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Abstract

A number of technological advancements in high-throughput genome sequencing have
led to the generation of exabyte-scale sequencing data worldwide in recent years. These
developments have facilitated large-scale resequencing projects like the 1000 Genomes
Project, which aim to catalog the genetic diversity of organisms and specific populations.
In the context of medical research, incorporating population data, is of particular interest.
However, existing applications are often optimised for analysing a few sequences, and the
methods used cannot be easily transferred to these vast datasets without exceeding system
resources or producing results within a suitable time frame.

Simultaneously, the execution model of processors has evolved from sequential to highly
parallel process execution, thanks to the addition of processor cores, vector processing
units, and advances in superscalar processor designs. This ongoing development in high-
performance computing requires applications and algorithms to scale with the growing
levels of parallelism. However, highly optimised algorithms are often embedded within
applications, making them practically inaccessible to the scientific community.

In this dissertation, we first investigate a generic approach to parallelise and vectorise pairwise
sequence alignments using a dynamically scalable concurrency model. We explore various
techniques and code-level optimisations to effectively utilise the available parallelisms on
modern high-performance CPUs. The results demonstrate that the dynamically accelerated
pairwise sequence alignment scales proportionally with the number of cores and provides
speed-ups of up to a factor of 2500 compared to the sequential reference implementation on
modern hardware.

Second, we propose a general solution for data-compressed acceleration of pattern matching
algorithms by compressing a large collection of related DNA sequences and providing a set
of composable algorithms to refine and optimise the applicable operations. Our research
on data-compressed acceleration shows hundred-fold speed-ups for online searching over a
pangenome comprising over 5000 reference sequences compared to the naive approach of
individually searching all sequences. These speed-ups are achieved while utilising only a
fraction of the main memory.

Moreover, we implemented these features in dedicated modules of the open-source software
library SeqAn (https://www.seqan.de/), making them accessible and adoptable by the
entire research community. While doing so, we strived for a user-friendly API design so
that these methods can be easily customised and extended, making them applicable to a
wide range of applications in the domain of computational sequence analysis.

I

https://www.seqan.de/


Zusammenfassung

Eine Reihe von technologischen Fortschritten bei der Hochdurchsatz-Sequenzierung von
Genomen hat in den letzten Jahren weltweit zur Erzeugung von Sequenzierungsdaten im
Exabyte-Bereich geführt. Diese Entwicklungen haben groß angelegte Resequenzierungspro-
jekte, wie das 1000 Genomes Project, ermöglicht, welche darauf abzielen die genetische
Vielfalt ganzer Populationen von unterschiedlichen Organismen zu katalogisieren. Beste-
hende Anwendungen sind jedoch häufig für die Analyse einiger weniger Sequenzen opti-
miert. Häufig lassen sich die verwendeten Methoden nicht ohne weiteres auf solche riesigen
Datenmengen übertragen, ohne dabei die zur Verfügung stehenden Rechenressourcen zu
übersteigen oder in angemessener Zeit entsprechende Ergebnisse zu produzieren.

Gleichzeitig führten kontinuierliche Verbesserungen in der Prozessorherstellung zu einem
fundamentalen Wechsel im Programmiermodell von einer sequentiellen hin zu einer hoch-
parallelen Ausführung von Prozessen. Diese fortlaufende Entwicklung im Bereich des
Hochleistungsrechnens erfordert, dass Anwendungen und Algorithmen mit der zunehmenden
Parallelität skalieren. Optimierte Algorithmen sind jedoch häufig in konkrete Anwendungen
eingebettet, so dass sie für die wissenschaftliche Gemeinschaft praktisch unzugänglich sind.

In dieser Dissertation untersuchen wir zunächst einen generischen Ansatz zur Parallelisierung
und Vektorisierung paarweiser Sequenzalignments unter Verwendung eines skalierbaren
Nebenläufigkeitsmodells. Dabei betrachten wir verschiedene Optimierungsansätze, um
die verfügbaren Parallelitäten moderner Hochleistungs-CPUs effektiv zu nutzen. Unsere
Ergebnisse zeigen, dass wir im Vergleich zur sequenziellen Ausführung auf modernen CPUs
Geschwindigkeitssteigerungen von bis zu einem Faktor von 2500 erreichen.

Im zweiten Teil betrachten wir Methoden zur datenkomprimierten Beschleunigung von
Pattern-Matching-Algorithmen. Dabei komprimieren wir eine große Sammlung ähnlicher
DNA-Sequenzen anhand einer Referenzsequenz und entwickeln eine Reihe von kombinier-
baren Algorithmen, mit deren Hilfe existierende Suchalgorithmen auf dem datenkomprim-
ierten Format angewendet werden können. Durch die Verarbeitung in komprimierter Form,
konnten wir, verglichen mit dem naiven Ansatz, hundertfache Geschwindigkeitssteigerungen
bei der Online-Suche in einem Pangenom mit über 5000 Referenzsequenzen erzielen.

Darüber hinaus haben wir die entwickelten Funktionen und Operationen in konkreten Mod-
ulen der Open-Source-Softwarebibliothek SeqAn (https://www.seqan.de/) implementiert,
so dass sie für die gesamte Forschungsgemeinschaft zugänglich sind. Dabei haben wir uns
um ein benutzerfreundliches API-Design bemüht, so dass unsere Methoden leicht adaptiert
und erweitert werden können und für ein breites Spektrum von Anwendungen im Bereich
der computergestützten Sequenzanalyse nutzbar sind.
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1 Introduction

The completion of the Human Genome Project
in 2001 opened the floodgates to a deeper
understanding of medicine.

(Carrasco-Ramiro et al.)

Since the publication of the first human draft sequence at the beginning of the 21st
century [Lander et al., 2001; Venter et al., 2001], the role of genomics in healthcare has
undergone a dramatic transformation. This can be attributed to two key factors. Firstly,
significant advancements have been made in DNA (deoxyribonucleic acid) sequencing
technology, commonly referred to as next-generation sequencing (NGS). These innovative
technologies have facilitated the acquisition of large amounts of genetic sequences through
massively parallel sequencing reactions. Consequently, the sequencing throughput has been
substantially increased while reducing costs compared to the previous dominant Sanger
sequencing technology [Goodwin et al., 2016; Metzker, 2010; Shendure and Ji, 2008; Slatko
et al., 2018]. Secondly, powerful bioinformatic analysis routines have been developed to
extract meaningful insights from the acquired sequencing data and identify various genetic
alterations [Bernhardsson et al., 2020; Di Resta et al., 2018; McGuire et al., 2020; Oliva
et al., 2021; Pabinger et al., 2014; Pereira et al., 2020; Wang et al., 2013; Wee et al., 2019].

1.1 Promises and challenges of personalised genomics

Particularly, in cancer patient care and in diagnosing rare diseases, of which 80% are known
to be related to a genetic condition [Smedley et al., 2021], one can observe a shift from
standard molecular testing towards diagnostic procedures aided by NGS analysis [Qin, 2019;
Ramoni et al., 2017; Smedley et al., 2021; Turro et al., 2020], also known as precision
medicine [Cardon and Harris, 2016; Carrasco-Ramiro et al., 2017; Personalized Medicine
Coalition, 2021; The Centre for Personalised Medicine, 2021]. The vision and central
objectives of these new medical approaches are to utilise NGS technologies to design and
administer targeted therapies based on the individual genetic composition of the patients.
Among others, this includes the development of new drugs with improved pharmacokinetics
[Harper and Topol, 2012; Relling and Evans, 2015; Spreafico et al., 2020], and enhanced
risk management of genetic diseases [Gurdasani et al., 2019; Khera et al., 2018; Wei et al.,
2009; Weitzel et al., 2011], ‘...to ensure that patients get the right treatment at the right
dose and at the right time.’ [Gen, 2016].

The following case study about a four-year-old girl who suffered from a rare disease known as
the GLUT1-deficiency syndrome [Gen, 2016; Cookson, 2017] illustrates this representatively
for diagnosing rare diseases. An aberration in her SLC2A1 gene led to an inhibition of
the glucose transponder protein type 1 (GLUT1), which is needed for glucose uptake into
the brain [Leen et al., 2010; Soto-Insuga et al., 2019; Wang et al., 2005], manifesting in
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1 Introduction

severe neurological symptoms such as epileptic seizures, slow mental development, and
coordination issues [Gen, 2016]. Because her diffuse symptoms could be explained by
different neurological disorders, physicians could not find the root cause of her symptoms
through standard molecular tests, and she had to undergo numerous clinical visits [Cookson,
2017]. It was only after enlisting in the 100 000 Genomes Project (100KGP) [Genomics
England et al., 2020], where researchers compared her DNA with that of her parents, that
her symptoms could be linked to a mutation of the SLC2A1 gene. Eventually, her condition
could be improved by successfully administering a ketogenic diet [Cookson, 2017; Leen et al.,
2010].

Population-scale sequencing

A large proportion of the population experiences a similar situation to this girl. In fact, a
review by Ferreira [2019] revealed that there are approximately 10 000 rare diseases affecting
6% of people in Western society. Likewise, cancer puts a high burden on society, as millions
of people are affected every year. In 2020, cancer surveillance detected 19.3 million new
cases of cancer worldwide [Ferlay et al., 2021]. Since both diseases are caused by genetic
aberrations, they are commonly associated with a high mortality rate, many years of life
lost, and a significantly lowered quality of life, while patients need to endure countless tests
and require intensive medical care.

Consequently, there is increased interest in developing fast and precise medical diagnostic
routines, as well as effective therapies with minimal adverse effects. This has led to the
launch of multiple population-scale sequencing endeavours like the 1000 Genomes Project
(1KGP) or the aforementioned 100KGP in the last two decades. Such sequencing projects
pursue the ambitious goal of cataloguing the genetic diversity of entire populations or specific
cohorts associated with a particular disease [Carrasco-Ramiro et al., 2017]. This involves
the generation of variant databases covering sequences from a few thousand individuals,
such as the 1KGP launched in 2005 [Auton et al., 2015], up to a million individuals, as seen
in the Precision Medicine Initiative announced 10 years later [Collins and Varmous, 2015].

Data growth

The extensive collection of genetic data from population-scale sequencing projects, however,
presents significant challenges in handling and analysing such vast amounts of information,
thereby giving rise to the emerging field of big data in genomics. In fact, Schork [2015]
estimated the growth rate to double between every seven to every twelve months (see
Fig. 1.1). Based on these growth rates, the authors projected an annual sequencing capacity
of 1 ZB (zettabyte) – the equivalent of 1 billion TBs (terabyte)– by 2025, requiring storage
capacities of 2 to 40 EBs (exabyte) for human genome sequencing alone. For example, the
Sequencing Read Archive (SRA) [Leinonen et al., 2011] – a database collecting NGS data
from human, non-human, and microbial sources – contained more than 36 PB (petabyte) in
2019 and is projected to grow to 43 petabytes by 2023 [National Institutes of Health, 2020].
Evidently, these enormous volumes of data not only pose a challenge for data centres to
host sequencing data in a sustainable manner but also require new strategies for efficient
distribution and decentralised use of the available data in different experimental settings

2



1.1 Promises and challenges of personalised genomics

Figure 1.1: The plot shows the growth of DNA sequencing both in the total number of human
genomes sequenced (left axis) as well as the worldwide annual sequencing capacity (right axis:
Tbp (tera-basepairs), Pbp (peta-basepairs), Ebp (exa-basepairs), Zbp (zetta-basepairs)). The
values through 2015 are based on the historical publication record, with selected milestones in
sequencing (first Sanger through first PacBio human genome published) as well as three exemplar
projects using large-scale sequencing: the 1KGP, aggregating hundreds of human genomes by
2012 [Auton et al., 2015]; The Cancer Genome Atlas (TCGA), aggregating over several thousand
tumor/normal genome pairs [Chin et al., 2011]; and the Exome Aggregation Consortium (ExAC),
aggregating over 60 000 human exomes [Lek et al., 2016]. Many of the genomes sequenced to date
have been whole exome rather than whole genome, but we expect the ratio to be increasingly
favoured towards whole genome in the future. The values beyond 2015 represent our projection
under three possible growth curves. Plot and caption taken from [Schork, 2015]

that typically vary widely in terms of available computational and financial resources [Muir
et al., 2016].

Leveraging computing power of modern CPUs

To take advantage of these developments, it is necessary that analyses also scale with the
vast amount of acquired sequencing data. This requires, in addition to developing improved
algorithms and data structures, optimal utilisation of the available computing power of
modern CPUs (central processing units) and other accelerators, e.g. graphics processing
units (GPUs) and field-programmable gate arrays (FPGAs). CPU performance, alone, has
significantly improved over the last 20 years due to sophisticated processor designs. For
example the Intel Xeon Scalable processor family supports high-end server configurations,
where a single 2-socket CPU with 56 cores can reach a theoretical peak performance of
over 4 TFLOP/s [Vladimirov, 2017], which comes primarily from increased parallelism and
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enhanced memory systems. To leverage such a peak performance, however, the software
must be able to scale with the compute resources added to a single multicore CPU by
shifting from a sequential to concurrent execution. This, in turn, leads to greater complexity
in software design since transforming the algorithms used from serial execution to concurrent
execution is often not trivial, tedious, and error-prone [Leiserson et al., 2020]. Moreover, it
requires a deep understanding of the algorithms, the targeted processor architectures, and
how processes are executed in the hardware.

The need to address the challenges arising from the vast amount of acquired sequencing
data and the increasing complexity of software design in genomic analyses is driven by
these observations. This entails designing and developing improved algorithms and data
structures that effectively leverage the different levels of parallelism provided by modern
CPUs. These algorithms and data structures should also have the capability to scale with
the substantial amount of acquired sequencing data. Additionally, it is crucial to enhance
the accessibility and usability of the software, ensuring that it is widely available and usable
within the entire research community.

1.2 Research objectives

The focus of this thesis lied on modernising and optimising two crucial classes of algorithms
extensively used in computational sequence analysis: pairwise sequence alignments and
pattern matching algorithms. To accelerate the computation of pairwise sequence alignments
on modern CPUs, we developed various code-level optimisations. We also engineered
a succinct data representation based on differential encoding to efficiently manage large
collections of similar sequences. We leveraged this compressed representation to accelerate
existing online pattern matching algorithms that normally operate on linear sequences. Note
we limit our work to modern CPU architectures, as covering additional high-performance
accelerators like GPUs or FPGAs would exceed the scope of this thesis. Nonetheless,
there are many overlaps in the general software design that applies independent of the
programming model to different processor architectures.

We integrated all implementations as reusable modules into the C++ software library SeqAn
[Döring et al., 2008; Reinert et al., 2017]. The SeqAn project, initiated in 2008 at Freie
Universität under the guidance of Prof. Dr. Knut Reinert, has long served as a valuable
programming resource for the bioinformatics community, with a strong emphasis on efficient
sequence analysis. Given the broad application scope of this library, a key aim of this
work was to establish generic interfaces that can be utilised in wide range of scenarios,
providing future developers with a well-tested, user-friendly, and extensively documented
infrastructure. The concrete objectives of this work can be summarised as follows:

• Conceptualising and developing a unified design for the various pairwise sequence
alignment algorithms implemented in SeqAn, with a focus on enhancing their main-
tainability and extensibility.

• Investigating and implementing appropriate concurrency models to achieve efficient
and scalable acceleration of pairwise sequence alignments, considering different levels
of parallelism provided by modern CPUs.

4



1.3 Outline

• Developing a compact data representation that can effectively scale with population-
scale sequencing data.

• Extending this data representation to provide a compression-accelerated interface,
allowing seamless integration of existing online algorithms.

1.3 Outline

The thesis is structured into two main chapters, each addressing specific aspects of the
research objectives. Before we explain the methodologies in detail, we provide the necessary
foundational knowledge in the next chapter Chapter 2. It covers fundamental terms
and definitions related to genomics. The chapter briefly summaries important aspects
of sequence alignments, including alignment representation, alignment scores, and the
algorithmic foundation of computing optimal pairwise alignments with dynamic programming.
Subsequently, it explores strategies for pattern matching, including exact and approximate
matching, and briefly recalls well-known online methods as well as filter-based methods in
this area. Readers familiar with these topics may as well skip this chapter and continue
with one of the main chapters Chapter 3 or Chapter 4. Note these chapters do not depend
on each other and can be read in any order.

Chapter 3 focuses on hardware-accelerated computation of pairwise alignments and covers
our work published in:
Rahn, R. et al. Generic accelerated sequence alignment in SeqAn using vectorization and

multi-threading. Bioinformatics, 34(20):3437–3445, oct 2018. ISSN 1367-4803. doi:
10.1093/bioinformatics/bty380. URL

https://academic.oup.com/bioinformatics/article/34/20/3437/4992147

It begins with a background section that gives a brief overview of the memory hierarchy
and different levels of parallelism supported on modern multicore CPUs and discusses
the potential and challenges of leveraging these factors followed by a review of related
work to accelerate the computation of pairwise sequence alignments using multithreading
and vectorisation. The chapter then dives into the detailed aspects of our approach to
utilise data-level parallelism in order to accelerate the computation of pairwise sequence
alignments. It covers the topics of efficient data representation, memory transformation, and
vectorised scoring schemes and includes novel methods to maximise the data-level parallelism.
Subsequently, the chapter describes our methods to combine the vectorisation approaches
with the thread-level parallelism via dynamic scheduling and execution techniques. The
chapter concludes with the evaluation of various applications and analysis of the achieved
performance gains as well as an overview of the underlying software and API design.

Chapter 4 addresses the topic of compression-accelerated pattern matching and builds on
our initial work published in:
Rahn, R., Weese, D. and Reinert, K. Journaled string tree-a scalable data structure for

analyzing thousands of similar genomes on your laptop. Bioinformatics, 30(24):3499–3505,
2014. ISSN 14602059. doi: 10.1093/bioinformatics/btu438

This chapter briefly introduces potential and challenges of computational pangenomics,
before it reviews related work using graph-based pangenome structures and reference-centric
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1 Introduction

pangenome models. After this, it gives a formal description of our data representation to
efficiently model multiple sequences using referential sequence compression including essential
operations to operate on the compressed sequence data. It thereby covers methodologies
to dynamically search the compressed sequences with any online algorithm using a tree
traversal approach. The chapter concludes with the evaluation of the performance of different
pattern matching algorithms and provides a design of a read mapping application that can
be applied to a reference panel consisting of thousands of sequences.

Finally, Chapter 5 summarises the main contributions made in this thesis and discusses
potential directions for future research in the field.
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2 Preliminaries

This chapter serves as an introduction to the key terminology and definitions that are
essential for understanding the methodologies discussed in this thesis. We start by recalling
fundamental mathematical concepts of set theory and formal language theory. Subsequently,
we provide a concise overview of the algorithmic principles underlying pairwise alignment
and pattern matching algorithms. Please note that this chapter is a refresher only and does
not aspire to discuss the topics presented in detail or to be complete.

2.1 Fundamental terms and definitions

We define a value as an indivisible entity that remains constant. For instance, the number
10 can be considered a value. Values can be assigned to objects, which are also referred to
as variables. In the context of computers, an object represents a memory address where the
assigned value can be stored. To assign the value 10 to an object a, we use the notation
a ← 10. Additionally, the expression a = 10 signifies that the object a contains the value
10. The type of an object determines the range of values that can be stored within it.
Mathematically, this can be represented in form of a set, which is a collection of unique
values. We may also write elements of a set. Table 2.1 provides a compilation of common

Notation Description

{1, 2, 3, 4} A set over the values 1, 2, 3 and 4
{1, 3, 5 . . . } A set over all positive odd integers, where . . . represents a contin-

uation of the pattern
{a | 0 < a} A set over all positive numbers expressed in set builder notation
|{1, 2, 3, 4}| = 4 The cardinality of a set, denoting the number of values contained

in the set; we may also use length or size
a ∈ {1, 2, 3, 4} Set membership to specify that the object a corresponds to one of

the four values 1, 2, 3, or 4

Table 2.1: Common set notations.

set notations and Table 2.2 of fundamental sets that we use throughout this thesis. Note
that [j..i) = ∅ also denotes the empty set.

Definition 2.1.1 (Relation). Given two sets A and B, then a relation R from A to B is
a subset of the crossproduct of both sets, i.e. R ⊆ A× B. Moreover, a subset of only the
first elements of the ordered pairs defined by the relation R is called the domain of R and a
subset of only the second elements of those is called the range of R. Specifically, we write

7



2 Preliminaries

Notation Description

∅ The empty set
N The set of all positive integers, i.e. {1, 2, 3, . . . }
N0 The set of all non-negative integers, i.e. {0, 1, 2, 3, . . . }
Z The set of all integers, i.e. {. . . ,−2,−1, 0, 1, 2, . . . }
R The set of all real numbers, e.g. π, e, 1,−0.5

[i..j] Set of integers {i, i+ 1, . . . , j − 1, j}
[i..j) Set of integers {i, i+ 1, . . . , j − 1}

Table 2.2: Fundamental set definitions, provided that i, j ∈ Z and i ≤ j.

dom(R) = {a ∈ A | (a, b) ∈ R} to denote the domain of R for at least one value a in A and
correspondingly rng(R) = {b ∈ B | (a, b) ∈ R} to denote the range of R.

Elements of one set can be related to elements of the same or another set by means of a
relation (see Definition 2.1.1). For example, we may say that an integer a relates to an
integer b, provided that a is strictly less than b, i.e. a < b. In this case we have two objects
a ∈ Z and b ∈ Z that are related to each other by means of <, e.g. when a = 3 and b = 8.
Table 2.3 briefly summarises common relations defined on sets that we shall use in this
thesis.

Notation Description

A× B Cross product, e.g. {1, 2} × {a, b} = {(1, a) , (1, b) , (2, a) , (2, b)}
A ∩ B Set intersection, e.g {1, 2} ∩ {1, 3} = {1}
A ∪ B Set union, e.g. {1, 2} ∪ {1, 3} = {1, 2, 3}
A \ B Set difference, e.g. {1, 2} \ {1} = {2}
A = B Set equality, e.g. {1, 2} = {2, 1}
A ⊆ B Subset, e.g. {1, 2} ⊆ {2, 1} and {1, 2} ⊆ Z
A ⊂ B Proper subset, e.g. {1} ⊂ {1, 2}

Table 2.3: Common set relations.

Array, matrix, and dictionary

For many of the described methodologies we use concrete object types that have specific
properties. These include array, matrix , and dictionary objects. An array is a finite collection
of elements of the same set, where each element is related to a unique index. Opposed to
sets an array can contain the same element more than once, since they can be identified by
their index. To denote an object a as an array we write a = (a0, a1, . . . , an−1) = (ai)i∈[0..n),
where ai ∈ A is an element of some set A. The length of the array object a is |a| = n. We
use ai to refer to the i-th element of a starting at index 0. We may also write a[i] = ai to
express the same.

A matrix is a two-dimensional array whose elements are arranged in columns and rows. We
call an object A with n columns and m rows an n ×m matrix, which is expressed in box
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bracket notation as

A =




A0,0 A1,0 · · · An−1,0
A0,1 A1,1 · · · An−1,1

...
... . . . ...

A0,m−1 A1,m−1 · · · An−1,m−1




The same can be expressed in a single term such that we may write [Ai,j ]n×m to introduce
the matrix A, with i ∈ [0..n) and j ∈ [0..m). Unless specified otherwise, we assume that
matrices defined in the remaining document use a column major-order representation. This
means that Ai,j , or equivalently A[i, j], represents the matrix element that intersects at the
i-th column and the j-th row. Moreover, we may write Ai,∗ = (Ai,0,Ai,1, . . . ,Ai,m−1) to
specify an array containing all elements that lie on the i-th column and correspondingly
A∗,j = (A0,j ,A1,j , . . . ,An−1,j) to specify all elements of the j-th row.

Lastly, we introduce a dictionary object type to denote an array whose elements are ordered
by some ordering relation. More specifically, we assume that there is at least a strict weak
order that allows to sort the elements in a dictionary d = (di)i∈[0..n) such that an element
at index i compares either strictly less than to all other elements with an index higher
than i (i.e. di < dj) or is equivalent to them (i.e. neither di < dj nor dj < di is true) for
all j ∈ [i+ 1..|d|). For example d = (1, 2, 6, 16, 16, 16, 20, 99) represents a dictionary whose
elements are sorted in ascending order and where the three elements d3 = d4 = d5 = 16
correspond to the same equivalence class determined by the value 16. In this example these
three elements satisfy the equality relation.

2.2 Sequences

The main subject of this thesis is to optimise algorithms that belong to the field of string
processing, where the elements come from a special set called Σ.

Definition 2.2.1 (Alphabet). An alphabet, denoted by the symbol Σ, is a non-empty,
finite set over elements called characters, letters, or symbols.

The symbols of an alphabet represent categorical values that correspond to a specific domain.
For example the DNA alphabet ΣDNA := {A, C, G, T} represents the four fundamental DNA
bases Adenine, Cytosine, Guanine, and Thymine, respectively.

Definition 2.2.2 (Sequence). A sequence over Σ is a an array whose elements come from Σ.
Thus, we formally describe a sequence x as x = (x0, x1, . . . , xn−1) = (xi)i∈[0..n), with xi ∈ Σ.

In the special case of sequences we may also describe a sequence as the concatenation
of consecutive symbols and write x = x0x1 . . . xn−1 = x0 + x1 + . . .+ xn−1. In Table 2.4,
we summarise common notations we will use to formally describe sequences and sets of
sequences. Note that Σ0 = {ϵ} and that xj..i = ϵ. Moreover, we may use the short notation
x ∈ Σn to properly introduce a sequence x of length |x| = n, with xi ∈ Σ for all i ∈ [0..n).

We can transform a sequence into an integer array by means of a special rank function.
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Notation Description

|x| Length of a sequence
ϵ Empty sequence, i.e. |ϵ| = 0

xi..j Segment or infix of x, i.e. xixi+1 . . . xj−1; we may also write x[i..j)
x0..j Prefix of x; we may also write x[0..j)
xi..n Suffix of x; we may also write x[i..n)
Σn Set of all finite sequences of length n over Σ
Σ∗ Set of all finite sequences over Σ, i.e. Σ∗ = ⋃∞

k=0 Σk

Table 2.4: Common sequence notations, provided that n ∈ N0 and 0 ≤ i ≤ j ≤ n.

Definition 2.2.3 (Rank). Let Σ be an alphabet, we define a special function, denoted by
rankΣ, that maps each symbol of Σ to a distinct integer in the range [0..|Σ|). Let a and b
be two symbols from the same alphabet Σ, then it holds that rankΣ(a) = rankΣ(b) if and
only if a = b.

For the DNA alphabet ΣDNA the ranks of the symbols could for example be rankΣ(A) = 0,
rankΣ(C) = 1, rankΣ(G) = 2, and rankΣ(T) = 3. Thus, if we consider a DNA sequence
AGTACGACTAGCT we can write this as (0, 2, 3, 0, 1, 2, 0, 1, 3, 0, 2, 1, 3), which is the corresponding
array of the associated ranks.

Using the rank representation, we can also compare two sequences x and y lexicographi-
cally.

Definition 2.2.4 (lexicographic order). Given two sequences x ∈ Σn and y ∈ Σm, with
n,m ∈ N0. We say that x <lex y is true if and only if, either 0 = n < m, or x0..k = y0..k and
rankΣ(xk) < rankΣ(yk), for some index k ∈ [0..minn,m), provided that [0..minn,m) ≠ ∅.
In this case we write that x is lexicographically smaller than y.

In other words, k is the smallest index whose associated symbol rank in x is strictly less
than the corresponding symbol rank in y, provided that the prefix of x equals the prefix of y
up to that particular index. Furthermore, we have for two sequences x, y ∈ Σ∗ \ {ϵ} that:

• ϵ≮lex ϵ,

• x ≮lex ϵ,

• ϵ<lex y,

• x <lex y, if x = y0..|x|, and

• x ≮lex y, if y = x0..|y|.

That is x compares lexicographically less than y if x is a prefix of y.
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2.3 Sequence alignment

The following section establishes fundamental concepts and algorithms related to the
computation of pairwise sequence alignments. First we briefly discuss how alignments are
represented and how they can be scored. This is followed by comparing various optimal
pairwise alignment problems and how they can be computed using dynamic programming
(DP).

2.3.1 Alignment representation

Sequence alignments are commonly used to identify differences between two or more
sequences. In a biological sense, these differences indicate evolutionary events such as
point mutations, insertions, or deletions. By identifying these events, one can, for example,
draw conclusions about the relationships between the compared sequences, assign unknown
sequences to particular families or groups etc. [Durbin et al., 1998]. If we consider only two
sequences, we speak of a pairwise sequence alignment, whereas if we consider more than
two sequences, we speak of a multiple sequence alignment. In the following, we will focus
only on pairwise sequence alignment to describe the essential concepts.

Let x ∈ Σn and y ∈ Σm be two sequences over the same alphabet Σ. Conceptually, we
represent a pairwise sequence alignment between x and y as a matrix with two rows. The
first row represents the aligned sequence x, denoted by x, and the second row the aligned
sequence y, denoted by y. We often use the terms reference sequence and query sequence to
refer to the sequence assigned to the first and second row, respectively. Each column of this
matrix represents an ordered pair of aligned symbols. These are symbols from the special
gapped alphabet Σgap, which is defined as Σgap = Σ ∪ {−}, where − denotes a special space
symbol that is not a member of Σ. This space symbol is used as a placeholder to adjust for
the inserted and deleted symbols in the alignment, as is illustrated in Fig. 2.1.

G T G T G G TC T G C AA –

G T A T – – TC T G C AG Cx

y

0 4

0 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13

match
mismatch

deletion
insertion

– space

Figure 2.1: Visualisation of an alignment between a reference sequence x = GTATCTGTGCCA and a
query sequence y = GTGTGGCTATGCA. Yellow tiles symbolise pairs of aligned positions with identical
symbols (match). Blue tiles in the query sequence (position 2 and 8) represent replacements of
the corresponding position in the reference sequence with another symbol (mismatch). Green tiles
in the query sequence (position 4 and 5) mark inserted symbols, whereas red tiles in the reference
sequence mark deleted symbols (position 11). Space symbols fill the resulting gaps in the opposite
sequence. The crossbars represent the segments of the original sequences including their start
position in the original sequence.
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2 Preliminaries

Definition 2.3.1 (Aligned sequence). Let s ∈ Σn be a some sequence. Furthermore, let
πΣ : Σ∗

gap → Σ∗ denote a projection function that is recursively defined as:

πΣ(s) =





ϵ if s = ϵ,

πΣ(s′) if s = s′ +−,
πΣ(s′ + a) if s = s′ + a and a ∈ Σ.

We say that s is an aligned sequence of a sequence s, if and only if s = πΣ(s). We call s the
source sequence of s.

Having this, we can now formally define a pairwise sequence alignment between x and y as
follows.

Definition 2.3.2 (Pairwise sequence alignment). A pairwise sequence alignment of the two
source sequence x ∈ Σn and y ∈ Σm is an N × 2 matrix [Ai,j ]N×2, where:

• Ai,j ∈ Σgap,

• (Ai,0,Ai,1) ̸= (−,−),

• N ∈ [0..n + m),

• x = A∗,0 is an aligned sequence of x, and

• y = A∗,1 is an aligned sequence of y.

From this definition we can observe, that the relative order of the symbols of the source
sequence is not changed when a sequence is aligned to another sequence.

Inside of an alignment A the aligned reference and query sequence have the same size. In the
following we write |A| = N = |x| = |y|. Moreover, we forbid the case that a column in an
alignment A consists of two space symbols because it would not be biologically meaningful.
Consequently, the maximal size of a pairwise sequence alignment is bounded by n + m.
Considering a single column Ai,∗ of the alignment A, we distinguish between:

• a substitution if and only if Ai,0 ̸= − and Ai,1 ̸= −; we further use the term match if
Ai,0 = Ai,1 and mismatch otherwise.

• an insertion if and only if Ai,0 = − and Ai,1 ̸= −, and

• a deletion if and only if Ai,0 ̸= − and Ai,1 = −.

12



2.3 Sequence alignment

2.3.2 Alignment score

In many bioinformatic applications, the comparison of alignments plays a crucial role.
However, directly comparing the representations of alignments would be impractical due
to the vast number of possible pairwise alignments between two sequences of length n,
which is given by

(2n
n
)

[Durbin et al., 1998]. Therefore, we employ a strategy to condense
the alignment information into a single numeric value, as outlined in Definition 2.3.3, by
utilising a scoring scheme.

Definition 2.3.3 (Scoring scheme). Let σ : Σgap × Σgap → R be a score function that
maps an aligned pair of symbols to some numeric value. Then the score of a pairwise
sequence alignment A is computed using a scoring scheme, denoted by ψ, as:

ψ(A) =
|A|−1∑

i=0
σ(Ai,0,Ai,1).

A scoring scheme allows us to assign scores to different alignment elements, such as matches,
mismatches, and spaces, providing a quantitative measure of the alignment quality and
similarity. In different experimental settings, dedicated scoring schemes can be employed to
ensure that the obtained alignment score reflects the desired interpretation of the alignments.
Among these, the edit scoring scheme [Levenshtein, 1966] is one of the simpler ones, which
calculates the absolute number of mismatches and spaces in the alignment.

Definition 2.3.4 (Edit score function). Let (a, b) ∈ Σgap × Σgap \ {−,−} be two symbols
from the same alphabet. The edit score function, denoted by σedit, is defined as:

σedit(a, b) =
{

0 if a = b,

−1 otherwise.

For instance, considering the alignment depicted in Figure 2.1, the edit scoring scheme
would yield a score of −5, taking into account the five mismatches and spaces present in
the alignment.

While the edit scoring scheme is commonly used in applications like read mapping, where error
quantification is important, it may not be suitable for studying the ancestral relationships
between aligned sequences. In such cases, accurately characterising true mutational events
that occurred during sequence evolution becomes crucial. For instance, an InDel (Insertion,
Deletion) is considered a single evolutionary event, as it is unlikely that a consecutive stretch
of inserted or deleted symbols results from multiple independent events occurring repeatedly
at the same site in the DNA sequence by chance. To address this, certain applications
utilise a generalised scoring scheme that distinguishes between substitution and InDel events,
allowing for a more accurate analysis of ancestral relationships.
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Substitution score function

The substitution score function focuses solely on evaluating substitutions within an alignment.
There are two commonly employed substitution score functions: the unitary score function
and the matrix score function. We will begin by providing the definition of the unitary
score function.

Definition 2.3.5 (Unitary score function). Let a ∈ Σ and b ∈ Σ be two symbols from the
same alphabet, excluding the space symbol − (i.e. − /∈ Σ). We introduce two parameters:
m= ∈ N0, representing the scores for a match, and m̸= ∈ {. . . ,−2,−1}, representing the
scores for a mismatch. The unitary score function, denoted by σuni, is defined as:

σuni(a, b) =
{

m= if a = b,
m ̸= otherwise (i.e.a ̸= b).

The unitary score function is a more general form of the edit scores, allowing for arbitrary
positive score values for matches and negative score values strictly less than zero for
mismatches. This function is commonly used in aligning DNA sequences. In contrast, the
matrix score function enables the assignment of a distinct score value to each combination
of aligned symbols.

Definition 2.3.6 (Matrix score function). Let a ∈ Σ and b ∈ Σ be two symbols from the
same alphabet Σ, and l = |Σ| be the size of the alphabet. Additionally, let [Mi,j ]l×l be a
matrix, where Mi,j ∈ Z represents the score value for aligning symbols a and b. Then, we
define the matrix score function, denoted by σmtx, as:

σmtx(a, b) = Mi,j ,

with i = rankΣ(a) and j = rankΣ(b).

Two well-known examples of matrix score functions used for assessing alignments between
amino acid sequences are the BLOSUM (blocks substitution matrix) [Henikoff and Henikoff,
1992] and PAM (point accepted mutation matrix) [Dayhoff et al., 1978] matrices. These
matrices are specifically designed to capture the physical and chemical characteristics of
amino acids. They take into account the likelihood of substituting one amino acid with
another that shares similar traits, as opposed to replacing it with an amino acid that could
potentially disrupt protein function.

The score values within these matrices reflect the probabilities of specific amino acid substitu-
tions observed in pairwise alignments of sequences with a known degree of sequence similarity.
These probabilities are typically calculated using log-odds ratios, indicating the likelihood
of observing a particular aligned pair of amino acids compared to its expected frequency.
Higher values in the matrix indicate a higher probability of aligning the corresponding pair
of amino acids, while lower values indicate the opposite. For example, the BLOSUM62 score
matrix is derived from pairwise alignments of protein sequences that exhibit a minimum
sequence similarity of 62% (refer to Fig. 2.2).
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A C D E F G H I K L M N P Q R S T V W Y
A 4 0 −2 −1 −2 0 −2 −1 −1 −1 −1 −2 −1 −1 −1 1 0 0 −3 −2
C 0 9 −3 −4 −2 −3 −3 −1 −3 −1 −1 −3 −3 −3 −3 −1 −1 −1 −2 −2
D −2 −3 6 2 −3 −1 −1 −3 −1 −4 −3 1 −1 0 −2 0 −1 −3 −4 −3
E −1 −4 2 5 −3 −2 0 −3 1 −3 −2 0 −1 2 0 0 −1 −2 −3 −2
F −2 −2 −3 −3 6 −3 −1 0 −3 0 0 −3 −4 −3 −3 −2 −2 −1 1 3
G 0 −3 −1 −2 −3 6 −2 −4 −2 −4 −3 0 −2 −2 −2 0 −2 −3 −2 −3
H −2 −3 −1 0 −1 −2 8 −3 −1 −3 −2 1 −2 0 0 −1 −2 −3 −2 2
I −1 −1 −3 −3 0 −4 −3 4 −3 2 1 −3 −3 −3 −3 −2 −1 3 −3 −1
K −1 −3 −1 1 −3 −2 −1 −3 5 −2 −1 0 −1 1 2 0 −1 −2 −3 −2
L −1 −1 −4 −3 0 −4 −3 2 −2 4 2 −3 −3 −2 −2 −2 −1 1 −2 −1
M −1 −1 −3 −2 0 −3 −2 1 −1 2 5 −2 −2 0 −1 −1 −1 1 −1 −1
N −2 −3 1 0 −3 0 1 −3 0 −3 −2 6 −2 0 0 1 0 −3 −4 −2
P −1 −3 −1 −1 −4 −2 −2 −3 −1 −3 −2 −2 7 −1 −2 −1 −1 −2 −4 −3
Q −1 −3 0 2 −3 −2 0 −3 1 −2 0 0 −1 5 1 0 −1 −2 −2 −1
R −1 −3 −2 0 −3 −2 0 −3 2 −2 −1 0 −2 1 5 −1 −1 −3 −3 −2
S 1 −1 0 0 −2 0 −1 −2 0 −2 −1 1 −1 0 −1 4 1 −2 −3 −2
T 0 −1 −1 −1 −2 −2 −2 −1 −1 −1 −1 0 −1 −1 −1 1 5 0 −2 −2
V 0 −1 −3 −2 −1 −3 −3 3 −2 1 1 −3 −2 −2 −3 −2 0 4 −3 −1
W −3 −2 −4 −3 1 −2 −2 −3 −3 −2 −1 −4 −4 −2 −3 −3 −2 −3 11 2
Y −2 −2 −3 −2 3 −3 2 −1 −2 −1 −1 −2 −3 −1 −2 −2 −2 −1 2 7

11 highest
10
9
8
7
6
5
4
3
2
1
0

−1
−2
−3
−4 lowest

Figure 2.2: Cost values of the BLOSUM62 score matrix for the 20 amino acids represented by their
one letter IUPAC (International Union of Pure and Applied Chemistry) code.

Gap score function

To accurately assess InDels, a specific score function called the gap score function is
utilised.

Definition 2.3.7 (Gap). A gap is the longest consecutive stretch of spaces within an aligned
sequence.

The gap score function plays a crucial role in accurately evaluating InDels within sequence
alignments. It assigns a specific score value to each gap based on its length, allowing for a
more comprehensive assessment of InDel events. In general, there are different approaches
to modelling gaps, with two commonly used ones being the affine gap function and the
linear gap function.

Definition 2.3.8 (Affine gaps). Let l ∈ N0 denote the length of a gap. We introduce two
parameters: gopn ∈ {. . . ,−2,−1, 0}, representing the negative scores for opening a gap, and
gext ∈ {. . . ,−2,−1, 0}, representing the negative scores for extending an already opened
gap. The affine gap function, denoted by γaff , is defined as

γaff(l) =
{

gopn + l · gext if and only if l > 0,
0 otherwise.
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Definition 2.3.9 (Linear gaps). We derive the linear gap function, denoted by γlin, from the
affine gap score function (see Definition 2.3.8) if we set gopn = 0, such that γlin(l) = l · gext.

In both cases, the total score of a gap decreases linearly with the length of the gap, while
in the case of affine gaps an initial penalty is added combining nearby gaps into a single
InDel event [Cartwright, 2006]. By incorporating these different gap score functions into the
scoring scheme, we can appropriately capture the characteristics of InDel events, enabling a
more nuanced analysis of sequence alignments (refer to Fig. 2.3).

T G A T – –C G T A–

T G C T CC G G AA Tx

y

0

0 64 5

0 1 2 3 4 5 6 7 8 9 10

(a) Linear gaps

T G A T – –C G T A–

T G C T CC G G AA Tx

y

0

0 5

0 1 2 3 4 5 6 7 8 9 10

(b) Affine gaps

Figure 2.3: Effects of choosing either linear (a) or affine gap score functions (b). The three single
deletion events in a are condensed into a single deletion event of size three in b.

2.3.3 Optimal pairwise alignment

A fundamental problem occurring in numerous bioinformatic applications is the computation
of the optimal alignment for a given pair of sequences, which we define as follows.

Definition 2.3.10 (Optimal pairwise alignment problem). Let A(x, y) ⊂ Σ∗
gap × Σ∗

gap
denote the set of all proper alignments between x and y. Then, given a scoring scheme ψ,
the optimal pairwise alignment problem is to find the set

Λ(x, y : ψ) = arg max
A∈A(x,y)

ψ(A), (2.1)

for which the alignment score is maximal.

The general problem of finding the optimal alignment can be further divided into subclasses.
Among these the optimal global alignment, the optimal semi-global alignment, the optimal
overlap alignment, and the optimal local alignment are well-known representatives. The main
difference between these subclasses is that they limit the set of valid alignments between
the two sequences x and y.

The global alignment considers all alignments that align the reference sequence to the query
sequence from end-to-end. According to Definition 2.3.1, we require that x = πΣ(A∗,0) and
y = πΣ(A∗,1) for all A ∈ A(x, y) (see Fig. 2.4a). The semi-global alignment relaxes this
condition to allow any alignments between any segment of the reference sequence that is
aligned to the whole query sequence, i.e. y = πΣ(A∗,1) (see Fig. 2.4b). In the case of the
overlap alignment, only alignments between any prefix of the reference sequence with any
suffix of the query sequence or vice versa are allowed (see Fig. 2.4c). Lastly, the local
alignment considers all alignments between any segment of the reference sequence with any
segment of the query sequence (see Fig. 2.4d).
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G T G T G G TC T G C AA –

G T A T – – TC T G C AG Cx

y

0 4
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(a) Global alignment

– – – A T C GG – – –T–

T T C A – GC G A C AT Tx

y

0 3 4 10

0 54

0 1 2 3 4 5 6 7

(b) Semi-global alignment

T G G TC T G C AA

G T A T –– TC T GGx ––

y –––

0 61 4

20

0 1 2 3 4 5 6 7

(c) Overlap alignment

A G C A T C GG T G GT– – –– –

T T C A – GC G A C AT T - -– –x

y

0 2 4 10

0 2 7 10

0 1 2 3 4 5 6 7 8

(d) Local alignment

Figure 2.4: Examples of global (a), semi-global (b), overlap (c), and local alignment (d) for distinct
sequence pairs. Symbols with grey background are unaligned and not part of the corresponding
alignment.

2.3.4 Dynamic programming

The optimal alignment problem can be solved systematically using a DP approach. The
general idea is to recursively break down the original problem of finding the optimal alignment
between two sequences into manageable subproblems. The final solution is then built from
the partial solutions obtained during the recursion.

To be more precise, let us consider the problem of finding the optimal global alignment
between x ∈ Σn and y ∈ Σm. At each step of the recursion, we compute the score of the
optimal alignment between the two prefixes x0..i and y0..j , where i ∈ [1..n] and j ∈ [1..m].
There are three possibilities how the last symbols xi−1 and yj−1 of the two prefixes could
have been aligned: by substituting xi−1 with yj−1, by deleting xi−1, or by inserting yj−1.
To determine which one of these three possibilities is the optimal choice, we consider the
alignment score of the optimal alignment that ended immediately before the respective events
and add the scores for the corresponding operation. Figure 2.5 gives a visual impression of
this recursive approach.

Λ(x0..i−1, y0..j−1 : ψ) Λ(x0..i, y0..j−1 : ψ)

Λ(x0..i−1, y0..j : ψ)

(
−

y
j−1

)

plus score for
aligning

(x
i−1

y
j−1

)

deletion

plus score for
aligning

plus score for
aligning

Λ(x0..i, y0..j : ψ)

substitution in
se

rt
io

n

(x
i−1
−

)

Figure 2.5: General recursion dependency of the dynamic programming algorithm.
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Alignment algorithm

To efficiently compute the alignment score, the alignment algorithm utilises a dedicated DP
matrix [Si,j ]n+1×m+1. The DP matrix has n + 1 columns and m + 1 rows. The additional
column and row serve as a recursion anchor, and their initialisation depends on the alignment
subclass being computed.

The DP algorithm can be divided into three phases: initialisation, recursion, and finalisation.
In the initialisation phase, the first column and row of the DP matrix S are filled according
to the specific requirements of the alignment subclass being computed. During the recursion
phase, the entire DP matrix is computed in a major column order, following the procedure
illustrated in Fig. 2.6. At each cell (i, j), the maximum value among the three possible
options for ending the alignment at that position is computed using the respective recursion
formula (see Eq. (2.4) using a linear gap function and Eq. (2.10) using a affine gap function).
In the finalisation phase, the DP coordinate (̂i, ĵ), with î ∈ [0..n] and ĵ ∈ [0..m], that
corresponds to the maximum score value in S is determined and returned as the result of
the alignment algorithm.

x0 x1 x2 x3 x4 x5 · · · xn−1

0 1 2 3 4 5 · · · n6

0

1

2

3

4

5
...

m

y0

y1

y2

y3

y4
...

ym−1

accessed

active

buffered

dependency

traversal

symbol

initialisation

recursion

Figure 2.6: Computing the DP matrix for sequences x and y. Currently, entry at position (5, 3)
is computed (active entry) by accessing the entries at (4, 2) (diagonal arrow), (4, 3) (horizontal
arrow), and (5, 2) (vertical arrow) as well as the sequence symbols x4 and y2. The optimal
alignment score can be computed with a linear buffer using in total m + 1 cells to cache the scores
of the previous column(orange and yellow tiles).

The implementation details of the DP algorithm may vary depending on the specific
alignment problem being solved and the chosen gap score function. Here, we will focus on
the differences in computing the different alignment problems assuming the use of linear
gaps.

Global alignment To compute the optimal global alignment [Needleman and Wunsch,
1970], the first row and column of S are initialised with the scores for a gap of length i and
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2.3 Sequence alignment

j respectively.

Si,0 = i · gext (2.2)
S0,j = j · gext (2.3)

During the recursion the alignment score for the currently visited cell Si,j is computed by

Si,j = max





Si−1,j−1 + σ(xi−1, yj−1) (Substitution)
Si−1,j + gext (Deletion)
Si,j−1 + gext (Insertion),

(2.4)

with i ∈ [1..n] and j ∈ [1..m]. The optimal alignment score is received from the last DP
coordinate of the matrix, i.e. î = n and ĵ = m.

Semi-global alignment Computing the optimal semi-global alignment only differs from
the global alignment by setting all scores of the first row to 0, i.e. Si,0 = 0, and by extending
the search for the optimal alignment score to the entire last row in the finalisation phase, i.e.
î = max(S∗,m) and ĵ = m. Due to these adaptions, leading and trailing gaps in x are not
penalised, such that we can find the optimal alignment between the whole query sequence y
and any segment of the reference sequence x.

Overlap alignment Computing the optimal overlap alignment further refines the initialisa-
tion of the DP matrix and the search space. In this mode, both the cells of the first column
and row are initialised with 0, i.e. S0,j = Si,0 = 0. Furthermore, the maximum score value
is searched in the last row and column, i.e. î = max(S∗,m) and j = m or ĵ = max(Sn,∗)
and î = n. Correspondingly, the optimal alignment can start anywhere in the first row or
column and can end anywhere in the last row or column which models the desired behaviour
of aligning any prefix of x with any suffix of y or vice versa.

Local alignment To compute an optimal local alignment, the same initialisation strategy
as described for the overlap alignment is used. In addition, the main recursion formula is
refined to forbid any alignment score below 0 [Smith and Waterman, 1981], such that

Si,j = max





Si−1,j−1 + σ(xi−1, yj−1) (Substitution)
Si−1,j + gext (Deletion)
Si,j−1 + gext (Insertion)
0,

(2.5)

In the finalisation phase the entire space of the DP matrix S is searched for the maximal
alignment score, i.e. (̂i, ĵ) = arg maxi,j Di,j . This is typically achieved by tracking the
maximum score while computing the DP matrix. By choosing 0 as the lower bound for the
score values and considering the entire space of the DP matrix, we can compute the optimal
alignment between any segment of x and any segment of y.

Using affine gaps

To compute optimal alignments using an affine score function, Gotoh [1990] introduced two
auxiliary DP matrices with the same dimensions as the main DP matrix S to cache the
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score of the optimal alignment that ends in a deletion or insertion. Let [Di,j ]n+1×m+1 and
[Ii,j ]n+1×m+1 be the corresponding score matrices for deletions and insertions respectively.
The initialisation of the global alignment (see Eq. (2.3)) changes to

Si,0 = gopn + i · gext

Di,0 = gopn + i · gext (2.6)
Ii,0 = −∞

for the initial row and

S0,j = gopn + j · gext

D0,j = −∞ (2.7)
I0,j = gopn + j · gext

for the initial column. Note by initialising the first row of I and the first column of D to
−∞ we enforce that a leading gap in either sequence is penalised with the scores for open a
gap.

The main recursion formula for the global alignment from Eq. (2.4) is then updated to

Di,j = max
{

Di−1,j + gext

Si−1,j + gopn + gext
(2.8)

Ii,j = max
{

Ii,j−1 + gext

Si,j−1 + gopn + gext
(2.9)

Si,j = max





Si−1,j−1 + σ(xi−1, yj−1) (substitution)
Di,j (deletion)
Ii,j (insertion).

(2.10)

Trace algorithm

To obtain the actual alignment representation, we annotate the DP matrix with special
symbols that indicate the direction from which the maximum at a coordinate (i, j) was
derived. These trace markers are defined by the trace alphabet, denoted as Σtrace =
{↖,←, ↑,⇐,⇑,⟲}. When read from left to right, these symbols represent the possible trace
directions: substitution (↖), deletion (←), opening a deletion (⇐), insertion (↑), opening
an insertion (⇑), and a terminal marker (⟲) indicating the end of the trace operation. To
facilitate this, we allocate an additional trace matrix T = [Ti,j ]n+1×m+1 over the trace
alphabet. The first coordinate, T0,0, is initialised as ⟲. The initialisation of the first row
and column depends on the specific initialisation rule and the gap score function being used.
If a value in the first row or column is explicitly set to 0, the corresponding coordinate in
Tis initialised as ⟲. Otherwise, we set the entries of the first row to ← and the entries of
the first column to ↑. If affine gaps are used, then T1,0 is set to ⇐, and T0,1 is set to ⇑.
During the recursion phase, we select the trace marker that corresponds to the path for
which the maximum score value was computed. In the case of the local alignment, if the
maximum score is 0, the trace marker is set to ⟲.
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2.3 Sequence alignment

To construct the actual alignment, we start with empty aligned sequences, i.e. x = ϵ and
y = ϵ. Then, we begin at the coordinate (̂i, ĵ) that corresponds to the found optimal
alignment score and go to the next coordinate indicated by the read trace symbol. Let (i, j)
be the currently visited coordinate, we can describe this as a function trace defined as:

trace(Ti,j) =





Ti−1,j−1 if Ti,j =↖,
Ti,j−1 if Ti,j ∈ {↑,⇑},
Ti−1,j if Ti,j ∈ {←,⇐}, or
Ti,j if Ti,j = ⟲.

For each visited trace symbol along the trace path, we incrementally build the aligned
sequences by

• x ← xi−1x and y ← yj−1y if Ti,j =↖,

• x ← −x and y ← yj−1y if Ti,j ∈ {↑,⇑}, or

• x ← xi−1x and y ← −y if Ti,j ∈ {←,⇐}.

In the case where ti,j = ⟲, the trace procedure is stopped.

Sometimes, multiple alternative traces can lead to the same optimal alignment score. In
such cases, the trace procedure prioritises a specific direction when following the trace
symbols (typically in the order of 1. ↖, 2. ← or ⇐, and 3. ↑ or ⇑). The first alignment
obtained by following the trace is referred to as the optimal alignment (see Fig. 2.7b), while
the alternative alignments are called cooptimal alignments. For instance, in the alignment
example shown in Fig. 2.7a, the trace corresponds to the optimal alignment depicted in
Fig. 2.7b. However, in the case of the banded alignment, the trace leads to a cooptimal
alignment as illustrated in Fig. 2.7c. Both alignments represent a global alignment with a
maximum alignment score of 17, but the position of the deletion can vary, occurring either
at position 11 or 12 of the final alignment.

Banded algorithm

It is also possible to compute only a subset of the original DP matrix by defining a concentric
band with a predefined width k around the main diagonal. In this case we speak of computing
a banded alignment. The main diagonal extends from the top left corner to the bottom
right corner of the DP matrix. If the sequences have different lengths, the main diagonal
ends either to the left of or above the bottom right corner in the last row or last column of
the DP matrix, respectively. The k-band includes all entries of the DP matrix that are

⌈
k
2

⌉

diagonals below and
⌊

k
2

⌋
diagonals to the right of the main diagonal, including the main

diagonal itself. In other words, there are k + 1 main diagonals within the band. During the
recursion, only the entries within this band are computed, while all other entries of the DP
matrix are skipped. The right image in Figure 2.7a illustrates this concept using a band of
size k = 6.
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(a) Filled DP matrix using the full space (left) and a band of size 6 (right).

G T G T G G TC T G C AA –
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(b) The optimal alignment.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13

(c) A cooptimal alignment.

Figure 2.7: Example of a computed DP matrix (a, left) and its banded version (a right) to compute
the optimal global alignment between x = GTATCTGTGCCA and y = GTGTGGCTATGCA using unitary
substitution cost function, with m= = 4 and m̸= = −5, and linear gap score function, with
gext = −3. The score of the optimal alignment is 17 and is found at coordinate (12, 13). Arrows
represent the trace marker. Bold arrows mark the path of the optimal (b), respectively cooptimal
alignment (c).

Complexity analysis

The regular DP algorithm visits each entry of the score matrix exactly once, regardless
of the alignment problem being solved. Assuming that the scoring scheme function σ is
constant, the algorithm performs a constant number of instructions to update the current
alignment score in each iteration, regardless of the gap model being used. As a result, the
total runtime of the regular DP algorithm is O(nm).

By keeping only a single column of the score matrix in memory, we can compute the alignment
score in linear space O(m) (refer to Fig. 2.6). However, to compute the actual alignment,
we need to fill the entire trace matrix in each iteration of the recursion, which requires
a constant number of comparison and assignment instructions. Therefore, the runtime
complexity remains at O(nm) in the worst case. Additionally, compared to computing
only the scores, we need to allocate memory proportional to the product of both sequence
lengths, i.e. O(nm). Following the trace path to obtain the alignment transcript, on the
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other hand, requires at most O(n + m) steps.

In some cases, when we know that the aligned sequences are similar, we can execute the
DP algorithm with a k-band, which reduces the runtime complexity to O(kn). Furthermore,
the total space consumption of both the score and trace matrix is reduced to O(kn).

2.4 Pattern matching

The second major class of algorithms we consider in this work are pattern matching
algorithms [Gusfield, 1997]. The pattern matching problem aims to identify all distinct
locations, referred to as k-occurrences, at which a query sequence y ∈ Σm occurs within a
reference sequence x ∈ Σn , allowing for at most k errors [Galil and Giancarlo, 1988]. They
are especially useful when searching for recurring patterns or motifs within a larger sequence
such that we assume that m≪ n.

Definition 2.4.1 (k-occurrence). Given k ∈ N0 and an alignment A ∈ A(x ′, y) between a
segment x ′ of x and y. We call x ′ a k-occurrence if and only if ψ(A : σedit) ≥ −k.

In the case where k > 0 we speak of approximate pattern matching and when k = 0 we
speak of exact pattern matching.

The algorithms used to solve these problems often employ techniques such as dynamic
programming, finite automata, or data structures like suffix trees or indexing methods to
efficiently identify the k-occurrences of the query sequence within the reference sequence.
In the following, we will first examine representative examples of online pattern matching
algorithms and then proceed to discuss filtration approaches that utilise an additional index
structure. For a detailed survey of this subject, the interested reader is referred to [Navarro,
2001].

2.4.1 Online methods

To solve the pattern matching problem algorithmically, a common approach is to shift a
window of size ω = m +k from left to right over the reference sequence. At each position, an
algorithm-specific predicate is invoked. This function reduces the given input to a boolean
value, either true or false, by comparing the query sequence with the segment x ′ of x that
corresponds to the currently visited window, i.e. |x ′| = ω. When the predicate function
returns true, the current start position of the window in the reference sequence is reported
as a k-occurrence.

Exact pattern matching

The naïve solution for computing the set of all exact occurrences is presented in Algorithm 2.1.
The main loop, which shifts the window of size ω = m over the reference sequence, is depicted
in lines 9 to 11. During each iteration, the predicate isEqual (lines 1 to 7) is called with
the corresponding segment x ′ = xi..i+ω of the currently visited window starting at index i
and the query sequence. The predicate compares the two sequences symbol by symbol, and
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only if all symbols are equal, it returns true. The runtime complexity of this algorithm is
O(nm) in the worst case.

Algorithm 2.1: Naïve search
Input: x, y

1 isEqual(x ′, y):
2 if |x ′| ≠ |y| then
3 return false
4 for i ← 0 to |x| − |y| do
5 if x ′i ̸= yi then
6 return false

7 return true

8 ω ← |y|
9 for i ← 0 to n − ω do

10 if isEqual(xi..i+ω, y) then
11 Report occurrence at i

Various strategies have been proposed to optimise the runtime of the naïve solution, either
by being faster on average or by improving the worst-case runtime [Gusfield, 1997; Navarro,
1998]. These strategies achieve their improvements by adding a preprocessing step, in which
they construct auxiliary data structures for the query sequence before performing the search.
We will briefly introduce two representative algorithms: the Boyer-Moore-Horspool, or
simply Horspool algorithm [Horspool, 1980], and the Bitap algorithm, also known as the
ShiftOR algorithm [Baeza-Yates, 1989].

Horspool Instead of comparing the query sequence at every position of the reference
sequence, Horspool [1980] devised a practical solution that skips text positions where
it is guaranteed that the predicate cannot evaluate to true. Their approach involves
preprocessing y in O(m) time using O(|Σ|) additional space to create a lookup array. This
array stores, for each symbol of the alphabet, the maximum number of steps the window
can be skipped in the next iteration.

Similar to the naïve approach, the main search algorithm scans linearly over the reference
sequence from left to right and compares the query sequence with the segment of the reference
sequence corresponding to the current search window. However, after each invocation of the
predicate, the algorithm jumps to the next reference sequence position using the precomputed
lookup array. While its worst-case runtime is still O(nm), it has been shown that this
strategy outperforms the naïve search on average for query sizes larger than 5 [Horspool,
1980].

ShiftOr [Baeza-Yates, 1989] improved the worst-case runtime to O(
⌈m

w

⌉
n), where w repre-

sents the number of bits of the underlying computer word (typically 64). This improvement
was achieved by constructing a lookup array of size |Σ| that contains query-specific bit-
masks for each symbol present in the query sequence. The construction of this array takes
O(m + |Σ|) time.
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During the main search, the algorithm scans linearly over the reference sequence and
updates the bits in an additional control mask using the corresponding bitmask from the
preprocessing for the active symbol in the currently visited search window over x. After
each update, the algorithm checks if the bit at position m − 1 is set in the control mask. If
the check is successful, the algorithm reports an occurrence starting at position i −m + 1.

During the execution of the for-loop, the algorithm processes w symbols of the query
sequence simultaneously using bit-parallel instructions. This allows the algorithm to search
y in x in linear time, assuming m ≤ w. The algorithm can be generalised to handle query
sequences of arbitrary length, resulting in a runtime of

⌈m
w

⌉
.

Approximate pattern matching

To solve the approximate pattern matching problem, we could theoretically use the standard
DP algorithm for computing semi-global alignments, as described in the previous section.
However, in practice, we are only interested in counting errors, so we can use a more efficient
DP algorithm implementation proposed by Myers [1999]. This algorithm is an adaptation
of the general DP algorithm (see Section 2.3.4) used to solve the global alignment problem.
It utilises bit-parallel instructions during the recursion of the DP matrix, taking advantage
of the special properties of the edit scoring scheme (see Definition 2.3.4).

Myers showed that there are only three possible ways in which the scores of two adjacent
cells in vertical, horizontal, or diagonal directions can differ. Based on this observation, he
encoded the relative differences of the alignment scores in the scoring matrix using a set of
six bitvectors. These bitvectors are used to update an entire column of the DP matrix using
only constant number of bit-parallel instructions. This yielded an algorithm computing the
edit distance in O(nm

w + m · |Σ|) using only O(m
w · |Σ|) space.

Ukkonnen trick Ukkonen [1985] showed how the runtime could be further reduced when
the maximum number of allowed errors k is known in advance. He observed that once the
algorithm reaches a score less than −k in an active cell, all subsequent scores in the same
column can not produce an optimal alignment since the score can not increase. Therefore,
the algorithm can skip the computation of the remaining entries in the current column.
This optimisation significantly reduces the overall runtime complexity to O(kn

w + m · |Σ|).

2.4.2 Filter methods

Although there are various efficient online pattern matching algorithms available, they can
become inefficient when dealing with large problem sizes, such as matching one million
reads to a reference sequence during read mapping. To address this issue, current solutions
employ a filter prior to the pattern matching process. This filter is designed to exclude
positions in x where a k-occurrence between y and x is impossible.

The effectiveness of a filter is measured by its specificity, defined as:

true negatives
true negatives + false positives
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and sensitivity, defined as:

true positives
true positives + false negatives .

Here true negatives and positives refer to the number of positions correctly excluded and
respectively included by the filter. Correspondingly, false negatives and positive represent
the counts for wrongly excluded and wrongly included positions.

In essence, specificity refers to a measure of how selective a filter or pattern is in accurately
identifying relevant positions while minimising false positives. It quantifies the ability of a
filter to precisely match only the desired occurrences and exclude unrelated or irrelevant
ones. On the other hand, sensitivity refers to a measure of how well a filter captures and
identifies all relevant positions within the reference sequences. It quantifies the ability of a
filter to detect true positives while minimising false negatives. When a filter achieves 100%
sensitivity, it is referred to as a full-sensitive or lossless filter.

Two commonly used filter strategies are the pigeonhole filter and the counting filter . These
strategies, along with their associated index structures, form the basis of many sequence
analysis applications [Holtgrewe, 2015; Rausch et al., 2008; Seiler et al., 2021; Siragusa,
2015; Weese et al., 2012]. The following subsections will briefly summarise the fundamentals
of these filtration techniques.

Pigeonhole filter

Given the maximum number of errors k, the pigeonhole filter strategy involves dividing the
query sequence into k + 1 non-overlapping segments, known as seeds. Each seed is then
searched exactly using an index data structure. The underlying idea is that since there can
be at most k errors in any k-occurrence, at least one of the k + 1 seeds must be identified as
a true positive occurrence [Baeza-Yates and Perleberg, 1996]. This observation is commonly
known as the pigeonhole principle.

q-gram index To efficiently filter out regions of the reference sequence that cannot contain
k-occurrences, a typical implementation of the pigeonhole filter utilises a q-gram index built
on the reference sequence x.

Definition 2.4.2 (q-gram). A q-gram, often called a k-mer as well, is a sequence of the set
Σq.

The q-gram index allows for fast retrieval of the locations where each q-gram occurs in the
reference sequence, enabling efficient filtering based on the presence or absence of the seeds
in the reference sequence.

The q-gram index consists of two main components: an array pos storing the start positions
of all consecutively overlapping q-grams in x in an ascending order based on a numerical
encoding and a lookup table dir that is used to determine the start and end positions of a
particular q-gram in pos. The size of pos is n − q + 1, where n is the length of the reference
sequence x, and q is the size of the q-grams. The dir array is used to determine the start
and end positions of a specific q-gram within pos.
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In its native version, each index i in the range from 0 to |dir | corresponds one-to-one to a
q-gram s with the i-th lexicographic rank. The lexicographic rank is the rank of a q-gram s
within a dictionary that stores all q-grams in Σq sorted by their lexicographic order. This
rank can be computed using the mapping function ranklex, defined as:

ranklex(s) =
|s|−1∑

i=0
rankΣ(si) · |Σ||s|−1−i (2.11)

Here, rankΣ(si) represents the rank of the symbol si in the alphabet Σ (see Definition 2.2.3).
The purpose of ranklex is to ensure that the numerical values of distinct q-grams do not
collide. In other words, if two q-grams a and b have the same lexicographic rank, then they
are equal (a = b).

The pos array is filled in such a way that for all 0 ≤ i < j < |pos|, the expression
ranklex(xi..i+q) ≤ ranklex(xj..j+q) is true. This ensures that the q-gram positions in pos are
sorted in ascending order according to their lexicographic ranks. If a q-gram is present
multiple times in x , its start positions are stored consecutively in pos and are further ordered
in ascending order.

Figure 2.8 shows an example of how a q-gram index looks like and can be used to find all
0-occurrences of a q-gram in x.

dir

pos

T T A T C T TC ATx
0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 4 6 1 8 3 05 7

0 0 0 0 1 1 11 3 3 3 3 3 5 7 7 9

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

0 1 2 3 4 5 6 7 8

Figure 2.8: 2-gram index of x = TTATCTCTTA. To look up all text occurrences of the 2-gram TA, we
first determine its hash value ranklex(TA) = 12. The directory table dir stores at the respective
positions 12 and 13 begin and end position of the interval [3..5) in pos which contains the begin
positions of TA in x, i.e. 1 and 8 (figure and description taken from [Weese, 2013]).

Filtering algorithm To filter with the q-gram index, we divide the query sequence y into
k + 1 seeds, denoted by S = {S0,S1, . . . ,Sk}. Each seed Sj ∈ S corresponds to the substring
y[j · q..(j + 1) · q), where, without loss of generality, q =

⌊
m

k+1

⌋
.

In practice, the value of q may be limited based on the alphabet size. If q is too large, it
could exceed the usable address space of a 64-bit integer. In such cases, it is possible to
choose q to represent only a prefix of each seed. Now, for each seed Sj in S , we perform the
following steps:

1. Compute the lexicographic rank r = ranklex(Sj).

2. Query the dir array to find the lower bound l = dir [r] and the upper bound u =
dir [r + 1] of the position interval in pos.

3. Report all start positions of Sj in x, given by the interval pos[l..u).
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Once a seed Sj is located using the q-gram index, the resulting locations must be verified
to ensure they correspond to true k-occurrences. This verification is done by applying an
online extension algorithm that aligns the prefix y[0..j · q) and the suffix y[(j + 1) · q..m)
to the respective regions in x. If both alignments yield an error count less than the given
threshold k, the location is considered a true k-occurrence.

For the verification step, Myers’ bitparallel alignment algorithm can be used with slight
adaptations to the initialisation process [Weese, 2013]. This algorithm efficiently performs
the alignment and allows us to determine whether a location is a valid k-occurrence based
on the error count.

Counting filter

The second filter strategy is based on the q-gram lemma [Jokinen and Ukkonen, 1991].

Lemma 2.4.1 (q-gram lemma). Let s be a k-occurrence of y in x. The q-gram lemma
states that s and y must have at least m − q + 1− k · q many q-grams in common.

Filters based on this lemma, such as QUASAR [Burkhardt et al., 1999], SWIFT [Rasmussen
et al., 2006], or STELLAR [Kehr et al., 2011], count the number of shared q-grams between
two sequences. In general, this filter strategy, partitions the reference sequence x into N
overlapping segments called bins. Let B = {B0,B1, . . . ,BN−1} be the set of bins, where
bi = xi·b..(i+1)·b and, without loss of generality, b =

⌊ n
N
⌋ ≥ m + k. Each bin Bi must cover at

least the query sequence including possible insertions and deletions.

To apply the counting filter, the query sequence y is processed by enumerating all consecu-
tively overlapping q-grams and counting how many of them are shared with a specific bin Bi.
If the number of shared q-grams is above the threshold τ , computed by τ = m−q+1−k ·q ≥ 1
(see Lemma 2.4.1) for a particular bin Bi, then this bin is considered a candidate region
that may contain a true k-occurrence.

However, similar to the pigeonhole filter, the regions identified by the counting filter need
to be verified using an online algorithm. This verification step ensures that the potential
regions indeed correspond to valid k-occurrences by aligning y to the corresponding segments
in x.

Bloom filter

Instead of using a q-gram index, a counting filter can also be implemented utilising Bloom
Filters (BFs) [Bloom, 1970]. Concretely, this approach constructs a Bloom filter , denoted
by fi, for each bin Bi.

A Bloom filter f consists of a bitvector represented as a sequence of the set Σ01
M , where

Σ01 = {0, 1} denotes the binary alphabet, and, in addition, a finite set of h hash functions
H = {H0, H1, . . . ,Hh−1}.
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During construction, the consecutively overlapping q-grams of Bi are mapped to h positions
in the range [0..M ) using the hash functions from H. At each of these positions, the
corresponding bit in fi is set to 1, regardless of its previous value.

To determine if a query sequence y may be present in a bin Bi, the counting process is
performed. This involves iterating through the q-grams of y and checking if each q-gram is
contained in the corresponding Bloom filter fi. For each q-gram, the h positions in fi are
computed by applying all h hash functions to the q-gram. If all these positions contain a 1,
the counter of Bi is incremented and finally compared with τ .

Notably, the Bloom filter is full-sensitive and will not miss any true occurrences between
sequence y and x . However, it is possible to generate false positives that require unnecessary
verifications using an online algorithm similar to the previous strategies. In the case of a
Bloom filter f with c inserted elements, the rate of these false positives can be estimated
using the formula:

pfpr(f ) =
(

1−
(

1− 1
M

)h·c)h

(2.12)

Following this, we can increase the number of hash functions or enlarge the size of the
bitvector in order to reduce the false positive rate.

Interleaved Bloom filter

The main issue with the described counting strategy is that querying each Bloom filter
separately can become a performance bottleneck, especially when dealing with a large
number of bins. However, we can address this problem by interleaving the bitvectors of the
Bloom filters to form the so called Interleaved Bloom Filter (IBF), effectively combining
the bitvectors into a single bitvector of size M ·N [Dadi et al., 2018; Seiler et al., 2021].

In the following discussion, we assume that all Bloom filters have the same size, i.e. we have
|fi| = M for all i ∈ [0..N ). To achieve this interleaving, we concatenate the corresponding
bits from each of the N Bloom filters consecutively to create a new interleaved bitvector
denoted by F . The first bits of all N Bloom filters are stored together in F , followed by the
second bits of all filters, and so on, until all M positions are represented in F . A schematic
representation of the interleaved Bloom filter can be found in Figure 2.9.

Construction To construct an IBF F , we follow a similar process as constructing a regular
Bloom filter. In this case, we need to place the bits for a q-gram s in the interleaved bitvector
by determining their respective positions using the h hash functions.

Since the positions obtained from the hash functions refer to the range of 0 to M , we must
calculate the bin-specific offsets within the interleaved bitvector. For a specific bin Bi and
hash function Hj , we multiply the resulting position pj = Hj(s) by the number of bins
(N ) and add i to the result. The first term, pj ·N , determines the starting position of the
interval in the F that contains the pj-th bits of all N Bloom filters. The second term then
represents the specific bit within the pj-th Bloom filter.
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f0 0 1 0 0 1 0 0 1 0 0 0 1

f1 0 0 0 0 0 0 1 0 0 0 0 0

f2 0 1 0 0 0 0 0 0 1 1 0 0

1 0 1 0 0 1 0 1 0 1 0 1fN−1

0 1 2 3 4 5 · · · M −1

F

0 N 2N (M −1)N(M −2)N(M −3)N

0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1

H0(ACGTACT) = 2N

H1(ACGTACT) = (M −1)N

H2(ACGTACT) = (M −3)N

&

&

binning bitvector

0 0 0 1

1 0 0 1

0 0 1 1

0 0 0 1

...

· · ·

Figure 2.9: Example of an IBF F representing N differently coloured Bloom filters of length M
shown at the top with three hash functions H0, H1, and H2. The bitvector of the F stores the bits
of the individual Bloom filters fi in an interleaved pattern with total size N ×M . To determine the
membership of q-gram ACGTACT, it is hashed with the three hash functions yielding the positions
2, N − 1, and N − 3. The final binning bitvector is computed from the corresponding segments of
size N starting at 2 · N , (M − 1) · N , and (M − 3) · N in the bitvector of F respectively (dashed,
orange arrows). Here ACGTACT occurs in the last bin (Figure taken and adapted from [Dadi et al.,
2018]).

Set membership query To answer a set membership query for a given q-gram s, we once
again compute the positions of the q-gram using the h hash functions. Each of these hash
functions produces h bit positions. Similar to the construction process, we multiply each of
these positions by N to determine the starting offset of the corresponding positions of the
individual Bloom filters in the bitvector of the IBF. Each computed offset indicates the
start of a segment of size N . Consequently, we obtain h segments of size N for the q-gram
s. To check whether s is contained in any of the bins, we reduce these segments to a single
bitvector using bit-parallel AND instructions. This resulting bitvector is referred to as the
binning bitvector.

Only if the i-th bit of the binning bitvector is 1, we increment the counter for the cor-
responding bin Bi. This process determines whether s is present in any of the bins. An
example of a membership query can be seen in Fig. 2.9.
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3 Hardware-accelerated pairwise alignment

The biggest sea change in software
development since the OO revolution is
knocking at the door, and its name is
Concurrency.

(Sutter)

In this chapter, we present and discuss various parallelisation strategies aimed at accelerating
the execution of pairwise alignment algorithms on modern CPUs. Our main objective is
to design and implement a versatile alignment library capable of efficiently utilising the
parallelisms of current processor architectures.

The first section provides a brief explanation of the fundamental factors that can enhance
the performance of software in general. We also highlight the challenges that may arise
when attempting to achieve such improvements.

Next, we provide a summary of related work in the area of optimising dynamic programming
algorithms for solving the pairwise alignment problem (see Section 2.3.4). This sets the stage
for our approach, which involves various code-level optimisations including vectorising the
DP algorithm, improving cache efficiency, and devising a scheme for dynamically scheduling
and executing alignment tasks on multiple cores.

Towards the end of this chapter, we first evaluate the efficiency of our optimisations made to
the DP algorithms using different use cases commonly found in bioinformatic applications
and subsequently examine general aspects about our API (application programming interface)
design.

3.1 Background

Since the advent of the first commodity computers, significant progress has been made in
the design and manufacturing of processors, leading to continuous improvements in their
performance in terms of instructions executed per second. In the early days, the number of
transistors and higher clock frequencies were the primary factors driving the performance
of a single processor. However, as we entered the 21st century, advancements focused on
parallelism and memory structure optimisation through sophisticated microarchitecture
designs (compare Fig. 3.1).

During the initial period until around 2005, there was a noticeable trend of doubling
single-thread performance every 18 to 24 months. This was largely due to the doubling
of transistor density that could be achieved on processors. This phenomenon came to be
known as Moore’s Law, named after Intel co-founder Gordon Moore, who predicted this
development as early as 1965. However, this trend shifted as physical limitations prevented
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Figure 3.1: Trends in microarchitecture processor designs of the last 50 years. Figure taken from
Rupp.

further increases in transistor density within a single processor. Each increase in density
also exponentially increased the power requirements, caused higher heat generation as well
as current leakage problems [Sutter, 2005].

To overcome these limitations, chip manufacturers adopted a different approach by dis-
tributing the number of transistors across multiple processing cores. This allowed the total
number of transistors to continue doubling, but now the performance was determined by
the collective workload of all processors in a system.

This shift in processor design brought about a new paradigm in software development.
Herb Sutter, a prominent C++ developer, aptly captured this phenomenon in a magazine
article titled ‘The free lunch is over’ [Sutter, 2005]. The essence of his statement was that
software can no longer rely on automatic performance gains with each new generation of
processors. Instead, new strategies and software designs are required to effectively distribute
the workload across the available processor cores.

In modern CPUs, both commercial and high-end, various hardware techniques are employed
to further enhance performance. To fully leverage the capabilities of a multiprocessor system,
it is crucial to comprehend the functioning of these components. In the following sections,
we will explore the four key factors of a modern CPU: the memory hierarchy, data-level
parallelism, thread-level parallelism, and instruction-level parallelism. Additionally, we will
explore the primary challenges that must be addressed at the code-level to optimise the
utilisation of these factors. The interested reader is referred to Bakhvalov [2020]; Culler
et al. [1998] and Intel [2023a] for a more detailed and comprehensive discussion of these
subjects.
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3.1.1 Terminologies and peformance metrics

A program consists of a sequence of instructions that are executed by the processor. These
instructions encompass various operations, such as loading a value from a memory address
into a register, modifying the value in a defined manner, writing it back to memory, using it
as an intermediate result for subsequent instructions, and many others. The total count of
instructions issued by a program to produce a result from a given input is known as the
workload, denoted by W .

The complete set of instructions that can be executed by the processor is defined by the
instruction set architecture (ISA). The ISA specifies how software instructions are translated
into machine commands represented by sequences of 0s and 1s. Depending on the processor
design and the complexity of the instructions, these commands are executed through a series
of micro-operations (µops). A µop is the smallest operational unit that can be executed
within a single clock cycle of the processor.

Throughput and Latency

When considering the performance of software or an application, we are essentially referring
to the time required for its complete execution. Therefore, to enhance the performance of a
program P , we need to reduce its execution time tP , which depends on the workload WP ,
and how quickly the target processor can execute these instructions.

The factors that determine the latter are the CT (cycle time), which represents the duration
of a clock cycle in seconds, and the CPI (cycles per instruction), which quantifies the average
number of cycles needed to complete a single instruction, also known as the latency. The
multiplicative inverse of the CPI gives the number of IPC (instructions per cycle) executed
by a processor and represents the throughput of a system. Note using the average number
of cycles accommodates the fact that different instructions are implemented with varying
numbers of µops based on the complexity of the instruction and the design of the processor
architecture.

Having this, we can express the execution time as:

tP = WP · CPI · CT. (3.1)

Therefore, it becomes clear that our primary options for improving the performance of a
program lie in reducing the workload or decreasing the latency, respectively increasing the
throughput.

Classification of processor architectures

In general, computer architectures can be classified according to Flynn’s Taxonomy [Flynn,
1966]. Flynn’s model distinguishes whether instruction streams and data streams can
be processed sequentially or concurrently within a given architecture. The classes are as
follows:
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SISD (Single Instruction, Single Data): Architectures of this type work entirely in a serial
manner, allowing only one instruction to be executed on a data element at a time.
This corresponds to the early uniprocessors that had only one computing core.

SIMD (Single Instruction, Multiple Data): Architectures of this type can process multiple
data elements within a single instruction simultaneously. Vector processors are well-
known examples of this class.

MISD (Multiple Instruction, Single Data): In this model, different instructions are applied
to a single data element at the same time.

MIMD (Multiple Instruction, Multiple Data): These architectures allow the simultaneous
execution of different instructions on multiple data elements. This class includes
architectures that combine several processors in a single system, such as multicore
processors, where each core can independently process a separate part of the workload.

MIMD architectures can be further categorised by their memory model, distinguishing
broadly between shared memory and distributed memory systems. In shared memory
systems, all processors within the system are interconnected via high-bandwidth links
[Mulnix, 2022], have access to the same memory and are operating under a single operating
system. Typically the processors are homogeneous and have uniform access time to the
memory. In this case one refers to them as SMP (shared memory multiprocessor) systems. In
distributed memory systems, each processor has access to its own private memory, and they
are typically connected via a local network. This also allows for hetereogenous computing
by combining different processor and accelerator hardware.

Although SMP systems offer less scalability compared to distributed systems, they still play
an essential role in high-performance computing, particularly as the number of independently
running processors in an SMP have increased in recent years (refer to Fig. 3.1).

3.1.2 Memory hierarchy

In most CPUs, the addressable memory space is organised in a hierarchical system consisting
of memory structures with varying sizes and latencies (see Fig. 3.2). This hierarchy typically
includes external memory, main memory, and cache memory.

External memory provides a large and cost-effective storage space where data can be stored
permanently. This includes programs we want to execute and corresponding data in the
form of files. Before the CPU can execute the instructions of a program and access the
associated data, they must be loaded into main memory.

Main memory, compared to external memory, is significantly faster but also more expensive,
limiting its size. Despite advancements in faster memory modules, they are still considerably
slower compared to the clock rate of modern processors. Consequently, loading an element
from main memory into a CPU register incurs long latencies that can potentially stall the
CPU.

To mitigate this latency, there is a multi-level cache memory system positioned between
the CPU and main memory. The cache memories operate at the same clock frequency as
the CPU registers, enabling very fast access times to the stored elements. However, cache
memory manufacture is complex, expensive, and requires more energy. As a result, the
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Figure 3.2: Memory hierarchy and latencies. Faster, smaller, and more expensive memory is placed
closer to the processor. As the memory moves farther away from the processor, it becomes slower
but offers larger memory capacity at lower costs.

cache memory is significantly smaller than the main memory. For instance the L2 cache of
Intel’s Xeon Scalable processor family has a size of 1 MB [Mulnix, 2022].

The memory hierarchy is utilised by the CPU as follows. Each level in the storage hierarchy
represents a redundant subset of the next larger storage level. When the CPU needs to
load data from a memory address in main memory, it first checks the first level of cache to
determine if that address has already been loaded. If the data is found in the cache (cache
hit), the corresponding element can be quickly loaded into the destination register with
minimal latency.

If the data is not found in the cache (cache miss), the process is repeated with the next higher
cache level. This process continues until the referenced item is either read from cache or
retrieved from main memory, assuming that no unexpected exception occurs. Additionally,
referenced elements are stored in all higher cache levels to expedite future access when they
are needed again.

However, this means that smaller caches may need to evict another item from the cache
to make room for the new item. Different conflict resolution approaches are implemented
in the hardware, depending on the specific processor model. The same principles apply
to writing items to the cache, although writing operations are generally more challenging
to accomplish compared to reading operations. Nonetheless, writing instructions typically
constitute a smaller percentage of the total number of instructions executed [Bakhvalov,
2020].
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Still, understanding how caches work and how cache conflicts are resolved in hardware
is crucial for improving program performance. It allows for reducing instruction latency
by appropriately organising data in memory and controlling data access. The two main
principles that need to be kept in mind for this are:

Temporal locality: When an element is referenced, it is likely to be referenced again in the
near future. This occurs, for example, within loops or when reusing temporary values.

Spatial locality: When an element is referenced, the element with a neighbouring address is
often immediately accessed. This can be observed when executing program instructions
or sequentially reading elements from an array.

The design of the memory hierarchy becomes increasingly important in modern multi-
core processors as the total bandwidth increases with the number of cores, surpassing the
capacity of the main memory. Therefore, in addition to hierarchical memory systems,
various optimisations such as multi-porting, pipelined caches, two cache levels per core, and
shared third-level caches on the chip are necessary to maximise performance.

3.1.3 Data-level parallelism

Another way to optimise the performance of a program is by utilising the data-parallel
vector perocessing units (VPUs) found in modern CPUs. These CPUs are often referred to
as SIMD multiprocessors, meaning that each core is equipped with a VPU in addition to the
regular processor units such as arithmetic and logic units, floating-point units, and so on.

SIMD multiprocessors greatly reduce the overall CPI by executing the same instruction
on a set of independent data elements simultaneously. For example, consider the C++
code shown in Section 3.1.3, which iteratively adds the i-th element of array a to the i-th
element of array b and stores the result in the corresponding position of the output array c.
In scalar code, this would require executing the same instruction 16 times, incurring the
associated costs for each instruction. However, by using a dedicated SIMD add instruction
(e.g. vpaddd in the AVX512 instruction set), the same operation can be performed in a
single instruction.

The corresponding assembly code, compiled with AVX512, is shown in Section 3.1.3. In
the first line, the 16 data elements of a are loaded from the memory address stored in the
rdx register into a dedicated AVX512 register (zmm0). These elements are then added to
the 16 data elements of b referenced by the rsi register, and the result is stored back in
zmm0. Finally, in line 4, the results are written back to the memory address stored in the
rdi register.

Listing 3.1.1: Adding 4-byte packed ar-
ray elements in a for-loop

1 using vec_t = std::array<int32_t, 16>;
2
3 vec_t a{}, b{}, c{};
4 // ... fill a, b with data ...
5 for (size_t i = 0; i < 16; ++i)
6 c[i] = a[i] + b[i];
7

Listing 3.1.2: Assembly output for
AVX512 target architecture

1 vmovdqu32 (%rdx), %zmm0
2 vpaddd (%rsi), %zmm0, %zmm0
3 movq %rdi, %rax
4 vmovdqu32 %zmm0, (%rdi)
5 vzeroupper
6 ret
7
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SIMD instruction set architecture

The specific SIMD instructions available on a SIMD multiprocessor are determined by the
SIMD-ISA. One of the earliest general-purpose SIMD ISAs was introduced by Intel in 1997
under the name MMX. Processors supporting MMX were equipped with eight additional
64-bit wide SIMD registers [Yu, 1997].

Over time, as newer processor generations were released, the set of SIMD instructions, as
well as the width and number of SIMD registers, have been consistently expanded. For
instance, contemporary high-end Intel Xeon processors are equipped with thirty-two 512-bit
wide SIMD registers, and they support a range of SIMD instructions known as AVX512.

The table below (Table 3.1) provides an overview of various SIMD ISA extensions employed
in Intel/AMD, ARM, and PowerPC processors.

SSE4 AVX2 AVX512 NEON AltiVec

Register width [bits] 128 256 512 128 128
Number of registers 8 16 32 16 32
Target architecture x86 x86 x86 ARM PowerPC

Table 3.1: Overview of SIMD instruction set architectures with larger register widths, number of
available registers, and the target architecture they are available for.

The data elements that can be processed using SIMD instructions are typically integers
(byte, word, double word, quad word) or floating-point numbers (single precision [float],
double precision [double]). Each SIMD register is conceptually divided into multiple vector
lanes based on the size of the operand. The choice of operand types has a notable influence
on program performance. Figure 3.3 provides a visual representation of the widths of SIMD
registers accessible in SSE4 (Streaming SIMD Extensions 4), AVX2 (Advanced Vector
Extensions 2), and AVX512 (Advanced Vector Extensions 512) ISAs, as well as the number
of vector lanes into which these registers can pack the operands.

Efficient VPU utilisation

In order to fully utilise the data-parallelism provided by the additional VPUs, certain aspects
must be considered during programming. We will briefly explain these aspects below.

Supported operand types: The available operand types for SIMD instructions may vary
depending on the SIMD ISA being used. It is important to be aware of the appropriate
instruction sets and their applicability to the specific problem at hand. In some cases, it
may be possible to emulate missing instructions using others, but this could increase the
instruction count and negatively impact execution time. Alternatively, a different approach
could lead to the use of more optimal SIMD instructions, as their CPI may differ based on
the instruction and processor architecture. Complex instructions that involve permuting
elements within SIMD registers can have varying latencies depending on the operand type.
Similarly, their throughput may differ due to differences in available ports and execution
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Figure 3.3: Overview of the SIMD register types and names specified by the SSE4, AVX2 and
AVX512 SIMD ISA (different blue shades) and their lane counts depending on the operand sizes
in bits (bottom ruler).

units for SIMD instructions, depending on the processor architecture. For example, three
SIMD adds may be executed in parallel via three ports, while a shuffle operation may only
be executed via a specific port. This presents further optimisation potential by effectively
utilising port utilisation through suitable software design [Jeffers et al., 2016].

Data dependency: Efficient vectorisation requires ensuring that the processed operands
are independent of each other, as there are no synchronisation mechanisms within the lanes
of a SIMD register.

Memory access: Before data can be processed using SIMD instructions, the operands
need to be loaded from memory into SIMD registers. Similarly, the results must be written
back to memory after the SIMD instruction completes. Alignment and data layout play
a crucial role in performance. Ideally, the data elements to be loaded are contiguous in
memory and aligned to a memory address that matches the SIMD register (e.g. 16-byte
aligned for SSE4, 32-byte aligned for AVX2, and 64-byte aligned for AVX512). This ensures
efficient data loading into the registers, known as a unit-stride memory access pattern.
However, if the data is scattered in memory, additional instructions are required to load it
into the SIMD registers. Under certain circumstances, this can result in slower performance
compared to the non-vectorised scalar version, if the subsequent SIMD instructions are not
sufficient to compensate for the expensive gather and scatter operations. This issue can
be mitigated by transforming the data layout in memory, specifically by converting from
an array-of-structure (AoS) to a structure-of-array (SoA) layout. The following picture
illustrates this relationship.
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(b) Unit stride memory access.

Figure 3.4: Comparison of different memory access patterns to load eight yellow (right) and blue
(left) fields into the 8 lanes of ymm0 and ymm1 respectively. In (a) the yellow and blue fields are
stored in an array consisting of 8 pairs, while in (b) the fields are reordered into a single pair
consisting of two arrays with 8 elements.

Auto vectorisation: As we have observed, selecting the appropriate SIMD instructions
involves considering multiple factors, which significantly increases the effort required for
software development. To simplify the utilisation of SIMD instructions, many compiler
developers have integrated mechanisms into compilers that can automatically replace
certain scalar code segments with SIMD instructions through auto vectorisation. This
allows programmers to avoid writing explicitly vectorised code paths, thereby reducing the
complexity of the software.

However, the capabilities of auto vectorisation are still limited, and its effectiveness heavily
relies on how well the corresponding scalar code has been written to enable efficient
vectorisation. For instance, small differences in coding constructs, such as using an if
statement versus a ternary operator, can impact the effectiveness of auto vectorisation.
Therefore, relying solely on this compiler feature is not always sufficient. Particularly
when dealing with more complex instructions, manually optimised algorithms may be
necessary. Nonetheless, by utilising SIMD libraries, such as UME::SIMD [Karpiński and
McDonald, 2017], that provide a unified interface encapsulating SIMD instructions, it
becomes possible to abstract the data parallelism within an algorithm and thereby reduce
the code complexity.
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3.1.4 Thread-level parallelism

Thread-level parallelism (TLP) provides a coarse-grained alternative to further enhance the
performance of a program. It is based on the general idea to distribute work to multiple
processors that can work in parallel.

Multi-threading

Typically, program execution is represented by a process, which manages various system
resources such as program instructions, control structures for accessing operating system
resources, and provides a memory address space isolated from other processes. In a multi-
threaded system, a process consists of one or more threads, which are scheduled by the
operating system (OS) onto available processors. Threads within the same process have
shared access to the resources managed by the parent process, along with some private
space to allocate thread-local data. The workload executed by a single thread is called a
task.

When multiple processes run concurrently, they can be scheduled onto different processors
and computed in parallel. However, this is often insufficient as individual processes may
dominate the execution time. Therefore, it is desirable to split the workload of a single
program into multiple tasks that can be executed concurrently on different threads.

Ideally, this allows for decreasing the execution time tP of an embarrassingly parallel program
P proportionally to the number of available processors. However, achieving optimal through-
put for most problems involves more complex parallelisation designs. Often, concurrently
running tasks exhibit data dependencies that require a sequential order of accessing memory
addresses. To resolve data dependencies, additional inter-thread synchronisation primitives
must be added to lock critical code paths and guarantee correct program execution.

Amdahl’s law

However, such synchronisation primitives incur additional overhead, and certain sections
of a program must be executed sequentially, creating areas where parallel processing is
limited. This limitation also affects the scalability of a parallelised program as the number
of processors increases.

Let p denote the proportion of the workload WP of a program P that can be perfectly
accelerated on an SMP with c processors. The parallel execution time is given by:

tP (c) = (1− p) · tP (1) + p
c · tP (1). (3.2)

Following this, the theoretical speed up is defined as:

s(c) = tP (1)
(1− p) · tP (1) + p

c · tP (1) = 1
1− p + p

c
. (3.3)

It follows that the larger the proportion of serial execution time in the total execution time
tP (1) of a parallelised program, the smaller the potential for performance improvement
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through parallel processing. This observation is commonly known as Amdahl’s law (see
Fig. 3.5 1).
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Figure 3.5: Theoretical speed up for different portions of parallelisable workloads as the number of
processors increases.

Cache coherency

There are additional hardware-related considerations that one needs to be aware of when
parallelising a program. Typically, each processor has its own private low-latency cache
(often L1 and L2) to reduce latencies when accessing referenced elements. Therefore, as
long as a thread operates on thread-local data, no other thread needs to be informed about
changes made to a thread-local variable. However, when writing to a shared memory address,
the hardware must ensure a consistent mapping of data with the same memory address
to all threads executing in parallel on different processors. In other words, if thread 1 on
processor A writes to a shared memory address that is cached by thread 2 on processor B,
the corresponding cache entry of processor B must also be synchronised. This ensures that
if there is a potential dependency between the executed tasks, the changes made are visible
in the correct order in all participating threads.

To address this cache coherence problem, modern SMPs typically have a dedicated cache
(often the L3 cache) that facilitates faster consistency and cache coherence across the

1Figure taken from https://upload.wikimedia.org/wikipedia/commons/e/ea/AmdahlsLaw.svg;
©Daniels220 via Wikimedia Commons, CC BY-SA 3.0 https://creativecommons.org/licenses/by-s
a/3.0; accessed 13.06.2023
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processors. However, a potential issue arises as the number of processors in a shared-
memory system increases, as this also increases the risk of maintaining cache consistency
and coherence becoming a bottleneck

Simultaneous multi-threading

Many modern SMPs implement a feature known as simultaneous multi-threading, such
as Intel’s Hyper-Threading feature. Simultaneous multi-threading allows the sharing of
hardware resources of a physical processor among two or more logical processors. From the
perspective of the operating system (OS), each logical processor appears as an individual
processor, enabling the scheduling of threads to run on them in parallel. This feature is
particularly beneficial for applications with long latencies during execution. By interleaving
the instructions of one thread with instructions from another thread sharing the same
physical processor, the long latencies of one thread in the instruction pipeline can be
compensated for. However, simultaneous multi-threading can also have detrimental effects,
especially when both threads optimally utilise the physical resources and constantly compete
for access to the execution engines.

Considering these factors, the main challenge for software developers is to decompose a
program (P ) into tasks that can be executed concurrently in separate threads. The goal is
to distribute as much of the workload (WP ) to the available processors, while simultaneously
reducing the proportion of sequentially executed code paths and minimising communication
overhead as more processors are added to a multiprocessor system.

3.1.5 Instruction-level parallelism

The last aspect we would like to discuss is the exploitation of instruction-level parallelism
(ILP) to further improve performance. Modern CPUs are typically superpipelined and
superscalar , meaning they can execute more than one instruction in a cycle on average.

Superpipelined processors

Pipelined processors split an instruction into multiple stages, and each instruction must go
through all stages before it retires (i.e. its execution completes). For example, in the DLX
architecture, the pipeline is divided into five stages: instruction fetch, instruction decode,
execution, memory access, and write back [Hennessy and Patterson, 1994].

While only one stage can be active for each instruction in a given cycle, the remaining
stages are free and can be used for other instructions. For instance, after completing the
instruction fetch stage, an instruction A continues with the instruction decode stage in the
next cycle. At the same time, a second instruction B can enter the instruction fetch stage.

In summary, pipelined microarchitectures overlap the different execution stages of an
instruction. Ideally, the pipeline can execute as many instructions in parallel as there are
pipeline slots available. In the case of the DLX architecture, this would mean that, on
average, a single instruction can be retired in one cycle instead of 5 cycles on a non-pipelined
processor.
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Superpipelined processors further subdivide the stages into smaller substages. This allows
for an increase in clock speed, which is limited by the slowest stage in the pipeline. As a
result, more cycles per second can be performed, and correspondingly more instructions per
second can be executed, while maintaining an overall throughput of 1 IPC in an optimally
utilised pipeline.

Superscalar processors

In addition, modern CPUs are equipped with multiple independent execution units in
their execution engines, allowing multiple instructions to be executed in parallel. These
CPUs are commonly referred to as superscalar processors. For example, Intel’s Skylake
microarchitecture provides 4 ALUs (arithmetic logic units). Theoretically, this allows 4
ALU instructions to retire simultaneously in each cycle (CPI=0.25, IPC=4)2.

Execution hazards

As with the previous sections, there are hazards that limit instruction-level parallelism and
hinder the optimal utilisation of the pipeline, leading to performance bottlenecks. These
hazards can be categorised into structural hazards, data hazards, and control hazards.
Fortunately, modern CPUs handle all pipeline hazards through hardware mechanisms.
However, there are ways to mitigate the occurrence of hazards through software design,
allowing further performance optimisation.

Branch misprediction A typical issue arises from the speculative execution of conditional
code paths. When encountering branches in the code, the processor speculatively selects one
of the two code paths and loads the corresponding instructions into the pipeline even before
the result of the condition is known. If the processor predicts correctly, it can continue using
the intermediate results already obtained, resulting in fast pipeline execution. However, if
the branch prediction was incorrect, all intermediate results must be discarded, the active
instructions are removed from the pipeline, and the alternative instructions are fetched
instead. This process incurs a significant number of CPU cycles, resulting in substantial
performance losses when mispredictions occur frequently.

To mitigate this, it can be beneficial to eliminate certain branches from a hot loop if they are
frequently predicted incorrectly by the processor. Alternatively, branches can be replaced
with conditional operations to reduce the number of branch instructions. This requires
computing the results of both paths first and then propagating the result of only one of
the operands to the next stage. This can be beneficial if the workloads of the two code
paths are small. A typical example of this is the use of dedicated compare and blend
SIMD instructions to choose elements from two vectors using an additional mask vector.
By minimising branching and improving branch prediction accuracy, performance can be
significantly improved.

2https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)#Execution_engine;
accessed 24.05.2023
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Long-latency instructions Another issue that can arise is that certain instructions may
have long latencies depending on the ISA and microarchitecture design. These long-latency
instructions can lead to pipeline stalls where all pipelined instructions need to wait for the
slowest µop to complete its stage. One possibility to improve CPU utilisation is simultaneous
multi-threading, described in the previous section. Another option is for a single processor
to support out-of-order (OOO) execution to dynamically reorder instructions. Alternatively,
the compiler may be able to reorder instructions while creating the machine code of a
program. In both cases, the goal is to use idle pipeline stages due to long latencies by
executing other instructions instead.

The former technique is resolved entirely by the hardware, while the latter can be controlled
to some extent by code-level optimisations as well. In general, compilers try to rearrange
non-dependent instructions in the generated machine code. Especially inside performance-
critical loops, these rearrangements can have a significant impact on pipeline throughput.
Unfortunately, the optimisation opportunities are often limited by loop-carried dependencies,
where some variables in the current iteration depend on the results of previous iterations.
In such cases, it can be helpful to support the compiler by reorganising the execution of
the loop at the software level. For instance, it may be possible to unroll the loop body and
incorporate instructions from later iterations into a single block of iterations.

In practice, the options for optimising instruction-level parallelism are often limited by many
other factors that need to be carefully considered. For instance, it is not always possible to
extensively unroll a loop due to the potential increase in code size, which can result in cache
misses in the instruction cache and adversely affect performance. Additionally, processors
have a limited number of physical registers available, which may lead to register pressure
and the need for register swapping. This pressure on registers can offset the benefits gained
from loop unrolling. A similar effect can occur with increased pressure on instruction ports,
where the number of instructions scheduled exceeds the corresponding IPC values.

3.2 Related work

With regard to alignment algorithms, various approaches and techniques have been devel-
oped in the past two decades to optimise the performance of dynamic programming (DP)
algorithms. These approaches include reducing the overall workload of the DP algorithm
[Marco-Sola et al., 2020; Šošić and Šikić, 2017] and changing the computation order of the
DP matrix to improve parallelism utilisation. However, in the case of workload reduction,
specific assumptions about the scoring scheme are often made, limiting the versatility and
applicability of these solutions to specific scenarios. In the case of changing computation
order, optimisations are typically tailored to specific alignment problems.

The local alignment problem has received significant attention, and numerous solutions and
strategies have been proposed to enhance its performance on different processor architectures.
These architectures include symmetric multiprocessors (SMPs) [Farrar, 2007; Rognes, 2011;
Rognes and Seeberg, 2000], graphics processing units (GPUs) [Ahmed et al., 2019; Edans
and De Melo, 2013; Khajeh-Saeed et al., 2010; Korpar and Šikić, 2013; Li et al., 2012a; Liu
et al., 2013], Cell Broadband Engines [Farrar, 2008; Sarje and Aluru, 2008; Szalkowski et al.,
2008], field-programmable gate arrays (FPGAs) [Li et al., 2007], as well as new accelerator
technologies such as the Intel® Xeon Phi™ coprocessor [Liu and Schmidt, 2014; Liu et al.,
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2014; Rucci et al., 2017]. Unfortunately, many of these approaches are integrated into
specific applications and tightly coupled with the application code, making them unsuitable
as stand-alone modules for other developers.

Regarding SMPs, most optimisations focused on the utilisation of SIMD instructions. A
few general-purpose libraries, like SSW-library [Zhao et al., 2013] or Parasail [Daily, 2016],
offer functions to facilitate SIMD instructions on such platforms. Among these, Parasail is
the most elaborate library, providing implementations of the four standard DP problems:
global, semi-global, overlap, and local alignment.

However, the range of applications for which pairwise alignments are computed is quite
versatile, and in many scenarios, the regular versions of the DP algorithms may not be
sufficient. The focus of our work lied, therefore, not only on the optimal utilisation of
all performance-relevant factors of the CPU but also on a design that allows application
developers to adapt and extend the existing DP algorithms by providing reusable components
that can be combined with each other.

The need for such a design is justified by the fact that within the SeqAn software library
itself, we counted over 30 alternative implementations of the DP algorithms that were used
by numerous tools developed within our research group [Emde et al., 2012; Hauswedell
et al., 2014; Holtgrewe, 2015; Kehr et al., 2011; Rausch et al., 2008; Weese, 2013] and by
external developers [Roehr et al., 2017; Urgese et al., 2014].

In addition, the given input data strongly depends on the underlying problem, which has
often only been rudimentarily reflected in previous solutions. Typical problems could, for
example, involve the computation of many pairwise alignments between small sequences, or,
in contrast to this, the computation of a few pairwise alignments of very large sequences.

After a thorough evaluation of the existing alignment algorithms implemented within SeqAn,
we derived the following classification of alignment requests:

Single alignment Bulk alignment

Short sequence SoSA (Short, Single Alignment) SoBA (Short, Bulk Alignment)

Long sequence LoSA (Long, Single Alignment) LoBA (Long, Bulk Alignment)

Table 3.2: Classification of alignment requests.

With the exception of the alignment request in the top left of Table 3.2(SoSA), all requests
represent a major performance bottleneck in the respective applications due to the quadratic
runtime of the underlying DP algorithm. Dealing with the SoSA request is generally not
a real concern as the expected execution time for aligning such small sequences is in the
range of microseconds to milliseconds. Consequently, we focused on optimising the other
three alignment requests.

In general, we differentiate between two main execution principles to accelerate the compu-
tation of pairwise alignments, namely inter-sequence execution and intra-sequence execution.
Both principles are explained in detail below.
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Figure 3.6: Parallel execution of five alignment instances. The green alignment instance (at the
top) is parallelised using the intra-sequence execution pattern by progressing along the minor
diagonals. The four alignment instances at the bottom (blue shades) are computed in parallel
using the inter-sequence principle such that each DP matrix is computed independently.

3.2.1 Inter-sequence execution

The inter-sequence execution works naturally well in applications with a bulk alignment
request, meaning that they require the computation of a large collection of alignments
available at the same time. Since these alignments are all independent of each other, they can
be easily represented by concurrent tasks that can be executed in parallel on the processors
of an SMP. In the following, we refer to a particular pair of sequences for which we want
to compute the optimal alignment as an alignment instance (AI), and the task that shall
compute the alignment for a given AI as the alignment task (AT). Notably, this execution
model lends itself to a much simpler implementation as the distribution of the concurrent
ATs does not require an adaptation of the actual DP algorithm itself. This is demonstrated
for the four DP matrices in Fig. 3.6.

An immediate consequence of this is that synchronisation between the executed ATs can
be kept at a minimum, offering good scalability in general. In the ideal case, if the
workload is homogeneous and all ATs take roughly the same time to finish, we even get
an embarrassingly parallel execution scheme. Accordingly, this approach has been widely
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utilised by many applications in the context of thread-level parallelisation when targeted
on an SMP [Hauswedell et al., 2014; Rucci et al., 2017; Weese, 2013]. For similar reasons,
some researchers have also developed an inter-sequence vectorisation strategy specifically
aimed at speeding up the search of a single amino acid sequence in large databases [Alpern
et al., 1995; Frielingsdorf, 2015; Rognes, 2011; Šoši, 2015].

3.2.2 Intra-sequence execution

In cases where an application can only request a single or a few alignments at a time, the
inter-sequence execution approach does not scale. This is often the case in applications that
compute whole-genome alignments or where the AIs are given infrequently due to more
complex applications. To address this, the intra-sequence execution focuses on generating
enough concurrency within a single AI. It achieves this by adapting the order in which the
cells of the DP matrix are computed, allowing the dependency between cells to be removed.
Specifically, the DP matrix is computed along its minor diagonals, which are diagonals
directed from the bottom left corner towards the top right corner of the DP matrix (see
Fig. 3.6). This traversal scheme enables the computation of all cells on a minor diagonal in
parallel, as they have no dependency on each other.

This approach has been extensively studied, and many solutions have been proposed in the
context of multi-threading for different accelerators [Edans and De Melo, 2013; Edmiston
et al., 1988; Khajeh-Saeed et al., 2010; Korpar and Šikić, 2013; Li et al., 2012a; Liu et al.,
2013, 2014] and vectorisation [Daily, 2016; Rucci et al., 2017; Wozniak, 1997]. Furthermore,
specific strategies have been developed to optimise the intra-sequence execution time,
particularly for the local alignment problem on SIMD accelerators [Farrar, 2007; Rognes
and Seeberg, 2000]. These methods build on the idea that many entries in the DP matrix
are 0 and can be computed speculatively along the same column in parallel. Only a fraction
of these entries need to be corrected in a subsequent recursion step due to the unresolved
dependency to the vertical predecessor.

Opposed to the inter-sequence execution strategy, one of the main advantages of the intra-
sequence variant is that it can be used for all alignment requests in practice. Nevertheless,
it has been shown that solutions based on the inter-sequence approach outperform solutions
using intra-sequence execution when bulk alignment requests are available [Farrar, 2007;
Khajeh-Saeed et al., 2010; Li et al., 2012a; Rognes and Seeberg, 2000]. This is because at
the beginning (top left corner) and the end (bottom right corner) of the DP matrix, the
number of cells on the minor diagonals is limited, which means that the parallelism offered
by an SMP may not be fully utilised. Similarly, solutions based on the stripped execution
pattern [Daily, 2016; Farrar, 2007, 2008; Zhao et al., 2013] require extra work to update
simultaneously computed cells in the case that the speculative execution yielded a score
that could influence the overall score of downstream cells.

3.2.3 Multi-level parallelism

In order to achieve optimal CPU utilisation, we need to address both SIMD-level parallelism
and thread-level parallelism. For bulk alignment requests, this can be easily accomplished
by combining SIMD-level parallelisation with a chunked multi-threading approach. In
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this approach, the alignment instances are divided into smaller groups (chunks) and dis-
tributed to different cores of an SMP, where they can be computed using a dedicated SIMD
implementation.

However, for LoSA requests, the situation becomes more complex as there are not enough
alignment tasks available to fully benefit from multi-threaded execution. To overcome
this, a common approach is to split the DP matrix created for two long DNA sequences
into multiple tiles [Edmiston et al., 1988; Liu et al., 2014; Siriwardena and Ranasinghe,
2010] and compute these tiles along the minor diagonals in parallel. For SMPs, Liu et al.
extended this approach by also applying intra-sequence vectorisation pattern within each
tile, following the minor diagonals. This allows for efficient computation of each tile using
both SIMD-level parallelism and intra-sequence execution.

Our contribution

In the following sections, we discuss how we have generalised the two-way execution pattern
to dynamically handle various types of alignment requests while utilising the efficient
inter-sequence execution pattern for data-parallel execution on the VPUs of an SMP. The
foundations of this work were published in Rahn et al. [2018] in the Journal Bioinformatics.
In this thesis, we expand upon the ideas presented in our initial work by introducing
additional optimisations, particularly concerning the alignment of amino acid sequences
and fully harnessing data-level and instruction-level parallelisms.

3.3 Utilising data-level parallelism

Our approach to vectorise the computation of the DP matrix is based on the inter-sequence
execution pattern. To be more precise, when given a bulk of independent AIs, we do not
compute the respective DP matrices one after another. Instead, we employ an interleaved
execution pattern to compute the entries of the individual DP matrices. This means that
initially, we compute the first entry of each DP matrix, followed by the second entry of each
DP matrix, then the third entry of each DP matrix, and so on. The general idea of this
approach is illustrated in Fig. 3.7.

3.3.1 Data representation

We explicitly express this interleaved execution pattern by using a dedicated interleaved
score type, which essentially represents a fixed-size array over integers.

Definition 3.3.1 (Interleaved score). Given two integers w ∈ {16, 32, 64, . . . } and p ∈
{1, 2, 4, 8, . . . }, we write (p,w)-vector to denote a packed SIMD vector of size w

p . Correspond-
ingly, an interleaved score, denoted by s⃗, is a (p,w)-vector over integers, i.e. s⃗ = (s⃗i)i∈[0..l),
with s⃗i ∈ Z and l = w

p = |s⃗|. We may also write ⟨c⟩l to denote a (p,w)-vector filled with the
constant c.

As described in Section 3.1.3, the size of a SIMD vector depends on the width w, which in
this thesis are 16 B (SSE4), 32 B (AVX2), or 64 B (AVX512), of the SIMD register, and the
size of the packed operands p, which can be 1 B (byte), 2 B (word), 4 B (double word), 8 B
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Figure 3.7: Conceptual design of the simultaneous computation of four distinct alignment instances
using SIMD instructions.

(quad word), or even larger ones if there exist dedicated instructions for these sizes. Note
that for conciseness reasons, we use in the following discussion the byte representation for
the widths and operand sizes.

Furthermore, we assume that all unary and binary arithmetic and bit operations defined on
scalar integer types, i.e. byte, word, double word, quad word, are also defined on interleaved
scores, such that the respective operation is applied to each operand individually. For
example, if we add two SIMD vectors a⃗ and b⃗, then

c⃗ = a⃗+ b⃗ =
(
a⃗0 + b⃗0, a⃗1 + b⃗1, . . . , a⃗l−1 + b⃗l−1

)
,

where a⃗i and b⃗i are the elements in the i-th vector lane of a⃗ and b⃗, respectively.

When comparing two interleaved scores, we obtain a new interleaved score of the same size,
where each entry is either set to 08p (all bits are 0) or 18p (all bits are 1). This denotes a
false or true outcome for the compared operands, respectively. In this case, we also refer
to it as a mask vector. We can use a mask vector m⃗ to select the corresponding values from
two interleaved scores using the following expression:

c⃗ = m⃗ ? a⃗ : b⃗, (3.4)

such that c⃗i = a⃗i if and only if m⃗i = 18p and c⃗i = b⃗i if and only if m⃗i = 08p. Correspondingly,
the max function used inside the main recursion of the DP algorithm (see Section 2.3.4),
can be expressed as max(⃗a, b⃗) = (⃗a < b⃗) ? b⃗ : a⃗.

With these properties, we can now model the individual DP matrices corresponding to the
given alignment instances as a single interleaved DP matrix that is defined over interleaved
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score values instead of scalar ones. Specifically, given a bulk of alignment instances (X,Y ),
where X = {X0, X1, . . . , Xl−1}, with ∀i ∈ [0..l), Xi ∈ ΣN , and Y = {Y0, Y1, . . . , Yl−1}, with
∀i ∈ [0..l), Yi ∈ ΣM , we obtain an interleaved DP matrix [S⃗i,j ]N+1×M+1, where S⃗i,j ∈ Zl

represent a (p,w)-vector (see Fig. 3.7).

Note that for simplicity, we assume without loss of generality that l = w
p = |S⃗i,j |. Importantly,

this interleaved DP matrix can be computed using the same DP algorithm as a scalar
DP matrix, as shown in Fig. 2.6 in the preliminary section (see Section 2.3.4). The score
of the individual optimal alignments can then be located equivalently. Moreover, this
representation natively supports the computation of alignments with affine gaps, tracing
the path of the optimal alignments, and even computing the DP algorithm with a band.

However, this approach only works seamlessly if the sequences in X have the same size and
the sequences in Y have the same size, as is often the case for short-read sequencing data,
for example. We use the term homogeneous sequence collections to denote this property
of a sequence collection. On the other hand, if the sizes of the sequences in a sequence
collection differ, we refer to it as a heterogeneous sequence collection. We will first focus on
homogeneous sequence collections to describe the main ideas and fundamental operations
needed to speed up the alignment computation using SIMD instructions.

3.3.2 Memory transformation

The first step before computing the interleaved DP matrix involves a linear transformation
to convert both sequence collections, X and Y , into arrays of (p,w)-vectors, obtaining
their interleaved representation. The interleaved sequences are denoted by x⃗ having a
size of N and y⃗ having a size of M , respectively. Moreover, we store the ranks of the
symbols of the original sequences in the interleaved memory representation. This initial
transformation step is necessary to avoid expensive gather instructions that exhibit long
latencies to load the symbols into the SIMD registers during each iteration of the DP
algorithm (see Section 3.1.3).

Algorithm 3.1: AoS2SoA
Input: X, w, p

1 l ← |X|
2 N ← 0
3 for i← 0 to l do
4 N ← max(N, |Xi|)
5 x⃗ ← new array over (p,w)-vectors of size N
6 for i ← 0 to N do
7 for j ← 0 to l do
8 if i < |Xj | then
9 x⃗i [j]← Xj [i]

10 else
11 x⃗i [j]← $

12 return x⃗
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The scalar algorithm AoS2SoA used to transform the input sequence collections is shown in
Algorithm 3.1. First, the maximum sequence size, N , is determined by performing a linear
scan over the sequence collection (Lines 3 and 4). Next, a new array, x⃗ , is allocated, which
will contain N (p,w)-vectors. The array is then filled by executing the nested for-loop. The
outer for-loop iterates over the sequences of X, while the inner for-loop iterates over the
lanes of the i-th (p,w)-vector in x⃗.

During each iteration, if the j-th sequence in X has a symbol at position i, that symbol is
assigned to the corresponding lane of x⃗i . Otherwise, a special padding symbol, denoted as $
(where $ /∈ Σ), is assigned to that lane. We will discuss the usage of the padding symbol
later in Section Section 3.3.3 when handling hetereogenous sequence collections. Finally,
the transformed sequence, x⃗, is returned.

a0 a1 a2 a3 a4 a5 a6 a7

b0 b1 b2 b3 b4 b5 b6 b7

c0 c1 c2 c3 c4 c5 c6 c7

d0 d1 d2 d3 d4 d5 d6 d7

e0 e1 e2 e3 e4 e5 e6 e7

f0 f1 f2 f3 f4 f5 f6 f7

g0 g1 g2 g3 g4 g5 g6 g7

h0 h1 h2 h3 h4 h5 h6 h7
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Figure 3.8: Transposing eight consecutive symbols of eight sequences (a, b, c, d, e, f , g, h) using
dedicated unpack_lo and unpack_hi SIMD instructions in three steps: a) unpacking 1-byte lanes,
b) unpacking 2-byte lanes, c) unpacking 4-byte lanes. The low bytes are put to the upper half of
the matrix (yellow box) and the high bytes are put to the lower half of the matrix (orange box).
In the final step d) the second row is swapped with the fifth row and the fourth row is swapped
with the seventh row to obtain the correctly transposed matrix.
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Vectorised transformation

To speed up the initial transformation we implemented a vectorised version of AoS2SoA
using a series of SIMD unpack instructions for the special case where the sizes of the packed
operands is one, i.e. p = 1. Figure 3.8 illustrates this procedure using an 8× 8 matrix.

The general procedure for transposing an l × l matrix using SIMD instructions involves
repeatedly unpacking the low and high lanes of two adjacent rows in the matrix. The
procedure starts with the smallest operand size and, in each step, unpacks the lanes
corresponding to the next larger operand size (i.e. 1, 2, 4, 8, 16, etc.). The unpacked low
lanes are stored in the upper half, while the unpacked high lanes are stored in the lower
half of an intermediate matrix. This ensures that in the last unpacking step, all rows of the
intermediate matrix have the correct order.

However, since some rows are now placed at wrong row indices, certain rows need to be
swapped. In Fig. 3.8, this is illustrated by the second and fifth row and the fourth and
seventh row. The final order can be precomputed, allowing us to directly assign the rows to
their correct positions in the last step.

Overall, this procedure requires only O(l log2 l) read and write instructions opposed to the
O(2l2 − 2l) instructions required by the scalar version. In terms of numbers, we can reduce
the workload for the transpose operation for different SIMD ISAs, as shown in Table 3.3.

SSE4 (l = 16) AVX2 (l = 32) AVX512 (l = 64)

instruction count
scalar 480 1984 8064
SIMD 96 224 512

Throughput [GB/s]
scalar 1.09 1.69 2.07
SIMD 1.14 3.95 8.85

Table 3.3: The first part gives the numbers of read and write instructions needed to transpose a
l × l matrix using element-wise transpose and the vectorised version for the respective SIMD ISA.
The second part gives the total throughput in GB/s of transposing 4 096 000 B

l2 many l× l matrices.

3.3.3 Vectorised scoring schemes

Having established the general idea of computing the interleaved DP matrix, we now focus
on the specific adaptations we made to vectorise the scoring schemes. The gap score
functions were trivially adapted by filling the parameters gext and gopn into each lane of the
interleaved scores. In the following, we will use g⃗ext = ⟨gext⟩l and g⃗opn = ⟨gopn⟩l to refer to
the interleaved gap scores.

Considering only homogeneous sequence collections, we did the same for the unitary sub-
stitution score function. In this case, we filled the score values for a match and mismatch
into the corresponding interleaved score, i.e. m⃗= = ⟨m=⟩l and m̸⃗= = ⟨m ̸=⟩l . Then, we
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used (x⃗i−1 = y⃗j−1) ? m⃗= : m̸⃗= to compute the interleaved substitution score for the current
coordinate (i, j).

Unfortunately, the same trivial adaptation could not be done for the matrix substitution
score function. Instead, we stored the scalar values of the substitution matrix in a linearised
array and performed a gather operation to load the respective scalar score values from this
array. In subsequent sections, we will explain how we improved the performance of this
expensive gather operation by utilising more efficient shuffle instructions.

3.3.4 Processing heterogeneous sequence collections

To generalise this approach to heterogeneous sequence collections where the sequence
lengths differ, we used two masking vectors m⃗x and m⃗y of size N + 1 and M + 1, re-
spectively, to track the different ends of the respective sequences. Here, we assume
that N = max(n0,n1, . . . ,nl−1), with nk = |Xk|, and M = max(m0,m1, . . . ,ml−1), with
mk = |Yk|, each representing the size of the largest sequence within the respective collec-
tion.

In each iteration, we checked if the currently processed coordinate (i, j) required an alignment-
specific post-processing step based on the values in the two masking vectors at the corre-
sponding positions, i.e. m⃗x[i] and m⃗y[j], and the specific alignment algorithm used. In the
case of computing a global alignment, for example, the post-processing operation was only
issued when m⃗x[i] & m⃗y[j] ̸= ⟨08p⟩l and only the result of the lanes that compared equal to
⟨18p⟩l were included.

The advantage of this separate masking approach was that we could utilise all of the existing
scalar DP implementation by merely wrapping the corresponding functions. However,
this masking led to a strong reduction in the overall performance gain compared to the
unmasked version. Hence, we extended the initial sequence transformation to check if the
given sequence collections were homogeneous and used the more efficient version if this was
the case.

Optimised vectorisation for hetereogenous sequence collections

We recently improved the performance of the heterogeneous computation by replacing the
expensive masking with a more efficient strategy. In this approach, we extended smaller
sequences in X and Y with cleverly selected padding symbols that are not contained in
the underlying sequence alphabet. The general idea is to populate the final score values
of the individual DP matrices to the last row and column of the interleaved DP matrix
along their diagonals (see Fig. 3.9). By doing so, we could infer the correct score values
of each individual DP matrix from the last row and column, rather than interrupting the
computation of the DP matrix to run sequential operations.

Local alignments In the case of computing a local alignment, we used two distinct padding
symbols, namely $x and $y, to pad smaller sequences in X and Y , respectively. Formally,
we have that $x, $y /∈ Σ, and $x ̸= $y. As a consequence, substituting a symbol with either
padding symbol yields a mismatch.
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Figure 3.9: Scores of the last column and row of the alignment instance (x, y) are populated along
their diagonals to the last column and row of the interleaved DP matrix, as indicated by the
arrows. The start of the projected cells in the last row (yellow tiles) and column (orange tiles) are
shifted by N − n and M −m respectively (dashed crossbars). The bottom right corner (n,m)
(red tiles) is projected to (n +M −m,m).

Score values computed for entries beyond the dimensions of the original DP matrix will
only decrease, and thus must be lower than the largest score computed within the original
dimensions. In the case of using a substitution score matrix, it suffices to use a single
padding symbol and set the corresponding row and column entries to the lowest score value
present in the entire matrix, e.g. −4 in the case of a BLOSUM62 matrix.

Global alignments In the other cases, where a global alignment, semi-global alignment, or
overlap alignment is computed, we populate the score values of the last row S[∗,mk] and
column (S[nk, ∗]) of the k-th DP matrix in such a way that, after reaching the original ends,
the score values of the last column and row are increased only by the scores for receiving a
match.

Knowing the dimensions of the individual DP matrices, i.e. (nk,mk) for the k-th alignment
instance (Xk, Yk), and the dimensions of the interleaved DP matrix, i.e. (N,M), we can infer
the original scores of the last row and column of an individual DP matrix by subtracting
the length of the padded suffix in the respective dimension multiplied by the score for
a match. For example, in Fig. 3.9, we can infer the original scores corresponding to
the last row m (yellow tiles) by subtracting (M − m)m⃗= from each value in the range
{M −m, . . . ,n +M −m} over the last row of the interleaved DP matrix, for some row m
and column n.

Similar to the local alignment using a matrix score function, we extended the substitution
score matrix with an additional row and column for the padding symbol $, but we set the
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corresponding values to the largest positive value, e.g. 11 in the case of a BLOSUM62
matrix, rather than the lowest value.

For the unitary score function, however, we used a less trivial solution to avoid an additional
comparison for the currently observed symbol pair x⃗i−1 and y⃗j−1. Our solution requires only
one additional padding symbol $, which is used to pad shorter sequences in both sequence
collections. We initialised it by setting the most significant bit of the underlying operand
type, i.e. $ = 108p−1.

Having this, we replaced the equality comparison of the vectorised unitary score function
with:

((x⃗i−1 ^ y⃗j−1) ≤ ⟨0⟩l) ? m⃗= : m̸⃗=.

In this expression, we compute the bitwise XOR (^) between both symbols, and whenever
the result, interpreted as a signed integer, is negative or 0, we return the scores for a match
for this particular lane. The result of the bitwise XOR can only be 0 if the compared
symbols are identical. If only one of the compared symbols is the padding symbol, the sign
bit in the resulting operand will be set, yielding a negative value. In all other cases, where
both compared symbols differ and neither of them is the padding symbol, the resulting
operand must have a value strictly greater than 0.

Theoretically, this approach limits the applicable alphabet type of the sequences. For the
adaptation of the global alignment, we require that the original alphabet size |Σ| is strictly
less than 2 to the power of 8p− 1, so that the most significant bit is not occupied. Similarly,
for the local alignment, the alphabet size must be less than 8p− 2.

However, for the majority of relevant applications, we can assume an alphabet that can be
modelled with the 7-bit ASCII character set, which allows us to use the smallest operand
size of one byte. This covers a wide range of commonly used characters and symbols.

Offset correction In cases where the main diagonal of an individual DP matrix is shifted
to the left, i.e. mk −M < nk − N , or right, i.e. nk − N < mk −M , with respect to
the main diagonal of the interleaved DP matrix, a part of the column coordinates or row
coordinates are projected to the last row or column, respectively. For example, the coordinate
(n,m − 1) in Fig. 3.9 is projected to the last row of the interleaved DP matrix rather than
the last column (last orange diagonal above the red diagonal), because in this example
mk−M < nk−N . To account for this, the affected score values are corrected by subtracting
o many match scores, where o is a position-specific offset representing the distance between
the column index of the projected last row coordinate (in this example n + M −m + 1)
of the interleaved DP matrix and N or, if the main diagonal is shifted towards the other
side, the distance between the row index of the projected last column coordinate of the
interleaved DP matrix and M .

Improved vectorisation of matrix substitution scores

As discussed earlier, we encountered performance issues with the gather instruction used
to load score values from a substitution score matrix, particularly due to its high latency
and limited availability for certain operand types [Intel, 2023b]. In cases where the gather
instruction is not available, we resort to a sequential lookup as a fallback, further diminishing
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the expected performance gains. To address these issues, we have recently implemented two
strategies to improve the performance of aligning amino acid sequences.

Profile substitution scores As the first strategy we implemented a column-wise profile
score function, where a single sequence is aligned to a bulk of sequences. This scenario
commonly arises when searching for a query sequence in a protein database [Rognes, 2011].

In this approach, we pre-compute at the beginning of each column of the interleaved DP
matrix a column-specific lookup table, denoted as P⃗ =

(
P⃗ 0, P⃗ 1, . . . , P⃗ |Σ|−1

)
. The lookup

table contains elements represented as (p,w)-vector, which store the scores for aligning
symbols from Σ with the current interleaved symbol x⃗i−1 at column i. The profile for
column i can be constructed efficiently using a series of shuffle, arithmetic, and logic SIMD
instructions, with the computational complexity linear to the size of the alphabet [Rognes,
2011]. With the constructed profile, we obtain the substitution scores in the inner loop of
the DP algorithm by simply accessing the cached interleaved scores using P⃗ [rankΣ(yj−1)]
at each position j in column i.

Although the profile score function provides much faster run times compared to the previously
discussed method using a gather instruction, it is only applicable to specific applications
that involve aligning a single sequence to a bulk of sequences. Therefore, it cannot be used
as a general replacement for the gather instruction.

Optimising matrix gather To address this limitation, we have developed a new approach
that replaces the gather instruction with a series of shuffle instructions exhibiting a lower
CPI than gather instructions. Note that at the point of writing this thesis, we have only
implemented it for the AVX512VBMI and AVX512BW ISA using byte operands. More
specifically, we used a cross lane permutation instruction (vpermi2b) to select from two
source (1, 64)-vectors values of the substitution score matrix. On Intel’s Icelake server CPUs
the CPI of this instruction is 4, whereas the CPI of vpgatherdd (gather of double word
integral types) is 8 [Abel and Reineke, 2019]3. Since gather instructions are only available
for 4-byte and 8-byte operand types, we need to wrap four vpgatherdd invocations in a
series of unpack and pack instructions to emulate a single invocation of vpermi2b, such
that the accumulated latency increases even further.

Technically, the vpermi2b instruction allows us to select 128 operands from two (1, 64)-vectors.
By combining two calls to this instruction, we are able to cover the maximum addressable
index range of 1-byte operand types, spanning from 0 to 255. Unfortunately, this index range
is too small to store the entire substitution matrix for amino acid alphabets, denoted by ΣAA,
provided that |ΣAA| = 20. However, we can make use of the symmetry of most standard
amino acid substitution score matrices, such as the BLOSUM62 matrix (compare Fig. 2.2).
Particularly, we only need to store the upper triangular half of the matrix, including the
main diagonal as demonstrated in Fig. 3.10.

The size of this triangular matrix is given by:

|Σ|∑

i=0
i = |Σ|(|Σ|+ 1)

2 .

3CPI data are taken from https://uops.info/table.html

56

https://uops.info/table.html


3.3 Utilising data-level parallelism

A C D E F G H I K L M N P Q R S T V W Y $

4 0 −2 −1 −2 0 −2 −1 −1 −1 −1 −2 −1 −1 −1 1 0 0 −3 −2 11 A 0
9 −3 −4 −2 −3 −3 −1 −3 −1 −1 −3 −3 −3 −3 −1 −1 −1 −2 −2 11 C 1

6 2 −3 −1 −1 −3 −1 −4 −3 1 −1 0 −2 0 −1 −3 −4 −3 11 D 2
5 −3 −2 0 −3 1 −3 −2 0 −1 2 0 0 −1 −2 −3 −2 11 E 3

6 −3 −1 0 −3 0 0 −3 −4 −3 −3 −2 −2 −1 1 3 11 F 4
6 −2 −4 −2 −4 −3 0 −2 −2 −2 0 −2 −3 −2 −3 11 G 5

8 −3 −1 −3 −2 1 −2 0 0 −1 −2 −3 −2 2 11 H 6
4 −3 2 1 −3 −3 −3 −3 −2 −1 3 −3 −1 11 I 7

5 −2 −1 0 −1 1 2 0 −1 −2 −3 −2 11 K 8
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5 −1 −1 −3 −3 −2 11 R 14
4 1 −2 −3 −2 11 S 15

5 0 −2 −2 11 T 16
4 −3 −1 11 V 17

11 2 11 W 18
7 11 Y 19

11 $ 20

11 highest
10
9
8
7
6
5
4
3
2
1
0

−1
−2
−3
−4 lowest

Figure 3.10: Upper triangular half of the BLOSUM62 substitution score matrix.

This means, we can encode any substitution score matrix with an alphabet size of up to 22,
which satisfies 22·23

2 = 253 ≤ 256. The corresponding score values are then stored in a linear
fashion in four consecutive (1, 64)-vectors. This allows us to efficiently access the required
score values using the vpermi2b instructions, despite the limited index range.

In order to implement this strategy, we needed to compute the selection index that cor-
responds to the linearised index of the triangular matrix for a given pair of interleaved
symbols a⃗ = x⃗i and b⃗ = y⃗j . Let α⃗ = ⟨|Σ|⟩l, then this can be done with the formula:

α⃗(α⃗− ⟨1⟩l)
⟨2⟩l − (α⃗−min(⃗ar, b⃗r))(α⃗−min(⃗ar, b⃗r)− ⟨1⟩l)

⟨2⟩l + max(⃗ar, b⃗r), (3.5)

where a⃗r = (rankΣ(⃗a0), rankΣ(⃗a1), . . . , rankΣ(⃗al−1)) and, analogously the same for b⃗r. Note
this formula works for a general upper triangular matrix T as long as the row index is
greater or equal to the column index since T[i, j] = T[j, i]. As such, we use the minimum
of both ranks to select the column index and use the maximum of both ranks as the row
index.

However, there are two main issues with this method. First, it involves a multiplication
and a division which are not supported for byte operand types [Intel, 2023b]. Instead,
the compiler adds extra instructions to convert the (1, 64)-vector to two (2, 64)-vectors
to perform the operations and converts the intermediate results back to a (1, 64)-vectors.
Second, the multiplication produces arithmetic overflows on 1-byte operands distorting the
computed index.

To address the first issue, we precomputed the starting offsets of each symbol in the linearised
triangular matrix during the initial preprocessing of the sequence collections, such that the
total overhead is only linear rather than quadratic. For the latter problem, we used an
additional mask vector m⃗ that marks all lanes of a (p,w)-vector a⃗r containing an uneven rank
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Figure 3.11: Illustration of the selection process for two interleaved symbols a⃗ and b⃗ with 8 lanes
each. The original symbols are converted to a pair consisting of their alphabet rank (⃗ar, b⃗r) and
their offset in the linearised triangular substitution score matrix (⃗ao, b⃗o). By taking the minimum
of both offsets and adding to them the absolute values of the differences between the ranks, the
final selection index z⃗ is computed. This is used to retrieve the corresponding score values of the
BLOSUM62 score matrix that is encoded by four (1, 64)-vectors. Each of these vectors consists of
four 16-byte lanes highlighted with the left and right selection index in light gray. The black indices
above the entries mark the start offset of the respective amino acid in the linearised triangular
substitution matrix. The final interleaved score vector contains (−1, 4, 11,−2,−2, 11,−1,−2).
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and cached the result of the first term of Eq. (3.5) in a temporary variable c⃗ = ⟨ |Σ|(|Σ|−1)
2 ⟩l.

Using this, we can now compute the offset for a symbol a⃗ with:

u⃗ = a⃗r &⟨1⟩l

o⃗ =
(
u⃗ ?(α⃗− a⃗r − ⟨1⟩l) :(α⃗− a⃗r)≫ ⟨1⟩l

)
·
(
u⃗ ?(α⃗− a⃗r) :(α⃗− a⃗r − ⟨1⟩l)

)

a⃗o = c⃗− o⃗

replacing on the one hand the division by 2 with faster bit shifts and on the other hand
avoiding arithmetic overflows by first dividing the even ranks and then multiplying the
corresponding uneven rank to the intermediate results. After the initialisation we replace
each input (1, 64)-vector with an ordered pair consisting of the ranks of the symbols, and,
as the second value, the precomputed start offsets of the symbols in the linearised triangular
score matrix.

Let (x⃗r
i−1, x⃗o

i−1) and (y⃗r
j−1, y⃗o

j−1) represent the interleaved rank and offset values of the i-th
column and the j-th row, respectively. Furthermore, let t⃗ =

(
t⃗0, t⃗1, t⃗2, t⃗3

)
be the fixed-size

array storing the linearised triangular matrix in four (1, 64)-vectors. We can now replace
the expensive gather instruction in the inner-loop of the DP algorithm with

z⃗ = min(x⃗o
i−1, y⃗o

j−1) + abs(x⃗r
i−1 − y⃗r

j−1) (3.6)
s⃗ = (z⃗ < ⟨128⟩64) ? vpermi2b(⃗t0, z⃗, t⃗1) : vpermi2b(⃗t2, z⃗, t⃗3). (3.7)

In this equation, we first calculate the minimum of the start offsets and add the absolute
value of the difference between their ranks to obtain the final selection index z⃗. Next, we
use the indices in z⃗ to select the corresponding lanes from the first and second vectors of t⃗ in
the first call, as well as from the third and fourth vector in the second invocation. To obtain
the final interleaved score, we select either the permutation result from the first selection
or the second selection, depending on whether the corresponding index in z⃗ is strictly less
than 128 or not. An example selection process is illustrated in Fig. 3.11.

3.3.5 Maximising SIMD throughput

In order to maximise the data parallel throughput on a SMP, we have recently introduced
a saturated execution pattern. This pattern allows us to always use all addressable SIMD
lanes of the underlying SIMD registers, regardless of the sequence sizes and scoring schemes
used.

By default, this is not possible due to the sequence lengths and the explicit values of the
score functions, which limit the smallest viable operand type that can be used without
causing arithmetic overflow during the computation of the DP matrix. While a 2-byte
operand type is usually sufficient for most applications working with short-read sequences,
other input data may require larger operand types to compute the score values accurately.

To address this issue, some applications implement a saturation mode [Daily, 2016; Farrar,
2007; Rognes, 2011]. This mode follows an iterative procedure to optimise the SIMD
throughput. For each computed alignment instance, the algorithm checks if there was an
arithmetic overflow. If no overflow is detected, the resulting alignment is considered correct
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and can be reported. However, if an overflow occurs, the alignment instance is rescheduled
for a second execution cycle using the next larger operand type.

The process begins by computing all alignments with 1-byte packed SIMD vectors, enabling
the full utilisation of all addressable lanes of the SIMD registers. Then, the procedure is
repeated for all rescheduled alignment instances using 2-byte packed SIMD vectors, followed
by 4-byte vectors, and so on, until all alignment instances have been computed. This
approach ensures that the SIMD throughput is optimised for each alignment instance by
using the smallest possible operand type without causing arithmetic overflows.

Tiled DP matrix

In contrast to the approach described above, we propose a stable saturation mode that
computes vectorised alignments solely using 1-byte packed SIMD vectors, regardless of the
lengths of the sequences. To achieve this, we divide the interleaved DP matrix into smaller
non-overlapping b × b submatrices, which we refer to as b-tile.

For simplicity, we assume, without loss of generalisation, that the dimensions N and M
are both multiples of b such that Nb = N

b and Mb = M
b . Having this, we define a tiled

DP matrix , denoted by S⃗b, as a matrix consisting of Nb columns and Mb rows, where each
element is itself a b × b matrix:

S⃗b[ı, ȷ] =




S⃗[bı, bȷ] S⃗[bı+ 1, bȷ] · · · S⃗[bı+ b − 1, bȷ]
S⃗[bı, bȷ+ 1] S⃗[bı+ 1, bȷ+ 1] · · · S⃗[bı+ b − 1, bȷ+ 1]

...
... . . . ...

S⃗[bı, bȷ+ b − 1] S⃗[bı+ 1, bȷ+ b − 1] · · · S⃗[bı+ b − 1, bȷ+ b − 1]




with ı ∈ [0..Nb) and ȷ ∈ [0..Mb).

We employed a nested iteration scheme to compute the tiled interleaved DP matrix S⃗b. The
outer loop iterates over the tiles in column-major order, while the inner loop computes the
regular vectorised DP algorithm as described in the previous sections. Additionally, we use
two additional buffers: C⃗ caching the last score values of each column (last row of a DP
tile), and R⃗ caching the score values of each row (last column of a DP tile). Each buffer is
a collection of smaller arrays over b + 1 (p,w)-vectors, such that |C⃗ | = Nb and |R⃗| = Mb.
This is illustrated in Fig. 3.12. In the beginning, these buffers are initialised as usual using
the respective gap score function.

Let B⃗ = S⃗b[ı, ȷ] be the tile that is currently being computed. Before this tile can be
processed, we subtract the score value of the first entry from each entry of C⃗ı and R⃗ȷ, i.e.
C⃗ı[k] = C⃗ı[k]− C⃗ı[0] and R⃗ȷ[k] = R⃗ȷ[k]− R⃗ȷ[0], where k ∈ [0..b]. This step recalibrates the
initialisation buffers to the starting condition where the first cell of the initialisation column
and row are set to 0 (refer to Section 2.3.4 to recall the initialisation rules). Additionally, we
cache the values c⃗ = C⃗ı[b] and r⃗ = R⃗ȷ[b] after recalibrating the scores and before computing
B⃗.

After finishing the inner loop and before progressing to the next tile (ı, ȷ+ 1), we copy the
scores of the last row B⃗∗,b−1 to C⃗ı and the last column B⃗b−1,∗ to R⃗ȷ starting at index 1

60



3.3 Utilising data-level parallelism

y
′
0

y
′
1

y
′
2

y
′
3

y
′
4

...

y
′
b−1

y
′
5

x
′
0 x

′
1 x

′
2 x

′
3 x

′
4 x

′
5 · · · x

′
b−1

C
′
0 C

′
1 C

′
2 C

′
3 C

′
4 C

′
5 · · · C

′
bC

′
6

C
′
0 C

′
1 C

′
2 C

′
3 C

′
4 C

′
5 · · · C

′
bC

′
6

R
′
0

R
′
1

R
′
2

R
′
3

R
′
4

R
′
5

R
′
6

R
′
b

...

R
′
0

R
′
1

R
′
2

R
′
3

R
′
4

R
′
5

R
′
6

R
′
b

...

ı

ȷ befo
re

aft
er

Figure 3.12: Detailed view of a b-tile at (ı, ȷ). Here x ′ = x[ıb..(ı+ 1)b), y′ = y[ȷb..(ȷ+ 1)b), C ′ = Cı,
and R′ = Rȷ. Before the cells of the tile are computed the last values of C ′[b] and R′[b] are cached
and assigned to the first value of R′[0] and C ′[0] respectively after computing the DP tile. The
remaining values are copied into the respective cells of C ′ and R′ (black arrows).

respectively. We also set C⃗ı[0] = r⃗ and R⃗ȷ[0] = c⃗, such that the first entry of C⃗ corresponds
to the cached entry of the first row and the first entry of R⃗ corresponds to the cached entry
of the first column (see Fig. 3.12).

Since a tile stores only relative score values instead of absolute ones, we track the cumulative
sum of the subtracted offsets for each tile column and row of S⃗b. This is done to recalibrate
the column and row initialisation buffers. After all tiles of S⃗b have been computed, we can
use the tracked offsets to recompute the absolute values of the relative scores stored in the
respective initialisation buffers. This is done by subtracting the tracked offset sum from the
values. In Fig. 3.13, we demonstrate the saturated computation with 4 tiles using the scalar
global alignment example from Fig. 2.7a.

Saturated DP tiles

We call a b-tile whose maximal score range is guaranteed to be [−128..127] a saturated b-tile.
The primary challenge now is to find a suitable value for b such that the b-tiles can be
computed with a 1-byte operand type (i.e. int8_t) without inducing a score overflow. This
can be determined by resolving the following two equations to b.

127 ≥ bσmax − (gopn + bgext) (3.8a)

−128 ≤ max
{

2(gopn + bgext)
bσmin

(3.8b)

where σmax is the maximal and σmin is the lowest score value of the underlying substitution
score model σ, e.g. 11 and −4 in case of the BLOSUM62 matrix or m= and m ̸= in case
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Figure 3.13: Computing the DP matrix of Fig. 2.7a with relative scores using 4-tiles. The yellow
and orange entries represent the scores of C and R respectively. Before computing a tile, the
scores of the corresponding slice in C and R are reset by subtracting the score stored in their first
entry (light grey values at the top left corner of each tile buffer). Absolute alignment scores are
recovered by adding the cumulative sum of the subtracted offsets within the same column or row
to the relative scores (black scores in last column/row buffer).

of unitary substitution scores. Equation (3.8a) constrains the maximum value of b such
that all score values in a tile are less than or equal to 127. Similarly, the second equation
constrains the maximum value of b such that all score values in a tile are greater than or
equal to -128. Finally, we choose b as the minimum of the two results. Please note that
for a concise description, we assume a single scalar DP matrix in the following, but the
presented ideas can be transferred one-to-one to our interleaved vectorisation approach.

Theorem 3.3.1. Given a b-tile B = Sb[ı, ȷ], then we guarantee by solving the linear
equations Eq. (3.8a) and Eq. (3.8b) and choosing b as the minimum of both that −128 ≤
Bi,j ≤ 127 for all i ∈ [0..b) and j ∈ [0..b) in the case of global alignments.

Proof. To see that this is true, consider the sketch depicted in Fig. 3.14. The upper bound
(Eq. (3.8a)) is obtained from the observation that after recalibrating the buffers we have
Cı[0] = 0 and Rȷ[0] = 0. By the DP recursion we also have that c = Cı[b] ≥ gopn + bgext
(red arrow) and analogously r = Rȷ[b] ≥ gopn + bgext (green arrow). The largest score
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Figure 3.14: Maximal and minimal offsets of a b-tile. The maximum score value within a b-tile is
obtained from adding b times the maximal match scores (yellow arrow along major diagonal).
The minimum score value is either obtained from deleting the entire segment of x (red arrows)
and inserting the entire segment of y (green arrows) or replacing all symbols (blue arrow along
the major diagonal). Since we choose the maximum when computing a cell, the larger value of
both cases determines the minimum.

value computed within B is by adding b times σmax. Thus, when recalibrating Cı before
computing the next b-tile (ı, ȷ+ 1), we have Cı[b] = Cı[b]− Cı[0] such that

Cı[b] ≤ bσmax − (gopn + bgext),

which yields the largest positive score value that must be less than or equal to 127 to avoid
an arithmetic overflow. To see that Eq. (3.8b) is sufficient to determine the lower score
bound, we need to show that the largest negative score obtained from the recalibration step
is greater than the maximum of 2(gopn + bgext) and bσmin. We proof this by contradiction.

Again, the largest negative score is computed during the recalibration step when we can
have in Cı[0] a score that is as large as possible and in Cı[b] a score that is as low as possible.
Thus, assume that Cı[b] has the score bσmax after computing the previous b-tile at (ı, ȷ− 1).
At the same time we have by the DP recursion that Cı[0] ≥ max(gopn + bgext, bσmin). Let
us assume that gopn + bgext is the maximum. After recalibrating C we have c = Cı[b] =
bσmax − (gopn + bgext). Following the computation of B the lowest computed score can only
be derived from following a red and green arrow or the blue arrow. Correspondingly, the
updated scores in Rȷ are

Rȷ[0] = c = bσmax − (gopn + bgext)
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and

Rȷ[b] = max
{

2(gopn + bgext)
bσmin.

From this follows that

Rȷ[b] = Rȷ[b]− (bσmax − (gopn + bgext))
= Rȷ[b] + gopn + bgext − bσmax

≥ Rȷ[0] + gopn + bgext

= bσmax.

This is a contradiction because by definition of scoring schemes the left hand side of the
relational operator ≤ is always strictly less than 0 and the right hand side is always greater
than or equal to 0. It follows, that due to the recursion formula the lowest score can only
be computed within a b-tile and not during the recalibration.

Saturated interleaved alignment

To apply the saturated execution pattern to our interleaved scoring matrix S⃗ computing
an optimal global alignment, we need to handle the cumulative offset sums obtained by
subtracting the cached c⃗ and r⃗ values in each row and column of S⃗b.

Before adding the offsets, we upcast the (1, w)-vector to four (4, w)-vector, which can be
efficiently done using SIMD instructions. As a result, we can use regular 32-bit integers to
keep track of the subtracted offsets, allowing us to compute any alignment instance without
risking score overflows.

For the local alignment problem, there is an additional issue because absolute scores close
to 0 cannot be recalibrated, as the scores are bounded below by 0. In this case, before
computing a tile B⃗, we check whether the score offsets c⃗ and r⃗ being subtracted from the
buffers are larger than a precomputed threshold in their absolute representation.

More specifically, before recalibrating the buffers of B⃗, we compute the absolute value
representation of c⃗ and r⃗ using the previously described upcast to larger operand types. If
none of the absolute scalar operands is less than max(2(gopn + bgext), bσmin), then we treat
B⃗ as if it were part of a global alignment, because we are guaranteed to not cut score values
less than 0.

In the other case, where the absolute scalar operands are less than the threshold, we do not
recalibrate the offsets and reset the cumulative sum of the tracked column and row offsets
to 0. Now the relative scores correspond one-to-one to their absolute values again, and we
use the regular local alignment procedure to compute this tile.
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Maximising saturated tile dimensions

We can further increase the dimension of b by substituting the natural zero value, 0, with an
offset that shifts the center of the computed score range. This offset can be shifted towards
−128, if the negative score range is not exhausted. Alternatively, it can be shifted towards
127, if the positive score range is not exhausted. To compute the artificial zero offset we
adapt the equations shown in Fig. 3.14 by adding the variable z representing the unknown
offset at Cı[0] and Rȷ[0]

127 ≥ z + bσmax − (gopn + bgext) (3.9a)

−128 ≤ z + max
{

2(gopn + bgext)
bσmin

(3.9b)

and solve the linear equation system to obtain the ordered pair (z, b). Doing so for a
scoring scheme with affine gap scores gopn = −10 and gext = −1 and with σmax = 5 and
σmin = −4 would increase b from 19 to 28 by using z = −51 as the new artificial value for
zero. In the case of the BLOSUM62 matrix for example (σmax = 11; σmin = −4), this would
increase b from 9 to 16 using z = −75 as the new zero value. Due to an increased block size,
the absolute number of post- and preprocessing instructions needed to keep track of the
cumulated offsets is reduced and the overall performance gets improved even further.

3.4 Utilising thread-level parallelism

In this section, we first focus on the central design of dynamically scheduling and executing a
bulk of independent AIs in parallel on multiple threads. Afterwards, we refine the introduced
scheduling mechanism by extending it with a version that also allows computing a single AI
in parallel using the intra-sequence execution pattern. Lastly, we discuss recent extensions
to our approach aimed at fully exploiting the available hardware resources.

3.4.1 Dynamic scheduling and execution

The core of our universal parallelisation approach is a two-stage scheduling system consisting
of an alignment scheduler and an alignment executor .

In the first stage, the alignment scheduler receives and manages asynchronously submitted
AIs. This can be either a single AI or a bulk of AIs. Underneath, the alignment scheduler
uses a multiple producer, multiple consumer (MPMC) concurrent queue in combination
with a thread pool to orchestrate the concurrent execution of the submitted AIs. A thread
of the alignment scheduler, which is the consumer of an AI, is responsible for managing
the execution of its associated AI but does not perform the actual work itself. Instead,
it packages the given AI into an AT and asynchronously submits it to the downstream
alignment executor.

Meanwhile, the managing thread from the alignment executor, which owns the respective AI,
waits until the task is completed within the alignment executor. Similar to the alignment
scheduler, the alignment executor utilises its own thread pool together with an MPMC
concurrent queue to asynchronously handle incoming ATs. When a thread of the alignment
executor fetches a new AT from the accompanying queue, it immediately starts executing
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Figure 3.15: Sequence diagram illustrating the concurrent interactions between a user, the alignment
scheduler, and the alignment executor. The scheduler and executor set up a thread pool with
two concurrently running threads each (T0, T1; and T2, T3) and a concurrent queue. The
user asynchronously submits 2 single AIs and one bulk AI covering 4 individual AIs. After the
scheduler is initialised, T0 and T1 start spinning, waiting for an AI to become available. T1 pops
the first AI from the queue, while T0 takes the bulk AI. Both threads create an Alignment Task
(AT) for the received AI and submit it to the concurrent queue of the alignment executor. After
submitting the ATs, the threads are suspended (orange lifeline). On the side of the alignment
executor, T2 processes the AT submitted by T1, and T3 processes the AT submitted by T0.
Once they complete their tasks, the corresponding threads of the alignment scheduler (T1 first,
and T0 second) are notified. Once these threads are awakened, they perform postprocessing tasks
such as tracing the alignment and notifying the user when the result is ready. Afterwards, they
can process the next AIs or wait until one becomes available.
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it. Once the task is completed, the corresponding thread tries to fetch the next AT from
the queue or waits until another AT becomes available. This general two-stage scheduling
system is illustrated in Fig. 3.15.

Thread suspension

Threads of the alignment scheduler utilise a passive blocking strategy by setting up a
condition variable during the initialisation of the respective AT. Specifically, a thread of the
alignment scheduler is likely suspended by the operating system after successfully submitting
the AT. In this case, they do not waste vital CPU resources while waiting for the alignment
task to be computed.

Once the corresponding AT finishes in one of the threads of the alignment executor, it
notifies the associated condition variable, signalling the completion of its work. Upon
waking up, the alignment scheduler thread produces the final alignment result and sends it
back to the user through a given callback function, allowing the user to handle the results
asynchronously if desired.

Subsequently, a thread of the scheduler checks if more AIs are available in the concurrent
queue and either extracts the next one in the queue (Thread 1 in Fig. 3.15) or waits for one
to become available.

Once all AIs are submitted, the user can explicitly close the alignment scheduler to indicate
that no more AIs can be submitted. The closing signal is also propagated to the linked
alignment executor. If both the scheduler and executor are closed and their queues are
empty, the concurrently running threads will terminate and safely clean up all thread-local
resources allocated during the execution.

Chunked scheduling

The operations to yield and wake a thread are handled entirely by the operating system
and may introduce some extra overhead that can negatively impact overall performance.
This can become problematic, especially when dealing with alignment requests consisting of
many small-sized AIs, where the amount of work per AT is too small and the multithreading
overhead limits the performance gains.

To address this, we implemented a chunking mechanism where threads of the alignment
scheduler extract not just one, but a chunk of submitted AIs and bundle them into a single
bulk AT. This allows us to control the amount of work per execution within the alignment
executor, reducing the relative overhead compared to the total execution time. For example,
in Fig. 3.15, the user submits a bulk of four AIs in a second call, which are pushed to the
underlying queue. Then, Thread 0 dequeues all four instances at once and wraps them into
an AT responsible for computing all four alignments.

Notably, we made the maximum size of the chunks, as well as the number of threads in
each stage, customisable in order to accommodate different alignment request scenarios and
provide an optimal load balancing strategy for each case. Additionally, the threads of the
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alignment scheduler and executor can be programmatically pinned to specific cores, giving
the user full control over the scheduling and execution system.

3.4.2 Intra-sequence execution

In its basic form, the presented two-stage scheduling mechanism is designed for the inter-
sequence execution pattern. To enable intra-sequence execution using this scheduling system,
we refined the original mechanism to create a tiled DP matrix (see Section 3.3.5) for a
received AI, similar to the approach used for computing an interleaved DP matrix with
saturated tiles. However, in this case, we are not limited by the size of b and can use much
larger values.

Task graph representation

To execute the obtained tiles in parallel, we wrap each DP matrix tile into a separate AT and
generate a task graph Gb = (V ,E) where each AT is represented by a node. Correspondingly,
we have a tiled DP matrix Sb, consisting of nb = n

b columns and mb = m
b rows, for a given

AI (x, y), with x = Σn and y = Σm. Note we assume for simplicity that without loss of
generalisation n and m are a multiple of b. As a result the node set V of the task graph Gb
contains nb ·mb many nodes.

Two nodes in the task graph Gb are connected with a directed edge if the corresponding
tiles in Sb are adjacent. More specifically, let u and v be two nodes of V such that Sb[ı, ȷ]
is the b-tile represented by u and Sb[ı′, ȷ′] is the b-tile represented by v. Then there exists
a directed edge e = (u, v) ∈ E if and only if ı′ = ı+ 1 and ȷ′ = ȷ, or ı′ = ı and ȷ′ = ȷ+ 1.
According to this setup, the root node of Gb represents the task to compute the b-tile Sb
[0, 0] and is characterised by having no incoming edges. Furthermore, all tiles on the first
column and row are represented by nodes with exactly one incoming edge, while all other
nodes have two incoming edges. Figure 3.16 depicts a task graph build over a tiled DP
matrix.

Task graph execution

The edges in the task graph Gb represent natural synchronisation points for the parallel
execution of the associated ATs. That is, the task of a node v ∈ V can only be executed
after all its incoming edges have been visited. We model this by augmenting each node
with an atomic counter that initially equals its in-degree. After completing the AT, the
active thread runs a postprocessing routine that follows the outgoing edges of the currently
processed node and decrements the atomic counter of the successor nodes. If the dependency
count of a successor node reaches 0, the same thread submits the AT associated with that
node to the concurrent queue of its linked alignment executor.

To initiate the execution, the alignment scheduler only submits the root node of the generated
task graph to the alignment executor. From that point on, the correct execution order
of the associated ATs is completely handled by the graph structure within the context of
the alignment executor. The resulting execution pattern resembles a dynamic wavefront
progressing along the minor diagonals of the tiled DP matrix, rather than strictly following
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Figure 3.16: Task graph build over a tiled DP matrix. Each column and row of the tiled DP matrix
represents a non-overlapping segment of length b of x , respectively y, and the corresponding buffer
of size b + 1 from C and R. Each tile is wrapped in a task graph node and constitutes a separate
AT. Arrows between the nodes represent task graph dependencies. Nodes that have been already
computed are covered in grey. Nodes with orange lines are currently computed simultaneously
((1, 4), (2, 3), (3, 1), and (nb − 1, 0)). Nodes with green lines ((1,mb − 1), (3, 2), and (4, 1)) have
been already visited once and nodes with black lines have been not visited so far.
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the minor diagonals in a rigid manner. An example of a possible execution flow is shown
in Figure 3.16, where four nodes are currently being processed, and each thread is in a
different state of computing the associated partial AI.

Synchronisation of alignment tasks

Similar to how we organised the computation of the tiles in the saturated vectorisation
mode, we allocate two initialisation buffers, C and R, of size nb and mb, respectively. Each
buffer consists of an array containing b + 1 score values that are used to populate the scores
for the next tile in the same column or row. These initialisation buffers are shared among
all threads of the alignment executor since the order of how the associated ATs are executed
and which thread executes them is not deterministic. However, due to the design of the
task graph using atomic counters to model the dependencies, we do not require any special
read or write protection for updating these buffers. In fact, only one tile can be actively
computed by a thread on a particular column ı and row ȷ using this approach.

Moreover we ensure that each local buffer starts on a new cache line such that we minimise
performance bottlenecks due to maintaining cache coherency. Figure 3.12 illustrates how
these buffers are used to initialise a tile before computation and how they are updated after
the computation of the tile is finished in order to obtain the correct alignment scores.

The AT computing the last tile of Sb, i.e. Sb[nb − 1,mb − 1], stores an additional condition
variable. It can use this variable to notify the waiting thread of the alignment scheduler
that initialised and triggered the execution of the task graph. Once awakened, the thread
issues the postprocessing step of the alignment algorithm.

To facilitate this step, we implemented a thread-local alignment result buffer that is shared
among all threads of the alignment executor and the alignment scheduler. This result buffer
contains a slot for each thread of the alignment scheduler, and each slot has an array that
stores the intermediate results produced by each thread of the alignment executor while
executing an AT from that particular scheduling thread.

During the postprocessing, the managing thread can access all intermediate results to
generate the final result. This could be, for example, the optimal score tracked by each
individual thread of the alignment executor in the case of computing a local alignment, or
fragments of the trace matrix. Once the postprocessing is done, the final alignment result is
sent to the user.

Bulk execution

In order to fully utilise all available hardware resources of an SMP, we combined the task
graph execution approach with our vectorised inter-sequence execution pattern. When there
are enough ATs submitted to the concurrent queue of the alignment executor, we collect
not just one, but a bulk of ATs from the queue (e.g. Thread 3 in Fig. 3.15). Each thread in
the alignment executor tries to fetch l = w

p ATs in order to fully utilise an interleaved DP
matrix configured for (p,w)-vectors. If not enough ATs are available the executing thread
proceeds with just one AT using the respective scalar DP implementation. This allows us
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to fully utilise all lanes of the VPU registers, while also not stalling at the begin or the end
of an executed task graph where the number of concurrent tiles may be low.

3.5 Improving cache efficiency and instruction-level parallelism
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Figure 3.17: Striped execution of a DP matrix. Instead of computing a single cell per column, s
consecutive cells in the same row are computed one after another (dark arrow at row 5) before
going to the next row in the same stripe (big orange arrow). Here s is 4 and the third cell of the
fourth row of the first stripe is currently computed.

While profiling the alignment algorithms, we observed that updating the scores of the current
entry in the row buffer R took significantly more time compared to updating the scores
of the current entry in the column buffer C . Upon further investigation of the execution
profile, we found that these values are directly read from and written to the corresponding
memory address in R, resulting in additional overhead due to the latency of memory loads,
while the values of the C were cached.

3.5.1 Striped execution pattern

To mitigate this overhead, we implemented a striped iteration pattern over the DP matrix
by grouping columns of the DP matrix into consecutive, non-overlapping stripes of constant
width s ∈ N. Conceptually, a stripe represents a s+ 1×m + 1 submatrix of the original
DP matrix. With this revised execution pattern, we process one stripe at a time using a
row-major traversal within each stripe (see Fig. 3.17).

The main advantage of this revised execution pattern is that the loaded elements of the
query (i.e. y) sequence and the corresponding element of the row buffer R are cached for as
long as algorithm stays in the same row. Since s is a small constant number the accessed
entries of the column buffer C and the elements of the reference sequence (i.e. x) are cached
as well. For example, in Fig. 3.17, we divide the costs of loading y3 and R4 by four. After the
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initial values are loaded into the CPU registers, we cache all intermediate results between
the columns in temporary variables, which are likely to be stored in the first cache level,
thus benefiting from low latencies. Only after computing an entire stripe row, the final R
value is written back to the corresponding memory address.

3.5.2 Loop unrolling

To further improve the performance, we unrolled the loop to compute the row of a stripe
giving the compiler the opportunity to pack the instructions for computing multiple cells
more effectively (see Section 3.1.5). However, instead of hard-coding the loop unrolling
we used an automated approach by utilising fold expressions4 which is a C++17 language
feature.

Before computing a stripe we prefetch the corresponding elements of x and C into static
arrays (i.e. std::array) of size s. For each row j we cache the currently accessed values
yj−1 and Ri . Then we update the s cells of this row by letting the compiler unpack the
prefetched arrays. By unpacking the cached array elements and applying the function that
computes a single cell, the loop invariants for a single row in the stripe are eliminated.
Furthermore, the compiler could optimise the instructions collectively, resulting in improved
utilisation of instruction-level parallelism.

It is important to note that this striped execution pattern is independent of whether scalar
or interleaved scores are used, as well as the specific function employed to compute a single
cell. Consequently, we integrated this feature into the base implementation of the DP
matrix, recognising that the width of the stripe is typically smaller than the tile dimension
used in the saturated SIMD execution pattern.

3.6 Applications and evaluation

In this section, we will assess the effectiveness of our methodologies in enhancing the
performance of DP algorithms for specific alignment requests commonly encountered in
various bioinformatics applications. We will evaluate the following scenarios:

• The computation of millions of alignment instances using short homogeneous DNA
sequences (SoBA). This scenario is typical in read mapping applications that process
short-read sequencing data.

• The computation of thousands of sequence alignments using heterogeneous DNA
sequences with varying lengths, ranging from a few hundred bases to a few kilobases
(LoBA). This scenario arises when dealing with long-read sequencing data.

• The computation of single pairwise alignments for large-scale DNA sequences with
sizes in the megabase range (LoSA).

Additionally, we will compare the recent improvements we made to the vectorised inter-
sequence execution pattern with our previous implementation. Finally, we will discuss
the overall design of our implementation and provide insights into the new API in the
modernised version of the SeqAn software library.

4https://en.cppreference.com/w/cpp/language/fold; accessed 20.02.2023
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3.6.1 Test systems

HSW SKX ICX KNL

code name Haswell Skylake Icelake Knights Landing
model Intel® Xeon®

E5-2650 V3
Intel® Xeon® Gold

6148
Intel® Xeon®

Platinum 8358
Intel® XeonPhi™

7250
sockets 2 2 2 1
physical cores 20 (10 per socket) 40 (20 per socket) 64 (32 per socket) 68
logical cores 40 80 128 272
base frequency 2.3 GHz 2.4 GHz 2.6 GHz 1.4 GHz
SIMD ISA SSE4, AVX2 SSE4, AVX2,

AVX512F,
AVX512BW

SSE4, AVX2,
AVX512F,

AVX512BW,
AVX512VBMI

SSE41, SSE42,
AVX2, AVX512F

SIMD register 16 32 32 32

To evaluate the effectiveness of our generic accelerated alignment module, we conducted
tests on four different microprocessor architectures, referred to by their codenames: Haswell
(HSW), Skylake (SKX), Icelake (ICX), and Knights Landing (KNL). In the following
discussion, we will use the abbreviated notation for each test system.

The key attributes of these systems, relevant to our analysis, are summarised in Section 3.6.1.
The first three processors belong to Intel’s scalable Xeon® processor family. HSW supports
an SIMD ISA up to AVX2, with sixteen 256-bit registers per physical core. SKX supports
AVX512 ISA, and it provides the relevant AVX512BW instructions for one and two-byte
operand types. With ICX, the additional AVX512VBMI ISA, which includes vpermi2b
instructions for shuffling one-byte operand types from two 64-packed SIMD registers.

The last system we tested is the XeonPhi® coprocessor that can also operate as a normal
CPU hosting the operating system. This system first introduced AVX512 instructions,
but only supporting relevant instructions for 4 and 8-byte operand types. Although Intel
has discontinued the XeonPhi® processors, we included this system in our evaluation to
demonstrate scalability with many-core systems and to showcase the applicability of our
methods across different CPU architectures.

All systems were running a linux operating system. We used g++-10.3.0 to compile the
binaries for the evaluation. All benchmark applications were compiled in release mode with

-O3 -DNDEBUG. If possible we fixed all processors to their respective base frequency.

3.6.2 Evaluation of short bulk alignment requests

To evaluate the performance of our implementation given a SoBA request we simulated
Illumina single-end reads with a length of 150 bases using Mason in version 2.0.8 [Holtgrewe,
2010]. This test data set included altogether 12 497 500 alignment instances for which we
computed the optimal global (GLO), semi-global (SGL), overlap (OVL), and local (LOC)
alignment using the regular algorithm and the k-band version on HSW, SKX, and KNL.
We used unitary substitution costs with m= = 5 and m̸= = −4, and affine gap costs with
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SIMD-ISA (#lanes) seqan seqan + band parasail
GLO SGL LOC GLO SGL LOC GLO SGL LOC

HSW (20 threads)

SSE4 (8)
time [s] 5.90 5.90 7.38 1.39 1.36 1.47 8.93 8.45 8.34
GCUPS 48.28 48.27 38.60 23.13 23.54 21.76 31.91 33.71 34.17
speedup 1.51 1.43 1.13 6.44 6.20 5.66 1.00 1.00 1.00

AVX2 (16)
time [s] 2.80 2.76 3.48 0.85 0.85 0.91 9.40 8.87 8.12
GCUPS 101.90 103.08 81.86 37.85 37.81 35.32 30.33 32.11 35.11
speedup 3.19 3.06 2.40 10.54 9.96 9.18 0.95 0.95 1.03

SKX (40 threads)

SSE4 (8)
time [s] 2.68 2.68 3.26 0.62 0.61 0.74 3.88 3.66 4.11
GCUPS 106.27 106.26 87.43 51.33 52.54 43.27 73.40 77.86 69.41
speedup 3.31 3.34 2.66 14.22 14.65 11.67 2.17 2.16 1.99

AVX2 (16)
time [s] 1.35 1.35 1.55 0.40 0.43 0.42 4.00 3.88 3.96
GCUPS 211.32 211.47 183.76 79.46 74.57 76.34 71.21 73.43 71.68
speedup 6.59 6.64 5.58 22.02 20.80 20.60 2.10 2.17 2.14

AVX512 (32)
time [s] 0.68 0.68 0.80 0.24 0.25 0.26 N/A N/A N/A
GCUPS 420.41 420.42 354.44 135.53 128.07 125.13 N/A N/A N/A
speedup 13.11 13.20 10.77 37.55 35.72 33.76 N/A N/A N/A

KNL (68 threads)

SSE4 (4)
time [s] 10.81 10.81 14.96 1.64 1.64 2.09 11.67 11.64 12.19
GCUPS 26.36 26.36 19.05 19.52 19.55 15.33 24.41 24.48 23.38
speedup 0.82 0.83 0.58 5.41 5.45 4.14 0.77 0.77 0.71

AVX2 (8)
time [s] 4.11 4.11 6.35 0.93 0.97 1.07 13.53 13.75 15.39
GCUPS 69.33 69.35 44.84 34.48 32.91 29.96 21.06 20.73 18.51
speedup 2.16 2.18 1.36 9.55 9.18 8.08 0.66 0.65 0.56

AVX512 (16)
time [s] 2.35 2.34 2.53 0.75 0.77 0.84 N/A N/A N/A
GCUPS 121.45 121.73 112.55 42.98 41.58 38.04 N/A N/A N/A
speedup 3.79 3.82 3.42 11.91 11.60 10.26 N/A N/A N/A

Table 3.4: Performance comparison of computing 12 497 500 pairwise alignments on different proces-
sors (HSW, SKX, KNL) with different SIMD-ISAs (SS4, AVX2, AVX512), alignment problems
(glo: global; sgl: semi-global; loc: local), and DP implementations (seqan, seqan + band, parasail).
The alignment instances consisted of DNA sequences with a fixed size of 150 bases. We used
unitary substitution costs with m= = 5 and m̸= = −4, and affine gap costs with gext = −1 and
gopn = −10. For the k-banded execution we used a band of size k = 4. The numbers behind the
ISA architectures represent the number of utilised lanes.

74



3.6 Applications and evaluation

gext = −1 and gopn = −10 in all experiments. The band was configured with a band width
of 16 (i.e. k = 8) to represent an error rate of 5%.

If applicable, we compared our implementations with Parasail in version 2.0.2 which was the
most recent version available at the time of the evaluation. We tried all possible alternative
inter-sequence execution modes that Parasail offered and chose the one with the best results.
Note, that Parasail supports SIMD vectorisation only up to AVX2, such that there is no
data available for AVX512 and it also does not support vectorised banded alignments. We
also tried available applications based on Libssa and Opal, however, both tools only work
for protein sequences and only facilitate the data base search problem, such that we had to
exclude them from the benchmarks.

The primary results for this setting are presented in Table 3.4. On each system we used the
maximal number of physical cores. The first column represents the used SIMD ISA and
the number of utilised lanes per SIMD instruction. For these experiments, we used 16-bit
integers as the scalar score type. For each combination we list the execution time in seconds,
the Giga Cell Updates Per Second (GCUPS) which represents the number of DP matrix
entries updated per second, and the speedup factor that is based on the execution time of
Parasail using the SSE4/8 configuration for each executed alignment problem. Note the
execution times for computing the overlap alignment were in all experiments almost identical
to the ones of the semi-global alignment. Thus, we left out the results for this alignment
option to keep the table more readable. First, we compare our results with the Parasail
library, and afterwards evaluate the results with respect to the different architectures.

Intra- vs inter-sequence execution pattern

In general, our generalised inter-sequence execution pattern outperforms Parasail in all
but one case, which is the local alignment for SSE4 on the KNL (factor 0.58 vs. 0.71).
Furthermore, our scheme scales perfectly with larger register sizes, while Parasail seems
to be limited for this kind of data, since execution times only scale with the number of
threads but did not further decrease when increasing the data-parallelism with AVX2 ISA.
Note AVX512 is currently not supported by Parasail, so that we could not compare to it.
In contrast to this the results indicate that our method scales perfectly with more cores
and larger data-parallelism. Thus, we could double the peak performance by increasing the
data-parallelism with larger register sizes on all systems.

Banded and non-banded alignment

The banded alignment was the fastest in all experiments, which is expected due to the
strong reduction of the entire workload. This also means, that the total overhead induced
by the parallel execution (vectorisation and multi-threading) has more effects on the total
execution time such that we can observe lower speedup factors compared to the regular
computation. The fastest algorithm was the banded version of SeqAn using AVX512/32
on SKX finishing the computation in 0.24s (AVX2: 0.4s; SSE4: 0.61s). The timings for
the banded local alignment were similar: AVX512: 0.26s; AVX2: 0.42s; SSE4: 0.74s. The
banded version was roughly 3 times faster than the non-banded case for the global alignment
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(AVX512: 0.68s; AVX2: 1.35s; SSE4: 2.68s) as well as for the local alignment (AVX512:
0.80s; AVX2: 1.55s; SSE4: 3.26s). Compared to Parasail this is 5 to 17 times faster for
the global alignment (AVX2: 4.00s; SSE4: 3.88s) and the local alignment (AVX2: 3.96s;
SSE4: 4.11s). In total SeqAn achieves a peak performance of roughly 420 GCUPS, while
Parasails peak performance was 77.86 GCUPS. In other words, we can run about 50 million
alignments per second with the affine gap model on the respective SKX system.

Many-core architectures

The best performance on the KNL using AVX512 with 32 bit packed integers is slightly better
than the best performance measured on the HSW using AVX2 with 16 bit packed integers.
In both cases 16 alignments are computed in parallel in one vector. Moreover, both SSE4
and AVX2 do not perform well on the KNL. The AVX2 implementation is by a factor from
1.75 to 2.5 slower than the AVX512 implementation for the non-banded implementation,
although one would expect that they would roughly yield the same result. But since there
is no native support for 8 bit and 16 bit instructions on the KNL, these instructions might
be executed with much higher latency than natively supported instructions. Compared to
the SKX, the KNL is slower by a factor from 3 to 3.5. However, on SKX twice as many
alignments can be computed in the vector unit due to the AVX512BW ISA and the clock
rate is much higher.

3.6.3 Evaluation of long single alignment requests

In this section we evaluate the scalability of the dynamic task-graph implementation
for our multi-threaded intra-sequence parallelisation without vectorisation. We aligned
Enterobacteria phage SPC35 (Id: NC_015269.1; length: 118 351 bp) with Salmonella phage
Shivani (Id: NC_028754.1; length: 120098 bp) and Chlamydia trachomatis D/UW-3/CX
chromosome (Id: NC_000117.1; length: 1042519 bp) with Thermotoga maritima MSB8
chromosome (Id: NC_000853.1, length: 1 860 725 bp) on the KNL.

Multi-threading performance

The results for different thread counts are shown in Fig. 3.18. For these experiments we
iteratively increased the number of threads until all logical cores provided by the KNL
system were in use. The dashed blue line represents the optimal scaling curve based on the
sequential scalar execution of the alignment over the number of threads. The differently
coloured lines represent measurements with different partitioning levels.

For the smaller alignment the task-graph implementation scales perfectly until 16 threads,
independent for all DP matrix partitions (see Fig. 3.18a). After this, coarse-grained partitions
started to plateau, while the most fine-grained partition (blue line; tile size 500) scaled
nearly perfect until reaching the maximal number of available physical cores, i.e. 68. When
aligning longer sequences (see Fig. 3.18b), this effect gets mitigated and the multi-threaded
execution scales independent of the tile size. With longer sequences a larger tile size will
still produce enough work for the alignment executor, as there are enough tiles along the
minor diagonals to utilise all cores effectively. Using more than 68 threads, however, had a
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Figure 3.18: Evaluation of the scalability of the non-vectorised wavefront model with different
sequence lengths on the KNL. In a) is shown the results for the small sequences of ∼ 120 Kbp
length and in b) for the longer sequences larger than 1 Mbp.
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negative impact on the performance in both experiments. This can be explained by the
fact, that in this experimental setting the 68 physical cores were already fully utilised and
thus adding more threads yielded no effective increase of instruction-level parallelism. The
observed performance drop was stronger for the shorter sequences and for larger tile sizes,
indicating that not enough concurrency could be utilised in this setting.

Combining multi-threading with SIMD parallelisation

In the second experiment we aligned long genomic sequences using the local alignment
algorithm by combining the task-graph approach with our interleaved vectorisation approach.
The sequence data used for this experiment are the same as used by Liu et al. to evaluate
their SWAPHI aligner. The concrete sequences are described in Table 3.5.

ID Accession No. Length Genome Description

DS4.4M NC_000962.3 4 411 532 Mycobacterium tuberculosis H37Rv
DS4.6M NC_000913.3 4 641 652 Escherichia coli K12 MG1655
DS23M NT_033779.4 23 011 544 Drosophila melanogaster chr. 2L
DS33M BA_000046.3 32 799 110 Pan troglodytes DNA chr. 22
DS42M NC_019481.1 42 034 648 Ovis aries breed Texel chr. 24
DS50M NC_019478.1 50 073 674 Ovis aries breed Texel chr. 21

Table 3.5: Large-scale sequences of different sizes used to evaluate the vectorised task-graph alignment.

We computed the local alignments of the alignment instances DS4.4M and DS4.6M, DS23M
and DS33M, DS23M and DS42M, DS23M and DS50M, DS33M and DS42M, DS33M and
DS50M, and DS42M and DS50M. We conducted the experiments on SKX and KNL
using the maximum number of available physical cores for each system. We repeated the
experiments with different tile sizes. Moreover, for the experiments on SKX we used a
preliminary version of our saturated execution mode, were we used 16-bit integer operand
types to compute the relative scores of interleaved tiles and populating the obtained results
of the last row and column to the absolute scores before the tiles were submitted to the
queue again. Table 3.6 summarises the results for the tile sizes that achieved the best results
on the respective processor.

We can observe that for smaller sequences a smaller tile size yields better results. Although
D4.4M and D4.6M are over 4 Mbp long, in order to fully utilise the VPUs the number of
concurrently executable tiles must scale with the number of SIMD lanes which is 32 on the
SKX and 16 on the KNL. Thus, the tile size needed to be reduced in order to produce
enough work, so that all threads can execute bulks of submatrices using the interleaved
vectorisation. At the same time, setting the block size too small will increase the runtime
as the overhead for initialising the interleaved DP matrix, e.g., gathering the respective
buffer values from the selected tiles or transforming the sequences into vectors, becomes too
large in proportion to the execution time. On the SKX we observed a block size of 3000
to perform best for long sequences giving a peak performance of ∼ 258 GCUPS which is
1400 times faster than the sequential execution of the scalar algorithm. On the KNL the
peak performance if ∼ 80 GCUPs was obtained for tile sizes in the range from 1100 to 1900,
which improved the baseline execution time on the KNL by a factor of 2500.
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SKX (t = 40; AVX512/32) KNL (t = 68; AVX512/16)

time [s] GCUPS speedup time [s] GCUPS speedup

DS4.4M & DS4.6M 137.61 148.81 816.87 327.57 62.51 1952.91
DS23M & DS33M 3155.64 239.18 1312.96 9487.54 79.55 2485.27
DS23M & DS42M 3831.22 252.47 1385.95 12 009.70 80.54 2516.17
DS23M & DS50M 4601.75 250.40 1374.56 14 605.50 78.89 2464.66
DS33M & DS42M 5327.20 258.80 1420.70 17 477.40 78.88 2464.41
DS33M & DS50M 6384.45 257.25 1412.15 20 374.70 80.61 2518.25
DS42M & DS50M 8147.52 258.34 1418.16 26 426.00 79.65 2488.31

Table 3.6: Performance evaluation of the vectorised task-graph alignment for single large-scale
sequence alignments on SKX and KNL using sixteen 16-bit and 32-bit lanes respectively. The
shown speedup factor is based on the GCUPS interpolated for the scalar DP algorithm on the
respective platform.

3.6.4 Evaluation of long bulk alignment requests

In the this section we evaluate our generalisation to schedule multiple alignment instances
concurrently, using an experimental setting in which we align long-read sequences. We
used a simulated data set generated with PBSim version 1.0.3 [Ono et al., 2013]. The
configuration for which we obtained the data set is depicted in Table 3.7. The simulated
data contained 66 860 sequences with the smallest sequence having a length of 2341 bases
and the longest 52 668 bases and in average a length of 20 011 bases.

Parameter Value

reference GRCH38 chr10
mode CLR

qc model default
depth 10

length-mean 20000
length-sd 5000

length-min 100
length-max 60000

Table 3.7: Configuration of PBSim.

Figure 3.19 compares the experimental results running on HSW, SKX, and KNL. In general,
execution times on HSW are slightly slower than on SKX using the same ISA and the same
number of threads, which results from the slightly slower clock frequency. AVX512 greatly
improves the performance, albeit the scaling is with a factor 1.7 not as optimal as observed
in Table 3.4. Furthermore, the KNL despite, it’s many cores, can only slightly improve the
peak performance with respect to HSW. This is due to the fact, that we could only utilise
68 cores of the KNL effectively, while the clock frequency was only 1.4 GHz. Moreover,
on the KNL we could not benefit from computing the interleaved submatrices with 16-bit
operand types using 512-bit SIMD instructions.
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Figure 3.19: Performance and scalability comparison of aligning the PacBio-Sim data on HSW, SKX
and KNL.

The measured peak performance was 217 GCUPS on the SKX, 59 GCUPS on the KNL
and 53 on the HSW. This is in general lower than the peak performance measured for the
large-scale sequence alignments, which can be explained by the more homogenous data of
the long sequences. In this case most of the alignment tiles have the same length such that
additional bookkeeping for different lengths of the sequences in the vectorised kernel could
be omitted. The same observation can be made for the AVX512 results. Since twice as
many alignments can be computed in one vector the more likely it is that the tiles executed
simultaneously differ in their lengths resulting in an additional overhead for the bookkeeping.
Hence, the less heterogeneous the sequence lengths in the data sets are the more efficient is
the vectorisation.

We also compared our implementation against Parasail and the ksw2-test tool from the ksw2 -
library5, which is used in minimap2 [Li, 2018] for the alignment computation. Unfortunately,
the test tool is only single threaded, but we executed it on the HSW to compare it against
our parallelization strategy without multi-threading. In our benchmark ksw2 achieved 1.56
GCUPS while our method achieved 1.85 GCUPS using SSE4, respectively 2.83 GCUPS
using AVX2, to align the PacBio-Sim data set, which was 1.2 to 1.8 times faster than ksw2.
The results of comparing against Parasail are shown in Fig. 3.20

As can be seen in Fig. 3.20 our approach outperforms Parasail with all SIMD ISAs on the
SKX. Moreover, our generalised alignment scheduler scales very well with the number of
threads reaching a peak performance of 217 GCUPS on the SKX, which is 3 times faster
than the best result of Parasail (68 GCUPS). Using the same SIMD ISA SeqAn is roughly
twice as fast as Parasail.

5https://github.com/lh3/ksw2, accessed 21th March 2018
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Figure 3.20: Performance and scalability comparison between our method and Parasail when aligning
simulated PacBio data on SKX.

In addition, we used a real data set obtained from the the bam file hg002_gr37_chr22.bam
6 for the genome HG002 of the Ashkenazim trio [Zook et al., 2016]. In the benchmark we
realigned the PacBio reads with their corresponding reference region to simulate a typical
alignment step in a read mapping process. The real data set contained 277 598 sequences
with the smallest sequence having a length of 42 bases and the longest 61 989 bases and in
average a length of 8238 bases.

SKX (t = 40)
time GCUPS speedup

seqan SSE4/8 403.76 65.60 1.6
seqan AVX2/16 218.83 121.05 2.8
seqan AVX512/32 137.86 192.14 4.4
parasail SSE4/4 607.58 43.60 1.0
parasail AVX2/8 400.35 66.16 1.5
parasail sat 686.29 38.60 0.9

Table 3.8: Comparison of our generalised dynamic task-graph alignment with Parasail on SKX using
the PacBio-Real data set and 40 threads. The speedup factor is based on Parasails execution time
using SSE4 with 4 lanes.

Table 3.8 shows the peak performance for the alignment of the real PacBio data set on
the SKX. There are many more smaller sequences in the data set, such that the optimal
performance was reached with a smaller tile size. We measured the best performance using
a tile size of 1500 (192 GCUPS). The best performance of Parasail was obtained by using

6ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSina
i_NIST/MtSinai_blasr_bam_GRCh37/hg002_gr37_22.bam, accessed 14th November 2017
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3 Hardware-accelerated pairwise alignment

the scan algorithm with fixed 32-bit operand types using AVX2 (66 GCUPS). This is over
4 times slower than our approach using AVX512 with 32 lanes.

3.6.5 Evaluation of novel improvements

In this section, we present the preliminary results of our latest improvements in the vectorised
interleaved execution of bulk alignments. To evaluate these improvements, we updated our
benchmark suite to compare our previous implementation with the new one. All experiments
were conducted on the ICX processor, which supports the additional AVX512VBMI ISA
subset that we utilised to enhance the performance of alignments configured with a matrix
substitution cost function. It is important to note that for these experiments, CPU frequency
scaling could not be disabled due to limited access to the provided systems. Furthermore,
we focused only on single-thread performance to evaluate the changes made to the vectorised
execution.

In our evaluation, we used four test datasets: DS150, DS400_800, AS500, and ASUniProt.
DS150 and DS400_800 contain simulated DNA sequences. DS150 consists of 1000 alignment
instances with each sequence having a length of 150 bases, while in DS400_800, the lengths
are uniformly distributed between 400 and 800 bases. AS500 is a set of 1000 alignment
instances from simulated amino acid sequences, with a length of 500 residues. ASUniProt
contains the first 1000 sequences from the latest release of the UniProt database (UniProt,
2023).

For aligning the DNA sequences, we used the same unitary scoring scheme as described
in the previous experiments. For the amino acid sequences, we employed the Blosum62
substitution matrix with the same affine gap costs. For each dataset, we computed global and
local alignments using both fixed 32-bit and 16-bit score types. Additionally, if applicable,
we evaluated the new saturation mode (sat). Each experiment was repeated 10 times, and
the mean runtime of all runs was taken as the final result for computing the GCUPS (Giga
Cell Updates Per Second). Correspondingly, a higher value indicates better performance.

Unitary costs

Figure 3.21 depicts the GCUPS achieved in the computation of affine alignments with
unitary substitution costs. Analysing the two charts at the top, namely Fig. 3.21a and
Fig. 3.21b, we can observe that even in the optimal case where all sequences have the same
length and no additional masking for the regular ends of the individual DP matrices is
performed, our new implementation is 10 to 30% faster for SSE and AVX2 when using the
same score type.

These results can be mainly attributed to our low-level enhancements aimed at increasing
instruction-level parallelism and optimising cache locality. Notably, in the case of AVX512,
our new implementation outperforms the old one by a factor of 2 to 2.5. However, it is worth
mentioning that while our new implementation scales as expected, the old implementation
experiences a decline in performance. This drop seems to be related to the small dataset
used, which computes only 1000 AIs to execute the benchmarking suite in a reasonable
time. When we increase the dataset size to one million AIs, we could obtain comparable
results that align with our previous observations for SSE and AVX2. Nonetheless, these
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(b) Local alignment of DS150.
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(c) Global alignment of DS400_800.
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(d) Local alignment of DS400_800.

Figure 3.21: Performance comparison between old and new vectorisation when computing global
and local alignments with unitary substitution costs. The labels of the bars below the x-axis
reflect the used score type: 32 bit integer, 16 bit integer, and sat for 32 bit integer with our new
saturation mode.

findings indicate that our new implementation can handle smaller datasets more efficiently,
particularly as the width of the SIMD registers increases.

The saturation mode yielded the most significant improvement in performance. In the
case of global alignments, we achieved a peak performance of 24 GCUPS, while for local
alignments, the peak performance reached 17.4 GCUPS. Notably, the saturated AVX2
implementation even outperformed the 16-bit implementation using AVX512. It is worth
mentioning that the relative performance gain for local alignments was lower compared to
global alignments, which can be attributed to the higher complexity involved in switching
between local and global tiles in the implementation.

Moving on to the heterogeneous datasets (Fig. 3.21c and Fig. 3.21d), we observed a significant
improvement in performance due to our new strategy of computing interleaved collections of
heterogeneous sequences. As indicated by the bar charts, our new implementation improved
performance by 40% to over 100% for SSE and AVX2 compared to our previous version
that utilised additional mask vectors. Once again, the peak performance was achieved with
AVX512 using our novel saturation mode, resulting in an improvement from 9.3 GCUPS to 14
GCUPS for global alignments, and from 8.7 GCUPS to 10.2 GCUPS for local alignments.

Note there is no performance difference between AVX512-SKX and AVX512-ICX. That is,
because for the DNA sequences we did not need the extra AVX512VBMI SIMD ISA.
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(b) Local alignment of AS500.
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(c) Global alignment of ASUniProt.
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(d) Local alignment of ASUniProt.

Figure 3.22: Performance comparison between old and new vectorisation when computing global and
local alignments with matrix substitution costs. The labels of the bars below the x-axis reflect the
used score type: 32 bit integer, 16 bit integer, and sat for 32 bit integer with our new saturation
mode.

Our general solution using inter-sequence vectorisation performed exceptionally well for
alignments using unitary substitution costs. However, when matrix substitution costs were
used, severe performance issues arose due to the expensive gather instructions required
to load scores from the scalar substitution cost matrix in each cell. Consequently, our
solution was less efficient for computing alignments with amino acid sequences, for instance.
To address this, we implemented a new generalised approach that replaced the gather
instruction with more efficient permutation instructions.

In our current version, this mode is implemented for alignments that can be computed with
8-bit score types and is applicable only to our saturated execution mode. To fully utilise this
strategy, the AVX512VBMI instruction set (available on ICX) is required, as it provides the
necessary cross-lane permutation instructions for 1-byte operand types. If AVX512VBMI
is not available, but AVX512BW is (e.g. on SKX), we emulate the permutation using the
cross-lane permutation instructions for 2-byte operand types, requiring four calls of the
permutation operation instead of just two, along with additional packing and unpacking
instructions.

The effects of these changes can be observed in Fig. 3.22a and Fig. 3.22b. The peak
performance improved from 3.3 GCUPS (old 16-bit implementation using AVX2) to 9.8
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GCUPS for AVX512-SKX and 15.7 GCUPS for AVX512-ICX in the global alignment case.
Similar improvements were observed for local alignments, with a peak performance of 9
GCUPS for AVX512-SKX and 12.9 GCUPS for AVX512-ICX. The ASUniProt example also
showed a significant performance improvement compared to our previous implementations.

However, it is important to note that the ASUniProt dataset consists of highly heterogeneous
sequences, which limits the expected performance gains of the inter-sequence vectorisation
layout. Nevertheless, when considering the results obtained for homogeneous sequence
collections, it suggests that integrating our new SIMD implementation with the dynamic
alignment scheduler may further improve performance for this dataset. The alignment
scheduler would break down individual alignment instances into smaller tiles, allowing for
mitigating the effects of such highly heterogeneous sequence collections.

Matrix costs in profile mode
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(c) Global alignment of ASUniProt.
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(d) Local alignment of ASUniProt.

Figure 3.23: Performance comparison between old and new vectorisation when computing global
and local alignments with matrix substitution costs using the profile execution mode. The labels
of the bars below the x-axis reflect the used score type: 32 bit integer, 16 bit integer, and sat for
32 bit integer with our new saturation mode.

We have extended our vectorised DP implementation to include a dedicated search mode,
which is commonly used for aligning amino acid sequences. In this mode, we focus on
aligning a single query sequence against a database of sequences. This specialisation of the
alignment problem allows for efficient utilisation of precomputed score profiles, as described
by Rognes [2011], who implemented it for the SSE SIMD ISA.
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To analyse this profile execution mode, we selected the first sequence from the AS500 and
ASUniProt datasets and aligned it against all the remaining sequences in the respective
datasets. The results for computing global and local alignments are shown in Figure 3.23.

From the charts, it is evident that the performance improves significantly when using fixed
16-bit integers for the score type. However, with the saturation mode, the performance
increases dramatically, reaching a peak performance of 27 GCUPS for global alignment and
23.3 GCUPS for local alignment on the AS500 dataset. For the ASUniProt dataset, the
peak performance is 11.3 GCUPS (global, AVX512) and 9.7 GCUPS (local, AVX512).

It is worth noting that we can run the profile mode with only the AVX512BW SIMD ISA, so
we did not observe any difference between the ICX and SKX target configurations. However,
the improvement between AVX512 and AVX2 appears to be limited in the ASUniProt
experiment. Similar to our previous observations, this can be explained by the fact that the
likelihood of having larger differences in sequence sizes, collected into the same interleaved
DP matrix, increases as more sequences are added. Consequently, we expect that a tiled
execution using the task-graph implementation described earlier can mitigate this effect.

3.7 Universal algorithm design

In this thesis, we have implemented and combined several different approaches to optimise
the performance of DP algorithms used in a wide range of applications. Alongside these
achievements, a major concern of our work was to provide a unified implementation for the
various DP algorithms and optimisations that is intuitive to use for both library developers
and users while maintaining high functionality.

The importance of this can be illustrated by earlier versions of the SeqAn library. In these
versions, the same or very similar DP algorithms were implemented repeatedly in different
modules of the library. This led to implementations that were tightly coupled with the objects
and functions within the respective modules. For example, the global alignment using affine
gap costs was implemented in the align module, the graph module, the seeds module, as well
as in a coexisting seeds2 module and in the SplazerS application, with slight modifications
to the underlying DP algorithm. There were versions that only computed the score and
versions that additionally computed the alignment. Similar situations occurred with other
implementations, such as the global alignment with linear gaps, the local alignment, and
banded alignments, among others. In total, we found over 30 different implementations that
utilised more or less the same algorithm at their core.

Clearly, maintaining and modernising the DP algorithms for all these applications became
impossible in this state. It was challenging to provide coherent documentation and a
user-friendly API, which ultimately led to significant frustrations for both library developers
and users [Kahlert, 2015]. Achieving our goal of universally accelerating not just a single,
but the entire class of DP algorithms became infeasible given the added complexity of
providing correct and efficient implementations of the presented code-level optimisations.
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Algorithm decomposition

To refactor the implementations of the DP algorithms, we began by dismantling the different
DP implementations and identifying a list of recurring features present in the algorithms
implemented in SeqAn. These features were then organised into independent attributes
that could be combined to form a complete and functional DP algorithm. Furthermore, we
classified these attributes into three main categories, each affecting a different aspect of the
underlying DP algorithm’s implementation.

Alignment attributes Features controlling the type and appearance of
the computed alignment.

Matrix attributes Features controlling storage and layout of the
underlying DP matrix.

Execution attributes Features controlling the execution pattern of the
DP algorithm.

In Table 3.9, we provide a list of attributes that we identified in existing alignment algorithms
or implemented in this thesis within SeqAn. These attributes are grouped according to
their respective categories. It should be noted that this list may not be exhaustive, as we
solely analysed algorithms implemented in SeqAn and there may exist other features that
can be applied to our model.

Overall, we identified six attributes that influence the outcome of the alignment itself. The
first two attributes pertain to the scoring scheme, while the third and fourth attributes
specify the allowable start and end points of the final alignment. The report attribute
determines the desired content of the final outcome, and the objective attribute further
refines which alignments should be considered for the final solution.

Within the matrix category, we have identified four independent attributes. The memory
layout attribute determines how the cells of multiple DP matrices are arranged in memory.
The natural layout, known as consecutive, processes cells of each DP matrix sequentially,
whereas the interleaved memory layout considers cells from different DP matrices in an
interleaved fashion. We provided detailed information about this execution pattern in
Section 3.3.

The nesting attribute enables the use of a decomposition strategy for the DP matrix,
grouping a subset of cells into an additional layer that can be computed independently.
By default, we employ a planar nesting strategy where a single DP matrix encompasses
all cells. However, in this thesis, we extended this strategy with the tiling feature (see
Section 3.3.5).

The storage attribute determines whether the alignment uses linear or quadratic space,
while the perimeter attribute specifies whether all cells of the matrix should be computed
or only a subset defined by a k-band or a chain of seeds, around which a banded-chain
[Brudno et al., 2003a] is formed. Notably, many of these attributes are internally selected
based on the alignment and execution settings.
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Attributes Features

A
lig

nm
en

t substitution cost matrix, unitary, position specific
gap cost linear, affine, dynamic
begin position first row, first column, first row and column, first row or column, any
end Position last row, last column, last row and column, last row or column, any
report score, positions, transcript
objective best, cooptimal, k-best, x-drop

M
at

ri
x memory layout consecutive, interleaved

nesting planar, tiled
storage linear, quadratic
perimeter all, k-band, banded-chain

E
xe

c. recursion pattern column major, striped, saturated, task graph
execution sequential, parallel, vectorised
input single, bulk, search

Table 3.9: List of alignment algorithm attributes and their possible features identified in old versions
of SeqAn or implemented in this thesis (bold).

The execution of the DP matrix can be controlled using three attributes. The recursion
pattern determines the order in which cells in the DP matrix are computed. By default, a
column major order is used to traverse the cells. In this thesis, we extended the recursion
pattern to include a task graph recursion pattern (explained in detail in Section 3.4.2),
a striped recursion pattern (see Section 3.5), and a saturated execution pattern (see
Section 3.3.5).

The execution attribute specifies how the alignments are executed. This can be done
sequentially, as discussed earlier, or in parallel, vectorised, or vectorised using a
saturation mode.

Lastly, the expected input can be specified by computing a single alignment instance, a
bulk of independent alignment instances, or by requesting to search a single sequence in a
bulk of database sequences.

Composable algoroithm configuration

Notably, the attributes presented are independent of each other and can be combined. For
example, selecting a specific substitution cost model is unrelated to the start or end points
of an alignment or how the cells of the DP matrix are computed.

Based on this observation, we designed and implemented a unified DP algorithm abstraction
that incorporates the DP attributes through customisable policy classes. Each policy class
represents a specific attribute listed in Table 3.9. During a dedicated configuration phase at
compile time, the final executable DP algorithm is assembled by instantiating the unified
DP algorithm abstraction with the selected policies.
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This decentralised design choice offers several advantages over the previous purely functional-
oriented design. Firstly, it allows us to create a configuration system that hides the
combinatorial complexity of DP attributes, providing an intuitive and consistent public API.
This is demonstrated in the code snippet in Listing 1, which shows individual configuration
steps for requesting a global alignment using affine gap costs and unitary substitution costs
for DNA sequences. Users pass the configuration object along with the input sequences to
the central align_pairwise function. Internally, we map the selected user configurations
to the most efficient policy implementations available. For example, if users only request
the alignment score (as in the above example), we always choose an implementation that
consumes memory linear to the input sequences in each alignment instance.

Furthermore, runtime decisions can be used to switch between policy implementations
because the configured algorithm is type-erased. Instead of returning the DP algorithm
directly, we provide a lazy input range over the alignment results. This means that the next
result is computed only when the iterator is incremented within the loop.

Listing 3.7.1: API to configure and compute pairwise alignments

1 std::vector input{std::pair{"AGTGCTACG"_dna4, "ACGTGCGACTAG"_dna4},
2 std::pair{"AGTAGACTACG"_dna4, "ACGTACGACACG"_dna4},
3 std::pair{"AGTTACGAC"_dna4, "AGTAGCGATCG"_dna4}};
4
5 // Configure scoring scheme
6 auto scoring_cfg = scoring_scheme{nucleotide_scoring_scheme{match_score{5},
7 mismatch_score{-4}}} |
8 gap_cost_affine{open_score{-10}, extension_score{-1}};
9 // Configure method and output

10 auto method_cfg = method_global{} | output_score{};
11
12 // Execute lazily
13 for (auto const & res : align_pairwise(input, method_cfg | scoring_cfg))
14 debug_stream << "Alignment score: " << res.score() << "\n";

Listing 1: Example configuration and computation of a global alignment in SeqAn3. For brevity
reasons we omitted the namespaces of the SeqAn3 entities and includes.

Secondly, this design approach allows application developers to prototype, optimise, and
test new features in isolation before integrating them into the primary library or combining
them with existing features. This significantly reduces code bloat by avoiding unnecessary
code duplication and improves the time-to-release for new features. For example, we were
able to implement, test, and document the scoring scheme agnostic x-drop feature for the
protein aligner LAMBDA [Hauswedell et al., 2014], as well as an adaptation of the affine
gap cost function called dynamic gap costs [Urgese et al., 2014], in a matter of hours.

Lastly, this design choice makes it easier to maintain consistency, comprehensiveness,
and stability of the algorithms, particularly in our case where we incorporate different
acceleration strategies to leverage thread-level, data-level, and instruction-level parallelism
in a scalable manner. The importance of this work was also recognised by the reviewers of the
corresponding publication [Rahn et al., 2018], who noted that the described abstraction
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... represents an absolute tour de force of engineering, design, and conceptualiza-
tion ... A main strength of this work is that it brings together the state-of-the-art
advancements in pairwise sequence alignment with a sane (perhaps even elegant)
interface that provides the user access to the combinatorial array of different
alignment options ...
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The rapid advancements in genomic sequencing technology, as described in our introduction,
have enabled the generation of vast amounts of sequencing data within short time frames.
However, this presents new challenges for the analysis of such data, particularly in the
field of computational sequence analysis. To keep pace with the ever-growing volume of
sequencing data (compare with Fig. 1.1), it is crucial to modernise current algorithmic
strategies.

In this chapter, we shift our attention to algorithms and data structures for efficient
management of population-scale sequences. The chapter begins with a brief overview of the
background of the related subject, followed by a summary of the foundational work that
has been accomplished in this area.

Subsequent sections provide a detailed description of the approaches we have evaluated
in this work. First we will give a formal description of our compact data representation
based on referential sequence compression, along with related concepts and algorithmic
extensions. Following this, we will present a universal approach to extend any online
algorithms originally applied to single sequences to our data structure. By leveraging
the compressed representation of the sequence data, the execution of these algorithms is
significantly accelerated compared to processing sequences individually. Lastly, we provide
an experimental evaluation of our proposed data structure and algorithms in the context of
pattern matching.

4.1 Background

From a medical perspective, the precise identification of disease-causing abnormalities
through genome analysis is a critical aspect of diagnosing and treating rare or severe diseases
[Di Resta et al., 2018]. This process involves two key steps: genome inference and variant
analysis.

In the initial step, the DNA sequence of a patient is determined and aligned with a reference
sequence to identify variants present in the investigated genome. This step is commonly
referred to as the primary sequence analysis.

In the subsequent step, the detected variants are compared against databases containing
known genetic variations. This comparison aims at excluding irrelevant variations and
narrowing down the results to potentially harmful variants. This step is known as the
secondary sequence analysis.

The accuracy of the primary and secondary sequence analyses play a crucial role in suc-
cessfully identifying disease-causing aberrations and informing medical decisions for the
diagnosis and treatment of these patients.
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4.1.1 DNA sequencing

The standard approach for determining the genome of a sample is DNA sequencing. In
this process, the original DNA molecule extracted from the sample is fragmented into
smaller pieces. These fragments are often amplified and then subjected to a sequencing
reaction, where chemical, physical, or electrical signals are generated for each processed
nucleotide. Following the sequencing phase, the emitted signals are used to determine the
actual nucleotide bases of these fragments, called reads, which are then stored in a digital
file listing all sequenced reads [Lee et al., 2016; Metzker, 2010; Slatko et al., 2018]. However,
to obtain the complete genome sequence, the acquired reads need to be reassembled in a
process known as de novo assembly [Li et al., 2012b]. This assembly step is algorithmically
challenging due to various biological and technical factors.

One challenge arises from the presence of repetitive regions in eukaryotic sequences, which
can lead to difficulties in determining the correct order and arrangement of the reads during
assembly. Additionally, there may occur errors during the sequencing process, resulting in
inaccuracies contained in the read data. These factors contribute to the complexity and
time-consuming nature of the de novo assembly process [Holtgrewe, 2015; Pop and Salzberg,
2008; Wee et al., 2019].

4.1.2 Resequencing

As a result of significant advancements in sequencing technologies over the past 20 years, new
sequencing methods known as NGS have become widely adopted, along with accompanying
analytical methods [Bao et al., 2011]. NGS technologies offer the capability to perform a
vast number of sequencing reactions in parallel, increasing throughput and reducing the cost
per base sequenced. However, compared to Sanger sequencing, the reads obtained through
NGS are shorter and often have higher error rates, making them less suitable for de novo
assembly.

In light of these limitations, the concept of resequencing has emerged, where existing
reference genomes serve as templates for the assembly process. In the primary analysis step,
the short reads are aligned or mapped against a known reference genome. This process
is also known as read mapping. By repeatedly sequencing the same sample, the average
coverage of each sequence position can be increased to multiple reads. Variants in the
sample genome can then be identified by analysing the aligned reads. The identified variants
are subsequently classified and filtered during the secondary analysis.

With recent advancements in single-molecule sequencing, also known as long-read sequencing,
there is an expectation of a growing number of eukaryotic reference sequences in the future.
Long-read sequencing technologies can generate reads in the kilobase range, making them
well-suited for de novo assemblies. However, these technologies generally have higher error
rates and are more cost-intensive compared to NGS. Therefore, a common approach is to
combine long-read sequencing with short-read sequencing, leveraging the short reads to
correct potential errors in the long reads. This hybrid approach improves assembly quality
while keeping costs relatively low by requiring less overall coverage.
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4.1.3 Reference bias

Even in the ideal scenario where all errors resulting from technical or biological artifacts are
eliminated, the results of the primary analysis can still be influenced by the choice of the
reference sequence. This issue is not primarily related to the completeness of the reference
sequence itself. In the current version GRCh381, almost the entire sequence is known, with
only 875 remaining assembly gaps to fill and a total of 160 million unknown bases [Guo
et al., 2017; Marx, 2013; Schneider et al., 2017].

Instead, the issue can be attributed to a phenomenon known as reference bias, which refers
to the observation that the reference sequence fails to fully capture the allelic diversity
present in the entire population under consideration [Ballouz et al., 2019; Rosenfeld et al.,
2012]. As a result, reads from sample genomes that exhibit higher divergence from the
reference sequence may be misaligned or not aligned at all, particularly if they come from a
non-reference allele. In fact, there is a tendency for such reads to be more likely aligned
to the reference alleles. Subsequent variant calling approaches may struggle to correctly
identify rare variants or miss them altogether. This bias is then propagated to the secondary
analysis step, where the bias of the primary analysis can lead to a misinterpretation of the
data.

To evade or at least reduce the issue of reference bias, researchers are currently investigating
data structures and algorithms that enable the inclusion of the entire genetic diversity
present in the population during resequencing. The necessary genetic information can
be obtained from variation databases collected in various sequencing projects such as the
1KGP. Depending on the objectives, these databases encompass the genetic diversity of
several thousand genomes. Consequently, one of the primary challenges in designing suitable
data structures is to store the vast amounts of data in a compact form without sacrificing
the ability to analyse them efficiently. This has given rise to the research field known as
computational pangenomics.

4.1.4 Computational pangenomics

First studies focusing on microbial and bacterial genomes from larger cohorts summarised
the set of all known genes as the pangenome. In the original definition, the pangenome was
characterised by a pair consisting of a core genome and an alternate genome [Medini et al.,
2005; Rasko et al., 2008]. The core genome comprised genes shared among all strains of a
microbial or bacterial family, while the alternate genome contained genes present only in
a subset of these sequences. However, the authors of Marschall et al. [2018] used a much
broader definition and referred to the pangenome as ‘... any collection of genomic sequences
to be analysed jointly or to be used as a reference.’ In the following we may also refer to these
sequences as haplotypes to denote single chromosomal sequences of multiploid organisms.

Marschall et al. [2018] listed several core challenges for computational pangenomics, including
completeness, stability, comprehensibility, and efficiency of pangenomes. While all of these
challenges are important, completeness and stability are mainly influenced by external factors
such as the availability of sufficient financial and technical resources. Comprehensibility

1The most recent assembly version GRCh38.p13 is available from https://ftp.ncbi.nlm.nih.gov/genom
es/all/GCA/000/001/405/GCA_000001405.28_GRCh38.p13; accessed on May 25th, 2021
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Figure 4.1: Illustration of operations to be supported by a pan-genome data structure (image and
caption taken from Marschall et al. [2018]).

is a general biological problem based on the underlying complexity of the genomic traits
modelled by a pangenome and can vary across different applications. Efficiency, on the
other hand, primarily concerns the computational aspects of computational pangenomics.

In this thesis, we will specifically focus on the latter aspect. Our research is centred around
the design of a compact pangenome data representation that reduces the required memory
capacity for storing and loading pangenomes and can be used in standard bioinformatic
sequence analysis routines.

According to Marschall et al. [2018], such a data structure should be efficiently constructible
and dynamically updatable. Furthermore, it should provide a dedicated search interface,
such as using it as a reference for aligning reads in a resequencing project. This also requires
the support of a coordinate system that allows navigation within the pangenome structure
and the unambiguous representation of pangenomic positions, enabling the assignment and
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retrieval of auxiliary information to and from the pangenome, respectively. Supporting
these features is a major requirement for pangenome models to be considered as a universal
replacement for a single reference sequence in primary sequence analysis [Sherman and
Salzberg, 2020]. Figure 4.1 provides an overview of the various operations demanded by a
pangenome data structure.

4.2 Related work

In its simplest form, a pangenome can be represented as a set of linear sequences, as
illustrated in Fig. 4.2. However, this data model is not applicable to pangenomes involving
eukaryotic sequences due to their large genomic sizes. Instead, the common approach used
by most pangenome representations is to store the sequences in a compressed format based
on a differential encoding of the sequence variations present in the sequences. This method
is effective because we can assume that sequences coming from the same population are
quite similar to each other. In fact, analyses of short-read sequencing data suggest that the
entire human pangenome, containing all auxiliary genetic information, will be approximately
10% larger than the GRCh38 human reference assembly [Sherman et al., 2019].

Graphical pangenome structures are commonly used to represent pangenomes as they model
genomic variations within a given population through nodes in the graph and allow dynamic
updates of the graph structure by adding or removing nodes and edges. These graphs can be
augmented with additional support structures to establish a coordinate system or retrieve
additional information regarding the underlying haplotypes, such as the original haplotype
sequences. They can also be efficiently searched using an additional graph index structure
[Durbin, 2014; Hickey et al., 2020; Novak et al., 2017; Sirén et al., 2020] and several tools
have been developed to support sequence-to-graph alignment [Garrison et al., 2018; Jain
et al., 2019; Kim et al., 2019; Rakocevic et al., 2019; Rautiainen et al., 2019].

In contrast, reference-centric pangenomes store the sequences in the form of a central
reference sequence together with a set of alternate sequences encoding the genomic variations
present in the encoded haplotype sequences. The general advantage of this approach is that,
compared to graph-based pangenomes, most algorithms and applications working on linear
sequence representations can be naturally extended to these schemes.

In the following, we will provide a brief summary of state-of-the-art methods and data
structures, starting with the graphical pangenomes.
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Figure 4.2: Pangenome X = {X0,X1,X2,X3,X4} consisting of 5 distinct plain sequences (different
blue shades).
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4.2.1 Graph-based pangenome structures

Graphical pangenomes are naturally well suited to model the biological complexity and
diversity underlying the pangenomes due to their dynamic design and the availability of
efficient graph algorithms. Typically, these models are based on node- or edge-labelled
sequence graphs, where each label represents an alternate sequence present in one of the
haplotypes of the modelled pangenome.

Alignment graph

The alignment graph constitutes one of the earliest sequence graph designs and was used
to represent multiple sequence alignments, as shown in Fig. 4.3 [Hein, 1989; Lee et al.,
2002; Rausch et al., 2008]. On a genome level, these graphs allow for the more efficient
representation of complex genomic features, such as structural variations like insertions or
rearrangements, by partitioning the sequences into segments.

An alignment graph was implemented and used as part of the segment-based MSA aligner
within SeqAn [Rausch et al., 2008]. In this alignment graph, each haplotype itself is
represented as a path of nodes, which are connected with directed edges and labelled
with the corresponding segment of the original sequence. The path label, which is the
concatenation of all node labels along the path, represents the original haplotype sequence.
Furthermore, nodes from different haplotypes are connected via undirected edges if their
segments are part of a collinear segment match.

There are other representations such as A-Bruijn graphs [Pevzner et al., 2004], Enredo
graphs [Paten et al., 2008], or Cactus graphs [Paten et al., 2011] that can also be used to
model multiple sequence alignments. However, these representations can be converted into
each other, so we will not provide a detailed explanation here. Instead, we refer interested
readers to the comprehensive review by Kehr et al. [2014], who described the operations for
converting between different graph representations. These graph structures can be used in
general to describe a pangenome as well. Herbig et al. [2012] showed that it is also possible
to establish a global coordinate system based on the numbering of segments and an indexing
of columns inside collinear aligned segments for multiple sequence alignments.

A C C T T G G G T T G A C C C A T A A A C T – – T G A C

A C C T T – – – T T G A C C – A T A A A C T G G T G G C

A C C T T – – – T T G A C C C A T T T A C T – – T G A C

A C C T T – – – T T G A C C G A T T T A C T – – T G G C
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Figure 4.3: Multiple sequence alignment of sequences from Fig. 4.2
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Genome graphs

A general extension of segment-based alignment graphs is the genome graph, which provides
a space-efficient representation. In its basic form, a genome graph is an acyclic graph
that condenses collinearly aligned segments into single nodes [Paten et al., 2017]. The
space requirements for genome graphs can be further reduced by allowing cycles, which
describe repetitive regions present in the sequences. Polymorphic sites in the pangenome
are represented by multiple paths through the genome graph that begin and end in a shared
head and tail node. These structures are also called bubbles [Paten et al., 2018].

To recover a particular sequence from a genome graph, it can be augmented with dedicated
haplotype paths, as shown in Fig. 4.4. These paths describe the sequence of nodes in the
genome graph, and the concatenation of their path labels represents the respective haplotype.
In this case, a genome graph is also called a variation graph [Garrison et al., 2018], which
is the central data structure around which the VG-library is built. The library comprises
various tools to construct, serialise, index, search, or manipulate variation graphs. In order
to impose some sort of coordinate system, Garrison et al. [2018] proposed augmenting nodes
of the variation graph with relative sequence positions of the corresponding haplotypes
covering a particular node. Another approach, proposed by Paten et al. [2018], included
mapping a node to a reference position based on the topological order of the graph.
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C

A T
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A C T T G

A
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G G G G

G GG
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X0
X1

X2
X3

X4

Figure 4.4: Variation graph with haplotype paths (edges with different blue shades) of the sequences
from Fig. 4.2.

De Bruijn graphs

Another compact graphical representation of a pangenome can be derived from coloured de
Bruijn graphs [Bolger et al., 2017; Holley and Melsted, 2020; Muggli et al., 2017; Turner
et al., 2018]. Unlike segment-based alignment graphs and genome graphs, each node in a
de Bruijn graph is labelled with a fixed-size sequence of length k, known as k-mers. To
construct this graph, haplotypes are divided into consecutive overlapping k-mers, and nodes
are connected with edges based on matching label prefixes and suffixes. By incorporating
color information, the original haplotype information can be extracted from the graph as
well.

4.2.2 Reference-centric pangenome models

In contrast to graphical pangenome representations where sequences are stored in no
particular order, reference-centric pangenome models use a single reference sequence as a
guide to encode the remaining haplotypes of the pangenome as sequence variants. This
design allows reference-centric pangenomes to inherently support coordinate systems based
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on the positions of the linear representation of the reference sequence. As a result, these
models fit well into current sequence analysis pipelines that are built on the assumption of
processing data with respect to a linear reference sequence.

VCF files

A classical example of this model is the variant calling format (VCF)2, which is the standard
file format for storing population-wide sequence variations. It stores in a tabular layout a
list of all variants for a given set of samples, ordered by their genomic loci in the reference
sequence. Each row describes the alternative sequence at a specific site and indicates which
haplotype contains that particular alternative. If available, additional annotation data
necessary to interpret the significance of variants in the clinical context may also be stored in
each row. However, the primary focus of VCF and similar formats is on storing variant data,
and other models are required to transform this data into efficient search data structures.

Context-aware alternate sequences

Alternatively, the pangenome can be stored as an extended list of plain sequences, where
the first sequence is the reference sequence followed by alternate sequences along with their
mappings to the reference [Church et al., 2011, 2015]. However, alignment programs are not
specifically designed to handle variant data in this format. Typically, they treat alternate
sequences as individual sequences and consider variants as repeats. This limitation has been
addressed by existing aligners like BWA, which introduced a dedicated alt-aware mode to
handle such cases [Li and Durbin, 2009]. However, as the size of the model increases, including
the number of haplotypes and variants, this method becomes increasingly unsustainable.

Huang et al. [2013] demonstrated that classical read mapper, in this specific case BWA [Li
and Durbin, 2009], could be extended to deal with population data. To achieve this, they
padded alternate sequences with their local sequence context left and right of their genomic
position inside of the reference sequence, and treated them as individual haplotypes. In
addition, they used IUPAC characters to represent sites with single nucleotide polymorphisms
as a single symbol inside the reference sequence. This way, they could use the same indexing
strategy as the original mapper. However, the size of the context is application specific
and depends on the length of the searched patterns. Thus, the index must be rebuild if the
length of the reads changes due to a new sequencing protocol. On the other hand choosing
the context too large would incur additional costs, as the same read will be mapped to
multiple haplotypes although they represent the same location inside the pangenome.

Elastic-degenerate sequence

An adaption of the context-aware list model is the elastic-degenerate sequence model
[Iliopoulos et al., 2016]. This model represents the pangenome as a sequence interleaved
with arrays of alternative sequences, referred to as elastic-degenerate symbols. Each elastic-
degenerate symbol represents the variations present at a specific location in the reference

2https://github.com/samtools/hts-specs/blob/master/VCFv4.4.pdf
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Figure 4.5: Pangenome represented as an elastic-degenerate sequence. Each elastic-degenerate
symbol (braces) represents the alternative sequences present in the modelled pangenome ordered
by their position with respect to a common reference sequence. Haplotype information are not
captured in this model.

sequence. In the case that a segment of the reference sequence is shared by all haplotypes in
the pangenome the corresponding sequence is represented as a plain sequence (see Fig. 4.5).
Several pattern matching algorithms have been applied to this model to address the problem
of finding exact and approximate occurrences [Bernardini et al., 2017, 2020; Cisłak et al.,
2018; Grossi et al., 2017; Iliopoulos et al., 2016; Pissis and Retha, 2018].

Our contribution

In this thesis, we have developed and implemented a dynamic and scalable data structure for
managing a large panel of similar sequences. We refer to this data structure as referentially
compressed multisequence (RCMS). The core design of the RCMS is based on a reference-
centric approach, which allows for a compact representation of the alternate sequences
present in the underlying haplotypes. Additionally, we have adapted our structure to include
a customisable graph-related search interface, yielding a hybrid design that combines the
advantages of both pangenome representations.

In addition to space efficiency and support for dynamic updates, a major focus of our
work was the design of a customisable and highly integrable API to support the relevant
pangenomic operations summarised in Fig. 4.1. This enables easy integration of third-party
search algorithms, provided they can be invoked through a standardised interface that is
natural for online algorithms.

Furthermore, we have developed a set of small utility tools for creating, manipulating,
viewing, and searching a RCMS. This allows developers and experimentalists to seamlessly
upgrade their existing bioinformatic analysis routines by incorporating our RCMS in a
straightforward manner. The initial version of this work was published in Rahn et al. [2014]
in the Journal of Computational Bioinformatics. In this thesis we will also explore various
extensions that we implemented since then.

First, we will provide a formal description of the core data structures involved in the design
of the RCMS and review important aspects of its implementation. We will also explain
how to create an RCMS from a sequence variant database, how to update an existing
RCMS by adding or removing entire sequences or by updating existing sequences, how
to retrieve haplotype-specific information from the RCMS, and how to perform generic
searches in the RCMS using a graph-based traversal. Finally, we will demonstrate the
interoperability, usability, and efficiency of our structure and algorithms by evaluating
various pattern matching use cases and implementing a prototypic read mapper.
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4.3 Referentially compressed multisequence

In the following description of the methodologies, we assume that we are given a finite,
non-empty set X = {X0,X1, · · · ,XN−1}, where Xh ∈ Σ∗, consisting of N sequences. We
can make the assumption that the sequences in X are highly similar to each other, based
on the targeted usage scenario. For instance, in the case of human genomes, it is known
that two sequences share more than 99% of their bases [Auton et al., 2015]. As a result, we
can significantly reduce the memory required to store the entire input data by applying a
referential sequence compression scheme that eliminates redundant sequence information.

4.3.1 Data representation

As reference sequence, we select arbitrarily any sequence from the initial set X and store it
entirely in the RCMS. Let r ∈ X denote this reference sequence. We then encode each of
the remaining sequences, referred to as the target sequences, as a set of sequence differences
to r , storing only these differences in the RCMS. Essentially, a sequence difference describes
how a segment of the reference sequence is modified by a corresponding segment of the
target sequence. As the reference sequence is already stored in the RCMS, we can represent
the source segment using an ordered pair of its starting and ending positions within it. We
refer to this pair as the breakpoint of the sequence difference.

Definition 4.3.1 (Breakpoint). We represent a breakpoint b in r as an ordered pair
(i, j) ∈ N0 × N0, where 0 ≤ i ≤ j ≤ |r |, and define the special fields low(b) = i and
high(b) = j to represent the low and high end position of b. We further use the term
breakends to refer to these end positions.

Definition 4.3.2 (Breakpoint span). Given a breakpoint b, we define the breakpoint span,
denoted by span, as the distance between the high breakend and the low breakend of b, i.e.
span(b) = high(b)− low(b).

Definition 4.3.3 (Sequence difference). Let b be a breakpoint in r and a ∈ Σ∗ be some
sequence. We model a sequence difference as an ordered pair d = (b, a), with fields bpt(d) = b
and alt(d) = a. We call the latter field the alternate sequence of d.

For conciseness reasons, we also write in the following low(d) = low(bpt(d)) to access the low
breakend, high(d) = high(bpt(d)) to access the high breakend, and span(d) = span(bpt(d))
to get the breakpoint span of the breakpoint associated with a sequence difference d.

The proposed encoding suffices to handle all three fundamental variant types occurring in
genomic comparisons, i.e. insertion, deletion, and replacement. That is, given a sequence
difference d, we classify d as

• an insertion, if and only if span(d) = 0 and alt(d) ̸= ϵ;

• a deletion, if and only if span(d) > 0 and alt(d) = ϵ; and

• a replacement, if and only if span(d) > 0 and alt(d) ̸= ϵ.
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In the case of an insertion, we observe that no symbol is removed from the reference sequence,
which is reflected by setting both breakends of the breakpoint to the same reference position.
However, the alternate sequence must contain at least one symbol. Conversely, in the case
of a deletion, the high breakend of the breakpoint must be strictly greater than the low
breakend, while the alternate sequence should be empty. Finally, a sequence difference
represents a replacement if the high breakend is strictly greater than the low breakend, and
the alternate sequence is not empty.

Encoding a single target sequence

As mentioned previously, the primary objective of the RCMS is to achieve a space-efficient
representation of the input sequences in X using referential compression, while also enabling
efficient access to the encoded sequences. In this section, we introduce the fundamental
concepts of encoding an entire target sequence through a set of sequence differences. The
following section will elaborate on the extension of this approach to encode multiple
sequences.

Let r ∈ X be the reference sequence, we define

Br = {b ∈ N0 × N0 | 0 ≤ low(b) ≤ high(b) ≤ |r |}, (4.1)

to denote the set containing all possible breakpoints that can exist for r . Furthermore, we
define ∆r as the set encompassing all possible sequence differences applicable to r as:

∆r = {(b, a) ∈ Br × Σ∗ | a ̸= r [low(b)..high(b)) if and only if low(b) < high(b)}. (4.2)

Following this definition, we enforce that every element d ∈ ∆r replaces any subrange of r
with an alternate sequence a that deviates in at least one position from the corresponding
non-empty reference infix represented by the associated breakpoint b. Note that if the
associated breakpoint span is 0, a can be chosen arbitrarily.

Moreover, we define a strict total order on the elements of ∆r . We say that di < dj , where
di, dj ∈ ∆r , if and only if at least one of the following three expressions is true:

low(di) < low(dj) (4.3)
low(di) = low(dj) ∧ high(di) < high(dj) (4.4)
low(di) = low(dj) ∧ high(di) = high(dj) ∧ alt(di)<lex alt(dj) (4.5)

To put it differently, we sort the sequence differences based on their low breakends. In cases
where two sequence differences have the same low breakend, we additionally sort them based
on their high breakends. Finally, if two sequence differences share the same breakpoint, we
sort them lexicographically (see Definition 2.2.4) based on their alternate sequences.

Now, let Dh ⊂ ∆r denote some subset of ∆r . More specifically, we say that Dh represents a
proper differential encoding of the target sequence Xh based on the reference sequence r if
and only if all sequence differences listed in Dh are collinear , and if the original sequence
can be decoded without losing any information.

First, we consider the property of collinearity. Given two sequence differences di ∈ ∆r and
dj ∈ ∆r , where without loss of generality, we assume that di < dj , we call these two variants
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collinear if and only if high(di) ≤ low(dj). In other words, if two sequence differences are
not collinear, their breakpoints must overlap in at least one position, which would introduce
ambiguities in the representation of the encoded sequence.

The second property ensures that each sequence difference is a proper difference, meaning
that if we replace the reference segments indicated by the listed breakpoints in Dh with their
associated alternate sequences, we will retrieve the original target sequence Xh. To achieve
this, we use a linear decoding algorithm decode, as listed in Algorithm 4.1, which can
recover the original sequence by taking the reference sequence r and the related differential
encoding Dh as input. Therefore, we have Xh = decode(r , Dh).

Algorithm 4.1: decode
Input: r , D

1 x ← ϵ
2 k ← 0
3 foreach d ∈ D do
4 x ← x + r [k..low(d)) + alt(d)
5 k ← high(d)
6 x ← x + r [k..|r |)
7 return x

The decode algorithm, shown in Algorithm 4.1, begins by initialising an empty sequence
x and setting the initial reference position k to 0. It then iterates over the ordered set
of collinear sequence differences. In each iteration (Lines 3 to 5), the algorithm retrieves
the low breakend of the current sequence difference d. This low breakend represents the
end position of the adjacent shared reference segment immediately preceding the alternate
sequence in the encoded target sequence. The algorithm appends this segment, followed
by the alternate sequence, to the end of the current sequence x. It then sets the start
position of the next reference infix to the high breakend of that sequence difference. After
processing all sequence differences in order, the algorithm appends the remaining suffix of r
to x. Finally, the fully decoded sequence x is returned.

In Section 4.3.4, we will introduce a data structure built on this idea that provides a regular
sequence interface for a referentially compressed sequence, enabling fast random access to
its elements.

Encoding mulitple target sequences

Given the high similarity between the sequences in the original pangenome and the frequent
occurrence of shared variants among the population, it is reasonable to assume that many
of the encoded sequence variants in the compact pangenome are shared across individual
sequences. Therefore, it is desirable to store identical sequence variants only once and use an
auxiliary structure to indicate the membership of a specific encoded variant in a particular
accessory sequence. To capture this concept, we introduce the notion of covered sequence
differences.
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Definition 4.3.4 (Covered sequence difference). Let HX = [0..|X |) denote the index set for
the haplotypes in X , such that there exists an enumeration f : HX → X , where f(h) = Xh.
We obtain a covered sequence difference by augmenting a sequence difference object d with
the field cov(d) ⊂ HX and call this field the haplotype coverage of d. We further use the
term l-covered sequence difference to denote a sequence difference d, whose coverage cov(d)
has a cardinality of l, i.e. l = |cov(d)|.

Assuming that we are given a proper encoding Dh for a particular sequence Xh ∈ X , then
by Definition 4.3.4 each sequence difference is implicitly 1-covered, such that for all d ∈ Dh

there exists a singleton coverage with cov(d) = {h}.

With this in mind, we can construct a generalised encoding subsuming all individual proper
encodings of the given input sequences, where identical sequence differences present in two
or more encoded sequences are merged into a covered sequence difference. Let D denote
such a generalised encoding over the individual encodings Dh for all sequences Xh ∈ X , we
formally define this set as:

D = {(d, H) ∈ ∆r ×HX | h ∈ H if and only if d ∈ Dh}, (4.6)

where HX = P(HX ) denotes the power set over HX and H represents the merged haplotype
coverages for a sequence difference d present in multiple encodings.

In contrast to the proper encoding of a single sequence, the generalised set of sequence
differences allows two or more sequence differences to have overlapping breakpoints. Never-
theless, the set is still well defined as we can assure through the associated coverages that
sequence differences with overlapping breakpoints are covered by distinct sequences.

Theorem 4.3.1. Given two sequence differences di, dj ∈ D, where without loss of gener-
alisation low(di) ≤ high(dj) ≤ high(di), then the intersection of their associated coverages
must be the empty set, i.e. cov(di) ∩ cov(dj) = ∅.

Proof. If we assume that for these two sequence differences with overlapping breakpoints
the intersection of their coverages yields a non-empty set, then by Eq. (4.6) there must
exist a sequence Xh ∈ X , whose proper differential encoding Dh contains both sequence
differences, i.e. di, dj ∈ Dh. However, this would also mean that di and dj in Dh are not
collinear which contradicts our definition of a proper differential encoding.

As a consequence of this, and because there cannot exist two distinct elements, whose
breakpoints and alternate sequences are identical but have different coverages, we can
impose a total ordering on the elements of D. This also allows us to retrieve each of the
original sequences by an adapted version of the decode algorithm shown in Algorithm 4.1.
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Algorithm 4.2: decode from multiencoding
Input: r , D, h

1 x ← ϵ
2 k ← 0
3 foreach d ∈ D do
4 if h ∈ cov(d) then
5 x ← x + r [k..low(d)) + alt(d)
6 k ← high(d)

7 x ← x + r [k..|r |)
8 return x

4.3.2 Implementation details

There are two general design goals that we considered for the implementation of the RCMS.
On the one hand, the data structure should store the sequence differences as compact as
possible, while on the other hand, it should provide fast access to the sequences in order to
apply various operations as shown in Fig. 4.1 on them. Thus, we aimed for a solution that
provides not only a compact but also an operational in-memory data representation without
the need to decompress the data before using it. Looking at the results of various population
studies, it becomes apparent that the majority of variants present in the underlying genomic
datasets consist of single nucleotide variants (SNVs) (e.g. approximately 94% in the 1KGP
as shown in Table 4.3). Correspondingly, we optimised the design of the main class so
that it efficiently stores and accesses these overrepresented variants. In the following, we
first present the abstract idea of our design to represent the generalised encoding in a
space-efficient form and subsequently discuss different realisations of the data representation
that provide different benefits depending on the actual use case.

The central RCMS, denoted by R, consists of three fields, namely the selected reference
sequence r , a primary breakend dictionary, denoted by BRK , and a secondary InDel
dictionary, denoted by IND. In general, the breakend dictionary uses as key the breakends
of all breakpoints of the sequence differences present in the generalised encoding of a given
pangenome and each key, i.e. breakend, is associated with the haplotype coverage. This
representation alone, however, is not sufficient to fully encode a sequence difference because
it misses the alternate sequence information. To handle this, we use two different strategies
to encode SNVs and InDels in R.

SNV encoding

Overall, our target applications are based on DNA sequences, and thus we know that the
alternate sequence of each of these sequence differences consists of one of the four symbols
in ΣDNA = {A, C, G, T}, with their ranks given as A : 0, C : 1, G : 2, T : 3. Following this, we
encode the alternate symbol of a particular SNV within the key of the breakend dictionary
itself.

In this scheme, we split the key into two parts: a code and a position. Let R = (r ,BRK , IND)
be an RCMS, and let δ ∈ R be an element representing an encoded sequence difference in R.
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We use code(δ) to access the code and pos(δ) to refer to the corresponding breakend position.
Correspondingly, we define the key as key(δ) = (code(δ)≪ 29) |(pos(δ) & 1≪ 29− 1).

The code is represented by the three most significant bits (i.e. bits 29, 30, and 31) of the
key, which itself is represented by a 32-bit unsigned integer type. We use the two lower code
bits (i.e. bits 29 and 30) to store the rank of the alternate symbol of a SNV. The most
significant bit (MSB) is reserved as a marker to indicate whether the respective breakend
belongs to an SNV (in that case, the MSB is 0) or an InDel (in that case, the MSB is 1).

The position of the key, i.e. the low or high breakend of a breakpoint, is represented by the
lower 29 bits (i.e. bits 0 to 28). For most genomic applications, this is sufficient since a
whole genome is typically stored as a set of chromosomes or contigs, from which the largest
one is typically smaller than the largest representable integer value with 29 bits (e.g. the
human chromosome 1 has roughly 247 Mbp). We further reduced the memory consumption
by storing only the low breakends of all SNVs and insertion variants since we can infer their
high breakends solely from their types. For a deletion, however, we also add a key-value
pair to the breakend dictionary corresponding to the high breakend mate.

InDel encoding

Now, we consider the representation of a sequence difference representing an InDel variant.
Conveniently, we can reuse the two lower bits of the code to discriminate between the three
types of breakends. We define an InDel code alphabet Σcode = {100, 101, 110}, where 100
represents the low breakend of a deletion, 101 an insertion breakend, and 110 the high
breakend of a deletion. Furthermore, we can interpret these codes as numbers, i.e. 100 = 4,
101 = 5, and 110 = 6.

This numbering scheme provides us with the desired ordering of the breakends inside R.

Definition 4.3.5. Given two elements δi, δj ∈ R, we say δi < δj if and only if

pos(δi) < pos(δj) ∨ pos(δi) = pos(δj) ∧ code(δi) > code(δj).

Following this, the elements are naturally sorted by their breakends in ascending order and
if two or more elements have the same position, they are ordered as follows: first, high
breakends of deletions ending in this position (note that the high breakend points to one
position behind the end); second, breakends of insertions; third, low breakends of deletions
beginning at this position; and lastly SNVs.

To store the relevant information of insertion and deletion variants, we introduced the
secondary InDel dictionary IND. Conceptually, the elements of this structure are linked by
the elements of the breakend dictionary BRK , whose code value is greater than or equal to
4, i.e. code(δ) ≥ 4. Correspondingly, the size of IND corresponds one-to-one to the number
of insertions plus two times the number of deletions present in the generalised encoding.
Each element in IND is itself implemented as a union type. This union type represents
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IND

BRK
001..11 100..12 010..23100..21110..19011..15011..14101..5 110..11

100..12 100..21100..19101..5 110..11

GGG δ3 δ1 δ7 δ6

2 3 876540 1

2 3 40 1

Figure 4.6: Conceptual representation of the sequences in Fig. 4.2 in form of a RCMS structure.
The keys in BRK and IND are shown above the dashed lines in the grey boxes and the values
below. The type of the variant is encoded in the first three bits of each key. The position in r
is represented by the integer after ’..’. Elements at index 2, 4, 5, and 8 in BRK store the SNVs,
whose key codes encode the symbols C (001), T (011), T (011), and G (010) respectively. The
coverages are represented in form of small squares. The colours match the sequences in Fig. 4.2.
A filled square indicates that this sequence covers the linked sequence difference. The value of the
insertion (index 0 in BRK ) is stored in the first entry of IND (green arrow). The low breakends
of the deletions (index 1 and 6 in BRK ) map to index 1 and 3 (light red arrows) in IND, whose
values store a pointer to their high breakend mate in BRK (index 3 and 7) and vice versa. Keys
in IND store in addition one element from the haplotype coverage.

either the alternate sequence of an insertion or a handle to the deletion breakend mate (the
other end of the associated breakpoint) in the breakend dictionary.

To identify the correct elements in IND, we augment the original key key(δ) with the
haplotype coverage associated with the breakend. This guarantees that there can not be
two identical insertions or deletions with the same breakpoint and overlapping coverage,
according to the invariants of a generalised pangenome encoding. In practice, we only choose
a representative coverage value to obtain a unique key, e.g. by choosing the first index from
the respective haplotype coverage object. This is sufficient, because by definition we know
that no two overlapping variants can be shared by the same encoded haplotype. Figure 4.6
illustrates the layout of an RCMS encoding the toy pangenome shown in Fig. 4.2.

Accessor fields

For convenience, we define the following accessor fields to recover the information of a
sequence difference encoded as δ ∈ R. To access the coverage, we use cov(δ) = val(BRK [δ]),
where BRK [δ] refers to the key-value pair of the breakend dictionary corresponding to δ and
val accesses the mapped value. The alternate sequence can be retrieved using the following
function:

alt(δ) =





ΣDNA[code(δ)] if and only if code(δ) < 4,
val(IND[δ]) if and only if code(δ) = 101,

ϵ otherwise.
(4.7)

Again, IND[δ] refers to the key-value pair of the InDel dictionary corresponding to δ. In
the case where δ represents a SNV, we convert the code, which is equal to the rank of the
stored SNV value, from the key of the associated breakend dictionary entry BRK [δ] to
the corresponding symbol. If δ is an insertion, we retrieve the value of the entry in the
secondary InDel dictionary IND that corresponds to δ. In all other cases, the breakend
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represented by δ must belong to a deletion, and therefore, the alternate sequence is the
empty sequence ϵ.

Next, we define the functions to access the associated low and high breakend values. For
this we use a helper function, denoted by mate, which we define as:

mate(δ) =
{

val(IND[δ]) if and only if code(δ) = 100 or code(δ) = 110,

δ otherwise.
(4.8)

That is, mate returns the element in R that corresponds to the high or low breakend mate
in the case that δ is the low or high breakend of a deletion, respectively. In all other cases δ
is returned. Having this, we retrieve the low breakend of a δ ∈ R by:

low(δ) =
{

pos(mate(δ)) if and only if code(δ) = 110,

pos(δ) otherwise,
(4.9)

and we access the high breakend by:

high(δ) =





pos(mate(δ)) if and only if code(δ) = 100,

pos(δ) + 1 if and only if code(δ) < 4,
pos(δ) otherwise.

(4.10)

The low breakend corresponds to the position of the breakend dictionary key, unless it
represents the high breakend of a deletion. In that case, we return the position of the
element representing its low breakend mate. As mentioned earlier, we only store the low
breakends for SNV and insertion variants, as we can easily retrieve their high breakend. For
a SNV, the high breakend is pos(δ) + 1, and for an insertion, it is pos(δ). To access the high
breakend of a deletion breakend, we return the current key position if it already represents
the high deletion breakend, or the position of its high breakend mate if δ represents the low
breakend of a deletion. Later, we will explore how this information can be used to enable a
graph-based traversal over R.

Customisation

We have implemented several customisation points that allow users to customise the data
representation of the RCMS and control its space and runtime behaviour for different use
cases. For instance, if 29 bits are not sufficient to represent the entire index space of the
underlying reference sequence, users can instantiate the breakend multimap with a 64-bit
unsigned integer type. Another way to customise the data representation of the RCMS
is by providing different dictionary strategies. In this thesis, we implemented two general
approaches.

Customising dictionary strategy

The first approach is suitable for read-only scenarios where we assume that the dictionaries
are not modified. In these situations, we provide a dictionary strategy that stores the

107



4 Compression-accelerated pattern matching

keys and values of the breakend dictionary in two separate linear buffers (e.g. using
std::vector). For the InDel dictionary, we offer a strategy based on a hashmap (e.g. using
std::unordered_map). With this approach, we can perform binary search to search for
elements in the breakend dictionary. The coverage value can be accessed by using the offset
of the key in the linear buffer to locate the corresponding position in the coverage buffer.
Additionally, if needed, we can access the corresponding InDel element in constant time.

However, updating this dictionary by inserting or erasing sequence differences would have a
linear runtime complexity proportional to the number of elements in the breakend dictionary
and InDel dictionary. To address this, we introduced a second dictionary strategy that
utilises a dynamically updatable data structure, such as std::multimap, which supports
constant-time insertion and deletion operations. This strategy is advantageous in situations
where the RCMS is frequently updated at random positions.

Table 4.1 compares the runtime complexities of the dictionary strategies used in static and
dynamic scenarios.

find random insert/erase append

static O(log nB) O(log nB + nB + nI) O(1)
dynamic O(log nB + log nI) O(log nB + log nI) O(1)

Table 4.1: Comparison of run time complexities between dictionary strategies used in static and
dynamic use cases, with nB = |BRK | and nI = |IND|.

Finding an element in the static case requires a binary search over the key buffer of BRK ,
while accessing any of the mapped values can be achieved in O(1) using a std::hashmap.
In addition, inserting and erasing at random positions takes, in the worst case, two times
the size of BRK , i.e. to insert the key and the coverage value. The breakend mates of
deletions in IND, which are represented as indices to the corresponding element in BRK ,
may need to be updated (e.g. when inserting elements into the breakend of an existing
deletion), requiring an additional linear scan over the hash table.

In the dynamic case, finding an element can be done in logarithmic time. However, to find
an InDel entry, we also need to perform a logarithmic search step in the InDel dictionary.
Inserting an element has a complexity that is logarithmic in the size of BRK and IND to
find the insertion positions, while inserting the data itself can be done in amortised constant
time. Because iterators to elements in ordered maps are not invalidated after inserting or
erasing elements, we do not need to update the handles to the deletion breakend mates in
IND.

If we only append to the end of the dictionary, we can benefit from amortised constant
insertion time in both dictionary strategies. However, based on our primary assumption
that SNVs are overrepresented in the targeted use cases, we assume that |IND| ≪ |BRK |,
such that the terms related to the InDel dictionary can be neglected in practice.

4.3.3 Construction

We offer two options to construct a RCMS. The first option generates a RCMS by parsing
an already existing sequence variation database in the form of a VCF file. The second option
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builds a RCMS incrementally by aligning a sequence to the reference sequence and merging
the extracted sequence differences from the alignment with the existing RCMS instance R.
In the following, we will first describe the process of parsing a VCF file, followed by the
incremental construction of an RCMS R.

Parsing a VCF file

In many cases, genetic information about an entire population is already present in the
form of a VCF file. Therefore, we have implemented a parser that takes a VCF file and the
accompanying fasta file containing the reference sequences, and converts the information
stored in the VCF file into sequence differences that are added to the RCMS.

It is important to note that the sequence differences in the VCF file are already sorted
by chromosome and reference position according to the VCF specification3. Hence, the
parser processes the file record by record, extracting the breakends, alternate sequences,
and coverages for each VCF record. It then inserts the sequence difference at the end of the
dictionary in the RCMS.

The number of sequences represented by the final RCMS, which is the maximum size of
the difference coverages, depends on the number of samples and the number of haplotypes
per sample. The total haplotype count is inferred from the genotype information of the
first record of each chromosome stored in the VCF file. Whenever the parser encounters a
record with a chromosome ID different from the previously processed record, a new RCMS
instance is created, instantiated with the corresponding reference sequence loaded from
the accompanying fasta file. Therefore, a single RCMS structure maintains the sequence
differences of one chromosome or contig, and multiple RCMS structures are maintained
within a proper composite structure.

At the time of writing this thesis, we only supported the parsing of InDels and SNVs. In
the future, we intend to extend the implementation to also include complex structural
variants. Additionally, the conversion process only includes records containing phased
genotype information for multiploid organisms. This means that if the genotype information
in the VCF file consists of multiple haplotypes, the haplotype covering the alternative
can only be unambiguously identified if it can be assigned to the maternal or paternal
chromosome in the case of biploid genomes. If the phasing information is not present for a
particular variant, we skip the corresponding record and log the record information in a
separate log file.

Other limitations that may arise include ambiguities in the presented variants, resulting in
conflicting sequence differences, such as two or more variants with overlapping breakpoints
and coverages. In such cases, the user can choose between two conflict resolution strategies
that we have implemented. The first strategy skips conflicting variants similar to the variants
with unphased genotype information. The second strategy removes only the conflicting
haplotypes from the coverage of the newly inserted sequence difference, ensuring that
the global invariants for the final RCMS are maintained. In both cases, the parser emits
informative messages to the log file.

3https://github.com/samtools/hts-specs/blob/master/VCFv4.4.pdf
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Incremental updates

There are use cases where an existing pangenome needs to be updated by adding new
sequences, or where the pangenome is built from scratch using a set of plain sequences. To
accommodate these scenarios, we have added the capability to incrementally add sequences to
an existing RCMS. This is achieved by computing the pairwise sequence alignment between
the target sequence and the underlying reference sequence of the RCMS, and converting
the resulting alignment into a proper differential encoding for the new sequence.

To accomplish this, we have divided the procedure into two stages. In the first stage, we
compute the pairwise sequence alignment between the target sequence and the reference
sequence. In the second stage, we merge the differential encoding obtained from the
alignment with the existing RCMS.

Compressing large-scale sequences

In general, we employ an optimised DP algorithm to compute a global pairwise sequence
alignment between the target sequence and the reference sequence, as discussed in Chapter 3.
However, due to the high similarity of the sequences, we have implemented an additional
heuristic based on the sequence aligner LAGAN [Brudno et al., 2003b] to expedite the
alignment process.

This approach incorporates an iterative seed-and-extend step before the alignment compu-
tation. During this step, we utilise a q-gram index (see Line 11) over the reference sequence
to efficiently locate exact matching seeds between the target sequence and the reference
sequence. These seeds are then merged into longer anchors based on specific merge criteria,
which determine the maximum allowed distance between adjacent seeds in the DP matrix.
Subsequently, we compute the highest scoring chain over all anchors [Gusfield, 1997].

In cases where the region between two adjacent anchors is too large, we repeat the seed-
and-extend step after relaxing the merging criteria and using a smaller seed size. After a
predefined number of iterations, we utilise the final anchor chain as a guide to compute the
final alignment using a banded DP algorithm around the corresponding regions indicated
by the chain.

It is worth noting that it is possible to use any other alignment algorithm to compute the
alignment as well. This flexibility allows us to add a new sequence purely based on an
alignment object, as demonstrated in the next section.

Merging sequence differences

After obtaining the pairwise sequence alignment between the target sequence and the
reference sequence, we transform it into a suitable differential encoding and merge it with
the existing RCMS instance. Recall that a pairwise alignment consists of two aligned
sequences, where the original sequences are interspersed with special gap symbols (−) to
indicate the presence of InDels in the alignment. Thus, for a target sequence s ∈ Σ∗ and

110



4.3 Referentially compressed multisequence

the reference sequence r from the RCMS R = (r ,BRK , IND), we are given an alignment
A ∈ A(r , s), with r = A∗,0 and s = A∗,1.

Firstly, we convert the alignment into an appropriate encoding, denoted as Ds. In the
second step, we merge the elements of Ds into R.

Algorithm 4.3: convert
Input: s, r
Output: The proper encoding Ds of s

1 k ← 0
2 Ds ← ∅
3 d ← (0, 0, ϵ)

4 t ←





I if and only if r0 = −
D if and only if s0 = −
R if and only if r0 ̸= s0

M otherwise
5 for i← 0 to |r | do
6 if r [i] = − then // handle insertion
7 if t ̸= I then
8 t ← I
9 Ds ← Ds ∪ {d}

10 d ← (k, k, ϵ)
11 alt(d)← alt(d) + s[i]
12 else
13 if s[i] = − then // handle deletion
14 if t ̸= D then
15 t ← D
16 Ds ← Ds ∪ {d}
17 d ← (k, k, ϵ)
18 high(d)← k + 1
19 else if s[i] ̸= r [i] then // handle mismatch
20 if t ̸= R then
21 t ← R
22 Ds ← Ds ∪ {d}
23 d ← (k, k, ϵ)
24 high(d)← k + 1
25 alt(d)← alt(d) + s[i]
26 else // handle match
27 t ← M
28 k ← k + 1

29 Ds ← (Ds ∪ {d})
30 return Ds

The conversion algorithm is presented in Algorithm 4.3. It takes as input the aligned
sequences s and r . At the start, the algorithm initialises the current position k in r , the
encoding Ds, the current sequence difference d, and a temporary tracker t ∈ {M,R, I,D} to
keep track of the last encountered edit operation – match (M), replacement (R), insertion
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(I), and deletion (D).

Next, the algorithm iterates over the aligned sequences, where i denotes the current position
in the aligned sequences. For each pair of aligned symbols (si, r i), the algorithm checks
whether it represents an insertion (Lines 6 to 12), a deletion (Lines 13 to 18), a mismatch
(Lines 19 to 25), or a match (Line 26 and 27).

If the current position represents an insertion, the algorithm checks whether it marks the
start of a new insertion or extends an existing one. In the former case, it adds the current
state of d to Ds, resets its low and high fields to the current reference position k, and resets
its alternate sequence to an empty sequence. Additionally, it sets t to the insertion state I
so that if the next aligned symbol is also an insertion, the current state of d can be updated
instead of being reset. In either case, it appends the current symbol of the aligned sequence
si (which, by definition of an alignment, must not be the space symbol) to the alternate
sequence of the current sequence difference d.

If the current position represents a deletion, the algorithm first checks whether the previous
position was also a deletion (i.e. t = D). If this is not the case, then the current position
marks the low breakend of a deletion. The current sequence difference d is appended to Ds
before being reset, where the low breakend corresponds to the current reference position k.
Additionally, t is set to the deletion state D to prevent resetting d if the deletion continues
to the next position. After potentially resetting d, the high breakend value is set to the
current reference position k plus one to mark the end of the deletion.

The same logic applies if the current position i represents a mismatch. After possibly
updating Ds and resetting d, as done in the previous cases, the high breakend value
represents the end of the replaced reference infix. Correspondingly, the current symbol at si

is appended to the alternate sequence of d.

In all other cases, the pair of aligned symbols represents a match. In this case, only the
marker t is updated accordingly, ensuring that the last state of d remains unchanged
within a contiguous match segment. In addition to the insertion case, the current reference
position, which progresses along the original reference sequence r , is incremented. Finally,
the algorithm appends the last state of d to Ds and returns the final encoding of s.

Having converted the initial pairwise alignment to a proper encoding for the target sequence
s, we can now merge this set with an existing RCMS R. Since both structures are basically
sorted lists ordering their elements in an ascending order, this merging step can be done in
time linear to the sum of their sizes.

4.3.4 Data retrieval

Accessing data from the compressed representation of the pangenome is another essential
operation required by many applications, as it allows users to annotate the stored data
with additional application-specific information. We have implemented three essential data
retrieval operations: generating a haplotype view, as well as determining the haplotype cover
and the haplotype position for a given reference position. These three operations serve as
building blocks for more sophisticated data retrieval operations.
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In the following, we discuss the details of these three operations, starting with the haplotype
view, followed by the haplotype cover, and finally the haplotype position projection.

Haplotype view

The view operation allows the extraction of the original haplotype sequence from its encoded
representation, as described in the extended decode algorithm (see Algorithm 4.2), without
the need to duplicate all segments that are shared with the reference sequence. This
operation provides a convenient read-only sequence view, allowing it to be accessed in the
same way as its plain sequence representation.

To achieve this, we use an auxiliary data structure called a journal, which serves as
a temporary buffer recording all sequence modification requests issued to the reference
sequence. It is important to note that the reference sequence itself remains unmodified. We
refer to a sequence with journaling support as a journaled sequence (JS).

Journal

The journal is the central structure of a JS. Conceptually, it can be thought of as a dictionary,
where the keys represent positions in the JS, and the mapped values are pointers that refer
to external sequences. It is important to note that the memory of these external sequences
is not owned by the journal. In the following, we use the term journal entry to refer to an
element in this dictionary.

Definition 4.3.6 (Journal entry). Given some integer p ∈ N0 and a non-empty sequence
s ∈ Σ∗ \ {ϵ}, then we define the journal entry e as the ordered pair (p, s).

In addition, we define the fields pos(e) = p and seq(e) = s to access the integer and the
sequence value of e and define |e| = |seq(e)|. Then, given two journal entries ei and ej , we
write ei < ej if and only if pos(ei) + |ei| ≤ pos(ej). Moreover, we say ei and ej are connected
if and only if ei < ej and pos(ei) + |ei| = pos(ej). In the presented context, this means
that the sequence represented by ej follows immediately after the sequence of ei without
introducing a gap in the final JS. Having this we can define the journal more specifically.

Definition 4.3.7 (Journal). A journal E = {e0, e1, . . . , el−1} is a non-empty, strict totally
ordered set over journal entries, where all of them, except the first one, are connected to
their predecessor and it must hold that pos(e0) = 0.

To put it differently, the journal entries stored inside a journal E , with l = |E |, form a
continuous index space starting at 0 and ending at pos(el−1) + |el−1|. The concatenation of
the associated sequences in the order given by E will then produce a sequence. Specifically
we write,

J (E) := seq(e0) + seq(e1) + . . .+ seq(el−1), (4.11)

where J (E) denotes the journaled sequence. This is illustrated in Fig. 4.7.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
A C C T T G T A G C C G A T A A A C T G G T G A C

A C C T T G T A G C C A T A A A C T T G A CG G G C

0 5 8 14 15 22

0

1

2

3

4

5

5, 5, GGG 11, 12,C 19, 21,ϵ

r

J (E)

E

D1

Figure 4.7: Visual representation of the encoded haplotype X1 shown in Fig. 4.2 as a journaled
sequence with r = X0 being the source sequence. The journal E is shown at the top in form of a
binary search tree consisting of 6 journal entries ordered by their position pos (black numbers
above crossbars). Each journal entry covers either a segment from r (entries 0, 2, 4 and 5) or an
inserted sequence of a sequence variant (entries 1 and 3). A deletion is represented by two entries
leaving a gap between the respective segments in r (entries 4 and 5).

Element access

As discussed previously, one of the main considerations in our design is the efficient access
to any element within the JS without the need to allocate a new memory for the entire
sequence. To accomplish this, we take advantage of the fact that the journal entries inside
the journal are ordered based on their position offset within the represented JS. This allows
us to access any element with an additional logarithmic time complexity. The algorithm at
(listed in Algorithm 4.4) provides the retrieval of the p-th symbol from a given journal E .

Algorithm 4.4: at
Input: E , p

1 if i ≥ E [|E | − 1] then
2 return NIL
3 find e ∈ E , such that pos(e) ≤ p < pos(e) + |e|
4 return seq(e)[p − pos(e)]

To access the element at position p of the JS J (E), the algorithm searches for the entry
e that covers the requested position p (Line 3). The method of searching depends on the
underlying dictionary strategy, which can involve a binary search using a sorted array or
traversing a balanced binary search tree from its root. In either case, this step takes at
most O(log |E |) time. Based on the properties of a journal instance, we know that there
can only exist one such element that covers the position, or the given position p exceeds the
length of the represented JS. In the latter case, the algorithm returns a special state (NIL)
indicating that the element was not found (Lines 1 and 2). If a matching journal entry is
found, the algorithm determines the relative position of the queried position p within the
found journal entry e and retrieves the corresponding symbol from the associated sequence
seq(e) (Line 4). In Fig. 4.8 the steps of the algorithm are exemplified.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
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10 < 14

10 > 8

5 + 10 − 8 = 7

8 ≤ 10 < 14

Figure 4.8: Example of accessing the 10-th base of the journaled sequence from Fig. 4.7. The binary
search compares 10 with the entry positions finding e2 in the end (orange arrows). This entry
covers the infix r5..11 starting at position 8 in the journaled sequence which corresponds to the
7-th position in r , i.e. 7 = 5 + 10− 8 (highlighted symbol).

Dynamic updates

In this section, we demonstrate how a JS can be efficiently constructed from an existing
sequence, leveraging the dynamic nature of the journal structure. Let r ∈ Σ be the reference
sequence used as the basis for generating a target sequence s ∈ Σ by modifying r accordingly.
Instead of copying r , we aim to utilise a journal E to record the sequence modifications,
such that s can be viewed as J (E). In other words, J (E) serves as a view of the target
sequence s, using r as the basis.

Initially, we initialise E with an entry that covers the entire reference sequence, as illustrated
in Fig. 4.9a. At this stage, we have r = J (E). Next, we consider the cases where we insert,
erase, and replace segments in r to obtain the target sequence s. A comprehensive example
of all three operations is depicted in Fig. 4.9.

Algorithm 4.5: insert
Input: E , p ∈ [0..|J (E)|], x ∈ Σ∗

1 find eL ∈ E , such that pos(eL) ≤ p < pos(eL) + |eL|
2 o ← p − pos(eL)
3 eR ← (p, seq(eL)[o..|seq(eL)|))
4 seq(eL)← seq(eL)[0..o)
5 eN ← (p, x)
6 Insert eN after eL into E
7 Insert eR after eN into E
8 for eR ≤ e ≤ e|E|−1 do
9 pos(e)← pos(e) + |x|

To insert a new segment x ∈ Σ at position p into an existing journal E , we first search for
the entry eL ∈ E that covers the insertion position p, as depicted in Line 1 of Algorithm 4.5.
For the sake of brevity, we omit the additional check for a valid insertion position p and
assume that it falls within the range of [0..|J (E)|]. Note that p = |J (E)| indicates that x
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(a) Initial journaled sequence with r = J (E).
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(b) Record sequence variant [5, 5, GGG] (insertion).
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(c) Record sequence variant [11, 1, C] (replacement).
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(d) Record sequence variant [19, 2, ϵ] (deletion).

Figure 4.9: Stepwise construction of the journaled sequence for X1 shown in Fig. 4.7. Orange lines
represent updated or added journal entries in the current step.

is inserted at the end of J (E). The found entry eL represents the left prefix of the sequence
immediately preceding the insertion point, denoted by the split position o computed in Line
2. Additionally, a new journal entry eR is created, representing the corresponding suffix
starting at o (Lines 3 and 4). This is illustrated for e2 and e4 in Fig. 4.9b. Subsequently,
the algorithm creates a new entry eN (e3 in Fig. 4.9b) covering the new segment x, which
starts at p in the modified JS. Finally, it resets the stored sequence of eL and inserts eN
and eR after eL in the appropriate order. Depending on the chosen dictionary strategy,
these elements can be inserted in amortised constant time, given that the correct insertion
position is known from the initial search. Lastly, the algorithm iterates over all remaining
entries that come after eR and updates their positions by adding the length of the inserted
segment x.

Algorithm 4.6: erase
Input: E , p ∈ [0..|J (E)| − c], c ∈ [1..|J (E)|]

1 find eL ∈ E , such that pos(eL) ≤ p < pos(eL) + |eL|
2 find eR ∈ E , such that pos(eR) ≤ p + c < pos(eR) + |eR|
3 oL ← p − pos(eL)
4 oR ← (p + c)− pos(eR)
5 if eL = eR then
6 eR ← (p + c, seq(eL)[oR..|seq(eL)|))
7 Insert eR after eL into E
8 else
9 seq(eR)← seq(eR)[oR..|seq(eR)|)

10 seq(eL)← seq(eL)[0..oL)
11 for eL < e < eR do
12 remove e from E
13 for eR ≤ e ≤ e|E|−1 do
14 pos(e)← pos(e)− c

Algorithm 4.6 presents the pseudocode for erasing a contiguous range of size c from the
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4 Compression-accelerated pattern matching

JS, starting at position p. Once again, we omit the sanity check at the beginning of the
operation. In Lines 1 to 2, we search for the left entry eL, which covers the begin position of
the deletion in the JS, and the right entry eR, which covers the corresponding end position
(e4 and e5 in Fig. 4.9d). The algorithm computes the split positions for both journal entries,
denoted as oL and oR, respectively. In other words, we want to erase the suffix starting
at oL in seq(eL), the prefix until oR in seq(eR), and all entries between eL and eR. If the
deleted segment is enclosed by a single entry, meaning eL = eR, a new journal entry is
created, covering the corresponding suffix of e starting at oR, and inserted right after eL
in the journal E (Lines 5 to 7). Otherwise, the sequence of eR is set to the corresponding
suffix that comes after the deletion (Lines 8 to 9). Afterward, the sequence of eL is assigned
the corresponding prefix until position oL (Line 10). In the last step, the entries between eL
and eR are removed (Lines 11 to 12), and the positions of the subsequent entries greater
than or equal to eR are updated by subtracting c from their positions.

Algorithm 4.7: replace
Input: E , p ∈ [0..|J (E)| − |x|], x ∈ Σ∗

1 erase(E , p, |x|)
2 insert(E , p, x)

The replace operation, as shown in Algorithm 4.7, can be implemented by first calling
erase on the segment starting at p with a length of x, i.e. |x|, followed by inserting x at
position p in the updated journaled sequence J . While this approach does not change the
complexity of the algorithm itself, we have implemented a more efficient strategy in practice
that saves one logarithmic lookup, as we already know the insert position from the erase
operation. The effects of replacing a symbol of the reference sequence are illustrated in
Fig. 4.9c.

Implementation details

We have implemented the journal entry as a class consisting of an unsigned 32-bit integer
and a handle to the associated sequence. Therefore, a journal entry is a lightweight data
structure that only points to the memory location of the segment.

In the context of viewing an encoded haplotype inside a RCMS instance, the journal entry
can either point to a memory address of the reference sequence r or to the stored alternate
sequence of insertions. However, for SNVs, we needed a different approach since their
alternate sequences are encoded within the keys of the breakend dictionary. To handle this,
we implemented a special sequence handle type that internally uses a union. This union
can represent either a contiguous chunk from an actual sequence memory address or the
value of the encoded SNV in the form of a std::array of size one.

Table 4.2 compares the asymptotic run times of the three fundamental operations: at,
insert, and erase, between a regular sequence s (storing elements contiguously in memory,
e.g. a std::vector) and its journaled representation J (E) = s.

Accessing an element in s can be done in constant time, while inserting or erasing an element
will have a linear time complexity in the worst case. In comparison, operations on the
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at insert erase

s O(1) O(|s|) O(|x|)
J (E) O(log |E |) O(log |E |+ |E |) O(log |E |+ |E |)

Table 4.2: Comparison of run time complexities between a regular sequence s and its journaled
representation J (E) of the three fundamental operations at, insert, and erase.

journaled sequence J (E) require an additional logarithmic step in the size of the journal E
to find the corresponding entry. Furthermore, all journal entries to the right of an insertion
or deletion need to be updated, which takes O(|E |) time.

However, it is important to note that the JS representation is specifically designed to view
modifications between similar sequences. Therefore, we can assume that |E | ≪ |s|, making
the JS representation favourable in such scenarios.

Moreover, when viewing a haplotype from the RCMS, we can build the JS representation
through a linear scan from left to right. This means that we only modify the last journal
entry of E in each iteration, which can be done in amortised constant time.

Haplotype cover

So far, we demonstrated how to efficiently compress a large collection of sequences using a
differential sequence encoding approach and presented a space-efficient strategy for viewing
the original sequences in their compressed form. While this enables operations on individual
compressed sequences without the need to allocate the entire sequence in memory, there are
numerous scenarios in pangenomics where leveraging differential sequence compression can
further reduce overall workload and significantly improve application performance.

One of these scenarios is the capability to identify all haplotypes covering a given position
of the reference sequence.

Definition 4.3.8 (Haplotype cover). Given a RCMS R = (r ,BRK , IND) for a pangenome
X , we define the haplotype cover as the coverage Hp ⊆ HX at a given position p ∈ [0..|r |).

The basic idea behind computing the haplotype cover for a given reference position p is to
identify all sequence differences whose breakpoints overlap with position p and subtract
them from HX . If there are no overlapping breakpoints, it implies that all encoded sequences
cover the specific position in the reference sequence, and therefore, Hp = HX .

Computing the haplotype cover becomes straightforward when only insertions and SNVs are
present in R. In this case, it is sufficient to find the lower bound δi and the upper bound δj

in R for a search position p such that p ≤ pos(δi) < pos(δj). The haplotype cover Hp
′ can

then be computed by subtracting the combined coverage of all covered sequence differences
within the interval [δi..δj):

Hp
′ = HX \

j−1⋃

k=i

cov(δk). (4.12)
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In cases where deletions are also present in R, we need to consider sequence variants
whose low breakends occur before p and high breakends occur after p. To address this, we
augmented the breakend dictionary BRK with a breakpoint tree, which is an augmented
interval tree [Cormen et al., 1990] built over the breakpoint spans of the deletion variants.

Formally, the breakpoint tree is a binary search tree denoted as T = (V ,E). A node
v ∈ V represents an ordered pair consisting of a sequence difference δ ∈ R and the breakend
supremum s ∈ N0, which is the maximum high breakend value among all nodes in the
subtree rooted in v. We also denote low(v) = low(δ), high(v) = high(δ), and sup(v) = s.

In practice, we represent the tree T as an array, where the size of the array is equal to
the number of low deletion breakends (i.e. code[δ] = 100) present in R. The T can be
constructed using Algorithm 4.8, which has a time complexity linear to the size of IND.

Algorithm 4.8: Construct breakpoint tree
Input: An RCMS R
Output: Breakpoint tree T

1 T ← ∅
2 foreach δ ∈ IND do
3 if code(δ) = 100 then // is low deletion breakend
4 v ← (δ, high(δ))
5 append v to T

6 findSupremum(T , 0, |T |-1)
7 return T

First, the algorithm initialises an empty breakpoint tree T . Then it iterates over the InDels
stored in IND. Whenever the code of the key of the currently visited InDel difference δ
indicates a low deletion breakend, the corresponding entry δ is appended to T together
with its high breakend as the breakend supremum. After that, the construction algorithm
calls a subroutine named findSupremum to recursively calculate and assign the breakend
supremum for all inner nodes. The details of the findSupremum algorithm are provided in
Algorithm 4.9.

Algorithm 4.9: findSupremum
Input: T , l, r

1 if l ≥ r then // is leaf!
2 return sup(T [l])
3 m←

⌊
l+r

2
⌋

4 sup(T [m])← max





sup(T [m])
findSupremum(T , l, m-1)
findSupremum(T , m+1, r)

5 return sup(T [m])

The subroutine findSupremum is called with the initial state of T and the interval [0..|T | − 1],
which represents the currently visited subtree of T . In each iteration, the middle position m of
the interval [l..r] is computed (Line 3), corresponding to the root node of the current subtree.
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The algorithm then determines the maximum value between its own associated breakpoint
supremum and the breakpoint suprema of its left and right subtrees, and updates its own
breakpoint supremum accordingly. To obtain the suprema of its subtrees, it recursively
calls the findSupremum subroutine for the left subtree (i.e. findSupremum(T , l, m - 1))
and the right subtree (i.e. findSupremum(T , m + 1, r)). If findSupremum is called with
l ≥ r, it means a leaf node has been reached in T , and the recursion anchor is reached. At
this point, the base supremum, which corresponds to the high breakend of the leaf node, is
returned to the calling parent. After visiting all nodes in T , each inner node will store the
breakend supremum of its subtrees. Since the position of the parent node is removed from
the interval representing the left and right subtrees in each recursive invocation, every node
in T is visited exactly once. Therefore, the runtime of this subroutine is linear, i.e. O(|T |),
and the total construction runtime complexity is O(|IND|+ |T |).

Algorithm 4.10: search
Input: Breakpoint tree T , reference position p
Output: Set of all overlapping deletions

1 R← ∅
2 S ← ∅
3 push(S , (0, |T | − 1))
4 while S ̸= ∅ do
5 l, r ← pop(S)
6 m ←

⌊
l+r

2
⌋

7 if p > sup(T [m]) then // p larger than supremum
8 continue
9 push(S , (l,m − 1)) // Add left subinterval to search

10 if low(T [m]) ≤ p < high(T [m]) then // p overlaps deletion
11 R← R ∪ {m}
12 if p < low(T [m]) then p not in right subinterval
13 continue
14 push(S , (m+ 1, r)) // Add right subinterval to search
15 return R

After constructing the breakpoint tree T , we can query it to find all overlapping breakpoints
in O(min(|T |, o log |T |)), where o is the number of breakpoints that overlap a given position p.
The corresponding search algorithm is shown in Algorithm 4.10. Initially, an empty result set
R and a stack S are initialised. The stack tracks the visited nodes as closed intervals, similar
to how the findSupremum subroutine was implemented. The initial interval corresponds
to the root node of the tree representation. In each iteration, the current subinterval is
popped from the stack, where l represents the left border and r represents the right border
of the subinterval. The middle position m is computed to retrieve the element in T that
corresponds to the root node of the current subtree.

If the searched position p is greater than the supremum sup of T [m], it means that all
breakpoints in the subtree rooted at m must end before p. In this case, the search can
be stopped, and we continue with the next subtree tracked in S . Otherwise, we check if
there is an overlapping breakpoint in the left subtree of m (Line 9). We also check if p is
contained within the breakpoint of the current node, T [m], and add m to the result set
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R if this is true. Furthermore, we check if p is strictly less than the low breakend of the
current breakpoint. If this condition is satisfied, we know from the construction of T that
all breakpoints in the right subtree of an inner node must have a low breakend greater than
or equal to the low breakend of the subtree root. Thus, there is no need to search the right
subtree, and we continue with the next subtree in S . In the other case, we add the right
subinterval to S and start searching the next subinterval at the top of S .

The algorithm terminates after visiting all nodes whose reference spans overlap position p.
Having the final list of overlapping breakpoints R, and given that cov(v) = cov(δ), we can
compute the final haplotype cover Hp as:

Hp = Hp
′ \

⋃

v∈R
cov(v). (4.13)

Similar to the findSupremum subroutine, by excluding the currently visited element from
its left and right subinterval, we ensure that each element in T is visited at most once.
However, since we can terminate the search of a subtree once it is clear that no breakpoint
in the subtree can be added to the result set, we only need to traverse O(|R| log |T |) nodes.
Therefore, the overall runtime complexity is O(min(|T |, |R| log |T |)).

Haplotype position

To answer the question of which encoded sequences cover a certain reference position,
we added the capability to compute the haplotype position, which is a set storing the
corresponding absolute positions in their decoded form.

Specifically, given a set of sequences X with N = |X |, and its differential encoding R =
(r ,BRK , IND) for some reference sequence r ∈ X , we want to project a position p ∈ [0..|r |)
of the reference sequence to an ordered set of absolute sequence positions, denoted by Pp,
which is defined as:

Pp ∈ [0..|X0|)× [0..|X1|)× · · · × [0..|XN−1|),

where Pp[h] represents the absolute position of the h-th sequence, Xh, in X that maps to
position p in the reference sequence.

To answer such a query for a particular sequence Xh ∈ X, we first find the rightmost entry
δi in R such that p ≤ low(δi). Then, we compute the cumulative sum over the effective
sizes, which represent the number of symbols added or removed with respect to r , of all
sequence differences covered by the h-th sequence up to and including δi.

Definition 4.3.9 (Effective size). The effective size, denoted by σ(δ), of a sequence difference
δ ∈ R is computed as the difference between the size of its alternate sequence and the
breakpoint span, defined as follows:

σ(δ) = |alt(δ)| − (high(δ)− low(δ)).
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Having this, we can compute the haplotype position by:

Pp[h] = p +
i−1∑

k=0

{
σ(δk) if and only if h ∈ cov(δk)
0 otherwise,

(4.14)

where we add to p the relative offset that results from adding up the effective sizes of all
sequence differences whose low breakend comes before p in the reference sequence and where
h is a member of the coverage.

Precomputing offsets

Notably, only sequence differences representing insertions and low deletion breakends need
to be considered for the haplotype position, as these are the types that effectively change the
projected position with respect to p. As a consequence, we introduced another augmenting
data structure that, similar to supporting the computation of the haplotype cover, is solely
bounded by the number of contained InDels. This structure is an offset matrix [Oı,ȷ](M+1)×N ,
where Oı,ȷ ∈ Z. The matrix has M + 1 columns and N rows, where M is equal to the
sum of insertions and low deletion breakends present in R. Specifically, we only consider
breakends with the key 101 (insertion) and 100 (low deletion breakend).

Let BRK ′ denote this subset of BRK , such that M = |BRK ′|. A column Oı,∗ of O stores,
in each row, the cumulative sum of the effective InDel sizes up to the ı-th InDel breakend
entry in BRK ′ according to Eq. (4.14). An additional column is used to initialise the offsets
with 0. This matrix can be constructed by performing a linear scan over the sorted InDel
dictionary, where for each ı ∈ [1..M ]:

Oı,ȷ = Oı−1,ȷ +
{
σ(δ) if ȷ ∈ BRK ′[ı− 1],
0 otherwise.

0 1 2

O

3
0

1

2

3

1 1 0 0 0 0 1 0 0

P19[0] = 19 + 3 = 21
P19[1] = 19 − 1 = 18

1. δi = R[5]

P19[2] = 19 + 0 = 19

2. ı = indelRank(R, δi) = 2

3. Lookup O2,∗

Projection for position p = 19

P19[3] = 19 + 0 = 19
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Figure 4.10: Example of computing the absolute positions for the encoded sequences in the RCMS
from Fig. 4.6 that map to position 19 of r .
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Rank support

Instead of maintaining a separate subset of BRK , we can use a rank dictionary over the
breakends stored in BRK to count the number of InDels occurring before and up to the
strict lower bound δi for a given reference position p in constant time. The resulting rank
gives the corresponding column index for O (see Fig. 4.10). Specifically, we have

indelRank(R, δi) =
i−1∑

k=0

{
1 if and only if code(δi) = 100 ∨ code(δi) = 101

0 otherwise.

Putting everything together, we can compute the Pp using the following steps:

1. Find the strict lower bound δi in R.

2. Determine the column index ı = indelRank(R, δi).

3. Read the corresponding offsets Pp[ȷ] = Oı,∗ + p.

The first step takes O(log |BRK |) time. The second step can be answered in constant time
O(1) using a proper rank dictionary implementation.

In our current version, we used the rank implementations of the SDSL library [Gog et al.,
2014]. Reporting the final absolute positions for all sequences can be done in O(N), thus the
total worst-case runtime complexity is O(log |BRK |+N). Since we only need to store the
offsets for the indel variants, we need O(4N(M + 1)) bytes to create O, plus approximately
O(0.25|BRK |) additional bits to store the rank dictionary4.

By combining all three retrieval operations to extract haplotype information, we are able
to augment an RCMS object with additional functionality. For example, we can use these
operations to view the sequence variations present in a specific pangenome region indicated
by two reference positions or to extract auxiliary annotation data for a specific pangenomic
region.

4.4 Dynamic traversal interface

In this section, we will explore how we can efficiently apply any window-based online
algorithm on the RCMS without the need to decompress the individual sequences encoded
within it. This capability has the potential to significantly speed up pangenome-based
applications, as the overall workload can be greatly reduced thanks to the use of differential
encoding.

4Based on the SDSL documentation: http://simongog.github.io/assets/data/sdsl-cheatsheet.pdf;
accessed on 22.03.2023
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4.4 Dynamic traversal interface

4.4.1 Journaled sequence tree

We designed and implemented a tree-like traversal interface that allows navigation through
the segments of the RCMS in a deterministic manner. Importantly, we have achieved this
without the need to materialise an actual graph object. Instead, our tree is a virtual construct
that provides a skeleton for realising the traversal. Additionally, we implemented various
policies refining the traversal. These include the ability to prune subtrees of the sequence tree
when it becomes evident that a concrete path is not represented by the encoded sequences
or when further traversal into the subtree would not generate new relevant information
for the applied online algorithm. As a result, we can dynamically apply various online
algorithms with different window sizes without the need to rebuild the tree structure. A
general illustration of our approach is depicted in Fig. 4.11.
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Figure 4.11: Sequence tree for the compact pangenome shown in Fig. 4.6 using a window size ω = 4.
The reference is represented by the labels of the nodes on the lowest level (black DNA symbols;
surrounded with solid lines). The labels of nodes on higher levels are represented as journaled
sequences (grey DNA symbols; surrounded with dotted lines), referencing either segments from
the reference (yellow background) or alternate sequences from the sequence variants in D.

As Fig. 4.11 already highlights, there are two types of nodes indicated by black and grey
coloured symbols. This scheme is identical to the visualisation of a JS (see Section 4.3.4),
meaning that segments of subtree nodes induced by a sequence difference of R are not
allocated explicitly but represented in a referentially compressed form using our journaling
approach to space-efficiently view haplotype sequences. To acknowledge this, we refer to
this virtual sequence tree as the journaled sequence tree (JST).

Fundamental terms and definitions

Expressed more formally, a JST is a node-labelled directed acyclic graph (DAG), denoted
by T = (V ,E), whose nodes are labelled with sequences representing either a segment from
the reference sequence or an alternate sequence from one of the sequence differences in the
underlying RCMS.
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4 Compression-accelerated pattern matching

Following this observation, we divide the node set into a non-empty set of reference nodes,
denoted by Vref , and a possibly empty set of alternate nodes, denoted by Valt, such that
V = Vref ∪ Valt, and where Vref ∩ Valt = ∅. In the subsequent sections, we shall use this
distinction to specify different node operations. Furthermore, the set Vref always consists of
at least one node which represents the root node of T . We write root(T ) ∈ Vref to denote
this special node. The size of a JST is defined as |T | = |V |.

Two nodes v and w are connected via a directed edge e = (v,w) ∈ V × V . We call the first
node (i.e. v) the head and the second node (i.e. w) the tail of e, and we write head(e) = v
and tail(e) = w to refer to the head and tail node, respectively.

We further differentiate between three types of edges:

1. e ∈ Vref ×Vref : the head and tail are both reference nodes.

2. e ∈ Vref ×Valt: the head is a reference node and the tail is an alternate node.

3. e ∈ Valt ×Vref : the head is an alternate node and the tail is a reference node.

In general, the in-degree and out-degree, i.e. the number of incoming and outgoing edges,
of all inner reference nodes can be at most 2, while all inner alternate nodes always have
an in-degree of 1 and an out-degree of at most 1. Alternate leaf nodes have an out-degree
of 0. We use this constraint to reduce the complexity of the code, knowing that most
sequence differences are embedded in two segments of the reference sequence, and therefore
an alternate node is only reachable from a reference node and must lead back to a reference
node.

A path from node u to w in T is an ordered sequence π = (v0 , v1 , . . . , vk−1 ), with u = v0
and w = vk−1 , of distinct nodes in V where (vi , vi+1 ) ∈ E for all i ∈ [0..k − 1). The size of
π is k = |π| and we call a path π a rooted path if and only if its first node is also the root of
T , i.e. v0 = root(T ).

Furthermore, we introduce the terms reference path and alternate path. The former term
signifies a rooted path π where all its nodes are members of the reference node set, such
that ∀v ∈ π, v ∈ Vref (dark grey edges in Fig. 4.12). Conversely, we say a rooted path is
an alternate path if and only if there exists at least one node that is also a member of the
alternate node set, i.e. ∃v ∈ π, v ∈ Valt (light grey edges in Fig. 4.12). In the following, we
use the symbols πref and πalt to discriminate between a reference path and an alternate
path, respectively. Importantly, the definition of πalt does not exclude the fact that another
u ∈ πalt, with u ̸= v, can be a member of Vref .

In addition, we use the term alternate subtree, denoted by Tδi
⊂ T , to describe any subset

of nodes as well as their respective edges that form a subtree rooted in an alternate node
that corresponds to the sequence difference indicated by δi ∈ R. More specifically, if
Tδi

= (V ′,E ′) denotes an alternate subtree, then there exists an edge e ∈ E such that
head(e) /∈ V ′ and tail(e) ∈ V ′, and additionally head(e) ∈ πref and tail(e) = root(Tδi

). This
also means that every rooted path of an alternate subtree is also an alternate path because
root(Tδi

) ∈ Valt.

126



4.4 Dynamic traversal interface

Node representation

In this section, we describe the primary abstract representation of a node in our model.
At its core, a node is an ordered pair consisting of a left and a right breakpoint boundary.
A breakpoint boundary is itself modelled as an ordered pair (δ, β) ∈ R × {l,h}, where
the first element represents a handle to the currently visited sequence difference in the
underlying RCMS R, and the second element, i.e. β, is a value from the binary alphabet
{l, h} characterising whether the breakpoint boundary corresponds to the low (i.e. β = l)
or the high (i.e. β = h) breakend of the breakpoint associated with δ. Given a node v, we
write left(v) = (δi, βL) to denote its left breakpoint boundary and right(v) = (δj , βR) to
denote its right breakpoint boundary. Moreover, v ∈ V if and only if i < j or i = j and
βL = l and βR = h.

Having this, we redefine the primary fields low, high, seq, cov already known from a covered
sequence difference δ for a node v as follows:

low(v) =
{

low(δi) if and only if βL = l
high(δi) if and only if βL = h

(4.15)

high(v) =
{

low(δj) if and only if βR = l
high(δj) if and only if βR = h

(4.16)

cov(v) =
{

cov(δi) if and only if v ∈ πalt

HX if and only if v ∈ πref
(4.17)

seq(v) =
{

seq(δi) if and only if v ∈ Valt

r [low(v)..high(v)) if and only if v ∈ Vref
(4.18)

The low field of v represents either the low or the high breakend of its left breakpoint
boundary. Similarly, the high field of v represents either the low or the high breakend
of its right breakpoint boundary. A node v also has a coverage field, which has different
interpretations depending on whether the corresponding node is inside an alternate path or
not. If the node is inside an alternate path, the coverage field represents the coverage of the
sequence difference marking the left breakpoint boundary. Otherwise, it represents the full
haplotype coverage HX including all haplotypes.

Lastly, the sequence of a node v represents either the alternate sequence of the sequence
difference of its left breakpoint boundary if v is a member of an alternate path, or the
corresponding infix of the reference sequence r specified by its low and high breakend values
if v is a member of the reference node set. Note that this distinction is irrespective of whether
v belongs to a reference path or an alternate path. Figure 4.12 depicts the conceptual graph
object obtained for the RCMS from Fig. 4.6.

Basic traversal operations

The presented node representation is sufficient to implement the basic operations needed to
traverse the JST in an ordered way. However, in order to provide a proper start and end
condition for the traversal, we introduce two artificial sequence differences that signal the
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Figure 4.12: Conceptual graph generation for the RCMS given in Fig. 4.6. The breakends in BRK
partition the reference into smaller segments. Each segment is described by a node in the graph.
The nodes show the reference position and state of their low (first line) and high (second line)
breakpoint boundary, the label sequence, and the coverage. Nodes with dark grey lines are
members of Vref , and with light grey lines are members of Valt. The two reference nodes with
dashed lines are inserted to provide a well-defined traversal over the graph.

low and high terminus of a given RCMS R. We use ϱ to mark the low terminal and ς for
the high terminal. The fields of these artificial sequence differences are defined as follows:

pos(ϱ) = 0
code(ϱ) = 100

low(ϱ) = pos(ϱ)
high(ϱ) = pos(ϱ)
seq(ϱ) = ϵ

cov(ϱ) = HX

pos(ς) = |r |
code(ς) = 110

low(ς) = pos(ς)
high(ς) = pos(ς) (4.19)
seq(ς) = ϵ

cov(ς) = HX

As can be seen, both terminals represent an empty alternate sequence mapping to a zero-
sized breakpoint covered by all sequences of R. The low terminal points to position 0, and
the high terminal to |r |. Moreover, their codes are chosen such that ϱ < δ < ς for all δ ∈ R.
Consequently, we define the leftmost breakpoint boundary of any node in T as (ϱ, l), and
the rightmost breakpoint boundary as (ς,h) (see Fig. 4.12).

Having this, we can now describe the primary operations to go from a node v to its
successor w using the two algorithms nextRef and nextAlt listed in Algorithm 4.11 and
Algorithm 4.12, respectively.
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Next ref

Algorithm 4.11: nextRef
Input: Parent node v
Output: Child node w or NIL

1 (δj , βR)← right(v)
2 if δj = ς then
3 return NIL
4 k ← j + 1
5 while δk ̸= ς and pos(δk) < high(v) do
6 k ← k + 1
7 w ← v
8 left(w)← (δj , βR)
9 right(w)← (δk, bnd(δk))

10 return w

As the name suggests, we use the nextRef operation to go to the next reference node w in
Vref from the current parent node v if such a successor node exists. At the beginning, the
procedure reads the state of the right breakpoint boundary of the parent node v. If the
associated sequence difference δj is equal to ς, the parent node v is a leaf and the procedure
is terminated by returning NIL. Here, NIL refers to the special null state of nodes indicating
that the parent v has no successor in Vref . Otherwise, the algorithm goes to the upcoming
element δk in R.

In case the position of the next element δk is less than the position of the right breakend
boundary of v, the algorithm continues incrementing δk until it finds the first successor of
δj whose low breakend is greater than or equal to the right position of the parent node
(Lines 5 to 6). Notably, the while loop executes at most three times. That is, if the parent
node v ∈ Valt, its high breakend might be larger than the position of the next sequence
difference in the case that δj and δj+1 point both to a SNV, because of our choice not to
store the high breakends of these variant types. To compensate for this, we skip to the next
sequence difference, whose position is greater than or equal to the high breakend of the
right breakpoint boundary of the parent node.

The while loop is not executed for insertions or deletions, since in both cases, the condition
pos(δj+1) < high(v) is always false. This holds for insertions, because their high breakend
is equal to their low breakend and for deletions we use the breakend mate information (see
Algorithm 4.12 in the subsequent section) to directly jump to the corresponding entry in R
that marks the end of the deletion. Therefore and because of Definition 4.3.5, we have that
only SNVs at the same position must be skipped, which can be at most 3. If the parent
node v ∈ Vref , then its right breakpoint boundary would represent the low breakpoint of δj

and hence the position of the next SNV is equal to this position such that the while loop is
skipped.

Having found a valid δk, the procedure makes a copy of v to create the child node w including
all its internal states and resets its left breakpoint boundary to the right breakend boundary
of its parent node. Thus, the left breakend boundary of w seemingly connects to the right
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breakend boundary of v. Subsequently, the algorithm checks whether δk marks the end of
the breakend dictionary, where

bnd(δ) =
{

l if and only if pos(δ) = low(δ) or δ = ϱ,

h if and only if pos(δ) = high(δ) or δ = ς.
(4.20)

Finally, the new child node w is returned.

Next alt

Algorithm 4.12: nextAlt
Input: Parent node v
Output: Child node w or NIL

1 (δj , βR)← right(v)
2 if βR = h then // parent is non-branching node
3 return NIL
4 w ← v
5 left(w)← (δj , βR)
6 right(w)← (mate(δj),h)
7 return w

The second operation, nextAlt, is used to visit the child that corresponds to a particular
sequence difference in R. In the beginning, this procedure checks if the right breakpoint
boundary βR represents the high breakend of the corresponding sequence difference δj . If
this check evaluates to true, NIL is returned.

In the other case, the new child node w is created as a copy of v. Subsequently, its left
breakpoint boundary is reset to the right breakpoint boundary of its parent v, and its
right breakpoint boundary is set to the high breakend of its breakend mate. Notably, this
method always produces nodes that are members of Valt. As such, every alternate node in
T represents the left and right breakend of a single sequence difference in R, i.e. δi = δj

and βL = l and βR = h.

4.4.2 Tree polishing

Having described how we can traverse a given RCMS R using tree-like traversal operations,
we now focus on strategies to dynamically refine the size of the tree. These strategies
aim to reduce the total number of nodes in the virtual JST and can be seen as additional
adaptors of the essential operations nextRef and nextAlt. We refer to these strategies as
tree polishing operations.

Among others, the three main tree polishing operations are: pruning of alternate subtrees
based on the minimal required length of a path sequence, pruning of alternate subtrees based
on the path cover, and maximal expansion of nodes with out-degree 1. In the following, we
first describe the two approaches to prune the subtrees and subsequently discuss the node
expansion method.
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Minimal path sequence

Given a path π = (v0 , v1 , . . . , vk−1 ) in a JST T , we define the path sequence as the sequence
obtained by concatenating the sequences of all nodes in the path. Formally, we write:

seq(π) = seq(v0 ) + seq(v1 ) + . . .+ seq(vk−1 ). (4.21)

Let ω ∈ N, where ω ≪ |r |, be the size of a window used by an online algorithm α. When
applying α on a given RCMS R using a JST traversal, we want to make sure that the size of
alternate subtrees are kept as small as possible while ensuring that no ω dependent sequence
context around the sequence differences is missed. This can be achieved by bounding the
length of alternate paths, starting at the root of an alternate subtree Tδi

, based on the
minimal required size of the associated path sequence. Specifically, we require, without loss
of generality, that the minimal length of an alternate path πalt passing through the root of
an alternate subtree Tδi

is greater than or equal to |seq(root(Tδi
))|+ ω − 1.

To address this, we have implemented a tree polishing routine called cutAfter, which
augments a node in the JST with a journaled sequence representing the current visited path
sequence, along with two offsets that project the left and right breakpoint boundaries to
their corresponding positions within the journaled view. Additionally, there is a parameter
tracking the remaining size of the path sequence. For a given node v ∈ V in the JST, we
use the fields jnl(v), offL(v), offR(v), and rem(v) to refer to these values.

The final algorithm, which augments the JST with the option to prune the tree after reaching
a certain minimal length, is depicted in Algorithm 4.13.

Algorithm 4.13: cutAfter
Input: v, ω

1 if v = NIL or v ∈ πref then
2 return v
3 if rem ≤ 0 then // reached minimal path sequence size
4 return NIL
5 if v = root(Tδi

) then // reset if root of alternate subtree
6 offR(v)← 0
7 rem(v)← |seq(v)|+ ω − 1
8 rem(v)← rem(v)− |seq(v)|
9 offL(v)← offR(v)

10 offR(v)← offR(v) + |seq(v)| − (high(v)− low(v))
11 if v ∈ Valt then
12 replace(jnl(v), pos(v) + offL(v), seq(v))
13 return v

The cutAfter algorithm is invoked with a node and the minimal path sequence size ω.
Then, cutAfter checks if v is NIL or a member of πref , as tree pruning is only performed
on paths of alternate subtrees and not on the reference path. If either condition is met,
the algorithm skips the polishing operation for v. Otherwise, it checks if the minimal path
sequence was reached and returns NIL if this is true, or continues if not.
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Next, the algorithm tests whether the current node v is the root of an alternate subtree Tδi
.

If this evaluates to true, offR(v) is set to 0, and the remaining size of the path is initialised
as the sum of the size of the current node sequence and the user-defined minimal path size
ω − 1.

Subsequently, the remaining size rem(v) is updated by subtracting the size of the sequence
associated with the current node v. Additionally, the last right offset value is assigned
to the left offset value of v and the right offset value is updated by adding the effective
size of the current segment represented by v. Following this, the corresponding position
in the journaled view of the path sequence is computed using pos(v) + offL(v). At this
point, offL(v) represents the cumulative sum of all effective sizes from sequence differences
preceding the current node. Finally, the necessary modifications are applied to jnl(v) to
reflect the changes, but only if v ∈ Valt.

Unsupported paths

Another observation that can be made is that there may be paths within an alternate
subtree whose path sequence does not exist in any of the encoded sequences in R. It would
be beneficial to detect and skip such paths to optimise the tree traversal.

To address this, we introduce a path coverage and track this during the traversal. For
a node v ∈ V in T , we augment it with an additional field κ(v), which represents the
haplotype coverage of the current path. The corresponding tree polishing algorithm, called
cutUncovered, is depicted in Algorithm 4.14.

Algorithm 4.14: cutUncovered
Input: v

1 if v = NIL or v ∈ πref then
2 return v
3 if v ∈ Valt then
4 κ(v)← κ(v) ∩ cov(v)
5 else
6 κ(v)← κ(v) \ cov(v)
7 if κ(v) = ∅ then
8 return NIL
9 else

10 return v

Similar to Algorithm 4.13, the algorithm cutUncovered proceeds only if the current node
v is neither NIL nor from the reference path. It then checks if the new node is either an
alternate node or a reference node. In the case of an alternate node, the algorithm computes
the new path coverage as the set intersection between the current path coverage and the
coverage of the sequence difference associated with the current node. On the other hand, if
the new node is a reference node, the algorithm updates the path coverage by subtracting
the haplotype coverage associated with the left breakpoint boundary of v (see Eq. (4.18)).
This ensures that the path coverage remains consistent with the encoded haplotypes.
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After updating the current path coverage, the algorithm checks if the new coverage is empty
or not. In the former case NIL is returned effectively pruning unsupported haplotype paths,
and in the latter case the updated node v is returned.

Node expansion

The last polishing strategy is based on the observation that nodes with out-degree 1, which
includes all alternate nodes and non-branching reference nodes, can be expanded by merging
them with their successor nodes to form a single node.

Algorithm 4.15: expand
Input: v

1 if v = NIL or βR = l then
2 return v
3 v′ ← nextRef(v)
4 (δj , βR)← right(v′)
5 while v′ ̸= NIL and βR = h do
6 v′ ← nextRef(v)
7 (δj , βR)← right(v′)
8 right(v)← (δj , βR)
9 return v

Algorithm 4.15 presents the corresponding implementation of the expansion strategy. The
algorithm first checks if the current node is a branching node, which means its right
breakpoint boundary refers to the low breakend of a sequence difference. In this case the
node can not be expanded and is returned unmodified.

In all other cases, i.e. v is an alternate node or a reference node that connects to the
high breakend of a deletion. In this case, the algorithm calls nextRef to obtain the next
successor node v′ and repeats this step until it finds a branching node or reaches the end of
the current path. Once a branching node or the end of the path is reached, the algorithm
replaces the right breakpoint boundary of v with the new breakpoint boundary represented
by v′, effectively coalescing all successor nodes with out-degree 1 into v.

4.4.3 Universal traversal

We can utilise the described traversal operations and tree polishing routines to implement
a universal traversal scheme for the RCMS that can be used with any online algorithm
processing a given sequence within an algorithm-specific window, independent of the window
size ω. This scheme follows an alt-first pre-order traversal, where the alternate subtree is
visited first before continuing with the corresponding reference part whenever an inner node
with out-degree two is encountered.

During each iteration, the algorithm is invoked with a segment of the current path sequence
whose size depends on the window size and specific features of the given algorithm. We
distinguish between two traversal variants: a state-oblivious traversal and a resumable
traversal.
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State oblivious traversal

Algorithm 4.16: State oblivious JST traversal
Input: R, α

1 makeRoot():
2 vroot ← ((ϱ, l) , (δ0, l))
3 jnl(vroot)← (0, r)
4 offL(vroot)← offR(vroot)← 0
5 κ(vroot)← cov(ϱ)
6 return vroot

7 getSlice(v, ω):
8 x ← view(jnl(v))
9 i← max(0, low(v) + offL(v)− (ω − 1))

10 j ← high(v) + offR(v) + min(rem(v), 0)
11 return x[i..j)

12 ω ← |α|
13 T ← ∅
14 push(T , makeRoot())
15 while π ̸= ∅ do
16 v ← pop(T )
17 α(getSlice(v, ω))
18 w ← cutUncovered(cutAfter(expand(nextRef(v)), ω))
19 if w ̸= NIL then
20 push(T ,w) // w ∈ Vref, (v,w) ∈ E
21 w′ ← cutUncovered(cutAfter(expand(nextAlt(v)), ω))
22 if w′ ̸= NIL then
23 push(π,w′) // w′ ∈ Valt, (v,w′) ∈ E

The state-oblivious traversal variant is suitable when the online algorithm is treated as a
black box, meaning that its internal state is hidden in the implementation. This is often
the case when using algorithms from third-party libraries where exposing the state was
not part of the original API. In this scenario, we introduce the possibility of including a
user-defined path prefix immediately preceding the currently visited node. In case of online
pattern matching, this prefix includes the ω − 1 contiguous symbols immediately preceding
the left breakpoint boundary of the last node of the root path. The extended label of a
visited node represents an independent search sequence for the applied online algorithm.
The details of this process are shown in Algorithm 4.16

We invoke the state-oblivious traversal with an instance of R and an online algorithm α.
At the beginning of the algorithm (starting at Line 12), we obtain the window size of α,
denoted by |α|. We require that |α| ∈ N; otherwise, we can assume that the algorithm is not
properly initialised. Next, we initialise a stack T that tracks the currently visited path of
the conceptual sequence tree. We push the root node onto the stack to start the traversal.

The root node is configured in the makeRoot routine (Lines 1 to 6). In this routine, a
new node vroot is created, representing the root of the JST. Its left breakpoint boundary
represents the left terminal ϱ, and its right breakpoint boundary represents the low breakend
of the first sequence difference in R. Note that according to the invariants of the breakend
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dictionary, there can not be a high breakend before the first low breakend in BRK . The
journal of vroot is initialised with a single entry representing the whole reference sequence r ,
and the corresponding left and right offsets are set to 0. Lastly, the path coverage κ(vroot)
is set to the coverage of its left breakpoint boundary, which, according to Eq. (4.19), is the
full coverage. The initialised root node is then returned.

After initialising the stack T , the algorithm performs the following steps repeatedly until T
is empty:

1. Pop the current node v from T .

2. Invoke the algorithm α on the respective segment determined by getSlice(v, ω).

3. Visit the reference child node of v by calling nextRef(v) and apply the tree polishing
procedures on the returned child node w.

4. Push the polished child node w to T if it is not NIL.

5. Visit the alternate child node of v by calling nextAlt(v) and apply the tree polishing
procedures on the returned child node w′.

6. Push the polished child node w′ to T if it is not NIL.

The getSlice routine is shown in Lines 7 to 11 of Algorithm 4.16. In the oblivious case,
we obtain the view of the journaled path sequence associated with the passed node v. This
always represents the path sequence of the root path because, as a journaled sequence, we
maintain the prefix of r before the left breakpoint boundary of any alternate subtree root.

Correspondingly, we compute the start position of the segment of this path sequence, denoted
by i, as the maximum of 0 and the current low breakend low(v) plus the stored left offset
offL(v) to account for the recorded insertions and deletions. We subtract from this the
given length ω, which is ω − 1 in this case. The corresponding end position of the segment,
denoted by j, is computed as the high breakend high(v) plus the right offset offR(v) plus
the minimum of rem(v) and 0.

According to our implementation of the cutAfter polishing routine, rem(v) can only become
less than or equal to 0 if v is a leaf node of an alternate path. In this case, it may happen
that the right breakpoint boundary of v is beyond the minimum position needed for the
current window size. To correct this, we adjust it with rem(v), which corresponds to the
negative distance between the minimum position and the position indicated by the right
breakpoint boundary. Finally, the corresponding segment x[i..j) over the root path sequence
is returned.

A call to the polished nextRef can only return a new reference node or NIL. If it is not
NIL, it is added to the stack T before the corresponding alternate node is visited and added
to T , unless it is NIL as well. This ensures that if v has a successor w′ ∈ Valt, then w′ is
processed before w in the next iteration. Therefore, the nodes of the reference path πref
are always processed after the respective alternate subtree has been traversed. As a result,
we guarantee that the last node visited is a reference node in πref , and its right breakpoint
boundary is (ς,h).
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Resumable traversal

Algorithm 4.17: Resumable JST traversal
Input: R, α

1 ω ← |α|
2 T ← ∅
3 A← ∅
4 push(T , makeRoot())
5 push(A, capture(α))
6 while π ̸= ∅ do
7 v ← pop(T )
8 restore(α, pop(A))
9 α(getSlice(v, 0))

10 w ← cutUncovered(cutAfter(expand(nextRef(v)), ω))
11 if w ̸= NIL then
12 push(T ,w) // w ∈ Vref, (v,w) ∈ E
13 push(A, capture(α))
14 w′ ← cutUncovered(cutAfter(expand(nextAlt(v)), ω))
15 if w′ ̸= NIL then
16 push(π,w′) // w′ ∈ Valt, (v,w′) ∈ E
17 push(A, capture(α))

In the special case where we can capture and restore the inner state of the given algorithm α,
we can refine the traversal routine to narrow the segment over the path sequence. Specifically,
we no longer need to include the ω symbols before the left breakpoint boundary of the
currently visited node v in the getSlice subroutine.

To access this traversal version, we require the existence of two functions, capture and
restore, such that the expression α = restore(α, capture(α)) preserves equality. In other
words, we can obtain a copy of α and its state, and return to this state at a later point
in time by restoring α from it. Note that this feature is implicitly given if α is copyable.
However, it is often more efficient to provide a specialisation of these functions to limit the
size of the state.

With these requirements fulfilled, we introduce a second stack, denoted as A, which stores
the captured states of α every time a new child node is added to T . Similar to T , A
is initialised with the initial state of α. Before applying the algorithm to the next path
sequence segment, we restore α from its last captured state stored in A. Since α now
represents the exact state before the current node v is processed, we can call getSlice in
such a way that only the sequence of v between its left and right breakpoint boundaries is
passed to α. The rest of the traversal remains the same. The corresponding pseudocode is
listed in Algorithm 4.17.

4.4.4 Tree transformation and tracing

In this section, we discuss additional transformations and features of the JST that we
implemented to increase its range of applications. These features include:
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1. The ability to apply the mentioned traversals in the backward direction by constructing
a reversed JST.

2. The ability to split a JST into a set of subtrees.

3. Providing a mechanism to efficiently traceback to a visited alternate path at a later
point in time.

Reversed JST

Notably, we can reuse the previously described algorithms to traverse the JST in the
backward direction, i.e. from right to left, by simply providing a lightweight wrapper that
offers a reversed view of the underlying RCMS object. We denote the reversed counterpart
of R as R.

To obtain this representation, it suffices to reverse the reference sequence as well as the
alternate sequences, and the access to the stored sequence differences while adjusting their
fields accordingly.

Definition 4.4.1 (Reverse sequence). Let x ∈ Σ be a sequence of length n = |x|. The
reversed representation of x , denoted as reverse(x), is obtained as follows: reverse(x) =
xn−1xn−2 . . . x0.

With this definition, we define a mapping from the i-th element in R, denoted as δi, to the
corresponding element in the wrapped forward-oriented R such that δi = δnB−1−i, where
nB = |BRK | denotes the number of breakends stored in the breakend dictionary of R. We
redefine the fields pos, low, high, and alt of δi as follows:

pos( δi) = |r | − pos(δN−1−i)
low( δi) = |r | − high(δN−1−i) (4.22)

high( δi) = |r | − low(δN−1−i)
alt( δi) = reverse(alt(δN−1−i)).

Additionally, we reverse the reference sequence, i.e. r= reverse(r), so that the mapped
breakends of δi now correspond to the correct positions within r. Specifically, the high
breakend of the original sequence difference corresponds to the low breakend in the reversed
RCMS, and vice versa. The resulting reversed representation of a JST, denoted as T, is
illustrated in Fig. 4.13.

It is worth noting that this modification did not impact the coverage of the traversal
approaches, which remains the same. Additionally, none of the original data structures
needed to be copied, as the traversal algorithms can be applied directly to the reversed view
of the RCMS.
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Figure 4.13: Reversed JST Tobtained from reversing the example RCMS R shown Fig. 4.11.

Partial JST

The second tree transformation that we implemented is the partitioning of an RCMS R into
multiple chunks, which can then be processed independently in so called partial journaled
sequence trees. More specifically, this transformation involves extracting a subset of nodes
and edges from the original JST that correspond to a segment of the reference sequence. To
define this segment, we specify the start position in the reference sequence as p ∈ [0..|r |)
and the length of the reference path sequence following this position as l ∈ [0..|r | − p).
The extracted subset of nodes and edges, denoted as Tp,l ⊆ T , forms the partial journaled
sequence tree (PJST) corresponding to the segment rp..p+l .

Similar to the reversed transformation, we implemented this as a lightweight wrapper.
Specifically, we modified the creation of the root and sink nodes of the PJST Tp,l in the
way that we adapted the positions of the leftmost and rightmost breakpoint boundaries
(see Eq. (4.19)) of Tp,l to:

pos(ϱp,l) = p (4.23)
pos(ςp,l) = p + l (4.24)

With these modifications, we redefined the makeRoot subroutine as shown in Algorithm 4.18.

Algorithm 4.18: makeRoot for partial JST
Input: R, p, l

1 δi ← lower bound such that pos(δi−1) < p ≤ pos(δi)
2 vroot ← ((ϱp,l , l) , (δi, bnd(δi)))
3 jnl(vroot)← (0, r)
4 offL(vroot)← offR(vroot)← p
5 κ(vroot)← cov(ϱp,l)
6 return vroot
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First, we search for the lower bound δi in R, which takes logarithmic time, i.e. O(log |BRK |).
Once δi is determined, we set the left breakpoint boundary of the root node vroot to represent
the low breakend of the artificial terminal ϱp,l , and the right breakpoint boundary to the
corresponding breakend of the first sequence difference whose position is greater than or
equal to p, i.e. p ≤ pos(δi).

The associated journal to represent the path sequence is still initialised the same way, using
the full reference sequence. However, we set both offL and offR to p in order to retrieve only
the segment of the root node that starts at position offL in the journaled view. Additionally,
the path cover κ is initialised to represent all sequences. Due to this modified initialisation
of the root node, we can reuse the existing traversal implementations as we fast-forward into
the JST to the corresponding node in the reference path πref that spans the position p.

Next, we need to define the sink node of Tp,l in order to provide a proper condition to
terminate the traversal at the correct position defined by ςp,l . However, this end condition
should only be tested while traversing the reference path πref . Specifically, we ignore the
artificial rightmost breakpoint boundary whenever we are in an alternate path that started
before the position of ςp,l . Since we have access to the wrapped R, we can traverse all
alternate subtrees whose root nodes start inside the given reference interval, even if an
alternate path exceeds the artificial end position (e.g. due to a long deletion spanning the
end position).

In addition, we also need to ensure that when an algorithm is applied to a Tp,l , the ω − 1
symbols following the rightmost breakpoint boundary defined by ςp,l are included, unless ςp,l
is the global end terminal, i.e. pos(ςp,l) = pos(ς). This means that ςp,l reflects the rightmost
end position for the head of the window on which an algorithm is operating. To correctly
model this, we wrapped the nextRef procedure as listed in Algorithm 4.19.

Algorithm 4.19: Wrapped nextRef for PJST
Input: v

1 if δR = ςp,l then
2 left(v)← right(v)
3 right(v)← nxt(v)
4 if v ∈ πalt then
5 w ← v
6 return w

7 w ← nextRef(v) // call nextRef of base
8 if w ̸= NIL and w ∈ πref then
9 if low(w) ≤ pos(ςp,l) < high(w) then

10 nxt(w)← right(w)
11 right(w)← (ςp,l , l)
12 else if pos(ςp,l) < low(w) then
13 return NIL

14 return w

As mentioned above, the nextRef routine of the PJST wraps the nextRef routine (see
Algorithm 4.11) of the basic implementation. Correspondingly, it delegates the call to its
base implementation in Line 7 of Algorithm 4.19 to obtain the new child node w.
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Figure 4.14: Chunked RCMS R using a chunk size of 9, s.t. r is split at position 9 and 18 (orange
lines). Orange nodes represent the artificially inserted terminal differences ς0 and ς1. Yellow lines
mark the original nodes that are split due to the inserted terminals. For each chunk a partial JST
can be constructed and traversed independently, while the artificial terminals induce alternate
subtrees that are expanded just like regular ones. Here this is demonstrated with T0,9, T9,9, and
T18,7, which all use a window size of 4.

140



4.4 Dynamic traversal interface

Subsequently, it checks if w represents the last node in the reference path of Tp,l or if it
is the sink node already. The former case is true if the reference segment represented by
w overlaps the end position of Tp,l (Line 9). In this case, the original right breakpoint
boundary of w is cached in its auxiliary field nxt and then overwritten with the artificial
right breakpoint boundary (ςp,l , l). We select the l state to indicate that w is a branching
node. In other words, we treat ςp,l as a real sequence difference, allowing the traversal
algorithm to span an alternate subtree with ςp,l as its root when calling the subsequent
nextAlt routine. By the way we initialised ςp,l , we guarantee that adding this additional
alternate subtree will not change any of the original sequence content encoded in the RCMS.
However, we can now utilise the cutAfter polishing routine to expand Tp,l by exactly ω
symbols that follow the empty alternate sequence at position high(ςp,l) at its end, including
all possible alternate paths if there are other sequence differences in this particular window.
See Fig. 4.14 for an example.

If w is not the last reference node, it is checked whether it represents the sink node, which
is the case if the low breakend of the next node in πref is strictly greater than the final
position pos(ςp,l). If this condition is true, NIL is returned. Otherwise, if w is some node in
πref before the last reference node of Tp,l or if w is either NIL or an element of an alternate
path, the algorithm proceeds without modifying w.

To account for the special right breakpoint boundary added in the case that w was the last
node of the reference path, an additional correction step is added before the call to the base
nextRef routine. If the right breakpoint boundary of the current parent node v is equal
to the artificially set terminal boundary (ςp,l , l), its left breakpoint boundary is set to the
terminal boundary, and its right breakpoint boundary is restored from the cached original
right breakpoint boundary nxt(v). If v lies on an alternate path, we know that v represents
the alternate subtree root spawned at the artificial terminal sequence difference ςp,l . In this
case, we correct our intervention made earlier in the traversal by copying v with its restored
right breakpoint boundary and return this copy as the new reference child node w. If v is
not on an alternate path, the corrected v must have been a node of the reference path.

After calling the base nextRef routine, the returned child node w has its left breakpoint
boundary set to the former right breakpoint boundary, whose position was strictly greater
than pos(ςp,l). As a result, the nextRef routine of the PJST will return NIL, thereby
terminating the traversal.

Tracing

The last feature we implemented for the JST traversal in this thesis is the ability to traceback
to any traversed path using an auxiliary seeking index. This allows us to employ indexing to
swiftly reconstruct the corresponding path of the JST captured during the traversal, similar
to storing the position of a plain sequence.

We added this tracing feature by implementing another thin wrapper class around the JST
interfaces. This wrapper augments a node with two additional fields: idx ∈ [0..|BRK |),
representing the index of the breakend in the breakend dictionary of the underlying RCMS
R, and dsc, representing a descriptor to reconstruct the exact path starting at the alternate
root defined by δidx .
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4 Compression-accelerated pattern matching

During a traversal over a JST T , we capture the current index of the currently visited
sequence difference δi if δi marks the root of the alternate subtree spawned at that position,
i.e. idx(v) = i, or if δi is the sequence difference of the right breakpoint boundary of a
reference path node.

To differentiate between an alternate path and a node of the reference path, we use the value
of the path descriptor dsc, which is implemented as a dynamically growing bitset. Initially,
the path descriptor is empty. When a new alternate subtree root is created, we initialise
the path descriptor of the current node to 1; otherwise, we keep it empty. After moving to
the next child node within an alternate subtree, we append a 1 to the path descriptor if
the new child node is an element of Valt, and append a 0 otherwise. The length of the dsc
determines the length of the alternate path starting at the alternate subtree root.

To reconstruct a path from a stored seeking index (idx, dsc), we use idx to create a new
reference node w whose right breakpoint boundary represents the low breakend of δidx . If
the path descriptor is empty, we know that the index came from node w of the reference
path, and we are done. Otherwise, we need to unwind the alternate path encoded by dsc.
We achieve this by iterating over the positions of dsc, and whenever we read a 1, we call
nextAlt on the currently visited node; for a 0, we call nextRef. Since the first value of a
non-empty dsc must always be 1, we initiate the alternate path by calling nextAlt((w)).

For example, suppose we are currently traversing the alternate subtree induced by δ6
(deletion: [19, 20, ϵ]) at position 19 in T . Right after entering the alternate subtree root u,
we have idx(u) = 6 and dscu = 1. Now, consider the case where we visit the alternate path
at δ8, i.e. v = nextAlt(u), and the corresponding reference path, i.e. w = nextAlt(u). We
track these paths such that idx(v) = idx(w) = 6, dsc(v) = 11, and dsc(w) = 10.

4.5 Application and evaluation

In this section, we demonstrate the versatility and applicability of our methods designed
around the RCMS data structure by discussing various use cases that are relevant in the
pangenomic area. To do so, we implemented a set of utility tools called JuST tools (Journaled
Sequence Tree tools). These tools include the creation of an RCMS object from a given
VCF file and the corresponding reference sequence file (just::create), simulation of reads
(just::sim), extracting individual haplotypes from a given RCMS object (just::view),
creating an IBF for a given RCMS object (just::index), and a prototypic read mapper
(just::map).

Additionally, we created a benchmark suite to evaluate various configurations of the imple-
mented RCMS routines. In the subsequent section, we will describe the data used for the
benchmarks. Following that, we will present the results for pure online pattern matching
based on the JST traversal, and then evaluate the prototypic read mapping approach.

4.5.1 Benchmark data

We used data from the 1KGP to analyse the performance of our methods. Specifically, we
obtained the variant data from phase 3 of the 1KGP, which was generated by remapping
and recalling the reads on the reference genome build GRCh38. The variant data can be
accessed at the following FTP link: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_
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collections/1000_genomes_project/release/20190312_biallelic_SNV_and_INDEL/.
We also used the GRCh38 reference genome build, which can be downloaded from: http:
//ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_referenc
e_genome/GRCh38_full_analysis_set_plus_decoy_hla.fa [Lowy-Gallego et al., 2019;
Zheng-Bradley et al., 2017].

The dataset from the 1KGP comprised a total of 2,548 samples from 26 populations, resulting
in a total of 5,096 haplotypes. We downloaded the VCF files for each individual chromosome
and transformed them into an RCMS object for further analysis.

VCF disk [GB] RCMS disk [GB] RCMS memory [GB] time [s] # SNVs # InDels

chr1 60 (0.992) 4.1 (0.759) 4.487 183 5 795 045 396 787
chr2 66 (1.001) 4.4 (0.737) 4.76 203 6 356 815 433 735
chr3 55 (0.910) 3.7 (0.676) 4.062 175 5 280 535 360 957
chr4 53 (0.915) 3.9 (0.695) 4.259 167 5 120 663 357 146
chr5 50 (0.821) 3.3 (0.588) 3.551 154 4 788 373 326 662
chr6 47 (0.824) 3.4 (0.607) 3.704 149 4 539 753 323 583
chr8 43 (0.706) 2.9 (0.513) 3.296 133 4 162 376 263 072
chr7 44 (0.744) 3.0 (0.552) 3.095 136 4 222 930 288 477
chr9 33 (0.549) 2.7 (0.420) 2.917 102 3 642 067 245 147
chr10 38 (0.642) 2.7 (0.49) 2.911 115 3 632 296 241 962
chr11 38 (0.628) 2.5 (0.492) 2.453 117 3 500 317 239 723
chr12 36 (0.611) 2.3 (0.470) 2.742 112 3 178 998 205 361
chr13 27 (0.462) 2.1 (0.375) 2.22 83 2 575 087 185 757
chr14 25 (0.415) 1.8 (0.317) 1.874 77 2 383 124 165 778
chr15 23 (0.372) 1.6 (0.295) 1.696 69 2 153 931 147 521
chr16 25 (0.399) 1.7 (0.304) 1.769 76 2 410 530 142 465
chr17 22 (0.351) 1.6 (0.288) 1.532 66 2 066 683 142 176
chr18 22 (0.361) 1.4 (0.261) 1.668 67 2 047 352 138 389
chr19 18 (0.294) 1.2 (0.215) 1.263 54 1 625 697 113 126
chr20 17 (0.294) 1.2 (0.206) 1.269 52 1 706 441 111 050
chr21 11 (0.180) 0.772 (0.137) 0.779 31 976 598 68 670

chr22 11 (0.177) 0.723 (0.132) 0.828 31 993 879 65 199
total 764 (12.648) 52.995 (9.529) 57.135 2352 73 159 490 4 962 743

Table 4.3: Summary of transforming VCF files from 1KGP into RCMS objects per chromosome.
Numbers in parenthesis represent gzipped file sizes.

Table 4.3 summarises general statistics about processing the downloaded VCF data per
chromosome. The input size column represents the disk space occupied by the original VCF
files. The following two columns indicate the disk space and memory capacity required for
the corresponding RCMS objects. The time column depicts the time taken to transform the
VCF input into an RCMS object using a single thread. The last two columns represent the
number of SNVs and InDels contained in the final RCMS objects. Overall, InDels account
for approximately 6.8% of all variants.

Loading the largest chromosome 2 into RAM using the current version of the RCMS
implementation requires only 4.76 GB of main memory. The entire human genome data,
including all chromosomes, could be loaded with less than 60 GB of RAM. This means that
we need approximately 0.00136 bytes per input variant.
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Simulated data sets

To evaluate the online pattern matching algorithms, we used just::sim to simulate four
sequences (DSD32, DS64, DS128, and DS256) of lengths 32, 64, 128, and 256, respectively,
from chr22. For the read mapping procedure evaluation, we simulated a read data set
(DS100x100Ke3) for chr22 consisting of 100 000 reads of length 100 with an error rate of up
to three errors (3% error rate).

To simulate the reads, we implemented a JST wrapper class that computed various statistics
about the JST, such as the total number of traversed bases, the number of alternate subtrees,
and the average subtree depth. We used this information to generate a list of candidate
positions from which to sample the reads. In the second run, we traversed the JST again
and sampled the reads from the generated positions.

Test system

We conducted all experiments on a 2-socket system equipped with Intel® Xeon® Platinum
9242 Processors. This system provided in total 96 physical cores and 192 logical cores
due to Intel’s hyper threading feature. The binaries were compiled in release mode using
g++-12.1.0.

4.5.2 Online pattern matching

The first primary use case that we evaluated with our methods was the application of
online pattern matching. As mentioned earlier, one of our main goals was to provide a
generalised approach to execute any kind of online algorithm without the need to implement
a specialised version that operates on an RCMS object. For this purpose, we used the pattern
matching algorithms implemented in SeqAn2, namely seqan::Horspool, seqan::ShiftOr,
and seqan::Myers. We wrapped these classes in a thin adapter class to provide the correct
calling interface for the state-oblivious JST traversal. Additionally, we added a thin adapter
class for the ShiftOr and Myers patterns to also provide a state-resumable version. We
then searched each of the sampled sequences (DS32, DS64, DS128, and DS256) using the
respective JST traversal approach for each of the pattern matching algorithms and compared
it with the plain version. In the plain version, we iteratively applied the pattern matching
algorithms to each haplotype encoded in the RCMS object using its journaled sequence
representation. The final results are listed in Table 4.4.

It can be observed that the runtime of the algorithms using the JST traversal depends
mostly on the lengths of the searched sequence. The longer the sequence to search, the
longer the expected runtime. This is expected because longer sequences require traversing
longer alternate paths and executing more tree polishing operations, resulting in a higher
overall workload.

It is also noteworthy that the workload for the pattern matching algorithm increases as
well. Specifically, for the ShiftOr and Myers algorithms, if the size of the pattern sequence
exceeds the word size (i.e. longer than 64 bases), the workload increases with each additional
word boundary. Looking at the plain execution modes, we see that the runtime of the
ShiftOr algorithm for DS128 doubles, and for DS256, the runtime increases by a factor of 4
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DS32 DS64 DS128 DS256
time [s] speedup time [s] speedup time [s] speedup time [s] speedup

Horspool plain 867.557 1 514.948 1 783.08 1 585.25 1
oblivious 7.696 112.72 11.364 45.31 19.441 33.8 36.432 16.06

ShiftOr
plain 742.13 1 739.52 1 1510.54 1 2278.35 1
oblivious 7.546 98.34 11.636 63.55 23.709 63.71 63.191 36.05
resumable 7.093 104.63 10.748 68.81 19.103 79.07 36.949 61.66

Myers
plain 2313.01 1 2166.36 1 5053.28 1 5074 1
oblivious 9.438 245.07 14.488 149.53 35.376 142.84 89.108 56.94
resumable 8.185 282.59 12.14 178.44 22.742 222.2 42.272 120.03

Table 4.4: Run time evaluation of different online pattern matching algorithms using JST traversal
(oblivious and resumable rows) on the RCMS representation of chr22. The plain row depicts the
base run time obtained from executing the respective pattern matching algorithm on all 5096
journaled sequences.

compared to DS32 and DS64. For the Myers algorithm, the runtime also doubles when the
sequence length reaches 128 bases. However, for DS256, the runtime does not increase any
further. This can be explained by the additional Ukkonnen trick, which allows skipping
remaining cells of the currently computed DP matrix column if an optimal alignment within
the given score limit cannot be reached for the currently aligned needle prefix.

In contrast, the workload of Horspool strongly depends on the distribution of symbols in the
pattern sequence. As a result, we observed different run times in the plain execution for the
different sample sequences. Nonetheless, the differences in run time between the Horspool
and resumable ShiftOr pattern matching algorithms are negligible in our experiments.
Moreover, for longer pattern sequences, the differences between the oblivious and resumable
traversal strategies become more significant. For DS256, the resumable Myers and ShiftOr
algorithms take roughly half the time compared to their oblivious counterparts. These
results are highlighted in Figure 4.15.
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Figure 4.15: Runtimes of online matching algorithms on chr22.

From the results, we can also observe that for more complex algorithms, the performance
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Figure 4.16: Analysis of multi-threaded performance of JST traversal over chr22 for each of the
applied pattern matching algorithms and pattern sequences.
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gained from the JST traversal compared to executing the algorithm repetitively on all plain
sequences increases. The performance of Myers’ algorithm, for example, can be accelerated
by a factor of up to 282 times when compared with the plain execution for the DS32 pattern
sequence.

Multithreading support

Partitioning the JST allows us to exploit thread-level parallelism on an SMP, as each partial
JST can be traversed independently from all other partial JSTs. For this experiment, we
split the JST into as many partial JSTs as configured threads and gradually increased the
thread count by a factor of 2. The respective run times are depicted in Fig. 4.16a. As
can be seen, by adding more threads, the runtime can be greatly reduced, which becomes
more significant as the pattern sequences get longer. Moreover, the differences between the
pattern matching algorithms become negligible as more threads are added, as they approach
the same curve in the plots.

When examining the scaling of the JST traversal, we can observe that up to 64 threads, the
parallel traversal scales well with the number of threads, although the scaling factor is less
than the number of utilised threads. This can be attributed to the non-uniform distribution
of variants across the entire sequence, with some regions having a denser distribution of
variants than others. Consequently, the workload is not equally balanced between the
threads, resulting in a suboptimal scaling factor. Choosing a more fine-grained partitioning
may help overcome these obstacles and improve the scaling factor.

From 64 to 128 threads, the scaling slightly decreases and then starts to improve until 192
threads. This variability can be explained by the fact that the test system only consists
of 96 physical cores, and using more concurrently running threads reduces the expected
performance gain due to the overhead of scheduling two threads on the same core. However,
we can still observe a slight improvement in performance, indicating that hyper-threading
can exploit some high-latency operations during the traversal. On the other hand, this
observation also suggests that there may be room for improving the overall performance of
a JST traversal by reducing the CPI.

4.5.3 Read mapping

In addition to the regular online pattern matching algorithms, we recently extended the
pigeonhole filter implemented in SeqAn to enable applications such as read mapping on an
RCMS data structure. Our strategy is based on the approach of the read mapper RazerS3
[Weese, 2013], which utilises a q-gram index to identify exact matching seeds between
the reads and the reference sequence (refer to Section 2.4.2 for recalling the underlying
methods).

To implement this approach as a JST traversal, we utilised the additional components
that we recently implemented. These components include the ability to track the currently
visited path sequence using our seeking approach, as well as the reverse transformation of
the JST. With these features, we first built the q-gram index over the loaded set of reads
and configured the pigeonhole filter, selecting the maximal q-gram size q for the given error
rate and reads. We then applied the pigeonhole filter by traversing the JST. Whenever the
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pigeonhole filter signals a hit for a particular read, we obtained the respective seek position
from the currently traversed node and calculated the relative position of the seed on the
root path sequence.

Verification

For the verification part, we developed a special JST wrapper class that allows us to extend
a path up to a fixed number of total label symbols. The seek position obtained from the
pigeonhole filter is used to recover the local JST path where the exact matching seed was
found. During the extension process, we apply the resumable Myers’ bit-parallel algorithm
to first check if the suffix – we assume without loss of generalisability that the suffix is not
empty – of the respective read can be aligned to the currently visited JST path within
the given maximum error threshold. During the traversal we only considered the optimal
candidate for each subtree path for the subsequent prefix extension, if such a candidate
exists.

To perform the prefix extension, we utilise the reverse JST implementation. The initial
head position of the found seed is mapped to the reversed JST, as the head of the seed must
either be in a reference node or in the alternate subtree root of an insertion or SNV variant.
This allows us to efficiently instantiate the base node for the prefix extension. With this
information, we can apply the same extension algorithm used for the suffix extension by
performing a forward traversal on the reversed JST. If the remaining prefix of the read can
also be aligned within the remaining error threshold, the reported seek position is translated
back into a forward seek position, marking the beginning of the match.

Finally, the reported end position of the suffix extension is combined with the seek position
of the prefix extension to obtain a positional description of the final matching region in
the JST. With this match description, we can remove duplicates, compute the semi-global
alignment between the read and the matching JST region, or handle different mapping
modes, such as finding only the best matches, all matches with the optimal error count, or
all matches within the specified error threshold.

Performance analysis

We implemented the prototypic read mapping procedure in the just::map tool. To evaluate
the performance of this method, we used the simulated read dataset DS100x100Ke3 and
performed the evaluation with different error rate configurations. The results for single-
threaded execution are presented in Table 4.5.

error rate time [s]

0% 96.18
1% 214.22
2% 355.13
3% 460.13

Table 4.5: Single threaded run times for mapping DS100x100Ke3 to the RCMS of chr22 with different
error rates.
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With increasing error rates, the overall runtime increases. Using a 3% error rate, the same
execution is approximately 4.8 times slower than mapping with zero errors. The significant
difference between the various error rates can be attributed to the fact that for higher error
rates, the pigeonhole filter considers more seeds per read, resulting in a higher frequency of
verification steps and, consequently, longer run times.
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Figure 4.17: Run time comparison for mapping DS100x100Ke3 to the RCMS of chr22 using multiple
threads.

In order to improve the performance we can again use multi-threading to increase the
IPC. The results are shown in Fig. 4.17. Here, we can observe that the run times in a
multi-threaded execution can be reduced to approximately 2, 27, 51, and 51 seconds using
error rates of 0%, 1%, 2%, and 3% respectively.

Prefiltration using IBFs

To further improve the performance of the read mapper, we incorporated a coarse counting
filter using an IBF (see Section 2.4.2) built over the RCMS of chr22. Our approach involves
constructing a partitioned JST, with a total of b bins corresponding to the source sequence.
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Figure 4.18: Run time comparison for mapping DS100x100Ke3 to the RCMS of chr22 using multiple
threads and different bin counts.

Each partial JST represents the sequence content used to construct the corresponding Bloom
filters enclosed in the IBF. The IBF itself is constructed with b bins as well.

By leveraging our design, we can conveniently utilise the existing IBF implementation to
index the sequence content of a pangenome represented by the partial JST. This is achieved
by enumerating consecutively overlapping q-grams in each partial JST and mapping them
to positions in the underlying bitvector of the IBF using a set of hash functions. In essence,
we employ an online algorithm to construct the IBF, with a window size of ω = q, making
it applicable to our JST traversal.

To ensure full sensitivity of the filter, we extend the sequence overlaps of each partial JST to
at least m− 1, where m is the size of the longest processed read sequence. This prevents the
omission of reads located at the border between two adjacent partial JSTs. To achieve this,
we adapt the construction of a partial JST by introducing an optional overlap parameter o,
added to the end position of the initial root node of each partial JST.

Since the read length is not known beforehand, the user can choose a relatively large overlap
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value for the initial construction of the IBF, making it applicable for later experiments with
different input data. For example, selecting an overlap of o = 500 would suffice to handle
almost all short-read sequencing experiments with read lengths up to 500 bases. Although,
choosing the overlap too high may increase the number of duplicates with negative effects
on the overall performance.

Once constructed, the IBF can be used for the initial coarse filtration stage independently
of the actual JST. The IBF already encodes the sequence content of each partial JST. In
this stage, we maintain a list of b buckets, one for each counting bin of the IBF, and assign
a read Yj , of an initial read set Y , to the i-th bucket if the counting filter produces a hit for
Yj in bin i. Each produced bucket serves as an independent input for the seed-and-extend
approach described earlier that can be executed in parallel. This initial coarse filtration also
reduces the size of the q-gram index for each processed bucket improving the performance
as well.

The final run times for mapping the reads of DS100x100Ke3, considering different error
rates and bin counts, utilising an IBF built for the RCMS of chr22 with a q-gram size of
q = 21, are presented in Fig. 4.18.

Notably, incorporating an IBF as a prepended coarse filtration step significantly reduces
the overall run time. Using a single thread, the performance is improved by a factor of
5.95, 11.49, 17.49, and 19.55 for error rates of 0%, 1%, 2%, and 3%, respectively, using the
optimal IBF configuration with 512 bins. Additionally, when employing 64 threads and 512
bins, the mapping of all 100 000 reads is completed in just 1.97 seconds. Furthermore, the
figure indicates that with an increased number of threads, the run times for different bin
counts converge, suggesting that on highly parallel systems, fewer bins can be utilised while
maintaining similar run times.
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5 Summary and future work

In this thesis, we focused on two fundamental classes of algorithms essential for a wide
range of modern sequence analysis applications: pairwise sequence alignment and pattern
matching. We explored various approaches to optimise these algorithms in order to address
the significant challenges posed by the massive capacities and throughputs of modern
sequencing technologies.

Pairwise Alignment Algorithms

Regarding the computation of pairwise sequence alignments, we investigated different code-
level optimisations to enhance the performance of these algorithms by leveraging different
levels of parallelism offered by modern CPUs. This included maximising the utilisation of
data-level and thread-level parallelisms offered by as well as focussing on optimising cache
efficiency and exploiting the instruction-level parallelism of superscalar and superpipelined
compute engines.

To achieve this, we interleaved a bulk of DP matrices whose entries can be computed in
parallel using SIMD instructions. For this inter-sequence vectorisation layout we investigated
more efficient strategies to transform the memory layout of the given input sequences and
implemented a saturation mode that enables the full utilisation of all SIMD lanes, regardless
of the sequence lengths. Furthermore we developed a striped iteration pattern that allows
to unroll the computation of multiple cells on the same row increasing the throughput
of the instruction-level parallelism and improving the cache efficiency. In addition, we
developed a more efficient solution to handle hetereogenous sequence collections for our
vectorisation approach and extended the current solution with an optimised scheme for
matrix substitution score functions to improve the performance for aligning amino acid
sequences. We further extended this by also adding a special profile configuration that can
be employed when aligning a single sequence against a collection of sequences, such as in a
database search.

Another significant aspect of our work was the design of a library API aimed at simplifying
the usage of optimised alignment algorithms. Here, we explored various design patterns to
unify the diverse features of alignment algorithms within a centralised DP algorithm that
can be customised through dedicated policy classes.

Lastly, we implemented a dynamic scheduling system to distribute multiple independent
alignment instances to different processors of a multiprocessor system. We also developed
a flexible task-graph execution model that allows to split the DP matrices of alignment
instances into smaller tiles, which can be executed concurrently. The synchronisation is
handled automatically by the task dependencies given by the task graph.
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Pattern matching algorithms

The second major focus of our research was on pattern matching algorithms. In this
context, our objective was to extend the general approach of these algorithms from a single
reference sequence to a system comprising thousands of related reference sequences. A
crucial requirement was the recognition that these reference systems often consist of similar
sequences derived from different individuals within the same population. Incorporating
information from an entire population can significantly enhance the quality of analysis
results by mitigating undesired effects like reference bias in primary sequence analysis.

However, one of the main challenges in working with these massive datasets is efficient data
handling. To address this, we designed and implemented a dedicated data model that stores
a collection of similar sequences in a compact form, leveraging a referential sequence encoding
strategy. Additionally, we developed a fast sequence representation called the journaled
sequence for these encoded sequences. Building upon this approach, we designed and
implemented a generalised traversal scheme that utilises journaled sequences to construct a
journaled sequence tree (JST) representation from the encoded sequence data. Importantly,
our approach is fully dynamic, meaning that the visited paths are dynamically created
on-the-fly during the traversal. As a result, our method does not require any additional
initialisations or indexing routines and can work with patterns of any size. The general
traversal can be further customised using composable tree polishing adapters, allowing for
control over the depth of visited alternate subtrees based on parameters such as the minimal
window size or path haplotype coverage.

We also designed the operations to facilitate the integration of third-party pattern matching
algorithms, originally designed for linear reference sequences, into a pangenomic pipeline.
To demonstrate the applicability of our design, we incorporated existing pattern matching
algorithms from SeqAn2, including Horspool, ShiftOr, Myers’ bitparallel algorithm, and even
more complex algorithms like the pigeonhole filter. The extensions we made to our original
work, published in 2014, enabled the splitting of encoded data into multiple chunks for
independent traversal, reverse traversal, seeking to visited paths using dedicated positions,
and improved strategies for projecting JST positions into the coordinate space of each
encoded haplotype or computing the haplotype cover of a given JST position.

As part of our efforts, we began building a set of utility tools around our data representation,
collectively referred to as the JuST tools. One of these tools is a prototype read mapper
that can already map 100 000 reads, each of length 100 bases, to the 1KGP encoded chr22
in less than 2 seconds.

Outlook

Moving forward, our plan is to expand this application into a fully competitive read mapper
for pangenomes. This includes the use of canonical minimisers in the coarse filtration
step, utilising the recently published hierarchical IBF [Mehringer et al., 2023] to reduce
the size of the initial counting index and expedite the initial filtration process, thereby
enabling the handling of whole-genome data. We will further integrate our new strategies
to efficiently compute pairwise sequence alignments into just::map. To provide some
perspective, with our improved vectorisation it would be theoretically possible to compute
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153 600 000 alignment instances for sequences of length 100 in just one second on a Intel®
Xeon® Platinum 8358 Processor when utilising all 64 cores combined with AVX512.

Furthermore, we aim to explore more compact data representations for the encoded data, as
the additional gzipped representation of the encoded chromosomes suggests that the data
can be stored more efficiently. This particularly pertains to the efficient storage of coverage
data.

Similarly, we will focus on optimising the speed of the JST traversal. Profiling the JST
traversal revealed that computing the coverage intersection and difference represents the
main performance bottleneck. However, not using the haplotype coverage to prune invalid
paths would further increase the overall runtime, as the workload considerably expands.
Therefore, we plan to vectorise the computation of set intersections based on the idea
presented in [Inoue et al., 2014].
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