases:

Theorem 2.11. Let S be a set of n points in wheel configuration. Then the flip graph
on P(S) is connected with diameter at most 2n — 1.

Theorem 2.12. Let S be a set of n points in generalized double circle configuration.
Then the flip graph on P(S) is connected with diameter O(n?).

7.1 A Sufficient Condition

In this section we prove Theorem 7.4 and Theorem 7.5.

Lemma 7.6. Let S be a point set in general position and p,q € S. Then there exists
a path P € P(S) which has p and q as its end vertices.
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Figure 7.3: For any two given points p and g there exists a plane spanning path
having these two points as start and end points. Left: the case if at least one of
the two points is in the interior of the point set. Right: the case when both points
are on the boundary of the convex hull.

Proof. We consider two different cases. Let us first assume that at least one
of the two points, w.l.o.g. say p, is not an extreme point of S. Sort all other
points of S radially around p, starting at 4. Connect p to the second point
in this order (the point radially just after q) and connect all other points in
radial order to a path, such that g becomes the last point of this path; see
Figure 7.3 (left). Since p is an interior point, each edge of this path stays in a
cone defined by p and two successive points in the radial order, in particular
all these cones are disjoint. Hence, we have obtained a plane spanning path
starting at p and ending at 4.

Assume now for the second case that both given points lie on the boundary
of the convex hull of S. Then consider two tangents of CH(S) through p and g,
respectively. By the general position assumption of S we can always perturb
these two tangents so that they still go through the two given vertices but are
not parallel, and thus cross in a point x outside of the convex hull of S; see
Figure 7.3 (right). Sort all points radially around x and connect the points in
this order to a path. By construction the points p and g are the first and last
point in this sorting, and we thus obtain the required path. ]

Theorem 7.4. Conjecture 7.2 implies Conjecture 7.1.

Proof. Let S be a point set and P;, P; € P(S). If Ps and P; have a common
endpoint, we can directly apply Conjecture 7.2 and the statement follows.
So assume that Ps has the endpoints v, and v}, and P; has the endpoints v,
and v;, which are all distinct. By Lemma 7.6 there exists a path P, having
the two endpoints v, and v.. By Conjecture 7.2 there is a flip sequence from
P; to P, with the common endpoint v,, and again by Conjecture 7.2 there
is a further flip sequence from P, to P; with the common endpoint v.. This
concludes the proof. O

Towards Theorem 7.5, we first have a closer look at what edges form viable
starting edges. For a given point set S and points p,q € S, we say that pg
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Figure 7.4: |lllustration of Lemma 7.7. Left: u is an interior point of S. Right: u
is an extreme point and v an interior point.

forms a viable starting edge if there exists a path P € P(S) that starts with pgq.
For instance, an edge connecting two extreme points that are not consecutive
along CH(S) is not a viable starting edge. The following lemma shows that
these are the only non-viable starting edges.

Lemma 7.7. Let S be a point set in general position and u,v € S. The edge uv is a
viable starting edge if and only if one of the following is fulfilled:

(i) u or v lies in the interior of CH(S), or
(ii) u and v are consecutive along the boundary of CH(S).

Proof. “=>". We argue by contraposition. If (i) and (ii) are not fulfilled, i.e., u
and v are extreme points that are not consecutive along CH(S), then there
exist points in both halfplanes defined by the line through uv. However, any
plane path starting with uv can only reach the points on one side. Hence, uv
is not a viable starting edge.

“«". If u is in the interior of CH(S), we sort the remaining points in
radial order around u. We construct a path starting with uv that visits the
remaining points consecutively in this radial order (see Figure 7.4 (left)).

If u and v are consecutive extreme points, we proceed exactly the same
way.

If u is an extreme point and v an interior point, let v, and v, be the two
neighbors of u along the convex hull. Let S’ C S be the set of points in the
interior of CH(S) plus {vy, v, }. Again we sort the points of S’ in radial order
around u. Let v~ € S’ be the vertex that is right before v in this radial order.

We construct three paths P, P, P; from v~ via vy and v, to v as follows.
The paths P; = vy,..., v~ and P, = vy, ..., v connect the points in S’ in radial
order (between its corresponding endpoints). Note that P; may have length
zero. The path P; = vy,...,v, connects vy to v, along the boundary of the
convex hull of S (along the side not containing #). Then the union of the three
paths Py, P>, P; together with v forms the desired plane spanning path (see
Figure 7.4 (right)). O
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Figure 7.5: There exists a plane spanning cycle of S such that vy is connected to
two points neighbored in the radial order around v1. Left: vq is an interior point.
Right: vq is an extreme point.

The following lemma is the analogue of Lemma 7.6:

Lemma 7.8. Let S be a point set in general position and vy € S. Further let S' C S
be the set of all points p € S such that v1p forms a viable starting edge. Then for two
points q,r € S’ that are consecutive in the circular order of S’ around vy, there exists
a plane spanning cycle containing the edges vi1q and vyr.

Proof. The construction of these plane spanning cycles is completely analogous
to the construction of the paths in the proof of Lemma 7.7 but we add the
proof for the sake of completeness.

First assume that v; is an interior point. Then, by Lemma 7.7, S’ = S\ {01}
holds. We construct a plane spanning path starting with v;4 and visiting the
remaining points in circular order around v; such that r is the last in this
order. Lastly, connect r to v; (see Figure 7.5 (right)).

Now, let v1 be an extreme point. Again we proceed analogously if g and r
are the two neighbors of v; along CH(S). Otherwise, by Lemma 7.7, at least
one of the vertices g or r is an interior point. Then we construct the same
three paths P;, P>, P5 as in Lemma 7.7 (replacing the roles of v,v~ by g and 7).
Then the union of Py, P», P; together with v1g and v1r forms the desired cycle
(see Figure 7.5 (right)). O

We are now ready to prove Theorem 7.5:
Theorem 7.5. Conjecture 7.3 implies Conjecture 7.2.

Proof. Let S be a point set and v; € S. Further let P, P’ € P(S,v1). If P and P’
have the starting edge in common, then we directly apply Conjecture 7.3 and
are done. So let us assume that the starting edge of P is v1v; and the starting
edge of P’ is v1v). Clearly v,,v5 € S’ holds (where S’ is the set of points p
such that v1p forms a viable starting edge). Sort the points in S’ in radial order
around v;. Further let v, € S’ be the next vertex after v, in this radial order
and C be the plane spanning cycle with edges v;v; and vyv,, as guaranteed
by Lemma 7.8; see Figure 7.6.
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7.2. Flip Connectivity for Wheel Sets
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Figure 7.6: Illustratiion of the proof of Theorem 7.5

By Conjecture 7.3, we can flip P to C \ v1vy. Then, flipping v1v; to v1v, we
get to the path C \ v10,, which now has v1v, as starting edge. We iteratively
continue this process of “rotating” the starting edge until reaching v;v),. [

Theorem 7.4 and Theorem 7.5 imply that it suffices to show connectedness
of certain subgraphs of the flip graph. A priori it is not clear whether this is
an easier or a more difficult task — on the one hand we have smaller graphs,
making it easier to handle. On the other hand, we may be more restricted
concerning which flips we can perform, or exclude certain “nice” paths.

7.2 Flip Connectivity for Wheel Sets

Akl et al. [AIMO7] proved connectedness of the flip graph if the underlying
point set S is in convex position. They showed that every path in P(S) can
be flipped to a canonical path that uses only edges on the convex hull of S. To
generalize this approach to other classes of point sets, we need two ingredients:
(i) a set of canonical paths that serve as the target of the flip operations and
that have the property that any canonical path can be transformed into any
other canonical path by a simple sequence of flips, usually of constant length;
and (ii) a strategy to flip any given path to some canonical path.

Recall that a set S of n > 4 points in the plane is a wheel set if there is
exactly one interior point ¢ € S. We call c the center of S and classify the edges
on S as follows?: an edge incident to the center c is called a radial edge, and an
edge along CH(S) is called spine edge (the set of spine edges forms the spirne,
which is just the boundary of the convex hull here). All other edges are called
inner edges. The canonical paths are those that consist only of spine edges and
one or two radial edges.

We need two observations. Let S be a point set in general position and
P =vy,...,0, € P(S). Further, let v; (i > 3) be a vertex such that no edge
on S crosses v1v;. We denote the face bounded by vy, ..., v;,v1 by ®(v;).

2Note that we introduced similar notions earlier (boundary edges, diagonal edges, etc.).
However, with regard to Section 7.3 it makes sense to introduce a new terminology here.
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7. FLiPPING PLANE SPANNING PATHS

Observation 7.9. Let S be a point set in general position, P = vy, ...,v, € P(S),
and v; (i > 3) be a vertex such that no edge on S crosses v1v;. Then all vertices
after v; (i.e., {viy1,...,vn}) are entirely contained in either the interior or the exterior

qu)('()i).

Observation 7.10. Let S be a wheel set and let P = vy, . ..,v, € P(S). Suppose that
the edge viv;1 of P is an inner edge. Then the sets {v1,...,vi_1} and {vii2,...,vn}
lie on different sides of the line spanned by v;v; 1.

Note that the sets {v1,...,v,_1} and {v;15,...,v,} in Observation 7.10 are
non-empty due to Lemma 7.7.

Theorem 2.11. Let S be a set of n points in wheel configuration. Then the flip graph
on P(S) is connected with diameter at most 2n — 1.

Proof. Let P = vy,...,v, € P(S) be a non-canonical path. W.lLo.g., we can
assume v; # c (at least one of the two endpoints of P is not the center). We
show how to apply suitable flips to increase the number of spine edges of P.

By Lemma 7.7, the edge v, v, is either radial or a spine edge. We distinguish
the two cases:

Case 1 vyv; is radial, i.e., (since we assumed v; # c), we have v, = c.

Then v,v3 is radial and, in analogy to Observation 7.10, the remaining
path can only visit vertices on one side of the “line” through v1v,v3
(which is bent at v;); see Figure 7.7(a). Hence, vz must be a neighbor
of v; along the convex hull.

Thus we can increase the number of spine edges by flipping the radial
edge v,v3 to the spine edge v1v3.

Case 2 710, is a spine edge.

Let v, (a # 2) be the other neighbor of v; along the convex hull. Note
first that we can assume v,_17, to be a spine edge, since otherwise
we can increase the number of spine edges by flipping v,_17v, to v17,.
Furthermore, we can assume a # 1, since otherwise we can insert 17,
and remove an arbitrary (non-spine) edge (performing a Type 2 flip).

By Observation 7.10, P cannot have any inner edge e before v,, since
otherwise e would have the neighbors v; and v, on the same side. On
the other hand, since v;v; and v,_1v, are spine edges, v,,1 must be in
the interior of the