!\
=VE[RI VS|
==

N——[LIB[ERF—~
NS TA|S | =2

Freie Universitat Berlin

Free Higher-Order Logic
Notion, Definition and Embedding in HOL

Master’s Thesis

March 10, 2020

Name: Irina Makarenko

Matriculation number: 4675619

E-mail address: irina.makarenko@fu-berlin.de
Department: Mathematics and Computer Science
Institute: Institute of Computer Science

Study program: Master of Science in Computer Science
First supervisor: Prof. Dr. Christoph Benzmiiller

Second supervisor: Dr. Alexander Steen

Abstract

Free logics are a family of logics that are free of any existential assumptions. This
family can roughly be divided into positive, negative, neutral and supervaluational
free logic whose semantics differ in the way how nondenoting terms are treated.
While there has been remarkable work done concerning the definition of free
first-order logic, free higher-order logic has not been addressed thoroughly so far.
The purpose of this thesis is, firstly, to give a notion and definition of free higher-
order logic based on simple type theory and, secondly, to propose faithful shallow
semantical embeddings of free higher-order logic into classical higher-order logic
found on this definition. Such embeddings can then effectively be utilized to
enable the application of powerful state-of-the-art higher-order interactive and
automated theorem provers for the formalization and verification and also the
further development of increasingly important free logical theories.

III

Statutory Declaration

[hereby declare that I have written the present thesis independently, without enlisting any
external assistance, and only using the specified aids. I additionally assert that this thesis has
not been part of another examination process.

Berlin, 10 March 2020
Irina Makarenko

Contents

Abstract

1 Introduction

1.1 Motivation e e e
1.2 Isabelle/HOL e
2 Formal Language of Classical Higher-Order Logic

2.1 Syntax.
2.2 Semantics
3 Free Higher-Order Logic

3.1 On Modelling Prior’s Theorem
3.2 Formal Language of Free Higher-Order Logic
321 Syntax.
322 SemantiCs i e e e e
3.2.2.1 Positive Semantics oL
3.2.2.2 Negative Semantics
3.2.2.3 Neutral Semanticso
3.2.2.4 Supervaluational Semantics
3.3 Inclusive Logic
4 Shallow Semantical Embedding

4.1 Embedding of PFHOL into HOL
4.1.1 Proof of Faithfulness
412 EncodingintoIsabelle/HOL
4.2 Embedding of NgFHOL into HOL
4.2.1 Proof of Faithfulness
4.2.2 Encodinginto Isabelle/HOL

VII

III

10
13
14
15
17
18
19
22
26

4.3 On Embedding NtFHOL into HOL
4.4 On Embedding SFHOL into HOL

5 Experimental Application to Prior’s Theorem
51 Implementing the Set-Theoretical Approach
5.2 Formalization using the Embeddings of FHOL into HOL

6 Discussion and Conclusion

References

List of Figures

A Proofs
Al Proof of Lemma 1
A2 Proof of Lemma 2

B Embeddings in Isabelle/HOL

B.1 Complete Embedding of the Set-Theoretical Approach
B.2 Complete Polymorphic Embedding of PFHOL into HOL
B.3 Complete Nonpolymorphic Embedding of PFHOL into HOL
B4 Complete Polymorphic Embedding of NgFHOL into HOL
B.5 Complete Nonpolymorphic Embedding of NgFHOL into HOL

C Countermodels

C.1 Countermodel for Prior’s Theorem with Three Worlds

VIII

Contents

1 Introduction

Nonexistence of objects may take many forms. For instance, there is Pegasus, a fictitious
divine horse from mythology. Though obviously not existent in the real world, everyone has a
clear idea of its general appearance: white hair coat, four legs, and two wings. On the other
hand, we have Vetnas, a distant, possibly habitable planet yet unknown to us. Since it has
not been discovered or explored so far, it has no implicit properties and therefore likewise
fails to refer to some concrete object in the actual world. Finding suitable interpretations for
nonexistent objects in terms of their meaning and handling has a long philosophical tradition,
for example with Lukasiewicz and Kleene. Most commonly these objects are interpreted as
possible, unknown, undefined, half-true, irrelevant, or inconsistent (cf. Ciucci and Dubois
2013). Free logic is a logical framework that tries to accommodate all these different types
of nonexistence. It tries to provide answers to questions including but not limited to: What
status do nonexistent objects have? What do they refer to? Are all nonexistent objects the
same? Can terms involving them have truth values? With respect of higher-order logic,
reasoning with nonexistent objects leads inevitably to partiality of predicates and functions
when arguments or results are nonexisting, and thus to our motivation.

1.1 Motivation

Partiality is a key challenge not only for philosophical and mathematical concerns but also for
computational approaches to artificial intelligence and natural language.’ For that reason, free
logical theories are becoming more and more important and so is computer-assisted reasoning
with them. However, most mature interactive and automated theorem provers are limited
to classical logics as first- or higher-order logic where only total functions are supported
natively. Instead of investing time and effort in the development of new automatic provers,
a highly promising approach is providing a shallow semantical embedding (SSE), that is, a
translation, of free logic into higher-order logic to profit from the strength of long-standing
reasoning systems for establishing the correctness of theories in propositional and quantified
free logic.? Very recently, Tiemens, Scott, Benzmiiller, and Benda (2019) showed successfully
how this approach works well in the context of partial functions within category theory and
modeloids. But free logic has more than one facet and one use case, and hence it would be
beneficial to generally investigate how the individual treatments of nondenoting terms in free
logic can be formalized and embedded into higher-order logic. The aim of this thesis is to
provide a way for universal reasoning within free logic by utilizing already existing automated
proving tools. The first step towards this is to determine a syntax and semantics of free
higher-order logic (FHOL) suitable for this purpose and to form faithful embeddings for each
of free logic’s main varieties from these definitions. Then, these embeddings are automated
and tested by encoding them into an interactive proof assistant based on higher-order logic.

! See the publications of Feferman (1992), Gumb and Lambert (1997), and Gumb (2001) for rich discussions of
possible applications of free logic to computation.

2 Bove, Krauss, and Sozeau (2016) also explored ways in which partial functions can be represented in modern
theorem provers, but were mainly interested in the partiality that arises from non well-founded recursion
rather than the partiality which results from a function not being defined on some arguments.

1.2 Isabelle/HOL

Furthermore, although the primary tactic relied on in this thesis is the shallow semantical
embedding approach, the specified embeddings will be compared against another definition
of free higher-order logic after Bacon, Hawthorne, and Uzquiano (2016) to see if helpful
conclusions for the intention of this thesis can be drawn from the comparison. Now, before
we start our study with the theoretical basics as the formal language of classical higher-order
logic (HOL), we shall introduce the proof assistant of our choice for the encoding, which is
Isabelle/HOL.

1.2 Isabelle/HOL

Isabelle/HOL (cf. Nipkow, Paulson, and Wenzel 2002) is a leading interactive proof assistant
based on polymorphic higher-order logic augmented with axiomatic type classes that offers a
broad module system as well as Isar structured proofs® and an user interface with notation
support. For interactive proof construction, various state-of-the-art first-order and higher-
order automated theorem provers and model finders are combined within Isabelle/HOL. The
integrated tools include, among others, the model finder Nitpick (cf. Blanchette and Nipkow
2010) and the meta-prover Sledgehammer (cf. Blanchette, Bohme, and Paulson 2013; Paulson
and Blanchette 2015), which invokes third-party resolution provers and SMT solvers like
the equational reasoner Simp (cf. Nipkow 1989), the classical reasoners Auto, Force, and
Fast (cf. Paulson 1994) and the untyped tableau prover Blast (cf. Paulson 1999). Prominent
also remotely reachable higher-order provers are Satallax (cf. Brown 2012) and Leo-III (cf.
Steen and Benzmiiller 2018a,b). Although there are viable alternatives with Coq and Lean,
Isabelle/HOL is arguably the most advanced language for large scale formalizations effectively
used in diverse abstract problem representations. With its overall good reputation, it qualifies
as the best available tool for reaching the goal of this thesis (cf. Paulson and Blanchette 2015).

3 Isar (cf. Wenzel 1999) is a proof language used in Isabelle/HOL.

2 Formal Language of Classical Higher-Order Logic

The simple theory of types (STT), referring to a logic presented in 1940 by Alonzo Church, is a
theory that builds classical higher-order logic on top of the simply typed A-calculus. Church’s
original definitions as generalized by Henkin (1950) to extensional type theory (EXTT), the
logical basis of most automated theorem proving systems for higher-order logic (cf. Steen
2020: 8), are rephrased below with reference to Benzmiiller and Andrews (2019).

2.1 Syntax

The main components of Church’s type theory are types and terms; more precisely, typed
terms. The set of types is freely generated from a set of two base types {0, i} and the right
associative function type constructor —.* Intuitively, o is the type of standard truth values
and 7 is the type of individuals.

Definition 1. The set T of simple types is given by the following abstract grammar:

a,B:= oli| (a—pB)°.

Definition 2. The subset T, C T of simple types of type o is given by the following abstract
grammar:

Bi= ol (a—p)
witha € T.

The nonempty subset T, C T of simple types of type i is defined accordingly. Obviously,
T,UT, =T.

Simply typed terms of higher-order logic are finite sequences of symbols and constructed
by exploiting logical constants for equality, negation, disjunction, universal quantifier and
definite description, the improper symbols (,), . and A together with variables denoted by
lower case letters and nonlogical constants denoted by capital letters.®

“ For the sake of completeness it shall be mentioned that there is no serious restriction to a two-valued base
set (Benzmiiller and Miller 2014). Extending the given definitions to a larger set of base types, to many
sortedness, is straightforward (cf. Farmer 2008: 282).

> In his paper from 1940, Church used the more compact notation Bc for o — (3, which, since given in reverse
order, associates to the left.

© The set of primitive logical constants could be a much smaller one, e.g., equality is known to be sufficient in
order to define all logical constants of classical higher-order logic apart from the description operator (Henkin
1963, 1975; Benzmiiller and Andrews 2019: 1.4, and further references therein).

2.1 Syntax

Definition 3. Terms of HOL are defined based on the following formation rules:

S7t = Pa | ma | ((:a%a%o SC!)O{*)O tQ)O | (_|O‘>O SO)O | ((\/OHOHOSO) tO)O |

(v(a%o)%o()‘xa' So)aﬁo)o | (l’(a%o)ﬁox)\xa‘ So)a%o)a ’
<3a—>ﬁ ta)/a | (Az,. 35>a—>5
with o, 5 € T.

Additional logical constants can be introduced as follows:

Nososo = AT MY, = (72 V —y)
— 000 = Az, . \y,.xVy
Sonone = Ao Mo (T = y) Ay = 1)
Jaso)so = ADasor "V (Az,. —(pT))
T, = Ax,. r = A\,
witha € T.

When equality is not considered as primitive in the language, it can be represented by Leib-
niz’ formula encoding that two objects of type o € T are the same if they have the same
properties (Benzmiiller, Brown, and Kohlhase 2004):

_L
T a—a—o

=)\xa.)\ya. Vpaﬁo-pmépy~

The definite description ¢(Az,, . s,) denotes the unique object = of type o € T satisfying s, if
it exists and a canonical error value of type « otherwise (cf. Carpenter 1997: 77). It offers one
the possibility to define an if-then-else operator as, e.g, Farmer (cf. 2008: 273) did:

ey o vosa = AS, AT, AY,. t(Az,. (s> z=2)A(ms > 2=1y)).

The type of each term is given as a subscript and is an element of 7 unless oppositely stated.
Type information may be omitted if clear from the context. Terms of type o are formulas,
nonformula terms of type a € T, are called predicates. Conversely, terms of type o € T,
except ¢ itself serve as functions. Formulas whose leftmost nonparenthesis symbol is either
equality or some nonlogical constant or variable are called atomic formulas (ct. Lipton and
Nieva 2007: 3). V, is the countably infinite set of all variable symbols of type o and C',, is the
countable set of all nonlogical constant symbols of type c.

Definition 4. A variable z is bound in a term s if it occurs in the scope of a quantifier in s. x
is free in s when it is not bound in s.

Any term with no free variable is a closed term. Any closed formula is a sentence.

2.2 Semantics

Definition 5. The substitution of a term ¢, for all free occurrences of variable z, in a term s
is denoted by s [z — 1]

Substitutions are capture-avoiding, meaning that a term is a-converted whenever needed to
prevent binding free variables. a-conversion as well as 3- and 7-conversions are defined as
usual:

Ar,.85 = Ny, (s[x—y]) wherey does not occur free in s (o)
(Axa' S,B) ta =S [,T-)t] (/B)
A1, (s52,) = 8 where = does not occur free in s. (n)

For each binary operator op with prefix notation ((op s)t) we may fall back to its infix
notation (s op t) to improve readability. Likewise, the binder notation {V, ¢ }(z. s) may be used
as shorthand for {V, ¢} (Az. s). In the remainder of this thesis, a matching pair of parentheses
in a type or term may be dropped when they are not necessary, assuming that, in addition
to the generally known rules, (st), the application, and (Ax. s), function abstraction, are left
and right associative, respectively, and that application has a smaller scope than abstraction.

2.2 Semantics

Semantics assigns meaning to syntactically complex terms of a language. Classical higher-
order logic has a well-defined and thoroughly documented semantics (cf. Benzmiiller, Brown,
et al. 2004) which is summarized below.

Definition 6. A frame Disaset {D,, : a € T } of nonempty sets (formally domains) D, such
that D, is chosen freely, D, = {T,F} where T # F and T represents truth and F represents
falsehood, and D, , ; is the set of all total functions from domain D,, to codomain D.

Definition 7. A standard model is a tuple M = (D, I) where D is a frame and [is a family
of typed interpretation functions, i.e., I = {I, : a € T }. Each interpretation function I,
maps constants of type a to appropriate elements of D, .

The logical constants =, =, V, V and ¢ always receive the same meaning of the standard kind
by every interpretation:

[(:a%a%o) = id’ € Da%a%o s.t. forall d7d/ € Don

id(d,d") = T iff disidentical to d’
I(—,.,) = not €D, s.t. not(T) =F and not(F) =T
IV, ,,.,) =or €D, . . st or(v,v)=Tiff vy =Torwv,=T

7 Note that since equality is taken as primitive for all types, it is ensured that the corresponding domains
contain the respective identity relations. Andrews (1972a) demonstrated the importance of including these
relations (cf. Benzmiiller, Brown, et al. 2004: 1046—-1048).

2.2 Semantics

I(v(a%o)ﬁo> = (Illq € D(a%o)%o s.t. forall f S Da—>m
allg(f) =T iff f(d) =T forall d € D,

I(tarso)sa) = desc € Dg_p) o st foral feD, .,
desc(f)=d e D, if f(d)="T and
forall d € D,: if f(d') =T, thend’ =d,
otherwise desc(f) =e,
where e is an arbitrary objectin D,

witha € T.

Definition 8. The function g, : V,, — D, is a variable assignment mapping variables in V,
to corresponding elements in D,. Thus, g = {g, : @ € T} is a family of typed variable
assignments. g [x — d] denotes the assignment that is identical to g, except for variable x,,
which is now mapped to d,:

glr—d](v)

d
and glz—d](y) =g

(y) € D, forall y+x.

The value [s,, [of a HOL term s, in a standard model M under assignment g is an object
d € D, and defined in the following way:

[P, S
e = g(z,)
[[(Saﬁﬁ ta),B]]M’g = [[Saﬁﬁ]]M,g (H ta]]Mg)

[(Az,,. Sg)aﬁg |*¢ = the function f from D, into Dy
st. forall d e D: f(d) = [[SB [rata—e
with a, 5 € T.

Definition 9. A formula s is ¢rue in a standard model M under assignment ¢ if and only if
[s,]*¢ =T, also denoted by M, g F s. A formula s is called valid in M, denoted by M F s,
if and only if M, g F s for all assignments g. Moreover, a formula s is called (generally) valid,
denoted by F s, if and only if s is valid in all standard models M.

By immediate consequence of Godel’s incompleteness theorem from 1931, Church’s type
theory with respect to the ordinary semantics based on standard models is incomplete.®
However, Henkin (1950) introduced a broader notion of a model in which the function
domains contain enough but not necessarily all functions:

8 Farmer (2008) gave a detailed account of this proof.

2.2 Semantics

Definition 10. In a standard model a domain D,, , 5 is defined as the set of all total functions
from D, to Dg. In a Henkin model (or general model) D, 5 is some nonempty set of total
functions, D, ;s € { f | f: D, — Dg}, containing at least sufficiently many of them that
the valuation function remains total.

Henkin’s weaker form of the standard semantics is surprisingly strong: For his generalized
semantics sound and complete proof calculi exist (Henkin 1950; Andrews 1972a,b). Any
standard model is obviously also a Henkin model. Hence, any formula that is valid in all Henkin
models must be valid in all standard models as well. Therefore, the semantics employed in
this thesis are Henkin’s general models. For truth, validity and general validity in a Henkin
model, definition 9 is adapted in the obvious way.

3 Free Higher-Order Logic

o nonexistent object
o existent object

Figure 1: Schema of a domain where each Figure 2:
term denotes either an existent or
a nonexistent object

X----- ty

D Xty
77777777777 ts
7777777777777777 ty
7777777777777 ts

Schema of a domain where each term
denotes either an existent object or
not at all

Free logic, a term coined by Lambert (1960), refers to a family of logics that are free of ex-
istential presuppositions in general and with respect to the denotation of terms in specific.
Terms of free logic may denote existent’ objects, but are not necessarly required to do so.
Quantification is treated exactly as in classical logic, which means that quantifiers range only
over the existing objects.'® As illustrated in fig. 1 and 2, terms fail to refer to objects in the
range of the quantifiers either when they refer to objects outside the quantification domain
D, or when they do not refer at all (cf. Lehmann 2002: 218-219). Both approaches have their
raison d’étre considering that there are indeed two different views on nondenoting terms:
While a philosophical logician is more interested in describing relations between denoting
and nondenoting terms and therefore prefers the approach seen in fig. 1, the mathematician’s
main intention is to reason about partial functions where nondenotation has no particular
significance (cf. fig. 2). Despite general criticism'!, as the approach with two domains is
capable of mimicking the other one'?, it will be pursued for the remainder of this thesis.

% In the thesis at hand, the terms existent/existing and defined are used interchangeably even though a differen-
tiation is advisable. The same applies to the terms nonexistent/nonexisting and undefined.

19 To say, that the quantifiers are treated exactly as in classical logic, means, essentially, that the universal
quantifier V reads: ‘every existing object; and the existential quantifier 3 reads: ‘there exists an object’

1 The approach implies, in a way, a Meinong-inspired view, which was considered critical by, for example,
Lambert (2001b: 262-263), Antonelli (2000: 278, 2007: 7), and Bacon (2013: 9). Pasniczek (2001) also
questioned whether Meinongian logic can be free. However, a slightly modified approach, exactly as offered
in this thesis, was supported by Bencivenga (1986: 415) and also Bacon (2013). Antonelli (2000, 2007) urged
his proto-semantics instead.

12 A partial function f can be simulated by a total function that coincides with f where f is defined and maps to
some arbitrary nonexisting object otherwise. All nondenoting terms can be mapped to the very same object
(e.g., as Scott [1967] proposed), but do not have to be.

3.1 On Modelling Prior’s Theorem

Nonetheless, we will continue to use the term ‘nondenoting, meaning ‘denoting some nonex-
istent object’ The approach selected is also known as the dual domain approach where both
domains are labeled. The domain of nonexisting objects is hereby called D, and the name of
the domain of quantification changes to E. Interrelation of both domains can be described in
two different ways: as a dual domain with two disjoint sets or as an inner-outer dual domain
where D includes E. The first suggestion is exemplified in fig. 3 and traces back to Leblanc
and Thomason (1968) as well as Meyer and Lambert (1968). Its variation, depicted in fig. 4,
was proposed by Cocchiarella (1966) (cf. Morscher and Simons 2001: 25). Aiming for short,
readable definitions the latter proposal fits best for our needs, which is why we choose it for
the further course. Restating the upcoming definitions for dual domains with disjoint sets is a
fairly easy thing to do and left to the ambitious reader.

Figure 3: Example of the dual domain approach with Figure 4: Example of the inner-outer
two disjoint domains dual domain approach

Most literature cited in this thesis deals with free first-order or propositional logic. In the
following, the concepts and results therein are reproduced and transferred to free higher-order
logic as accurately and precisely as possible. Throughout this section, a broad overview of all
varieties of free logic and their individual characteristics revised to be of higher order is given.
Upon that, we will explore how free logics and logics that have the property to be inclusive
are connected. For motivational reasons, we shall begin with a detailed look at a recently
published paper in which free higher-order logic plays a special role.

3.1 On Modelling Prior’s Theorem

In their 2016 published paper ‘Higher-Order Free Logic and the Prior-Kaplan Paradox’ the
authors Bacon, Hawthorne, and Uzquiano discovered that universal instantiation, or, better,
the rejection of it, is key to blocking certain paradoxes inherent in higher-order logics. Logics
without existential assumptions, free logics, just naturally reject the principle of universal
instantiation. Basically, universal instantiation incorporates that from ‘every x in E satisfies s’
we may infer ‘some y satisfies s. This rule, written out as

10

3.1 On Modelling Prior’s Theorem

Ve.s — s[z—y), (sUI)

valid in classical logic where D = F, is not valid in free logic. Consider, for example, the case
that y does not denote an object in E. Then, even if every object in F satisfies s, s [x — y]
could still be false. Related thereto is the principle of existential generalization, which is
equally valid in classical logic but invalid in free logic. Existential generalization refers to the
principle that, from a formula s containing y, we may infer, that there is some object in F that
satisfies s:'?

slx—y] — Jz,.s. (sEG)

If y does not denote an object in the existence domain, then s [z — y| being true does not
imply that there exists an object in E that satisfies s. In fact, sUI and sEG are not provable
in free logic unless an explicit premise is added to make sure the term s [z — y] is satisfied
by an existing object y and not just any object in D. Existence of y can be surveyed by, e.g.,
introducing a predicate E!. Thus, we can redefine universal instantiation and existential
generalization to be valid in free logic as follows:

Ve.s NEl'y — slz—y], (wUI)
slr—=y|NEl'y — Jz.s (WEG)

(Nolt 2018: 1.2).

Arthur Prior (1961), coinciding with David Kaplan (1995), showed that paradoxes can arise
quickly in particular philosophical theories that include both sets and propositions. Bacon
et al. (2016: 4) amended, that these paradoxes are derivable by accepting sUTI and are invalid
with respect to wUI. The family of paradoxes considered by Bacon et al. is represented by
what we will call Prior’s theorem in this thesis. Prior’s theorem is an intensional version of the
Liar paradox'* and states:

QVp. (Qp— —p) — 3p. (@pAp)ANIp. (Qp A —p).

Reading @ p as, for instance, ‘Kaplan believes that p, Prior’s theorem says that if Kaplan
believes that everything that he believes is false, then he believes something true and also
believes something false (Bacon et al. 2016: 4—6) — a logical self-contradiction'® that should
be resolved, and will be as we will see in the further course.

131t is remarkable, that while the principle of universal instantiation is denied in all variants of free logic, SEG
for some s, e.g., a formula with its leftmost symbol being a nonlogical constant, is valid in special settings
called negative and neutral free logic (cf. Posy 2007: 647-648, see also Walters [2014: 25-26] for an excessive
discussion). We will have a closer look at this in section 4.

14 See, e.g., the notes of Beall, Glanzberg, and Ripley (2019) for this famous paradox.

15 To be more precise, the theorem becomes a puzzle in the presence of ‘opaque contexts’ created by intensional
attitudes like thinking, fearing, hoping, and so forth (Bacon 2019: 11). For further elaborations on this, see
the reference.

11

3.1 On Modelling Prior’s Theorem

For the rest of the section, we focus on the language fragment outlined by Bacon et al.
(2016) aiming to invalidate Prior’s theorem. The logic in question is a quantified propositional
logic with logical constants T, L, =, =, V, V and [J in addition to an arbitrary unary logical
connective (). The modal operator [J stands for necessity, while ¢ as its counterpart expresses
possibility. s abbreviates as —[J—s. The semantics of interest are Kripke models (1963)
which involve a set of elements, called worlds, W, and an accessibility relation R C W x W
to interpret modalities, i.e., necessities and possibilities. Furthermore, we have a domain
D(w) C PW — with PW being the powerset of W — defining the range of the quantifiers
at each world, and an extension for () at each w € W, a function, written |@|, which maps
a world to a set of sets of worlds. Kripke models can be depicted as directed graphs. See
fig. 5 for an example where W = {z,y}, R = {(z,z),(x,y)}, |Q|(z) = {{z,y}} and
1Q|(y) = {{y}, ¥} . In terms of Kripke semantics, the modal system S5 is characterized by
models where the accessibility relation is an equivalence relation. In what follows we shall

only consider S5 models.
x ‘ o ‘ |

Figure 5: Example of a Kripke model

To understand why this language has a free logical flavour, one should be aware of the
following distinction: An arbitrary set of worlds — an intension — is called a proposition at
some world w if it is in the so-called existence domain D(w) of that world.!® The extension of
@ at w maps each world to the set of intensions that are () at that world, but not all of these
intensions have to actually exist at w.

Let v be a variable assignment that assigns sets of worlds to propositional variables. Then,
each formula of the language can be associated with a set of worlds in the following way:

[2]., =

{ v(x) if x is a propositional variable

[x], if = isan atomic sentence letter

T {W if [s1, = [¢].

@ else

16 Identifying propositions with sets of worlds goes back to Stalnaker (1976, 1984) and Lewis (1986). Starr
(2019:2.1, with regards to Lewis [1973]) and Kratzer (2012) contributed a very similar Kripkean semantics,
and von Fintel and Heim (2011) published nicely written lecture notes on intensional semantics based on the
A-calculus. For additional information, the reader should refer to these publications.

12

3.2 Formal Language of Free Higher-Order Logic

[=s]., = WN\I[s],

[svt], = [s],VI[t],

[Os], = {weW][Rw)C[s],}

[@s], = {weW][s], €lQw)}

[Va.s], = {weW|we [s], Yu suchthat ulz]v and u(z) € D(w)},

where R(w) denotes the set of worlds accessible to w, so to say { | Rw z}, and u[z]v means
that the variable assignments u and v agree apart from, possibly, variable z. This concludes
the language definition.

Exactly this semantic theory enabled Bacon et al. (2016) to conceive countermodels for
Prior’s theorem eventually showing that free logic is very much a fruitful framework for
avoiding certain paradoxes worth investigating. One point, that is outstanding, is that the
here advised free higher-order logic is based on the first-order language of set theory (Bacon
et al. 2016: 11). Bacon et al. thus break with the long tradition of providing model theories
for higher-order languages in a higher-order meta-logic as, e.g., HOL. For obvious reasons,
including, inter alia, legibility, we will rely on the traditional approach for the general definition
of free logic sought after in this thesis. Nonetheless, since set theory can easily be modelled
within higher-order logic, both approaches are suitable for embedding them into Isabelle/HOL,
which is after all the objective of this work. Therefore, in the following sections, we will give
the general syntax and semantics of free higher-order logic in the meta-logic HOL before
continuing with the corresponding embeddings and the computer-aided verification of Bacon,
Hawthorne, and Uzquiano’s results.

3.2 Formal Language of Free Higher-Order Logic

This section means to construe a free higher-order logic while keeping in mind the intention
of an embedding and the preceding definitions of classical higher-order logic. Schiitte (1960)
and Farmer (1990, 1993, 2004) addressed the issue of how to properly define free higher-order
logic founded on simple types very early. In that matter, Farmer (1990: 1271-1275) worked
out eight major approaches for dealing with partial functions in quantificational logic and
decided to focus on the one that uses a total valuation function for formulas and a partial
valuation function for nonformula terms.!” This strategy requires only few changes to the
framework of classical higher-order logic and yet still handles nondenoting terms in a manner
that closely corresponds to mathematical practice, which was exactly his driving force. Since
our motivation is almost the same, we will inherit this approach. However, there will be a
significant difference: Formulas and nonformula terms are both evaluated totally. But, of
course, there will be some special mechanism allowing the early termination of an application,
so to say an artificial partial application, whenever needed or required by the underlying
free logic. This brings us even closer to a classical logic framework whilst not adding any

17 Explicitly this tactic, in turn, was also advocated by Schock (1968) and Beeson (1985).

13

3.2 Formal Language of Free Higher-Order Logic

serious disadvantages. Our adapted approach allows for partial functions without actually
incorporating partial valuation functions. Apart from that, the subsequent definitions also
conveniently cover all the different and individual variations of free logic by requiring only
minimal changes to the basic definitions. We shall now proceed with a detailed report of the
syntax and semantics sketched here.

3.2.1 Syntax

All the free higher-order logics to be considered will share much of their syntactical structures,
which are covered in this section. Except for terms, all definitions and terminology correspond
to those presented in section 2.1 for classical higher-order logic. Some of them are repeated
here to make the definitions in the following subsections easier to understand.

Definition 11. The set T of simple types is given by the following abstract grammar:

a,f = olil|(a=p).

Definition 12. The subset T, C T of simple types of type o is given by the following abstract
grammar:

Bi= ol (a—p)
with o € T.

The nonempty subset T, C T of simple types of type i is defined analogously.

Simply typed terms of free higher-order logic essentially have the same structure as terms
of classical higher-order logic but are additionally allowed to contain the nonlogical constant
symbol EV.

Definition 13. Terms of FHOL are defined based on the following formation rules:

S7t = PO[| xO{ | (E‘/a%o SQ)O ‘ ((:a%a%o Sa)a%o ta)o |

(ﬁoﬁo So)o | ((\/OHO%OSO) to)o | (V(a%o)ﬁo<>‘ma'80)aﬁo)o |
(L(oz—w)—)a()\xa‘so)a—m)a | (Saﬁﬁta)ﬁ ’ (Axa'sﬁ>a—>ﬁ

witha, 3 € T.

As Hintikka (1959) showed, the primitive unary existence predicate can alternatively be
expressed as

LY = Ax,.Jy,.y==z,

a—o

where the existential quantifier iterates only over existent objects (cf. Lambert 1991b: 8).
Note that by investigation of Meyer, Bencivenga, and Lambert (1982) either equality or a
designated existence predicate has to be primitive in the language because otherwise no other

14

3.2 Formal Language of Free Higher-Order Logic

formula of FHOL could play the role of the term E!s. Rami (2014: 504n1) also stressed the
logical relevance of such a predicate. Even though quantification in free logic is traditionally
limited to existing objects, one could clearly introduce more quantifiers, e.g. V", that iterate
over both existent and nonexistent objects. For the sake of readability, however, this was
not applied.'® Moreover, not only quantifiers have existential import: Definite descriptions
of free logic denote a unique object satisfying some property if and only if it exists and is
defined (Lambert 1972: 186; Bencivenga 1986: 417).

Lastly, it may be worth pointing out that the abbreviations for the logical constants as the
existential quantifier, etc. also stay exactly the same as provided for HOL.

3.2.2 Semantics

The following proposal of semantics for free higher-order logic connects two well-conceived
concepts which were worked out by Benzmdiller and Scott (2019), based on Scott’s work from
1967, and Farmer (1990, 1993, 2004). First, the general definitions that can be applied to all
considered semantics are given, then we focus on the specific parts that are individual to each
semantic variant that is discussed.

Definition 14. A frame Disaset{D,, : a € T } of nonempty sets (formally domains) D,, such
that D, is chosen freely, D, = {T,F} where T # F and T represents truth and F represents
falsehood, and D, , 4 is the set of all total functions from domain D,, to codomain D.

Definition 15. A subframe F is aset {E, : a € T} of possibly empty sets (formally do-
mains) D, such that E, C D, foreacha € T, and E, = D, foreach « € T, .1’

We assume, inspired by Farmer (1990, 1993: 1277)%, that L, € D\ E,, forall @ € T, with
Furthermore, each set D, with a € T, contains the element F', defined inductively by

F = F

o

F,.5(d) = Fz forallde D,.

The purpose of these nonlogical constants is to propagate the nondetonation or falsehood of
a term up through all terms containing it, wherein L, symbolizes ‘the undefinedness’ Their
intended use will be explained in the further course of this section. Exemplary diagrams of
some of the domains can be found in fig. 6.

18 Also because Scott (1970: 146—147), Lambert (1983: 122), and Antonelli (2000: 278), amongst others,
had doubts about the metaphysical relevance of a ‘Meinongian interpretation of outer domains’ where
quantification over all objects is justified.

19 A perfectly reasonable alternative would be to restrict nondetonation to the domain of individuals, i.e., to
define £, C D, and forall « # ¢, E,, = D, (cf. Barba Escribd 2001: 128). Though, unfortunately, this
complicates the definition of strict functions.

20 Farmer insisted, corresponding to mathematical practice, on a partial valuation for functions but a total
valuation for formulas. Therefore he introduced F', only. For this thesis, his idea is taken further to obtain
total valuations for both.

15

3.2 Formal Language of Free Higher-Order Logic

i—o 1—o0

Fi%o

Figure 6: Schematics of domains D,, D_ and D,_,,

Definition 16. A standard model is a triple M = (D, E,I) where D is a frame, F is a
subframe and [is a family of typed interpretation functions, i.e, I = {I, : « € T }. Each
interpretation function I, maps constants of type « to appropriate elements of D .

The partiality characteristic for free logic is implemented by a trick that exploits the constant
1, which enables the functions in each domain D, , 5 to remain total. Hence, the generaliza-
tion of standard models to Henkin models is equally applicable to free higher-order logic (cf.
Leblanc 1980: 127, referring to Schiitte [1960]).*!

The interpretation of the logical constants, as well as the valuation function, depends on
the free logical theory one wants to establish. Over the course of the years, many efforts
have been made for a new conception of truth involving nondenoting terms. These efforts
ultimately led to three fundamentally different theories, which are briefly summarized here:

- Nondenoting terms fail to correspond to a fact, and thus all atomic formulas containing
them are false.

- Nondenoting terms are not well enough defined that atomic formulas involving them can
receive any truth value.

- Atomic formulas with nondenoting terms can indeed evaluate to true as those terms are
not truly nondenoting. They refer to objects that have a special form of existence, which
actually is some kind of fact.

In light of these theories, logicians agreed upon distinguishing three types of free semantics:
negative, positive, and neutral (cf. Bencivenga 1986; Lehmann 2002). For a comprehensive

2L As shown by Farmer, it is possible to give a Henkin-style completeness proof for free higher-order logic with
both partial and total functions (Farmer 1990: 1282—1286). He supplied his own notion of general models for
this. Schiitte (1960: 323—-325) also came up with such a proof.

16

3.2 Formal Language of Free Higher-Order Logic

discussion of the philosophical backgrounds of each of them, refer to Bacon (2013). In what
follows next, we shall only be concerned with the technical formalization of these semantics.

3.2.2.1 Positive Semantics

Positive semantics seems to be the most prevalent semantics for free logic — Scott (1967),
Lambert (1963, 1964, 1967) and also Lambert and van Fraassen (1972) are just a few of the
various famous names that have shaped this semantics. Free higher-order logic with positive
semantics (PFHOL) allows atomic formulas with terms that do not denote to be true.?? For
example, hasLegs(Pegasus) is regarded as a valid formula since the denotation of Pegasus
is a mythological creature which is usually depicted in the form of a winged horse (with
legs). In this sense, the nonlogical constant £’ and the logical constants =, —, V, V and ¢ are
interpreted as given below.

I(E!,.,,) =e €E, s.t. forall d € D,

ex(d)=T if de E,
I(=,,,,,) =1d €E,,, ., st foraldd eD,,

id(d,d") = T iff disidentical to d’
I(—,.,) = not €E, s.t. not(T) =F and not(F) =T
IV, ., ., =o €E . st or(v,v) =TIiffvy=Torwv,=T

I(Y (0s0)50) i= allg € By), st foral feD,,,
allg(f) =T iff f(d) =T forall d € E,

I(t(as0)sa) = desc € By o st foral feD,
desc(f)=d e E, if f(d)="T and
forall " € E_: if f(d") =T, thend’ =d,
otherwise desc(f) = L, if « € T, and
desc(f)=F, if a €T,

«

with o € T.

The value [s, |* of each PFHOL term s, in a model M under the variable assignment g is
an object d € D, and is evaluated as follows:

[P 1™ = I(P,)

ENI = ()

22 Lambert (1991a: 344, 1997: 62) and many more used the term positive as a synonym for not necessarily false,
as is the case here. However, other ways of interpreting positive semantics can be found in the literature, e.g.,
Bencivenga (1986: 397) referred to a semantics where each atomic formula containing a nondenoting term is
true.

17

3.2 Formal Language of Free Higher-Order Logic

[(sanpta)s]™ = [sans]™ ([t]")

[[()\xa Sﬁ)a%,ﬁ]]M’g

the function f from D, into Dy
st. forall d € D,: f(d) = [sz]"e?
with o, 5 € T.

The application is hereby defined in a nonstrict manner. A strict function application would
be defined like this:

[[Sa%iﬁ]]M’g ([[toz]]My) if [[ta]]M’g € E(XZS
Lg else

[[(Soz —; B ta)ﬁ]]Mg = {
with (a —,) € T;,.

A strictly applied function results in undefined if one of its arguments is undefined. In simple
type theory, arguments are typically processed one after another. To be able to pass the
undefined state of a once applied argument through any other possibly following arguments,
the constant | , was introduced for each relevant domain D,,. L, , 5 maps any argument of
type ato L5 until 1, appears. This way, undefinedness is preserved until the evaluation of
the application has reached its end.?* Predicates, on the other hand, need no such special
treatment. In positive free logic, atomic formulas denote truth or falsehood even if one of the
arguments is undefined.” A sligthly different view will be considered in the next section.

3.2.2.2 Negative Semantics

Schock (1964, 1968), Scales (1969), and Burge (1974) were the first who motivated and
refined a negative account of free logic. In free higher-order logic with negative semantics
(NgFHOL), atomic formulas which contain nondenoting terms are all denied. So, a formula
like hasLegs(Pegasus) is certainly invalid. To achieve this result, the interpretations of the
usual nonlogical and logical constants remain identical to the ones for positive semantics and
the evaluation of a NgFHOL term s, in a model M under the variable assignment g, so to say
[s,], is defined as follows:

23 Farmer (1990) also checked the function itself for existence. But since the distinction between existing and
nonexisting functions — in contrast to existing and nonexisting individuals — is unusual and not well-defined,
this was left out. After all, Farmer himself dropped it later on, too (cf. Farmer 1993; Farmer and Guttman
2000).

24 Note that restraining applications like this could lead to malformed valuations, i.e., valuations might not
receive their actually intended meaning. For instance, the ite operator must be handled separately in cases
where the then- or else-parts are meant to be undefined.

2> An obvious extension of positive semantics is to add a nonlogical constant L, to each domain @ € T, so
that predicates can likewise be affected by strictness. But one must bear in mind that by doing so, two-valued
logic is abandoned. See the explanations related to neutral semantics in section 3.2.2.3 for more information
on this.

18

3.2 Formal Language of Free Higher-Order Logic

[P,] = I(P,)

[zo 1™ = g(z,)

[(sass,pta)s]™ = [sas, 0" ([t 1) (1)
(50, pta)s]™ o= { E‘Z‘W“M’g el e b o)
[(Azy-55)ass]™ := thefunction f from D, into Dy

s.t. forall d € D: f(d) = HSB [tz
witha, €T, (a —; B) €T, (@ =, B) €T,

Case (1) describes the function application, which is executed nonstrictly again.® Conversely,
(2) defines how arguments are applied to predicates. When applying an undefined object to a
predicate, the predicate needs to become false. Similarly to the approach seen in section 3.2.2.1,
the nonlogical constant F, in each domain D with o € T helps to propagate falsehood
through all possibly following arguments after the undefined one. Besides ordinary predicates,
this directly affects the evaluation of terms containing the logical constant for equality. For
such an atomic formula to become true, both objects compared need to be defined. If one of
them is not, then, as stipulated in free logic with negative semantics, the predicate application
as in (2) will cause the corresponding formula to evaluate to false.”” As a side effect of this
constraint, the formula E!t may syntactically also be abbreviated by ((= t)) when using
negative semantics (Burge 1974: 323).

3.2.2.3 Neutral Semantics

The former setup has a not unimportant downside: its bivalence. Positive and negative free
logics require atomic formulas containing terms that do not refer to anything existing to be ei-
ther true or false, even in cases where no decision can be made. The term hasLegs(Pegasus)
can readily be regarded as true, yet, since the denotation of Pegasus is a not truly existing
horse-demigod, it most probably has legs, but it is not entirely impossible that it does not. In
fact, nobody knows. Much harder is isSix FeetTall(Pegasus). For the size of Pegasus being
purely speculative, the formula is neither true nor false, but simply indeterminate — a so-called
‘truth value gap’ as Bencivenga (1986: 395) named them. Assigning no truth value to such
atomic formulas seems to be the best way to deal with the situation. But this inevitably means
moving away from a bivalent to a trivalent logic, a logic with three different truth values. And,
this brings up a new challenge: How do such logics spell out the truth-conditions of com-
plex formulas with truth-valueless terms? Is hasLegs(Pegasus) A hasLegs(Horse) a truth?

26 To define the function application in a strict way, adopt the technique presented in section 3.2.2.1.

%7 Some authors call free semantics having this restriction strongly negative semantics (Posy 2007: 643). Their
understanding of a ‘pure’ negative semantics allows formulas like ((= s) t) to be true even if the terms are
nondenoting (cf. Sainsbury 2005: 66).

19

3.2 Formal Language of Free Higher-Order Logic

What about hasLegs(Pegasus)V— hasLegs(Pegasus)? According to, e.g., Lehmann (1994,
2001, 2002), a formula should lack truth value if it encloses any truth-valueless subformula. A
free logic that follows this line is called a neutral free logic, and in our case free higher-order
logic with neutral semantics (NtFHOL). To meet the formal requirements of such a new kind
of semantics, we need to update the definition of a subframe formerly given in section 3.2.2:

Definition 17. A subframe E is a set {E,, : a € T} of possibly empty sets (formally do-
mains) D, suchthat E, C D foreacha € T.

We discard all values F, and instead, in addition to L, for each domain D, with a € T,
include L, € D\ E forall « € T, where again

Lo,5(d) == 1gz foral deD,.

Note that this implies, for neutral free logic, that D, = {T,F, L} in each model. Figure 7
shows the new structure of some of the altered domains.

J-7l~>o
Diﬁo
Eiﬁo EO
T
Fi%o F.
Do
L

Figure 7: Schematics of domains D,_,, and D extended for neutral semantics

The forthcoming neutral free semantics follows Lehmann’s (2002) representation except for
the interpretation of the quantifier V. Lehmann and also Smiley (1960) defined the universal
quantifier — unlike the other logical constants — to evaluate bivalently, i.e., quantified formulas
are either true or false, but never without truth value. McKinsey (2020) expressed concerns®®
and suggested a different handling: Motivated by treating E!z exactly as Jy.y = x ifx
does not denote, namely as truth-valueless, he required for the evaluation of Vz. s that all
constants and free variables other than x in s must be existent (cf. McKinsey 2020: 81). If not,

28 Lehmann (1994) took 3 as primitive and interpreted it in the standard way, the universal quantifier was
introduced via abbreviation. However, in the presence of nondenoting terms, 3x. s and =Vx. —s ceased
to be equivalent. Later, Lehmann (2002: 234—235) treated both individually, though this alone could not
eliminate all problems related to this approach (cf. McKinsey 2020: 57-60).

20

3.2 Formal Language of Free Higher-Order Logic

s is truth-valueless and hence the whole quantified formula, too. In order to provide a neutral
semantics as advised, the nonlogical constant £’ and the logical constants =, = and V are
interpreted as before, but V obtains the following nonstandard interpretation:

I(Y o s0)50) == allg € By, st forall feD,.,
T if f(d)="T foralld e E,

_JF if f(d)=F
allg(f) = for at least one d € E,,
1L else

o

witha € T.

Additionally, taking advantage of the extension of the domains, the interpretation of the
definite description operator ¢ can now be adapted as shown below.
I(tgso)sa) = desc € By St forall fe D, .,

(de E, if f(d)=T and
forall d' € E:

desc(f) = < if f(d') =T,
thend =d
L L, else

witha € T.

The value [s,] of each NtFHOL term s, in a model M under the variable assignment g is
an object d € D, and is evaluated as follows:

[P,] = I(P,)
[z, ™ = g(z,)
[[(Soz%iﬁtahi’]]M,g = [[sa%iﬁ]]M,g (Hta]]M’g)
[[Soz—> B]]Myg ([[toc]]M7g> if [[ta]]M’g € Ea
Sacs,pla)s = : ®
I of)B]] { Lg else
[(Azy-55)as]™ := thefunction f from D, into Dy

st. forall d e D,: f(d) = [sg]"el=
witha, B €T, (=, B) € Ty, (a —, B) €T,

As it was the case for equality in negative semantics, case (3) ensures that, in agreement with
the general perception of neutral free logic, terms matching ((= s) t), (—s), ((Vs)t) or E!'s
are evaluated to truth-valueless if at least one of s or ¢ equals to L, or some other undefined

21

3.2 Formal Language of Free Higher-Order Logic

object. The same holds for atomic formulas containing predicates.

Logics of this kind are thought to be very weak. If a formula includes any nondenoting term,
it immediately lacks truth value and is therefore meaningless. Due to the change of domain
D, even the definition of a Henkin model is no longer applicable and hence completeness
unclear. Many logical truths, indeed, remain at least weakly valid, i.e., not false on all models,
which admits defining weak validity as a substitute for general validity (cf. Lehmann 2001:
153). But such a logic will still be weaker than classical logic and bivalent free logics. For this
reason, most logicians rejected this strategy or tried to improve it, from which the method of
supervaluations arose.

3.2.2.4 Supervaluational Semantics

Free logic with supervaluational semantics was originally developed by van Fraassen (1966a,b)
and subsequently reviewed and sharpened by Skryms (1968), Meyer and Lambert (1968),
Bencivenga (1981) and Woodruff (1984).%° It strives to accommodate the trivalent nature
of neutral free logic while still preserving the principles of classical reasoning. Even though
the term isSix FeetTall(Pegasus) is truth-valueless, it is still safe to assume the validity
of isSixFeetTall(Pegasus) V —isSixFeetTall(Pegasus). The general approach to the
aforesaid semantic behavior involves that a partial valuation function is extended to a total
one by arbitrarily assigning denotation to terms which previously were nondenoting. The
combination of all such possible extensions, together with the information gathered by the
partial function, will ultimately determine a so-called supervalue for all formulas of the
language. Supervaluations are often considered as an alternative to positive free logic with
dual domains since a single domain is equipped with an outer domain (cf. Bencivenga 1984:
1; Yeakel 2015: 87). However, in the current context, they will be defined already starting
from inner-outer dual domain semantics. Instead of handing out denotation to nondenoting
terms as suggested by Bencivenga, we change the denotative meaning of terms that map
to the nonexistent objects L , and leave all other denotations as they are. We will follow
Bencivenga’s (1981, 1986) work closely but have to modify some of his definitions for our
purpose. For defining free higher-order logic with supervaluational semantics (SFHOL), we
start by describing a primary auxiliary valuation function. The nonlogical constant E! and
the logical constants =, —, V, V and ¢ have the same interpretation as they have in neutral
free logic, which means that in particular the connectives have the standard one. Then, the
value [s, ¢ of each SFHOL term s, in a model M under the variable assignment g is an
object d € D, and is evaluated as follows:

[P,] = I(P,)
[e = g(z,)
(B n T if [s,] € E,
‘a—o SO[o ’V‘L’g =
F else

% For spirited comments on this journey, consult the writing of Bencivenga (1986).

22

3.2 Formal Language of Free Higher-Order Logic

(T if [s, M, [t,] € E, and

[sa I = [ta 10
Foif [s,], [t,] € E, and
[(Zacamso Sa)ase ta)o I 1= S [sa 100 # [ta I3
orif [s,] € E, and [t] ¢ E,
orif [s,] ¢ E, and [t]* € E,

else

1

(T if [s,] =T or [t,[J"* =T
F
1

[[((\/O*)O*)OSO)O*)O tO)O :[IJ’,\:[’Q = < if IISCM]]17\1/[79 = [[ta :I]]T\L/Lg = F
, else
[[(Sa—nﬁto)ﬁ]]]X’g = [[Soz%iﬁ]]]?\fg ([[toz]:Lg)
[[Saﬁ [8]]21479 ([[ta]]éfg) if [[toz]]];/I’g € Ea
Sassta)s 1 = :
l(Zoh)BH {J_ﬁ else
[(Az,.85) 050 := the function f from D, into Dy

st. forall d e D,: f(d) = [[3/3 [reote=a
witha, B €T, (o« =, B) € T, (a =, B) € T,.

It is of special interest here, that this valuation function is more extensive than the others
presented in this thesis. Bencivenga rejected Lehmann’s (2002) evaluation of neutral free
logical terms for several reasons and interpreted equality, disjunction, and the existence
predicate in his own way loosely following the truth tables of Kleene’s (1952) strong logic
of indeterminacy. From his perspective, it makes more sense if, for example, for equality
and disjunction, both objects do not necessarily have to exist for the formula to obtain a
defined truth value. It also goes well for him that E’ s evaluates to F if s is nondenoting
instead of receiving no truth value. To reflect this view, the valuation function above has been
complemented by extra cases for terms with £/, = and V allowing the function to evaluate
exactly as Bencivenga meant it to. Nevertheless, it should be mentioned that Bencivenga
(1981: 34-35) stressed, no matter how the connectives are set up, one will always be able to
attain comparable results as he did by carefully adjusting the definitions.

Before we turn to the second auxiliary valuation function, we must specify what a comple-
tion is.

23

3.2 Formal Language of Free Higher-Order Logic

Definition 18. M "= (D, E"1") is a completion of a model M = (D, E, I) if and only if
E: =D \{Ll,}*foreacha € Tandforall P, € C,,a € T3 I*(P,) = I(P,) whenever
I(P,) € E;, and otherwise, with d,, being an arbitrary objectin E, I*(P,) = d,,. Further,
forall P, ., €C, 5, 0,8€T: I'(P, 5) %, = I(P,_ 5)z, whenever I(P, 5)x, € Ej

and otherwise, with d; being an arbitrary object in E3, I°(P,_,5) ¥, = dg. Moreover, g is
the completion of a variable assignment g if and only ifforallz, € V,a € T: g. (z,) =

g(x,) whenever g(z,) € E., and otherwise, with d_, being some arbitrary object in E_ ,
9'(xa) = d-

Informally, a completion is the transformation of a free model into a classical one, easily
confirmed by the fact that, in the completed model, terms denote objects from the inner
domain only.*> The secondary auxiliary valuation function is defined on the grounds of
primary auxiliary evaluations and completions such that the value [s,, [***"¢ of a SFHOL
term s, relative to a model M and its completion M * under a variable assignment g and its
completion ¢ is an object d € E_ for o = o or an objectd € D, for all o # o evaluated as
given below.*

[[(_‘o%oso)o]]15\4,M‘,g,g' = T iff [[80]]Q/I’M"g’g‘ = F
[[((\/O%O%OSO)OHO to)o]]JQ/LM:g’g. = T iff HSO]]Z;/LM:Q’Q. =T or [[to HZ;/LM.’QVQI =T
[[(v(oc%o)—m()\xoc‘ So)a—>o)o]]I:[’M',gag' = T iff foralld € Ea: [[So]]Ig/faM'vg[ﬂ?ﬂdLg'[Iﬁd] =T

(de E, if [s, M olemddle=d = T and
forall d' € E:

if [s, Mol dleleodl = T,

[[(L(aﬁo)ﬁa()‘xa' 80)04%0)(1 HISVLM:Q’Q. =S thend =d
1, elseif o # o
(| F else
[(Az,. 85) 05120 00 ;= the function f from D, into Dy

st. forall d € D,: f(d) = [sg]ielemdeied
{ [sa I if [s, I3 € E,

[sq 12707 = .
“ [s,] else

witha € T.

30 Similar concepts for combining inner-outer dual domains with supervaluations are found in Read (1995:
141-142), Barba Escribé (2001: 129) and Nolt (2018: 3.4). In essence, nonexistent objects are made to exist.

31 According to Bencivenga (1981: 35-36), it is also sufficient to reassign the constants (and free variables)
occurring in the formula under evaluation. But both options are ‘likely to give the same results’

32 In terms of dual domain semantics, it might be better to call this process conversion and the respective altered
model a converted model, but we rather retain the terminology used by Bencivenga.

33 Note that the last pattern is a general one so that all terms not matched before will be matched at this point.

24

3.2 Formal Language of Free Higher-Order Logic

What is happening here is that a term of SFHOL is recursively evaluated by the secondary
auxiliary valuation function until a certain subterm is reached. If this subterm receives a
defined value by the primary auxiliary valuation function, it keeps this value. If not, it is
evaluated once again using the primary auxiliary valuation function along with the provided
completions. Hence, since constants and free variables always denote something existent in
any completion, every secondary auxiliary evaluation applied to a formula yields a defined
truth value.

Now, we are ready to establish the notion of a supervaluation. The value [s, " of a
SFHOL term s, in a model M under the variable assignment ¢ is an object d € D, and
defined as shown beneath.

T if [s,]V =T forevery M",g°

[s,] = F o if [s, V99 =F forevery M"g*
1, celse
[sa I = [so TN

witha € T, a # o.

Obviously, supervaluations only pertain to formulas while nonformula terms continue to be
evaluated as in ordinary neutral free logic. Any formula of SFHOL is supertrue if it is true in a
standard model M under assignment g and all completions M * and ¢°. It is superfalse if it is
false in a standard model M under assignment g and all completions M * and g°. Otherwise,
it is supervalueless. Thus, a supervaluation is still a partial valuation with some formulas
having no defined supervalue. Upon these definitions, it becomes clear that some classical
validities are redeemed, which was exactly the motivation. For instance, a formula as x = x
turns out supertrue, even when x is nondenoting, due to it being true for all objects in a
completed model. To get a better understanding of the evaluation mechanism, consider
the following example brought up by Bencivenga (1986: 408): [Vx. Px — Pa[*99. Let
[Vz. Pz]9 evaluate to T (which is in F,), and [Pa ¢, assuming a is nondenoting, to
truth-valueless (which is not in E,). Now, say [Pa] = F. Cleary, [Vz. Px] would
also evaluate to false in the same model under the same variable assignment. Yet, in our case,
for finishing the evaluation of the exemplary formula, we need to inspect, informally speaking,
[Vz. Pz]* — [Pa]*, which equals to T — F, and that, in turn, is false and hence strong
universal instantiation invalid. The example [Pz V =Pz [***"9¢ can be evaluated similarly
and is left to the reader as an exercise.

However intuitively attractive supervaluations might seem, supervaluational validity as
established by Bencivenga is neither compact nor recursively axiomatizable and therefore not
strongly complete as shown by Woodruft (1984) and approved by Bencivenga (1984: 1). More
than that, what Bencivenga (1986: 404) called the ‘counterfactual theory of truth’ faced a lot
of criticism in recent years: Lambert (2001b: 262) worried that supervaluations ‘will strike
many as intolerably complex; Nolt (2018: 3.4) described supervaluations as merely ‘built from
completions that are in effect positive dual-domain models’ and Lehmann (2002: 233) pointed
out: “If supervaluations make sense in free logic, I believe we do not yet know why”.

25

3.3 Inclusive Logic

3.3 Inclusive Logic

Classical logic carries existential import because its quantification domain D is nonempty:
There is always something in D for terms to denote. Logics in which this requirement is
relinquished such that the domain of quantification may be empty are called inclusive.>*
Logics that are both free and inclusive are called universally free (cf. Lehmann 2002: 197).
Emphasis should be placed here, that, contrary to what is often claimed, inclusive logics
need not necessarily be free, nor need free logics necessarily be inclusive. In classical logic,
some existential claims as Jz.x = x are logical truths. In an inclusive logic, no existentially
quantified formula can be generally valid because the existence of anything is not guaranteed.
Moreover, all universally quantified formulas are vacuously true in the empty domain. Hence,
universal logics invalidate the principle of universal instantiation, i.e.,

Vr.s — s[x—y, (sUI)

which is valid not only in classical logic but also in some other logics that are not inclusive. In
any inclusive logic, the empty domain is a counterexample to all such inferences.

Attentive readers will by now have noticed that we defined semantics for a universally
free logic throughout section 3.2. The reason for this will — if not already obvious anyway —
become clear as we proceed. For a free logic without inclusiveness, definition 15 concerning
free models has to be modified appropriately, i.e., domain £, needs to be nonempty for all
acT.

3* Historically Quine (1954) penned the term, though Jaskowski (1934) was the first to formalize a system that is
today known as inclusive logic — twenty-five years before free logic made an appearance (cf. Bencivenga 1986:
380).

26

4 Shallow Semantical Embedding

For reducing automation of any free logic to reasoning within a classical higher-order logic
framework, also advertised as a ‘universal reasoning framework’ by Benzmiiller (2017, 2019),
we exploit a well known meta-logical approach called shallow semantical embedding, ab-
breviated as SSE. This technique has quite far-reaching roots (cf. Gabbay 1996; Ohlbach,
Nonnengart, de Rijke, and Gabbay 2001), though in recent years especially Benzmdiller has
achieved great results with it.>> Apart from the herein presented ones for free logics, SSEs are
also available for other nonclassical logics as modal logics, intuitionistic logics, many-valued
logics, dyadic deontic logics, and counting.

When shallowly embedding a source language into a target language, the semantics of the
source language is mapped to the corresponding syntax of the target language. In other words,
a shallow embedding is just a translation between languages.*® In the SSEs for Isabelle/HOL
shown in this section, the translation of a source language, in our case FHOL, into HOL is itself
formalized in the meta-logic HOL®’. These translations target only the semantical differences
between the two languages, the model-theoretical constituents they have in common remain
untouched. E.g., while the domain of individuals is shared as it is, the equational theory
defining the mapping of FHOL into HOL explicitly models those existential peculiarities of
free semantics that are not natively supported by classical logic.

As we shall see, shallow semantical embeddings convince with their sheer simplicity and
flexibility. The implementation of any translation is highly readable and traceable, and individ-
ual properties of nonclassical logics or specific models can easily be embedded or axiomatized.
Moreover, higher-order provers need not to be adjusted at any time and can be used out
of the box serving properly encoded, translated HOL input files. For all these reasons, the
SSE approach is well suited for automated and interactive reasoning within theories of free
higher-order logic and hence chosen for the purpose of this thesis.

In what follows, all the shallow semantical embeddings of free higher-order logic into classi-
cal higher-order logic developed for this study are, variant by variant, explained theoretically,
proven where appropriate, and then encoded into Isabelle/HOL.3

4.1 Embedding of PFHOL into HOL

To provide a shallow embedding of PFHOL into HOL, the syntax and semantics of classical
higher-order logic as presented in section 2 have to be enriched with an additional nonlogical

% The potential of the shallow semantical embedding approach has been demonstrated in numerous experiments
relevant to Godel’s ontological argument by Benzmiiller and Woltzenlogel Paleo (2013, 2014, 2016).

% A deep embedding, in contrast, represents the syntax of the source language within the target language
by utilizing some kind of inductive data structure. Then, instances of the data structure are traversed and
translated into terms of the target language. See, for example, the conference poster of Villadsen, Schlichtkrull,
and Hess (2015) to get an impression of the general idea.

57 1f one is to be precise, Isabelle/HOL’s meta-logic is only a well-chosen fragment of higher-order logic (Grundy
and Newey 1998: 126).

38 All encodings have been written and tested in Isabelle/HOL'’s June 2019 version. The .thy files can also be
accessed via https://github.com/stilleben/Free-Higher-0Order-Logic.

27

4.1 Embedding of PFHOL into HOL

constant, a unary predicate £/, , which artificially enables one to distinguish between
existing and nonexisting objects in the domain D ,. Besides, we include an error value e, in
each domain D, with a € T, which is meant to be the object that is returned by the definite
description of type (o« — 0) — aif no such object exists. We redefine the interpretation of ¢
thusly as follows:

I(t(as0)sa) = desc € Dy 0 .o st foral feD,,
desc(f)=d e D, if f(d) =T and
forall " € D,: if f(d') =T, thend = d’,
otherwise desc(f) =e,

with o € T.

Obviously, (F,_, e,), =F foreacha € T,,and foralla € T: (Vz,.(E,,2,),), = T.

Then, a HOL term [s,] is assigned to each PFHOL term s, according to the following
translation function:*

[(Elasso8a)o] = (Basolsal)o

[(Faman0 Sa)asota)o] = (Fhsaso [8aDaso [tal)o

“o-0[501)o

(
(
(
(
(
(
(
(

[(o500 50) om0 To)o] = ((Nomsom0 50100 [t6])s

[(Vaso) 500 50)am0)o] = (Viano) oA (Baso Ta)o o500 [0 Do)ao)o
[(Hamo)maPTarSo)asso)al = (Hamo)maATar (Basso Ta)o Nomsomso [501)o)aso)a
[(aspta)s] = ([sas]ltalls

[(Az455)amg] = (A [55])amp

with o, 5 € T.

Note that in the embeddings and wherever it is necessary to differentiate them, operators of
HOL are annotated with a superscript “, while operators of any kind of FHOL are annotated
with *.

The main trick of this translation is that the existential import of the quantifier and de-
scription operator is secured by cleverly exploiting the additional predicate E,_, as a guard.
When mapping definite descriptions, [(¢, AL, Sy)00)a) could also be translated
into

aﬁo —Q (

39 A very similar translation, even though for first-order logic, was provided and proved to be sound and complete
by Meyer and Lambert (1968). Benzmiiller and Scott (2016, 2019) also came up with such a translation.

28

4.1 Embedding of PFHOL into HOL

(i€ 0 sasa
(Fasso)yso(ATo-
(BasoTa)o Nososo [501)s
Nososo (Va0 (Aar
(EasoYa)o om0m0 [501)o
—o-r0-30

(Yo =asa0 Tado)o)a—o)o)o)aso)o

(tlasso)saPAar (Boso Ta)o Nososo [501)0)aso)a

€a)a

using the if-then-else operator ite to ensure that the classical description definitely returns the
error value e, in case of no such existing object. But due to our previously done redefinition
of classical definite description, this is not really necessary for this embedding. Furthermore,
it is noteworthy that any term 3"z. s is translated into —"V"x. Ex —" —"s, which is the
same as 3"x. Ex A" s (cf. Meyer and Lambert 1968: 11n9).

The faithfulness of the translation will be proved in the next section.

4.1.1 Proof of Faithfulness

The two theorems stated below are already known to hold for HOL with Henkin semantics
through the work of Henkin (1950) and Andrews (1972a,b).

Theorem 1 (Soundness). If F,, s, ,then FE

HOL HOL SO *

Theorem 2 (Completeness). If =, s,,then . s,.

Fiol S, €xpresses that s, is provable in HOL. Thus, to demonstrate that the embedding in
section 4.1 is sound and complete, i.e., faithful, with respect to Henkin-style general model
semantics, it suffices to show that F,, s, if and only if F,, [s,]. For this proof, we
first need to elaborate how to transform a PFHOL model M into a HOL model M, and a
PFHOL variable assignment g into a HOL variable assignment g. We assume, that D, = D,,
and C, = C, foralla € T,and set e, = 1, foreacha € T, and e, = F, for each
a € T,. Then, M = (D, E,I) equals to the model M'= (D,I') where I'is a family
of interpretation functions that assigns the standard interpretation to all logical constants
of HOL. For all other constants P, € C,.: I'(P,) = I(P,). Additionally, the nonlogical

constant £/, is interpreted as follows:

= er €D, ,, sit. forall d € D,
ex(d) =T iff d € E,
witha € T.

29

4.1 Embedding of PFHOL into HOL

We further assume an identical denumerable list of individual variables, so to say, V,, = V.,
foralla € T. Then, g, : V., — D, forall « € T is defined such that

g, (z,) = g(x,) forall x, €V, .
It is easy to see that both M and M are Henkin models.

Lemma 1. For all PFHOL models M and PFHOL variable assignments g,
[sa 1M = [lsa]I
The lengthy proof of this lemma will not be given here, but can be found in appendix A.1.

Theorem 3. F,,, s, ifandonlyif F ., [s,].

Proof.

(—) The proof is by contraposition:

Assume £, s,. Then, there exists at least one combination of a PFHOL model M and a

variable assignment g so that [s,]*? = F. Bylemma 1, [s, "¢ = [[s,]]" = F. Hence,
#HOL [SO] *

(«<—) Analogous to above by contraposition and lemma 1.]

Therefore, the embedding of PFHOL into HOL is sound and complete.

4.1.2 Encoding into Isabelle/HOL

We will now encode the embedding explained in section 4.1 into Isabelle/HOL. Isabelle/HOL,
as already mentioned, uses the meta-language HOL for the representation of classical higher-
order logic formulas. The general syntax and semantics of Isabelle/HOL can be studied in
the tutorial by Nipkow, Paulson, and Wenzel (2019a), and is therefore omitted here. In the
following, we will introduce, in close reference to the general idea of the embedding presented
before, constants, axiomatizations and definitions which combined result in a full theory for
Isabelle/HOL. When defining a constant or an operator, the type of it is given as a so-called
signature for which we need to declare a second — besides bool — base type i for individuals.

typedecl i

Next, we define an existence predicate E for each of the base and compound types. The single
quote in 'a indicates that this is a type variable, meaning, that the definition given hereupon
is polymorphic.** The prefix ‘f’ in this and all upcoming definitions stands for ‘free’

%0 Use of polymorphism has advantages and disadvantages, but the provided encoding can easily be rewritten to
work with specific types.

30

4.1 Embedding of PFHOL into HOL

consts fExistence :: "'a = bool" ("E")

Then, we introduce a new constant e for every type and, accordingly to the definitions in
section 4.1, let e of type i be nonexistent and e of type bool be False. Furthermore, True
and False are set to be existent.

consts fUndef :: a" ("e")

axiomatization where fUndefIAxiom: "—E (e::i)"
axiomatization where fFalsehoodBAxiom: "(e::bool) = False"
axiomatization where fTrueAxiom: "E True"

axiomatization where fFalseAxiom: "E False"

The embedding of the logical connectives is rather uncomplicated and performed beneath.
The new embedded operators of FHOL are identified by using bold-face fonts, the native
HOL operators are lighter.

definition fIdentity :: "'a = 'a = bool" (infixr "=" 56)
where "o = ¢ = ¢ = "
definition fNot :: "bool = bool" ("- " [52]53)
where "—p = —p"
definition fOr :: "bool = bool = bool" (infixr "Vv" 51)
where "p V ¢ = ¢ V "
The numbers, e.g., in (infixr "=" 56) or (binder "V" [8]9) asseen below, help avoiding

brackets in formulas by specifying structural priorities.

Now, for embedding the existential import of the universal quantifier, we utilize the existence
predicate E of the respective type exactly as discussed in section 4.1. Isabelle/HOL supports
the introduction of syntactic sugar for binding notations, which we adopt in the following
definition in order to benefit from the more familiar notation Vx. Px instead of writing
V(Az. Px) or VP,

definition fForall :: "('a = bool) = bool" ("V")
where "V = ¥x. E x — & x"

definition fForallBinder:: "('a = bool) = bool" (binder "V" [8]9)
where "Vx. ¢ x = V"

Note that the set the V quantifier ranges over could also be empty and the embedded logic
would therefore be universally free unless the following axiomatization is added:

axiomatization where fNonemptyDomains: "3x. E x"

31

4.1 Embedding of PFHOL into HOL

For the encoding of the FHOL operator ¢, we rely on Isabelle/HOL’s own definite description
operator THE. Unlike the formal embedding shown in section 4.1, here we must specify the
exact object that will be returned if there is no unique object that has the desired property.
We use Isabelle/HOL's if-then-else operator for this:

definition fThat :: "('a = bool) = 'a" ("I")
where "I® = if Ix. EXx A & x A (Vy. (Ey A & y) — (y = X))
then THE x. E x A & X
else e"
definition fThatBinder:: "('a = bool) = 'a" (binder "I" [8]9)
where "IX. ¢ X = Ip"

Analogous to the precedent case, we introduced binder notation for I. The embedding of
further free logical constants is presented below.

definition fAnd :: "bool = bool = bool" (infixr "A" 52)
where "¢ A ¢ = a(mp V)"

definition fImp :: "bool = bool = bool" (infixr "—" 49)
where "¢ — ¢ = = V "

definition fEquiv :: "bool = bool = bool" (infixr "<" 50)

where "o o ¢ = o = Y A Y > "

definition fExists :: "('a = bool) = bool" ("3")
where "3® = —(V(\y. =(® y)))"
definition fExistsBinder :: "('a = bool) = bool" (binder "3" [8]9)

where "3Ix. ¢ x = Jp"

In the remainder of this section, we will test our encoding to see if the embedding works
as expected. For this, we will run the Isabelle/HOL tool Sledgehammer on simple formulas
known to hold in positive free logic. First, we analyze the formula = z in two different ways,
one time x is arbitrary and the other time it is an object that does not exist. As Sledgehammer
found out, both variants are valid:

consts fIndividuall :: "i" ("i,")
axiomatization where fUndefIndividuallAxiom: "-(E i,)"

lemma "x = x" unfolding Defs*' by auto
lemma "i, = 1" by (simp add: fIdentity def)

1 1

For the next tests, we will investigate the principles of universal instantiation and existential
generalization. As expected, the Isabelle/HOL built-in model finder Nitpick was able to

* unfolding Defs is a mechanism for passing on our definitions as necessary facts to Sledgehammer.

32

4.1 Embedding of PFHOL into HOL

find countermodels for sUI, strong universal instantiation, and for sEG, strong existential
generalization:

lemma "(Vx. P x) — P x"
nitpick [user axioms=true, show all, format=2, card i=2]
oops

Nitpick found a counterexample for card 'a = 3 and card i = 3:%

Free variables:

P = (M. _)(a, := False, a, := False, a, := True)
X = a,

Constants:
E = (M. _)(a, := False, a, := False, a, := True)
E = (M. _)(i, := False, i, := False, i, := False)
e =1
e = False

lemma "P x — (3Ix. P x)"
nitpick [user axioms=true, show all, format=2]
oops

Nitpick found a counterexample for card 'a = 4 and card i = 4:

Free variables:

P = (M. _)(a, := False, a, := False, a, := True, a, := True)
X = a,

Constants:
E = (M. _)(a, := False, a, := False, a, := False, a, := False)
E = (M. _)(i, := False, i, := False, i, := False, i, := False)
e = i,
e = False

Each of the two countermodels can easily be seen as correct. On the contrary, wUI and wEG,
weak universal instantiation and weak existential generalization, are both valid:

lemma "((Vx. (P x)) A (E x)) — (P x)"
by (metis fAnd def fForallBinder def fForall def fImp def fNot def
fOr_def)

%2 Seeing such verbose countermodels is an undesired side effect of Isabelle/HOL'’s polymorphism. Nonetheless,
the countermodels are still perfectly fine.

33

4.2 Embedding of NgFHOL into HOL

lemma "((P x) A (E x)) — (Ix. P x)"
unfolding Defs
by blast

Hence, the embedding seems to embody all fundamentals of positive free logic. The complete
embedding can be found in the appendix, in B.2. A nonpolymorphic version is also provided
in B.3.

4.2 Embedding of NgFHOL into HOL

For the embedding of negative semantics, the same enriched syntax and semantics of HOL is
used as for the embedding shown in section 4.1 for positive free logic. In particular, we once
again make use of the unary existence predicate £, , . A HOL term [s,, | is associated with a
NgFHOL term s, in the following way:

[Pl = P,

(2] =

[(Elaso8a)o] = (Basolsallo

[(Zhsaso Sa)asota)o] = ((Aomsonso (Nomomo (Basol8aDo)oso

(Eozﬁo[ta])O)O)O*}O
<(:2*>01*>0 [Sa])aﬁo [ta])O)O

[(56-050)o] = (765015010

[((Ag=0m0 50) om0 To)o | = ((Nomsom0[50])om0 [E0])s

[(Vas0) 00 50)am0)o]l = (Viaso) oMo (Baso Ta)o —om0ms0 [50Do)ao)o
[(Hamso)saPTarSo)asso)al = (Hamo)maATar (Basso Tado Nomsonso [501)o)ao)a
[(8a, pta)s] = ([8a-,8][taDs

[($a,5ta)s] = (iteg 558 (Bassota)o ([Sam, sl[ta])ses)s
(Ao 85)amp] = (Azq-[85])ap

witha, B € T, (o =, B) € T;, (a —, B) € T,

The biggest contrast to the previous embedding is that terms of type a € T, are evaluated
differently, which influences the application of arguments within formulas. But since D, =
E_, most connectives and quantifiers, and by definition also EF’ ., need not to be treated
individually in this mapping. Only the translation of terms with equality has to be fulfilled
carefully with additional conjunctions to conform to the doctrines of negative semantics. The
correct evaluation of predicates, in turn, is ensured by implementing the application with a

34

4.2 Embedding of NgFHOL into HOL

proper utilization of the ite operator.

4.2.1 Proof of Faithfulness

To proof that the embedding in section 4.2 is sound and complete, it suffices, similar to the
proof of faithfulness shown in section 4.1.1, to show that ., s, ifandonlyif &, [s,].
The transformation of a NgFHOL model M and a NgFHOL variable assignment g into a
HOL model M 'and a HOL variable assignment g'is done in the same way as described in

section 4.1.1 for a PFHOL model. Anew we start with the following lemma:

Lemma 2. For all NgFHOL models M and NgFHOL variable assignments g,
[sa 1 = Tlsa 11

For the proof, the reader is again referred to the appendix.

Theorem 4. = . s, ifandonlyif F, [s,].
Proof.
The proof is exactly the same as for theorem 3. n

Soundness and completeness of the embedding of NeFHOL into HOL ensue.

4.2.2 Encoding into Isabelle/HOL

For the Isabelle/HOL encoding of the embedding of NgFHOL into HOL, we once more begin
with a general setup as follows:

typedecl i
consts fExistence :: "'a = bool" ("E")
consts fUndef :: "'a" ("e")

axiomatization where fUndefIAxiom: "—E (e::i)"
axiomatization where fFalsehoodBAxiom: "(e::bool) = False"
axiomatization where fTrueAxiom: "E True"

axiomatization where fFalseAxiom: "E False"

Equality cannot be translated in a trivial way, because, as explained in section 4.2, we must
ensure that the two objects in comparison are not only equal, but also existent. Otherwise,
the FHOL formula cannot be true. We implement it like that:

definition flIdentity :: "'a = 'a = bool" (infixr "=" 56)
where "p =9 = E o AE Y A (¢ =)"

35

4.2 Embedding of NgFHOL into HOL

The remaining embedding is identical to the one the reader has seen in section 4.1.2 for
PFHOL, so it will only be reproduced here, but left uncommented. The axiomatization for
the domain of quantification to be nonempty is again optional and omitted here.

definition fNot :: "bool = bool" ("= " [52]53)
where "—p = —p"
definition fOr :: "bool = bool = bool" (infixr "Vv" 51)

where "p V ¥ = ¢ V "

definition fAnd :: "bool = bool = bool" (infixr "A" 52)
where "o A ¢ = (- V)"

definition fImp :: "bool = bool = bool" (infixr "—" 49)
where "o — ¢ = =p V "

definition fEquiv :: "bool = bool = bool" (infixr "<" 50)

where "p & Y = ¢ = Y A Y = "

definition fForall :: "('a = bool) = bool" ("V")
where "V® = ¥x. E x — & x"

definition fForallBinder:: "('a = bool) = bool" (binder "V" [8]9)
where "¥x. ¢ x = Vp"

definition fExists :: "('a = bool) = bool" ("3")
where "3¢ = =(V(Ay. = (P y)))"
definition fExistsBinder :: "('a = bool) = bool" (binder "3" [8]9)

where "3Ix. ¢ x = Jp"

definition fThat :: "('a = bool) = 'a" ("I")
where "I® = if Ix. Ex A & x A (Vy. (Ey A & y) — (y = X))
then THE x. E x A & X
else e"
definition fThatBinder:: "('a = bool) = 'a" (binder "I" [8]9)
where "IX. ¢ X = Ip"

However, predicates need special treatment in negative free logic. Since it is not possible
to directly redefine applications in Isabelle/HOL in an easy way, we have to resort to a little
trick: We create a dummy prefix operator to use with a predicate for forcing the negative
evaluation of it. Two of such operators for exemplary predicates of a specific type, one for a
unary predicate and one for a secondary predicate, are given below.

definition fPredicatel :: "('a = bool) = 'a = bool" (""")
where ""P x = E x A P x"
definition fPredicate2 :: "('a = 'b = bool) = 'a = 'b = bool" ("™")

where ""P x y = E XA Ey AP XYy"

36

4.2 Embedding of NgFHOL into HOL

Of course, for each type of predicate in a from NgFHOL translated HOL term the corre-
sponding operator must be introduced as shown above and remembered to be applied for the
proper translation of a term.

For the last part of this section, we will analyze some simple formulas of negative free higher-
order logic and thereby also see how predicates are translated accurately. First, formulas
containing equality, i.e., x = z, are addressed. The following examples perform exactly as
expected for a negative free logic:

lemma "x = x"
nitpick [user axioms=true, show all, format=2]
oops

Nitpick found a counterexample for card 'a = 3 and card i = 3.

consts fIndividuall :: "i" ("i,")
axiomatization where fUndefIndividuallAxiom: "—(E i,)"

lemma "i, = i,
nitpick [user axioms=true, show all, format=2]
oops

Nitpick found a counterexample for card i = 1.

consts fIndividuall :: "i" ("i,")
axiomatization where fUndefIndividuallAxiom: "-(E 1i,)"

lemma "—(i, = i,)"
unfolding Defs using fNot def fUndefIndividuallAxiom
by auto

Negative semantics has the special property that it rejects universal instantiation, but recovers
existential generalization. This can easily be deduced from the fact that Pz can never be true

if x is nondenoting. And indeed, Nitpick was able to find a countermodel for sUI while wUI
and sEG are both valid:

lemma " (Vx. "P x) — "P x"
nitpick [user axioms=true, show all, format=2]
oops

37

4.3 On Embedding NtFHOL into HOL

Nitpick found a counterexample for card 'a = 3 and card i = 3:

Free variables:

P = (Ax. _)(a, := False, a, := False, a, := True)
X = a,

Constants:
E = (M. _)(a, := False, a, := False, a, := False)
E = (M. _)(i, := False, i, := False, i, := False)
E = (M.)(True := True, False := True)
e = i,
e = False

lemma "((Vx. ("P x)) A (E x)) — ("P x)"
by (metis fAnd def fForallBinder def fForall def fImp def fNot def
fOr def)

lemma ""P x — (3Ix. "P x)"
unfolding Defs
by auto

sEG is not only limited to predicates. The experiments below show the validity of some other
instantiations of the principle.

lemma "(x =y) — (Ix. (x =y))"
unfolding Defs
by blast

lemma "(x V y) — (Ix. (x V y))"
unfolding Defs using fTrueAxiom
by auto

Obviously, True must be existing for the proof of the latter.
Appendix B.4 contains the here presented complete polymorphic encoding of the embed-
ding, appendix B.5 the nonpolymorphic version of it.

4.3 On Embedding NtFHOL into HOL

Unfortunately, an embedding similarly intuitive as the preceding ones is not possible for free
logic with neutral semantics. HOL defined on Henkin models has the axiom of Boolean
extensionality built into it (cf. Benzmoiiller, Brown, et al. 2004), which does not allow for any

38

4.4 On Embedding SFHOL into HOL

more truth values than one for truth and falsehood. Since it’s crucial for neutral free logic to
employ a third truth value, we are stuck here.

However, it is possible to encode some many-valued logics in Isabelle/HOL by pursuing
a somewhat different strategy. More precisely, Steen and Benzmiiller (2016) successfully
embedded the sixteen-valued language SIXTEEN (cf. Shramko and Wansing 2012) into HOL.
Their embedding rests on a set-theoretical approach, but the language considered is only a
propositional logic without quantification and hence not useful for deriving an embedding of
NtFHOL. Nonetheless, a similar approach could lead to the encoding of quantified trivalent
logics as neutral free higher-order logic. Though to this date, the author is not aware of any
literature covering quantificational many-valued logic ready to be embedded into classical
first-order or higher-order logic, and developing one is not trivial at all. Because of these
reasons, embedding free logic with neutral semantics could not be done so far.

4.4 On Embedding SFHOL into HOL

The method of supervaluations as described in section 3.2.2.4 involves extending the infor-
mation available about nonexisting objects in all possible ways, the notion of supertruth is
defined upon that. But supertruth is evaluated by quantifying over completions of models and
variable assignments. It probably comes as no surprise that these quantifications cannot be
shallowly embedded straight away. HOL does not provide a device for such unconventional
evaluations. So, as for neutral free logics, since not only a quantified trivalent logic must be
embedded, but also a new kind of quantification is needed, a shallow embedding of SFHOL
cannot be accomplished in a trivial way. Yet Barba Escriba (2001) had a rather ingenious
idea: He noticed modal flavor*® within Bencivenga’s semantics and proposed an embedding
of supervaluational free logic into a free version of modal logic S4.1.** And, which is why
this is mentioned here, the latter one can smoothly be embedded into HOL (cf. Benzmdtiller
and Woltzenlogel Paleo 2015). Anyhow, there is still one problem with Barba Escribd’s pro-
posal: The free modal semantics he postulated is bivalent, and supervaluational semantics
is obviously not (Lehmann 2002: 233). Barba Escriba nonetheless established the following
theorem: A SFHOL formula s is supervaluationally valid if and only if its translation into free
modal logic is valid in the class of all S4.1 models. In the following, we will investigate this
discrepancy by encoding the suggested embedding.

Barba Escribd’s target language is a negative free modal logic in which terms involving
equality can be true even if they contain nondenoting terms. The underlying modal logic is
S4.1, meaning that, with Kripke’s (1963) possible world semantics, the accessibility relation is
reflexive and transitive, and McKinsey’s axiom O P — QU P holds. Furthermore, we assume
nested domains, i.e., if some world v is reachable from w, then the existence domain of v is
bigger than or equal to the existence domain of w (cf. Barba Escriba 2001: 131-132). For the
translation of a supervaluational term into this free modal language, in our context free higher-
order modal logic (FHOML), only the evaluation of predicates needs to be changed. A SFHOL

%3 Bacigalupo (2017: 132n5) also saw evidence that Bencivenga wanted his models to be interpreted modally.

“4 Barba (1989) presented similar results before, but back then he imposed very restrictive conditions on the
applied model theory by introducing so-called K-models that fixed an actual world. The approach taken here
is a much more general one.

39

4.4 On Embedding SFHOL into HOL

formula Pz is true if and only if the FHOML formula (E!x — Px) A (—E!z — OO Px)
is true. The motivation behind this idea is simple: If the argument to some atomic formula
containing a predicate fails to exist at the actual world, then, for the formula to be true, for
all worlds reachable from the actual world there must exist a world reachable from that
world where the argument exists and the formula is true. In short, there must be some
reachable world where E! s and Ps are both true (if not already true in the actual world). For
the embedding of this translation, we first have to encode FHOML into HOL. Benzmiiller
and Woltzenlogel Paleo (2015) explored a solution for embedding higher-order modal logic
(HOML) into HOL by lifting HOML terms into equivalent world-dependent HOL terms.
Following their suggestion, we introduce for the embedding of FHOML into HOL, in addition
to the base type for the individuals, i, a new type for possible worlds, w:

typedecl i
typedecl w
type synonym p = "w = bool"

Then, FHOML terms can be identified with certain Isabelle/HOL terms of type w = bool
such that these terms are evaluated dependent on the world under consideration. The type
w = bool is abbreviated in the encoding as . In the upcoming definitions, the prefix fm’
stands for ‘free modal. Note that this time the definitions are nonpolymorphic.

definition fmIdentity :: "i = i = p" (infixr "=, " 56)
where "o = ¥ = . ¢ = "

definition fmNot :: "p = p" ("-g,_" [52]53)
where "—. 0 = Aw. = (¢ w)"

definition fmOr :: "u = p = p" (infixr "Vg," 51)
where "¢ Vi ¥ = AW, o W V P w"

definition fmAnd :: "p = p = p" (infixr "Ag" 52)
where "(10 /\fm ¢ = _'fm(_'fmgp vfm _'fmw)“

definition fmImp :: "p = p = p" (infixr "— " 49)
where "¢ —q ¥ = 2@ Vi 9"

definition fmEquiv :: "p = p = p" (infixr "o " 50)

where "90 Hfm w = p _)fm ¢ Afm w _)fm 30"

For defining the universal and existential quantifiers, we first give a nonpolymorphic existence
predicate and use it as a guard as usual.

consts fExistencel :: "i = pu" ("E!")

definition fmForalll :: "(i = u) = u" ("Vi,")
where "Vi,® = Aw. Vx. E* x w — & x w"

40

4.4 On Embedding SFHOL into HOL

n i n

definition fmForallIBinder:: "(i = p) = p" (binder "Vg," [8]9)

i i
where "ViX. ¢ X = V0

definition fmExistsI :: "(i = pu) = p" ("3 ")
where "3; & = - (Vi (A\y. =4, (P y)))" .
definition fmExistsIBinder :: "(i = p) = p" (binder "3;," [8]9)

where "3 x. ¢ x = 3} "

Predicates are, as mentioned previously, evaluated as in negative free logic. We therefore
provide a dummy prefix operator below, as explained in section 4.2.2.

definition fmPredicateI :: "(i = pu) = i = p" ("™")
where "MP x = Aw. E! x w A P x w"

Next, we have to define the accessibility relation r and impose conditions on it like reflexivity,
transitivity, and an equivalent to McKinsey’s axiom (cf. Barba Escriba 2001: 131).

consts r :: "w = w = bool" (infixr "r" 53)

abbreviation reflexive :: "bool"

where "reflexive = V¥x. x r x"
abbreviation transitive :: "bool"

where "transitive = Vxy z. (xry) A (yrz) — (xr z)"
abbreviation mcKinseysAxiom :: "bool"

where "mcKinseysAxiom = vx. dy. (x ry) A (Vz. (y rz) — y=2)"
axiomatization where S41:

"reflexive A transitive A mcKinseysAxiom"

The nested domains property is also introduced:

axiomatization where nestedDomains:
"X y. X ry — (Vz. Et z x — E' z y)

To finish up the embedding of FHOML, these are the definitions of the modal operators [
and ¢:

definition fmBox :: "p = " ("O " [52]53)
where "Op = Aw. W. wr v — ¢ v"

definition fmDia :: "u = u" ("o " [52]53)
where "op = = (O(=g,0))"

41

4.4 On Embedding SFHOL into HOL

We are now ready to embed SFHOL. Since the translation mainly effects predicates, we will
give the other definitions without comments. The prefix ‘s’ stands for ‘supervaluational’

definition sIdentity :: "i = i = p" (infixr "=." 56)
where ¢" = ¢ = ¢ = P"
definition sNot :: "pu = p" ("-,_" [52]53)

where "=, p = =g 0"

definition sOr :: "y = p = p" (infixr "v.," 51)
where "o Vi ¢ = ¢ Vg 9"

definition sAnd :: "u = u = p" (infixr "A," 52)
where "o Ay ¥ = o (g9 Vg)"

definition sImp "u = p = p" (infixr "> " 49)
where "p —, ¢ = 2@ V, "

definition sEquiv :: "u = u = p" (infixr "o " 50)
where "p &, Y = ¢ =, Y A, Y o "

definition sForalll :: "(i = u) = u" ("vi")
where "Vi@ = imx. d x"

definition sForallIBinder:: "(i = u) = p" (binder "Vi" [8]9)
where "Vix. ¢ x = Vip"

definition sExistsI :: "(i = pu) = p" ("3")
where "0 = - (Vi(\y. = (D y)))"

definition sExistsIBinder :: "(i = u) = u" (binder "3!" [8]9)
where "3ix. ¢ x = Ilp"

Predicates are translated exactly as described in the introduction to this section:

definition sPredicatel :: "(i = p) = i = up" ("*")
where "P x = (E* x —,, (™P x))
A (2 (ED) = (O(o(™P x))))"

According to Barba Escribd (2001: 135), we need to ensure that the formula is valid in the class
of all S4.1 models. For validity in a model class, the respective formulas have to be true in all
worlds (cf. Gasquet, Herzig, Said, and Schwarzentruber 2013: 44—46). Hence, we implement
validity as shown beneath.

definition sValid :: "u = bool" ("[_|." [718)
where "|p|, = YW. o w"

42

4.4 On Embedding SFHOL into HOL

For testing that we indeed have a free logic, we check if the principles of universal instanti-
ation and existential generalization fail to hold. As can be seen hereupon, Nitpick was able to
find countermodels for both principles whereas their weaker analogs could be proved.

lemma “L(Vix. P x) —, (°P x)]."
nitpick [user axioms=true, show all, format=2]
oops

Nitpick found a counterexample for card i = 2 and card w = 1.
lemma "[(°P x) —, (3ix. °P x)|,"

nitpick [user axioms=true, show all, format=2]

oops
Nitpick found a counterexample for card i = 2 and card w = 1.

lemma "|((Vix. (°P x)) A, (E* x)) —, (°P x)|,"
unfolding Defs
by blast

lemma "|((°P x) A, (E* x)) —, (Ix. P x)],"

unfolding Defs

by blast

S

At this point, it is important to highlight that, although we started from a negative free logic,
it seems that we ended up with a positive one. Existential generalization is a principle that
holds in free logic with negative semantics, and since it doesn't hold here, we must have a
positive setting.

To investigate this embedding further, we will have a closer look at some special formula,
namely Px V —Px, where z is nonexisting. It is provable, and the model Nitpick returned for
it is the following:

consts sIndividuall :: "i" ("i")
axiomatization where sUndefIndividuallAxiom: "3w. —(E' i, w)"

lemma "([(°P 1i,) V. (= (°P 1i)))]|)"
unfolding Defs
nitpick [satisfy, user axioms=true, show all, format=2]
by blast

43

O
S

Figure 8: Example for a supervaluational
free model with one world

Nitpick found a model for card i = 1 and card w

Free variable:
P = (Ax. _)((i,, w,) := False)
Skolem constants:

Aw. v = (Ax.) (w, 1= w))

Aw v, v = (A) ((wy, w) = w)
Constants:

E' = (Ax.)((i,, w,) := False)

i, =1

(r) = (M. _)((w,, w;) := True)

4.4 On Embedding SFHOL into HOL

9

Wy

Figure 9: Example for a supervaluational free model
with two worlds

= 1:

Nitpick found a model with one world and one individual, see fig. 8. This model is indeed
reasonable, since E/ x — —Pux is true in FHOML because —E! x is true and —E! s — 00— Ps
is true because ~E! x and —Px are both true in w,, and w;, is the only world reachable from
wy. Therefore, the SFHOL formula — Pz is true, and hence the formula Px V =Pz, too. But,
since x is nonexisting, the FHOML formula =Pz should technically be truth-valueless in w,,
and not true or false. So this is not really a model we would expect for a true supervaluational
semantics. When asking for a model with two worlds, Nitpick showed the following one.

consts sIndividuall :: "i" ("i")

axiomatization where sUndefIndividuallAxiom: "3Jw. —(E' i, w)"

lemma "([(°P i,) V. (=(°P 1)))[)"
unfolding Defs

nitpick [satisfy, user axioms=true, show all, format=2, card i=1,

card w=2]
by blast

4.4 On Embedding SFHOL into HOL

Nitpick found a model for card i = 1 and card w = 2:

Free variable:
P= (M. _)((i, w;) := True, (i,, w,) := False)
Skolem constants:

Aw. v = (X,) (w, = w, oW, 1= w,)
Aw V. v = (Ax.)
((w, w)) i=w,, (W, w,) =w, (W, w) =w, (W, w,) :=w)
Constants:
Bl = (.)((i,, w,) := True, (i,, w,) := False)
i, =1,
(r) =
(Ax.)
((w,, w;) := True, (w,, w,) := False, (w,, w,) := True, (w,, w,) := True)

See fig. 9 for an illustration of this model. Once again it can easily be seen that the SFHOL
formula Px V —~Px is true for both worlds. And this model now has a structure that is typical
for a modally interpreted supervaluational semantics: Reachable worlds increase information
of other worlds. World w, incorporates more information than world w,. Thus, the approach
seems to actually work somehow. However, it is not yet fully refined and important technical
details have not been thought through to the end.** Without a neutral free logic as basis, we
just end up with a positive free logic with unnecessary exaggerated evaluations. But, as also
acknowledged by Lambert (2001a: 239-240), it is apparently a very promising starting point
towards a shallow semantical embedding of supervaluational free higher-order logic.

% Lehmann (2002: 233) made similiar critical remarks, but referred to Barba’s earlier approach. The critisim is
nevertheless also applicable here.

45

46

5 Experimental Application to Prior’s Theorem

Exploring how some disturbing results in higher-order modal logic revealed through Prior
(1961), Kaplan (1995), and others can be avoided, Bacon et al. (2016) ended up arguing for free
logic. Within this section, we want to reconstruct some of the results established by Bacon et al.
by encoding them into Isabelle/HOL, and thereby also see how well interactive and automated
theorem provers operate in this context. First of all, we analyze Prior’s theorem based on the
language and model theory these authors provided and verify two of the propositions given
in their paper. Then, we try to obtain comparable results with the embeddings developed in
this thesis for positive and negative free higher-order logic.

5.1 Implementing the Set-Theoretical Approach

As expounded in section 3.1, the semantics given by Bacon et al. (2016) relies on set theory
where solely worlds are taken as primitive. In order to verify the results of the paper using
their models, we first have to implement some basic set-theoretical concepts in Isabelle/HOL
before being able to implement their language.*® The central idea here is that a set can be
represented by a characteristic function, a predicate that maps elements of the same type
to truth values. An element is in a set if and only if the predicate representing the set maps
the element in question to truth, i.e., x € S if and only if S (Benzmdiiller and Andrews
2019). Therefore, the set-theoretical concepts membership, union, set difference and set
inclusion for sets containing elements of type w (for worlds) can be formalized in HOL as
seen hereafter (cf. Benzmiiller and Miller 2014: 9).

€ wos(wr0)so = AX,. AC, .. CX
Ulwso)s(wosorstwse) = Mo AByy 0. AX,. AXV BX

\ (o) s(woso)s(woe) = AMyo ABy AX,, AX A ~(BX)
C (mr0)s(ws0)-r0 = A, ,.AB, .,.V(AX,.AX - BX).

For providing an equivalent formalization of these concepts in Isabelle/HOL, we introduce a
new base type w and abbreviate the predicate that represents the set of elements of type w
with wSet:

typedecl w
type_synonym wSet = "w = bool"
type_synonym wSetSet = "(w = bool) = bool"

%6 Isabelle/HOL provides a massive built-in set theory for import, which could be used instead (cf. Nipkow,
Paulson, and Wenzel 2019b: 122-156). But to keep things as transparent as possible, we chose to implement
it on our own.

47

5.1 Implementing the Set-Theoretical Approach

The predicate wSetSet represents a set of sets of elements of type w to model subsets of the
powerset of worlds. Furthermore, we define two different types of memberships, one for
testing if a world is in the set wSet and one for testing if a set wSet is a member of the set of
sets wSetSet. We will distinguish them using special subscripts as displayed below.

definition wSetMember :: "w = wSet = bool" (infixr "€," 53)
where "x €, S =S5 x"
definition wSetSetMember :: "wSet = wSetSet = bool" (infixr "e€,,," 53)

{
where "x € S =56 x"

Union, set difference and set inclusion are accordingly to the initial considerations defined
like that:

definition wSetUnion :: "wSet = wSet = wSet" (infixr "U" 50)
where "A U B = Ax. A x V B x"

definition wSetOther :: "wSet = wSet = wSet" (infixr "-" 50)
where "A - B = Ax. A x A =(B x)"

definition wSetSubsetEq :: "wSet = wSet = bool" (infixr "C" 50)

where "A C B = Vx. A x — B x"

We further introduce three fairly handy constants: W, corresponding to Bacon, Hawthorne,
and Uzquiano’s set W, is the set containing all worlds, and {} and {{}} are the empty sets of
type wSet and wSetSet, respectively. The individual characteristics of these constants are
ensured by the underneath given axiomatizations.

consts W :: "wSet"
axiomatization where defW: "Vx. X €, w"

consts emptySet :: "wSet" ("{}")
axiomatization where defEmptySet: "vx. —(x €, {})"

consts emptySetSet :: "wSetSet" ("{{}}")
axiomatization where defEmptySetSet: "vx. —(x €., {{}})"

Since Bacon et al. (2016: 10) are concerned exclusively with Kripke-style models that validate
S5, we need to introduce another Isabelle/HOL constant symbolizing their accessibility rela-
tion R and constrain this relation to be an equivalence relation, i.e., reflexive, symmetric and
transitive, and, moreover, also universal. We will again achieve this through an axiomatization:

consts r :: "w = w = bool" (infixr "r" 53)

48

5.1 Implementing the Set-Theoretical Approach

abbreviation reflexive :: "bool"
where "reflexive = V¥x. x r x"
abbreviation symmetric :: "bool"
where "symmetric = Vx y. X ry — y r x"
abbreviation transitive :: "bool"
where "transitive = Vx y z. (xry) A (yrz) — (xr z)"
abbreviation universal :: "bool"

where "universal = Vx y. x r y"

axiomatization where S5:
"reflexive A symmetric A transitive A universal"

Based on this newly defined relation r, the set R(w) = {x| Rwz} can be represented as
the hereunder given abbreviation.

abbreviation R :: "w = wSet" ("R "[52]53)
where "R'w = Ax. w r x"

Recall, that the existence domain D(w) is a set of sets of worlds, a set of propositions, existing
at world w. Intuitively, this coincides with the following function mapping worlds to sets of
sets of worlds.

consts fmExistenceDomains :: "w = wSetSet" ("D")

Now we provided all auxiliary definitions needed to transfer the evaluation of formulas
into Isabelle/HOL. To make the forthcoming definitions more comprehensible, the formal
evaluation function of the language under consideration shall be repeated here.

(2] { v(x) if x is a propositional variable
z], =

[x], if z isan atomic sentence letter

i {W if [s1, = [¢].

@ else
[-s], = W\I[sl,
[svil, = [sl.UIltl,
[Os], = {weW]R(w)C][s],}
[@s], = {weW]][s], clQl(w)}
[Vx.s], = {weW]|we][s],,Yu such that u[z]v and u(z) € D(w)}.

49

5.1 Implementing the Set-Theoretical Approach

Unless for the universal quantifier, the translation is almost one to one and given below.

definition fmIdentity :: "wSet = wSet = wSet" (infixr "=" 56)
where "p = ¢ = if (¢ =) then W else {}"

definition fmNot :: "wSet = wSet" ("= " [52]53)
where " =W - "
definition fmOr :: "wSet = wSet = wSet" (infixr "v" 51)

where "o V ¢ = ¢ U "

definition fmBox :: "wSet = wSet" ("O " [52]53)
where "Op = Aw. (R w) C "

consts Qex :: "w = wSetSet" ("]|Q|")
definition Qin :: "wSet = wSet" ("Q")
where "Qp = . ¢ €, Q] (w)"

The quantified formula V. s is satisfied by variable assignment v if and only if s is satisfied by
every assignment u such that u and v agree except, possibly, on which set of worlds they have
assigned to z, and u(x) € D(w). This translates into the HOL formula Vz. s x by ensuring
that for all z € D(w), sz is satisfied. Hence, universal quantification and its binder notation
have the following embedded form:

definition fmForall :: "(wSet = wSet) = wSet" ("V")
where "V® = Aw. Vx. x €, (D w) — w €, (2 x)"

definition fmForallB:: "(wSet = wSet) = wSet" (binder "V" [8]9)
where "Vx. ¢ x = V"

The remaining logical connectives and the existential quantifier are conventionally abbreviated
and embedded as shown hereafter.

definition fmAnd :: "wSet = wSet = wSet" (infixr "A" 52)
where "o A ¢ = (- V)"

definition fmImp :: "wSet = wSet = wSet" (infixr "—" 49)
where "p — ¥ = —p V YP"

definition fmEquiv :: "wSet = wSet = wSet" (infixr "«<" 50)

where "o «& ¢ = (¢ = ¥) A (Y = p)"

definition fmDia :: "wSet = wSet" ("o " [52]53)
where "op = = (0O-p)"

50

5.1 Implementing the Set-Theoretical Approach

definition fmExists :: "(wSet = wSet) = wSet" ("3")
where "3 = =(V(Ay. = (D y)))"
definition fmExistsB:: "(o = o) = o¢" (binder "3" [8]9)

where "3Ix. ¢ x = Jp"

Bacon, Hawthorne, and Uzquiano’s semantics identifies a term with the set of worlds where it
is true, which means, that generally valid terms are associated with the set W (cf. Starr 2019:
2.1). Thus, we redefine the notion of validity as follows:

definition fmValid :: "wSet = bool" ("[| |" [718)
where "[¢p| = ¢ = W"

The embedding in its entirety, without explanatory notes, can be found in appendix B.1.
For the remainder of this section, the results gained by Bacon et al. (2016) will be discussed
and verfied in Isabelle/HOL. But first, we recite Prior’s theorem:

QVp. (Qp— —p) — Ip. (@pAp)AIp. (QpA—p).

Found on the model theory mainly presented in section 3.1 and encoded here, Bacon et al.
(2016) laid out a number of claims that threaten a certain family of intensional paradoxes
within the classical setting, a family, to which Prior’s theorem also belongs. The following two
propositions, among others, were the first claims they derived:*’

Proposition 1. There exists a finite countermodel with possibly empty constant existence
domains for Prior’s theorem.

Proposition 2. There exists a finite countermodel with nonempty constant existence domains
containing truth and falsehood for Prior’s theorem.

For proposition 1, the countermodel given by the authors has these properties: W = {w},
R ={(w,w)}, D(w) =@ and |Q|(w) = {@, {w}}. Itisillustrated in fig. 10. Note that
the underlying logic is universal since D(w) is empty. We transcribe Prior’s theorem into
Isabelle/HOL using our embedding and try to verify the countermodel from above by applying
the model finder Nitpick:

47 The propositions as stated here differ from the original ones given by Bacon et al. (2016). Instead of only
providing countermodels, they fixed three more rather reasonable formulas related to Prior’s and Kaplan’s
paradoxes and gave models for those. This was shortened in order not to go beyond the scope. Consider the
referred literature for more details and a comprehensive study of these models.

51

5.1 Implementing the Set-Theoretical Approach

() ()

Figure 10: Illustration of a countermodel for Figure 11: Illustration of another countermodel
Prior’s theorem with one world for Prior’s theorem with one world

lemma "[(Q (Vp. (Q p — =p))) — ((Ip. QA p A P) A(Fp. Qp A —p))]"
unfolding Defs
nitpick [user axioms=true, format=2, show all]
oops

Nitpick found a counterexample for card w = 1:

Constants:
Q| =
(Ax.)
((w,, (AX. _)(w, = True)) := True,
(w,, (Ax. _)(w, := False)) := False)
W= (Ax. _)(w, := True)
{} = (Ax. _)(w, := False)
{{}} = (Mx.) ((Ax. _)(w, := True) := False, (Ax. _)(w, := False) := False)
D =
(Ax.)
((w,, (Ax. _)(w, = True)) := False,
(w,, (Ax. _)(w, := False)) := False)
R = (Ax. _)((w,, w;) := True)

Nitpick found a countermodel with W = {w}, R = {(w,w)} and D(w) = &, but
|Q|(w) = {{w}}. This countermodel, also seen in fig. 11, is, although perfectly valid, not
exactly the countermodel Bacon et al. (2016) had in mind. To reproduce their countermodel,
we introduce two axiomatizations that explicitly define that (i) the existence domain of each
world is empty and that (ii) W and & are in the extension of () at some world, and try it again:

axiomatization where Ax1l: "vx. (D x) = {{}}"
axiomatization where Ax2: "3x. W €, [Q](x) A {} €, [Q](x)"

52

5.1 Implementing the Set-Theoretical Approach

lemma "|(Q (Vp. (Q p — —p))) — ((Ip. @ p Ap) A (Fp. Qp A —p))]"
unfolding Defs
nitpick [user axioms=true, format=2, show all]
oops

Nitpick found a counterexample for card w = 1:

Constants:
Q| =
(Ax.)
((w,, (Ax. _)(w, := True)) := True,
(w;, (Ax. _)(w, := False)) := True)
W= (Ax. _)(w, := True)
{} = (Mx. _)(w, := False)
{{}} = (Mx.) ((Ax. _)(w, := True) := False, (Ax. _)(w, := False) := False)
D =
(Ax.)
((w,, (AX. _)(w, := True)) := False,
(w,, (Ax. _)(w, := False)) := False)
R = (M. _)((w, w,) := True)

This time, the resulting countermodel agrees with W = {w}, R = {(w,w)}, D(w) = &
and |Q|(w) = {@, {w}}. Therefore, Bacon, Hawthorne, and Uzquiano’s countermodel for
proposition 1 could be successfully verified.

Proposition 2 was proven by the following countermodel: Let W = {z,y, 2z} and D(z) =
D(y) = D(z) = {{z,y,2},3}, ie, only Wand & exist at each world. Then, we define
1Q|(z) = {W}, |Q|(y) ={d} and |Q|(z) = PW \ {W, &} with PWW being the powerset
of W. This countermodel is depicted in fig. 12. To find it via Nitpick, we again need to
introduce multiple axiomatizations. First of all, we must fulfill the precondition that all
existence domains have to be nonempty. Then, we willingly axiomatize that (i) all existence
domains are equal, (ii) Wand @& are in the existence domains of all worlds, and (iii) nothing
else is. Further, (iv) there must exist a world where only W is in the extension of) and (v)
also a world where only & is in the extension of (). Additionally, (vi) there must be a world
where anything else except W and & is in the extension of Q). Let’s see:

axiomatization where fmNonemptyExistenceDomains: "Vw. (D w) # {{}}"

axiomatization where Ax1l: "Vx y. (D x) = (D y)"
axiomatization where Ax2: "Vx. W € (D x) N {} €
axiomatization where Ax3:

"X y. (y €4 (D X)) — ((y ={}) vV (y =W))"
axiomatization where Ax4:

"Ix. WoEg, 1Q[(x) A (VY. y €, [Q[(X) — y =W)"

w (Bx)"

53

5.1 Implementing the Set-Theoretical Approach

O Y
A

T P z
~—__

O

Figure 12: Illustration of a countermodel for Prior’s theorem with three worlds

axiomatization where Ax5:
"Ix. {} €, 101(x) A (VY. y €, 101(x) — y = {}H"
axiomatization where Ax6:

"Iy (y # 4D Ay #W) — (y € 10](x))"

lemma "[(Q (Vp. (@ p — =p))) — ((Ip. A p Ap) A (Fp. Q@ p A —p))]"
unfolding Defs
nitpick [user axioms=true, format=2, show all, card=3]

oops

Nitpick found a counterexample for card w = 3:

Constants:
Q] =

(Ax.)

((w,, (Ax.
(w,, (Ax.
(w,, (Ax.
(w,, (Ax.
(w,, (Ax.
(w;, (Ax.
(w,, (Ax.
(w;, (Ax.

) (wy

g 2=
) (wy 2=
) (wy =
) wy 2=

) (wy =

) (wy

) (wy

i= True, w, := True, w, := True)) := True,
True, w, := True, w, := False)) := False,
True, w, := False, w, := True)) := False,
True, w, := False, w, := False)) := False,
False, w, := True, w, := True)) := False,
False, w, := True, w, := False)) := False,

:= False, w, := False, w, := True)) := False,

= False, w, := False, w, := False)) := False,

54

5.2 Formalization using the Embeddings of FHOL into HOL

(w,, (Ax. _)(w, := True, w, := True, w, := True)) := False,
(w,, (Ax. _)(w, := True, w, := True, w, := False)) := False,
(w,, (Ax. _)(w, := True, w, := False, w, := True)) := False,
(w,, (Ax. _)(w, := True, w, := False, w, := False)) := False,
(w,, (Ax. _)(w, := False, w, := True, w, := True)) := False,
(w,, (Ax. _)(w, := False, w, := True, w, := False)) := False,
(w,, (Ax. _)(w, := False, w, := False, w, := True)) := False,
(w,, (Ax. _)(w, := False, w, := False, w, := False)) := True,
(wy, (Ax. _)(w, := True, w, := True, w, := True)) := False,
(wy, (Ax. _)(w, := True, w, := True, w, := False)) := True,
(wy, (Ax. _)(w, := True, w, := False, w, := True)) := True,
(wy, (Ax. _)(w, := True, w, := False, w, := False)) := True,
(wy, (Ax. _)(w, := False, w, := True, w, := True)) := True,
(wy, (Ax. _)(w, := False, w, := True, w, := False)) := True,
(wy, (Ax. _)(w, := False, w, := False, w, := True)) := True,
(wy, (Ax. _)(w, := False, w, := False, w, := False)) := False)

The counterexample was truncated due to its length, the complete version can be found in
appendix C.1. The short excerpt, however, is enough to see that, with z = w,, y = w,
and z = w;, the model found by Nitpick is exactly the one the authors came up with. That
is, both propositions claiming finite countermodels could be successfully verified with our
encoded embedding. Unfortunately, all other even more reasonable countermodels provided
by Bacon et al. (2016) are infinite ones, but any model finder available within Isabelle/HOL,
including Nitpick, are finite model finders. To date, as far as the author is aware of, there are
no infinite model finders available for Isabelle/HOL or other automated theorem proving
systems. Therefore, the remaining propositions cannot yet be verified.

In the next section, we will double-check these results using the embeddings for PFHOL
and NgFHOL given in this thesis.

5.2 Formalization using the Embeddings of FHOL into HOL

Obviously, there is a significant difference between the logic developed by Bacon et al. (2016)
and the definitions presented in the whole section 3.2 in regards to free higher-order logic.
While the first allows an infinite number of truth values, the second one must get along with
a maximum of three truth values. Nevertheless, we will try to work with the results of the
previous section by transferring them as closely as possible to a more restricted free logical
setting as we imposed it.

Applying Sledgehammer together with the embedding of PFHOL into HOL where the
domain of quantification can be empty onto Prior’s theorem, we end up with the following
result:

55

5.2 Formalization using the Embeddings of FHOL into HOL

axiomatization where fTrueAxiom: "E True"
axiomatization where fFalseAxiom: "E False"

lemma "(Q (Vp. (Q p — (=p)))) — ((Fp. QA p ApP) A (Tp. Qp A (—p)))"
using Defs
by (smt fFalseAxiom fTrueAxiom)

The theorem is valid. But as we can cleary see, the theorem is proved using the axioms
fTrueAxiom and fFalseAxiom stipulating that both truth values are defined. We try it again
without these:

lemma "(Q (Vp. (Q p — (=p)))) — ((Fp. Q p Ap) A (Fp. Qp A (-p)))"
nitpick [user axioms=true, show all, format=2]
oops

Nitpick found a counterexample for card i = 3:

Free variable:

Q = (Ax. _)(True := True, False := True)
Constants:

E = (AX.)(True := True, False := False)

E = (M. _)(i, := False, i, := False, i, := True)

e =1,

e = False

This time Nitpick found a countermodel. Observe, that in this countermodel one of the
two truth values is undefined, namly False. Enforcing both truth values to be undefined
would essentially lead to the countermodel provided for proposition 1 by Bacon et al. (2016).
However, on a metaphysical level, it is highly questionable to shift one or even both truth
values into the undefined range. Bacon et al. (2016) themselves did not find this approach
for overcoming the paradox very promising and have constructed other countermodels as a
substitute, e.g., the one for proposition 2, which, unfortunately, cannot be reproduced with
the eligible embeddings of this thesis. For these countermodels, at least three different truth
values are required, and we have not yet been able to adequately embed trivalent or other
many-valued free higher-order logics.

As a next step, we apply Sledgehammer onto Prior’s theorem again, now together with the
embedding of NgFHOL into HOL where again the quantification domain can be empty:

lemma "("Q (Vp. ("Q p — (—p)))) — ((p. " p Ap) A (Fp. "Qp A (—p)))"
unfolding Defs
by smt

56

5.2 Formalization using the Embeddings of FHOL into HOL

The theorem is once again valid, and in this case not even the axioms are necessary for the
proof. One can show that Prior’s theorem holds in a free logic with negative semantics without
specifying if the truth values are defined or not.*® Due to the nature of negative free logic
this is not really surprising. But what is surprising is that although the principle of universal
instantiation does not apply in negative semantics, Prior’s theorem holds here, contradicting
the hypothesis that sUI alone is key to such intentional paradoxes as supposed by Bacon
et al. (2016: 4). However, there is a crucial difference between positive and negative free
logic that could explain this and that was probably not considered by Bacon, Hawthorne, and
Uzquiano. Strong existential generalization is not valid in positive semantics, but it is indeed
valid in negative semantics. Therefore, one might have reason to think that the invalidity of
the principle of existential generalization plays a greater role in this context than Bacon et al.
(2016) may have thought about.

8 From this we can definitely infer that the free logic of Bacon et al. (2016) is a positive one.

57

58

6 Discussion and Conclusion

After we initially set the fundamentals, free higher-order logic and its characteristics of non-
existent objects and partial functions was represented in an adequately modified version of
simple type theory. The semantics of choice in this case were the less common inner-outer
dual domains, which indeed turned out to be a pleasant all-in-one solution for addressing
all different nuances of free logic. A key point of this approach was that partiality was only
simulated instead of inherently accomodating it, such that a classical environment valuable for
embeddings into HOL could be maintained. The other generic properties of each free logical
variant could also very well be reflected on STT with inner-outer dual domains eventually
leading to all metaphysically interesting aspects being covered. The only exception was
supervaluational semantics, which was quite hard to achieve. Bencivenga’s original semantics
had to undergo major reconstruction, especially with regard to completions, and the higher-
order definitions are now somewhat more complex than they were before. Any negative
implications for, e.g., soundness and completeness proofs cannot be excluded and have yet
to be investigated. Nevertheless, at this stage, an at least formally acceptable solution ready
to work on with has been found. Despite these small issues, the great advantage of the
dual domain approach became apparent in the course of this thesis when the embeddings
for positive and negative semantics were realized very easily. In this very final part, we
will bring together all the findings of the previous sections and draw an overall conclusion.
The discussion on the technical implementation of the embeddings is hereby followed by a
reflection on the relevance of the topic in terms of actuality and practicability. In this context,
related and further research work will be mentioned, as well as an outlook on the continuation
of the project given.

As far as the technical implementation is concerned, it can now be said that it was certainly
as simple as promised in the introduction to section 4. The embeddings suggested in this
section were easily accomplished, uncomplicated to understand, and effortlessly implemented
into Isabelle/HOL. So, SSEs in general, and concretely the one for positive semantics, come
off well as expected. If one wants to name one shortcoming, then, that the shallow semantical
embedding for negative semantics does not feel as natural as one is used to, for example,
from the alike embedding of positive free logic, or even modal logic. The modal embedding
of Benzmotller and Woltzenlogel Paleo (2015) appears lightweight and is hardly noticeable
in practice when used for modal logical theories within Isabelle/HOL. That, unfortunately,
cannot be said about the SSE of NgFHOL. In free logics, as opposed to modal logics, it is
mainly the unconventional application handling that has to be taken into account in the
embeddings. An embedding for negative semantics needs to make use of a workaround, an
additional operator for predicates to be placed before any application of arguments so that
the right applicational behavior is ensured. However, this approach is prone to errors, as the
operator can easily be forgotten or overlooked and hence might cause wrongly evaluated terms.
Applications cannot be directly controlled in Isabelle/HOL through a shallow embedding, so
we have probably already chosen the best possible way to implement an encoding without
switching to a deep embedding. On the other hand, this might be of less importance anyway.
Although Scales (1969) and Feferman (1992) presented strong arguments for this family of

59

6 Discussion and Conclusion

logics, due to a lack of applications, free logic with negative semantics received little support
from Gumb and Lambert (1997) (cf. Lambert 2001b: 262), Bacon (2013: 5-6, 2019), and
others. Bacon, in particular, rather argued at length, in detail and most convincingly in favor of
a positive semantics, which, in turn, can be embedded very nicely. The research of Bacon et al.
(2016) studied in this thesis is also based on positive free logic explicitly exploiting the refusal
of strong existential generalization. Priest (2008: 467) was an equally keen advocate of positive
semantics while McKinsey (2020), conversely, preferred neutral free logic for solid reasons.
Equally popular are supervaluations, which were often named by many as the standard theory
of vagueness (cf. Varzi 2007) and considered as a true alternative for classical logic (Paul n.d.).
All these recent publications show that today free logic is more actual than ever, and the urge
for automation, specifically with regard to positive and neutral semantics, is fully justified. It
is therefore even more crucial that neutral free logic including supervaluational semantics
could not yet be successfully embedded into HOL. The embedding approach of Barba Escriba
(2001) encoded in section 4.4 is a good start, but still needs further development.

However, free logic is not only an interesting topic in itself. One thing that the reader might
have noticed while reading this thesis is that free logic and modal logic highly intertwine.
Already Kripke (1963) stressed that a ‘correct’ possible world semantics for quantified modal
logic must support per-world individual domains over which the quantifiers range at those
worlds, so-called varying domains (Bratiner and Ghilardi 2007: 557-558), instead of only
permitting a single fixed domain for all worlds. Nowadays it is generally accepted to build
modal logic on top of free logic, rather than on a classical logic, whereas positive and negative
semantics predominate (cf. Nolt 2018: 5.3). E.g., Garson (1991, 2001: 278), who chose a
positive free logic for his modal system, persuasively argued that free semantics are the most
adequate choice for modal logics with varying domains, because otherwise formulas like
Pz — Jx. Px with the existential quantifier ranging over all objects in the domain can no
longer be valid at certain worlds (cf. Lehmann 2001: 50-51; Schurz 2006: 469; McKinsey 2020:
68). Stalnaker (1994), on the contrary, showed that combining modal logic with a negative
free logic would not be sufficient since some natural-looking formulas would undesirably
fail to be validated in Kripke models (cf. Bacon 2013: 6). McKinsey (2020: 84—86) took a
completely different approach and proposed a formal semantics for quantified modal logic
that is based on a a free logic with neutral semantics.

The last related topic to be considered here are many-valued logics, in which particularly
neutral free logic plays a major role. A Fregean conception of truth offers the possibility
to distinguish between various truth values, not just two or three (Shramko and Wansing
2012: 41). Free logic with neutral semantics is a trivalent logic, but, of course, also logics
with more than three truth values, finitely or infinitely many, are possible. While logics with
infinitely many truth values have become known as fuzzy logics (cf. Cintula, Fermtller, and
Noguera 2017), most many-valued logics usually have a fixed number of truth values as, for
instance, four-valued logic or sixteen-valued logic (cf. Shramko and Wansing 2012). Numerous
extensions of classical bivalent logic to many-valued logic have been studied to meet the
demand for extra truth values, and an important driving force behind that was partiality as it
is in free logic. In this process, supervaluations were thought-through as an alternative to
many-valued logic by Urquhart (1986: 113), and Smith (2008: 87-93) investigated how a
combination of a many-valued logic and supervaluational semantics could work. The key to

60

6 Discussion and Conclusion

an improved definition of free higher-order logic in a neutral and supervaluational sense, that
can neatly be embedded into HOL, is probably somewhere in between many-valued logic and
set theory, similarly to Bacon, Hawthorne, and Uzquiano’s well-performing approach® seen
in section 5.1. Though a lot of work has already been done in this field, even more research in
possible collaboration with automated theorem provers is needed to finally come up with a
definition suitable for an embedding of NtFHOL and SFHOL into HOL.

The number of truth values is not the only variable in free logic. As indicated in the
introduction, a much more obvious augmentation is opting for multiple states of existence.
Not all nonexistent objects are equally nonexistent. This already starts with the fact that
there is a difference between nonexistence and undefinedness. Reiterating the examples
from the introduction, a fictional character might be nonexistent but still owns designated
properties. Contrarily, some distinct, yet uncharted planet might have a certain probability
of existence but is absolutely undefined. And between these examples there are countless
shades of gradation. One inventive idea is that a free logical evaluation of terms, of predicates
and functions, should take into consideration each object’s state of nonexistence. This entails,
for example, multiple domains and matching existence predicates per domain. See fig. 13 and
14 for an exemplary scheme of how two such outer domains might be combined. Clearly,
more finely granulated truth values would complement this idea. Fourman and Scott (1979)
already submitted a similar idea in another context. However, it remains an open problem to
elaborate and refine such a very special semantical theory.

Figure 13: Example for two outer domains Figure 14; Example for two overlapping outer
where one contains the other domains

Nondenoting terms have always been an important subject for logic in general, and free logic
in particular. With free logic spreading more and more into different areas of application like
artificial intelligence, cognitive science, and linguistics, and connecting with modal and many-
valued logics, new requirements and challenges are forming. Dealing with these problems

4 Some critical voices, such as Bueno, Menzel, and Zalta (2014) and Merricks (2015), expressed the opinion
that taking sets of propositions as worlds is not very promising. However, the idea could still somehow help
develop such new theories.

61

6 Discussion and Conclusion

might probably lead to new innovative semantics for free logic, which are surely easier to
establish with the help of interactive and automated theorem provers. This thesis laid a first
foundation of relevant embeddings on which one can and should now continue to build.

62

References

Andrews, Peter B. (1972a). General Models and Extensionality. In: Journal of Symbolic Logic
37.2, pp. 395-397.

— (1972b). General Models, Descriptions, and Choice in Type Theory. In: Journal of Symbolic
Logic 37.2, pp. 385-394.

Antonelli, G. Aldo (2000). Proto-Semantics for Positive Free Logic. In: Journal of Philosophical
Logic 29.3, pp. 277-294.

— (2007). Free Quantification and Logical Invariance. In: Rivista di Estetica 33.1, pp. 61-73.

Bacigalupo, Giuliano (2017). A Study on Existence. Two Approaches and a Deflationist Com-
promise. Cambridge Scholars Publishing.

Bacon, Andrew (2013). Quantificational Logic and Empty Names. In: Philosophers’ Imprint
13.24.

— (2019). “Opacity and Paradox”

Bacon, Andrew, Hawthorne, John, and Uzquiano, Gabriel (2016). Higher-Order Free Logic
and the Prior-Kaplan Paradox. In: Canadian Journal of Philosophy 46.4-5, pp. 493—541. doi:
10.1080/00455091.2016.1201387.

Barba Escribd, Juan L. (2001). “Supervaluational Free Logic and the Logic of Information
Growth” In: New Essays in Free Logic. In Honour of Karel Lambert. Ed. by Edgar Morscher
and Alexander Hieke. Vol. 23. Dordrecht: Springer Netherlands, pp. 127-146. doi: 10.
1007/978-94-015-9761-6 7.

Barba, Juan L. (1989). A Modal Version of Free Logic. In: Topoi 8.2, pp. 131-135. doi: 10.
1007/BF00141368.

Beall,]. C., Glanzberg, Michael, and Ripley, David (2019). “Liar Paradox” In: The Stanford
Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Winter 2019. Metaphysics Research
Lab, Stanford University.

Beeson, Michael J. (1985). Foundations of Constructive Mathematics. Metamathematical Stud-
ies. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 6. Berlin, Heidelberg:
Springer.

Bencivenga, Ermanno (1981). “Free Semantics”. In: [talian Studies in the Philosophy of Science.
Ed. by Maria Luisa Dalla Chiara. Vol. 47. Boston Studies in the Philosophy of Science.
Dordrecht: Springer Netherlands, pp. 31-48.

— (1984). Supervaluations and Theories. In: Grazer Philosophische Studien 21.1, pp. 89-98.

— (1986). “Free Logics” In: Handbook of Philosophical Logic. Volume III: Alternatives in Clas-
sical Logic. Ed. by Dov M. Gabbay and Franz Giinthner. Dordrecht: Springer Netherlands,
pp. 373-426.

Benzmiiller, Christoph (2017). Universal Reasoning, Rational Argumentation and Human-
Machine Interaction. Tech. rep. CoRR. url: http://arxiv.org/abs/1703.09620.

— (2019). “Universal (Meta-)Logical Reasoning: Recent Successes”.

Benzmiiller, Christoph and Andrews, Peter B. (2019). “Church’s Type Theory”. In: The Stanford
Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Summer 2019. Metaphysics Research
Lab, Stanford University.

IX

References

Benzmiiller, Christoph, Brown, Chad E., and Kohlhase, Michael (2004). Higher-Order Seman-
tics and Extensionality. In: Journal of Symbolic Logic 69.4, pp. 1027—-1088.

Benzmiiller, Christoph and Miller, Dale (2014). “Automation of Higher-Order Logic” In:
Computational Logic. Ed. by Dov M. Gabbay, Jorg H. Siekmann, and John Woods. Vol. 9.
Handbook of the History of Logic. North Holland: Elsevier, pp. 215-254.

Benzmiiller, Christoph and Scott, Dana (2016). “Automating Free Logic in Isabelle/HOL” In:
Mathematical Software — ICMS 2016. 5th International Conference. Ed. by Gert-Martin
Greuel, Thorsten Koch, Peter Paule, and Andrew Sommese. Vol. 9725. Lecture Notes in
Computer Science. Berlin, Germany: Springer Berlin, Heidelberg, pp. 43-50. doi: 10.1007/
978-3-319-42432-3 6.

— (2019). Automating Free Logic in HOL, with an Experimental Application in Category
Theory. In: Journal of Automated Reasoning, pp. 1-20.

Benzmiiller, Christoph and Woltzenlogel Paleo, Bruno (2013). Godel’s God in Isabelle/HOL.
In: Archive of Formal Proofs, pp. 1-5.

— (2014). “Automating Godel’s Ontological Proof of God’s Existence with Higher-Order
Automated Theorem Provers”. In: ECAI 2014. Ed. by Torsten Schaub, Gerhard Friedrich,
and Barry O’Sullivan. Vol. 263. Frontiers in Artificial Intelligence and Applications. IOS
Press, pp. 93-98. doi: 10.3233/978-1-61499-419-0-93.

— (2015). “Higher-Order Modal Logics: Automation and Applications”. In: Reasoning Web
2015. Ed. by Adrian Paschke and Wolfgang Faber. Lecture Notes in Computer Science
9203. Berlin, Heidelberg: Springer, pp. 32—74. doi: 10.1007/978-3-319-21768-0_2. url:
http://christoph-benzmueller.de/papers/C46.pdf.

— (2016). “The Inconsistency in Godel’s Ontological Argument: A Success Story for Al in
Metaphysics” In: [JCAI 2016. Ed. by Subbarao Kambhampati. Vol. 1-3. AAAI Press, pp. 936—
942.

Blanchette, Jasmin Christian, Bchme, Sascha, and Paulson, Lawrence C. (2013). Extending
Sledgehammer with SMT Solvers. In: Journal of Automated Reasoning 51.1, pp. 109-128.
doi: 10.1007/516817-013-9278-5.

Blanchette, Jasmin Christian and Nipkow, Tobias (2010). “Nitpick: A Counterexample Genera-
tor for Higher-Order Logic Based on a Relational Model Finder”. In: First International Con-

ference on Interactive Theorem Proving. Proceedings. Ed. by Matt Kaufmann and Lawrence
C. Paulson. Vol. 6172. Lecture Notes in Computer Science. Edinburgh, United Kingdom:
Springer Berlin, Heidelberg, pp. 131-146. doi: 10.1007/978-3-642-14052-5_11.

Bove, Ana, Krauss, Alexander, and Sozeau, Matthieu (2016). Partiality and Recursion in
Interactive Theorem Provers — An Overview. In: Mathematical Structures in Computer
Science 26.1, pp. 38—88. doi: 10.1017/50960129514000115.

Braiiner, Torben and Ghilardj, Silvio (2007). “First-Order Modal Logic”. In: Handbook of Modal
Logic. Ed. by Patrick Blackburn, Johan Van Benthem, and Frank Wolter. Vol. 3. Studies in
Logic and Practical Reasoning. Elsevier, pp. 549-620.

Brown, Chad E. (2012). “Satallax: An Automatic Higher-Order Prover” In: Proceedings of the
6th International Joint Conference on Automated Reasoning. JCAR’12. Berlin, Heidelberg:
Springer, pp. 111-117. doi: 10.1007/978-3-642-31365-3 11.

Bueno, Otavio, Menzel, Christopher, and Zalta, Edward N. (2014). Worlds and Propositions
Set Free. In: Erkenntnis 79.4, pp. 797—-820. doi: 10.1007/s10670-013-9565 - x.

References

Burge, Tyler (1974). Truth and Singular Terms. In: Noils 8.4, pp. 309—325. doi: 10.2307/
2214437.

Carpenter, Bob (1997). Type-Logical Semantics. MIT Press.

Church, Alonzo (1940). A Formulation of the Simple Theory of Types. In: Journal of Symbolic
Logic 5.2, pp. 56—68.

Cintula, Petr, Fermtller, Christian G., and Noguera, Carles (2017). “Fuzzy Logic”. In: The Stan-
ford Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Fall 2017. Metaphysics Research
Lab, Stanford University.

Ciucci, Davide and Dubois, Didier (2013). A Map of Dependencies among Three-Valued
Logics. In: Information Sciences 250, pp. 162—177. doi: 10.1016/j .ins.2013.06.040.
Cocchiarella, Nino B. (1966). (Abstract) A Logic of Actual and Possible Objects. In: Journal of

Symbolic Logic 31.2, pp. 688—689.

Farmer, William M. (1990). A Partial Functions Version of Church’s Simple Theory of Types.
In: Journal of Symbolic Logic 55, pp. 1269-1291.

— (1993). A Simple Type Theory with Partial Functions and Subtypes. In: Annals of Pure and
Applied Logic 64.3, pp. 211-240. doi: 10.1016/0168-0072(93)90144-3.

— (2004). “Formalizing Undefinedness Arising in Calculus” In: Automated Reasoning. Second
International Joint Conference. Ed. by David Basin and Michaél Rusinowitch. Vol. 3097.
Lecture Notes in Computer Science. Cork, Ireland: Springer Berlin, Heidelberg, pp. 475—
489. doi: 10.1007/978-3-540-25984-8 35.

— (2008). The Seven Virtues of Simple Type Theory. In: Journal of Applied Logic 6.3, pp. 267—
286. url: http://dblp.uni-trier.de/db/journals/japll/japll6.html#Farmer0s.

Farmer, William M. and Guttman, Joshua D. (2000). A Set Theory with Support for Partial
Functions. In: Studia Logica 66.1, pp. 59-78.

Feferman, Solomon (1992). “Logics for Termination and Correctness of Functional Programs”
In: Logic from Computer Science. Ed. by Yiannis N. Moschovakis. New York, NY: Springer,
pp. 95-127.

Fourman, Michael and Scott, Dana (1979). “Sheaves and Logic”. In: Applications of Sheaves.
Ed. by Michael Fourman, Christopher Mulvey, and Dana Scott. Vol. 753. Lecture Notes in
Mathematics. Berlin, Heidelberg: Springer, pp. 302—401.

Gabbay, Dov M. (1996). Labelled Deductive Systems. Vol. 1. Oxford Logic Guides. Oxford:
Clarendon Press.

Garson, James (1991). “Applications of Free Logic to Quantified Intensional Logic”. In: Philo-
sophical Applications of Free Logic. Ed. by Karel Lambert. Oxford University Press, pp. 110—
142.

— (2001). “Quantification in Modal Logic”. In: Handbook of Philosophical Logic. Volume III:
Alternatives in Classical Logic. Ed. by Dov M. Gabbay and Franz Giinthner. Dordrecht:
Springer Netherlands, pp. 267-323. Repr. of “Quantification in Modal Logic” In: Handbook
of Philosophical Logic. Volume II: Extensions of Classical Logic. Ed. by Dov M. Gabbay and
Franz Ginthner. Dordrecht: D. Reidel, 1984, pp. 249-307.

Gasquet, O., Herzig, A, Said, B., and Schwarzentruber, F. (2013). Kripke’s Worlds. An Intro-
duction to Modal Logics via Tableaux. Studies in Universal Logic. Basel: Springer.

Godel, Kurt (1931). Uber formal unentscheidbare Sitze der Principia Mathematica und
verwandter Systeme L. In: Monatshefte fiir Mathematik und Physik 38.1, pp. 173—198.

XI

References

Grundy, Jim and Newey, Malcolm C., eds. (1998). Theorem Proving in Higher Order Logics:
Emerging Trends. 11th International Conference, TPHOLs98, Canberra, Australia, Septem-
ber 27 — October 1, 1998, Proceedings. Vol. 1479. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer.

Gumb, Raymond D. (2001). “Free Logic in Program Specification and Verification” In: New
Essays in Free Logic. In Honour of Karel Lambert. Ed. by Edgar Morscher and Alexander
Hieke. Vol. 23. Dordrecht: Springer Netherlands, pp. 157-93. doi: 10.1007/978-94-015-
9761-6_9.

Gumb, Raymond D. and Lambert, Karel (1997). Definitions in Nonstrict Positive Free Logic.
In: Modern Logic 7.1, pp. 25-55.

Henkin, Leon (1950). Completeness in the Theory of Types. In: Journal of Symbolic Logic 15.2,
pp. 81-91.

— (1963). A Theory of Propositional Types. In: Fundamenta Mathematicae 52, pp. 323—334.

— (1975). Identity as a Logical Primitive. In: Philosophia 5.1-2, pp. 31-45. doi: 10. 1007 /
BF02380832.

Hintikka, Jaako (1959). Existential Presuppositions and Existential Commitments. In: Journal
of Philosophy 56.3, pp. 125-137.

Jaskowski, Stanistaw (1934). On the Rules of Suppositions in Formal Logic. In: Studia Logica
1, pp. 5-32. Repr. in Storrs McCall, ed. Polish Logic. 1920—1939. Oxford University Press,
1967, pp. 232-258.

Kaplan, David (1995). “A Problem in Possible Worlds Semantics”. In: Modality, Morality and
Belief: Essays in Honor of Ruth Barcan Marcus. Ed. by Walter Sinnott-Armstrong, Diana
Raffman, and Nicholas Asher. Cambridge University Press, pp. 41-52.

Kleene, Stephen Cole (1952). Introduction to Metamathematics. Wolters-Noordhoft.

Kratzer, Angelika (2012). Modals and Conditionals. New and Revised Perspectives. Oxford
Studies in Theoretical Linguistics. Oxford: Oxford University Press.

Kripke, Saul A. (1963). Semantical Considerations on Modal Logic. In: Acta Philosophica
Fennica 16, pp. 83—94-.

Lambert, Karel (1960). The Definition of E! in Free Logic. In: Abstracts: The International
Congress for Logic, Methodology and Philosophy of Science.

— (1963). Existential Import Revisited. In: Notre Dame Journal of Formal Logic 4.4, pp. 288—
292. doi: 10.1305/ndjf1/1093957655.

— (1964). Notes on “E!” IV: A Reduction in Free Quantification Theory with Identity and
Descriptions. In: Philosophical Studies: An International Journal for Philosophy in the
Analytic Tradition 15.6, pp. 85—88.

— (1967). Free Logic and the Concept of Existence. In: Notre Dame Journal of Formal Logic
1-2.8, pp. 133-144. doi: 10.1305/ndjf1/1093956251.

— (1972). Notes on Free Description Theory: Some Philosophical Issues and Consequences.
In: Journal of Philosophical Logic 1.2, pp. 184—191.

— (1983). Meinong and the Principle of Independence. Its Place in Meinong's Theory of Objects
and its Significance in Contemporary Philosophical Logic. Modern European Philosophy.
Cambridge: Cambridge University Pres.

— (1991a). “A Theory about Logical Theories of ‘Expressions of the Form “The So and So’,

”m

where “The” is in the Singular” In: Erkenntnis Orientated: A Centennial Volume for Rudolf

XII

References

Carnap and Hans Reichenbach. Ed. by Wolfgang Spohn. Dordrecht: Springer Netherlands,
pp- 337-346. doi: 10.1007/978-94-011-3490-3 18.

Lambert, Karel (1991b). Philosophical Applications of Free Logic. Oxford University Press.

— (1997). Free Logics: Their Foundations, Character and Some Applications Thereof. Sankt
Augustin: Academia Verlag.

— (2001a). “Comments”. In: New Essays in Free Logic. In Honour of Karel Lambert. Ed. by Edgar
Morscher and Alexander Hieke. Vol. 23. Dordrecht: Springer Netherlands, pp. 239-252.
doi: 10.1007/978-94-015-9761-6 12.

— (2001b). From Predication to Programming. In: Minds and Machines 11.2, pp. 257-265.

Lambert, Karel and van Fraassen, Bas C. (1972). Derivation and Counterexample: An Intro-
duction to Philosophical Logic. Dickenson Publishing Company.

Leblanc, Hugues (1980). Existence, Truth, and Probability. State University of New York Press.

Leblanc, Hugues and Thomason, Richmond H. (1968). Completeness Theorems for Some
Presupposition-Free Logics. In: Fundamenta Mathematicae 62.2, pp. 125—-164.

Lehmann, Scott (1994). Strict Fregean Free Logic. In: Journal of Philosophical Logic 23.3,
pp. 307-336. doi: 10.1007/BF01048484.

— (2001). “No Input, No Output’ Logic” In: New Essays in Free Logic. In Honour of Karel Lam-
bert. Ed. by Edgar Morscher and Alexander Hieke. Vol. 23. Dordrecht: Springer Netherlands,
pp. 147-155. doi: 10.1007/978-94-015-9761-6 8.

— (2002). “More Free Logic” In: Handbook of Philosophical Logic. Volume V. Ed. by Dov M.
Gabbay and Franz Giinthner. Dordrecht: Springer Netherlands, pp. 197-259.

Lewis, David K. (1973). Counterfactuals. Oxford: Wiley-Blackwell.

— (1986). On the Plurality of Worlds. Oxford: Wiley-Blackwell.

Lipton, James and Nieva, Susana (2007). “Higher-Order Logic Programming Languages with
Constraints: A Semantics” In: Typed Lambda Calculi and Applications. Ed. by Rocca Della
and Ronchi Simona. Berlin, Heidelberg: Springer, pp. 272—-289. doi: 10.1007/978-3-540-
73228-0 20.

McKinsey, Michael (2020). Consequences of Reference Failure. Routledge Studies in Contem-
porary Philosophy. New York: Routledge.

Merricks, Trenton (2015). “Propositions Are Not Sets of Possible Worlds” In: Propositions.
Oxford: Oxford University Press, pp. 82—120.

Meyer, Robert K., Bencivenga, Ermanno, and Lambert, Karel (1982). The Ineliminability of
E!in Free Quantification Theory without Identity. In: Journal of Philosophical Logic 11.2,
pp. 229-231.

Meyer, Robert K. and Lambert, Karel (1968). Universally Free Logic and Standard Quantifica-
tion Theory. In: Journal of Symbolic Logic 33.1, pp. 8—26. doi: 10.2307/2270048.

Morscher, Edgar and Simons, Peter (2001). Free Logic: A Fifty-Year Past and an Open Future.
In: Applied Logic Series 23. Ed. by Edgar Morscher and Alexander Hieke, pp. 1-34. doi:
10.1007/978-94-015-9761-6 1.

Nipkow, Tobias (1989). Equational Reasoning in Isabelle. In: Science of Computer Programming
12, pp. 123-149.

Nipkow, Tobias, Paulson, Lawrence C., and Wenzel, Markus (2002). Isabelle/HOL — A Proof
Assistant for Higher-Order Logic. Vol. 2283. Lecture Notes in Computer Science. Updated
in 2019a. Berlin, Heidelberg: Springer.

XIII

References

Nipkow, Tobias, Paulson, Lawrence C., and Wenzel, Markus (2019a). Isabelle/HOL — A Proof
Assistant for Higher-Order Logic. http://isabelle.in.tum.de/doc/tutorial. pdf.
Last accessed on December 30, 2019.

— (2019b). Isabelle’HOL — Higher-Order Logic. https://isabelle. in. tum.de/dist/
library/HOL/HOL/document . pdf, https://isabelle.in.tum.de/dist/library/
HOL/HOL/Set.html. Last accessed on February 05, 2020.

Nolt, John (2018). “Free Logic”. In: The Stanford Encyclopedia of Philosophy. Ed. by Edward N.
Zalta. Fall 2018. Metaphysics Research Lab, Stanford University.

Ohlbach, Hans Jiirgen, Nonnengart, Andreas, de Rijke, Maarten, and Gabbay, Dov M. (2001).
“Encoding Two-Valued Nonclassical Logics in Classical Logic” In: Handbook of Automated
Reasoning. Ed. by Alan Robinson and Andrei Voronkov. Vol. 2. North Holland: Elsevier,
pp. 1403-1486.

Pasniczek, Jacek (2001). “Can Meinongian Logic be Free?” In: New Essays in Free Logic. In
Honour of Karel Lambert. Ed. by Edgar Morscher and Alexander Hieke. Vol. 23. Dordrecht:
Springer Netherlands, pp. 227-236. doi: 10.1007/978-94-015-9761-6 11.

Paul, Bornali (n.d.). “Proposal of Replacing Classical Logic with Free Logic for Reasoning with
Non-Referring Names in Ordinary Discourse”.

Paulson, Lawrence C. (1994). A Generic Theorem Prover. Vol. 828. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, pp. 73—87. doi: 10.1007/BFb0030541.

— (1999). A Generic Tableau Prover and its Integration with Isabelle. In: Journal of Universal
Computer Science 5.3, pp. 73—87.

Paulson, Lawrence C. and Blanchette, Jasmin Christian (2015). Three Years of Experience with
Sledgehammer, a Practical Link between Automatic and Interactive Theorem Provers. In:
Proceedings of the 8th International Workshop on the Implementation of Logics, pp. 131-146.

Posy, Carl J. (2007). “Free Logics” In: The Many Valued and Nonmonotonic Turn in Logic.
Ed. by Dov M. Gabbay and John Woods. Vol. 8. Handbook of the History of Logic. North
Holland: Elsevier, pp. 633—680. doi: 10.1016/51874-5857 (07)80013-6.

Priest, Graham (2008). An Introduction to Non-Classical Logic. From If to Is. Cambridge
Introductions to Philosophy. Cambridge University Press.

Prior, Arthur N. (1961). On a Family of Paradoxes. In: Notre Dame Journal of Formal Logic
2.1, pp. 16-32.

Quine, Willard Van Orman (1954). Quantification and the Empty Domain. In: Journal of
Symbolic Logic 19.3, pp. 177-179.

Rami, Dolf (2014). Existence as a Property of Individuals. In: Erkenntnis 79.S3, pp. 503—-523.
doi: 10.1007/s10670-013-9505-9.

Read, Stephen (1995). Thinking About Logic. Oxford University Press.

Sainsbury, Richard M. (2005). “Names in Free Logical Truth Theory” In: Thought, Reference,
and Experience: Themes from the Philosophy of Gareth Evans. Ed. by José Luis Bermudez.
Oxford: Oxford University Press, pp. 66—83.

Scales, Ronald D. (1969). “Attribution and Existence” PhD thesis. Ann Arbor, Michigan:
University of California, Irvine.

Schock, Rolf (1964). Contributions to Syntax, Semantics, and the Philosophy of Science. In:
Notre Dame Journal of Formal Logic 5.4, pp. 241-289. doi: 10.1305/ndjf1/1093957975.

— (1968). Logics Without Existence Assumptions. Stockholm: Almqvist & Wiksell.

XIV

References

Schurz, Gerhard (2006). “Alethic Modal Logics and Semantics”. In: A Companion to Philo-
sophical Logic. Ed. by Dale Jacquette. Blackwell Publishing Ltd. Chap. 29, pp. 442—-477. doi:
10.1002/9780470996751. ch30.

Schiitte, Kurt (1960). Syntactical and Semantical Properties of Simple Type Theory. In: Journal
of Symbolic Logic 25.4, pp. 305—326. doi: 10.2307/2963525.

Scott, Dana (1967). “Existence and Description in Formal Logic”. In: Bertrand Russell: Philoso-
pher of the Century. Ed. by Ralph Schoenman. Repr. in Lambert 1991b, pp. 28—48. Boston:
Little, Brown & Company, pp. 181-200.

— (1970). “Advice on Modal Logic” In: Philosophical Problems in Logic. Some Recent De-
velopments. Ed. by Karel Lambert. Dordrecht: Springer Netherlands, pp. 143—-173. doi:
10.1007/978-94-010-3272-8 7.

Shramko, Yaroslav and Wansing, Heinrich (2012). Truth and Falsehood. An Inquiry into
Generalized Logical Values. Vol. 36. Trends in Logic. Dordrecht: Springer Netherlands. doi:
10.1007/978-94-007-0907-2.

Skryms, Brian (1968). Supervaluations: Identity, Existence, and Individual Concepts. In:
Journal of Philosophy 65.16, pp. 477—483.

Smiley, Timothy (1960). Sense without Denotation. In: Analysis 20.6, pp. 125-135.

Smith, Nicholas J. J. (2008). Vagueness and Degrees of Truth. Oxford: Oxford University Press.

Stalnaker, Robert C. (1976). Possible Worlds. In: Noiis 10.1, pp. 65-75.

— (1984). Inquiry. Cambridge University Press.

— (1994). “The Interaction of Modality with Quantification and Identity” In: Modality, Morality
and Belief. Essays in Honor of Ruth Barcan Marcus. Ed. by W. Sinnott-Armstrong, D.
Raffman, and N. Asher. Cambridge: Cambridge University Press, pp. 12-28.

Starr, William (2019). “Counterfactuals” In: The Stanford Encyclopedia of Philosophy. Ed. by
Edward N. Zalta. Fall 2019. Metaphysics Research Lab, Stanford University.

Steen, Alexander (2020). Extensional Paramodulation for Higher-Order Logic and Its Effective
Implementation Leo-III. In: KI - Kiinstliche Intelligenz 34, pp. 105—108. doi: 10. 1607/
5s13218-019-00628-8.

Steen, Alexander and Benzmdiller, Christoph (2016). Sweet SIXTEEN: Automation via Embed-
ding into Classical Higher-Order Logic. In: Logic and Logical Philosophy 25.4, pp. 535-554.
doi: 10.12775/LLP.2016.021.

— (2018a). “System Demonstration: The Higher-Order Prover Leo-III" In: ARQNL 2018.
Automated Reasoning in Quantified Non-Classical Logics. Ed. by Christoph Benzmiiller
and Jens Otten. Vol. 2095. CEUR Workshop Proceedings, http://ceur-ws.org, pp. 79—-85.
url: http://ceur-ws.org/Vol-2095/paper5. pdf.

— (2018b). “The Higher-Order Prover Leo-III" In: Automated Reasoning. JCAR 2018. Ed. by
Didier Galmiche, Stephan Schulz, and Roberto Sebastiani. Vol. 10900. Lecture Notes in
Computer Science. Springer, pp. 108—116. doi: 10.1007/978-3-319-94205-6_8.

Tiemens, Lucca, Scott, Dana, Benzmdiller, Christoph, and Benda, Miroslav (2019). “Computer-
supported Exploration of a Categorical Axiomatization of Modeloids”

Urquhart, Alasdair (1986). “Many-Valued Logic” In: Handbook of Philosophical Logic. Volume
II: Alternatives in Classical Logic. Ed. by Dov M. Gabbay and Franz Giinthner. Dordrecht:
Springer Netherlands, pp. 71-116.

XV

References

van Fraassen, Bas C. (1966a). Singular Terms, Truth-Value Gaps, and Free Logic. In: Journal
of Philosophy 63.17, pp. 481-495.

— (1966b). The Completeness of Free Logic. In: Mathematical Logic Quarterly 12.1, pp. 219—
234. doi: 10.1002/malqg.19660120117.

Varzi, Achille C. (2007). Supervaluationism and Its Logics. In: Mind 463, pp. 633—675.

Villadsen, Jorgen, Schlichtkrull, Anders, and Hess, Andreas Viktor (2015). “Meta-Logical
Reasoning in Higher-Order Logic” In: LOGICA 2015 - 29th Annual International Symposia
Devoted to Logic. Conference date: 15-06-2015 through 19-06-2015. url: http://logika.
flu.cas.cz/en/logica-2015/1logica-20152.

von Fintel, Kai and Heim, Irene (2011). Intensional Semantics. http://web.mit . edu/
fintel/fintel-heim-intensional.pdf. Last accessed on January 20, 2020.

Walters, Lee (2014). “Singular Thought and The Nonexistent”. PhD thesis. University College
London.

Wenzel, Markus (1999). “Isar — A Generic Interpretative Approach to Readable Formal Proof
Documents” In: Theorem Proving in Higher Order Logics. Ed. by Yves Bertot, Gilles Dowek,
Laurent Théry, André Hirschowitz, and Christine Paulin. Berlin, Heidelberg: Springer,
pp. 167-183.

Woodruff, Peter W. (1984). On Supervaluations in Free Logic. In: Journal of Symbolic Logic
49.3, pp. 943-950. doi: 10.2307/2274148.

Yeakel, Daniel (2015). An Argument For A Neutral Free Logic. Paper 1177. In: Wayne State
University Dissertations.

XVI

List of Figures

O 00 N O\ Ul v W N

—_ =
)

—_ = =
=W N

Schema of a domain where every termdenotes
Schema of a domain where not every term denotes
Example of the dual domain approach with two disjoint domains
Example of the inner-outer dual domain approach
Example of a Kripkemodel
Schematics of domains D,, D,and D, ,,
Schematics of domains D, _,, and D, extended for neutral semantics
Example for a supervaluational free model with oneworld
Example for a supervaluational free model with twoworlds
[llustration of a countermodel for Prior’s theorem with one world
[llustration of another countermodel for Prior’s theorem with one world
[llustration of a countermodel for Prior’s theorem with three worlds
Example for two outer domains where one contains the other
Example for two overlapping outer domains

XVII

XVIII

A Proofs
A.1 Proof of Lemma l

Lemma 1. For all PFHOL models M and PFHOL variable assignments g,

[so I = [Tsa 11"

Proof. The proof is by induction on the structure of s,,.
For s, = P, and s, = z,, the following holds:

[P, " = I(P,) = I'(R,) = I'([P,]) = [[P.]]"™
and
[2,] = g(z,) = ¢'(x,) = g'([z,]) = [[2,]]"

This completes the base case.

For s, = (E/

! o S)o» We have:

[(Elasosa)o ™ = [E oo " ([sa 1) = 1(Elos,) (T5a 1)

With I(E!

‘a—o

I(E!, o) ([8, 1) = II(EQ%O) s 11%) = [Eo 1 ([[s,,]])
= [(E,.,[5, D), 1" = [[(El ., 5,),]]

yd=ex(d)=1I(E, .,)d forall d € D, = D,, itis:

For s, = (s,,4t,)s we have:

[(sampta)s]™ = [sams]™ ([t 1) = [[5ass] 1™ (L1t]1")
= [[sass] [taDa]™ = [[(sassta)s] 1.

For s, = (Az,. s55) we have:

a—f3?

Let [(Az,. 55)4.5]"" be the function f from D, into Dy s.t. forall d € D,:

F(d) = [,

/

By induction hypothesis and since D, = D,, for each « € T, f equals to the function f
from D,, into Dy s.t. forall d € D,:

F(d) =[5] 11+

XIX

A.1 Proof of Lemma 1

Then, f" = [(Azq- [s5])ans ™ = [[(Az4.55])0e] [

For Sa = ((:Zz%a%o Sa)aﬁo ta)o’ we have:

[[((:;—>a—>o SO[)CE—)O tOé)O :|]M‘g = (II :Fa—>a—>o]]M,g([[S]]M!g)) (IIta]]M’g)
= ([(=asame) ([1M9)) (Tt 1)

Since (1(=q-0) d1) d = id(dy, dy) = (I'(=,)d,)d, forall d;,d, € D, = D,,

a—a—o

(I(=tamo) ([sa 1) ([t 1) = (I'(=4a0) ([5a 1M9) ([a 1)

(I=tmamo 1" ([1sa] 1)) (124 11
= [(=asamo [8aDaso [ta Do I
[l

((a—a—0 Sa)aﬁo a)o] :I]M‘ l

The cases s, = (), S,), and s, = (AL o0 So)oso to), are similiar to the case above
and left out.

For s, = (V{4,050 (ATa- $5)ams0) o We have:

[(Vasom0(Aar 80)amo)o 1™ = [V (as0 o I (T(AZ4- 80) 0o M)
= I(Y{ass010) ([(AT4- 85) 00 M),

Let f = [(Azg. 8o)amo [Then, I(V(, .,) f = T ifand onlyif forall d € E,:
f(d) T ObViOUSlY, fOI' the function f - [[()\il? ((‘a—o a)o %Zﬁo%o So)o)a%o]]M’g’
f

we equally have that I'(V (as0)0) /- =T ifand onlyifforall d € D, f'(d) = T. Also, by
induction hypothesis,
[Azo- ((Bloso o) =000 So)o)aso ™
= 1Oz (BlasoTa)o =600 S0)o)aso 1M
= [Azo- (Basso Ta)o o050 [80 D) o)aso M-
Therefore,

I(Yg0) ([N 86)ao 1)
= I (V) (O (Eag0)o 0 [5Do)arso 1)
= [Viamsopoo 1" (L0 (Barso a)o 500 [50Do)amo 1)
= [¥fasor oA (Baso Ta)o om0 [0 Doacse)o I
= 11 (iacsors0 M 50)aso)o] 1.

XX

A.1 Proof of Lemma 1

For s, = (¢{y 10) 50 (ATa- 86)amso)ar We have:
H ((Oé—)o —a <)\'T 0>a~>o)a]]M,g = [[LFoc—m %a]]M,g (H ()\.’L‘a So>a~>0]]M,g)

- I(oz—)o —>o<) (H (Ama' 80)01%0]]M’g)'

Now, we need to distinguish two cases.
For the first case, we have I(¢(, ., o) ([(AZq4- 55)0m,]") = d € E,,.

Let f=[(Az,-S,)a0 | Then, thereisa d € E, s.t. f(d) =T andforall d’ € E: if
f(d) T then d/ - d ObVlOLlSly, Wlth f - [[()\l‘ ((E a—0 a)o /\g%o%o So)o)a%o]]Mg

we equally have that I ((ams0) _)a) f' = d for the very same d as above. Furthermore, by
induction hypothesis,
[[(/\xa‘ ((E,CY%O O[)O /\Z‘)O‘)O SO)O)O{*)O]]M’g
= [0 (Blaso a)o Novsomso 80)o)aso | I
= H()\xa' ((EC!‘}O C!)O AZ‘)O*}O [SO])O)OL*}O :[IM‘ I
Therefore,
I(L(Fa—m)—m) ([[(/\xa So)aﬁo HMVQ)
=d
= I (tfasopma) ([AT0- (Boso Ta)o N [56 1)) aso 1)
= [Hansoysa I" TG (Basso Ta)o A [85])0)amso I
- [[(a-)g)—>a<>\ma’ ((EQ(HO a)o A* [])o)a%o)a]]M"g‘
= [[[(ag)o —)Q(Am o)a—)o)a]]]Mng‘
For the second case, we have I(¢(, ., ,,) ([(Azy- $,)aso ™) = L, if @ € T, and

I s0yon) ([N) o) = T, if @ € T, Then, similar to before

J‘oz = €y = [H(L(Foa%o)%a()‘xa' So)a—>o)a]]]MJQ‘ if a € Ti?
Fo = co = (s saMa-5,)as0)a]I faeT,

This finishes the proof.

XXI

A.2 Proof of Lemma 2

A.2 Proof of Lemma 2

Lemma 2. For all NgFHOL models M and NgFHOL variable assignments g,

[sa I = Tlsa 11
Proof. 'The proof is by induction on the structure of s, .

For all cases except two, namely ((=, 40 Sa)ao ta)o and (5,,51,) 4, the proof steps are

the same as in the proof of lemma 1.>° We only cover the remaining cases and avoid repeating
the rest.

For s, = (=5 a0 Sa)aso ta)e We need to distinguish two more cases.

First, if [s, [, [t, "¢ € E,,, we have:

[(Ztmas0 Sa)aso ta)o 1" = (I=tsamo 1M (Tsa M) ([1)
= ([(Zasam0) ([1M)) (T2 1)-

Since (I(=} Ydy)dy =id(d,,dy) = (I' (=")d,)dy forall dy,d, € D, = D,,

a—a—o a—a—o «

(I(=ta0) ([sa 1)) (T M)
(I=tsamo 1" (Ll sa] 1)) (L1 1T).

(I(=asa0) ([sa 1) (Tt 1)

Because of [s,]¢ € E,, we know that [(E!, . S.), "¢ = T. By induction hypothesis,
[[(E, 0oSa)o]] = T. The same holds for [¢,]*¢. Thus, we can add the following
conjunctions without changing the meaning of the formula:

[sa] 179)) (L1 2a 117

[AG—0m0 1M (TG00 1M TH(EYa080)0 1 TM) TH(EYamsota)o 117))
[=asamo I Tlsa 1 1) TIta 1177))

[AG—0m0 1M (TAG— 000 1" T(Bamsol 80 D)o M) [(Easolta 1) 1))
[=asano I Tlsa 11 Tl 117))

([=tsamo 1™

(
((
((
((
((

II ((0—0—0 <(/\ZHO%O (EC!*)O[SCM :|>0>O*)O(Ea*>0|:ta :|>0>O)O*>O
(Famamo [8alaso [tal)o)o 1"
[

[(Famam0 Sa)aso ta)o 117

%0 This can easily be seen since the interpretation functions are the same for both positive and negative semantics,
and considering that D, = E, for all o € T, makes most case distinctions unnecessary.

XXII

A.2 Proof of Lemma 2

Now, if either [s,] ¢ E, or [t,]" ¢ E, (or both), we have:

[(=asaso Sadaso ta)o I = (I=tmamo 1M ([54 ["9)) ([2a ™)
—F, = F.

Without loss of generality, if [s, [¢ E,., we know that [(E!,_.s,),]*"* = F. By
induction hypothesis, [[(E!, ,,54),)" = F. Therefore, we can add again the same
conjunctions as for the previous case:

= ([As0m0 I (TG00 I T (B as080)0 1 T) TTH (B as0ta) o 1177)),

and the remaining steps are the same as for the case with [s, [*9, [t]*¢ € E,,.
For s, = (s,45t,)s we have another case distinction.

The first case is function application, i.e., s, = (s, 5t4)s:

[(50msyta)a 1 = [5ams 1 ([2a170) = 50, 511 (I12119)
= (50, 5] [t DT = T30, pta)s] 1

The second case is the application for predicates, s, = (s,_, 5t.)s-

First, if [¢, [€ E,, we have:

H(SQ%OBtQ)B]]M,g = [[Sa—> B]]Mg ([[t]]Mg) — [[[sa_}()ﬁ]]]M,‘g'([Hta]]]M;gw)
= [([sas, 5] [ta D]
[[< Oﬁﬁﬁﬁﬂﬁ (EOé%O ta)o ([801%0,8] [tab/g 6/@)B]]M"g‘

= [[(sam, pta)s 11,

because (E =T ifand onlyif [¢, " € E,,.

a—o a)o

Then, if [,]*¢ ¢ E., we have:

[(5a-,5ta)s] = Fg = eg
= [t} s (Barrota)o (5, 5] [ta s €s) 1"

= II [(Sa%oﬁ ta),@] HMngv

because (F =F ifand onlyif [t] ¢ E,.

a—o OL)

This finishes the proof.

XXIII

B Embeddings in Isabelle/HOL
B.1 Complete Embedding of the Set-Theoretical Approach

typedecl w
type_synonym wSet = "w = bool"
type_synonym wSetSet = "(w = bool) = bool"

definition wSetMember :: "w = wSet = bool" (infixr "EL" 53)
where "x €, S =S x"
definition wSetSetMember :: "wSet = wSetSet = bool" (infixr "GH”" 53)
where "x €m S =5 x"
definition wSetUnion :: "wSet = wSet = wSet" (infixr "U" 50)
where "A U B = Ax. A x Vv B x"
definition wSetOther :: "wSet = wSet = wSet" (infixr "-" 50)
where "A - B = Ax. A X A =(B x)"
definition wSetSubsetEq :: "wSet = wSet = bool" (infixr "C" 50)

where "A C B = ¥x. A x — B x"

consts W :: "wSet"
axiomatization where defW: "Vx. x €, W"

consts emptySet :: "wSet" ("{}")
axiomatization where defEmptySet: "vx. —(x €, {})"

consts emptySetSet :: "wSetSet" ("{{}}")
axiomatization where defEmptySetSet: "Vx. —(x €, {{}})"

consts r :: "w = w = bool" (infixr "r" 53)
abbreviation reflexive :: "bool"
where "reflexive = Vx. x r x"
abbreviation symmetric :: "bool"
where "symmetric = VX y. x ry — y r x"
abbreviation transitive :: "bool"
where "transitive = Vxy z. (xry) A(yrz) — (xr z)"
abbreviation universal :: "bool"

where "universal = Vx y. x r y"

axiomatization where S5:
"reflexive A symmetric A transitive A universal"

abbreviation R :: "w = wSet" ("R "[52]53)
where "R w AX. w r x"

XXIV

B.1 Complete Embedding of the Set-Theoretical Approach

consts fmExistenceDomains :: "w = wSetSet" ("D")
definition fmTop :: "o" ("T")

where "T = Aw. W"
definition fmBot :: "o" ("L1")

where "1 = A\w. {}"

definition fmIdentity :: "wSet = wSet = wSet" (infixr "=" 56)
where "p = ¢ = if (¢ = ¢) then W else {}"

definition fmNot :: "wSet = wSet" ("-_ " [52]53)
where "—ap =W - "
definition fmOr :: "wSet = wSet = wSet" (infixr "V" 51)

where "p V ¢ = ¢ U 9"

definition fmAnd :: "wSet = wSet = wSet" (infixr "A" 52)
where "p A ¢ = =(—-p V)"

definition fmImp :: "wSet = wSet = wSet" (infixr "—" 49)
where "p — ¢ = —p V "

definition fmEquiv :: "wSet = wSet = wSet" (infixr "<" 50)

where "p & ¢ = (¢ = P) A (P =)"

definition fmBox :: "wSet = wSet" ("O " [52]53)
where "Op = Aw. (R w) C "

definition fmDia :: "wSet = wSet" ("o " [52]53)
where "op = —(O-¢p)"

consts Qex :: "w = wSetSet" ("|Q|")
definition Qin :: "wSet = wSet" ("Q")
where "Qp = Aw. ¢ €., Q] (w)"

definition fmForall :: "(wSet = wSet) = wSet" ("V")
where "V® = Aw. Vx. x €, (D w) — w €, (® x)"

definition fmForallB:: "(wSet = wSet) = wSet" (binder "V" [8]9)
where "Vx. ¢ x = V"

definition fmExists :: "(wSet = wSet) = wSet" ("3")
where "3® = = (V(\y. = (D y)))"
definition fmExistsB:: "(o = o) = o¢" (binder "3" [8]19)

where "3Ix. ¢ x = Jp"

definition fmValid :: "wSet = bool" ("|_|" [7]8)
where "|p] = ¢ = W"

XXV

B.2 Complete Polymorphic Embedding of PFHOL into HOL

B.2 Complete Polymorphic Embedding of PFHOL into HOL

typedecl i
consts fExistence :: "'a = bool" ("E")
consts fUndef :: "'a" ("e")

axiomatization where fUndefIAxiom: "—E (e::i)"
axiomatization where fFalsehoodBAxiom: "(e::bool) = False"
axiomatization where fTrueAxiom: "E True"

axiomatization where fFalseAxiom: "E False"

axiomatization where fNonemptyDomains: "3Jx. E x"

definition fIdentity :: "'a = 'a = bool" (infixr "=" 56)
where "p = ¢ = ¢ = "

definition fNot :: "bool = bool" ("= " [52]53)
where "—p = —p"
definition fOr :: "bool = bool = bool" (infixr "Vv" 51)

where "o V ¢ = ¢ V ¢"

definition fAnd :: "bool = bool = bool" (infixr "A" 52)
where "p A Y = a(-p V)"

definition fImp :: "bool = bool = bool" (infixr "—" 49)
where "p — ¢ = —p V "

definition fEquiv :: "bool = bool = bool" (infixr "<" 50)

where "p & Y = ¢ = Y A Y = "

definition fForall :: "('a = bool) = bool" ("V")
where "V® = ¥x. E x — & x"

definition fForallBinder:: "('a = bool) = bool" (binder "V" [8]9)
where "Vx. ¢ x = V"

definition fExists :: "('a = bool) = bool" ("3")
where "3® = = (V(\y. =(® y)))"
definition fExistsBinder :: "('a = bool) = bool" (binder "3" [8]9)

where "3Ix. ¢ x = Jp"

definition fThat :: "('a = bool) = 'a" ("I")
where "I® = if Ix. Ex A & x A (Vy. (Ey A & y) — (y = X))
then THE x. E x A & x
else e"
definition fThatBinder:: "('a = bool) = 'a" (binder "I" [8]9)
where "IX. ¢ x = Ip"

XXVI

B.3 Complete Nonpolymorphic Embedding of PFHOL into HOL

B.3 Complete Nonpolymorphic Embedding of PFHOL into HOL

typedecl i

consts fExistenceIl :: "i = bool" ("E'")

consts fExistenceP :: "(i = bool) = bool" ("E"")
consts fUndefI :: "i" ("e'")

axiomatization where fUndefIAxiom: "—E' e!"

consts fFalsehoodB :: "bool" ("e"")

axiomatization where fFalsehoodBAxiom: "e” = False"
axiomatization where fTrueAxiom: "E True"
axiomatization where fFalseAxiom: "E False"

axiomatization where fnonemptyDomainI: "3Ix. E* x"
axiomatization where fnonemptyDomainP: "dx. E° x"

definition fIdentityI :: "i = i = bool" (infixr "=" 56)
where "p = ¢ = ¢ = "

definition fNot :: "bool = bool" ("= " [52]53)
where "—p = —p"

definition fOr (infixr "Vv" 51)
where "o V ¢ = ¢ VvV "

definition fAnd :: "bool = bool = bool" (infixr "A" 52)
where "o A ¢ = a(-p V)"

definition fImp :: "bool = bool = bool" (infixr "—" 49)
where "p — ¢ = =p V "

definition fEquiv :: "bool = bool = bool" (infixr "«<" 50)

where "p & Y = ¢ = Y A Y > "

definition fForalll :: "(i = bool) = bool" ("V'")
where "V'& = vx. E'! x — & x"
definition fForallIBinder:: "(i = bool) = bool" (binder "V'" [8]9)
where "V'x. ¢ x = V"
definition fForallP :: "((i = bool) = bool) = bool" ("V"")
where "VP® = Vx. E» x — & x"
definition fForallPBinder:: "((i = bool) = bool) = bool" (binder "V¥*" [8]9)
where "V’x. o x = Yo"

definition fExistsI :: "(i = bool) = bool" ("I'")
where "3'® = (V' (Ay. (D y)))"
definition fExistsIBinder :: "(i = bool) = bool" (binder "3*" [8]9)

where "I'x. ¢ x = F"

XXVII

B.4 Complete Polymorphic Embedding of NgFHOL into HOL

definition fExistsP :: "((i = bool) = bool) = bool" ("3°")
where "FO& = = (VW (Ay. = (P y)))"
definition fExistsPBinder :: "((i = bool) = bool) = bool" (binder "3*" [8]9)

where "Ix. p x = Fp"

definition fThatI :: "(i = bool) = i" ("I")
where "I® = if Ix. E* x A & x A (Vy. (EE y A d y) — (y = X))
then THE x. E* x A & x
else e'"
definition fThatIBinder:: "(i = bool) = i" (binder "I" [8]9)
where "IX. ¢ x = Ip"

B.4 Complete Polymorphic Embedding of NgFHOL into HOL

typedecl i
consts fExistence :: "'a = bool" ("E")
consts fUndef :: "'a" ("e")

axiomatization where fUndefIAxiom: "—E (e::i)"
axiomatization where fFalsehoodBAxiom: "(e::bool) = False"
axiomatization where fTrueAxiom: "E True"

axiomatization where fFalseAxiom: "E False"

axiomatization where fNonemptyDomains: "dx. E x"

definition fIdentity :: "'a = 'a = bool" (infixr "=" 56)
where "o = ¢ = E o AE Y A (@ =)"

definition fNot :: "bool = bool" ("= " [52]53)
where "—p = —p"
definition fOr :: "bool = bool = bool" (infixr "Vv" 51)

where "o V ¢ = ¢ V "

definition fAnd :: "bool = bool = bool" (infixr "A" 52)
where "o A Y = a(-p V)"

definition fImp :: "bool = bool = bool" (infixr "—" 49)
where "p — ¢ = =p V "

definition fEquiv :: "bool = bool = bool" (infixr "«<" 50)

where "p & Y = ¢ = Y A Y o "

definition fForall :: "('a = bool) = bool" ("V")
where "V® = ¥x. E x — & x"

definition fForallBinder:: "('a = bool) = bool" (binder "V" [8]9)
where "Vx. ¢ x = V"

XXVIII

B.5 Complete Nonpolymorphic Embedding of NgFHOL into HOL

definition fExists :: "('a = bool) = bool" ("3")
where "3® = = (V(\y. = (D y)))"
definition fExistsBinder :: "('a = bool) = bool" (binder "3" [8]19)

where "3Ix. ¢ x = Jp"
definition fThat :: "('a = bool) = 'a" ("I")
where "I® = if Ix. Ex A & x A (Vy. (Ey A & y) — (y = X))
then THE x. E x A & x
else e"
definition fThatBinder:: "('a = bool) = 'a" (binder "I" [8]9)
where "IX. ¢ x = Ip"

definition fPredicatel :: "('a = bool) = 'a = bool" (""")
where ""P x = E x A P x"
definition fPredicate2 :: "('a = 'b = bool) = 'a = 'b = bool" ("™")

where ""P x y = E X AEYy AP XYy"

B.5 Complete Nonpolymorphic Embedding of NgFHOL into HOL

typedecl i

consts fExistenceI :: "i = bool" ("E")

consts fExistenceP :: "(i = bool) = bool" ("E"")
consts fUndefI :: "i" ("e'")

axiomatization where fUndefIAxiom: "—E' e'"

consts fFalsehoodB :: "bool" ("e"")

axiomatization where fFalsehoodBAxiom: "e” = False"
axiomatization where fTrueAxiom: "E True"
axiomatization where fFalseAxiom: "E False"

axiomatization where fnonemptyDomainI: "3Ix. E' x"
axiomatization where fnonemptyDomainP: "dJx. E° x"

definition fIdentityI :: "i = i = bool" (infixr "=" 56)
where "p = = E' o A E' ¢ A (@ =)"

definition fNot :: "bool = bool" ("= " [52]53)
where "—p = —p"
definition fOr :: "bool = bool = bool" (infixr "V" 51)

where "o V ¥

e V"

XXIX

B.5 Complete Nonpolymorphic Embedding of NgFHOL into HOL

definition fAnd :: "bool = bool = bool" (infixr "A" 52)
where "p A Y = a(-p V)"

definition fImp :: "bool = bool = bool" (infixr "—" 49)
where "p — ¢ = —p V "

definition fEquiv :: "bool = bool = bool" (infixr "<" 50)

where "o & Y = ¢ =5 Y A Y o "

definition fForalll :: "(i = bool) = bool" ("V'")

where "V'® = Vx. E' x — & x"

definition fForallIBinder:: "(i = bool) = bool" (binder "V'" [8]9)

where "V'x. ¢ x = V"

definition fForallP :: "((i = bool) = bool) = bool" ("V"")

where "V"® = Vx. E> x — & x"

definition fForallPBinder:: "((i = bool) = bool) = bool" (binder "V*" [8]9)
where "V'x. ¢ x = Yo"

definition fExistsI :: "(i = bool) = bool" ("3'")
where "3'® = (V' (\y. =(® y)))"
definition fExistsIBinder :: "(i = bool) = bool" (binder "3'" [8]9)
where "3'x. ¢ x = Fp"
definition fExistsP :: "((i = bool) = bool) = bool" ("3I")
where "FO = (V" (A\y. = (P y)))"
definition fExistsPBinder :: "((i = bool) = bool) = bool" (binder """ [8]9)

where "Fx. p x = Fp"

definition fThatI :: "(i = bool) = i" ("I")

where "I® = if Ix. E' x A & x A (Vy. (B y A ®y) — (y = X))
then THE x. E* x A & x
else e'"

definition fThatIBinder:: "(i = bool) = i" (binder "I" [8]9)

where "IX. ¢ x = Ip"

definition fPredicateIl :: "(i = bool) = i = bool" (""")

where ""P x = E'! x A P x"

definition fPredicateI2 :: "(i = i1 = bool) = i = i = bool" ("™")

where ""P x y = E* X A E* y AP x y"

XXX

C Countermodels
C.1 Countermodel for Prior’s Theorem with Three Worlds

axiomatization where fmNonemptyExistenceDomains: "Vw. (D w) # {{}}"

axiomatization where Ax1l: "Vx y. (D x) = (D y)"

axiomatization where Ax2: "Vx. W € (D x) A {} €m (D x)"

axiomatization where Ax3: "Vx y. (y €, (D x)) — ((y = {}) vV (y = W))"
axiomatization where Ax4: "3Ix. W €., 1Q[(X) A (Vy. y €, 1Q[(X) — y =W)"
axiomatization where Ax5: "3Ix. {} €., 1Q[(x) A (Vy. y €4, [Q[(X) — y ={}H"
axiomatization where Ax6: "3Ix. Vy. ((y #{}) A (y # W)) — (y ST |Q] (x))"

lemma "[(Q (Vp. (@ p — —p))) — ((Fp. QA p APpP) A (Fp. Qp A -p))]"
unfolding Defs
nitpick [user axioms=true, format=2, show all, card=3]
oops

Nitpick found a counterexample for card w = 3:

Constants:
lal =

(Ax.)

((w,, (Ax. _)(w, := True, w, := True, w, := True)) := True,
(w,, (Ax. _)(w, := True, w, := True, w, := False)) := False,
(w,, (Ax. _)(w, := True, w, := False, w, := True)) := False,
(w;, (Ax. _)(w, := True, w, := False, w, := False)) := False,
(w,, (Ax. _)(w, := False, w, := True, w, := True)) := False,
(w,, (Ax. _)(w, := False, w, := True, w, := False)) := False,
(w,, (Ax. _)(w, := False, w, := False, w, := True)) := False,
(w,, (Ax. _)(w, := False, w, := False, w, := False)) := False,
(Wy, (Ax. _)(w, := True, w, := True, w, := True)) := False,
(wy, (Ax. _)(w, := True, w, := True, w, := False)) := False,
(Wy, (AX. _)(w, := True, w, := False, w, := True)) := False,
(wy, (Ax. _)(w, := True, w, := False, w, := False)) := False,
(Wy, (Ax. _)(w, := False, w, := True, w, := True)) := False,
(wy, (Ax. _)(w, := False, w, := True, w, := False)) := False,
(wy, (Ax. _)(w, := False, w, := False, w, := True)) := False,
(wy, (Ax. _)(w, := False, w, := False, w, := False)) := True,
(wy;, (Ax. _)(w, := True, w, := True, w, := True)) := False,
(Wy, (Ax. _)(w, := True, w, := True, w, := False)) := True,
(wy;, (Ax. _)(w, := True, w, := False, w, := True)) := True,
(Wy, (Ax. _)(w, := True, w, := False, w, := False)) := True,
(wy;, (Ax. _)(w, := False, w, := True, w, := True)) := True,

XXXI

C.1 Countermodel for Prior’s Theorem with Three Worlds

XXXII

(Ax. _)(w, := False, w, := True, w, := False)) := True,
(Ax. _)(w, := False, w, := False, w; := True)) := True,
(Ax. _)(w, := False, w, := False, w, := False)) := False)
_)(w, :=True, w, := True, w, := True)
)(w, := False, w, := False, w, := False)
(w, := True, w, := True, w, := True) := False,
(w, := True, w, := True, w, := False) := False,
(w, := True, w, := False, w, := True) := False,
(w, := True, w, := False, w, := False) := False,
(w, := False, w, := True, w, := True) := False,
(w, := False, w, := True, w, := False) := False,
(w, := False, w, := False, w, := True) := False,
(w, := False, w, := False, w, := False) := False)
_)
_)(w, :=True, w, := True, w, := True)) := True,
(Ax. _)(w, := True, w, := True, w, := False)) := False,
(Ax. _)(w, := True, w, := False, w, := True)) := False,
(Ax. _)(w, := True, w, := False, w, := False)) := False,
(Ax. _)(w, := False, w, := True, w, := True)) := False,
(Ax. _)(w, := False, w, := True, w, := False)) := False,
(Ax. _)(w, := False, w, := False, w, := True)) := False,
(Ax. _)(w, := False, w, := False, w, := False)) := True,
(Ax. _)(w, := True, w, := True, w, := True)) := True,
(Ax. _)(w, := True, w, := True, w, := False)) := False,
(Ax. _)(w, := True, w, := False, w, := True)) := False,
(Ax. _)(w, := True, w, := False, w, := False)) := False,
(Ax. _)(w, := False, w, := True, w, := True)) := False,
(Ax. _)(w, := False, w, := True, w, := False)) := False,
)(w, := False, w, := False, w, := True)) := False,
) (w, False, w, := False, w, := False)) := True,
) (w, True, w, := True, w, := True)) := True,
) (w, True, w, := True, w, := False)) := False,
) (wy True, w, := False, w, := True)) False,
) (w, True, w, := False, w, := False)) := False,
) (w, False, w, := True, w; := True)) False,
) (w, False, w, := True, w, := False)) := False,
) (w, False, w, := False, w, := True)) := False,
) (w, False, w, := False, w, := False)) := True)
= True, (w,, w,) := True, (w,, w,) := True,
= True, (w,, w,) := True, (w,, w;) := True,
= True, (w,, W,) := True, (w,;, w;) := True)

