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Abstrakt (Deutsch)

Dipeptidylpeptidase 4 (DPP4)-Inhibitoren verzogern glukoseunabhédngig die Progression des
chronischen Nierenversagens (CNV) in experimentellen Modellen der diabetischen
Nephropathie. In dieser Arbeit wurden renoprotektive Effekte des DPP4-Inhibitors Linagliptin in
einem nicht-diabetischen 5/6-Nephrektomie Rattenmodell untersucht und mit dem Angiotensin-
I1-Rezeptorblocker (ARB) Telmisartan verglichen. Die Tiere wurden in 4 Gruppen aufgeteilt:
Sham-Operation plus Placebo; 5/6-Nephrektomie plus Placebo; 5/6-Nephrektomie plus
Linagliptin; und 5/6-Nephrektomie plus Telmisartan. Die Behandlung mit Linagliptin fiihrte zu
einer signifikanten Reduktion (48%) der interstitiellen Fibrose in der Niere im Vergleich zu
Placebo behandelten Tieren. Telmisartan bewirkte eine numerische Reduktion (24%) der renalen
interstitiellen Fibrose, die jedoch nicht statistisch signifikant war. Die Albumin-Kreatinin-Ratio
im Urin wurde sowohl durch Linagliptin (66%) als auch durch Telmisartan (92%) signifikant
gesenkt. Die Behandlung mit Telmisartan war mit einer signifikanten Reduktion des Blutdrucks
verbunden, bei mit Linagliptin behandelten Tieren war diesbeziiglich kein Effekt zu beobachten.
Eine massenspektrometrische Analyse von Peptiden zeigte dass Linagliptin im Vergleich zu
Placebo eine unterschiedliche Regulation von 552 plasmatischen und 320 renalen Peptiden
bewirkte. Im Vergleich zu Placebo, fanden sich bei Telmisartan 108 plasmatische und 363 renale
unterschiedlich regulierte Peptide. Linagliptin flihrte zu einer Hochregulation von Peptiden des
Typ 1 Kollagens, des Apolipoproteins C1 und des Heterogeneous Nuclear Ribonucleoproteins
A2/B1, einem in der Signalkaskade des atrialen natriuretischen Peptids involviertem Faktor.
Telmisartan war mit einer Hochregulation von Angiotensin-II verbunden. Zur Bestatigung der
Ergebnisse wurde in einer weiteren Studie die Wirkung von Linagliptinin in 5/6-
nephrektomierten Wildtyp- und DPP4-defizienten Ratten untersucht. Linagliptin zeigte sich in
Wildtyp-Ratten genauso wirksam wie in den DPP4 defizienten Tieren. Zusammenfassend
entfaltete Linagliptin im Vergleich zu Telmisartan vergleichbare positive Effekte auf die
Progression des CNVs in nicht-diabetischen Ratten mit 5/6-Nephrektomie. Daten dieser Studie
deuten ferner darauf hin, dass die der Renoprotektion zugrunde liegenden Mechanismen der

beiden untersuchten Pharmaka iiber unterschiedliche Signalwege mediiert werden.



Abstract (English)

Dipeptidyl peptidase (DPP)-4 inhibitors delay chronic kidney disease (CKD) progression in
experimental diabetic nephropathy in a glucose-independent manner. Here we compared the
effects of the DPP-4 inhibitor linagliptin versus telmisartan in preventing CKD progression in
non-diabetic rats with 5/6 nephrectomy. Animals were allocated to 1 of 4 groups: sham operated
plus placebo; 5/6 nephrectomy plus placebo; 5/6 nephrectomy plus linagliptin; and 5/6
nephrectomy plus telmisartan. Interstitial fibrosis was significantly decreased by 48% with
linagliptin but a non-significant 24% with telmisartan versus placebo. The urine albumin-to-
creatinine ratio was significantly decreased by 66% with linagliptin and 92% with telmisartan
versus placebo. Blood pressure was significantly lowered by telmisartan, but it was not affected
by linagliptin. As shown by mass spectrometry, the number of altered peptide signals for
linagliptin in plasma was 552 and 320 in the kidney. For telmisartan, there were 108 peptide
changes in plasma and 363 in the kidney versus placebo. Linagliptin up-regulated peptides
derived from collagen type I, apolipoprotein C1, and heterogeneous nuclear ribonucleoproteins
A2/B1, a potential downstream target of atrial natriuretic peptide, whereas telmisartan up-
regulated angiotensin 1. A second study was conducted to confirm these findings in 5/6
nephrectomy wild-type and genetically deficient DPP-4 rats treated with linagliptin or placebo.
Linagliptin therapy in wild-type rats was as effective as DPP-4 genetic deficiency in terms of
albuminuria reduction. Thus, linagliptin showed comparable efficacy to telmisartan in preventing
CKD progression in non-diabetic rats with 5/6 nephrectomy. However, the underlying pathways

seem to be different.
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The dipeptidyl peptidase inhibitor linagliptin and
the angiotensin Il receptor blocker telmisartan
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show renal benefit by different pathways in rats

with 5/6 nephrectomy

Oleg Tsuprykov'~*, Ryotaro Ando™*, Christoph Reichetzeder'~*, Karoline von Websky ',
Viktoriia Antonenko ', Yuliya Sharkovska®, Lyubov Chaykovska®, Jan Rahnenfiihrer', Ahmed A. Hasan',
Harald Tammen’, Markus Alter”®, Thomas Klein®, Seiji Ueda®, Sho-ichi Yamagishi®, Seiya Okuda™* and

Berthold Hocher' %"

"Institute of Nutritional Sciences, University of Potsdam, Potsdam, Germany; *Center for Cardiovascular Research, Charité -
Universitdtsmedizin Berlin, Berlin, Germany; 3Division of Nephrology, Department of Medicine, Kurume University School of Medicine,
Kurume, Japan; *Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of
Medicine, Kurume, Japan; *Institute of Vegetative Anatomy, Charité - Universitdtsmedizin Berlin, Berlin, Germany; 6Departmenr of
Cardiovascular Surgery, University Hospital Zurich, Zurich, Switzerland; “PXBioVisioN GmbH, Hannover, Germany; ®Department of
Nephrology and Endocrinology, Charité - Universitdtsmedizin Berlin, Berlin, Germany; °Boehringer Ingelheim Pharma GmbH & Co. KG,
Biberach, Germany; °Institute for Laboratory Medicine, IFLB, Berlin, Germany; and '’ Department of Basic Medicine, Medical college of

Hunan Normal University, Changsha, China

Dipeptidyl peptidase (DPP)-4 inhibitors delay chronic
kidney disease (CKD) progression in experimental diabetic
nephropathy in a glucose-independent manner. Here we
compared the effects of the DPP-4 inhibitor linagliptin
versus telmisartan in preventing CKD progression in
non-diabetic rats with 5/6 nephrectomy. Animals were
allocated to 1 of 4 groups: sham operated plus placebo;
5/6 nephrectomy plus placebo; 5/6 nephrectomy plus
linagliptin; and 5/6 nephrectomy plus telmisartan.
Interstitial fibrosis was significantly decreased by 48% with
linagliptin but a non-significant 24% with telmisartan
versus placebo. The urine albumin-to-creatinine ratio was
significantly decreased by 66% with linagliptin and 92%
with telmisartan versus placebo. Blood pressure was
significantly lowered by telmisartan, but it was not affected
by linagliptin. As shown by mass spectrometry, the number
of altered peptide signals for linagliptin in plasma was
552 and 320 in the kidney. For telmisartan, there were
108 peptide changes in plasma and 363 in the kidney
versus placebo. Linagliptin up-regulated peptides derived
from collagen type |, apolipoprotein C1, and heterogeneous
nuclear ribonucleoproteins A2/B1, a potential downstream
target of atrial natriuretic peptide, whereas telmisartan
up-regulated angiotensin Il. A second study was conducted
to confirm these findings in 5/6 nephrectomy wild-type and
genetically deficient DPP-4 rats treated with linagliptin or
placebo. Linagliptin therapy in wild-type rats was as effective
as DPP-4 genetic deficiency in terms of albuminuria
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reduction. Thus, linagliptin showed comparable efficacy to
telmisartan in preventing CKD progression in non-diabetic
rats with 5/6 nephrectomy. However, the underlying
pathways seem to be different.
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problem associated with significant morbidity and

mortality. The prevalence of CKD is considered to be
8% to 16% worldwide." Although hypertension and diabetes
mellitus are known to be the leading causes of CKD, a variety
of other risk factors including dyslipidemia, ischemia, infec-
tion, toxins, and autoimmune and inflammatory diseases
contribute to the development and progression of CKD.

Reducing blood pressure (BP) using angiotensin II recep-
tor blockers or angiotensin-converting enzyme inhibitors is
the first-line therapy for delaying CKD progression.’
However, in patients who do not sufficiently respond to
renin-angiotensin system inhibitors, or in whom this drug
class causes major side effects, the current CKD treatment
standards need to be improved.

Dipeptidyl peptidase (DPP)-4 inhibitors (“gliptins”) have
been approved for the treatment of type 2 diabetes mellitus
since 2006. Several studies have reported that DPP-4
inhibitors exert beneficial effects on renal morphology and
function in rodent diabetes models.” ® These renal effects
have been demonstrated mostly in studies investigating
hyperglycemic conditions.

C hronic kidney disease (CKD) is a major global health

1049



basic research

O Tsuprykov et al.: Linagliptin prevents CKD progression

It is well known that the antidiabetic effects of DPP-4
inhibitors are mediated via increases in levels of the incretin
hormones glucagon-like peptide (GLP)-1 and glucose-
dependent insulinotropic polypeptide (GIP). However, there
is a broad range of other substrates for the DPP-4 enzyme
including brain natriuretic peptide, substance P, peptide YY,
neuropeptide Y, and stromal cell-derived factor-1 alpha
(SDF-1a.), which are thought to contribute to beneficial renal
and cardiovascular effects;”'” however, the underlying
mechanisms have not yet been fully elucidated.

In this study, we first evaluated the glucose-independent
renal effects of the DPP-4 inhibitor linagliptin in a rat
5/6 nephrectomy (5/6 Nx) model, one of the most valuable
and extensively investigated experimental CKD animal
models,'" and investigated the underlying molecular mecha-
nisms, in comparison with those of telmisartan, one of the
most commonly used angiotensin II receptor blockers. We
furthermore examined the effect of linagliptin on systolic BP
(SBP) and urinary protein excretion in DPP-4-deficient
mutant Fisher rats (DPP-47").

RESULTS

SBP and kidney function

Baseline SBP levels in the first study (Core study) and in the
second study (Confirmation study) are presented in Table 1.
SBP was not significantly affected by 5/6 Nx in any of the
studies (Table 1). At the end of study 1, SBP was pro-
nouncedly lowered by telmisartan (-47.1 mm Hg, P < 0.001
vs. placebo), whereas the BP-lowering effect by linagliptin
was not significant (-10.8 mm Hg, NS, vs. placebo)
(Table 1, Core study). At the end of study 2, neither DPP-4
genetic ablation alone nor the one with linagliptin admin-
istration on its top showed any BP-lowering effect (Table 1,
Confirmation study).

Baseline parameters of protein excretion in both studies
did not differ among the treatment groups (Figure la
and b). At the end of study 1, urinary albumin-to-creatinine
ratio was approximately 14-fold higher (P < 0.001) in the
placebo group versus the sham control (Figure 1a), whereas
it was significantly reduced following treatment with tel-
misartan (=92%; P < 0.001) and linagliptin (-66%; P <
0.001) versus placebo. Neither linagliptin nor telmisartan
lowered plasma cystatin C (Table 1, Core study). At the end
of study 2, urinary total protein-to-creatinine ratio was
approximately 22-fold (P < 0.001) higher in placebo-
treated 5/6 Nx wild-type rats versus sham control rats
(Figure 1b). In 5/6 Nx rats, DPP-4 knockout decreased
urinary total protein-to-creatinine ratio by 66% (P < 0.001
vs. 5/6 Nx -+ wild type) at 4 weeks of the study. In 5/6 Nx
DPP-4""" rats, linagliptin decreased urinary total protein-to-
creatinine ratio by 50% (P < 0.01 vs. 5/6 Nx + wild type) at
4 weeks of the study.

Kidney weight and morphology
At the end of study 1, relative kidney weight was significantly

higher in placebo-treated 5/6 Nx rats versus sham control rats

1050

(Table 1, Core study). Telmisartan significantly decreased
kidney weight versus placebo (P < 0.05), whereas linagliptin
had no effect. Compared with the sham group, 5/6 Nx
numerically increased renal interstitial fibrosis by 69%
(P = NS) and glomerular size by 28% (P < 0.01) (Figure 2).
These findings were significantly attenuated by linagliptin
treatment: renal interstitial fibrosis and glomerular hyper-
trophy (determined by glomerular size) decreased by 48%
(P < 0.05) and 18% (P < 0.05), respectively, versus placebo
(Figure 2). Telmisartan did not show any beneficial effects on
kidney morphology (Figure 2). The glomerulosclerosis index
was elevated in 5/6 Nx + placebo rats (P < 0.05 vs. sham) and
was not restored by either telmisartan or linagliptin (Table 1,
Core study). Media-to-lumen ratio of intrarenal arteries and
renal perivascular fibrosis showed no differences between the
treatment groups (Table 1, Core study).

Markers of renal fibrosis and inflammation

In this study, 5/6 Nx resulted in an increase of fibrotic marker
collagen type I and inflammatory pan-macrophage marker
CD68 renal protein expression as determined by western blot
(Figure 3a and b). Linagliptin, but not telmisartan, restored
collagen type I renal protein expression (P < 0.05 vs. placebo)
(Figure 3a). In contrast, telmisartan normalized CD68
expression level (P < 0.05 vs. placebo) (Figure 3b), whereas
linagliptin did not. Renal protein expression of the other
profibrotic markers, such as collagen type III, transforming
growth factor beta 1 (TGF-P1), phospho-SMAD2-to-total
SMAD? ratio, and phospho-SMAD3—to—total SMAD2/3 ratio
did not show significant differences between the study groups
(Table 1, Core study). Additional data on renal fibrosis-
associated gene expression levels are summarized in Table 1,
Core study.

Urinary DPP-4 activity and malondialdehyde excretion
Urinary DPP-4 activity, as determined by urinary DPP-4
activity-to-creatinine ratio, was decreased by linagliptin at
week 18 (P < 0.01 vs. placebo) (Figure 4a). Oxidative stress in
the kidney, determined by urinary malondialdehyde-
to-creatinine ratio, was reduced by telmisartan at week 18
(P < 0.01 vs. placebo), but not by linagliptin (Figure 4b).

Plasma DPP-4 activity, GLP-1, GIP, SDF-1a, and glucose

At the end of study 1, DPP-4 activity in plasma was reduced
by 72% with linagliptin (P < 0.001 vs. placebo) and was
not affected by telmisartan (Table 1, Core study). The
plasma concentration of total incretins (sum of active and
inactive levels) was not significantly different between 5/6
Nx + placebo rats and sham (P = NS for GLP-1 and P = NS
for GIP) (Table 1, Core study). Telmisartan did not affect total
incretin levels, whereas linagliptin decreased total GIP levels
(P < 0.01 vs. placebo), but not GLP-1 levels (Table 1, Core
study). Linagliptin resulted in a 40.5-fold increase in active
GLP-1 and a 2.2-fold increase in active GIP (P < 0.001 vs.
placebo for both), whereas telmisartan had no effect on
active incretin plasma levels (Figure 5a and b). In addition,

Kidney International (2016) 89, 1049-1061
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Table 1| SBP, renal morphology, and function, and expression levels of fibrosis-associated genes

Core study (study 1)

Parameter Sham + placebo

5/6 Nx + placebo 5/6 Nx + telmisartan 5/6 Nx + linagliptin

Systolic blood pressure (mm Hg)

Baseline SBP 128.50 + 2.82 11460 + 2.41 115.80 + 2.05 118.80 + 2.22
SBP at week 7 121.88 + 342 12562 + 3.14 91.90 + 2.96" 114.00 + 2.87°
SBP at week 12 12848 + 4.18 13242 + 4.65 88.89 + 2.34° 12529 + 4.14
SBP at week 17 121.00 + 4.51 13430 + 3.98 87.22 + 3.85° 123.50 + 3.33
Kidney morphology
Final body weight (g) 591.0 + 34.1 5883 + 104 542.1 + 19.7 5603 + 18.1
Relative weight of left kidney (mg/g) 2.85 + 0.14 439 + 0.29° 347 + 0.11° 432 + 0.24°
GS index (score) 1.72 + 0.05 202 + 0.07° 1.87 + 0.06 190 + 0.04
Media-to-lumen ratio 2.66 + 0.18 262 + 0.12 269 + 0.18 262 + 022
Renal perivascular fibrosis (score) 1.92 + 0.26 1.88 + 0.13 1.73 + 0.17 177 + 0.10
Plasma parameters
Final plasma glucose (mmol/l) 8.08 + 0.29 765 + 0.26 8.13 +£ 0.26 767 + 023
Cystatin C (ng/ml) 695 + 37.83 1528 + 97.65° 1356 + 61.38° 1443 + 72.66°
MCP-1 in plasma 4233 + 7244 665.9 + 42.74° 533.2 + 3578 664.1 +39.17°
DPP-4 activity in plasma, arbitrary units 173,721 + 6733 165,082 + 6957 151,075 + 6102 46,198 + 1792°¢
Total GLP-1 (pg/ml) 14.26 + 5.73 2313 +£3.33 27.48 + 4.08 24.54 + 348
Total GIP (pg/ml) 2273 + 21.10 368.0 + 39.01 312.7 + 3146 210.1 + 3963
Total SDF-1a. (ng/ml) 2215 4+ 107.2 802.1 + 388.7 910.3 + 4447 1301.0 + 194.6™°
Relative protein expression in the kidney
Collagen type Ill (relative protein expression) 1.00 + 0.08 133 + 0.09 1.20 + 0.09 129 + 0.09
TGF-B1 (relative protein expression) 1.00 + 0.10 125 + 0.10 0.93 + 0.10 1.04 + 0.08
Phospho-SMAD?2 (relative protein expression) 1.00 + 0.21 121 +012 0.91 + 0.11 090 + 0.16
Total SMAD2 (relative protein expression) 1.00 + 0.10 1.12 + 0.09 0.92 + 0.08 0.88 + 0.06
Phospho-SMAD2/total SMAD2 ratio 1.00 + 0.23 1.08 + 0.15 0.89 + 0.13 104 + 0.16
Phospho-SMAD3 (relative protein expression) 1.00 + 0.12 1.09 + 0.21 134 + 0.19 119 + 0.16
Total SMAD2/3 (relative protein expression) 1.00 + 0.11 1.06 + 0.08 0.82 + 0.05 095 + 0.08
Phospho-SMAD3/total SMAD2/3 ratio 1.00 + 0.13 117 +0.34 1.62 + 0.25 139 + 0.25
Relative gene expression in the kidney
Collagen type 2.1 (relative gene expression) 1.00 + 0.25 523 + 1.54° 1.94 + 0.28 327 + 0.97°
Collagen type llla1 (relative gene expression) 1.00 + 035 406 + 1.20¢ 1.40 + 0.22 277 + 0.88
TGF-B1 (relative gene expression) 1.00 + 037 201 + 0.37¢ 0.94 + 0.10° 150 + 0.27
TIMP-1 (relative gene expression) 1.00 + 0.52 238 + 0.46¢ 0.81 + 0.11° 1.80 + 0.51
GLP-1 receptor (relative gene expression) 1.00 + 0.30 127 + 0.29 2.02 + 0.80 193 + 048
Confirmation study (study 2)
5/6 Nx + 5/6 Nx +
Parameter Sham + placebo 5/6 Nx + placebo DPP-4”" + placebo DPP-4” + linagliptin
Baseline SBP (mm Hg) 1158477 1185 + 6.6 121.2 + 87 116.8 + 6.0
SBP at week 4 (mm Hg) 1084 + 10.0 159.4 + 305 120.6 + 12.3 1339 + 243

DPP-4, dipeptidyl peptidase-4; GIP, glucose-dependent insulinotropic polypeptide; GLP-1, glucagon-like peptide 1; GS, glomerulosclerosis; MCP-1, monocyte chemoattractant
protein 1; Nx, nephrectomy; SBP, systolic blood pressure; SDF-1a, stromal cell-derived factor-1 alpha; TGF-B1, transforming growth factor beta 1; TIMP-1, tissue inhibitor of

metalloproteinase 1.

Values are given as mean +SEM.

?P < 0.001 versus 5/6 Nx + placebo.
bP < 005 versus 5/6 Nx + placebo.
P < 0.001 versus sham + placebo.
9p < 0.05 versus sham + placebo.
P < 0.01 versus sham + placebo.
P < 0.01 versus 5/6 Nx + placebo.

linagliptin increased total SDF-1a, plasma levels (P < 0.05
vs. placebo) (Table 1, Core study). Final plasma glucose
concentrations were not significantly different among the
groups (Table 1, Core study).

Plasma multianalyte profiling

Levels of plasma osteopontin, beta-2-microglobulin,
macrophage colony-stimulating factor 1, and monocyte
chemoattractant protein 1 were increased in placebo-treated
5/6 Nx rats (Figure 6 and Table 1, Core study). Linagliptin
lowered plasma levels of calbindin (P < 0.05). Telmisartan
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decreased osteopontin (P < 0.01) and macrophage colony-
stimulating factor 1 levels (P < 0.01). Neither drug treat-
ment significantly reduced beta-2-microglobulin and
monocyte chemoattractant protein 1 levels compared with
the placebo-treated 5/6 Nx group (Figure 6¢ and Table 1,
Core study).

Liquid chromatography and mass spectrometry of plasma
and kidney samples

At the end of study 1, 20 plasma (n = 6 for 5/6 Nx + placebo;
n =7 for 5/6 Nx + telmisartan; n = 7 for 5/6 Nx + linagliptin)
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protein-to-creatinine ratio (UPCR) in the confirmation study (study 2). Values are given as mean - SEM. “P < 0.001 versus sham + placebo;
P < 0.05; "*P < 0.01; "*P < 0.001 versus 5/6 Nx + placebo. DPP-4, dipeptidyl peptidase-4; Nx, nephrectomy.
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Figure 2| Kidney morphology. (a) Renal interstitial fibrosis, (b) typical photomicrographs of the kidneys stained with sirius red for
interstitial fibrosis, (c) glomerular size, and (d) typlcal photomicrographs of the kidneys stained with sirius red for glomerular hypertrophy.
Values are given as mean + SEM. Bar = 100 um. P < 0.01 versus sham + placebo; *P < 0.05 versus 5/6 Nx + placebo. NS, not significant;
Nx, nephrectomy.
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Figure 3| Collagen type | and CD68 renal protein expression. Renal relative protein expression of (a) collagen type | and (b) cluster of
differentiation 68 (CD68). Values are given as mean -+ SEM. "P < 0.05 versus sham + placebo; "P < 0.05 versus 5/6 Nx + placebo. NS, not
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and 15 kidney samples (n = 5 per group) were analyzed by
liquid chromatography and mass spectrometry to reveal
effects related to telmisartan or linagliptin treatment. The
analysis showed qualitative and quantitative differences
between study groups. Compared to placebo, the number of
statistically significant different signals for linagliptin in
plasma was 552 (309 up- and 243 down-regulated) and 320
in kidney (180 up- and 140 down-regulated), and for tel-
misartan, 108 in plasma (66 up- and 42 down-regulated)
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and 363 in kidney (162 up- and 201 down-regulated).
Among each group, the signals showed overlapping (26 in
plasma and 65 in kidney) (Figure 7a and b).

Subsequently, the amino acid sequences of peptides with
the highest signal-to-noise ratios and absence of cysteine
bridges were directly identified in plasma (Figure 8a) and
kidney (Figure 8b) by means of tandem mass spectrometry.
Linagliptin treatment resulted in up-regulation of 4 peptides
derived from collagen type I alpha 1 (3 of them in the kidney
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Figure 4| Urinary DPP-4 activity and MDA urinary excretion. (a) Urinary dipeptidyl peptidase-4 (DPP-4) activity-to-creatinine ratio and
(b) urinary malondialdehyde (MDA)-to-creatinine ratio. To control for variations in urinary flow rate, DPP-4 activity and MDA urinary excretion
were normalized to creatinine. Values are given as mean + SEM. "*P < 0.01 versus 5/6 Nx + placebo. NS, not significant; Nx, nephrectomy.
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Figure 5| Plasma concentration of active incretins. (a) Plasma concentration of active glucagon-like peptide 1 (GLP-1) and (b) active glucose-
dependent insulinotropic polypeptide (GIP). Values are given as mean + SEM. ***P < 0.001 versus 5/6 Nx + placebo. Nx, nephrectomy.

a Osteopontin b Calbindin
NS
401 * % ## 1.54
_ i #
\Ev 301 L T E Lr&i
= v, -
= 2l £ 1
2 201 — / =
o N
Q \ / £ 0.54
g 1l \ % 2 K
73 = o
(@]
ol : k\ //’ ool t\\\ /
o o & o ) o 2
fz>°ep & 4 <e"§@ Q\\Q\\ \@@Q \(boef’ 49'0{@ Q\Q\\
L & & «° R ES) Q\&‘ «©
S +X@ & & & & -
X N
c B2M d M-CSF-1
NS NS
30 *kKk NS 34 *%k ##
| | —— | [ | p—— |

H
Y

///
MOV

p2M (ug/ml)

C T T C T T
o QO N (o] (o} QO &
& & ; ré@ & & oé’o r§@ &
N N 2 O NG N R D
&XQ +XQ @\6‘ x\\(\ 2 o) @6‘ &
o < £ 3t & <+ x SF
e o Sl © o © <+ ©
63\6 o © (0\"0 o

Figure 6| Plasma parameters. Plasma concentration of (a) osteopontin, (b) calbindin, (c) beta-2 microglobulin (B2M), and (d) macrophage
colony-stimulating factor 1 (M-CSF-1). Values are given as mean + SEM. P < 0.01; P < 0.001 versus sham + placebo; *P < 0.05; **P < 0.01
versus 5/6 Nx + placebo. NS, not significant; Nx, nephrectomy.
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Figure 7| Results of univariate analyses of LC-MS data. The circles represent the total number of statistically significant different signals
as well as up- and down-regulated signals in 5/6 Nx + telmisartan (TEL) and 5/6 Nx + linagliptin (LIN) groups in comparison to 5/6 Nx + placebo
in (a) plasma and (b) kidney according to the results of univariate analysis of liquid chromatography and mass spectrometry (LC-MS) data.
Arrows indicate the number of overlapping signals. Statistical thresholds: P < 0.01, area under the receiver-operating characteristics curve > 0.9,
r > 0.6 (for plasma); P < 0.01, area under the receiver-operating characteristics curve > 0.95, r > 0.7 (for kidney). Nx, nephrectomy.

and all 4 in plasma), 3 peptides derived from apolipoprotein
C1 (Apo-Cl1) (in plasma only), and 2 peptides derived
from heterogeneous nuclear ribonucleoproteins A2/B1
(HNRNPA2B1) (in kidney only). All aforementioned pep-
tides contain an N-terminal proline at position 2, repre-
senting a part of the DPP-4 consensus cleavage motif, thus
confirming validity of the DPP-4 inhibition. Telmisartan
treatment led to an up-regulation of angiotensin II in
plasma, indicating the reliability of the results, because an
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elevation of angiotensin II is a known effect of angiotensin II
receptor blockers therapy.'”

DISCUSSION

In the 5/6 Nx model of CKD, telmisartan profoundly lowered
SBP, whereas linagliptin showed no BP-lowering effect. Both
drugs reduced albumin excretion. Linagliptin’s action was
pronounced with respect to reduction of renal interstitial
fibrosis and glomerular hypertrophy. In contrast, telmisartan’s
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Figure 8| Identified peptides sorted by their mean signal-to-noise ratios. The bar plots depict the signal-to-noise ratios (SNRs) for
identified peptides in (a) plasma and (b) kidney. Values are given as mean + SEM. HNRNPA2B1, heterogeneous nuclear ribonucleoproteins

A2/B1; Nx, nephrectomy.
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beneficial action was mostly due to its BP-lowering effect. The
extent of the beneficial effects exerted by each drug was
different. Antiproteinuric action of linagliptin treatment was
as effective as a complete DPP-4 genetic deficiency and add-
on linagliptin treatment in DPP-4-deficient mutant Fisher
rats did not further improve the outcome. DPP-4 inhibition
by linagliptin was associated with significant increases in
plasma active GLP-1, GIP, and total SDF-1a. concentrations,
as well as decreases in plasma and urinary DPP-4 activity.

Translation to clinical science

The more pronounced the proteinuria levels are, the faster CKD
progresses and the higher the risk of cardiovascular complica-
tions. Therefore, reducing proteinuria is one of the key treat-
ment goals in CKD. In this study, linagliptin showed an
antialbuminuric effect. Other reports,”'>'* including our own,”
have also demonstrated the antialbuminuric action of an
incretin-based therapy. In endothelial nitric oxide synthase
knockout mice with streptozotocin-induced diabetic nephrop-
athy, linagliptin significantly reduced albumin excretion to a
greater extent than telmisartan.® This is consistent with findings
from a pooled post hoc analysis of 4 studies in 217 patients with
type 2 diabetes mellitus and renal dysfunction treated with
linagliptin in addition to stable doses of renin-angiotensin
system inhibitors."* In another study of 36 patients with type
2 diabetes mellitus, sitagliptin significantly lowered urinary
albumin-to-creatinine ratio."” A reduction in albumin excretion
alone may not only be a sign of improvement, but it may also
be causally linked to a reduction in disease progression.”” Min
etal'® reported that in a mouse model of renal fibrosis, induced
by unilateral ureteral obstruction, the DPP-4 inhibitor LC15-
0444 lowered albuminuria and renal fibrosis.

Renal fibrosis and proteinuria are strong predictors of the
clinical progression of CKD."” > If drugs can influence these
surrogate outcomes, the likelihood that hard clinical out-
comes such as a reduction in all-cause and cardiovascular
mortality will be affected is high. Therefore, the finding that
linagliptin reduces kidney fibrosis and proteinuria is impor-
tant from a translational perspective. Plasma glucose levels
were not affected by linagliptin (Table 1, Core study), indi-
cating that the beneficial effects observed with linagliptin are
glucose-independent. In addition, the beneficial effects of
linagliptin were similar regardless of the rats’ genetic back-
ground (different strains, both wild type and DPP—4'/'),
suggesting that our findings are generally applicable and
therefore may be translated into clinical science.

Effects of telmisartan on CKD progression

As expected, treatment with telmisartan resulted in potent
reductions in SBP and albuminuria. In addition, telmisartan
restored plasma levels of kidney injury marker osteopontin
(Figure 6a). Telmisartan exerted potent anti-inflammatory/
immunomodulatory effects as shown by decreases in renal
pan-macrophage marker CD68 protein expression (Figure 3b)
and lowering plasma levels of macrophage colony-stimulating
factor 1 (Figure 6d). In contrast, linagliptin showed no
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anti-inflammatory/immunomodulatory effects. Telmisartan
significantly lowered urinary malondialdehyde excretion most
likely due to its antihypertensive effect.

Potential mechanism of linagliptin to reduce CKD progression
In the current study, we adopted a 2-pronged approach to
assess potential molecular mechanisms explaining effects of
DPP-4 inhibition on kidney morphology and function in 5/6
Nx rats. We used a candidate-pathway approach and a non-
hypothesis-driven peptidomics approach to explore in depth
the underlying mechanisms of DPP-4 inhibition. The candi-
date approach revealed that plasma levels of DPP-4 substrates
such as active GLP-1, active GIP, and total SDF-1 were
elevated by linagliptin in our CKD model.

We likewise tested candidate pathways such as TGF-f/
SMAD?2/3 signaling. Other groups demonstrated that DPP-4
inhibition causes a suppression of TGF-B/SMAD2/3 signaling
mainly in animal models of diabetic CKD"**** and kidney
cell lines exposed to high glucose concentrations.””*” How-
ever, in our nondiabetic CKD model, we found no evidence
supporting a potential modulation of the TGF-B/SMAD2/3
pathway by linagliptin (Table 1, Core study). Concerning the
finding of increased plasma GLP-1, we have the opinion that
the GLP-1 pathway does not contribute to a major extent to
the renoprotective effects of linagliptin, because preliminary
data from an ongoing study are showing that 5/6 Nx GLP-1
receptor  knockout (GLP-1r"") mice develop interstitial
fibrosis and decreased glomerular filtration rate; however,
linagliptin treatment still improved kidney morphology and
function (unpublished data by B. Hocher et al.). These data
strongly suggest that the GLP-1r pathway seems not to be
involved in the renoprotective effects of linagliptin in our
model. In a nondiabetic rat Thy-1 glomerulonephritis model
Higashijima et al.”® showed that both alogliptin and ana-
gliptin reduced the number of CD68-positive inflammatory
macrophages in the kidney directly via GLP-1-dependent
signaling. Because the GLP-1r pathway seems to be less
important in the pathogenesis of CKD after 5/6 Nx, we did
not see effects on GLP-1r—mediated kidney inflammation as it
was reported by Higashijima et al.”® in the Thy-1 glomeru-
lonephritis model. Taken together, anti-inflammatory effects
of DPP-4 inhibition seem to be more important in CKD
models with a pronounced kidney inflammation. The impact
of the increased plasma concentrations of the DPP-4 sub-
strates GIP and SDF-1al on the progression of kidney disease
after linagliptin treatment is unknown and needs to be
addressed in further studies.

The mass spectrometric analysis revealed an increased
abundance of collagen type I alpha 1 fragments with N-ter-
minal proline in the position 2—a preferable cleavage motif for
DPP-4.* Together with our findings of a decreased collagen I
expression in the kidney, this might indicate an influence of
linagliptin on collagen I homeostasis. However, an alternative
and more likely explanation of increased collagen fragments in
plasma and kidney samples after linagliptin treatment is related
to the fact that matrix-metalloproteases—digested collagen

Kidney International (2016) 89, 1049-1061
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fragments are substrates of DPP-4 and consequently increase
after DPP-4 inhibition. ™

Apo-Cl1 is an important biomolecule, participating in lipid
metabolism, acting via inhibition of plasma cholesteryl ester
transfer protein, an enzyme promoting the transfer of
cholesterol esters and triglycerides between plasma and
lipoproteins.”’ DPP-4 is able to cleave N-terminal dipeptide
containing proline in position 2 from a full-length Apo-C1
molecule, turning it into a truncated form.”” Our data of an
increased concentration of a nontruncated Apo-Cl in the
plasma after linagliptin treatment are in agreement with a
recent study by Skinner et al.”” using sitagliptin—another
DPP-4 inhibitor. In contrast to their study, in plasma we
found a >95% conversion rate in placebo and an approxi-
mately 50% conversion rate after linagliptin treatment (data
not shown). Although the exact biological role of Apo-Cl
truncation is not clear yet, it is hypothesized that Apo-Cl1
regulates protein-protein interaction with receptors involved
in lipid metabolism.”* The levels of proatherogenic low-
density lipoproteins were reported to be elevated as a result
of any disturbances of Apo-C1 plasma concentrations (both
increase and decrease).” However, in our study, we mainly
saw effects on kidney fibrosis. The link between Apo-C1 and
kidney fibrosis needs to be established in future studies.
Moreover, it needs to be demonstrated that a prolongation of
the half-life of full-length plasma Apo-C1 might be an addi-
tional beneficial effect of DPP-4 inhibition.

We likewise found an up-regulation of HNRNPA2B1
fragment in the kidney of linagliptin-treated 5/6 Nx rats. The
representatives of type A and B HNRNPs have a high degree
of amino acid sequence similarity.”> HNRNPA1 phosphory-
lation plays a major role in the downstream nuclear signaling
of atrial natriuretic peptide through cyclic guanosine mono-
phosphate and cyclic guanosine monophosphate—dependent
protein kinase.”® In the kidney, a disturbance of atrial
natriuretic peptide-mediated cyclic guanosine mono-
phosphate synthesis is known to be a trigger of fibrosis.™
Thus, an activation of the atrial natriuretic peptide—
dependent guanylate cyclase pathway may contribute to the
antifibrotic properties of linagliptin.””*

Based on our current data, which is derived from a
candidate-pathway approach in combination with an open
approach, and our current understanding of the mode of
action of DPP-4 inhibitors,'” we conclude that the pharma-
cological effects of linagliptin cannot be explained by inter-
acting with a single pathway. In contrast, our hypothesis is
that the beneficial effects of linagliptin are attributed to the
simultaneous interference with multiple pathways. This
hypothesis is supported by our findings of the peptidomics
analysis in plasma (Figure 7a).

In the 5/6 Nx model, linagliptin reduced albuminuria as
effectively as genetic DPP-4 deficiency and a combination of
both did not further reduce albuminuria. This suggests that
the antiproteinuric effects of linagliptin are only due to the
inhibition of DPP-4 activity and not due to potential pleio-
tropic effects of linagliptin.

Kidney International (2016) 89, 1049-1061

16

Limitations

Although we confirmed that linagliptin treatment increased
plasma active GLP-1 and GIP, as well as total SDF-1a levels,
we did not evaluate other substrates of DPP-4 such as brain
natriuretic peptide, substance P, peptide YY, neuropeptide Y,
meprin A subunit B, and high-mobility group protein B,'**
any of which may be responsible for the observed beneficial
actions. Additional studies using receptor knockout models
for these potential DPP-4 substrates will be needed to eluci-
date further the mechanisms responsible for the renal effects
of linagliptin. A further limitation is the prevention style of
the study, which does not mimic clinical conditions.
Furthermore, only peptides with the highest signal-to-noise
ratios and absence of cysteine bridges were sequenced after
being detected by liquid chromatography and mass spec-
trometry, thus we cannot exclude that peptides with a lower
signal-to-noise ratio might have played an important role as
well. In addition, we found 26 peptides in plasma and
65 peptides in kidney (Figure 7a and b), which were similarly
regulated by telmisartan and linagliptin, indicating potentially
overlapping renoprotective pathways of both drugs. However,
based on our strategy to start first sequencing peptides with
the highest signal-to-noise ratio and the absence of cysteine
bridges, these peptides were not identified yet.

Conclusion

In conclusion, this study provides evidence that linagliptin
delays renal disease progression in a nondiabetic, non-
glucose-dependent rodent CKD model. DPP-4 inhibition
with linagliptin—and potentially other DPP-4 inhibitors
also —may therefore be a novel approach for the treatment of
CKD in general. Clinical proof-of-concept studies are needed
to evaluate the safety and efficacy of linagliptin in patients
with nondiabetic CKD.

MATERIALS AND METHODS

Animals

Two independent studies were performed. The Core study (study 1)
was carried out in 50 male Wistar rats purchased from Charles River
Laboratories International, Inc. (Wilmington, MA) at the age of 8
weeks. The experiment was approved by the Committee on the
Ethics of Animal Experiments (Landesamt fuer Gesundheit und
Soziales), Berlin, Germany. The second “confirmation” study (study
2) was conducted in 45 male Sprague-Dawley and F344/DuCrlCrlj
(F344) genetically DPP-4—deficient rats purchased from Charles
River Laboratories (Yokohama, Japan) at the age of 8 weeks. All
experimental procedures were carried out in accordance with the
National Research Council of the National Academies Guide for Care
and Use of Laboratory Animals and approved by the ethics com-
mittee of Kurume University, Japan.

Study design

One week after purchase, animals in study 1 were randomly assigned
to 1 of 4 groups: sham operation + placebo (n = 6); 5/6 Nx +
placebo (17 = 15); 5/6 Nx + linagliptin (7 = 14); 5/6 Nx + telmi-
sartan (n = 15). The 5/6 Nx operation was performed as follows:
uninephrectomy at week 1, followed at week 3 by amputation of the
poles of the remaining kidney (Figure 9). Sham operations were
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Figure 9| Time course of the Core study (study 1). The experiment was started when the rats were 8 weeks old. MC, metabolic cages (to
obtain 24-hour urine samples); OP1, uninephrectomy operation on the left side; OP2, amputation of the poles of right kidney; SBP, systolic

blood pressure measurements; Uni-Nx, uninephrectomy.

performed at the same time points. The duration of study 1 was 18
weeks. During the study, SBP was measured by the tail-cuff method
at weeks 0 (baseline), 7, 12, and 17. The animals were placed in
metabolic cages to obtain 24-hour urine samples at weeks 0 (base-
line), 8, 13, and 18. The rats were sacrificed at week 18 and blood
samples were taken and organs harvested.

In study 2, wild-type and DPP-4"" rats were subjected to either
the sham (wild-type rats only) or 5/6 Nx operation. The 5/6 Nx
operation was performed as follows: at 8 weeks of age, the poles of
right kidney were amputated (week —1), followed 1 week later by
uninephrectomy (week 0, baseline) (Figure 10). Sham operations
were performed at the same time points. DPP-4"~ + 5/6 Nx rats were
subdivided into placebo and linagliptin-treatment groups. The rats
were given oral linagliptin using a stainless steel tube for 4 weeks
(9 to 13 weeks of age). Thus, the study groups were as follows: wild-
type rats + sham + placebo (n = 10); wild-type rats + 5/6 Nx +
placebo (n = 19); DPP-4"" + 5/6 Nx + placebo (n = 8); DPP-4" +
5/6 Nx -+ linagliptin (n = 8). The duration of study 2 was 4 weeks.
Final body weight, SBP, and urinary total protein were analyzed. SBP
was measured using the tail-cuff method at weeks 0 (baseline) and
4 (Figure 10). The animals were placed in metabolic cages to obtain

24-hour urine samples at weeks —1, 2, and 4. Animals were sacrificed
after 4 weeks of treatment.

Drug treatments

Telmisartan and linagliptin were provided by Boehringer Ingelheim
Pharma (Biberach an der Riss, Germany). In study 1, linagliptin
(83 mg/kg in chow) and telmisartan (5 mg/kg/day in drinking water)
were administered from day 4 after the first surgery until sacrifice.
The dose of linagliptin corresponds to a dose of approximately
3 mg/kg/day; this dose has been used in previous studies.’”"'
In study 2, the dose of linagliptin (administered via oral gavage
daily) corresponds to a dose of approximately 3 mg/kg/day. Control
animals received vehicle only.

Renal morphometry

Renal morphology parameters were measured as described previ-
ously.*”*” Briefly, interstitial fibrosis was evaluated after sirius red
staining using computer-aided histomorphometry devices. Glomerular
size was assessed by measuring =50 glomeruli in each longitudinal
sirius red-stained kidney section using Image] software (National
Institutes of Health, Bethesda, MD).** Glomerulosclerosis was
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Figure 10| Time course of the confirmation study (study 2). The study started when the rats were 8 weeks old. MC, metabolic cages (to
obtain 24-hour urine samples); OP1, amputation of the poles of right kidney; OP2, uninephrectomy operation on the left side; SBP, systolic

blood pressure measurements; Uni-Nx, uninephrectomy.
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Table 2| List of primary antibodies used

Product Catalog  Host

name Manufacturer no. species Dilution

Actin Sigma-Aldrich (St. Louis, MO)  A5060  Rabbit 1:50,000

Collagen Acris Antibodies GmbH R1038  Rabbit 1:1000
type | (Herford, Germany)

Collagen Acris Antibodies 13548-1-AP Rabbit  1:1000
type Il

CD68 (ED-1)  Santa Cruz Biotechnologies sc-59103 Mouse  1:1000

(Santa Cruz, CA)

Phospho- Merck Millipore (Billerica, 04-953  Rabbit  1:1000
SMAD2 MA)

Total SMAD2  Santa Cruz Biotechnologies  sc-6200  Goat 1:500

Phospho- Cell Signaling (Beverly, MA) ~ C25A9  Rabbit  1:2000
SMAD3

Total Santa Cruz Biotechnologies sc-6202  Goat 1:500
SMAD2/3

TGF-f1 Santa Cruz Biotechnologies  sc-146  Rabbit  1:500

(D68, cluster of differentiation 68; TGF-f31, transforming growth factor beta 1.

quantified as percentage of periodic acid-Schiff-positive area within
the glomerulus using a subjective semiquantitative score system
(grades I-1V) by 2 investigators who were blinded to the study groups.
Media/lumen ratio was measured using Image] based on analysis of
photomicrographs of intrarenal arteries after Elastica van Gieson
staining. Perivascular fibrosis was judged after sirius red staining using
a semiquantitative score by 2 blinded independent investigators.

Protein expression analysis

Kidney tissue was lysed in urea/thiourea buffer (2 M thiourea, 7 M
urea, 2% sodium dodecyl sulfate, 1% dithiothreitol). All subsequent
steps were performed as previously described.*” Details of the pri-
mary antibodies used are presented in Table 2. Final results were
calculated as a ratio between the protein of interest and actin
expression.

Real-time polymerase chain reaction—quantitation of gene
expression

Total RNA was extracted from 50 mg of snap-frozen tissue by
homogenization in peqGOLD TriFast reagent (Peqlab, Erlangen,
Germany). Residual genomic DNA was removed with TURBO
DNase (Life Technologies Co., Carlsbad, CA). RNA concentration
and purity were assayed by spectrophotometry. First-strand

Table 3| Real-time polymerase chain reaction primers

cDNAsynthesis was performed with random hexamer primer and 1
ug of RNA using a High Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Life Technologies).

Sequences from the Ensembl database and Primer3 software
(available online) were used to create specific intron-spanning
primers for the target genes.*®*” Primer sequences are displayed in
Table 3. Synthesized primers were obtained from Sigma-Aldrich (St
Louis, MO) or Biolegio (Nijmegen, the Netherlands).

The SensiFAST SYBR Lo-ROX kit (Bioline, London, UK) was
used for real-time polymerase chain reaction amplification with 10
ng of cDNA as template and 5- to 10 pmol of each primer. Poly-
merase chain reaction was performed on an Mx3000P thermal cycler
(Stratagene, La Jolla, CA); all samples were analyzed in triplicate. The
amplification efficiency of every reaction was checked by linear
regression method.* Expression of the gene of interest was divided
by the housekeeping gene (GAPDH) and expressed as fold change
compared with that of the sham group.

Plasma and urine analyses

Urinary creatinine and albumin levels were quantitatively deter-
mined by commercially available detection kits (Immundiagnostik,
Bensheim, Germany). Plasma samples were taken at study end and
analyzed for biomarker patterns by Rat KidneyMAP (version 1.0)
and Rodent MAP (version 3.0) multianalyte profiling platform
(Myriad RBM, Austin, TX). DPP-4 activity was measured as
reported previously.”” At study end, total GLP-1 and active GLP-1
(detecting 7-36 amide and 7-37) concentrations were determined
by an enzyme-linked immunosorbent assay (total GLP-1: cat. no.
K150JVC-1; active GLP-1: cat. no. K150JWC-1; Meso Scale Dis-
covery, Gaithersburg, MD). For active GIP analysis, the rat enzyme-
linked immunosorbent assay (cat. no. 27202; Immuno-Biological
Laboratories IBL, Minneapolis, MN) was used; for total GIP, the
rat/mouse enzyme-linked immunosorbent assay (cat. no.
EZRMGIP-55K; Millipore, Darmstadt, Germany) was used.
Malondialdehyde was detected in urine using the MDA HPLC kit
(cat. no. KC1900; Immundiagnostik, Bensheim, Germany). Final
plasma glucose levels were determined using a clinical glucose assay
reagent (Infinity Glucose Reagent; cat. no. TR15421; Thermo Fisher
Scientific, Waltham, MA). In study 2, urinary total protein levels
were measured with a pyrogallol red-molybdate complex using
Micro TP-AR2 kit (Wako Pure Chemical Industries, Osaka, Japan)
and urinary creatinine concentration was measured by a colori-
metric method using a Determiner-L Cre kit (Kyowa Medex Co.,
Ltd, Tokyo, Japan).

Gene Primer sequence Length Exons
TGF-B1 + CCAAGGAGACGGAATACAGG 101 2-4
ENSRNOG00000020652 - GTTTGGGACTGATCCCATTG

TIMP-1 + CGGACCTGGTTATAAGGGCTA 104 2-4
ENSRNOG00000010208 - GAATCCTTTGAGCATCTTAGTCATC

Collagen type 121 + TGGATTCCAGTTCGAGTATGG 129 49-50
ENSRNOG00000003897 - GCTACGCTGTTCTTGCAGTG

Collagen type lllo.1 + CAATGTAGATGAATTGGGATGC 119 1-2
ENSRNOG00000003357 - TGTCATCACAGAGGACAGATCC

GLP-1 receptor + CAATCGGGGTCAACTTCCT 109 10-12
ENSRNOG00000001152 - GACTTCGCGAGTCTGCATTT

GAPDH + CCATCAACGACCCCTTCAT 150 3-4
ENSRNOG00000018630 - GATCTCGCTCCTGGAAGATG

GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GLP-1, glucagon-like peptide 1; TGF-f1, transforming growth factor beta 1; TIMP-1, tissue inhibitor of metalloproteinase.
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Liquid chromatography and mass spectrometry of plasma
and kidney samples

Proteins were removed by centrifugal ultrafiltration and mass spec-
trometric data were acquired as described previously.””" Briefly,
after protein depletion a 0.300 ml equivalent of plasma or 7.5 mg
equivalent of kidney tissue by reversed phase liquid chromatography.
After separation, each fraction was subjected to matrix-assisted laser
desorption ionization time of flight mass spectrometry in linear
mode. After mass spectrometry—data acquisition, spectra were
analyzed, including peak recognition and visualization using the
software package Spectromania developed in-house and R’
including the MALDIquant™ package. Peptide identification was
achieved by matrix-assisted laser desorption ionization time of flight
mass spectrometry/mass spectrometry. Tandem mass spectrometry
spectra were subsequently noise filtered and peak deisotoped and
saved in Mascot (Matrix Science, London, UK) generic file format
and submitted to the Mascot search engine. Cascading searches
including several post-translational modifications in UNIPROT
(version 2015_09, www.uniprot.org) were performed.

Statistical analysis

All data are expressed as means = SEM. Statistical analyses were
performed using GraphPad Prism (version 5; GraphPad Software,
San Diego, CA). For the statistical analysis of body weight, SBP,
urinary albumin-to-creatinine ratio, urinary total protein-to-
creatinine ratio, a 2-way analysis of variance with Bonferroni post
hoc test was used. In all other cases, 1-way analysis of variance was
used followed either by Dunn test when the data were not normally
distributed or by Dunnett test when the data were normally
distributed. In all cases, differences were considered statistically
significant if P < 0.05. To find relevant signals within the mass
spectrometric data, statistical analysis including 2-sample t-test
(Welch), Pearson product moment correlation coefficient, receiver-
operating characteristics,”” and determination of the signal-to-
noise ratio for each signal were carried out. The thresholds for
significant differences were set for plasma at P < 0.01, r > 0.6, the
area under the receiver-operating characteristics curve > 0.9 and
P < 0.01, r > 0.7, area under the receiver-operating characteristics
curve > 0.95 for kidney tissue.
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